
ElevateDB Version 2 Data Access Components
Manual

Table Of Contents

Chapter 1 - Using the ODBC Driver 1

1.1 Application Compatibility 1

1.2 Data Source Configuration Tutorial 3

1.3 Registry Entries 7

1.4 Connection Strings 15

1.5 Custom Driver Installation 23

Chapter 2 - Using the .NET Data Provider 25

2.1 Application Compatibility 25

2.2 Installation and Distribution 26

2.3 Connection Strings 28

Chapter 3 - .NET Data Provider Reference 37

3.1 Introduction 37

3.2 EDBException Class 38

3.3 EDBProviderFactory Class 39

3.4 EDBConnectionStringBuilder Class 40

3.5 EDBLoginEventArgs Class 47

3.6 EDBLoginEvent Delegate 48

3.7 EDBTimeoutEventArgs Class 49

3.8 EDBTimeoutEvent Delegate 50

3.9 EDBReconnectEventArgs Class 51

3.10 EDBReconnectEvent Delegate 52

3.11 EDBCommsProgressEventArgs Class 53

3.12 EDBCommsProgressEvent Delegate 54

3.13 EDBTraceEventArgs Class 55

3.14 EDBTraceEvent Delegate 56

3.15 EDBProgressEventArgs Class 57

3.16 EDBProgressEvent Delegate 58

3.17 EDBMessageEventArgs Class 59

3.18 EDBStatusEvent Delegate 60

3.19 EDBLogEvent Delegate 61

Table of Contents

Preface

3.20 EDBType Enumeration 62

3.21 EDBParameter Class 64

3.22 EDBTransaction Class 65

3.23 EDBYearMonthIntervalType Enumeration 66

3.24 EDBDayTimeIntervalType Enumeration 67

3.25 EDBConnection Class 68

3.26 EDBCommandTextType Enumeration 74

3.27 EDBCommand Class 79

3.28 EDBDataReader Class 82

3.29 EDBDataCursorState Enumeration 83

3.30 EDBCursorStateChangeEvent Delegate 84

3.31 EDBCursorMoveEvent Delegate 85

3.32 EDBDataCursor Class 86

3.33 EDBDataAdapter Class 92

3.34 EDBCommandBuilder Class 93

Appendix A - Error Codes and Messages 95

Appendix B - System Capacities 103

Table of Contents

Preface

Chapter 1
Using the ODBC Driver

1.1 Application Compatibility

Supported Applications

The ElevateDB ODBC driver is an ODBC level 3 driver. We have tested the driver successfully with
Microsoft Data Access Components (MDAC) version 2.7 or higher and the following applications:

Application Versions and Notes

Crystal Reports 8.5 and later

Microsoft Office 2000 and later

Microsoft Access has problems with using an auto-increment
field as part of the primary index since the Jet engine cannot
"discover" the keys properly when they are not populated
explicitly by the client application.

Microsoft Visio 2000 and later

Borland Database Engine (BDE) 5.01 and later

With the BDE there are problems with using an auto-
increment field as part of the primary index since the BDE
cannot "discover" the keys properly when they are not
populated explicitly by the client application.

ADOExpress Delphi 5 or later

Only use a CursorLocation property of clUseClient. Server-side
cursors do not work properly since the OLE layer deems
dynamic cursors as not being capable of handling bookmark
operations, even though such cursors can handle bookmark
operations in ElevateDB.

ODBCExpress 5.06 and later

Microsoft ASP 5 and later

It is recommended that you only use the ODBCDirect
functionality in ASP and not the ADO->OLEDB->ODBC bridge
driver through the ADO functionality. The bridge driver does
not function correctly in most cases.

Microsoft Visual Basic 6 and later

It is recommended that you only use the ODBCDirect
functionality in VB 6 and not the ADO->OLEDB->ODBC bridge
driver through the ADO functionality. The bridge driver does
not function correctly in most cases.

Microsoft Visual Studio .NET 2002 and later

Using the ODBC Driver

Page 1

It is recommended that you only use the ODBC.NET data
provider with any .NET application (VB.NET, ASP.NET, C#,
Delphi.NET, Chrome). Also, since the ODBC.NET data provider
is accessing and using unmanaged resources and handles in
the ODBC driver during operation, you should always call the
Dispose method for any ODBCConnection, ODBCCommand,
ODBCCommandBuilder, or ODBCDataAdapter objects when
you are done using them (deterministic destruction). Failure
to do so can cause major failures in the driver due to the
resources and handles being freed up re-entrantly when the
.NET garbage collector thread finalizes these objects.

Missing Features

There are still a few features and function calls missing from the driver, but they should not affect most
environments. These missing features are:

- Support for bulk operations (SQLBulkOperations call)

- Support for working directly with descriptors (SQLSetDescRec, SQLGetDescRec, and SQLCopyDesc calls)

- Support for setting and getting cursor names (SQLGetCursorName and SQLSetCursorName calls)

More Information

The driver can completely handle all updating of data via SQL statements and the SQLExecute or
SQLExecDirect calls, including BLOB data. Parameters are also completely supported, including BLOB
parameters.

The driver provides scrollable cursor support via SQLFetchScroll and SQLExtendedFetch. The only two
types of scrollable cursors supported are Static and Dynamic. Keyset-Driven cursors are not supported.

The driver cannot perform positioned updates using the SQL syntax WHERE CURRENT OF and using the
SQLSetCursorName and SQLGetCursorName calls. This functionality is not supported in ElevateDB.

Even though the driver supports parameter arrays, you cannot request multiple result sets with the
SQLMoreResults call. This is not supported in ElevateDB.

Any ODBC application that calls the SQLNumResultCols, SQLDescribeCol, or SQLColAttribute functions
while a statement is prepared, but not executed, will force ElevateDB to execute the query in order to
retrieve this result set information. ElevateDB does not support retrieving result set information until a
SELECT statement is executed.

Using the ODBC Driver

Page 2

1.2 Data Source Configuration Tutorial

A data source, or DSN (Data Source Name), is used by applications that use ODBC to locate and access a
specific database in a specific location. Once you have configured a data source in the ODBC
Administrator, you may use this data source name in any application that can access ODBC. Please see the
Application Compatibility topic in this manual for more information on applications that have been
specifically tested with the ElevateDB ODBC Driver.

Step-By-Step Instructions

Complete the following steps to properly configure a data source that uses the ElevateDB ODBC Driver.
These steps are illustrated using Windows 7, but are very similar for most other versions of Windows.

1. Run the ODBC Administrator, which is located in the Administrative Tools folder in the Control
Panel. To reach the Administrative Tools folder, complete the following steps:

a. Click on the Control Panel link from the Start Menu.

b. Click on the System and Security link from the Start Menu.

d. Click on the Administrative Tools link in the System and Security window of the Control Panel.

Using the ODBC Driver

Page 3

e. Double-click on the Data Sources (ODBC) icon in the Administrative Tools folder. This will bring
forward the ODBC Administrator dialog.

Note
By default, 32-bit versions of Windows use the 32-bit ODBC Administrator, and 64-bit versions of
Windows use the 64-bit ODBC Administrator, when launching the ODBC Administrator via the
Administrative Tools link. If you're using a 64-bit version of Windows, then you must use the 32-bit
ODBC Administrator located here in order to configure 32-bit data sources for use with 32-bit
applications and the 32-bit ElevateDB ODBC Driver:

<WindowsInstallDir>\SysWoW64\odbcad32.exe

where <WindowsInstallDir> is the base Windows installation directory, usually c:\Windows.

2. If you want the data source to be accessible by all users, then click on the System DSN tab. If you
want the data source to only be accessible to the current user, then click User DSN tab (the default
page). For the rest of this tutorial, we will be configuring a new User DSN.

Using the ODBC Driver

Page 4

Note
Only Administrators can define System DSNs since they require access to the
HKEY_LOCAL_MACHINE registry hive of the registry.

3. Click on the Add button to begin adding a data source. This will bring forward a dialog with a list of the
installed ODBC drivers. Select the ElevateDB ODBC Driver from the list of drivers.

5. Click on the Finish button to complete the driver selection process and begin the configuration process.

6. An ElevateDB ODBC Driver configuration wizard dialog will now be shown. Follow the instructions on
this wizard to complete the data source configuration.

Using the ODBC Driver

Page 5

7. Once the configuration steps have been completed and you have clicked on the Finish button in the
dialog, you will be brought back to the DSN page of the ODBC Administrator where you should now see
the DSN that you have just created.

If at any time you wish to re-configure the data source, simply choose the appropriate tab page (User DSN
or System DSN), select the data source name that you previously added from the list of data sources, and
then click on the Configure button. This will bring forward the same configuration wizard dialog as before,
except in this case you cannot specify a name for the data source.

Using the ODBC Driver

Page 6

1.3 Registry Entries

Location

ODBC data sources are stored in the registry in Windows. The location of both user and system data
sources is detailed below:

Data Source Type Location

User DSN HKEY_CURRENT_USER\Software\ODBC\ODBC.INI\<Data
Source Name>

System DSN HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\<Data
Source Name>

Also, a list of data sources defined on the system can be found here:

Data Source Type Location

User DSN HKEY_CURRENT_USER\Software\ODBC\ODBC.INI\ODBC Data
Sources

System DSN HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\ODBC
Data Sources

64-bit Windows64-bit Windows

Under 64-bit Windows, the above registry keys/values are for 64-bit DSNs only, and are only configurable
via the 64-bit ODBC Administrator that is accessible from the Control Panel. In order to configure 32-bit
DSNs on 64-bit Windows, one must use the 32-bit ODBC Administrator located here:

<WindowsInstallDir>\SysWoW64\odbcad32.exe

where <WindowsInstallDir> is the base Windows installation directory, usually c:\Windows.

In addition, 32-bit ODBC Administrator uses the special 32-bit registry values here for data sources:

Data Source Type Location

User DSN HKEY_CURRENT_USER\Software\Wow6432Node\ODBC\ODBC.INI\ODBC
Data Sources

System DSN HKEY_LOCAL_MACHINE\Software\Wow6432Node\ODBC\ODBC.INI\ODBC
Data Sources

and here for a list of data sources:

Data Source Type Location

Using the ODBC Driver

Page 7

User DSN HKEY_CURRENT_USER\Software\Wow6432Node\ODBC\ODBC.INI\<Data
Source Name>

System DSN HKEY_LOCAL_MACHINE\Software\Wow6432Node\ODBC\ODBC.INI\<Data
Source Name>

ElevateDB Data Source Settings

The following registry values are defined under the <Data Source Name> key in the registry (see above).
All registry values marked with the (R) symbol next to their name are only applicable when the TYPE
registry value is set to "REMOTE". Likewise, all registry values marked with the (L) symbol next to their
name are only applicable when the TYPE registry value is set to "LOCAL".

Name Description

DRIVER This string value is always set to the directory and file name
of the ElevateDB ODBC Driver for which the data source is
configured.

NAME This string value specifies the name of connection, and is the
same as the DSN.

DESCRIPTION This string value specifies the description of the connection.

CHARSET This string value specifies which character set, "ANSI" or
"UNICODE", to use for the connection. For remote
connections to an ElevateDB Server, the value must match the
character set being used by the ElevateDB Server. The default
value is "UNICODE".

TYPE This string value is set to either "LOCAL" if the data source is
accessing the database directly, or "REMOTE" if the data
source is accessing the database remotely via an ElevateDB
Server.

HOST (R) This string value specifies the host name of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS registry values must be populated along with the
SERVICE or PORT registry values in order to correctly access a
database on an ElevateDB Server. The default value is "".

ADDRESS (R) This string value specifies the IP address of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS registry values must be populated along with the
SERVICE or PORT registry values in order to correctly access a
database on an ElevateDB Server. The default value is
"127.0.0.1".

SERVICE (R) This string value specifies the service name of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS registry values must be populated along with the
SERVICE or PORT registry values in order to correctly access a
database on an ElevateDB Server. The default value is "".

PORT (R) This string value specifies the port number of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS registry values must be populated along with the
SERVICE or PORT registry values in order to correctly access a
database on an ElevateDB Server. The default value is

Using the ODBC Driver

Page 8

"12010".

PING (R) This string value specifies whether pinging will be enabled for
the connection to the ElevateDB Server. When pinging is
enabled, the driver will send a keep-alive request to the
ElevateDB Server in the interval specified by the
PINGINTERVAL registry value for the data source. This
prevents the ElevateDB Server from disconnecting and/or
removing the connection, even if the connection has been idle
for a very long period of time. Please see the Server Session
Timeout configuration item in the Starting and Configuring the
ElevateDB Server topic for more information on how idle
connections are handled. Specify "TRUE" to enable pinging, or
"FALSE" (the default) to disable pinging.

PINGINTERVAL (R) This string value specifies how often the connection will ping
the ElevateDB Server when pinging is enabled via the PING
registry value for the data source. The default value is "60"
(seconds).

TIMEOUT (R) This string value specifies how long the connection will wait
on a response from the ElevateDB Server before
disconnecting and issuing an error. The default value is "180"
(seconds).

ENCRYPTED (R) This string value specifies whether the connection to the
ElevateDB Server should be encrypted or no. Specify "TRUE"
to enable encryption for the connection, or "FALSE" (the
default) to disable encryption for the connection.

ENCRYPTSRVPWD (R) This string value specifies the password to use for encrypted
connections to the remote ElevateDB Server, as well as for
encrypting logins to the remote ElevateDB Server. This
password must match the configured encryption password for
the remote ElevateDB Server, and you should only specify this
value if you know exactly what you are doing and need to use
a different encryption password than the default of
"elevatesoft".

COMPRESSION (R) This string value specifies the amount of compression to use
when communicating with the ElevateDB Server. The default
value is "0", or no compression. A value of "1" to "10"
specifies the amount of compression from fast, but not very
thorough, to very thorough, but not as fast. A value of "6"
specifies a balance between size and speed, and represents
the ideal level for most applications.

Note
The ElevateDB ODBC Driver will automatically adjust
this value for situations where the existing compression
level is not ideal, such as in cases where the amount of
data being sent is so small that it is of no benefit to
compress the data.

READAHEADROWS (R) This string value specifies how many rows will be read in a
single request when the connection is requesting rows from
the remote ElevateDB Server. The default value is "10".

Using the ODBC Driver

Page 9

CONFIGMEMORY (L) This string value specifies whether the configuration file used
by the data source will be located in the process memory
("virtual") or on disk. Specify "TRUE" to use a virtual
configuration file, or "FALSE" (the default) to use a disk-based
configuration file in the location specified by the CONFIGPATH
registry value (see below). The configuration file in ElevateDB
stores the contents of the system-defined Configuration
Database. Please see the Architecture for more information
on configuration files.

CONFIGPATH (L) This string value specifies the configuration path to use for
the data source. The configuration file in ElevateDB stores the
contents of the system-defined Configuration Database.
Please see the Architecture for more information on the
configuration path.

TEMPPATH (L) This string value specifies the temporary tables path to use
for the data source. The temporary tables path is used to
store any temporary tables generated during query execution.
The default value is the operating system setting for the
storing temporary files for the current user. Please see the
Architecture for more information on the temporary tables
path.

KEEPTABLESOPEN This string value specifies whether tables should be kept open
for the duration of the connection once they have been
opened at least once. Specify "TRUE" to keep tables open, or
"FALSE" (the default) to have tables opened and closed on
demand. Setting this value to "TRUE" can result in improved
performance, especially with applications that execute many
singleton SQL statements in a row.

CONFIGNAME (L) This string value specifies the root name (without extension)
used by the data source for the configuration file. The default
value is "EDBConfig". The extension used for the configuration
file is determined by the CONFIGEXT value. The location of
the configuration file is determined by the CONFIGPATH
value.

CONFIGEXT (L) This string value specifies the extension used by the data
source for the configuration file. The default value is
".EDBCfg". The root name (without extension) used for the
configuration file is determined by the CONFIGNAME value.
The location of the configuration file is determined by the
CONFIGPATH value.

LOCKEXT (L) This string value specifies the extension used by the data
source for both the configuration and database catalog lock
files. The default value is ".EDBLck". The root name (without
extension) used for the configuration lock file is determined
by the CONFIGNAME value. The root name (without
extension) used for a database catalog lock file is determined
by the CATALOGNAME value. The location of the configuration
lock file is determined by the CONFIGPATH value, and the
configuration lock file is hidden, by default. The location of a
database catalog lock file is determined by the path
designated for the applicable database when the database
was created, and a database catalog lock file is hidden, by

Using the ODBC Driver

Page 10

default.

LOGEXT (L) This string value specifies the extension used by the data
source for the configuration log file. The default value is
".EDBLog". The root name (without extension) used for the
configuration log file is determined by the CONFIGNAME
value. The location of the configuration log file is determined
by the CONFIGPATH value.

MAXLOGSIZE (L) This string value specifies the maximum size of the log file (in
bytes) that the log file can grow to. Log entries are added to
the log in a circular fashion, meaning that once the maximum
log file size ia reached, ElevateDB will start re-using the oldest
log entries for new log entries. The default value is 1048576
bytes. Which types of logged events are recorded in the log
can be controlled by the LOGCATS value. By default, all
categories of events are logged (INFO, WARN, and ERROR).

Warning
It is very important that all data sources and/or
applications accessing the same configuration file use
the same maximum log file size for the configuration
log file. Using different values can result in log entries
being prematurely overwritten or appearing "out-of-
order" when viewing the log entries via the LogEvents
Table.

LOGCATS (L) This string value specifies the types of events that should be
logged in the configuration log file for the current data source,
with each value separated by a comma (,). The default value
is "INFO,WARN,ERROR", or all categories of events.

CATALOGNAME (L) This string value specifies the root name (without extension)
used by the data source for all database catalog files. The
default value is "EDBDatabase". The extension used for the
catalog files is determined by the CATALOGEXT value. The
location of the catalog file is determined by the path
designated for the applicable database when the database
was created.

CATALOGEXT (L) This string value specifies the extension used by the data
source for database catalog files. The default value is
".EDBCat". The root name (without extension) used for all
database catalog files is determined by the CATALOGNAME
value. The location of the catalog file is determined by the
path designated for the applicable database when the
database was created.

