Table of Contents

ElevateDB Version 2 Manual

Table Of Contents
Chapter 1 - Local Application Tutorial 1
1.1 Creating the Tutorial Database 1
1.2 Creating the Application 9
Chapter 2 - Client-Server Application Tutorial 17
2.1 Configuring and Starting the ElevateDB Server 17
2.2 Creating the Tutorial Database 20
2.3 Creating the Application 28
Chapter 3 - DBISAM Migration 35
3.1 Introduction 35
3.2 Migrating a DBISAM Database Using the ElevateDB Manager 36
3.3 Migrating a DBISAM Database Using Code 43
3.4 Renaming the DBISAM Components 45
3.5 Updating the Source Code 47
3.6 Component Changes 48
3.7 TDBISAMEngine Component 49
3.8 TDBISAMSession Component 56
3.9 TDBISAMDatabase Component 62
3.10 TDBISAMDataSet Component 64
3.11 TDBISAMDBDataSet Component 66
3.12 TDBISAMTable Component 68
3.13 TDBISAMQuery Component 71
3.14 TDBISAMUpdateSQL Component 74
3.15 EDBISAMENgineError Object 76
3.16 SQL Changes 78
3.17 Naming Conventions 79
3.18 Types 80
3.19 Operators 82
3.20 Functions 83
3.21 Statements 84
Chapter 4 - Getting Started 95

4.1 Architecture 95

Preface

Table of Contents

4.2 Exception Handling and Errors
4.3 Multi-Threaded Applications
4.4 Recompiling the ElevateDB Source Code

Chapter 5 - Using ElevateDB

5.1 Configuring and Starting the Engine

5.2 Connecting Sessions

5.3 Creating, Altering, or Dropping Configuration Objects

5.4 Opening Databases

5.5 Creating, Altering, or Dropping Database Objects

5.6 Executing Queries

5.7 Parameterized Queries

5.8 Querying Configuration Objects

5.9 Querying Database Objects

5.10 Executing Scripts

5.11 Executing Stored Procedures

5.12 Executing Transactions

5.13 Creating and Using Stores

5.14 Publishing and Unpublishing Databases

5.15 Saving Updates To and Loading Updates From Databases
5.16 Backing Up and Restoring Databases

5.17 Opening Tables and Views

5.18 Closing Tables and Views

5.19 Navigating Tables, Views, and Query Result Sets

5.20 Inserting, Updating, and Deleting Rows

5.21 Searching and Sorting Tables, Views, and Query Result Sets
5.22 Setting Ranges on Tables

5.23 Setting Master-Detail Links on Tables

5.24 Setting Filters on Tables, Views, and Query Result Sets
5.25 Using Streams with Tables, Views and Query Result Sets
5.26 Cached Updates

Chapter 6 - Component Reference

Preface

6.1 EEDBError Component

6.2 TEDBBlobStream Component
6.3 TEDBDatabase Component
6.4 TEDBDataSet Component
6.5 TEDBDBDataSet Component

101
104
107
109
109
117
122
124
125
127
132
134
135
136
139
142
144
146
148
150
152
155
156
158
167
173
175
178
180
182
185
185
191
197
220
256

6.6 TEDBEngine Component

6.7 TEDBQuery Component

6.8 TEDBScript Component

6.9 TEDBServerProcedure Component

6.10 TEDBSession Component

6.11 TEDBStoredProc Component

6.12 TEDBTable Component

6.13 TEDBUpdateSQL Component
Chapter 7 - Type Reference

7.1 pEDBLongWord Type

7.2 plnteger Type

7.3 pPointer Type

7.4 TEDBApplyCachedUpdatesOptions Type

7.5 TEDBBytes Type

7.6 TEDBDate Type

7.7 TEDBDayTimelnterval Type

7.8 TEDBDebugNotificationEvent Type
7.9 TEDBLogCategories Type

7.10 TEDBLogMessageEvent Type
7.11 TEDBLongWord Type

7.12 TEDBProgressEvent Type

7.13 TEDBRemoteProgressEvent Type

7.14 TEDBRemoteReconnectEvent Type

7.15 TEDBRemoteTimeoutEvent Type
7.16 TEDBRemoteTraceEvent Type
7.17 TEDBServerProcedureEvent Type
7.18 TEDBServerSessionEvent Type

7.19 TEDBServerSessionLoginEvent Type

7.20 TEDBServerTraceEvent Type
7.21 TEDBSessionLoginEvent Type
7.22 TEDBSetSequenceEvent Type
7.23 TEDBStatusMessageEvent Type
7.24 TEDBStringsArray Type

7.25 TEDBTime Type

7.26 TEDBTimeStamp Type

7.27 TEDBYearMonthInterval Type

Table of Contents

265
372
404
444
451
552
573
610

623
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

Preface

Table of Contents

Appendix A - Error Codes and Messages 651
Appendix B - System Capacities 659

Preface

Local Application Tutorial

Chapter 1
Local Application Tutorial

1.1 Creating the Tutorial Database

Before creating the actual tutorial application, you must first create the Tutorial database that will be used
in the application. The following steps will guide you through creating the Tutorial database using the
ElevateDB Manager.

1. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

ElevateDB-ADD

HEIE‘n.ratEDE Manager _

ﬂ' ElevateDB Version 2 5QL Manual
{.'Z_‘ Release Information

m

2 Usage Agreement

2. Make sure that the session is using the desired character set and configuration file folder
(C:\Tutorial).

a. Select the Default session from the list of available sessions.

i E”ElevatEDE Manager I:'ru:u|:Jv.=_~r’civ.=_~5,_E

Mame

Tasks A
& Default
'h.% Edit Engine Settings

& Create Mew Session

& Dizconnect All Sessions

b. In the Tasks pane, click on the Edit Session link.

Page 1

Local Application Tutorial

_B ElevateDB Manager Properties .

Tasks

>

& Connect Session
& Edit Session
Rename Seszion

& Delete Session

& Create Copy of Session

c. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Character Set

ey Select the character set to use with the session, With local sessions, the character set
=" rnust match the character set of the configuration being accessed. With remote
sessions, the character set must match the character set of the ElevateDB Server being

(71 ANSI @ Unicode

Note

If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode. The only exception to this rule is if
you are using Borland Developer Studio 2005 or lower (including Delphi 5, 6, and 7, as well as
C++Builder 5 and 6). You should use the ANSI character set with those older compilers, due to a
lack of proper Unicode support for fixed-character and memo field types.

d. On the Local page of the Edit Session dialog, make sure that the Configuration File - File Folder is set
to the desired folder.

.

Edit Session

E——r| 5= = : : :
| General | Local | Database i Customizations | Legin | Locking/Buffering | Pro

Configuration File

L. Enter the configuration file information. The configuration file can b
=! in-memaory. If located on disk, the configuration file folder can be ar

Location @ On Disk (0 In Memory

File Folder C:\Tutariall

e. Click on the OK button.

Page 2

Local Application Tutorial

3. Double-click on the Default session in the Properties window in order to connect the session.

3 ElevateDB Manager Properties

Tasks

>

& Connect Session
& Edit Session

A -
[OH Rename Seszion

& Delete Session

& Create Copy of Session

4. Click on the New button on the main toolbar.

B Eiwateﬂﬂ!’uﬂanage:
File Edit Explorer Tasks Window Help

B New [0pen
PO &% % [Ee m -

5. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

6. Press the F9 key to execute the SQL statement.

| E ElevateDB Manager Properties |_|E.| Mew.50L

CREATE DATABASE "Tutorial™
DPtic-ns ~ PATH 'C:\Tutoriali\DB"
DESCRIPTION 'Tutorial Database!

[7] Request Sensitive Result Set
[C] Request Execution Plan

Detailz

*»

Mew S0 (Madified)

7. Press the F5 key to refresh the explorer contents for the session.

8. Click on the + sign next to the Databases node in the treeview.

Page 3

Local Application Tutorial

\J ElevateDB Manager
File Edit Explorer Tasks Statement Window |

@ Mew = |,JF%_ Open @ Save ﬁl Close
| | ',;1.:' | o :g=+ |.EH

L
=3 HevateDB Manager
- & Default
EI 4y Users
|_—| 4= Roles

- o B

L @ [Tutorial
mu’:‘ﬂ Stores
Eﬁ lobs

fII
III

9. Click on the new Tutorial database that you just created.

. ElevateDB Manager
ELIEE Edit Explorer Tasks Statement Window |

@ Mew = !Jr% Open
| Q| &

E
=3 ElevateDB Manager
- @ Default
mu’:‘ﬂ Uzers
|_—| 4=y Roles
ﬁ Databases
aal
EI 1Ei| Stﬂres
Eﬁ lobs

@ Save rﬁ“ Close

Fat |l el ag
t8 8 =3 EEE

=22]

10. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

Page 4

Local Application Tutorial

B Tuteorial Properties |@ New.SQL|

Tasks

»

E) Open Database
@T Database Privileges
& Alter Database

[ﬁ Fename Database
& Drop Database

& Create Copy of Database

Q_'.J Backup Database
@ Restore Database

11. Click on the New.SQL tab to bring forward the SQL window.

12. Paste in the following CREATE TABLE SQL statement. If you are using a Unicode session (see Step 2
above), then you should use the Unicode version of the CREATE TABLE statement. If you are using an
ANSI session, then you should use the ANSI version of the CREATE TABLE statement:

ANSI

CREATE TABLE "Customer"

(

"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR (30) COLLATE "ANST CI" NOT NULL,
"Addressl" VARCHAR (40) COLLATE "ANSI CI",
"Address2" VARCHAR (40) COLLATE "ANSI CI",

"City" VARCHAR(30) COLLATE "ANSI CI",

"State" CHAR(2) COLLATE "ANSI CI",

"Zip" CHAR(10) COLLATE "ANSI CI",

"CreatedOn" TIMESTAMP DEFAULT CURRENT TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")

)

Unicode

CREATE TABLE "Customer"

(

"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR (30) COLLATE "UN17CI" NOT NULL,

"Addressl" VARCHAR (40) COLLATE "UNI CI",

"Address2" VARCHAR (40) COLLATE "UNI CI",

"City" VARCHAR (30) COLLATE "UNI CI",

"State" CHAR(2) COLLATE "UNI CI",

"Zip" CHAR(10) COLLATE "UNI CI",

"CreatedOn" TIMESTAMP DEFAULT CURRENT TIMESTAMP,

Page 5

Local Application Tutorial

CONSTRAINT "ID PrimaryKey" PRIMARY KEY ("ID")
)

13. Press the F9 key to execute the SQL statement.

| [Tutorial Properties | [E) N-ew,S-QL| B MewsqQL

CREATE TABLE "Customer™
Options & i

"ID" INTEGER GENERATED ALWAYS AS TDEF
[T] Request Sensitive Result Set "Hame™ VRRCEHRR (30) COLLATE "ANSI CI"
"hddressl"™ VARCHARR (40) COLLATE "AWST
"hddress2" VARCHRR (40) COLLATE "ANWST
"City"™ VARCHAR (30) COLLATE "AWNSI CI™,
"State™ CHRR(Z)} COLLATE "AWNSI CI",

[Request Execution Plan

Details % "Zip" CHAR(10) COLLATE "ANSI CI",
"CreatedOn® TIMESTAMP DEFAULT CURRENI

New.5QL (Modified) CONSTRAINT "ID PrimaryKey" PRIMARY KE

Statement]l

Mew. SQL

14. Press the F5 key to refresh the explorer contents for the session.

15. The table should now show up in the list of tables for the Tutorial
database.

B Ee'.tateﬂBManage:
File Edit Explorer Tasks Statement Window F

(] New ~ [Open
B Q&% Y| wium-
E'Ia HevateDB Manager

- @ Default
Tﬂﬁ“j Users
E{E Raoles
._:'E Databases
=8
Eifj Tables
Eﬁ Customner

B'{a Views

L‘+_|1E| Procedures

Eu”j Functions

@] Save ﬁ Close

16. Click on the New.SQL tab to bring forward the SQL window.

17. Paste in the following INSERT SQL statement:

INSERT INTO "Customer" VALUES
(NULL,

Page 6

Local Application Tutorial

'Elevate Software, Inc.',
'168 Christiana Street',
T

'North Tonawanda',

'NY',

'14120°',

NULL)

18. Press the F9 key to execute the SQL statement.

| | Tutorial Properties | [New.SQL | [d] Nm.SQLl_@ New.SQL
INSERT IHTC "Customer”™ VALUES

Options ~ (HOLIL,
'Elevate: Software, Inc.',
[C] Request Sensitive Result Set '18% Christiana Street’,

[0l Request Execution Plan N ———

L} N’-f! 3
1141207,
Details x NULL)|
New.SQL (Modified)
Statement

19. Click on the Customer table that you just created.

) ElevateDB Manager
File Edit Explorer Tasks Statement Window |

: @ Mew |J% Open
ENR*AR: ARG ARt =
=13 ElevateDB Manager

- @ Default
aﬁ'j Uzers
EiEI Roles
._:I_,ﬁ Databases
-4 Tutorial
Eﬁl Tables
Bl coorne
F'{ﬂ Views
E'{EI Procedures
Eﬁl Functions

m o= Ckarar

il:ﬁ':l Save ﬁ| Close

20. Press the F6 key to make the Properties window the active window, and then click on the Open Table
link in the Tasks pane.

Page 7

Local Application Tutorial

B Tutorial.Customer Properties |) Mew.SQL | B New.s5qL I E
Mame
Tasks 2
=1 Column
53 Open Table Constra
i) Indexes
@ Table Privileges = Triggers
B Alter Table
Rename Table
ﬁ Drop Takble
EE® Create Copy of Table
B Verify Table

21. You will now see the row that you just inserted.

srial Customer Properties | [@] New.SQL | [H] New.SQL | [H] New.5QL| B Tutorial.Customer
L& I Mame Addressl

|- oy
i - Elevate Software, Inc. 168 Christiana Street

earch for Row

itter Rows

Details -

WS
sing

You have now successfully created the Tutorial database.

Page 8

Local Application Tutorial

1.2 Creating the Application

The following steps will guide you through creating a basic local application using ElevateDB.

Note
It is assumed that you have already created the required database using the steps outlined in the
Creating the Tutorial Database topic.

1. Click on the File option from the main menu.

2. Click on the New option from the File menu, and click on the VCL Forms Application - C++Builder option
from the New sub-menu.

Ei'[e Edit Search WYiew Refactor Project Run Component Tools Window H
Mew ' |B VCL Forms Application - C++Builder
4F® Open.. B multi-Device Application - C++Builder
@ Open Project.. Ctrl+F11 |@@ Package - C++Builder
Open From Version Control... .
i] WVCL Form - C++Builder
Eeopen k ; : :
=eop @ Multi-Dievice Form - C++Builder —
B save Ctrl+5 = Unit - C++Builder
% Save As..,
E‘l‘ = Y Other...
Mg Save Project As..
& save Al Shift+Ctrl+S Lustomize...
s 4
s Close
7= Close All I
[l Use Unit... Alt+F11 Q
!E'pl Print..,
; C
B Exit F

3. Select the ElevateDB group on the tool palette and click on the plus (+) sign to expand the ElevateDB
group of components.

4. Click on the TEDBENngine component on the ElevateDB group on the tool palette and then click on the

Form1 form that was created for you by Embarcadero RAD Studio. The TEDBEngine component will be
dropped on the form.

Page 9

Local Application Tutorial

= ElevateDB
| TEDEEngine

& TEDBSession

[TEDBDatabase
£ TEDETakble

& TEDBQuery

i#] TEDBScript

\@, TEDBStoredProc
l# TEDBUpdateSQL

5. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the ConfigPath
property and change its value to C:\Tutorial.

EDBEnginel TEDEBEngine -

| properties | Events |
Active [] False -

BackupExtension
CacheModules
CatalogExtensio
Cataloghlame
CharacterSet
ConfigExtensian
Confighemory
Confighlame
ConfigPath
EncryptionPassw

X

ks

EngineType

6. Click on the TEDBSession component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBSession component will be dropped on the form.

= ElevateDB
TEDBEngine

.EDBBkp

[] False
.EDBCat
EDBDatabase
csnicode
.EDBCfqg

[T False
EDBConfig

elevatesoft
etClient

_ =]

| & TEDBSession

[| TEDBDatabase

5 TEDETable
TEDBQuery
TEDBScript

{#, TEDBStoredProc
(# TEDBUpdateSQL

Page 10

Local Application Tutorial

7. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial, click on the LoginUser property and change its
value to the default administrator user name Administrator, and click on the LoginPassword property
and change its value to the default Administrator user password EDBDefault.

RemaotePing [#] True
FRemotePinglnterval a0
RemotePort (12010
RemoteService

RemoteSignature edb_signature
FemoteTimeout 180
RemoteTrace [False

SessionDescription

*|SessionMName 'Tutnrial|
SessionType istLocal
Tag i0

8. Click on the TEDBDatabase component on the ElevateDB group on the tool palette, and then click on
the Form1 form. The TEDBDatabase component will be dropped on the form.

=l ElevateDB
TEDBEngine

& TEDBSession
[J TEDBDatabase
£ TEDBTable

Hl TEDBQuery

[#] TEDBScript

{®, TEDBStoredProc
|# TEDBUpdatesqQL

9. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the Database property and select the Tutorial database that you have
already created from the drop-down list.

Page 11

Local Application Tutorial

EDBDatabasel TECEDatabase E
JF‘I’DDEFtiES Events
Connected . [False
Database | Tutorial
» | DatabaseName TutoriaDB
e :Lg;E.“Id_l S
KeepConnection [W] True

#|LiveBindings Designer |LiveBindings Designer

Marme |EDBDatabasel
SessionMame | Tutorial
Tag 0

10. Click on the TEDBTable component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBTable component will be dropped on the form.

= ElevateDB
TEDEEngine
& TEDBSession
[l TEDEDatabase
|} TEDBTable
& TEDBQuery

i# TEDBScript

&, TEDBStoredProc
|# TEDBUpdatesQL

11. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the TableName property and change its value to Customer. Click on the
Active property and change its value to True. If you have followed all of the steps correctly, the Active
property should successfully change to True without error.

Page 12

Local Application Tutorial

INCEXHEINAMEes
IndexMame

#|LiveBindings Designer |LiveBindings Designer
MasterFields
MasterSource
Mame ECBTablel
ReadCnly [] False
Sessionhame Tutorial
StoreDefs [] False

» Custnmerl S E|
ro G bl S
UpdateCThject

12. Select the Data Access tab on the tool palette.

13. Click on the TDataSource component on the Data Access tab on the tool palette, and then click on the
Form1 form. The TDataSource component will be dropped on the form.

= Data Access

}_T_?_;*_ Thatasource |
TClientDataSet

&5 TDataSetProvider

14. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSet
property and change its value to EDBTablel.

Dataiuurcei TDataSource E
JPmperties Events
AutoEdit I?_I True
et [
Enabled ¥ True
#|LiveBindings Designer | LiveBindings Designer
Mame |DataSourcel
Tag 0

15. Select the Data Controls tab on the tool palette.
16. Click on the TDBGrid component on the Data Controls tab on the tool palette, and then click on the

Form1 form. The TDBGrid component will be dropped on the form. You can use the design-time anchors
to resize the TDBGrid component as required on the form.

Page 13

Local Application Tutorial

= Data Controls

| 3 TDEGrid

4 TDBNavigator
A TDBText

(% TDBEdit
TDEMemo
. TDEImage

2@ TDBListBox

17. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSource
property and change its value to DataSourcel.

Columns (TDBGridColumns)
[#|Constraints (TSizeConstraints)
Cti3D] True
Cursor crDefault
CustomHint
g T e — E
e p— EI True S
DragCursor crOrag

18. Click on the File option from the main menu.

19. Click on the Save All option from the File menu.

E’H& Edit Search View Refactor Pt

Mew k
Open..
Open Project... Ctri+F11

Cpen From Version Control..,

=

el B

L— gl

Reopen ki —

Save Ctri+5
& Save As..,

Save Project As..

Save All Shift+Ctrl+S
Close

Close All hn

i S0 0 & &1

Use Unit... Alt+F11 b

b §]

Print...

B et

T M Comrrren [p TR TR AT TN |

Page 14

Local Application Tutorial

20. Save the project and the main form/unit under the desired names.

You have now successfully created a basic local application for ElevateDB.

Page 15

Client-Server Application Tutorial

This page intentionally left blank

Page 16

Client-Server Application Tutorial

Chapter 2
Client-Server Application Tutorial

2.1 Configuring and Starting the ElevateDB Server

Before creating the tutorial database and application, you must first configure and start the ElevateDB
Server.

1. Start the ElevateDB Server (edbsrvr.exe) by clicking on the ElevateDB Server link in the Start menu.

4 ElevateDB Server (Win64) |
B BewstedBsenver |
"% ElevateDB Version 2 Manual L
X ElevateDB Version 2 SQL Manual
| License Agreement

2 | Release Information

2. Make sure that the server is using the desired character set and configuration file folder (C:\Tutorial).

a. In the system tray, right-click on the ElevateDB Server icon to bring up the server menu, and click on
the Restore option on the server menu.

b. In the Tasks pane, click on the Stop Server link.

o

E% ElevateDB Server

»

Tasks

L_.'a Stop Server

c. In the Tasks pane, click on the Edit Server Options link.

Page 17

Client-Server Application Tutorial

-

\ ElevateDB Server

»

Tasks

L\s Start Server

L\.-a Edit Server Options

d. On the Server page, make sure that the Character Set is set to the desired value - either ANSI or
Unicode.

Character et

75, Select the character set to use with the server, The character set must match the
% character set of the configuration being accessed by the server.

) AMSI @ Unicode

Note
If you're not sure which character set to select and this is the first time using the ElevateDB Server,
then leave the character set at the default of Unicode.

e. On the Configuration page, make sure that the Configuration File - File Folder is set to the desired
folder for the ElevateDB Server configuration file (EDBConfig.EDBCfg).

Edit Server Options

|5ern.rer i Connections Sessi::-ns| Configuration I Database i Customi

Configuration File

", Enter the configuration file information. The configuratio
=! in-memaory. If located on disk, the configuration file folde

Location @ On Disk) In Memory

File Folder c\Tutoriall

f. Click on the OK button.

g. In the Tasks pane, click on the Start Server link.

Page 18

Client-Server Application Tutorial

-

\ ElevateDB Server

»

Tasks

L\s Start Server

L\.-a Edit Server Options

e. Click on the close button in the upper-right-hand corner of the ElevateDB Server window to close the
server window.

Created On

You have now successfully configured and started the ElevateDB Server.

Page 19

Client-Server Application Tutorial

2.2 Creating the Tutorial Database

Before creating the actual tutorial application, you must first create the Tutorial database that will be used
in the application. The following steps will guide you through creating the Tutorial database using the
ElevateDB Manager.

Note
It is assumed that you have already configured and started the ElevateDB Server using the steps
outlined in the Configuring and Starting the ElevateDB Server topic.

1. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

ElevateDB-ADD

Q_E!En..ra.tebg Manager

ﬂ' ElevateDB Version 2 5QL Manual
{:'-_‘ Releaze Information

m

2 Usage Agreement

2. Make sure that the session is using the correct session type (Remote) and desired character set.

Note

The character set for the session must match the character set being used by the ElevateDB Server
being accessed. Using a different character set will result in you not being able to connect to the
ElevateDB Server.

a. Select the Default session from the list of available sessions.

i E”ElevatEDE Manager Properties |

Mame

Tasks A
& Default
'h.% Edit Engine Settings

& Create Mew Session

& Dizconnect All Sessions

b. In the Tasks pane, click on the Edit Session link.

Page 20

Client-Server Application Tutorial

_B ElevateDB Manager Properties .

Mame

-

Tasks

>

& Connect Session
& Edit Session
Rename Seszion

& Delete Session

& Create Copy of Session

c. On the General page of the Edit Session dialog, make sure that the Session Type is set to Remote.

Session Type

@ Select the session type. A local session directly accesses the files that make up a given
database, regardless of where they are located. A remote session accesses database(s)
through an ElevateDB Server using the communications protocel in ElevateDB. If you
select a remote session type, you must fill in more information on the Remote page that
will appear in order to successfully connect to an ElevateDB Server.

) Local @ Remote

d. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Character Set

R Select the character set to use with the session. With local sessions, the character set
© raust match the character set of the configuration being accessed. With remote
sessions, the character set must match the character set of the ElevateDB Server being

===

(T ANST @ Unicode

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

e. Click on the OK button.