BACKUPEXT (L) This string value specifies the extension used by the data
source for database backup files. The default value is
".EDBBkp". The root name (without extension) used for a
database backup file is determined by the name given when
the BACKUP DATABASE statement is executed.

Using the ODBC Driver

Page 11

UPDATEEXT (L) This string value specifies the extension used by the data
source for database update files. The default value is
".EDBUpd". The root name (without extension) used for a
database update file is determined by the name given when
the SAVE UPDATES statement is executed.

TABLEEXT (L) This string value specifies the extension used by the data
source for database table files. The default value is ".EDBTbl".
The root name (without extension) used for a table file is
determined by the name given when the CREATE TABLE
statement is executed. The location of the table files is
determined by the path designated for the applicable
database when the database was created.

INDEXEXT (L) This string value specifies the extension used by the data
source for database table index files. The default value is
".EDBIdx". The root name (without extension) used for a
table's index file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table index files is determined by the path designated for the
applicable database when the database was created.

BLOBEXT (L) This string value specifies the extension used by the data
source for database table BLOB files. The default value is
".EDBBlb". The root name (without extension) used for a
table's BLOB file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table BLOB files is determined by the path designated for the
applicable database when the database was created.

PUBLISHEXT (L) This string value specifies the extension used by the data
source for database table publish files. The default value is
".EDBPbl". The root name (without extension) used for a
table's publish file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table publish files is determined by the path designated for
the applicable database when the database was created.

UID This string value specifies the user ID to use when connecting
to the data source. If this value is left blank, the user will be
prompted for the user ID, if possible. When executing in
environments that don't support a user interface, such as web
applications, it is not possible to display a login dialog and an
error will be raised instead.

PWD This string value specifies the password to use when
connecting to the data source. If this value is left blank, the
user will be prompted for the password, if possible. When
executing in environments that don't support a user interface,
such as web applications, it is not possible to display a login
dialog and an error will be raised instead.

DATABASE This string value specifies the name of the database being
accessed with the data source. Please see the Architecture for
more information on databases.

Using the ODBC Driver

Page 12

READONLY This string value specifies whether the data source is read-
only or read-write. Set this value to "TRUE" to make the data
source read-only, and "FALSE" to make the data source read-
write.

ROWLOCKPROTOCOL This string value specifies which row locking protocol to use
for the data source. Set this value to "PESSIMISTIC" to specify
that all UPDATE row locks should be acquired when the rows
are read during the process of the UPDATEs. Set this value to
"OPTIMISTIC" to specify that all UPDATE row locks should
only be acquired when the rows are actually being updated.
Please see the Locking and Concurrency topic for more
information.

ROWLOCKRETRIES This string value specifies the number of row lock attempts
that the driver should make before issuing an error. The
default is "15".

ROWLOCKWAIT This string value specifies the amount of time (in milliseconds)
to wait between each row lock attempt. The default is "100".

DETECTROWCHANGES This string value specifies whether the driver should issue an
error when a row is updated and the row has changed since it
was last cached. Specify "TRUE" to enable row change
detection, or "FALSE" (the default) to disable row change
detection. Please see the Change Detection topic for more
information.

CATALOGINFO (L) This string value specifies whether database catalog character
set and version information should appear in the Databases
system information table. The default value is "TRUE".

Note
Setting the value to "FALSE" can significantly improve
the performance of the loading of the Databases
system information table when there are a lot of
databases in a configuration. This is because ElevateDB
has to open the database catalog for each database in
order to read the character set and version number.

CACHEMODULES (L) This string value specifies whether module DLLs should be
cached in memory for the duration of the connection. The
default value is "FALSE".

STMTCACHESIZE This string value specifies how many SQL statements can be
cached in memory for the duration of the connection. Caching
SQL statements improves the performance of ElevateDB by
avoiding very expensive preparation/un-preparation cycles.
The default value is "0", which means that SQL statements
will not be cached for the connection.

Using the ODBC Driver

Page 13

Note
The maximum number of open SQL statements per
connection is 2048, so you should not set the
statement cache size that high. Also, the SQL
statement cache size is a per-open-database setting.

PROCCACHESIZE This string value specifies how many functions/procedures can
be cached in memory for the duration of the connection.
Caching functions/procedures improves the performance of
ElevateDB by avoiding very expensive preparation/un-
preparation cycles. The default value is "0", which means that
functions/procedures will not be cached for the connection.

Note
The maximum number of open functions/procedures
per connection is 2048, so you should not set the
procedure cache size that high. Also, the
function/procedure cache size is a per-open-
database setting.

FLUSHWRITES This string value controls whether the driver forces the
operating system to flush any buffered writes to disk
immediately after the data is written to the operating system.
If the value is "FALSE" (the default), then ElevateDB will leave
the flushing up to the operating system. If it is "TRUE", then
ElevateDB will force a buffer flush after every write. Please
see the Buffering and Caching topic for more information.

SIGNATURE This string value specifies the signature to use for the data
source. A signature is used to "sign" all configuration and
database files created by ElevateDB so that they are only
accessible using that signature, as well as "signing" all
communications with a remote ElevateDB Server. You should
only specify this value if you know exactly what you are doing
and need to use a different signature than the default of
"edb_signature".

ENCRYPTPWD (L) This string value specifies the password to use for encrypting
any local engine files. You should only specify this value if you
know exactly what you are doing and need to use a different
encryption password than the default of "elevatesoft".

Using the ODBC Driver

Page 14

1.4 Connection Strings

Connection strings are used when the SQLDriverConnect and SQLBrowseConnect ODBC API functions are
called. They may specify as little as a data source name or as much as an entire data source configuration.
The SQLDriverConnect function will interactively complete a connection string, if necessary, and, if the
calling program indicates that it wants this behavior, by prompting the user for the missing information.
On the other hand, the SQLBrowseConnect function will do so programmatically by iteratively interacting
with the calling program. For more information on the SQLDriverConnect and SQLBrowseConnect API calls,
please refer to the ODBC Programmers Reference from Microsoft. For more information on what function
calls are used in your application program, please ask the vendor of the application program being used.

Pre-Configured Data Source Connection Strings

Connection strings that connect to a pre-configured data source, do so by specifying the DSN keyword in
the connection string:

DSN=MyDataSource

Any other keywords that are specified in the connection string are overridden with the settings present in
the data source configuration for the specified data source.

In addition, you can also use the FILEDSN keyword to load a data source configuration from a specific file
instead of the registry:

FILEDSN=c:\windows\temp\mydatasource.dsn

That will load the configuration values from the mydatasource.dsn file. For more information on using the
FILEDSN keyword, please refer to the ODBC Programmers Reference from Microsoft.

Direct Connection Strings

Direct connection strings bypass a pre-configured data source altogether and specify all of the keywords
necessary to configure and access a given data source. The first keyword in a direct connection string
must always be the special DRIVER keyword. For the ElevateDB ODBC Driver, it would look like this:

DRIVER={ElevateDB 2 ODBC Driver}

Notice the use of the required braces {} around the DRIVER keyword.

The keywords that can be used with direct connection strings and the ElevateDB ODBC Driver are listed
below. Here is an example direct connection string that connects to a remote ElevateDB Server and a
database called "Accounting" (case-insensitive):

DRIVER={ElevateDB 2 ODBC Driver};
CHARSET=UNICODE;

Using the ODBC Driver

Page 15

TYPE=REMOTE;
ADDRESS=192.168.0.28;
DATABASE=Accounting

Note
The line breaks inserted above are only for readability and should not be used in an actual
connection string.

Connection String Keywords

The following keywords are used with connection strings. All keywords marked with the (R) symbol next to
their name are only applicable when the TYPE keyword is set to "REMOTE". Likewise, all keywords marked
with the (L) symbol next to their name are only applicable when the TYPE keyword is set to "LOCAL".

Name Description

CHARSET This string value specifies which character set, "ANSI" or
"UNICODE", to use for the connection. For remote
connections to an ElevateDB Server, the value must match the
character set being used by the ElevateDB Server. The default
value is "UNICODE".

TYPE This string value is set to either "LOCAL" if the connection is
accessing the database directly, or "REMOTE" if the
connection is accessing the database remotely via an
ElevateDB Server.

NAME This string value specifies the name of the connection.

DESCRIPTION This string value specifies the description of the connection.

HOST (R) This string value specifies the host name of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS values must be populated along with the SERVICE
or PORT values in order to correctly access a database on an
ElevateDB Server. The default value is "".

ADDRESS (R) This string value specifies the IP address of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS values must be populated along with the SERVICE
or PORT values in order to correctly access a database on an
ElevateDB Server. The default value is "127.0.0.1".

SERVICE (R) This string value specifies the service name of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS values must be populated along with the SERVICE
or PORT values in order to correctly access a database on an
ElevateDB Server. The default value is "".

PORT (R) This string value specifies the port number of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS values must be populated along with the SERVICE
or PORT values in order to correctly access a database on an
ElevateDB Server. The default value is "12010".

Using the ODBC Driver

Page 16

CONNECTTIMEOUT (R) This string value specifies the maximum amount of time, in
seconds, that ElevateDB will wait for a successful connection
before aborting the connection attempt. The default value is
"15" (seconds).

PING (R) This string value specifies whether pinging will be enabled for
the connection to the ElevateDB Server. When pinging is
enabled, the driver will send a keep-alive request to the
ElevateDB Server in the interval specified by the
PINGINTERVAL value. This prevents the ElevateDB Server
from disconnecting and/or removing the connection, even if
the connection has been idle for a very long period of time.
Please see the Server Session Timeout configuration item in
the Starting and Configuring the ElevateDB Server topic for
more information on how idle connections are handled.
Specify "TRUE" to enable pinging, or "FALSE" (the default) to
disable pinging.

PINGINTERVAL (R) This string value specifies how often the connection will ping
the ElevateDB Server when pinging is enabled via the PING
value. The default value is "60" (seconds).

TIMEOUT (R) This string value specifies how long the connection will wait
on a response from the ElevateDB Server before
disconnecting and issuing an error. The default value is "180"
(seconds).

ENCRYPTED (R) This string value specifies whether the connection to the
ElevateDB Server should be encrypted or no. Specify "TRUE"
to enable encryption for the connection, or "FALSE" (the
default) to disable encryption for the connection.

ENCRYPTSRVPWD (R) This string value specifies the password to use for encrypted
connections to the remote ElevateDB Server, as well as for
encrypting logins to the remote ElevateDB Server. This
password must match the configured encryption password for
the remote ElevateDB Server, and you should only specify this
value if you know exactly what you are doing and need to use
a different encryption password than the default of
"elevatesoft".

COMPRESSION (R) This string value specifies the amount of compression to use
when communicating with the ElevateDB Server. The default
value is "0", or no compression. A value of "1" to "10"
specifies the amount of compression from fast, but not very
thorough, to very thorough, but not as fast. A value of "6"
specifies a balance between size and speed, and represents
the ideal level for most applications.

Note
The ElevateDB ODBC Driver will automatically adjust
this value for situations where the existing compression
level is not ideal, such as in cases where the amount of
data being sent is so small that it is of no benefit to
compress the data.

Using the ODBC Driver

Page 17

READAHEADROWS (R) This string value specifies how many rows will be read in a
single request when the connection is requesting rows from
the remote ElevateDB Server. The default value is "10".

CONFIGMEMORY (L) This string value specifies whether the configuration file used
by the connection will be located in the process memory
("virtual") or on disk. Specify "TRUE" to use a virtual
configuration file, or "FALSE" (the default) to use a disk-based
configuration file in the location specified by the CONFIGPATH
string value (see below). The configuration file in ElevateDB
stores the contents of the system-defined Configuration
Database. Please see the Architecture for more information
on configuration files.

CONFIGPATH (L) This string value specifies the configuration path to use for
the connection. The configuration file in ElevateDB stores the
contents of the system-defined Configuration Database.
Please see the Architecture for more information on the
configuration path.

TEMPPATH (L) This string value specifies the temporary tables path to use
for the connection. The temporary tables path is used to store
any temporary tables generated during query execution. The
default value is the operating system setting for the storing
temporary files for the current user. Please see the
Architecture for more information on the temporary tables
path.

KEEPTABLESOPEN This string value specifies whether tables should be kept open
for the duration of the connection once they have been
opened at least once. Specify "TRUE" to keep tables open, or
"FALSE" (the default) to have tables opened and closed on
demand. Setting this value to "TRUE" can result in improved
performance, especially with applications that execute many
singleton SQL statements in a row.

CONFIGNAME (L) This string value specifies the root name (without extension)
used by the connection for the configuration file. The default
value is "EDBConfig". The extension used for the configuration
file is determined by the CONFIGEXT value. The location of
the configuration file is determined by the CONFIGPATH
value.

CONFIGEXT (L) This string value specifies the extension used by the
connection for the configuration file. The default value is
".EDBCfg". The root name (without extension) used for the
configuration file is determined by the CONFIGNAME value.
The location of the configuration file is determined by the
CONFIGPATH value.

LOCKEXT (L) This string value specifies the extension used by the
connection for both the configuration and database catalog
lock files. The default value is ".EDBLck". The root name
(without extension) used for the configuration lock file is
determined by the CONFIGNAME value. The root name
(without extension) used for a database catalog lock file is
determined by the CATALOGNAME value. The location of the
configuration lock file is determined by the CONFIGPATH
value, and the configuration lock file is hidden, by default.

Using the ODBC Driver

Page 18

The location of a database catalog lock file is determined by
the path designated for the applicable database when the
database was created, and a database catalog lock file is
hidden, by default.

LOGEXT (L) This string value specifies the extension used by the
connection for the configuration log file. The default value is
".EDBLog". The root name (without extension) used for the
configuration log file is determined by the CONFIGNAME
value. The location of the configuration log file is determined
by the CONFIGPATH value.

MAXLOGSIZE (L) This string value specifies the maximum size of the log file (in
bytes) that the log file can grow to. Log entries are added to
the log in a circular fashion, meaning that once the maximum
log file size ia reached, ElevateDB will start re-using the oldest
log entries for new log entries. The default value is 1048576
bytes. Which types of logged events are recorded in the log
can be controlled by the LOGCATS value. By default, all
categories of events are logged (INFO, WARN, and ERROR).

Warning
It is very important that all data sources and/or
applications accessing the same configuration file use
the same maximum log file size for the configuration
log file. Using different values can result in log entries
being prematurely overwritten or appearing "out-of-
order" when viewing the log entries via the LogEvents
Table.

LOGCATS (L) This string value specifies the types of events that should be
logged in the configuration log file for the current connection,
with each value separated by a comma (,). The default value
is "INFO,WARN,ERROR", or all categories of events.

CATALOGNAME (L) This string value specifies the root name (without extension)
used by the connection for all database catalog files. The
default value is "EDBDatabase". The extension used for the
catalog files is determined by the CATALOGEXT value. The
location of the catalog file is determined by the path
designated for the applicable database when the database
was created.

CATALOGEXT (L) This string value specifies the extension used by the
connection for database catalog files. The default value is
".EDBCat". The root name (without extension) used for all
database catalog files is determined by the CATALOGNAME
value. The location of the catalog file is determined by the
path designated for the applicable database when the
database was created.

BACKUPEXT (L) This string value specifies the extension used by the
connection for database backup files. The default value is
".EDBBkp". The root name (without extension) used for a
database backup file is determined by the name given when
the BACKUP DATABASE statement is executed.

Using the ODBC Driver

Page 19

UPDATEEXT (L) This string value specifies the extension used by the
connection for database update files. The default value is
".EDBUpd". The root name (without extension) used for a
database update file is determined by the name given when
the SAVE UPDATES statement is executed.

TABLEEXT (L) This string value specifies the extension used by the
connection for database table files. The default value is
".EDBTbl". The root name (without extension) used for a table
file is determined by the name given when the CREATE TABLE
statement is executed. The location of the table files is
determined by the path designated for the applicable
database when the database was created.

INDEXEXT (L) This string value specifies the extension used by the
connection for database table index files. The default value is
".EDBIdx". The root name (without extension) used for a
table's index file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table index files is determined by the path designated for the
applicable database when the database was created.

BLOBEXT (L) This string value specifies the extension used by the
connection for database table BLOB files. The default value is
".EDBBlb". The root name (without extension) used for a
table's BLOB file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table BLOB files is determined by the path designated for the
applicable database when the database was created.

PUBLISHEXT (L) This string value specifies the extension used by the
connection for database table publish files. The default value
is ".EDBPbl". The root name (without extension) used for a
table's publish file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table publish files is determined by the path designated for
the applicable database when the database was created.

UID This string value specifies the user ID to use when connecting
to the connection. If this value is left blank, the user will be
prompted for the user ID, if possible. When executing in
environments that don't support a user interface, such as web
applications, it is not possible to display a login dialog and an
error will be raised instead.

PWD This string value specifies the password to use when
connecting to the connection. If this value is left blank, the
user will be prompted for the password, if possible. When
executing in environments that don't support a user interface,
such as web applications, it is not possible to display a login
dialog and an error will be raised instead.

DATABASE This string value specifies the name of the database being
accessed with the connection. Please see the Architecture for
more information on databases.

Using the ODBC Driver

Page 20

READONLY This string value specifies whether the connection is read-only
or read-write. Set this value to "TRUE" to make the
connection read-only, and "FALSE" to make the connection
read-write.

ROWLOCKPROTOCOL This string value specifies which row locking protocol to use.
Set this value to "PESSIMISTIC" to specify that all UPDATE
row locks should be acquired when the rows are read during
the process of the UPDATEs. Set this value to "OPTIMISTIC"
to specify that all UPDATE row locks should only be acquired
when the rows are actually being updated. Please see the
Locking and Concurrency topic for more information.

ROWLOCKRETRIES This string value specifies the number of row lock attempts
that the driver should make before issuing an error. The
default is "15".

ROWLOCKWAIT This string value specifies the amount of time (in milliseconds)
to wait between each row lock attempt. The default is "100".

DETECTROWCHANGES This string value specifies whether the driver should issue an
error when a row is updated and the row has changed since it
was last cached. Specify "TRUE" to enable row change
detection, or "FALSE" (the default) to disable row change
detection. Please see the Change Detection topic for more
information.