3. Double-click on the Default session in the Properties window in order to connect the session.

Page 21

Client-Server Application Tutorial

3 ElevateDB Manager Properties

Tasks

>

& Connect Session
& Edit Session

& -
Rename Seszion

% Delete Session

& Create Copy of Session

4. Click on the New button on the main toolbar.

B Ee'.tat: :Eﬂé'Manage:
File Edit Explorer Tasks Window Help

(G New ~ [Open
B O Yy @ E-

5. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

6. Press the F9 key to execute the SQL statement.

| |3 ElevateDB Manager Pmperti5| E New.5QL

CREATE DATABASE "Tutorial®™
Options b PATH 'C:\Tutorial\DB'

DESCRIPTION 'Tutorial Database’
[7] Request Sensitive Result Set

[C] Request Execution Plan

Detailz

*»

Mew S0 (Madified)

7. Press the F5 key to refresh the explorer contents for the session.

8. Click on the + sign next to the Databases node in the treeview.

Page 22

|3 ElevateDB Manager

File Edit Explorer Tasks Statement Window |
| 0] New - |J% Open E&ls-m B Close
2Oy ¥|[Ew |-

(3 ElevateDB Manager
=@ Default
D 4y Users
|_—| 4= Roles
=
C @l Tutorial

@u’:‘ﬂ Stores
Eﬁ lobs

L

9. Click on the new Tutorial database that you just created

]

|3 HlevateDB Manager

@ Mew = IJ% Open

REEE

| @ -
ot Tt

FLIEE Edit Explorer Tasks 5Staternent Window |

@ Save rﬁ“ Close

|3 EBlevateDB Manager
- & Default
@u’:‘ﬂ Users

|_—:| 4=y Roles
ﬁ Databases

Y
E| 1Ei| Stﬂres
Eﬁ lobs

E
B

Database link in the Tasks pane.

Client-Server Application Tutorial

10. Press the F6 key to make the Properties window the active window, and then click on the Open

Page 23

Client-Server Application Tutorial

B Tuteorial Properties |@ New.SQL|

Tasks

»

E) Open Database
@T Database Privileges
& Alter Database

[ﬁ Fename Database
& Drop Database

& Create Copy of Database

Q_'.J Backup Database
@ Restore Database

11. Click on the New.SQL tab to bring forward the SQL window.

12. Paste in the following CREATE TABLE SQL statement. If you are using a Unicode session (see Step 2
above), then you should use the Unicode version of the CREATE TABLE statement. If you are using an
ANSI session, then you should use the ANSI version of the CREATE TABLE statement:

ANSI

CREATE TABLE "Customer"

(

"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR (30) COLLATE "ANST CI" NOT NULL,
"Addressl" VARCHAR (40) COLLATE "ANSI CI",
"Address2" VARCHAR (40) COLLATE "ANSI CI",

"City" VARCHAR(30) COLLATE "ANSI CI",

"State" CHAR(2) COLLATE "ANSI CI",

"Zip" CHAR(10) COLLATE "ANSI CI",

"CreatedOn" TIMESTAMP DEFAULT CURRENT TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")

)

Unicode

CREATE TABLE "Customer"

(

"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR (30) COLLATE "UN17CI" NOT NULL,

"Addressl" VARCHAR (40) COLLATE "UNI CI",

"Address2" VARCHAR (40) COLLATE "UNI CI",

"City" VARCHAR (30) COLLATE "UNI CI",

"State" CHAR(2) COLLATE "UNI CI",

"Zip" CHAR(10) COLLATE "UNI CI",

"CreatedOn" TIMESTAMP DEFAULT CURRENT TIMESTAMP,

Page 24

Client-Server Application Tutorial

CONSTRAINT "ID PrimaryKey" PRIMARY KEY ("ID")
)

13. Press the F9 key to execute the SQL statement.

| [Tutorial Properties | [E) N-ew,S-QL| B MewsqQL

CREATE TABLE "Customer™
Options & i

"ID" INTEGER GENERATED ALWAYS AS TDEF
[T] Request Sensitive Result Set "Hame™ VRRCEHRR (30) COLLATE "ANSI CI"
"hddressl"™ VARCHARR (40) COLLATE "AWST
"hddress2" VARCHRR (40) COLLATE "ANWST
"City"™ VARCHAR (30) COLLATE "AWNSI CI™,
"State™ CHRR(Z)} COLLATE "AWNSI CI",

[Request Execution Plan

Details % "Zip" CHAR(10) COLLATE "ANSI CI",
"CreatedOn® TIMESTAMP DEFAULT CURRENI

New.5QL (Modified) CONSTRAINT "ID PrimaryKey" PRIMARY KE

Statement]l

Mew. SQL

14. Press the F5 key to refresh the explorer contents for the session.

15. The table should now show up in the list of tables for the Tutorial
database.

B Ee'.tateﬂBManage:
File Edit Explorer Tasks Statement Window F

(] New ~ [Open
B Q&% Y| wium-
E'Ia HevateDB Manager

- @ Default
Tﬂﬁ“j Users
E{E Raoles
._:'E Databases
=8
Eifj Tables
Eﬁ Customner

B'{a Views

L‘+_|1E| Procedures

Eu”j Functions

@] Save ﬁ Close

16. Click on the New.SQL tab to bring forward the SQL window.

17. Paste in the following INSERT SQL statement:

INSERT INTO "Customer" VALUES
(NULL,

Page 25

Client-Server Application Tutorial

'Elevate Software, Inc.',
'168 Christiana Street',
T

'North Tonawanda',

'NY',

'14120°',

NULL)

18. Press the F9 key to execute the SQL statement.

| | Tutorial Properties | [New.SQL | [d] Nm.SQLl_@ New.SQL
INSERT IHTC "Customer”™ VALUES

Options ~ (HOLIL,
'Elevate: Software, Inc.',
[C] Request Sensitive Result Set '18% Christiana Street’,

[0l Request Execution Plan N ———

L} N’-f! 3
1141207,
Details x NULL)|
New.SQL (Modified)
Statement

19. Click on the Customer table that you just created.

) ElevateDB Manager
File Edit Explorer Tasks Statement Window |

: @ Mew |J% Open
ENR*AR: ARG ARt =
=13 ElevateDB Manager

- @ Default
aﬁ'j Uzers
EiEI Roles
._:I_,ﬁ Databases
-4 Tutorial
Eﬁl Tables
Bl coorne
F'{ﬂ Views
E'{EI Procedures
Eﬁl Functions

m o= Ckarar

il:ﬁ':l Save ﬁ| Close

20. Press the F6 key to make the Properties window the active window, and then click on the Open Table
link in the Tasks pane.

Page 26

Tasks

5 Open Table
B Table Privileges

B8 Alter Table
Rename Table
&3 Drop Takble

EE® Create Copy of Table

B Verify Table

21. You will now see the row that you just inserted.

@ Tuterial. Custorner Properties | @ Mew. S0L | @ Mew.S0L I E

o
)

Mame

=1 Column
Constra
i) Indexes
= Triggers

Client-Server Application Tutorial

srial Customer Properties | [@] New.SQL | [H] New.SQL | [H] New.5QL| B Tutorial.Customer

; o
earch for Row

itter Rows

Details -
WS

sing

Elevate Software, Inc.

You have now successfully created the Tutorial database.

Addressl
168 Christiana Street

Page 27

Client-Server Application Tutorial

2.3 Creating the Application

The following steps will guide you through creating a basic client-server application using ElevateDB.

Note
It is assumed that you have already created the required database using the steps outlined in the
Creating the Tutorial Database topic, and have configured and started the ElevateDB Server using
the steps outlined in the Starting and Configuring the ElevateDB Server topic.

1. Click on the File option from the main menu.

2. Click on the New option from the File menu, and click on the VCL Forms Application - C++Builder option
from the New sub-menu.

2]

Lo

!

th b 0 50 21 D

B iy 5]

Mew

gpen...

Open Project... Ctri+F11
Open From Version Control...

Reopen

Save Ctri+5

Save All Shift+Ctrl+S
Close

Close all

Lse Lnit... Alt+F11
Print

Exit

4

Ei'[e Edit Search WYiew Refactor Project Run Component Tools Window H

pm[] &¢aj

Co

VL Forms Application - C++Builder
bulti-Cevice Application - C++Builder

Package - C++Builder

VCL Form - C++Builder
Multi-Dievice Form - C++Builder
Unit - C++Builder

Other...

Customize...

. [|

=l ﬂ.n

3. Select the ElevateDB group on the tool palette and click on the plus (+) sign to expand the ElevateDB
group of components.

4. Click on the TEDBSession component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBSession component will be dropped on the form.

Page 28

Client-Server Application Tutorial

= ElevateDB
TEDBEngine
i_ﬁj TEDESession

[TEDBDatabase
5 TEDETable

[H] TEDBQuery

i#] TEDBScript

{#, TEDBStoredProc
(# TEDBUpdateSQL

5. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial, click on the SessionType property and change its
value to stRemote, click on the LoginUser property and change its value to the default administrator user
name Administrator, and click on the LoginPassword property and change its value to the default
Administrator user password EDBDefault. Make sure that the RemoteAddress property is set to
127.0.0.1 (the default) and that the RemotePort property is set to 12010 (the default).

RematePing [¥] True
RemotePinglnterval 160
RemotePort (12010
RemoteService

FemoteSignature edb_signature
RemoteTimeout 180
RemoteTrace [False

SessionDescription

#|SessionMame 'Tutarial|
SessionType {stLocal
Tag ia

6. Click on the TEDBDatabase component on the ElevateDB group on the tool palette, and then click on
the Form1 form. The TEDBDatabase component will be dropped on the form.

= ElevateDB
TEDBEngine

&5 TEDBSession
[J TEDBDatabase
&) TEDBTable

d TEDBQuery

i#] TEDBScript

{®, TEDBStoredProc
|# TEDBUpdatesqQL

7. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the

Page 29

Client-Server Application Tutorial

SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the Database property and select the Tutorial database that you have
already created from the drop-down list.

EDBDatabasel TECEDatabase E
JF‘I’DDEFtiES Events
\Connected [False
Database | Tutorial
» | DatabaseName TutoriaDB
e :L:;E...Id_l S
KeepConnection [W] True

#|LiveBindings Designer |LiveBindings Designer

Marme |EDBDatabasel
SessionMame | Tutorial
Tag 0

8. Click on the TEDBTable component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBTable component will be dropped on the form.

= ElevateDB
TEDEEngine
& TEDBSession
[l TEDEDatabase
{E} TEDBTable
& TEDBQuery

i# TEDBScript

&, TEDBStoredProc
|# TEDBUpdatesQL

9. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the TableName property and change its value to Customer. Click on the
Active property and change its value to True. If you have followed all of the steps correctly, the Active
property should successfully change to True without error.

Page 30

Client-Server Application Tutorial

INCEXHEINAMEes
IndexMame

#|LiveBindings Designer |LiveBindings Designer
MasterFields
MasterSource
Mame ECBTablel
ReadCnly [] False
Sessionhame Tutorial
StoreDefs [] False

» Custnmerl S E|
ro G bl S
UpdateCThject

10. Select the Data Access tab on the tool palette.

11. Click on the TDataSource component on the Data Access tab on the tool palette, and then click on the
Form1 form. The TDataSource component will be dropped on the form.

= Data Access

}_T_?_;*_ Thatasource |
TClientDataSet

&5 TDataSetProvider

12. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSet
property and change its value to EDBTablel.

Dataiuurcei TDataSource E
JPmperties Events
AutoEdit I?_I True
et [
Enabled ¥ True
#|LiveBindings Designer | LiveBindings Designer
Mame |DataSourcel
Tag 0

13. Select the Data Controls tab on the tool palette.
14. Click on the TDBGrid component on the Data Controls tab on the tool palette, and then click on the

Form1 form. The TDBGrid component will be dropped on the form. You can use the design-time anchors
to resize the TDBGrid component as required on the form.

Page 31

Client-Server Application Tutorial

= Data Controls

| 3 TDEGrid

4 TDBNavigator
A TDBText

(% TDBEdit
TDEMemo
. TDEImage

2@ TDBListBox

15. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSource
property and change its value to DataSourcel.

Columns (TDBGridColumns)
[#|Constraints (TSizeConstraints)
Cti3D] True
Cursor crDefault
CustomHint
g T e — E
e p— EI True S
DragCursor crOrag

16. Click on the File option from the main menu.

17. Click on the Save All option from the File menu.

E’H& Edit Search View Refactor Pt

Mew k
Open..
Open Project... Ctri+F11

Cpen From Version Control..,

=

el B

L— gl

Reopen ki —

Save Ctri+5
& Save As..,

Save Project As..

Save All Shift+Ctrl+S
Close

Close All hn

i S0 0 & &1

Use Unit... Alt+F11 b

b §]

Print...

B et

T M Comrrren [p TR TR AT TN |

Page 32

Client-Server Application Tutorial

18. Save the project and the main form/unit under the desired names.

You have now successfully created a basic client-server application for ElevateDB.

Page 33

DBISAM Migration

This page intentionally left blank

Page 34

DBISAM Migration

Chapter 3
DBISAM Migration

3.1 Introduction

Migrating an existing DBISAM application to ElevateDB is a 3-step process that is outlined below:

Step 1 - Migrating a DBISAM Database Using the ElevateDB Manager or Migrating a DBISAM Database
Using Code

The first step is to migrate the existing DBISAM database (or databases) to ElevateDB format. This can be
accomplished interactively via the ElevateDB Manager or via the MIGRATE DATABASE statement.

Step 2 - Renaming the DBISAM Components

The second step is to rename any existing DBISAM components in the application to their ElevateDB
counterparts. This can be accomplished manually in the Delphi, C++Builder, Borland Developer Studio,
CodeGear RAD Studio, Embarcadero RAD Studio, or Lazarus IDE.

Step 3 - Updating the Source Code

The third step is to update the application source code so that it uses the new ElevateDB components.
This the most involved step of the migration process.

Page 35

DBISAM Migration

3.2 Migrating a DBISAM Database Using the ElevateDB Manager

The following steps will guide you through migrating a database from another format to ElevateDB format
using the ElevateDB Manager.

1. The migrator modules provided with ElevateDB are:

Module Description

edbmigrate ElevateDB migrator module

edbmigratedbisam1 DBISAM Version 1.x migrator module
edbmigratedbisam?2 DBISAM Version 2.x migrator module
edbmigratedbisam3 DBISAM Version 3.x migrator module
edbmigratedbisam4 DBISAM Version 4.x migrator module

edbmigratebde BDE (Borland Database Engine) migrator module
edbmigrateado ADO (Microsoft ActiveX Data Objects) migrator module
edbmigratendb NexusDB migrator module

edbmigrateads ADS (Advantage Database Server) migrator module

You can find these migrator modules as part of the ElevateDB Additional Software and Utilities (EDB-ADD)
installation in the \libs subdirectory under the main installation directory. There are ANSI and Unicode
versions of each of the migrator modules that will work with both ANSI or Unicode sessions, and the
ElevateDB Manager will automatically select the correct migrator modules for the session being used.

Note
You can download the ElevateDB Additional Software and Utilities (EDB-ADD) installation from the
Downloads page of the web site.

2. Start the ElevateDB Manager (edbmgr.exe).

Note
You can find the ElevateDB Manager as part of the ElevateDB Additional Software and Utilities
(EDB-ADD) installation available from the Downloads page of the web site.

ElevateDB-ADD

Lj ElevateDB Manager

'ﬂ ElevateDB Version 2 5L Manual
1‘3 Releaze Information

I:I1

2] Usage Agreement

3. Make sure that the session is using the desired character set and configuration file folder
(C:\Tutorial).

Page 36

DBISAM Migration

a. Select the Default session from the list of available sessions.

3 ElevateDB Manager Properties

Mame

& Default

Tasks

ka Edit Engine Settings
& Create Mew Session

& Dizconnect All Sessions

b. In the Tasks pane, click on the Edit Session link.

3 ElevateDB Manager Properties

Mame

Tasks

*»

& Connect 5ession
& Edit Session

£ =
Rename Seszion

% Delete Session

% Create Copy of Session

c. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Character Set

;"‘E} Select the character set to use with the seszion. With local sessions, the character set
e must match the character set of the configuration being accessed. With remote
sessions, the character set must match the character set of the ElevateDE Server being

(T ANST @ Unicode

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

d. On the Local page of the Edit Session dialog, make sure that the Configuration File - File Folder is set
to the desired folder.

Page 37

DBISAM Migration

| General | Local i Database Customizatinnsl Legin | Locking/Buffering | Pro

Configuration File

Enter the configuration file information. The configuration file can b
in-mernory. If located on disk, the configuration file folder can be ar

Location @ On Disk () In Memory

File Folder C:\Tutariall

e. Click on the OK button.

4. Double-click on the Default session in the Properties window in order to connect the session.

3 ElevateDB Manager Properties

Tasks

»

& Connect Session
& Edit Session

- -
[EH Rename Session

& Delete Session

& Create Copy of Session

5. In the Tasks pane, click on the Create Database Migrators link. This will automatically create all of
the database migrators that are shipped with the ElevateDB Manager.

Page 38

93 Default Properties

>

Tasks

& Disconnect Session
& Edit Session
Renarne Session
% Delete Session

& Create Copy of Session

ﬁ, View Logged Events
{tL View Installed Modules

@ Create Database Migrators

Note

Marmi
= Us
[=h Ra
=h Da
[St
=i el

DBISAM Migration

If the character set of the session is changed in the future (Step 3 above), just re-execute this step
in the ElevateDB Manager and the database migrators will be updated so that they use the correct

migrator modules that match the character set of the session.

6. Click on the New button on the main toolbar.

E | ElevateDB Manager
File Edit Explorer Tasks Window Help

@ Mew = IJI% Cpen
Blolalvy (@ a-

7. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

8. Press the F9 key to execute the SQL statement.

Page 39

DBISAM Migration

| 3 ElevateDB Manager Pmperti5| B New.sQL

CREATE DATABASE "Tutorial"”
Options A PATH 'C:\Tutorial\DB'
DESCRTPTION 'Tutorial Database’
[C] Request Sensitive Result Set

[l Request Execution Plap

Detailz

Eed

Mew S0 (Modified)

9. Press the F5 key to refresh the explorer contents for the session.

10. Click on the + sign next to the Databases node in the treeview.

B EIB.LatEﬂEManage:
File Edit Explorer Tasks Statement Window |

: @ Mo o |JF%_ Open Eﬂjsm B Close
@@ E[E)E

|

=-id HlevateDB Manager
=@ Default

Eﬁ Uzers

Eﬁ Roles

EHED
@@ Tutorial
Eﬁ Stores

Eﬁ lobs

R

11. Click on the new Tutorial database that you just created.

. ElevateDB Manager
File Edit Explorer Tasks Statement Window |

: @ Mew IJ% Open

Q| &

||;_[?J Save ﬁl Close

=-id HevateDB Manager
- @ Default
- Users
EE Roles

Eﬁ Databases
58
mﬁ'j Stores
EE lobs

Page 40

DBISAM Migration

12. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

B Tuteorial Properties |@ Nm.SQL|

»

Tasks

ES Open Database
@3 Database Privileges
@ Alter Database

[ﬂ'ﬂ Fename Database
& Drop Database

& Create Copy of Database

QQ Backup Database
@ Restore Database

13. Click on the Migrate Database link in the Tasks pane for the database.

[Tutorial Properties

Mame
Ch Tables

Eﬁ Close Database = Views
=) Procedures
[#® Database Privileges =1 Functions

*»

Tasks

}'__ﬁ Alter Database

Rename Database

Eﬁ Drop Database

@; Create Copy of Database

9’5 Backup Database
rﬁ Restore Databaze

@ Publish Databaze

G:q Save Database Updates
|1:]§ Load Database Updates

&8 Migrate Database &% Dependenc

Page 41

DBISAM Migration

14. Select the desired migrator from the list of migrators.

'Migrate Database

Source |

Migrator Mame

@ Select the migrator to use for the migration. The migrators shown are the
default migrators provided with ElevateDB. Other migrators may be available
for other data sources, Check theInclude Table Data check box in order to
have the table data migrated over also.

Migrator | DEISAM 4 .4
[¥] Include Table Data

15. Each migrator will have various parameters that control how the migration process executes, and
these parameters are expressed in terms that are easily understood. Usually, at a minimum, the source
database name or directory parameter will need to be set. To set the source database parameters:

a. Click on the desired parameter in the list of parameters.

b. Type in the parameter value in the parameter edit control, and click on the Set Parameter button.

Parameters

Enter the parameter values for the migrator,

Marne Type Value *
BlankMull5trings Bocolean False (=]
Databaselirectory VarChar |
EngineSignature VarChar DEISAM_SIG .

% Set Parameter Value E Clear Parameter Yalue

Value chsourcedbl

15. Click on the OK button, and the migration process will begin and progress information will be present
in the bottom status bar of the ElevateDB Manager.

You have now successfully migrated your database to ElevateDB.

Page 42

DBISAM Migration

3.3 Migrating a DBISAM Database Using Code

The following steps will guide you through migrating a database from DBISAM format to ElevateDB format
using the DBISAM migrators provided with ElevateDB.

1. Make sure that the DBISAM migrator modules (DLLs) are registered in the configuration file. The
DBISAM migrator modules provided with ElevateDB are:

Module Description

edbmigratedbisam1 DBISAM Version 1.x migrator module
edbmigratedbisam?2 DBISAM Version 2.x migrator module
edbmigratedbisam3 DBISAM Version 3.x migrator module
edbmigratedbisam4 DBISAM Version 4.x migrator module

You can find these migrator modules as part of the ElevateDB additional software (EDB-ADD) installation
in the \libs subdirectory under the main installation directory. There are ANSI and Unicode versions of
each of the migrator modules that will work with both ANSI or Unicode sessions.

Note
You can download the ElevateDB Additional Software and Utilities (EDB-ADD) installation from the
Downloads page of the web site.

In order to register the required DBISAM migrator module(s), use the CREATE MODULE statement. You
can use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to register the migrator module using the
// Execute method

Session () ->Execute ("CREATE MODULE \"DBISAM4\" "+
"PATH 'C:\Program Files\ElevateDB 2
ADD\libs\edbmigratedbisam4\unicode\win32\edbmigratedbisam4.dll' "+
"DESCRIPTION 'DBISAM 4 Migrator'");

2. Create a migrator for the desired migrator module using the CREATE MIGRATOR statement. You can
use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to create the migrator using the
// Execute method

Session () ->Execute ("CREATE MIGRATOR \"DBISAM4\" "+

"MODULE \"DBISAM4\" "+
"DESCRIPTION 'DBISAM 4 Migrator'");

Page 43

DBISAM Migration

Note

It's important that the MODULE referenced in the CREATE MIGRATOR statement matches the
module that you registered first with the CREATE MODULE statement. You'll need to execute both
statements for each migrator that you want to use with ElevateDB.

3. If necessary, create the ElevateDB database to use as the target database for the migration using the
CREATE DATABASE statement. If you have already created the database or the database already exists,
then you can skip this step. You can use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to create the database using the
// Execute method

Session () ->Execute ("CREATE DATABASE MyDatabase "+
"PATH 'c:\\mydatabase'");

4. Execute the MIGRATE DATABASE statement from the ElevateDB database that you just created, or that
already existed. You can use the TEDBDatabase Execute method to execute the statement:

// This example uses an existing TEDBDatabase
// component to migrate the database using the
// Execute method

{
MyDatabase->DatabaseName="MyDatabase";
MyDatabase->Database="MyDatabase";
MyDatabase->Execute ("MIGRATE DATABASE FROM \"DBISAM4\" "+
"USING DatabaseDirectory = 'c:\\dbisamdata'"+
"WITH DATA");

When the MIGRATE DATABASE statement is executed, the source DBISAM database directory should
migrate to the current ElevateDB database. If you would like to display status and progress information
during the migration, you can attach event handlers to the TEDBDatabase OnStatusMessage and

OnProgress events.

Page 44

DBISAM Migration

3.4 Renaming the DBISAM Components

The ElevateDB VCL component set for the Delphi, C++Builder, Borland Developer Studio, CodeGear RAD
Studio, Embarcadero RAD Studio, and Lazarus products are very similar to their DBISAM counterparts.
Therefore, it is possible to simply edit the form files in the IDE and modify the names of the components
and their published properties and events so that they will use the ElevateDB components instead.

Updating Components on a Form or Data Module

The following steps will allow you to modify the DBISAM components on a form or data module so that
they are compatible with ElevateDB:

Warning

It is possible to corrupt a form file or otherwise cause the loss of components by not properly
completing the following steps. Please be very careful when editing a form file as text and make
sure that all defined objects are structured properly.

1. With the form or data module open in the IDE, press the Alt-F12 keys. This will open the form in text
mode.

2. Modify the components and their published properties and events as required. Objects are always
structured as:

object <ObjectName>

<Property or Event Definition>
[<Property or Event Definition>]
[<Property or Event Definition>]
end

<Property or Event Definition> =

<Property or Event Name> = <Value>

Collection properties are defined as:

<Property or Event Name> = <
<ItemDefinition>
[<ItemDefinition>]
[<ItemDefinition>]

>

<ItemDefinition> =

item

<Property or Event Definition>
[<Property or Event Definition>]
[<Property or Event Definition>]
end

Page 45

DBISAM Migration

3. Press the Alt-F12 keys to return the form to design mode. If there are any properties or events still
defined that don't belong to any of the new ElevateDB components, then you will receive a warning and
be prompted to remove them from the form definition. Ideally, if you have edited the form entirely so that
all published properties and events reflect the new ElevateDB components, you will not receive any errors
or warnings.