CATALOGINFO (L) This string value specifies whether database catalog character
set and version information should appear in the Databases
system information table. The default value is "TRUE".

Note
Setting the value to "FALSE" can significantly improve
the performance of the loading of the Databases
system information table when there are a lot of
databases in a configuration. This is because ElevateDB
has to open the database catalog for each database in
order to read the character set and version number.

CACHEMODULES (L) This string value specifies whether module DLLs should be
cached in memory for the duration of the connection. The
default value is "FALSE".

STMTCACHESIZE This string value specifies how many SQL statements can be
cached in memory for the duration of the connection. Caching
SQL statements improves the performance of ElevateDB by
avoiding very expensive preparation/un-preparation cycles.
The default value is "0", which means that SQL statements
will not be cached for the connection.

Using the ODBC Driver

Page 21

Note
The maximum number of open SQL statements per
connection is 2048, so you should not set the
statement cache size that high. Also, the SQL
statement cache size is a per-open-database setting.

PROCCACHESIZE This string value specifies how many functions/procedures can
be cached in memory for the duration of the connection.
Caching functions/procedures improves the performance of
ElevateDB by avoiding very expensive preparation/un-
preparation cycles. The default value is "0", which means that
functions/procedures will not be cached for the connection.

Note
The maximum number of open functions/procedures
per connection is 2048, so you should not set the
procedure cache size that high. Also, the
function/procedure cache size is a per-open-
database setting.

FLUSHWRITES This string value controls whether the driver forces the
operating system to flush any buffered writes to disk
immediately after the data is written to the operating system.
If the value is "FALSE" (the default), then ElevateDB will leave
the flushing up to the operating system. If it is "TRUE", then
ElevateDB will force a buffer flush after every write. Please
see the Buffering and Caching topic for more information.

SIGNATURE This string value specifies the signature to use for the
connection. A signature is used to "sign" all configuration and
database files created by ElevateDB so that they are only
accessible using that signature, as well as "signing" all
communications with a remote ElevateDB Server. You should
only specify this value if you know exactly what you are doing
and need to use a different signature than the default of
"edb_signature".

ENCRYPTPWD (L) This string value specifies the password to use for encrypting
any local engine files. You should only specify this value if you
know exactly what you are doing and need to use a different
encryption password than the default of "elevatesoft".

Using the ODBC Driver

Page 22

1.5 Custom Driver Installation

Location

ODBC drivers are installed and configured using the registry in Windows. The location of the driver entries
is the following registry key:

HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI\<Driver Name>

In addition, the name of the driver must also be added to the following registry key:

HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI\ODBC Drivers

The name of the registry value is the name of the ODBC driver, and the data for the registry value is a
string with the value "Installed" (without surrounding double quotes). For example, for the ElevateDB 2
ODBC Driver, the entire registry key and value would be the following:

Key: HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI\ODBC Drivers

Value Name: ElevateDB 2 ODBC Driver
Value Type: STRING
Value Data: Installed

64-bit Windows64-bit Windows

Under 64-bit Windows, the above registry keys/values are for 64-bit drivers only. In order to configure 32-
bit drivers on 64-bit Windows, one must use the following registry key instead:

HKEY_LOCAL_MACHINE\Software\Wow6432Node\ODBC\ODBCINST.INI\<Driver Name>

In addition, the name of the driver must also be added to the following registry key:

HKEY_LOCAL_MACHINE\Software\Wow6432Node\ODBC\ODBCINST.INI\ODBC Drivers

ElevateDB ODBC Driver Settings

The following registry values are defined under the <Driver Name> key in the registry (see above). These
registry settings are all required, and should be specified exactly as indicated in order to ensure proper
operation.

Value Name Type and Description

Using the ODBC Driver

Page 23

APILevel STRING

This value should always be set to "1" (without surrounding
double quotes).

ConnectFunctions STRING

This value should always be set to "YYY" (without surrounding
double quotes).

Driver STRING

This value should always be set to the location of the ODBC
driver DLL (edbodbc.dll, by default). This location can be
anywhere on a local machine drive.

DriverODBCVer STRING

This value should always be set to "03.00" (without
surrounding double quotes).

FileExtns STRING

This value should always be set to
"*.EDBTbl,*.EDBIdx,*.EDBBlb" (without surrounding double
quotes). If you have customized the table file extensions for
your ElevateDB databases, then please specify the custom
extensions here instead.

FileUsage STRING

This value should always be set to "1" (without surrounding
double quotes).

SQLLevel STRING

This value should always be set to "0" (without surrounding
double quotes).

Setup STRING

This value should always be set to the location of the ODBC
driver DLL (edbodbc.dll, by default). This location can be
anywhere on a local machine drive.

UsageCount DWORD

This value should always be set to "1" (without the
surrounding double quotes).

Using the ODBC Driver

Page 24

Chapter 2
Using the .NET Data Provider

2.1 Application Compatibility

Supported Applications

The ElevateDB .NET Data Provider is a .NET 2.0 data provider. We have tested the data provider
successfully with Microsoft Visual Studio 2005 and above.

Calling Dispose

Since the ElevateDB .NET Data Provider is indirectly accessing and using unmanaged resources during
operation, you should always call the Dispose method for any EDBConnection, EDBCommand,
EDBCommandBuilder, or EDBDataAdapter objects when you are done using them (deterministic
destruction). Failure to do so can cause major failures in the data provider due to the resources being
freed up re-entrantly when the .NET garbage collector thread finalizes these objects.

Database-Agnostic Access

The ElevateDB .NET Data Provider includes complete support for database-agnostic access via the factory
class architecture in .NET 2.0, and the data provider is automatically registered as a standard data
provider in the .NET 2.0 machine.config file during installation. Please see this link for more information on
using the ADO.NET 2.0 factory classes:

Writing Generic Data Access Code in ASP.NET 2.0 and ADO.NET 2.0

Visual Studio Query Designer Joins

The built-in query designer in Visual Studio defaults to using SQL-89 join syntax (WHERE clause) for
INNER JOINs. This is not optimal for ElevateDB because ElevateDB only optimizes joins that are specified
via the SQL-92 and higher syntax of JOIN or INNER JOIN. If using INNER JOINs with your queries, please
make sure to modify the SQL SELECT statement to use the INNER JOIN syntax instead in order to ensure
the fastest possible query execution time. Please see the Optimizer topic for more information on the
optimization of joins.

Using the .NET Data Provider

Page 25

2.2 Installation and Distribution

Installation

The ElevateDB .NET Data Provider consists of one assembly called "Elevate.ElevateDB.Data.dll". By
default, this assembly is automatically configured in the global .NET 2.0 machine.config file during
installation so that it's codebase can be located. The data provider is not installed into the GAC (Global
Assembly Cache) by default. However, the data provider is signed with a strong name key and can be
installed into the GAC, if one so desires.

Distribution

The ElevateDB .NET Data Provider can be distributed royalty-free. If you wish to replicate the default
installation process when distributing the data provider with your applications, you can do so by using the
asblinst.exe and asblunins.exe utilities provided with the installation. The asblinst.exe utility will register
the data provider as a .NET 2.0 data provider and configure the data provider's assembly codebase in the
machine.config file. The asblunins.exe utility simply undoes the work done by the asblinst.exe utility. Both
of these utilities can be found in the base installation directory for the product purchased. For example, if
you purchased the ElevateDB DAC Standard product, then the default installation directory would be:

C:\Program Files\ElevateDB <Major Version> DAC-STD

Where <Major Version> is the major version number of the product, such as "2".

Both the asblinst.exe and the asblunins.exe utilities take the same parameters, and they are as follows (in
order):

Parameter Description

Invariant Name This parameter specifies the invariant assembly name, and
must be specified as "Elevate.ElevateDB.Data".

Description This parameter specifies the assembly description, and should
usually be specified as "ElevateDB 2 .Net Data Provider".
However, it can be changed to something else if so desired.

Version This parameter specifies the assembly version, and must be
set to same value as the version number being used. The
format used for version numbers in .NET assemblies is:

MajorVersion.MinorVersion.BuildNumber.ReleaseNumber

For example, with ElevateDB 2.03 Build 13 you would specify
the version number as "2.3.13.0".

Public Key Token This parameter specifies the public key token for the
assembly, and must be specified as "cf9bc1202c75e9e2".

Codebase This parameter specifies the location of the data provider
assembly .dll file, and can be any valid path combined with
the name of the data provider assembly .dll file, which is
"Elevate.ElevateDB.Data.dll".

Using the .NET Data Provider

Page 26

Windows Directory This parameter specifies the system path for the Windows
directory which is, by default, usually "C:\Windows" in a
normal 32-bit Windows installation.

Provider Name This parameter specifies the descriptive name of the data
provider, and should usually be specified as "ElevateDB Data
Provider". However, it can be changed to something else if so
desired.

Factory Name This parameter specifies the fully-qualified name of the .NET
2.0 factory class in the data provider, and must be specified
as "Elevate.ElevateDB.Data.EDBProviderFactory".

For example, the default installation of the data provider would use the following command-line text to call
the asblinst.exe utility:

asblinst.exe
"Elevate.ElevateDB.Data"
"ElevateDB 2 .Net Data Provider"
"2.3.13.0"
"cf9bc1202c75e9e2"
"C:\Program Files\ElevateDB 2
 DAC-STD\assemblies\edbprovider\Elevate.ElevateDB.Data.dll"
"C:\Windows"
"ElevateDB Data Provider"
"Elevate.ElevateDB.Data.EDBProviderFactory"

Note
The line breaks inserted above are only for readability and should not be used in an actual call to
the asblinst utility.

Using the .NET Data Provider

Page 27

2.3 Connection Strings

Connection strings are used in the EDBConnection Class component to specify information about the
connection. In addition, the strongly-typed EDBConnectionStringBuilder Class component can be used to
create a connection string in a safe and strongly-typed manner.

Specifying a Connection String

Connection strings specify all of the keywords necessary to configure and access a given data source via
the EDBConnection component. The keywords that can be used with connection strings and the ElevateDB
.NET Data Provider are listed below. Here is an example connection string that connects to a remote
ElevateDB Server and a database called "Accounting" (case-insensitive):

CHARSET=UNICODE;
TYPE=REMOTE;
ADDRESS=192.168.0.28;
DATABASE=Accounting

Note
The line breaks inserted above are only for readability and should not be used in an actual
connection string.

Connection String Keywords

The following keywords are used with connection strings. All keywords marked with the (R) symbol next to
their name are only applicable when the TYPE keyword is set to "REMOTE". Likewise, all keywords marked
with the (L) symbol next to their name are only applicable when the TYPE keyword is set to "LOCAL".

Name Description

CHARSET This string value specifies which character set, "ANSI" or
"UNICODE", to use for the connection. For remote
connections to an ElevateDB Server, the value must match the
character set being used by the ElevateDB Server. The default
value is "UNICODE".

TYPE This string value is set to either "LOCAL" if the connection is
accessing the database directly, or "REMOTE" if the
connection is accessing the database remotely via an
ElevateDB Server.

NAME This string value specifies the name of the connection.

DESCRIPTION This string value specifies the description of the connection.

HOST (R) This string value specifies the host name of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS values must be populated along with the SERVICE
or PORT values in order to correctly access a database on an
ElevateDB Server. The default value is "".

Using the .NET Data Provider

Page 28

ADDRESS (R) This string value specifies the IP address of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS values must be populated along with the SERVICE
or PORT values in order to correctly access a database on an
ElevateDB Server. The default value is "127.0.0.1".

SERVICE (R) This string value specifies the service name of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS values must be populated along with the SERVICE
or PORT values in order to correctly access a database on an
ElevateDB Server. The default value is "".

PORT (R) This string value specifies the port number of the ElevateDB
Server machine that you are accessing. Either the HOST or
ADDRESS values must be populated along with the SERVICE
or PORT values in order to correctly access a database on an
ElevateDB Server. The default value is "12010".

CONNECTTIMEOUT (R) This string value specifies the maximum amount of time, in
seconds, that ElevateDB will wait for a successful connection
before aborting the connection attempt. The default value is
"15" (seconds).

PING (R) This string value specifies whether pinging will be enabled for
the connection to the ElevateDB Server. When pinging is
enabled, the data provider will send a keep-alive request to
the ElevateDB Server in the interval specified by the
PINGINTERVAL value. This prevents the ElevateDB Server
from disconnecting and/or removing the connection, even if
the connection has been idle for a very long period of time.
Please see the Server Session Timeout configuration item in
the Starting and Configuring the ElevateDB Server topic for
more information on how idle connections are handled.
Specify "TRUE" to enable pinging, or "FALSE" (the default) to
disable pinging.

PINGINTERVAL (R) This string value specifies how often the connection will ping
the ElevateDB Server when pinging is enabled via the PING
value. The default value is "60" (seconds).

TIMEOUT (R) This string value specifies how long the connection will wait
on a response from the ElevateDB Server before
disconnecting and issuing an error. The default value is "180"
(seconds).

ENCRYPTED (R) This string value specifies whether the connection to the
ElevateDB Server should be encrypted or no. Specify "TRUE"
to enable encryption for the connection, or "FALSE" (the
default) to disable encryption for the connection.

ENCRYPTSRVPWD (R) This string value specifies the password to use for encrypted
connections to the remote ElevateDB Server, as well as for
encrypting logins to the remote ElevateDB Server. This
password must match the configured encryption password for
the remote ElevateDB Server, and you should only specify this
value if you know exactly what you are doing and need to use
a different encryption password than the default of
"elevatesoft".

COMPRESSION (R) This string value specifies the amount of compression to use

Using the .NET Data Provider

Page 29

when communicating with the ElevateDB Server. The default
value is "0", or no compression. A value of "1" to "10"
specifies the amount of compression from fast, but not very
thorough, to very thorough, but not as fast. A value of "6"
specifies a balance between size and speed, and represents
the ideal level for most applications.

Note
The ElevateDB .NET Data Provider will automatically
adjust this value for situations where the existing
compression level is not ideal, such as in cases where
the amount of data being sent is so small that it is of
no benefit to compress the data.

TRACE (R) This string value specifies whether tracing will be enabled for
the connection to the ElevateDB Server. When tracing is
enabled, the data provider will fire the EDBTrace event for
every request and response to and from the ElevateDB
Server. This allows the developer to examine and/or log the
requests and responses in order to assist with debugging
performance issues, especially over WAN connections such as
the Internet. Specify "TRUE" to enable tracing, or "FALSE"
(the default) to disable tracing.

CONFIGMEMORY (L) This string value specifies whether the configuration file used
by the connection will be located in the process memory
("virtual") or on disk. Specify "TRUE" to use a virtual
configuration file, or "FALSE" (the default) to use a disk-based
configuration file in the location specified by the CONFIGPATH
string value (see below). The configuration file in ElevateDB
stores the contents of the system-defined Configuration
Database. Please see the Architecture for more information
on configuration files.

CONFIGPATH (L) This string value specifies the configuration path to use for
the connection. The configuration file in ElevateDB stores the
contents of the system-defined Configuration Database.
Please see the Architecture for more information on the
configuration path.

TEMPPATH (L) This string value specifies the temporary tables path to use
for the connection. The temporary tables path is used to store
any temporary tables generated during query execution. The
default value is the operating system setting for the storing
temporary files for the current user. Please see the
Architecture for more information on the temporary tables
path.

KEEPTABLESOPEN This string value specifies whether tables should be kept open
for the duration of the connection once they have been
opened at least once. Specify "TRUE" to keep tables open, or
"FALSE" (the default) to have tables opened and closed on
demand. Setting this value to "TRUE" can result in improved
performance, especially with applications that execute many
singleton SQL statements in a row.

Using the .NET Data Provider

Page 30

CONFIGNAME (L) This string value specifies the root name (without extension)
used by the connection for the configuration file. The default
value is "EDBConfig". The extension used for the configuration
file is determined by the CONFIGEXT value. The location of
the configuration file is determined by the CONFIGPATH
value.

CONFIGEXT (L) This string value specifies the extension used by the
connection for the configuration file. The default value is
".EDBCfg". The root name (without extension) used for the
configuration file is determined by the CONFIGNAME value.
The location of the configuration file is determined by the
CONFIGPATH value.

LOCKEXT (L) This string value specifies the extension used by the
connection for both the configuration and database catalog
lock files. The default value is ".EDBLck". The root name
(without extension) used for the configuration lock file is
determined by the CONFIGNAME value. The root name
(without extension) used for a database catalog lock file is
determined by the CATALOGNAME value. The location of the
configuration lock file is determined by the CONFIGPATH
value, and the configuration lock file is hidden, by default.
The location of a database catalog lock file is determined by
the path designated for the applicable database when the
database was created, and a database catalog lock file is
hidden, by default.

LOGEXT (L) This string value specifies the extension used by the
connection for the configuration log file. The default value is
".EDBLog". The root name (without extension) used for the
configuration log file is determined by the CONFIGNAME
value. The location of the configuration log file is determined
by the CONFIGPATH value.

MAXLOGSIZE (L) This string value specifies the maximum size of the log file (in
bytes) that the log file can grow to. Log entries are added to
the log in a circular fashion, meaning that once the maximum
log file size ia reached, ElevateDB will start re-using the oldest
log entries for new log entries. The default value is 1048576
bytes. Which types of logged events are recorded in the log
can be controlled by the LOGCATS value. By default, all
categories of events are logged (INFO, WARN, and ERROR).

Warning
It is very important that all connections and/or
applications accessing the same configuration file use
the same maximum log file size for the configuration
log file. Using different values can result in log entries
being prematurely overwritten or appearing "out-of-
order" when viewing the log entries via the LogEvents
Table.

Using the .NET Data Provider

Page 31

LOGCATS (L) This string value specifies the types of events that should be
logged in the configuration log file for the current connection,
with each value separated by a comma (,). The default value
is "INFO,WARN,ERROR", or all categories of events.

CATALOGNAME (L) This string value specifies the root name (without extension)
used by the connection for all database catalog files. The
default value is "EDBDatabase". The extension used for the
catalog files is determined by the CATALOGEXT value. The
location of the catalog file is determined by the path
designated for the applicable database when the database
was created.

CATALOGEXT (L) This string value specifies the extension used by the
connection for database catalog files. The default value is
".EDBCat". The root name (without extension) used for all
database catalog files is determined by the CATALOGNAME
value. The location of the catalog file is determined by the
path designated for the applicable database when the
database was created.

BACKUPEXT (L) This string value specifies the extension used by the
connection for database backup files. The default value is
".EDBBkp". The root name (without extension) used for a
database backup file is determined by the name given when
the BACKUP DATABASE statement is executed.

UPDATEEXT (L) This string value specifies the extension used by the
connection for database update files. The default value is
".EDBUpd". The root name (without extension) used for a
database update file is determined by the name given when
the SAVE UPDATES statement is executed.

TABLEEXT (L) This string value specifies the extension used by the
connection for database table files. The default value is
".EDBTbl". The root name (without extension) used for a table
file is determined by the name given when the CREATE TABLE
statement is executed. The location of the table files is
determined by the path designated for the applicable
database when the database was created.

INDEXEXT (L) This string value specifies the extension used by the
connection for database table index files. The default value is
".EDBIdx". The root name (without extension) used for a
table's index file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table index files is determined by the path designated for the
applicable database when the database was created.

BLOBEXT (L) This string value specifies the extension used by the
connection for database table BLOB files. The default value is
".EDBBlb". The root name (without extension) used for a
table's BLOB file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table BLOB files is determined by the path designated for the
applicable database when the database was created.

PUBLISHEXT (L) This string value specifies the extension used by the
connection for database table publish files. The default value

Using the .NET Data Provider

Page 32

is ".EDBPbl". The root name (without extension) used for a
table's publish file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table publish files is determined by the path designated for
the applicable database when the database was created.

UID This string value specifies the user ID to use when connecting
to the connection. If this value is left blank, the user will be
prompted for the user ID, if possible. When executing in
environments that don't support a user interface, such as web
applications, it is not possible to display a login dialog and an
error will be raised instead.

PWD This string value specifies the password to use when
connecting to the connection. If this value is left blank, the
user will be prompted for the password, if possible. When
executing in environments that don't support a user interface,
such as web applications, it is not possible to display a login
dialog and an error will be raised instead.

DATABASE This string value specifies the name of the database being
accessed with the connection. Please see the Architecture for
more information on databases.

READONLY This string value specifies whether the connection is read-only
or read-write. Set this value to "TRUE" to make the
connection read-only, and "FALSE" to make the connection
read-write.

ROWLOCKPROTOCOL This string value specifies which row locking protocol to use.
Set this value to "PESSIMISTIC" to specify that all UPDATE
row locks should be acquired when the rows are read during
the process of the UPDATEs. Set this value to "OPTIMISTIC"
to specify that all UPDATE row locks should only be acquired
when the rows are actually being updated. Please see the
Locking and Concurrency topic for more information.

ROWLOCKRETRIES This string value specifies the number of row lock attempts
that the data provider should make before issuing an error.
The default is "15".

ROWLOCKWAIT This string value specifies the amount of time (in milliseconds)
to wait between each row lock attempt. The default is "100".

DETECTROWCHANGES This string value specifies whether the data provider should
issue an error when a row is updated and the row has
changed since it was last cached. Specify "TRUE" to enable
row change detection, or "FALSE" (the default) to disable row
change detection. Please see the Change Detection topic for
more information.

CATALOGINFO (L) This string value specifies whether database catalog character
set and version information should appear in the Databases
system information table. The default value is "TRUE".

Using the .NET Data Provider

Page 33

Note
Setting the value to "FALSE" can significantly improve
the performance of the loading of the Databases
system information table when there are a lot of
databases in a configuration. This is because ElevateDB
has to open the database catalog for each database in
order to read the character set and version number.

CACHEMODULES (L) This string value specifies whether module DLLs should be
cached in memory for the duration of the connection. The
default value is "FALSE".

STMTCACHESIZE This string value specifies how many SQL statements can be
cached in memory for the duration of the connection. Caching
SQL statements improves the performance of ElevateDB by
avoiding very expensive preparation/un-preparation cycles.
The default value is "0", which means that SQL statements
will not be cached for the connection.

Note
The maximum number of open SQL statements per
connection is 2048, so you should not set the
statement cache size that high. Also, the SQL
statement cache size is a per-open-database setting.

PROCCACHESIZE This string value specifies how many functions/procedures can
be cached in memory for the duration of the connection.
Caching functions/procedures improves the performance of
ElevateDB by avoiding very expensive preparation/un-
preparation cycles. The default value is "0", which means that
functions/procedures will not be cached for the connection.

Note
The maximum number of open functions/procedures
per connection is 2048, so you should not set the
procedure cache size that high. Also, the
function/procedure cache size is a per-open-
database setting.

FLUSHWRITES This string value controls whether the data provider forces the
operating system to flush any buffered writes to disk
immediately after the data is written to the operating system.
If the value is "FALSE" (the default), then ElevateDB will leave
the flushing up to the operating system. If it is "TRUE", then
ElevateDB will force a buffer flush after every write. Please
see the Buffering and Caching topic for more information.

SIGNATURE This string value specifies the signature to use for the
connection. A signature is used to "sign" all configuration and
database files created by ElevateDB so that they are only
accessible using that signature, as well as "signing" all
communications with a remote ElevateDB Server. You should

Using the .NET Data Provider

Page 34

only specify this value if you know exactly what you are doing
and need to use a different signature than the default of
"edb_signature".

ENCRYPTPWD (L) This string value specifies the password to use for encrypting
any local engine files. You should only specify this value if you
know exactly what you are doing and need to use a different
encryption password than the default of "elevatesoft".

Using the .NET Data Provider

Page 35

This page intentionally left blank

.NET Data Provider Reference

Page 36

Chapter 3
.NET Data Provider Reference

3.1 Introduction

The following is a detailed reference for all of the types and classes that make up the ElevateDB .NET Data
Provider implementation. In the case of the common Db* classes that make up the common .NET data
provider framework classes, only those members of the classes that are extensions to the basic pre-
defined members are documented here. For example, because the ConnectionString property is a common
property for all descendants of the DbConnection class, it is not documented here for the EDBConnection
descendant class. In any case like this, please refer to the .NET 2.0 Framework documentation for
information on these members.

.NET Data Provider Reference

Page 37

3.2 EDBException Class

The EDBException class is used to create an instance of an exception object whenever an ElevateDB error
occurs. You will find a list of all of the ElevateDB error codes in the Appendix A - Error Codes and
Messages topic.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbException

Constructor

(Msg: String; Inner: Exception)

Properties

Property Description

ErrorMsg: String Indicates the error message that gives further information on
the exception.

Note
This property is always set for every exception.

ErrorLine: Int32 Indicates the line of text in that the current exception applies
to.

Note
This property may or may not be set depending upon
the exception being raised.

ErrorColumn: Int32 Indicates the column of text in that the current exception
applies to.

Note
This property may or may not be set depending upon
the exception being raised.

.NET Data Provider Reference

Page 38

3.3 EDBProviderFactory Class

The EDBProviderFactory class implements the DbProviderFactory abstract class, providing methods for
creating connection, command, parameter, data adapter, command builder, and connection string builder
objects.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbProviderFactory

Methods

Method Description

CreateConnection: DbConnection Creates a new EDBConnection instance.

CreateCommand: DbCommand Creates a new EDBCommand instance.

CreateParameter: DbParameter Creates a new EDBParameter instance.

CreateDataAdapter: DbDataAdapter Creates a new EDBDataAdapter instance.

CreateCommandBuilder:
DbCommandBuilder

Creates a new EDBCommandBuilder instance.

ConnectionStringBuilder:
DbConnectionStringBuilder

Creates a new EDBConnectionStringBuilder instance.

.NET Data Provider Reference

Page 39

3.4 EDBConnectionStringBuilder Class

The EDBConnectionStringBuilder class implements the DbConnectionStringBuilder class and provides a
strongly-typed object for building an ElevateDB connection string.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbConnectionStringBuilder

Constructor

(<No Parameters>)

Properties

Property Description

Name: String This value specifies the name of the connection.

Description: String This value specifies the description of the connection.

CharSet This string value specifies which character set, "ANSI" or
"Unicode", to use for the connection. For remote connections
to an ElevateDB Server, the value must match the character
set being used by the ElevateDB Server. This property
defaults to "Unicode".

Type: String This value is set to either "Local" if the connection is
accessing the database directly, or "Remote" if the connection
is accessing the database remotely via an ElevateDB Server.

ConfigMemory: Boolean This value specifies whether the configuration file used by the
connection will be located in the process memory ("virtual") or
on disk. Specify True to use a virtual configuration file, or
False (the default) to use a disk-based configuration file in the
location specified by the ConfigPath property value (see
below). The configuration file in ElevateDB stores the contents
of the system-defined Configuration Database. Please see the
Architecture for more information on configuration files.

ConfigPath: String This value specifies the configuration path to use for the
connection. The configuration file in ElevateDB stores the
contents of the system-defined Configuration Database.
Please see the Architecture for more information on the
configuration path.

TempPath: String This value specifies the temporary tables path to use for the
connection. The temporary tables path is used to store any
temporary tables generated during query execution. The
default value is the operating system setting for the storing
temporary files for the current user. Please see the
Architecture for more information on the temporary tables
path.

KeepTablesOpen: Boolean This value specifies whether tables should be kept open for
the duration of the connection once they have been opened at

.NET Data Provider Reference

Page 40

least once. Specify True to keep tables open, or False (the
default) to have tables opened and closed on demand. Setting
this value to True can result in improved performance,
especially with applications that execute many singleton SQL
statements in a row.

ConfigName: String This value specifies the root name (without extension) used
by the connection for the configuration file. The default value
is "EDBConfig". The extension used for the configuration file is
determined by the ConfigExt property value. The location of
the configuration file is determined by the ConfigPath
property value.

ConfigExt: String This value specifies the extension used by the connection for
the configuration file. The default value is ".EDBCfg". The root
name (without extension) used for the configuration file is
determined by the ConfigName property value. The location
of the configuration file is determined by the ConfigPath
property value.

LockExt: String This value specifies the extension used by the connection for
both the configuration and database catalog lock files. The
default value is ".EDBLck". The root name (without extension)
used for the configuration lock file is determined by the
ConfigName property value. The root name (without
extension) used for a database catalog lock file is determined
by the CatalogName property value. The location of the
configuration lock file is determined by the ConfigPath
property value, and the configuration lock file is hidden, by
default. The location of a database catalog lock file is
determined by the path designated for the applicable
database when the database was created, and a database
catalog lock file is hidden, by default.

LogExt: String This value specifies the extension used by the connection for
the configuration log file. The default value is ".EDBLog". The
root name (without extension) used for the configuration log
file is determined by the ConfigName property value. The
location of the configuration log file is determined by the
ConfigPath property value.

MaxLogSize: Int32 This value specifies the maximum size of the log file (in bytes)
that the log file can grow to. Log entries are added to the log
in a circular fashion, meaning that once the maximum log file
size ia reached, ElevateDB will start re-using the oldest log
entries for new log entries. The default value is 1048576
bytes. Which types of logged events are recorded in the log
can be controlled by the LogCats property value. By default,
all categories of events are logged (Info, Warn, and Error).

.NET Data Provider Reference

Page 41

Warning
It is very important that all connections and/or
applications accessing the same configuration file use
the same maximum log file size for the configuration
log file. Using different values can result in log entries
being prematurely overwritten or appearing "out-of-
order" when viewing the log entries via the LogEvents
Table.

LogCats: String This value specifies the types of events that should be logged
in the configuration log file for the current connection, with
each value separated by a comma (,). The default value is
"Info,Warn,Error", or all categories of events.

CatalogName: String This string value specifies the root name (without extension)
used by the connection for all database catalog files. The
default value is "EDBDatabase". The extension used for the
catalog files is determined by the CatalogExt property value.
The location of the catalog file is determined by the path
designated for the applicable database when the database
was created.

CatalogExt: String This value specifies the extension used by the connection for
database catalog files. The default value is ".EDBCat". The
root name (without extension) used for all database catalog
files is determined by the CatalogName property value. The
location of the catalog file is determined by the path
designated for the applicable database when the database
was created.

BackupExt: String This value specifies the extension used by the connection for
database backup files. The default value is ".EDBBkp". The
root name (without extension) used for a database backup file
is determined by the name given when the BACKUP
DATABASE statement is executed.

UpdateExt: String This value specifies the extension used by the connection for
database update files. The default value is ".EDBUpd". The
root name (without extension) used for a database update file
is determined by the name given when the SAVE UPDATES
statement is executed.

TableExt: String This value specifies the extension used by the connection for
database table files. The default value is ".EDBTbl". The root
name (without extension) used for a table file is determined
by the name given when the CREATE TABLE statement is
executed. The location of the table files is determined by the
path designated for the applicable database when the
database was created.

IndexExt: String This value specifies the extension used by the connection for
database table index files. The default value is ".EDBIdx". The
root name (without extension) used for a table's index file is
determined by the name given when the CREATE TABLE
statement is executed. The location of the table index files is
determined by the path designated for the applicable
database when the database was created.

.NET Data Provider Reference

Page 42

BlobExt: String This string value specifies the extension used by the
connection for database table BLOB files. The default value is
".EDBBlb". The root name (without extension) used for a
table's BLOB file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table BLOB files is determined by the path designated for the
applicable database when the database was created.

PublishExt: String This string value specifies the extension used by the
connection for database table publish files. The default value
is ".EDBPbl". The root name (without extension) used for a
table's publish file is determined by the name given when the
CREATE TABLE statement is executed. The location of the
table publish files is determined by the path designated for
the applicable database when the database was created.

UID: String This value specifies the user ID to use when connecting to the
connection. If this value is left blank, the user will be
prompted for the user ID, if possible. When executing in
environments that don't support a user interface, such as web
applications, it is not possible to display a login dialog and an
error will be raised instead.

PWD: String This string value specifies the password to use when
connecting to the connection. If this value is left blank, the
user will be prompted for the password, if possible. When
executing in environments that don't support a user interface,
such as web applications, it is not possible to display a login
dialog and an error will be raised instead.

Database: String This string value specifies the name of the database being
accessed with the connection. Please see the Architecture for
more information on databases.

ReadOnly: Boolean This value specifies whether the connection is read-only or
read-write. Set this value to True to make the connection
read-only, and False to make the connection read-write.

RowLockProtocol: String This value specifies which row locking protocol to use. Set this
value to "Pessimistic" to specify that all UPDATE row locks
should be acquired when the rows are read during the
process of the UPDATEs. Set this value to "Optimistic" to
specify that all UPDATE row locks should only be acquired
when the rows are actually being updated. Please see the
Locking and Concurrency topic for more information.

RowLockRetries: Int32 This value specifies the number of row lock attempts that the
data provider should make before issuing an error. The
default is 15.

RowLockWait: Int32 This value specifies the amount of time (in milliseconds) to
wait between each row lock attempt. The default is 100.

DetectRowChanges: Boolean This value specifies whether the data provider should issue an
error when a row is updated and the row has changed since it
was last cached. Specify True to enable row change detection,
or False (the default) to disable row change detection. Please
see the Change Detection topic for more information.

CatalogInfo: Boolean This value specifies whether database catalog character set

.NET Data Provider Reference

Page 43

and version information should appear in the Databases
system information table. The default value of this property is
True.

Note
Setting this property to False can significantly improve
the performance of the loading of the Databases
system information table when there are a lot of
databases in a configuration. This is because ElevateDB
has to open the database catalog for each database in
order to read the character set and version number.

CacheModules: Boolean This string value specifies whether module DLLs should be
cached in memory for the duration of the connection. The
default value is False.

StmtCacheSize: Integer This value specifies how many SQL statements can be cached
in memory for the duration of the connection. Caching SQL
statements improves the performance of ElevateDB by
avoiding very expensive preparation/un-preparation cycles.
The default value is 0, which means that SQL statements will
not be cached for the connection.

Note
The maximum number of open SQL statements per
connection is 2048, so you should not set the
statement cache size that high. Also, the SQL
statement cache size is a per-open-database setting.

ProcCacheSize: Integer This value specifies how many functions/procedures can be
cached in memory for the duration of the connection. Caching
functions/procedures improves the performance of ElevateDB
by avoiding very expensive preparation/un-preparation cycles.
The default value is 0, which means that functions/procedures
will not be cached for the connection.

Note
The maximum number of open functions/procedures
per connection is 2048, so you should not set the
procedure cache size that high. Also, the
function/procedure cache size is a per-open-
database setting.

FlushWrites: Boolean This value controls whether the data provider forces the
operating system to flush any buffered writes to disk
immediately after the data is written to the operating system.
If the value is False (the default), then ElevateDB will leave
the flushing up to the operating system. If it is True, then
ElevateDB will force a buffer flush after every write. Please
see the Buffering and Caching topic for more information.

.NET Data Provider Reference

Page 44

Host: String This value specifies the host name of the ElevateDB Server
machine that you are accessing. Either the Host or Address
property values must be populated along with the Service or
Port property values in order to correctly access a database
on an ElevateDB Server. The default value is "".

Address: String This value specifies the IP address of the ElevateDB Server
machine that you are accessing. Either the Host or Address
property values must be populated along with the Service or
Port property values in order to correctly access a database
on an ElevateDB Server. The default value is "127.0.0.1".

Service: String This value specifies the service name of the ElevateDB Server
machine that you are accessing. Either the Host or Address
property values must be populated along with the Service or
Port property values in order to correctly access a database
on an ElevateDB Server. The default value is "".

Port: Int32 This value specifies the port number of the ElevateDB Server
machine that you are accessing Either the Host or Address
property values must be populated along with the Service or
Port property values in order to correctly access a database
on an ElevateDB Server. The default value is 12010.

ConnectionTimeout: Int32 This value specifies the maximum amount of time, in seconds,
that ElevateDB will wait for a successful connection before
aborting the connection attempt. The default value is 15
(seconds).