Component Changes

Detailed information regarding the changes in the existing DBISAM components can be found in the
Component Changes topic.

Page 46

DBISAM Migration

3.5 Updating the Source Code

Updating the source code for an existing DBISAM application so that it works with ElevateDB is a 3-step
process that is outlined below:

Step 1 - Rename All Component References

The first step is to rename all component references so that they are using the new ElevateDB component
names. You can find information on the component name changes in the Component Changes topic.

Step 2 - Modify All Property, Method, and Event References

The second step is to modify all property, method, and event references so that they are using the new
ElevateDB properties, methods, and events. You can find information on the changes to the properties,
methods, and events in the Component Changes topic. In many cases you will find that ElevateDB
requires an SQL statement to be executed in place of what used to be a method call in DBISAM.

Step 3 - Modify All SQL Statements
The third and final step is to modify all existing DBISAM SQL statements so that they use the new

ElevateDB syntax. You can find information on the differences in the SQL implementations of DBISAM and
ElevateDB in the SQL Changes topic.

Page 47

DBISAM Migration

3.6 Component Changes

The following is the list of components in DBISAM and their counterpart in ElevateDB. Click on each
component name to find out the changes to the properties, methods, and events for the component.

DBISAM Component ElevateDB Component
TDBISAMEngine TEDBEnNgine
TDBISAMSession TEDBSession
TDBISAMDatabase TEDBDatabase
TDBISAMDataSet TEDBDataSet
TDBISAMDBDataSet TEDBDBDataSet
TDBISAMTable TEDBTable
TDBISAMQuery TEDBQuery
None TEDBStoredProc
TDBISAMUpdateSQL TEDBUpdateSQL
EDBISAMEnNgineError EEDBError

Page 48

DBISAM Migration

3.7 TDBISAMEngine Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

CreateTempTablesInDatabase

FilterRecordCounts

Functions

MaxTableBlobBufferCount
MaxTableBlobBufferSize
MaxTableDataBufferCount
MaxTableDataBufferSize
MaxTableIndexBufferCount
MaxTableIndexBufferSize

ServerAdminAddress
ServerAdminPort
ServerAdminThreadCacheSize

ServerConfigPassword

TableBlobBackupExtension
TableBlobTempExtension
TableBlobUpgradeExtension
TableDataBackupExtension
TableDataTempExtension
TableDataUpgradeExtension
TableIndexBackupExtension
TableIndexTempExtension
TableIndexUpgradeExtension

TableFilterIndexThreshhold

TableMaxReadLockCount

Description

This property is no longer necessary. ElevateDB always
creates temporary tables used in optimizing, repairing, or
altering tables in the same location as the tables themselves.

This property is no longer necessary. ElevateDB does not
provide logical record numbers (sequence numbers).

This property is no longer necessary. ElevateDB uses SQL to
create and drop functions, and a special Information Schema
for storing the available functions in a given database. Please
see the CREATE FUNCTION, DROP FUNCTION, and Functions
Table topics for more information.

These properties are no longer necessary. ElevateDB allows
the buffering settings to be set on a per-table basis for each
table when the table is created or altered. Please see the
CREATE TABLE, ALTER TABLE, and Tables Table topics for
more information.

These properties are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection.

This property is no longer necessary. ElevateDB uses one
encryption password per application for all encryption, and it
is represented by the EncryptionPassword property.

These properties have been removed and replaced with the
hard-coded value of ".0ld". ElevateDB simply appends the
".0ld" to the existing file when creating backup copies during
the optimization, alteration, or repair of tables.

This property is no longer required under ElevateDB and has
been removed.

This property is no longer necessary. For performance
reasons, ElevateDB does not relinquish read locks when
performing table scans in order to satisfy a query or filter
condition.

Page 49

DBISAM Migration

TableReadLockTimeout
TableTransLockTimeout
TableWriteLockTimeout

Methods

Removed

AddServerDatabase
ModifyServerDatabase
DeleteServerDatabase
GetServerDatabase
GetServerDatabaseNames

AddServerDatabaseUser
ModifyServerDatabaseUser
DeleteServerDatabaseUser
GetServerDatabaseUser
GetServerDatabaseUserNames

AddServerEvent
ModifyServerEvent
DeleteServerEvent
GetServerEvent
GetServerEventNames

AddServerProcedure
ModifyServerProcedure
DeleteServerProcedure
GetServerProcedure
GetServerProcedureNames

AddServerProcedureUser
ModifyServerProcedureUser
DeleteServerProcedureUser
GetServerProcedureUser
GetServerProcedureUserNames

AddServerUser
ModifyServerUser
DeleteServerUser
GetServerUser
GetServerUserNames
ModifyServerUserPassword

Page 50

These properties are no longer required under ElevateDB and
have been removed

Description

These methods are no longer necessary. ElevateDB uses SQL
to create and drop databases, and a special Configuration
database for storing the available databases in a given
configuration. Please see the CREATE DATABASE, DROP
DATABASE, and Databases Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on databases and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and DatabasePrivileges Table topics for
more information.

These methods are no longer necessary. ElevateDB offers
jobs, which are the same thing as scheduled events in
DBISAM. ElevateDB uses SQL to create and drop jobs, and a
special Configuration database for storing the available jobs in
a given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop procedures, and a special Information
Schema for storing the available procedures in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on procedures and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and ProcedurePrivileges Table topics for
more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users, and a special Configuration
database for storing the available users in a given
configuration. Please see the CREATE USER, ALTER USER,
DROP USER, and Users Table topics for more information.

BuildWordList
GetDefaultTextIndexParams

ConvertIDToLocaleConstant
ConvertLocaleConstantToID
GetLocaleNames
IsValidLocale
IsValidLocaleConstant

GetServerConfig
ModifyServerConfig

GetServerLogCount
GetServerLogRecord

GetServerMemoryUsage

GetServerSessionInfo

StartAdminServer
StopAdminServer
StartMainServer
StopMainServer

Events

Removed

DBISAM Migration

These methods are no longer supported. Word generation
and text filtering for text indexes is directly tied to the defined
text indexes in ElevateDB, so these methods are no longer
possible. Please see the Text Indexing topic for more
information.

These methods are no longer necessary. ElevateDB uses a
special Configuration database for storing the available
collations (locales) in a given configuration. Please see the
Collations Table topic for more information.

These methods are no longer necessary. ElevateDB stores all
server startup and operational information in the TEDBEngine
component itself, and all additional configuration information,
such as the defined databases, users, roles, and jobs, is
stored in the server configuration file. The information in the
server configuration file can be accessed via the special
Configuration database available for each configuration.
Please see the Configuration Database topic for more
information.

These methods are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

This method is no longer supported, and was deprecated in
the latest DBISAM versions.

This method is no longer supported. Use the
OnServerSessionEvent event along to track session
information as sessions are created, connected, etc.

These methods are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection. In addition, the ElevateDB server
is automatically stopped and started when the TEDBEngine
Active property is assigned a new value.

Description

Page 51

DBISAM Migration

AfterDeleteTrigger
AfterInsertTrigger
AfterUpdateTrigger
BeforeDeleteTrigger
BeforelnsertTrigger
BeforeUpdateTrigger

OnDeleteError
OnlnsertError
OnUpdateError

OnCompress
OnDecompress

OnCryptolnit
OnCryptoReset
OnDecryptBlock
OnEncryptBlock

OnCustomFunction

OnServerConnect
OnServerDisconnect
OnServerLogin
OnServerLogout
OnServerReconnect

OnServerLogCount
OnServerLogEvent
OnServerLogRecord

OnServerProcedure

OnServerScheduledEvent

OnTextIndexFilter
OnTextIndexTokenFilter

Page 52

These methods are no longer necessary. ElevateDB uses SQL
to create and drop triggers, and a special Information Schema
for storing the available triggers defined for the tables in a
given database. Please see the CREATE TRIGGER, DROP
TRIGGER, and Triggers Table topics for more information.

These events are no longer supported.

These events are no longer supported. ElevateDB does not
allow for custom compression due to the need for it to run as
managed code under .NET.

These events are no longer supported. ElevateDB does not
allow for custom encryption due to the need for it to run as
managed code under .NET.

This event is no longer necessary. ElevateDB uses SQL to
create and drop functions, and a special Information Schema
for storing the available functions in a given database. Please
see the CREATE FUNCTION, DROP FUNCTION, and Functions
Table topics for more information.

These events have been removed and replaced with the
single OnServerSessionEvent event in ElevateDB. See below
for more information on the new OnServerSessionEvent
event.

These events are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

This event is no longer necessary. ElevateDB uses SQL to
create and drop procedures, and a special Information
Schema for storing the available procedures in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

This event is no longer necessary. ElevateDB offers jobs,
which are the same thing as scheduled events in DBISAM.
ElevateDB uses SQL to create and drop jobs, and a special
Configuration database for storing the available jobs in a
given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

These events are no longer supported. Word generation and
text filtering for text indexes is directly tied to the defined text
indexes in ElevateDB, so these methods are no longer
possible. Please see the Text Indexing topic for more
information.

DBISAM Migration

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed
EngineSignature

LockFileName

ServerConfigFileName

ServerEncryptionPassword

ServerLicensedConnections

ServerMainAddress
ServerMainPort
ServerMainThreadCacheSize

TableDataExtension
TableIndexExtension
TableBlobExtension

Methods

Changed

Description
This property has been renamed to the Signature property.

This property has been split into two properties. In ElevateDB,
the ConfigName property or CatalogName property is
combined with the LockExtension property to name the lock
file for either the configuration or a given database catalog.

This property has been split into two properties. In ElevateDB,
the ConfigName property is combined with the
ConfigExtension property to name the configuration file. The
ConfigPath property is used to determine where the
configuration file is created. ElevateDB uses a configuration
file for local applications as well as the ElevateDB Server,
whereas DBISAM only used a configuration file for the
DBISAM Database Server.

This property has been renamed to the EncryptionPassword
property. ElevateDB uses the EncryptionPassword property for
all encryption in the application.

This property has been renamed to the LicensedSessions
property. ElevateDB supports session count restrictions based
upon the LicensedSessions property for both local applications
and the ElevateDB server.

These properties have been renamed with the "Main" portion
stripped out. ElevateDB uses one port for both normal
connections and administrative connections, and both types of
operations can be performed using only one connection.

These proeprties have renamed to the TableExtension
property, the TableIndexExtension property, and the
TableBlobExtension property, respectively.

Description

Page 53

DBISAM Migration

AnsiStrToBoolean
AnsiStrToCurr
AnsiStrToDate
AnsiStrToDateTime
AnsiStrToFloat
AnsiStrToTime
BooleanToAnsiStr
CurrToAnsiStr
DateToAnsiStr
DateTimeToAnsiStr
FloatToAnsiStr
TimeToAnsiStr

Events

Changed

OnServerStart
OnServerStop
OnShutdown
OnStartup

These methods have been renamed with the "Ansi" portion
replaced with "SQL". This was done to reflect that these
methods now work with both ANSI strings and Unicode (wide)
strings.

Description

These events have been replaced with the BeforeStart,
AfterStart, BeforeStop, and AfterStop events. Also, the new
events apply regardless of whether the engine component is
configured to run as a client engine or a server engine via the

EngineType property.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

BackupExtension

UpdateExtension

TablePublishExtension

CatalogName
CatalogExtension

LogExtension
LogCategories
MaxLogFileSize

Page 54

Description

This property is used to specify the extension used for
ElevateDB backup files. Please see the BACKUP DATABASE,
RESTORE DATABASE, and Backups Table topics for more
information.

This property is used to specify the extension used for
ElevateDB update files. Please see the SAVE UPDATES, LOAD
UPDATES, and Updates Table topics for more information.

This property is used to specify the extension used for the
publish files associated with published ElevateDB tables.
Please see the PUBLISH DATABASE, UNPUBLISH DATABASE,
and Tables Table topics for more information.

These two properties are combined together to specify the file
name used by ElevateDB for all database catalogs.