Ping: Boolean This value specifies whether pinging will be enabled for the
connection to the ElevateDB Server. When pinging is enabled,
the data provider will send a keep-alive request to the
ElevateDB Server in the interval specified by the PingInterval
property value. This prevents the ElevateDB Server from
disconnecting and/or removing the connection, even if the
connection has been idle for a very long period of time. Please
see the Server Session Timeout configuration item in the
Starting and Configuring the ElevateDB Server topic for more
information on how idle connections are handled. Specify True
to enable pinging, or False (the default) to disable pinging.

PingInterval: Int32 This value specifies how often the connection will ping the
ElevateDB Server when pinging is enabled via the Ping
property value. The default value is 60 (seconds).

Timeout: Int32 This value specifies how long the connection will wait on a
response from the ElevateDB Server before disconnecting and
issuing an error. The default value is 180 (seconds).

Encrypted: Boolean This value specifies whether the connection to the ElevateDB
Server should be encrypted or no. Specify True to enable
encryption for the connection, or False (the default) to disable
encryption for the connection.

EncryptSrvPwd: String This value specifies the password to use for encrypted
connections to the remote ElevateDB Server, as well as for
encrypting logins to the remote ElevateDB Server. This
password must match the configured encryption password for
the remote ElevateDB Server, and you should only specify this
value if you know exactly what you are doing and need to use

.NET Data Provider Reference

Page 45

a different encryption password than the default of
"elevatesoft".

Compression: Int32 This value specifies the amount of compression to use when
communicating with the ElevateDB Server. The default value
is 0, or no compression. A value of 1 to 10 specifies the
amount of compression from fast, but not very thorough, to
very thorough, but not as fast. A value of 6 specifies a
balance between size and speed, and represents the ideal
level for most applications.

Note
The ElevateDB .NET Data Provider will automatically
adjust this value for situations where the existing
compression level is not ideal, such as in cases where
the amount of data being sent is so small that it is of
no benefit to compress the data.

Signature: String This value specifies the signature to use for the connection. A
signature is used to "sign" all configuration and database files
created by ElevateDB so that they are only accessible using
that signature, as well as "signing" all communications with a
remote ElevateDB Server. You should only specify this value if
you know exactly what you are doing and need to use a
different signature than the default of "edb_signature".

EncryptPwd: String This value specifies the password to use for encrypting any
local engine files. You should only specify this value if you
know exactly what you are doing and need to use a different
encryption password than the default of "elevatesoft".

.NET Data Provider Reference

Page 46

3.5 EDBLoginEventArgs Class

The EDBLoginEventArgs class is used to instantiate the parameters for the EDBLoginEvent delegate.

Namespace: Elevate.ElevateDB.Data

Inherits From System.EventArgs

Properties

Property Description

UserName: String Indicates the user name to be used for the login.

Password: String Indicates the password to be used for the login.

Continue: Boolean Indicates whether the login should continue or not (default
True).

.NET Data Provider Reference

Page 47

3.6 EDBLoginEvent Delegate

The EDBLoginEvent delegate is used with the EDBConnection OnLogin event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object; EventArgs: EDBLoginEventArgs)

.NET Data Provider Reference

Page 48

3.7 EDBTimeoutEventArgs Class

The EDBTimeoutEventArgs class is used to instantiate the parameters for the EDBTimeoutEvent delegate.

Namespace: Elevate.ElevateDB.Data

Inherits From System.EventArgs

Properties

Property Description

StayConnected: Boolean Indicates whether the connection should keep waiting for a
response from the ElevateDB Server by staying connected, or
disconnect from the ElevateDB Server (default True).

.NET Data Provider Reference

Page 49

3.8 EDBTimeoutEvent Delegate

The EDBTimeoutEvent delegate is used with the EDBConnection OnTimeout event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object; EventArgs: EDBTimeoutEventArgs)

.NET Data Provider Reference

Page 50

3.9 EDBReconnectEventArgs Class

The EDBReconnectEventArgs class is used to instantiate the parameters for the EDBReconnectEvent
delegate.

Namespace: Elevate.ElevateDB.Data

Inherits From System.EventArgs

Properties

Property Description

Continue: Boolean Indicates whether the reconnection should continue or not
(default True).

StopAsking: Boolean Indicates whether the OnReconnect event should stop being
triggered until the connnection is subsequently disconnected
(default False).

.NET Data Provider Reference

Page 51

3.10 EDBReconnectEvent Delegate

The EDBReconnectEvent delegate is used with the EDBConnection OnReconnect event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object; EventArgs: EDBReconnectEventArgs)

.NET Data Provider Reference

Page 52

3.11 EDBCommsProgressEventArgs Class

The EDBCommsProgressEventArgs class is used to instantiate the parameters for the
EDBCommsProgressEvent delegate.

Namespace: Elevate.ElevateDB.Data

Inherits From System.EventArgs

Properties

Property Description

NumBytes: Int32 Indicates the number of bytes sent/received so far for the
current request/response to/from the ElevateDB Server.

PercentDone: Int32 Indicates the percentage completed for the current
request/response.

.NET Data Provider Reference

Page 53

3.12 EDBCommsProgressEvent Delegate

The EDBCommsProgressEvent delegate is used with the EDBConnection OnSendProgress and
OnReceiveProgress events.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object; EventArgs: EDBCommsProgressEventArgs)

.NET Data Provider Reference

Page 54

3.13 EDBTraceEventArgs Class

The EDBTraceEventArgs class is used to instantiate the parameters for the EDBTraceEvent delegate.

Namespace: Elevate.ElevateDB.Data

Inherits From System.EventArgs

Properties

Property Description

DateTime: DateTime Indicates the date and time of the request/response.

ElapsedTime: UInt32 Indicates the total elapsed time in milliseconds for the
request/response.

Compression: Int32 Indicates the current compression level for the
request/response. This value normally ranges from 0 (no
compression) to 9 (best compression), but in some cases may
actually appear in the trace record as values greater than or
equal to 10. In these cases, the compression has been
adjusted by the engine due to the size of the data being too
small (less than 1024 bytes). The adjusted compression level
can be found by doing this calculation:

Compression mod 10

And the original compression level before the adjustment can
be found by using the following calculation:

Compression div 10

Any adjustments to the compression such as this are active
for the current request/response only and do not persist any
further.

FunctionCode: Int32 Indicates the function ID of the request.

FunctionName: String Indicates the function name of the request.

ResultCode: Int32 Indicates the result code of the request/response. If this value
is -1, then the trace record represents a request. Any 0 or
higher value indicates that the trace record is a response. You
can use this field to determine whether the trace record is for
a request (-1) or a response (0 or higher).

Size: Int32 Indicates the request/response size, in bytes.

.NET Data Provider Reference

Page 55

3.14 EDBTraceEvent Delegate

The EDBTraceEvent delegate is used with the EDBConnection OnTrace event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object; EventArgs: EDBTraceEventArgs)

.NET Data Provider Reference

Page 56

3.15 EDBProgressEventArgs Class

The EDBProgressEventArgs class is used to instantiate the parameters for the EDBProgressEvent delegate.

Namespace: Elevate.ElevateDB.Data

Inherits From System.EventArgs

Constructors

(ProgressPercentDone: Int32)

Properties

Property Description

PercentDone: Int32 Indicates the percentage completed for the current command
execution.

Continue: Boolean Indicates whether the command execution should continue or
not.

.NET Data Provider Reference

Page 57

3.16 EDBProgressEvent Delegate

The EDBProgressEvent delegate is used with the EDBCommand OnProgress event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object; EventArgs: EDBProgressEventArgs)

.NET Data Provider Reference

Page 58

3.17 EDBMessageEventArgs Class

The EDBMessageEventArgs class is used to instantiate the parameters for the EDBStatusEvent and
EDBLogEvent delegates.

Namespace: Elevate.ElevateDB.Data

Inherits From System.EventArgs

Constructors

(Msg: String)

Properties

Property Description

Message: String Indicates the current status message being returned for the
command execution.

.NET Data Provider Reference

Page 59

3.18 EDBStatusEvent Delegate

The EDBStatusEvent delegate is used with the EDBCommand OnStatusMessage event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object; EventArgs: EDBMessageEventArgs)

.NET Data Provider Reference

Page 60

3.19 EDBLogEvent Delegate

The EDBLogEvent delegate is used with the EDBCommand OnLogMessage event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object; EventArgs: EDBMessageEventArgs)

.NET Data Provider Reference

Page 61

3.20 EDBType Enumeration

The EDBType enumeration is used to indicate the native ElevateDB data type of parameters and/or
columns. For more information on the types available in ElevateDB, please see the Types topic.

Namespace: Elevate.ElevateDB.Data

Member Description

Unknown Indicates an unknown type.

Char Indicates a CHAR type.

VarChar Indicates a VARCHAR type.

Guid Indicates a GUID type.

Byte Indicates a BYTE type.

VarByte Indicates a VARBYTE type.

Blob Indicates a BLOB type.

Clob Indicates a CLOB type.

Bool Indicates a BOOLEAN type.

SmallInt Indicates a SMALLINT type.

Int Indicates an INT type.

BigInt Indicates a LARGEINT type.

Float Indicates a FLOAT or DOUBLE type.

Decimal Indicates a DECIMAL type.

Date Indicates a DATE type.

Time Indicates a TIME type.

TimeStamp Indicates a TIMESTAMP type.

IntervalYear Indicates an INTERVAL YEAR type.

IntervalYearMonth Indicates an INTERVAL YEAR TO MONTH type.

IntervalMonth Indicates an INTERVAL MONTH type.

IntervalDay Indicates an INTERVAL DAY type.

IntervalDayHour Indicates an INTERVAL DAY TO HOUR type.

IntervalDayMin Indicates an INTERVAL DAY TO MINUTE type.

IntervalDaySec Indicates an INTERVAL DAY TO SECOND type.

IntervalDayMSec Indicates an INTERVAL DAY TO MSECOND type.

IntervalHour Indicates an INTERVAL HOUR type.

IntervalHourMin Indicates an INTERVAL HOUR TO MINUTE type.

IntervalHourSec Indicates an INTERVAL HOUR TO SECOND type.

IntervalHourMSec Indicates an INTERVAL HOUR TO MSECOND type.

.NET Data Provider Reference

Page 62

IntervalMin Indicates an INTERVAL MINUTE type.

IntervalMinSec Indicates an INTERVAL MINUTE TO SECOND type.

IntervalMinMSec Indicates an INTERVAL MINUTE TO MSECOND type.

IntervalSec Indicates an INTERVAL SECOND type.

IntervalSecMSec Indicates an INTERVAL SECOND TO MSECOND type.

IntervalMSec Indicates an INTERVAL MSECOND type.

.NET Data Provider Reference

Page 63

3.21 EDBParameter Class

The EDBParameter class extends the DbParameter class, providing an encapsulation of an ElevateDB
parameter.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbParameter

Implements ICloneable

Constructors

(<No Parameters>)
(ParameterName: String; Type: DbType)
(ParameterName: String; Value: System.Object)
(ParameterName: String; Type: DbType; SourceColumn: String)

Properties

Property Description

ProviderType: EDBType Indicates the native ElevateDB type of the parameter.

Precision: Byte Indicates the precision of an approximate or exact numeric
type.

Scale: Byte Indicates the scale of an exact numeric type.

Size: Int32 Indicates the size of a binary type in bytes or the length of a
character type in characters.

.NET Data Provider Reference

Page 64

3.22 EDBTransaction Class

The EDBTransaction class implements the DbTransaction abstract class, providing an encapsulation of an
ElevateDB transaction on a given ElevateDB database.

Note
Since ElevateDB only supports an isolation level of Serializable, the isolation level is not used as a
parameter for alternative constructors such as the constructor for starting a restricted transaction.
Please see the Transactions for more information.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbTransaction

Constructors

(<No Parameters>)
(Connection: EDBConnection)
(Connection: EDBConnection; IsolationLevel: IsolationLevel)
(Connection: EDBConnection; const Tables: array of String)

.NET Data Provider Reference

Page 65

3.23 EDBYearMonthIntervalType Enumeration

The EDBYearMonthIntervalType enumeration is used to indicate the type of year-month intervals when
using the YearMonthIntervalToSQLStr and SQLStrToYearMonthInterval methods of the EDBConnection
Class class.

Namespace: Elevate.ElevateDB.Data

Member Description

Year Indicates a year interval.

Month Indicates a month interval.

YearMonth Indicates a year-month interval.

.NET Data Provider Reference

Page 66

3.24 EDBDayTimeIntervalType Enumeration

The EDBDayTimeIntervalType enumeration is used to indicate the native ElevateDB data type of
parameters and/or columns. For more information on the types available in ElevateDB, please see the
Types topic.

Namespace: Elevate.ElevateDB.Data

Member Description

Day Indicates a day interval.

Hour Indicates an hour interval.

Minute Indicates a minute interval.

Second Indicates a second interval.

MSecond Indicates a millisecond interval.

DayHour Indicates a day-hour interval.

DayMinute Indicates a day-minute interval.

DaySecond Indicates a day-second interval.

DayMSecond Indicates a day-millisecond interval.

HourMinute Indicates an hour-minute interval.

HourSecond Indicates an hour-second interval.

HourMSecond Indicates an hour-millisecond interval.

MinuteSecond Indicates a minute-second interval.

MinuteMSecond Indicates a minute-millisecond interval.

SecondMSecond Indicates a second-millisecond interval.

.NET Data Provider Reference

Page 67

3.25 EDBConnection Class

The EDBConnection class implements the DbConnection abstract class, providing an encapsulation of an
ElevateDB local or remote session connected to a given ElevateDB database. A session acts like a "virtual
user" and each new EDBConnection instance used in an application maintains its own database
connections, table buffers, table/view/query result set cursors, etc. Because of the unique requirements of
a multi-threaded application, ElevateDB requires that you use a separate EDBConnection component for
each thread in use, thus treating each thread as a separate "virtual user".

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbConnection

Implements ICloneable

Constructors

(<No Parameters>)
(ConnectString: String)

Properties

Property Description

EngineVersion: String Indicates the current version of ElevateDB being used. This
property is read-only.

InTransaction: Boolean Use the InTransaction property at run-time to determine if a
transaction is currently in progress for the current connection.
The InTransaction property is True if a transaction is in
progress and False if a transaction is not in progress.

The value of the InTransaction property cannot be changed
directly. Calling the EDBConnection BeginTransaction method
sets the InTransaction property to True. Calling the
EDBTransaction Commit or EDBTransaction Rollback methods
sets the InTransaction property to False.

ReadOnly: Boolean Indicates whether the current connection is using read-only
access only.

ServerDateTime: DateTime Retrieves the server date/time in local time.

ServerUTCDateTime: DateTime Retrieves the server date/time in UTC time.

ServerName: String Retrieves the remote server name.

ServerDescription: String Retrieves the remote server description.

RemoteParameters:
EDBParameterCollection

Use the RemoteParameters property at runtime to specify the
parameters to be used with the CallRemoteProcedure when
calling a custom server procedure. This property can also be
used to retrieve any return values from the custom server
procedure (parameter Direction property of ReturnValue).

Methods

.NET Data Provider Reference

Page 68

Method Description

Clone: Object Clones the current connection, including current contents of
the ConnectionString property.

BeginTransaction(array of String):
DbTransaction

Starts a restricted transaction for the current connection.
Please see the Transactions topic for more information on
restricted transactions.

FreeCachedStatements(DatabaseName:
String)

Frees any cached SQL statements for the specified open
database. If a database is not specified, then any cached SQL
statements in the open databases for the connection will be
freed. Please see the Buffering and Caching topic for more
information on caching SQL statements.

FreeCachedProcedures(DatabaseName:
String)

Frees any cached functions/procedures for the specified open
database. If a database is not specified, then any cached
functions/procedures in the open databases for the
connection will be freed. Please see the Buffering and Caching
topic for more information on caching functions/procedures.

QuotedSQLStr(Value: String): String Formats a string constant so that it can properly used as a
literal constant in an SQL statement. This method converts
escapes all single quotes and converts all characters less than
#32 (space) into the #<ASCII value> syntax.

DateToSQLStr(Value: DateTime): String Converts a DateTime value to an SQL 2003 standard date
constant string. All SQL and filter expressions in ElevateDB
require standard date constants which use the 'yyyy-mm-dd'
format.

TimeToSQLStr(Value: DateTime;
MilitaryTime: Boolean): String

Converts a DateTime value to an SQL 2003 standard time
constant string. All SQL and filter expressions in ElevateDB
require standard time constants which use the 'hh:mm:ss.zzz
am/pm' format. Use the MilitaryTime parameter to indicate
whether the time should be returned in 24-hour format
instead of 12-hour format with an am/pm indicator.

DateTimeToSQLStr(Value: DateTime;
MilitaryTime: Boolean): String

Converts a DateTime value to an SQL 2003 standard
timestamp constant string. All SQL and filter expressions in
ElevateDB require standard timestamp constants which use
the 'yyyy-mm-dd hh:mm:ss.zzz am/pm' format. Use the
MilitaryTime parameter to indicate whether the time should be
returned in 24-hour format instead of 12-hour format with an
am/pm indicator.

SQLStrToDate(Value: String): DateTime Converts a string that contains an SQL 2003 standard date
constant to an actual TDateTime value. All SQL and filter
expressions in ElevateDB require standard date constants
which use the 'yyyy-mm-dd' format.

SQLStrToTime(Value: String): DateTime Converts a string that contains an SQL 2003 standard time
constant to an actual TDateTime value. All SQL and filter
expressions in ElevateDB require standard time constants
which use the 'hh:mm:ss.zzz am/pm' format.

.NET Data Provider Reference

Page 69

SQLStrToDateTime(Value: String):
DateTime

Converts a string that contains an SQL 2003 standard
timestamp constant to an actual TDateTime value.All SQL and
filter expressions in ElevateDB require standard timestamp
constants which use the 'yyyy-mm-dd hh:mm:ss.zzz am/pm'
format.

YearMonthIntervalToSQLStr(Value:
Int32;
YearMonthIntervalType:
EDBYearMonthIntervalType): String

Converts a native year-month value to an SQL 2003 standard
year-month interval constant string. All SQL and filter
expressions in ElevateDB require standard year-month interval
constants which use the general 'yyyy-mm' format. Use the
YearMonthIntervalType parameter to indicate how the year-
month interval should be formatted.

SQLStrToYearMonthInterval(Value:
String;
YearMonthIntervalType:
EDBYearMonthIntervalType): Int32

Converts a string that contains an SQL 2003 standard year-
month interval constant to a native year-month value. All SQL
and filter expressions in ElevateDB require standard year-
month interval constants which use the 'yyyy-mm' format.

DayTimeIntervalToSQLStr(Value: Int64;
DayTimeIntervalType:
EDBDayTimeIntervalType): String

Converts a native day-time value to an SQL 2003 standard
day-time interval constant string. All SQL and filter
expressions in ElevateDB require standard day-time interval
constants which use the general 'dd hh:mm:ss.zzz am/pm'
format. Use the DayTimeIntervalType parameter to indicate
how the day-time interval should be formatted.

SQLStrToDayTimeInterval(Value: String;
DayTimeIntervalType:
EDBDayTimeIntervalType): Int64

Converts a string that contains an SQL 2003 standard day-
time interval constant to a native day-time value. All SQL and
filter expressions in ElevateDB require standard day-time
interval constants which use the 'dd hh:mm:ss.zzz am/pm'
format.

BooleanToSQLStr(Value: Boolean):
String

Converts a Boolean value to an SQL 2003 standard boolean
constant string. All SQL and filter expressions in ElevateDB
require standard boolean constants, which are TRUE and
FALSE (case-insensitive).

SQLStrToBoolean(Value: String):
Boolean

Converts a string that contains an SQL 2003 standard boolean
constant to an actual Boolean value. All SQL and filter
expressions in ElevateDB require standard boolean constants,
which are TRUE and FALSE (case-insensitive).

FloatToSQLStr(Value: Double): String Converts a Double value to an SQL 2003 standard float
constant string. All SQL and filter expressions in ElevateDB
require standard float constants which use the period (.) as
the decimal separator.

SQLStrToFloat(Value: String): Double Converts a string that contains an SQL 2003 standard float
constant to an actual Double value. All SQL and filter
expressions in ElevateDB require standard float constants
which use the period (.) as the decimal separator.

DecimalToSQLStr(Value: Decimal; Scale:
Integer): String

Converts a Decimal value to an SQL 2003 standard decimal
constant string. All SQL and filter expressions in ElevateDB
require standard decimal constants which use the period (.)
as the decimal separator. Use the Scale parameter to specify
the number of decimal places to use for the output string, or
0 to specify that the number of decimal places in the output
string will depend upon the Decimal value being converted.

.NET Data Provider Reference

Page 70

SQLStrToDecimal(Value: String):
Decimal

Converts a string that contains an SQL 2003 standard decimal
constant to an actual Decimal value. All SQL and filter
expressions in ElevateDB require standard decimal constants
which use the period (.) as the decimal separator.

BinaryToSQLStr(Value: array of Byte):
String

Converts a byte array value to an SQL 2003 standard binary
constant string. All SQL and filter expressions in ElevateDB
require standard binary constants, which are represented by
the binary value in hexadecimal format.

SQLStrToBinary(Value: String): array of
Byte

Converts a string that contains an SQL 2003 standard binary
constant to an actual byte array value. All SQL and filter
expressions in ElevateDB require standard binary constants,
which are represented by the binary value in hexadecimal
format.

CallRemoteProcedure(NameOfProcedure:
String)

Use the CallRemoteProcedure method along with the
RemoteParameters property to call a custom server procedure
in a remote ElevateDB Server.

Note
The parameters that are sent along with the custom
server procedure call are completely user-defined. It is
up to the calling remote session to define all necessary
parameters, including output or result parameters for
getting data back from the custom server procedure.

CancelRemoteProcedure Cancels any currently-executing remote procedure.

Note
This method is simply an indication that the client
application wants to cancel the remote procedure. The
actual server procedure may or may not send progress
messages that allow for cancellation, and it may or may
not actually respond to a cancellation attempt. It is
entirely up to the developer of the server procedure as
to how the procedure behaves in the face of a
cancellation/abort attempt.

Events

Event Description

OnLogin: EDBLoginEvent Setting this event adds an event handler to the list of event
handlers listening for the OnLogin event when the connection
is first opened. The arguments for the event handler are
defined in the EDBLoginEventArgs class. The OnLogin event is
used to augment the login process and programmtically
supply the user name and password used with the login. It
can also be used to display a custom interactive login dialog
whenever a connection is first opened.

.NET Data Provider Reference

Page 71

Note
The OnLogin event is only triggered when either the
user name (UID keyword) or password (PWD keyword)
are missing from the connection string used with the
connection. Please see the Connection Strings topic for
more information on the UID and PWD connection
string keywords.

OnTimeout: EDBTimeoutEvent Setting this event adds an event handler to the list of event
handlers listening for the OnTimeout event while the current
connection is connected to an ElevateDB Server. The
arguments for the event handler are defined in the
EDBTimeoutEventArgs class. The OnTimeout event is used to
deal with situations where the connection is waiting on a
response from an ElevateDB Server, and the wait time has
exceeded the timeout (TIMEOUT keyword) defined for the
connection in the connection string. Setting the
StayConnected property of the event arguments to False will
cause the connection to disconnect from the ElevateDB
Server, whereas leaving the StayConnected property of the
event arguments to True will keep the connection connected
to the ElevateDB Server. Please see the Connection Strings
topic for more information on the TIMEOUT connection string
keyword.

OnReconnect: EDBReconnectEvent Setting this event adds an event handler to the list of event
handlers listening for the OnReconnect event while the
current connection is connected to an ElevateDB Server. The
arguments for the event handler are defined in the
EDBReconnectEventArgs class. The OnReconnect event is
called whenever the connection needs to be re-established
automatically due to a drop in the connection or a timeout
(see OnTimeout event above). This event usually only occurs
when the connection was not configured to ping the
ElevateDB Server at regular intervals in the connection string
(PING keyword set to False). In such a case, the ElevateDB
Server may timeout the connection and disconnect it (but not
remove it), resulting in the OnReconnect event being
triggered the next time the connection tries to send a request
to the ElevateDB Server. Please see the Connection Strings
topic for more information on the PING connection string
keyword.

OnSendProgress:
EDBCommsProgressEvent

Setting this event adds an event handler to the list of event
handlers listening for the OnSendProgress event while the
current connection is connected to an ElevateDB Server. The
arguments for the event handler are defined in the
EDBCommsProgressEventArgs class. The OnSendProgress
event is called whenever the connection needs to send a
request to an ElevateDB Server, and may be called multiple
times for a single request, depending upon the size of the
request.

OnReceiveProgress:
EDBCommsProgressEvent

Setting this event adds an event handler to the list of event
handlers listening for the OnReceiveProgress event while the
current connection is connected to an ElevateDB Server. The

.NET Data Provider Reference

Page 72

arguments for the event handler are defined in the
EDBCommsProgressEventArgs class. The OnReceiveProgress
event is called whenever the connection receives a response
to a request from an ElevateDB Server, and may be called
multiple times for a single response, depending upon the size
of the response.

OnTrace: EDBTraceEvent Setting this event adds an event handler to the list of event
handlers listening for the OnTrace event while the current
connection is connected to an ElevateDB Server. The
arguments for the event handler are defined in the
EDBTraceEventArgs class. The OnTrace event is called
whenever the connection sends a request to an ElevateDB
Server or receives a response to a request from an ElevateDB
Server. It is useful for tracing the activity for a connection to
help determine performance bottlenecks, especially over
WANs (wide-area networks) like the Internet.

OnRemoteProgress: EDBProgressEvent Setting this event adds an event handler to the list of event
handlers listening for the OnRemoteProgress event during the
execution of a remote server procedure. The arguments for
the event handler are defined in the EDBProgressEventArgs
class. The OnRemoteProgress event is used to retrieve the
progress of the currently-executing procedure and, optionally,
to cancel the execution of the procedure.

Note
The actual server procedure may or may not send
progress messages that allow for cancellation, and it
may or may not actually respond to a cancellation
attempt. It is entirely up to the developer of the server
procedure as to how the procedure behaves in the face
of a cancellation/abort attempt.

OnRemoteStatusMessage:
EDBStatusMessageEvent

Setting this event adds an event handler to the list of event
handlers listening for the OnRemoteStatusMessage event
during the execution of a remote server procedure. The
arguments for the event handler are defined in the
EDBMessageEventArgs class. The OnRemoteStatus event is
used to retrieve the status of the currently-executing
procedure.

OnRemoteLogMessage:
EDBLogMessageEvent

Setting this event adds an event handler to the list of event
handlers listening for the OnLogMessage event during the
execution of a remote server procedure. The arguments for
the event handler are defined in the EDBMessageEventArgs
class. The OnRemoteLogMessage event is used to retrieve any
log messages for the currently-executing procedure.

.NET Data Provider Reference

Page 73

3.26 EDBCommandTextType Enumeration

The EDBCommandTextType enumeration is used to indicate what type of command is currently specified
via the CommandText property of an EDBCommand instance when the CommandType property is set to
Text.

Namespace: Elevate.ElevateDB.Data

Member Description

Empty Indicates that the current command text is empty.

Select Indicates that the current command text is a SELECT
statement.

Insert Indicates that the current command text is an INSERT
statement.

Update Indicates that the current command text is an UPDATE
statement.

Delete Indicates that the current command text is a DELETE
statement.

CreateDatabase Indicates that the current command text is a CREATE
DATABASE statement.

CreateUser Indicates that the current command text is a CREATE USER
statement.

CreateRole Indicates that the current command text is a CREATE ROLE
statement.

CreateJob Indicates that the current command text is a CREATE JOB
statement.

CreateStore Indicates that the current command text is a CREATE STORE
statement.

CreateModule Indicates that the current command text is a CREATE
MODULE statement.

CreateTextFilter Indicates that the current command text is a CREATE TEXT
FILTER statement.

CreateWordGenerator Indicates that the current command text is a CREATE WORD
GENERATOR statement.

CreateMigrator Indicates that the current command text is a CREATE
MIGRATOR statement.

CreateTable Indicates that the current command text is a CREATE TABLE
statement.

CreateView Indicates that the current command text is a CREATE VIEW
statement.

CreateIndex Indicates that the current command text is a CREATE INDEX
statement.

.NET Data Provider Reference

Page 74

CreateTrigger Indicates that the current command text is a CREATE
TRIGGER statement.

CreateTextIndex Indicates that the current command text is a CREATE TEXT
INDEX statement.

CreateFunction Indicates that the current command text is a CREATE
FUNCTION statement.

CreateProcedure Indicates that the current command text is a CREATE
PROCEDURE statement.

DropDatabase Indicates that the current command text is a DROP
DATABASE statement.

DropUser Indicates that the current command text is a DROP USER
statement.

DropRole Indicates that the current command text is a DROP ROLE
statement.

DropJob Indicates that the current command text is a DROP JOB
statement.

DropStore Indicates that the current command text is a DROP STORE
statement.

DropModule Indicates that the current command text is a DROP MODULE
statement.

DropTextFilter Indicates that the current command text is a DROP TEXT
FILTER statement.

DropWordGenerator Indicates that the current command text is a DROP WORD
GENERATOR statement.

DropMigrator Indicates that the current command text is a DROP
MIGRATOR statement.

DropTable Indicates that the current command text is a DROP TABLE
statement.

DropView Indicates that the current command text is a DROP VIEW
statement.

DropIndex Indicates that the current command text is a DROP INDEX
statement.

DropTrigger Indicates that the current command text is a DROP TRIGGER
statement.

DropFunction Indicates that the current command text is a DROP
FUNCTION statement.

DropProcedure Indicates that the current command text is a DROP
PROCEDURE statement.

AlterDatabase Indicates that the current command text is an ALTER
DATABASE statement.

AlterUser Indicates that the current command text is an ALTER USER
statement.

AlterRole Indicates that the current command text is an ALTER ROLE
statement.

.NET Data Provider Reference

Page 75

AlterJob Indicates that the current command text is an ALTER JOB
statement.

AlterStore Indicates that the current command text is an ALTER STORE
statement.

AlterModule Indicates that the current command text is an ALTER MODULE
statement.

AlterTextFilter Indicates that the current command text is an ALTER TEXT
FILTER statement.

AlterWordGenerator Indicates that the current command text is an ALTER WORD
GENERATOR statement.

AlterMigrator Indicates that the current command text is an ALTER
MIGRATOR statement.

AlterTable Indicates that the current command text is an ALTER TABLE
statement.

AlterView Indicates that the current command text is an ALTER VIEW
statement.

AlterIndex Indicates that the current command text is an ALTER INDEX
statement.

AlterTrigger Indicates that the current command text is an ALTER
TRIGGER statement.

AlterFunction Indicates that the current command text is an ALTER
FUNCTION statement.

AlterProcedure Indicates that the current command text is an ALTER
PROCEDURE statement.

RenameDatabase Indicates that the current command text is an RENAME
DATABASE statement.

RenameUser Indicates that the current command text is an RENAME USER
statement.

RenameRole Indicates that the current command text is an RENAME ROLE
statement.

RenameJob Indicates that the current command text is an RENAME JOB
statement.

RenameStore Indicates that the current command text is an RENAME
STORE statement.

RenameModule Indicates that the current command text is an RENAME
MODULE statement.

RenameTextFilter Indicates that the current command text is an RENAME TEXT
FILTER statement.

RenameWordGenerator Indicates that the current command text is an RENAME WORD
GENERATOR statement.

RenameMigrator Indicates that the current command text is an RENAME
MIGRATOR statement.

RenameTable Indicates that the current command text is an RENAME TABLE
statement.

.NET Data Provider Reference

Page 76

RenameView Indicates that the current command text is an RENAME VIEW
statement.

RenameIndex Indicates that the current command text is an RENAME INDEX
statement.

RenameTrigger Indicates that the current command text is an RENAME
TRIGGER statement.

RenameFunction Indicates that the current command text is an RENAME
FUNCTION statement.

RenameProcedure Indicates that the current command text is an RENAME
PROCEDURE statement.

Grant Indicates that the current command text is a GRANT
PRIVILEGES or GRANT ROLES statement.

Revoke Indicates that the current command text is a REVOKE
PRIVILEGES or REVOKE ROLES statement.

RepairTable Indicates that the current command text is a REPAIR TABLE
statement.

VerifyTable Indicates that the current command text is a VERIFY TABLE
statement.

OptimizeTable Indicates that the current command text is an OPTIMIZE
TABLE statement.

EmptyTable Indicates that the current command text is an EMPTY TABLE
statement.

ExportTable Indicates that the current command text is an EXPORT TABLE
statement.

ImportTable Indicates that the current command text is an IMPORT TABLE
statement.

SetBackupsStore Indicates that the current command text is a SET BACKUPS
STORE statement.

BackupDatabase Indicates that the current command text is a BACKUP
DATABASE statement.

RestoreDatabase Indicates that the current command text is a RESTORE
DATABASE statement.

SetUpdatesStore Indicates that the current command text is a SET UPDATES
STORE statement.

SaveDatabaseUpdates Indicates that the current command text is a SAVE UPDATES
statement.

LoadDatabaseUpdates Indicates that the current command text is a LOAD UPDATES
statement.

PublishDatabase Indicates that the current command text is a PUBLISH
DATABASE statement.

UnpublishDatabase Indicates that the current command text is an UNPUBLISH
DATABASE statement.

MigrateDatabase Indicates that the current command text is a MIGRATE
DATABASE statement.

.NET Data Provider Reference

Page 77

DisconnectServerSession Indicates that the current command text is a DISCONNECT
SERVER SESSION statement.

RemoveServerSession Indicates that the current command text is a REMOVE SERVER
SESSION statement.

SetFilesStore Indicates that the current command text is a SET FILES
STORE statement.

CopyFile Indicates that the current command text is a COPY FILE
statement.

RenameFile Indicates that the current command text is a RENAME FILE
statement.

DeleteFile Indicates that the current command text is a DELETE FILE
statement.

SetInformationCollate Indicates that the current command text is a SET
INFORMATION COLLATE statement.

CompareDatabase Indicates that the current command text is a COMPARE
DATABASE statement.

Script Indicates that the current command text is a script.

.NET Data Provider Reference

Page 78

3.27 EDBCommand Class

The EDBCommand class implements the DbCommand abstract class, providing an encapsulation of an
ElevateDB table, stored procedure, SQL statement, or script.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbCommand

Implements ICloneable

Constructors

(<No Parameters>)
(CommandText: String)
(CommandText: String; Connection: EDBConnection)
(CommandText: String; Connection: EDBConnection; Transaction: EDBTransaction)

Properties

Property Description

CommandTextType:
EDBCommandTextType

Indicates the type of command specified in the CommandText
property when the CommandType property is set to Text.

EngineVersion: String Indicates the current version of ElevateDB being used. This
property is read-only.

ExecutionResult: Boolean The ExecutionResult property indicates the result of the
execution of the current command. Currently, this only applies
to the VERIFY TABLE and REPAIR TABLE SQL statements.
This property will be True if any errors were found, and False
if no errors were found.

ExecutionTime: Double Indicates the total time, in seconds, that the current
command took to execute when the CommandType property
is set to Text. This time does not include any time taken to
prepare the command, if required, only the execution time
itself.

IsPrepared: Boolean Indicates whether the current command text has been
prepared or not.

IsOpened: Boolean Indicates whether there is an active data reader present for
the current command.

ParamCheck: Boolean Specifies whether or not the Parameters property is cleared
and regenerated if the CommandText property is modified. By
default the ParamCheck property is False, meaning that the
Parameters property is not automatically generated. When
ParamCheck is True, the proper number of parameters is
guaranteed to be generated for the current command.

.NET Data Provider Reference

Page 79

Plan: String Indicates the query plan for the current SQL statement
specified in the CommandText property once the statement is
executed and the RequestPlan property is set to True. The
Plan property is cleared before each new statement
execution.

RequestPlan: Boolean Specifies that a query plan be generated and stored in the
Plan property when the SQL statement specified in the
CommandText property is executed. The default is False.

Note
Query plans are only generated for SQL SELECT,
INSERT, UPDATE, or DELETE statements.