These properties are used in ElevateDB to control the naming
of the log file, what types of events are logged in the log file,
and the maximum log file size. ElevateDB combines the
ConfigName property with the LogExtension property to name
the log file, and the log file is always created in the path
specified by the ConfigPath property. The log file in ElevateDB
is a ciruclar log file, and the MaximumLogFileSize determines
at which file size ElevateDB starts to re-use the log file space

ServerAuthorizedAddresses
ServerBlockedAddresses
ServerDeadSessionExpiration
ServerDeadSessionInterval
ServerMaxDeadSessions
ServerSessionTimeout

ServerRunJobs
ServerJobCategory

TempTablesPath

Methods

New
GetTempTablesPath

DayTimelntervalToSQLStr
YearMonthIntervalToSQLStr
SQLStrToDayTimelnterval
SQLStrToYearMonthInterval

Events

New

None

DBISAM Migration

of the oldest log entries with the newer log entries.

These properties were added to replace the same server
configuration file settings that were available in the DBISAM
Database Server.

These properties determine whether the ElevateDB Server can
run jobs, and if so, what category of jobs it should run.

This property specifies where any temporary tables created by
the engine will be stored.

Description

This method returns the operating system-defined temporary
files path.

These four methods are used to convert SQL intervals, either
day-time intervals or year-month intervals, to and from
strings. Please see the Interval Types topic for more
information.

Description

Page 55

DBISAM Migration

3.8 TDBISAMSession Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

CurrentServerUser

PrivateDir

RemoteEncryptionPassword

RemoteParams

StrictChangeDetection

Methods

Removed

AddPassword
GetPassword
RemoveAllPasswords
RemotePassword

AddRemoteDatabase
ModifyRemoteDatabase
DeleteRemoteDatabase
GetRemoteDatabase
GetRemoteDatabaseNames

AddRemoteDatabaseUser
ModifyRemoteDatabaseUser
DeleteRemoteDatabaseUser
GetRemoteDatabaseUser

GetRemoteDatabaseUserNames

AddRemoteEvent
ModifyRemoteEvent

Page 56

Description

This property is no longer necessary. ElevateDB uses SQL for
procedures and functions.

This property is no longer necessary. ElevateDB uses one
temporary tables property setting, the TempTablesPath
property, for all sessions.

This property is no longer necessary. ElevateDB uses one
encryption password per application for all encryption, and it
is represented by the EncryptionPassword property.

This property is no longer necessary. ElevateDB uses SQL for
procedures and the TEDBStoredProc component for executing
the procedures.

This property is no longer supported. ElevateDB does not
support strict change detection.

Description

These methods are no longer supported. ElevateDB offers a
complete user security architecture that surpasses simple
password access to individual tables. Please see the User
Security topic for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop databases, and a special Configuration
database for storing the available databases in a given
configuration. Please see the CREATE DATABASE, DROP
DATABASE, and Databases Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on databases and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and DatabasePrivileges Table topics for
more information.

These methods are no longer necessary. ElevateDB offers
jobs, which are the same thing as scheduled events in

DeleteRemoteEvent
GetRemoteEvent
GetRemoteEventNames

AddRemoteProcedure
ModifyRemoteProcedure
DeleteRemoteProcedure
GetRemoteProcedure
GetRemoteProcedureNames

AddRemoteProcedureUser
ModifyRemoteProcedureUser
DeleteRemoteProcedureUser
GetRemoteProcedureUser
GetRemoteProcedureUserNames

AddRemoteUser
ModifyRemoteUser
ModifyRemoteUserPassword
DeleteRemoteUser
GetRemoteUser
GetRemoteUserNames
ModifyRemoteUserPassword

CallRemoteProcedure
RemoteParamByName
SendProcedureProgress

DisconnectRemoteSession
RemoveRemoteSession

GetRemoteAdminAddress
GetRemoteAdminPort
GetRemoteAdminThreadCacheSize
GetMainAdminAddress
GetMainAdminPort
GetMainAdminThreadCacheSize

GetRemoteConfig
ModifyRemoteConfig

DBISAM Migration

DBISAM. ElevateDB uses SQL to create and drop jobs, and a
special Configuration database for storing the available jobs in
a given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop procedures, and a special Information
Schema for storing the available functions in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on procedures and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and ProcedurePrivileges Table topics for
more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users, and a special Configuration
database for storing the available users in a given
configuration. Please see the CREATE USER, ALTER USER,
DROP USER, and Users Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
for procedures and the TEDBStoredProc component for
executing the procedures.

These methods are no longer necessary. ElevateDB uses the
DISCONNECT SERVER SESSION and REMOVE SERVER
SESSION statements to disconnect and remove server
sessions on an ElevateDB Server. You can issue these
statements via the new Execute method.

These methods are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection. In addition, the address, port, and
thread cache size parameters for an ElevateDB server are not
configurable remotely and must be configured prior to starting
an ElevateDB server.

These methods are no longer necessary. ElevateDB stores all
server startup and operational information in the TEDBEngine
component itself, and all additional configuration information,
such as the defined databases, users, roles, and jobs, is
stored in the server configuration file. The information in the
server configuration file can be accessed via the special
Configuration database available for each configuration.
Please see the Configuration Database topic for more
information.

Page 57

DBISAM Migration

GetRemoteConnectedSessionCount
GetRemoteSessionCount
GetRemoteSessionInfo

GetRemoteLogCount
GetRemoteLogRecord

GetRemoteMemoryUsage

GetRemoteUpTime
RemoveAllRemoteMemoryTables

StartRemoteServer
StopRemoteServer

Events

Removed

OnPassword

These methods are no longer necessary. ElevateDB uses SQL
to query any ElevateDB server sessions, and a special
Configuration database for storing the server sessions on a
given ElevateDB server. Please see the ServerSessions Table
topic for more information.

These methods are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

This method is no longer supported, and was deprecated in
the latest DBISAM versions.

This method is no longer supported.
This method is no longer supported.

These methods are no longer supported. The ElevateDB
server cannot be remotely stopped and started.

Description

This event is no longer supported. ElevateDB offers a
complete user security architecture that surpasses simple
password access to individual tables. Please see the User
Security topic for more information.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed

Page 58

Description

Active

CurrentRemoteUser

LockProtocol
LockRetryCount
LockWaitTime

ProgressSteps

RemoteUser
RemotePassword

Methods
Changed
GetRemoteEngineVersion
Events

Changed

OnRemoteLogin

OnRemoteTrace

OnShutdown
OnStartup

DBISAM Migration

This property has been renamed to the Connected property.

This property has been renamed to the CurrentUser property.
ElevateDB requires a user login for both local and remote
sessions.

These properties have been renamed and prefixed with
"Record" in ElevateDB in order to make clear that these
properties deal with row locking exclusively.

This property has been changed to the ProgressTimelnterval
property, which uses a time interval instead of a fixed number
of progress steps to ensure that progress updates still take
place in a reasonable span of time irrespective of the length
or scope of a given operation.

These properties have been renamed to the LoginUser and
LoginPassword properties, respectively. ElevateDB requires a
user login for both local and remote sessions.

Description

This method has been renamed to the
GetRemoteServerVersion method.

Description

This event has been renamed to the OnLogin event.
ElevateDB requires a user login for both local and remote
sessions.

This event uses a different record type for the trace record
that is passed as a parameter to the event handler.

These events have been replaced with the BeforeConnect,
AfterConnect, BeforeDisconnect, and AfterDisconnect events.
Also, the new events apply regardless of whether the session
component is configured to run as a remote session or a local
session via the SessionType property.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

Description

Page 59

DBISAM Migration

KeepTablesOpen

RecordChangeDetection

SessionDescription

SQLStmtCacheSize

FuncProcCacheSize

ExcludeFromLicensedSessions

Methods

New
CalculateCRC32ForStream

Execute

GetStoredProcNames

SaveStoreFileToStream
SaveStreamToStoreFile

FreeCachedSQLStmts

FreeCachedFuncProcs

Events

New

None

Page 60

This property has been moved from the database level to the
session level in ElevateDB. This gives the developer the ability
to control whether tables should be kept open even in SQL
procedures or functions in addition to controlling whether
tables should be kept open during normal table and query
processing.

This property was added to allow the developer to specify
whether changes to a row will issue a warning exception
when the row is updated or deleted. In DBISAM this behavior
was not configurable and any changes to a row would cause
an #8708 (DBISAM_KEYORRECDELETED) exception to be
raised.

This property allows the developer to specify a description for
the session.

This property allows the developer to specify an SQL
statement cache size all open databases in the session.

This property allows the developer to specify a
function/procedure cache size all open databases in the
session.

This property specifies whether the current session should be
included in the session license count controlled by the
TEDBENgine LicensedSessions property for local sessions, or
by the ElevateDB Server for remote sessions.

Description
This method calculates a CRC32 checksum for a stream.

This method allows you to execute an SQL statement against
the special Configuration database. This is useful for
performing configuration-level queries or operations.

This method populates a list with the names of all stored
procedures and functions defined within the specified
database.

This method loads a store file into a stream.
This method saves a stream to a store file.

This method allows you to free all cached SQL statements for
a specific open database, or for all open databases.

This method allows you to free all cached
functions/procedures for a specific open database, or for all
open databases.

Description

DBISAM Migration

Page 61

DBISAM Migration

3.9 TDBISAMDatabase Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

KeepTablesOpen

Methods

Removed

Backup
BackupInfo
Restore

Events

Removed

None

Description

This property has been moved to the session level and the
TEDBSession component.

Description

These methods are no longer necessary. ElevateDB uses SQL
for backing up and restoring databases, as well as retrieving
information about backups from disk, and a special
Configuration database for storing the available backups in a
given configuration. Please see the BACKUP DATABASE,
RESTORE DATABASE, SET BACKUPS STORE, and Backups
Table topics for more information.

Description

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed

Directory
RemoteDatabase

Methods

Changed

Page 62

Description

These properties have been replaced by the single Database
property. ElevateDB uses SQL to create and drop databases,
and a special Configuration database for storing the available
databases in a given configuration. Please see the CREATE
DATABASE, DROP DATABASE, and Databases Table topics for
more information.

Description

StartTransaction

Events

Changed

OnBackupLog
OnBackupProgress
OnRestorelLog
OnRestoreProgress

DBISAM Migration

The StartTransaction method accepts a list of tables as a
string array instead of a TStrings object, and there is one
additional parameter for specifying the transaction lock
timeout in milliseconds.

Description

These events have been replaced with the OnLogMessage,
OnProgress, and OnStatusMessage events.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

None

Methods

New

TableInTransaction

Events

New

None

Description

Description

The TableInTransaction method is used to determine if a
specific table is involved in the current transaction.

Description

Page 63

DBISAM Migration

3.10 TDBISAMDataSet Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed
AutoDisplayLabels

FilterOptimizeLevel

FilterRecordCount

KeySize

RecordHash
RecordID

Methods

Removed

ExportTable
ImportTable

Events

Removed
OnCachedUpdateError

OnLoadFromStreamProgress
OnSaveToStreamProgress

Description
This property is no longer supported.

This property is no longer supported. Eventually it will be
replaced by a FilterPlan property instead.

This property is no longer necessary. ElevateDB does not
provide logical record numbers (sequence numbers).

This property has been moved to the TEDBTable component.

These properties are no longer necessary. ElevateDB does not
use record hashes or IDs.

Description

These methods are no longer necessary. ElevateDB uses SQL
for importing and exporting tables to and from delimited text.
Please see the EXPORT TABLE and IMPORT TABLE topics for
more information.

Description

This event is not used anymore because ElevateDB uses
ERROR triggers for handling update errors. Please see the
CREATE TRIGGER topic in the ElevateDB SQL Manual for more
information.

These events are no longer supported. ElevateDB streams
should be kept fairly small since they are stored in memory.
Any stream that is large enough to require progress updates
is probably too large and should be handled differently.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed

Page 64

Description

RecNo

Methods

Changed

IsSequenced

LoadFromStream
SaveToStream

Events

Changed

None

DBISAM Migration

This property no longer returns a logical record number as it
did in DBISAM. It returns zero (0) at all times under
ElevateDB. However, you can still assign a value to the
property in order to navigate to a specific logical row in the
dataset.

Description

This method always returns False under ElevateDB. ElevateDB
does not provide logical record numbers (sequence numbers).

ElevateDB uses a completely different stream format than
DBISAM. Do not attempt to load a stream created by DBISAM
into ElevateDB, or vice-versa.

Description

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

None

Methods

New

LockCurrentRecord
UnlockCurrentRecord
UnlockAllRecords

Events

New

None

Description

Description

These methods allow you to manually lock and unlock rows in
the current cursor.