RequestSensitive: Boolean Specifies whether or not ElevateDB should attempt to return a
sensitive result set when the current SELECT statement in the
CommandText property is excuted. The RequestSensitive
property is False by default, meaning that an insensitive and
read-only result set will be returned.

Note
Setting RequestSensitive to True does not guarantee
that a sensitive result set will be returned by
ElevateDB. A sensitive result set will be returned only if
the SELECT statement syntax conforms to the syntax
requirements for a sensitive result set. If the
RequestSensitive property is True, but the syntax does
not conform to the requirements, ElevateDB returns an
insensitive result set. After executing the query, inspect
the Sensitive property to determine whether the
request for a sensitive result set was successful.

RowReadSize: Int32 Use this property to specify how many rows should be read
from an ElevateDB Server at one time when any result set for
the command is navigated. This property is useful for
specifying the row read size when you cannot get access to
the EDBDataReader instance used for navigating the result
set, which is the case when using an EDBDataAdapter
instance.

Note
Any time an EDBDataReader or EDBDataCursor
instance is created using the ExecuteReader or
ExecuteCursor (ElevateDB-specific) methods, the
RowReadSize property of the instance will be initialized
with the value specified by the
EDBCommand.RowReadSize property.

RowsAffected: Int32 Indicates how many rows were selected, inserted, updated or
deleted by the execution of the current SQL statement

.NET Data Provider Reference

Page 80

specified via the CommandText property. If RowsAffected is
0, the SQL statement did not select, insert, update or delete
any rows.

Note
This property is only useful for SELECT, INSERT,
UPDATE, or DELETE statements.

Sensitive: Boolean Indicates whether the current SELECT statement returned a
sensitive result set.

Methods

Method Description

ExecuteCursor: EDBDataCursor Executes the current command, and returns an instance of
the EDBDataCursor class that can be used as a bi-directional
cursor on the result set generated by the command.

Close Closes the current command, freeing any result set that may
be active from the last execution of the command.

LoadFromFile(const FileName: String) Loads a command from a text file into the CommandText
property of the current command.

Events

Event Description

OnProgress: EDBProgressEvent Setting this event adds an event handler to the list of event
handlers listening for the OnProgress event during the current
command execution. The arguments for the event handler are
defined in the EDBProgressEventArgs class. The OnProgress
event is used to retrieve the progress of the currently-
executing command and, optionally, to cancel the execution
of the command.

OnStatusMessage:
EDBStatusMessageEvent

Setting this event adds an event handler to the list of event
handlers listening for the OnStatusMessage event during the
current command execution. The arguments for the event
handler are defined in the EDBMessageEventArgs class. The
OnStatus event is used to retrieve the status of the currently-
executing command.

OnLogMessage: EDBLogMessageEvent Setting this event adds an event handler to the list of event
handlers listening for the OnLogMessage event during the
current command execution. The arguments for the event
handler are defined in the EDBMessageEventArgs class. The
OnLogMessage event is used to retrieve any log messages for
the currently-executing command. Log messages are
generated during various administrative and DDL statements.

.NET Data Provider Reference

Page 81

3.28 EDBDataReader Class

The EDBDataReader class implements the DbDataReader abstract class, providing an encapsulation of a
data reader object for enumerating the result set of an EDBCommand instance.

Note
In addition to the normal Get* methods that use column indexes to retrieve column data, there are
also matching Get* methods that accept a column name instead of a column index. The only
difference in the method parameters for these methods is the first parameter, which is a String
instead of an Int32.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbDataReader

Constructors

(<No Parameters>)
(Command: EDBCommand; CommandBehavior: System.Data.CommandBehavior)

Properties

Property Description

RowReadSize: Integer Use this property to specify how many rows should be read
from an ElevateDB Server at one time when the current result
set is navigated.

Methods

Method Description

Refresh Refreshes the current result set. This is useful when the result
set is sensitive, as indicated by the EDBCommand Sensitive
property

GetBytes(Index: Int32; DestStream:
Stream): Int64

GetBytes(Index: Int32; const
DestFileName: String): Int64

These methods retrieve the contents of a CHAR/VARCHAR,
BYTES/VARBYTES, CLOB, or BLOB column into a destination
stream or file. The return value is the number of bytes read
from the column.

GetImage(Index: Int32): Bitmap This method retrieves the contents of a BLOB column into a
new Bitmap instance.

.NET Data Provider Reference

Page 82

3.29 EDBDataCursorState Enumeration

The EDBDataCursorState enumeration is used to indicate the state of a data cursor.

Namespace: Elevate.ElevateDB.Data

Member Description

Browsing Indicates that the current data cursor is browsing.

Inserting Indicates that the current data cursor is inserting a new row.

Updating Indicates that the current data cursor is updating an existing
row.

.NET Data Provider Reference

Page 83

3.30 EDBCursorStateChangeEvent Delegate

The EDBDataCursorStateChangeEvent delegate is used with the EDBDataCursor OnStateChangeEvent
event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object)

.NET Data Provider Reference

Page 84

3.31 EDBCursorMoveEvent Delegate

The EDBDataCursorMoveEvent delegate is used with the EDBDataCursor OnMoveEvent event.

Namespace: Elevate.ElevateDB.Data

Parameters

(Sender: System.Object)

.NET Data Provider Reference

Page 85

3.32 EDBDataCursor Class

The EDBDataCursor class descends from the EDBDataReader class, providing a bi-directional cursor that
can be created using the ExecuteCursor method of the EDBCommand class. The EDBDataCursor class also
supports in-place inserts, updates, and deletes, provided that the result set generated by the command is
sensitive and not read-only, which are indicated by the Sensitive and ReadOnly properties of the
EDBCommand class, respectively.

In addition, you can set an expression filter on the cursor using the Filter and Filtered properties, and
search for a particular row in the cursor using the Locate method. Filter expressions can be any valid
Boolean SQL expression that does not contain any sub-queries.

Note
In addition to the normal Set* methods that use column indexes to set column data, there are also
matching Set* methods that accept a column name instead of a column index. The only difference
in the method parameters for these methods is the first parameter, which is a String instead of an
Int32.

Namespace: Elevate.ElevateDB.Data

Inherits From Elevate.ElevateDB.Data.EDBDataReader

Constructors

All constructors are the same as the EDBDataReader class.

Properties

Property Description

State: EDBDataCursorState Enumeration Indicates the state of the cursor.

BOF: Boolean Indicates whether the cursor is at the beginning of the set of
rows that comprise the result set.

EOF: Boolean Indicates whether the cursor is at the end of the set of rows
that comprise the result set.

RowLocked: Boolean Use this property to determine if the current row has been
locked by the LockCurrentRow method. This method only
includes manually-locked rows and will not indicate if a row is
locked via the Update method when the current session's row
lock protocol is set to lpPessimistic. Such row locks are
considered implicit.

Filter: String Use this property to specify a Boolean filter expression for
limiting the view of the result set to only those rows that
match the filter expression. Setting this property by itself does
nothing. You must set the Filtered property in order to
actually turn on or off the filtering.

Filtered: Boolean Use this property turn on or off the filter specified by the Filter
property.

.NET Data Provider Reference

Page 86

RowCount: Integer Indicates the number of rows present in the current view of
the result set. If the result set is filtered via the Filter and
Filtered properties, then this property will reflect only the
count of the rows that satisfy the filter expression.

Methods

Method Description

get_Filter: String This is the accessor (getter) method for the Filter property.

set_Filter(Value: String) This is the mutator (setter) method for the Filter property.

get_Filtered: Boolean This is the accessor (getter) method for the Filtered property.

set_Filtered(Value: Boolean) This is the mutator (setter) method for the Filtered property.

get_RowCount: Integer This is the accessor (getter) method for the RowCount
property.

ReadFirst: Boolean Use this method to position the cursor on the first row in the
result set and read it into the row buffer. If a filter is in effect
on the result set, then this method will position the cursor on
the first row that satisfies the filter expression. This method
always sets the BOF property to True.

ReadLast: Boolean Use this method to position the cursor on the last row in the
result set and read it into the row buffer. If a filter is in effect
on the result set, then this method will position the cursor on
the last row that satisfies the filter expression. This method
always sets the EOF property to True.

Read: Boolean Use this method to position the cursor on the next row in the
result set and read it into the row buffer. If a filter is in effect
on the result set, then this method will position the cursor on
the next row that satisfies the filter expression. If there are no
more rows in the result set, then this method will set the EOF
property to True and the existing row buffer will stay the
same.

ReadPrevious: Boolean Use this method to position the cursor on the previous row in
the result set and read it into the row buffer. If a filter is in
effect on the result set, then this method will position the
cursor on the previous row that satisfies the filter expression.
If there are no prior rows in the result set, then this method
will set the BOF property to True and the existing row buffer
will stay the same.

ReadCurrent: Boolean Use this method to read the current row in the result set into
the row buffer. If there are no rows in the result set, then this
method will set the BOF and EOF properties to True and the
row buffer will contain NULL values for all columns.

ReadRelative(Position: Integer): Boolean Use this method to position the cursor on a specific row in
relation to the current row in the result set and read it into
the row buffer. If a filter is in effect on the result set, then
this method will position the cursor on the specific row that
satisfies the filter expression.

.NET Data Provider Reference

Page 87

The Position parameter can be either positive or negative. If it
is positive, then the cursor will skip forward Position number
of rows from the current row. If there are no more rows in the
result set, then this method will set the EOF property to True
and the existing row buffer will be populated with the last
accessible row that was visited. If it is negative, then the
cursor will skip backward Position number of rows from the
current row. If there are no prior rows in the result set, then
this method will set the BOF property to True and the existing
row buffer will be populated with the last accessible row that
was visited.

ReadAbsolute(Position: Integer):
Boolean

Use this method to position the cursor on a specific row in the
result set and read it into the row buffer. If a filter is in effect
on the result set, then this method will position the cursor on
the specific row that satisfies the filter expression.

The Position parameter must be positive. If the Position is
greater than the number of rows in the result set, then this
method will set the EOF property to True and the existing row
buffer will be populated with the last accessible row.

LockCurrentRow Use this method to manually lock the current row. Row locks
established via this method are persistent and are maintained
across any Update or Delete method calls. You must manually
unlock any rows locked using this method via the
UnlockCurrentRow or UnlockAllRows methods.

Note
Any row locks established using this method are
automatically unlocked when the cursor is closed.

UnlockCurrentRow Use this method to unlock the current row. The current row
must have been previously manually locked using the
LockCurrentRow method or else an exception will be raised.

UnlockAllRows Use this method to unlock all rows that have been manually
locked using the LockCurrentRow method.

Insert Use this method to put the cursor in an Inserting state. All
column values in the row buffer will be set to their default
value as defined for the source table used to generate the
result set.

To complete the insertion of a new row, use the Set* methods
to assign new values to the columns in the row buffer, and
then call the Post method. If there are any errors in the
insert, they will occur during the Post method call, and one
can use a try..catch/except block to handle any exceptions
generated due to an error such as a constraint violation.

Update Use this method to put the cursor in an Updating state. If the
row locking protocol in use is the pessimistic protocol, then
calling this method will cause a row lock to be placed on the
current row in the result set. If the row locking protocol in use
is the optimistic protocol, then calling this method will refresh

.NET Data Provider Reference

Page 88

the row buffer from the current row in the result set. Please
see the EDBConnectionStringBuilder Class for information on
setting the row lock protocol for the connection.

To complete the update of the current row, use the Set*
methods to assign new values to the columns in the row
buffer, and then call the Post method. If there are any errors
in the update, they will occur during the Post method call, and
one can use a try..catch/except block to handle any
exceptions generated due to an error such as a constraint
violation. If the Post method succeeds, then any pessimistic
row lock obtained during the Update method call will be
released. If optimistic row locking is being used, then a row
lock will be obtained and released all within the Post method
call.

Post Use this method to complete an insert or update by posting
any changes to the row buffer into the result set. If the State
of the cursor is Inserting, then calling this method will insert a
new row into the result set. If the State of the cursor is
Updating, then calling this method will update the current row
in the result set.

Cancel Use this method to cancel an insert or update, discarding any
changes to the row buffer that have been made. If the State
of the cursor is Updating and pessimistic locking is being
used, then this method will release any row lock that was
obtained during the prior Update call.

Delete Use this method to delete the current row from the result set.

Locate(const Columns: array of String;
const Values: ObjectArray;
PartialLength: Integer;
CaseInsensitive: Boolean): Boolean

Locate(const Column: String;
const Value: Object;
PartialLength: Integer;
CaseInsensitive: Boolean): Boolean

Use this method to locate a specific row in the result set.
Specify the columns to search using the Columns array
parameter and the Values to search for in the Values array
parameter.

You can specify a partial length for the last string value in the
Values parameter via the PartialLength parameter. If you
don't want a partial-length match on the last value in the
Values parameter, then simply specify 0 for th PartialLength
parameter.

If you want the search to be case-insensitive, then specify
true/True for the CaseInsensitive parameter.

The Locate method will respect any filter that may be present
on the result set.

SetValue(Index: Int32; Value:
System.Object)

Use this method to set a column value in the row buffer. The
column is specified via the Index parameter (0-based), and
the cursor must be in the Inserting or Updating state.

SetValues(Values: ObjectArray): Int32 Use this method to set multiple column values in the row
buffer in one call. The values are assigned starting from the
first column to the last column that corresponds to the length
of the Values parameter.

.NET Data Provider Reference

Page 89

SetBoolean(Index: Int32; Value:
Boolean)

Use this method to set a Boolean column value in the row
buffer. The column is specified via the Index parameter (0-
based), and the cursor must be in the Inserting or Updating
state.

SetByte(Index: Int32; Value:
System.Byte)

This method is not supported by ElevateDB, but is included
for compatibility with other cursor classes for .Net.

SetBytes(Index: Int32; Offset: Int64;
Buffer: array of System.Byte;
BufferOffset: Int32;
Length: Int32)

SetBytes(Index: Int32; SourceStream:
Stream): Int64

SetBytes(Index: Int32; const
SourceFileName: String): Int64

Use these methods to set a CHAR/VARCHAR,
BYTES/VARBYTES, CLOB, or BLOB column value in the row
buffer. The column is specified via the Index parameter (0-
based), and the cursor must be in the Inserting or Updating
state.

SetImage(Index: Int32; SourceImage:
Bitmap;
SourceFormat: ImageFormat)

Use this method to save a bitmap to a BLOB column value in
the row buffer. The column is specified via the Index
parameter (0-based), and the cursor must be in the Inserting
or Updating state.

SetChar(Index: Int32; Value:
System.Char)

This method is not supported by ElevateDB, but is included
for compatibility with other cursor classes for .Net.

SetChars(Index: Int32; Offset: Int64;
Buffer: array of System.Char;
BufferOffset: Int32;
Length: Int32)

Use this method to set a specific range of characters for a
CLOB or character (CHAR/VARCHAR) column value in the row
buffer. The column is specified via the Index parameter (0-
based), and the cursor must be in the Inserting or Updating
state.

SetGuid(Index: Int32; Value:
System.Guid)

Use this method to set a GUID column value in the row
buffer. The column is specified via the Index parameter (0-
based), and the cursor must be in the Inserting or Updating
state.

SetInt16(Index: Int32; Value: Int16) Use this method to set a signed 16-bit integer column value in
the row buffer. The column is specified via the Index
parameter (0-based), and the cursor must be in the Inserting
or Updating state.

SetInt32(Index: Int32; Value: Int32) Use this method to set a signed 32-bit integer column value in
the row buffer. The column is specified via the Index
parameter (0-based), and the cursor must be in the Inserting
or Updating state.

SetInt64(Index: Int32; Value: Int64) Use this method to set a signed 64-bit integer column value in
the row buffer. The column is specified via the Index
parameter (0-based), and the cursor must be in the Inserting
or Updating state.

SetFloat(Index: Int32; Value: Single) This method is not supported by ElevateDB, but is included
for compatibility with other cursor classes for .Net.

SetDouble(Index: Int32; Value:
System.Double)

Use this method to set a double-precision floating-point
column value in the row buffer. The column is specified via
the Index parameter (0-based), and the cursor must be in the
Inserting or Updating state.

.NET Data Provider Reference

Page 90

SetString(Index: Int32; Value: String) Use this method to set a string column value in the row
buffer. The column is specified via the Index parameter (0-
based), and the cursor must be in the Inserting or Updating
state.

SetDecimal(Index: Int32; Value:
System.Decimal)

Use this method to set a decimal column value in the row
buffer. The column is specified via the Index parameter (0-
based), and the cursor must be in the Inserting or Updating
state.

SetDateTime(Index: Int32; Value:
System.DateTime)

Use this method to set a date/time column value in the row
buffer. The column is specified via the Index parameter (0-
based), and the cursor must be in the Inserting or Updating
state.

Events

Event Description

OnStateChange:
EDBDataCursorStateChangeEvent

Setting this event adds an event handler to the list of event
handlers listening for the OnStateChange event for the cursor.
The arguments for the event handler are defined in the
EDBCursorStateChangeEvent class. The OnStateChange event
is used to respond to any change in the cursor's State
property.

OnMove: EDBDataCursorMoveEvent Setting this event adds an event handler to the list of event
handlers listening for the OnMove event for the cursor. The
arguments for the event handler are defined in the
EDBCursorMoveEvent class. The OnMove event is used to
respond to any movement in the cursor due to calls to the
ReadFirst, ReadLast, Read, ReadPrevious, ReadRelative,
ReadAbsolute, or Locate methods.

.NET Data Provider Reference

Page 91

3.33 EDBDataAdapter Class

The EDBDataAdapter class implements the DbDataAdapter abstract class, providing an encapsulation of a
data adapter for executing queries using SELECT statements and updating any result sets using INSERT,
UPDATE, and/or DELETE statements.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbDataAdapter

Constructors

(<No Parameters>)
(SelectCommand: EDBCommand)
(SelectCommandText: String; SelectConnectionString: String)
(SelectCommandText: String; SelectConnection: EDBConnection)

Properties

Property Description

EngineVersion: String Indicates the current version of ElevateDB being used. This
property is read-only.