Description

Page 65

DBISAM Migration

3.11 TDBISAMDBDataSet Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed Description

None

Methods

Removed Description

None

Events

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed Description

None
Methods

Changed Description

None

Events

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

Page 66

DBISAM Migration

None

Methods

None

Events

None

Page 67

DBISAM Migration

3.12 TDBISAMTable Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

LocaleID

Description

Encrypted

Password
IndexPageSize
BlobBlockSize
LastAutoIncValue
TextIndexFields
TextIndexIncludeChars
TextIndexSpaceChars
TextIndexStopWords
UserMajorVersion
UserMinorVersion

Exists

FullTableName
LastUpdated
TableSize

VersionNum

Methods

Removed

Page 68

Description

These properties are no longer necessary. ElevateDB
maintains all database metadata in the special Information
Schema for each database. The Information schema tables
can be queried like any normal tables for information on the
structure of tables, columns, indexes, etc.

This property is no longer necessary. To determine if a table
or view exists in a database, query the special Information
Schema for the database.

These properties are no longer supported. The TEDBTable
component supports opening both tables and views.
Therefore, returning the physical characteristics of a table is
not feasible in all cases.

This property is no longer necessary.

Description

CreateTable
AlterTable
CopyTable
RenameTable
DeleteTable
AddIndex
DeleteIndex
DeleteAllIndexes

LockSemaphore
UnlockSemaphore

LockTable
UnlockTable
TableIsLocked

OptimizeTable
RepairTable
VerifyTable
UpgradeTable

Events

Removed

OnAlterProgress
OnDatalLost
OnCopyProgress
OnlIndexProgress

OnExportProgress
OnImportProgress

OnOptimizeProgress
OnRepairProgress
OnRepairLog
OnVerifyProgress
OnVerifyLog
OnUpgradeProgress
OnUpgradelog

DBISAM Migration

These methods are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops. Please
see the CREATE TABLE, ALTER TABLE, DROP TABLE, CREATE
INDEX, CREATE TEXT INDEX, and DROP INDEX topics for
more information.

These methods are no longer supported. ElevateDB does not
support semaphore locks.

These methods are no longer supported. ElevateDB does not
support table locks. Instead, it supports manual row locking
via the LockCurrentRecord, UnlockCurrentRecord, and
UnlockAllIRecords methods.

These methods are no longer necessary. ElevateDB uses SQL
for all administrative functionality. Please see the OPTIMIZE
TABLE and REPAIR TABLE topics for more information.

Description

These events are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops, and the
OnLogMessage, OnProgress, and OnStatusMessage events
provide the same functionality.

These events are no longer necessary. ElevateDB uses SQL
for importing and exporting tables, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

These events are no longer necessary. ElevateDB uses SQL
for all administrative functionality, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed

Description

Page 69

DBISAM Migration

FieldDefs

IndexDefs

TableName

Methods

Changed

None

Events

Changed

None

This property no longer uses a custom TDBISAMFieldDefs
type for the field definitions collection. In ElevateDB this
property uses the standard TFieldDefs collection type.

This property no longer uses a custom TDBISAMIndexDefs
type for the index definitions collection. In ElevateDB this
property uses the standard TIndexDefs collection type.

This property now accepts a view name in addition to a table
name. Furthermore, the drop-down combo box for this
property in the Object Inspector will contain all tables and
views defined for the database.

Description

Description

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

None

Methods

New

None

Events

New

None

Page 70

Description

Description

Description

DBISAM Migration

3.13 TDBISAMQuery Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

TableName

Methods

Removed
SaveToTable

Events

Removed

BeforeExecute
AfterExecute

OnGetParams
OnQueryError

OnAlterProgress
OnDataLost
OnCopyProgress

OnExportProgress
OnImportProgress

OnOptimizeProgress
OnRepairProgress
OnRepairLog
OnVerifyProgress
OnVerifyLog
OnUpgradeProgress
OnUpgradelog

OnQueryProgress

OnSaveProgress

Description

This property is no longer supported.

Description

This method is no longer supported. In ElevateDB, use the AS
clause of the CREATE TABLE to create a table that is based
upon a query expression.

Description

These events are no longer supported. ElevateDB does not
support multi-statement scripts in the TEDBQuery component.

These events are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops, and the
OnLogMessage, OnProgress, and OnStatusMessage events
provide the same functionality.

These events are no longer necessary. ElevateDB uses SQL
for importing and exporting tables, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

These events are no longer necessary. ElevateDB uses SQL
for all administrative functionality, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

This event is no longer necessary. The OnProgress event
provides the same functionality.

This event is no longer supported since the SaveToTable
method is no longer supported. In ElevateDB, use the AS
clause of the CREATE TABLE to create a table that is based
upon a query expression.

Page 71

DBISAM Migration

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed
GeneratePlan

Params

RequestLive

ResultIsLive
SQL

SQLStatementType

StmtHandle

Methods

Changed

None

Events

Changed

None

Description
This property has been renamed to the RequestPlan property.

This property no longer uses a custom TDBISAMParams type
for the parameter definitions collection. In ElevateDB this
property uses the standard TParams collection type.

This property has been renamed to the RequestSensitive
property.

This property has been renamed to the Sensitive property.

This property only accepts a single SQL statement in
ElevateDB. DBISAM allow for multi-statement scripts.

This property has been renamed to the StatementType
property.

This property has been renamed to the StatementHandle
property.

Description

Description

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

Constrained

Methods

New

Page 72

Description

This property allows you to specify that any inserts or updates
made to a sensitive result set be subject to the WHERE clause
used in the current SELECT statement.

Description

DBISAM Migration

None

Events

None

Page 73

DBISAM Migration

3.14 TDBISAMUpdateSQL Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed Description

None

Methods

Removed Description

None

Events

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed Description

None
Methods

Changed Description

None

Events

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

Page 74

DBISAM Migration

None

Methods

None

Events

None

Page 75

DBISAM Migration

3.15 EDBISAMEngineError Object

Removed Properties, Methods and Events
The following are the properties, methods, and events that have been removed for the component:
Properties

Removed Description

ErrorDatabaseName These properties are no longer necessary. ElevateDB provides
ErrorEventName logging facilities that negates the need for custom logging of
ErrorFieldName the properties of an exception.

ErrorindexName

ErrorProcedureName

ErrorRemoteName

ErrorTableName

ErrorUserName

OSErrorCode

SocketErrorCode

Methods

Removed Description

None

Events

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed Description
ErrorMessage This property has been renamed to the ErrorMsg property.

Methods

Changed Description

None

Events

Page 76

DBISAM Migration

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New Description

None
Methods

New Description

None
Events

New Description

None

Page 77

DBISAM Migration

3.16 SQL Changes

The following is the list of the areas that describe the DBISAM SQL implementation. Click on each area to
find out the changes to the SQL implementation.

Naming Conventions
Types

Operators

Functions
Statements

Page 78

3.17 Naming Conventions

Removed Features

DBISAM Migration

The following are the features that have been removed:

Removed
Brackets []

Feature Changes

Description

The use of brackets [] for identifiers is no longer supported.
Use double-quotes "" instead to specify an identifier in an SQL
statement.

The following are the changes to the features:

Changed

Path Names

New Features

The following are the new features:

New

Line Feeds in String Constants

Description

Path names are no longer supported for databases in
ElevateDB. Use the database name with a period separator in
order to specify a table from a specific database. Please see
the Identifiers topic for more information.

Description

ElevateDB allows for carriage returns (character 13) and line
feeds (character 10) in string constants.

Page 79

DBISAM Migration

3.18 Types

Removed Types

The following are the types that have been removed:

Removed
AUTOINC

MONEY

GRAPHIC

WORD

Type Changes

The following are the changes to the types:

Changed
CHAR

VARCHAR

BYTES or BINARY
VARBYTES or VARBINARY

LONGVARBINARY

MEMO
LONGVARCHAR

BIT

LARGEINT
FLOAT

Page 80

Description

This type is no longer supported. Use the INTEGER type
instead to store integer values, and use the GENERATED
clause in a column definition to dictate that a column should
be generated as an IDENTITY column. Please see the CREATE
TABLE topic for more information.

This type is no longer supported. Use the FLOAT type instead
to store double-precision floating-point values. Please see the
Approximate Numeric Types topic for more information.

This type is no longer supported. Use the BLOB type instead
to store graphics or any other large binary objects. Please see
the Binary Types topic for more information.

This type is no longer supported. Use the INTEGER type
instead to store word values. Please see the Exact Numeric
Types topic for more information.

Description

The CHAR (or CHARACTER) type now uses a fixed-length
representation according to the SQL standard. Any strings
that are shorter than the defined length of the column are
padded with blanks.

The alternate CHARACTER VARYING syntax is now
acceptable. Also, VARCHAR columns no longer right-trim any
spaces from strings that are stored in them. The string values
are stored as-is.

These types have been renamed to BYTE and VARBYTE (or
BYTE VARYING), respectively.

This type has been renamed to BINARY LARGE OBJECT. The
shorthand BLOB type notation is still retained also.

These types have been renamed to CLOB and CHARACTER
LARGE OBIJECT, respectively.

This shorthand notation for the BOOLEAN type is no longer
permitted.

This type has been renamed to BIGINT.
The alternate DOUBLE PRECISION syntax is now acceptable.

DATE
TIME
TIMESTAMP

New Types

The following are the new types:

New
INTERVAL

DBISAM Migration

Date, time, and timestamp literals must now be preceded with
the DATE, TIME, and TIMESTAMP keywords, respectively.

Description

ElevateDB now supports all day-time and year-month interval
types. Please see the Interval Types topic for more
information.

Page 81

DBISAM Migration

3.19 Operators

Removed Operators

The following are the operators that have been removed:

Removed

None

Operator Changes

Description

The following are the changes to the operators:

Changed
NULL Values

Case-Insensitive
Comparisons

Date, Time, and
Timestamp Values

New Operators

The following are the new operators:

New

CONTAINS
DOES NOT CONTAIN

Page 82

Description

NULL constants can no longer be compared using the =, <>,
>=, <=, >, <, BETWEEN, or IN operators. You must use the
IS NULL and IS NOT NULL operators instead. Furthermore,
none of the operators will result in a TRUE value if either side
of the operator contains a NULL value. Please see the NULLs
topic for more information.

DBISAM supported using the UPPER() or LOWER() function
around a column reference and a string constant involved in a
binary operator in order to force a case-insensitive
comparison, and to allow the query optimizer to use a case-
insensitive index to optimize the operation. This is no longer
necessary in ElevateDB. Instead, you can simply use the
COLLATE clause after the column reference to force the
column to use a case-insensitive collation. Please see the
Internationalization and Optimizer topics for more
information.

Subracting date, time, and timestamp values now results in
an interval type, depending upon the type of the values being
subtracted. Please see the Interval Types topic for more
information.

Description

These operators are used to implement a text search using a
text index. If no text index exists on the column being
searched, then these operators will always result in a FALSE
value.

3.20 Functions

Removed Functions

DBISAM Migration

The following are the functions that have been removed:

Removed
MOD

LASTAUTOINC
IDENT_CURRENT

TEXTOCCURS

YEARSFROMMSECS
DAYSFROMMSECS
HOURSFROMMSECS
MINSFROMMSECS
SECSFROMMSECS
MSECSFROMMSECS

Function Changes

Description

This function is no longer necessary. You may use the MOD
operator instead with ElevateDB.

These functions are no longer necessary. ElevateDB
procedures and functions can retrieve the assigned IDENTITY
value for a column using the FETCH statement on a cursor.

This function is no longer supported.

These functions are no longer necessary. ElevateDB supports
the standard SQL date and time interval types. Please see the
Interval Types topic for more information.

The following are the changes to the functions:

Changed
SUBSTRING
TEXTSEARCH

New Functions

The following are the new functions:

New

None

Description
The alternate SUBSTR syntax is now acceptable.

This function has been changed to the CONTAINS and DOES
NOT CONTAIN operators.

Description

Page 83

DBISAM Migration

3.21 Statements

Removed Statements

The following are the statements that have been removed:

Removed
EMPTY TABLE

VERIFY TABLE

UPGRADE TABLE

START TRANSACTION
COMMIT
ROLLBACK

Statement Changes

Description

This statement is no longer supported. ElevateDB requires
that you use the DELETE statement to remove all rows from a
table.

This statement is no longer supported. ElevateDB currently
only offers repair facilities by using the REPAIR TABLE
statement.

This statement is no longer necessary.

These statements are now considered part of the ElevateDB
SQL/PSM support and are only allowed in jobs, procedures,
functions, and triggers. Outside of SQL/PSM, use the
TEDBDatabase StartTransaction, Commit, and Rollback

The following are the changes to the statements:

Changed
SELECT

Page 84

Description

ElevateDB supports single-row query expressions as values in
the list of selected columns.