.NET Data Provider Reference

Page 92

3.34 EDBCommandBuilder Class

The EDBCommandBuilder class extends the DbCommandBuilder abstract class, used for generating the
appropriate commands for reconciling changes back to a dataset.

Namespace: Elevate.ElevateDB.Data

Inherits From System.Data.Common.DbCommandBuilder

Constructors

(<No Parameters>)
(Adapter: EDBDataAdapter)

Methods

Method Description

DeriveParameters(Command:
EDBCommand)

Use this method to populate the parameters for an
EDBCommand instance.

Note
This method simply calls the Prepare method of the
EDBCommand instance to populate the parameters, so
calling this method will cause the EDBCommand
instance to be closed (if it is open) and then prepared.

.NET Data Provider Reference

Page 93

This page intentionally left blank

Appendix A - Error Codes and Messages

Page 94

Appendix A - Error Codes and Messages

The following is a table of the error codes and messages for ElevateDB.

Error Code Message and Further Details

EDB_ERROR_VALIDATE (100) There is an error in the metadata for the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever an attempt is made to create a new catalog or
configuration object, and there is an error in the
specification of the object. The specific error message is
indicated within the parentheses.

EDB_ERROR_UPDATE (101) There was an error updating the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever ElevateDB encounters an issue while trying to
update the disk file used to store a catalog or
configuration. The specific error message is indicated
within the parentheses.

EDB_ERROR_SYSTEM (200) This operation cannot be performed on the system
<ObjectType> <ObjectName> or any privileges granted
to itThis error is raised whenever an attempt is made to
alter or drop any system-defined catalog or configuration
objects. Please see the System Information topic for
more information on the system-defined objects in
ElevateDB.

EDB_ERROR_DEPENDENCY (201) The <ObjectType> <ObjectName> cannot be dropped
or moved because it is still referenced by the
<ObjectType> <ObjectName>This error is raised
whenever an attempt is made to drop any catalog or
configuration object, and that catalog or configuration
object is still being referenced by another catalog or
configuration object. You must first remove the
reference to the object that you wish to drop before you
can drop the referenced object.

EDB_ERROR_MODULE (202) An error occurred with the module <ModuleName>
(<ErrorMessage>)This error is raised whenever
ElevateDB encounters an issue with loading an external
module. Please see the External Modules topic for more
information.

EDB_ERROR_LOCK (300) Cannot lock <ObjectType> <ObjectName> for
<AccessType> accessThis error is raised whenever
ElevateDB cannot obtain the desired lock access to a
given catalog or configuration object. This is usually due
to another session already having an incompatible lock
on the object already. Please see the Locking and
Concurrency topic for more information.

EDB_ERROR_UNLOCK (301) Cannot unlock <ObjectType> <ObjectName> for
<AccessType> accessThis error is raised whenever
ElevateDB cannot unlock a given catalog or configuration
object. If this error occurs during normal operation of
ElevateDB, please contact Elevate Software for further

Appendix A - Error Codes and Messages

Page 95

instructions on how to correct the issue

EDB_ERROR_EXISTS (400) The <ObjectType> <ObjectName> already existsThis
error is raised whenever an attempt is made to create a
new catalog or configuration object, and a catalog or
configuration object already exists with that name.

EDB_ERROR_NOTFOUND (401) The <ObjectType> <ObjectName> does not existThis
error is raised when an attempt is made to
open/execute, alter, or drop a catalog or configuration
object that does not exist.

EDB_ERROR_NOTOPEN (402) The database <DatabaseName> must be open in order
to perform this operation (<OperationName>)This error
is raised when an attempt is made to perform an
operation on a given database before it has been
opened.

EDB_ERROR_READONLY (403) The <ObjectType> <ObjectName> is read-only and this
operation cannot be performed (<OperationName>)This
error is raised whenever a create, alter, or drop
operation is attempted on an object that is read-only.

EDB_ERROR_TRANS (404) This operation cannot be performed while the database
<DatabaseName> has an active transaction
(<OperationName>)This error is raised whenever
ElevateDB encounters an invalid transaction operation.
Some SQL statements cannot be executed within a
transaction. For a list of transaction-compatible
statements, please see the Transactions topic.

EDB_ERROR_MAXIMUM (405) The maximum number of <ObjectType>s has been
reached (<MaximumObjectsAllowed>)This error is raised
when an attempt is made to create a new catalog or
configuration object and doing so would exceed the
maximum allowable number of objects. Please see the
Appendix B - System Capacities topic for more
information.

EDB_ERROR_IDENTIFIER (406) Invalid <ObjectType> identifier '<ObjectName>'This
error is raised when an attempt is made to create a new
catalog or configuration object with an invalid name.
Please see the Identifiers topic for more information on
what constitutes a valid identifier.

EDB_ERROR_FULL (407) The table <TableName> is full (<FileName>)This error
occurs when a given table contains the maximum
number of rows or the maximum file size is reached for
one of the files that make up the table. The file name is
indicated within the parentheses.

EDB_ERROR_CONFIG (409) There is an error in the configuration
(<ErrorMessage>)This error is raised whenever there is
an error in the configuration. The specific error message
is indicated within the parentheses.

Appendix A - Error Codes and Messages

Page 96

EDB_ERROR_NOLOGIN (500) A user must be logged in in order to perform this
operation (<OperationName>)This error is raised
whenever an attempt is made to perform an operation
for a session that has not been logged in yet with a valid
user name and password.

EDB_ERROR_LOGIN (501) Login failed (<ErrorMessage>)This error is raised
whenever a user login fails. ElevateDB allows for a
maximum of 3 login attempts before raising a login
exception.

EDB_ERROR_ADMIN (502) Administrator privileges are required to perform this
operation (<Operation>)This error is raised when an
attempt is made to perform an operation that requires
administrator privileges. Administrator privileges are
granted to a given user by granting the system-defined
"Administrators" role to that user.

Please see the User Security topic for more information.

EDB_ERROR_PRIVILEGE (503) The current user does not have the proper privileges to
perform this operation (<OperationName>)This error is
raised when a user attempts an operation when he/she
does not have the proper privileges required to execute
the operation. Please see the User Security topic for
more information.

EDB_ERROR_MAXSESSIONS (504) Maximum number of concurrent sessions reached for the
configuration <ConfigurationName>This error is raised
when the maximum number of licensed sessions for a
given configuration is exceeded. The number of licensed
sessions for a given configuration depends upon the
ElevateDB product purchased along with the particular
compilation of the application made by the developer
using the ElevateDB product.

EDB_ERROR_SERVER (505) The ElevateDB Server cannot be started
(<ErrorMessage>) The ElevateDB Server cannot be
stopped (<ErrorMessage>)This error is raised when the
ElevateDB Server cannot be started or stopped for any
reason. Normally, the error message will contain a native
operating system error message that will reveal the
reason for the issue.

EDB_ERROR_FILEMANAGER (600) File manager error (<ErrorMessage>)This error is raised
whenever ElevateDB encounters a file manager error
while trying to create, open, close, delete, or rename a
file. The specific error message, including operating
system error code (if available), is indicated within the
parentheses.

EDB_ERROR_CORRUPT (601) The table <TableName> is corrupt
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while reading, writing, or validating
a table. If this error occurs during normal operation of
ElevateDB, please contact Elevate Software for further
instructions on how to correct the issue. The specific
error message is indicated within the parentheses.

Appendix A - Error Codes and Messages

Page 97

EDB_ERROR_COMPILE (700) An error was found in the <ObjectType> at line <Line>
and column <Column> (<ErrorMessage>)This error is
raised whenever an error is encountered while compiling
an SQL expression, statement, or routine. The specific
error message is indicated within the parentheses.

EDB_ERROR_BINDING (800) A row binding error occurredThis error is raised when
ElevateDB encounters an issue while trying to bind the
cursor row values in a cursor row. It is an internal error
and will not occur unless there is a bug in ElevateDB.

EDB_ERROR_STATEMENT (900) An error occurred with the statement <StatementName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while executing a statement. The specific
error message is indicated within the parentheses.

EDB_ERROR_PROCEDURE (901) An error occurred with the procedure <ProcedureName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while executing a procedure. The specific
error message is indicated within the parentheses.

EDB_ERROR_VIEW (902) An error occurred with the view <ViewName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while opening a view. The specific error
message is indicated within the parentheses.

EDB_ERROR_JOB (903) An error occurred with the job <JobName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while running a job. The specific error
message is indicated within the parentheses.

EDB_ERROR_IMPORT (904) Error importing the file <FileName> into the table
<TableName> (<ErrorMessage>)This error is raised
when an error occurs during the import process for a
given table. The specific error message is indicated
within the parentheses.

EDB_ERROR_EXPORT (905) Error exporting the table <TableName> to the file
<FileName> (<ErrorMessage>)This error is raised when
an error occurs during the export process for a given
table. The specific error message is indicated within the
parentheses.

EDB_ERROR_CURSOR (1000) An error occurred with the cursor <CursorName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while operating on a cursor. The specific
error message is indicated within the parentheses.

EDB_ERROR_FILTER (1001) A filter error occurred (<ErrorMessage>)This error is
raised whenever ElevateDB encounters an issue while
trying to set or clear a filter on a given cursor. The
specific error message is indicated within the
parentheses.

EDB_ERROR_LOCATE (1002) A locate error occurred (<ErrorMessage>)This error is
raised whenever ElevateDB encounters an issue while
trying to locate a row in a given cursor. The specific
error message is indicated within the parentheses.

Appendix A - Error Codes and Messages

Page 98

EDB_ERROR_STREAM (1003) An error occurred in the cursor stream
(<ErrorMessage>)This error is raised whenever an issue
is encountered while loading or saving a cursor to or
from a stream. The specific error message is indicated
within the parentheses.

EDB_ERROR_CONSTRAINT (1004) The constraint <ConstrainName> has been violated
(<ErrorMessage>)This error is raised when a constraint
that has been defined for a table is violated. This
includes primary key, unique key, foreign key, and check
constraints. The specific error message is indicated
within the parentheses.

EDB_ERROR_LOCKROW (1005) Cannot lock the row in the table <TableName>This error
is raised when a request is made to lock a given row and
the request fails because another session has the row
already locked. Please see the Locking and Concurrency
topic for more information.

EDB_ERROR_UNLOCKROW (1006) Cannot unlock the row in the table <TableName>This
error is raised whenever ElevateDB cannot unlock a
specific row because the row had not been previously
locked, or had been locked and the lock has since been
cleared. Please see the Locking and Concurrency topic
for more information.

EDB_ERROR_ROWDELETED (1007) The row has been deleted since last cached for the table
<TableName>This error is raised whenever an attempt
is made to update or delete a row, and the row no
longer exists because it has been deleted by another
session. Please see the Updating Rows topic for more
information.

EDB_ERROR_ROWMODIFIED (1008) The row has been modified since last cached for the
table <TableName>This error is raised whenever an
attempt is made to update or delete a row, and the row
has been updated by another session since the last time
it was cached by the current session. Please see the
Updating Rows topic for more information.

EDB_ERROR_CONSTRAINED (1009) The cursor is constrained and this row violates the
current cursor constraint condition(s)This error is raised
when an attempt is made to insert a new row into a
constrained cursor that violates the filter constraints
defined for the cursor. Both views defined in database
catalogs and the result sets of dynamic queries can be
defined as constrained, and the filter constraints in both
cases are the WHERE conditions defined for the
underlying SELECT query that the view or dynamic query
is based upon.

EDB_ERROR_ROWVISIBILITY (1010) The row is no longer visible in the table
<TableName>This error is raised whenever an attempt
is made to update or delete a row within the context of a
cursor with an active filter or range condition, and the
row has been updated by another session since the last
time it was cached by the current session, thus causing it
to fall out of the scope of the cursor's active filter or
range condition. Please see the Updating Rows topic for

Appendix A - Error Codes and Messages

Page 99

more information.

EDB_ERROR_VALUE (1011) An error occurred with the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever an attempt is made to store a value in a
column, parameter, or variable and the value is invalid
because it is out of range or would be truncated. The
specific error message is indicated within the
parentheses.

EDB_ERROR_CLIENTCONN (1100) A connection to the server at <ServerAddress> cannot
be established (<ErrorMessage>)This error is raised
when ElevateDB encounters an issue while trying to
connect to a remote ElevateDB Server. The error
message will indicate the reason why the connection
cannot be completed.

EDB_ERROR_CLIENTLOST (1101) A connection to the server at <ServerAddress> has been
lost <ErrorMessage>)This error is raised when
ElevateDB encounters an issue while connected to a
remote ElevateDB Server. The error message will
indicate the reason why the connection was lost.

EDB_ERROR_INVREQUEST (1103) An invalid or unknown request was sent to the
serverThis error is raised when an ElevateDB Server
encounters an unknown request from a client session.

EDB_ERROR_ADDRBLOCK (1104) The IP address <IPAddress> is blockedThis error is
raised when a session tries to connect to an ElevateDB
Server, and the originating IP address for the session
matches one of the configured blocked IP addresses in
the ElevateDB Server, or does not match one of the
configured authorized IP addresses in the ElevateDB
Server.

EDB_ERROR_ENCRYPTREQ (1105) An encrypted connection is requiredThis error is raised
when a non-encrypted session tries to connect to an
ElevateDB Server that has been configured to only
accept encrypted session connections.

EDB_ERROR_SESSIONNOTFOUND (1107) The session ID <SessionID> is no longer present on the
serverThis error is raised whenever a remote session
attempts to reconnect to a session that has already been
designated as a dead session and removed by the
ElevateDB Server. This can occur when a session is
inactive for a long period of time, or when the ElevateDB
Server has been stopped and then restarted.

EDB_ERROR_SESSIONCURRENT (1108) The current session ID <SessionID> cannot be
disconnected or removedThis error is raised whenever a
remote session attempts to disconnect or remove itself.

EDB_ERROR_COMPRESS (1200) An error occurred while compressing data
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while attempting to compress data.
It is an internal error and will not occur unless there is a
bug in ElevateDB. The specific error message is indicated
within the parentheses.

EDB_ERROR_DECOMPRESS (1201) An error occurred while uncompressing data

Appendix A - Error Codes and Messages

Page 100

(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while attempting to decompress
data. It is an internal error and will not occur unless
there is a bug in ElevateDB. The specific error message
is indicated within the parentheses.

EDB_ERROR_BACKUP (1300) Error backing up the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the backing up of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_RESTORE (1301) Error restoring the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the restore of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_PUBLISH (1302) Error publishing the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the publishing of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_UNPUBLISH (1303) Error unpublishing the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the unpublishing of a database. The
specific error message is indicated within the
parentheses.

EDB_ERROR_SAVEUPDATES (1304) Error saving updates for the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the saving of the updates for a database.
The specific error message is indicated within the
parentheses.

EDB_ERROR_LOADUPDATES (1305) Error loading updates for the database
<DatabaseName> (<ErrorMessage>)This error is raised
when any error occurs during the loading of the updates
for a database. The specific error message is indicated
within the parentheses.

EDB_ERROR_STORE (1306) Error with the store <StoreName>
(<ErrorMessage>)This error is raised when any error
occurs while trying to access a store, such as a read or
write error while working with files in the store. The
specific error message is indicated within the
parentheses.

EDB_ERROR_CACHEUPDATES (1307) Error caching updates for the cursor <CursorName>
(<ErrorMessage>)This error is raised when any error
occurs during the caching of updates for a specific table,
view, or query cursor. The specific error message is
indicated within the parentheses.

EDB_ERROR_FORMAT (1400) Error in the format string <FormatString>
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue with a format string used in a date,
time, or timestamp format used in a table import or
export. The specific error message is indicated within the
parentheses.

Appendix A - Error Codes and Messages

Page 101

This page intentionally left blank

Appendix B - System Capacities

Page 102

Appendix B - System Capacities

The following is a list of the capacities for the different objects in ElevateDB. Any object that is not
specifically mentioned here has an implicit capacity of 2147483647, or High(Integer). For example, there is
no stated capacity for the maximum number of roles allowed in a configuration. Therefore, the implicit
capacity is 2147483647 roles.

Capacity Details

Max BLOB Column Size The maximum size of a BLOB column is 2GB.

Max CHAR/VARCHAR Column Length The maximum length of a VARCHAR/CHAR columns is
1024 characters.

Max Identifier Length The maximum length of an identifier is 80 characters.

Max Number of Columns in a Table The maximum number of columns in a table is 2048.

Max Number of Columns in an Index The maximum number of columns in an index is limited
by the table's defined index page size.

Max Number of Concurrent Sessions The maximum number of concurrent sessions for an
application or ElevateDB server is 4096.

Max Number of Indexes in a Table The maximum number of indexes in a table is 512.

Max Number of Jobs in a Configuration The maximum number of jobs in a configuration is 4096.

Max Number of Routines in a Database The maximum number of routines (procedures and
functions combined) in a database is 4096.

Max Number of Rows in a Table The maximum number of rows in a table is determined
by whether global file I/O buffering is enabled in
ElevateDB. If global file I/O buffering is enabled, then
the maximum number of rows is determined by the
maximum file size permitted in the operating system. If
global file I/O buffering is not enabled, then the
approximate maximum number of rows can be
determined by dividing 128GB by the row size.

Max Number of Rows in a Transaction The maximum number of rows in a single transaction is
only limited by the available memory constraints of the
operating system and/or hardware.

Max Number of Tables in a Database The maximum number of tables in a database is 4096.

Max Number of Users in a Configuration The maximum number of users in a configuration is
4096.

Max Row Size for a Table The maximum row size for a table is 2GB.

Max Scale for DECIMAL/NUMERIC Columns The maximum scale for DECIMAL or NUMERIC columns
is 4.

Max Size of an In-Memory Table The maximum size of an in-memory table is only limited
by the available memory constraints of the operating
system or hardware.

Min/Max BLOB Block Size for a Table The minimum BLOB block size is 64 bytes for ANSI
databases and 128 bytes for Unicode databases. The
maximum BLOB block size is 2GB.

Appendix B - System Capacities

Page 103

Min/Max Index Page Size for a Table The minimum index page size is 1 kilobyte for ANSI
databases and 2 kilobytes for Unicode databases. The
maximum index page size is 2GB.

Appendix B - System Capacities

Page 104