The INTO clause is no longer supported. ElevateDB uses the
standard SQL CREATE TABLE AS clause to create a table using
a query expression.

The EXCLUSIVE clause is no longer necessary.

With ElevateDB you can use the actual table name or the
table correlation name in column references anywhere in the
SELECT statement.

ElevateDB supports single-row query expressions as values in
the JOIN clauses.

ElevateDB does not optimize join expressions in the WHERE
clause, otherwise known as SQL-89 style joins. You must use
the JOIN clause in order to have ElevateDB optimize the joins.

ElevateDB supports correlated sub-queries in the WHERE
clause.

ElevateDB supports single-row query expressions as values in
the WHERE clause.

INSERT

UPDATE

DELETE

DBISAM Migration

The GROUP BY, HAVING, and ORDER BY clauses in ElevateDB
support any type of expression, and may refer to columns that
aren't in the SELECT list.

The GROUP BY and ORDER BY clauses no longer support
ordinal values as a way to specify a SELECT column position
in the list of SELECT column expressions. You must specify
the actual column reference or expression.

The NOCASE clause is no longer necessary in the ORDER BY
clause. ElevateDB uses the COLLATE clause to specify the
collation for an ORDER BY expression. Please see the
Internationalization topic for more information.

The TOP clause is no longer supported. ElevateDB will
introduce standard WINDOW clause support for selecting
ranges of rows in a later release.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The ENCRYPTED WITH clause is no longer supported.

The EXCLUSIVE clause is no longer necessary.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
INSERT statements.

The EXCLUSIVE clause is no longer necessary.

The FROM clause is no longer supported. ElevateDB can use
correlated sub-queries in the UPDATE values and/or WHERE
clause.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
UPDATE statements.

The NOJOINOPTIMIZE clause is no longer supported.

The JOINOPTIMIZECOSTS clause is no longer supported.

The EXCLUSIVE clause is no longer necessary.

The FROM clause is no longer supported. ElevateDB can use
correlated sub-queries in the WHERE clause.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
DELETE statements.

The NOJOINOPTIMIZE clause is no longer supported.

The JOINOPTIMIZECOSTS clause is no longer supported.

Page 85

DBISAM Migration

CREATE TABLE

Page 86

The IF NOT EXISTS clause is no longer supported. ElevateDB
uses catalog queries to determine if a table exists. Please see
the System Information topic for more information.

The column definition NULLABLE clause is no longer
supported. To make a column nullable in ElevateDB, don't
include the NOT NULL clause.

The column definition DEFAULT clause accepts any basic
expression in ElevateDB.

A column definition may now include a GENERATED clause to
specify that the column is a generated column. Generated
columns can be generated as sequence numbers or
expressions.

The column definition MIN and MAX clauses are no longer
necessary. ElevateDB supports column constraints via the
CHECK clause.

ElevateDB allows for specifying primary key, unique key, and
foreign key constraints in a column definition.

The CHARCASE clause is no longer supported.

The COMPRESS clause has been renamed to COMPRESSION
and moved so that it is next to the data type definition.

The NOCASE clause is no longer necessary in a primary key,
unique key, or foreign key (new) constraint definition.
ElevateDB uses the collation defined for the column in the
column definition for determining the collation of these types
of constraints. Please see the Internationalization topic for
more information.

The DESC and ASC clauses are no longer supported in a
primary key, unique key, or foreign key (new) constraint
definition. Use the CREATE INDEX statement in ElevateDB to
create an index with custom column sorting.

The COMPRESS clause is no longer supported in a primary
key, unique key, or foreign key (new) constraint definition.
ElevateDB performs automatic index compression as
necessary.

The TEXT INDEX, STOP WORDS, SPACE CHARS, and
INCLUDE CHARS clauses are no longer necessary. Use the
CREATE TEXT INDEX statement in ElevateDB to create a new
text index.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The WITH clause of the ENCRYPTED clause is no longer
necessary. ElevateDB uses one encryption password per

CREATE INDEX

ALTER TABLE

DBISAM Migration

application for all encryption, and it is represented by the
EncryptionPassword property. Also, the ENCRYPTED clause
now resides after the VERSION clause (see next item).

The USER MAJOR VERSION and USER MINOR VERSION
clauses have been combined into one VERSION clause that
accepts a NUMERIC value with a scale of 2. Also, the
VERSION clause now resides after the DESCRIPTION clause.

The LAST AUTOINC clause is no longer necessary. The seed
and increment values for IDENTITY columns can be specified
in the column definitions.

The IF NOT EXISTS clause is no longer supported. ElevateDB
uses catalog queries to determine if an index exists. Please
see the System Information topic for more information.

The UNIQUE clause is no longer supported. ElevateDB
requires that unique keys constraints be defined using a
constraint definition in a CREATE TABLE or ALTER TABLE
statement.

The NOCASE clause is no longer necessary in an index
definition. ElevateDB uses the collation defined for the column
in the column definition for determining the default collation
for the indexed columns, and also allows for the COLLATE
clause to be used in the index definition in order to override
the default column collation. Please see the
Internationalization topic for more information.

The COMPRESS clause is no longer supported in an index
definition. ElevateDB performs automatic index compression
as necessary.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The IF EXISTS and IF NOT EXISTS clauses are no longer
supported for column definitions. ElevateDB uses catalog
queries to determine if a table column exists. Please see the
System Information topic for more information.

The REDEFINE clause is no longer supported for column
definitions. In order to redefine a column using the same
column name, use the ALTER AS clause (see next). In order
to rename a column, use the RENAME clause.

The ALTER clause is new for column definitions. This clause
allows you to alter the DEFAULT expression, drop the default
expression, change the DESCRIPTION of the column, move
the column to a new position in the table using the MOVE TO
clause, or alter the entire column definition using the AS
clause.

The column definition AT clause has been moved to the end
of the column definition.

Page 87

DBISAM Migration

Page 88

The column definition NULLABLE clause is no longer
supported. To make a column nullable in ElevateDB, don't
include the NOT NULL clause.

The column definition DEFAULT clause accepts any basic
expression in ElevateDB.

A column definition may now include a GENERATED clause to
specify that the column is a generated column. Generated
columns can be generated as sequence numbers or
expressions.

The column definition MIN and MAX clauses are no longer
necessary. ElevateDB supports column constraints via the
CHECK clause.

ElevateDB allows for specifying primary key, unique key, and
foreign key constraints in a column definition.

The CHARCASE clause is no longer supported.

The COMPRESS clause has been renamed to COMPRESSION
and moved so that it is next to the data type definition.

The REDEFINE clause is no longer supported for constraint
definitions. Use the RENAME clause to rename a constraint.

The NOCASE clause is no longer necessary in a primary key,
unique key, or foreign key (new) constraint definition.
ElevateDB uses the collation defined for the column in the
column definition for determining the collation of these types
of constraints. Please see the Internationalization topic for
more information.

The DESC and ASC clauses are no longer supported in a
primary key, unique key, or foreign key (new) constraint
definition. Use the CREATE INDEX statement in ElevateDB to
create an index with custom column sorting.

The COMPRESS clause is no longer supported in a primary
key, unique key, or foreign key (new) constraint definition.
ElevateDB performs automatic index compression as
necessary.

The TEXT INDEX, STOP WORDS, SPACE CHARS, and
INCLUDE CHARS clauses are no longer necessary. Use the
CREATE TEXT INDEX statement in ElevateDB to create a new
text index.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The WITH clause of the ENCRYPTED clause is no longer
necessary. ElevateDB uses one encryption password per

DROP TABLE

DROP INDEX

IMPORT TABLE

DBISAM Migration

application for all encryption, and it is represented by the
EncryptionPassword property. Also, the ENCRYPTED clause
now resides after the VERSION clause (see next item).

The USER MAJOR VERSION and USER MINOR VERSION
clauses have been combined into one VERSION clause that
accepts a NUMERIC value with a scale of 2. Also, the
VERSION clause now resides after the DESCRIPTION clause.

The LAST AUTOINC clause is no longer necessary. The seed
and increment values for IDENTITY columns can be specified
in the column definitions.

The NOBACKUP clause has been renamed to the NO BACKUP
FILES clause.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if an index exists. Please see the
System Information topic for more information.

The PRIMARY clause is no longer supported. ElevateDB does
not allow a primary key to be dropped using the DROP INDEX
statement. Instead, you must use the ALTER TABLE
statement to add or drop constraints for a table.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The COLUMNS clause has been renamed and the COLUMN
portion has been dropped, retaining only the columns list in
parentheses. Also, the clause has been moved so that it is
right after the import file name.

The DELIMITER clause has been renamed to DELIMITER
CHAR.

The QUOTE CHAR clause has been added to allow you to
specify the quote character to be used for string values.

The DATE clause has been renamed to the DATE FORMAT
clause.

The TIME clause has been renamed to the TIME FORMAT
clause.

The DECIMAL clause has been renamed to the DECIMAL
CHAR clause.

The BOOLEAN clause has been added to allow you to specify
the literals used for True and False, respectively.

The WITH HEADERS clause has been renamed to the USE

Page 89

DBISAM Migration

EXPORT TABLE

OPTIMIZE TABLE

REPAIR TABLE

Page 90

HEADERS clause and has been moved to right after the
BOOLEAN clause.

The MAX ROWS clause has been added to allow you to specify
the maximum number of rows that should be imported from
the file.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The COLUMNS clause has been renamed and the COLUMN
portion has been dropped, retaining only the columns list in
parentheses. Also, the clause has been moved so that it is
right after the export file name.

The DELIMITER clause has been renamed to DELIMITER
CHAR.

The QUOTE CHAR clause has been added to allow you to
specify the quote character to be used for string values.

The DATE clause has been renamed to the DATE FORMAT
clause.

The TIME clause has been renamed to the TIME FORMAT
clause.

The DECIMAL clause has been renamed to the DECIMAL
CHAR clause.

The BOOLEAN clause has been added to allow you to specify
the literals used for True and False, respectively.

The WITH HEADERS clause has been renamed to the
INCLUDE HEADERS clause and has been moved to right after
the BOOLEAN clause.

The MAX ROWS clause has been added to allow you to specify
the maximum number of rows that should be exported to the
file.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The ON clause has been renamed to the USING INDEX clause.

The NOBACKUP clause has been renamed to the NO BACKUP
FILES clause.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The FORCEINDEXREBUILD clause is no longer supported.

New Statements

The following are the new statements:

New

CREATE DATABASE
ALTER DATABASE
DROP DATABASE
RENAME DATABASE
CREATE STORE
ALTER STORE
DROP STORE
RENAME STORE
CREATE USER
ALTER USER

DROP USER
RENAME USER
CREATE ROLE
ALTER ROLE

DROP ROLE
RENAME ROLE
GRANT PRIVILEGES

REVOKE PRIVILEGES

GRANT ROLES
REVOKE ROLES
CREATE JOB
ALTER JOB

DROP JOB
RENAME JOB
CREATE MODULE
ALTER MODULE
DROP MODULE
RENAME MODULE

CREATE TEXT FILTER

ALTER TEXT FILTER

DBISAM Migration

Description

Creates a new database.
Alters an existing database.
Drops an existing database.
Renames an existing database.
Creates a new file store.
Alters an existing file store.
Drops an existing file store.
Renames an existing file store.
Creates a new user.

Alters an existing user.

Drops an existing user.
Renames an existing user.
Creates a new role.

Alters an existing role.

Drops an existing role.
Renames an existing role.

Grants privileges to an existing user or role on a specified
object.

Revokes privileges for an existing user or role from an existing
object.

Grants roles to an existing user.
Revokes roles from an existing user.
Creates a new job.

Alters an existing job.

Drops an existing job.

Renames an existing job.

Creates (registers) a new external module.
Alters an existing external module.
Drops an existing external module.
Renames an existing external module.
Creates a new text filter.

Alters an existing text filter.

Page 91

DBISAM Migration

DROP TEXT FILTER Drops an existing text filter.

RENAME TEXT FILTER Renames an existing text filter.

CREATE WORD GENERATOR Creates a new word generator.
ALTER WORD GENERATOR Alters an existing word generator.
DROP WORD GENERATOR Drops an existing word generator.
RENAME WORD GENERATOR Renames an existing word generator.

CREATE MIGRATOR
ALTER MIGRATOR
DROP MIGRATOR
RENAME MIGRATOR
CREATE TRIGGER
ALTER TRIGGER
DROP TRIGGER
RENAME TRIGGER
CREATE TEXT INDEX
ALTER INDEX
CREATE VIEW

ALTER VIEW

DROP VIEW

RENAME VIEW
CREATE FUNCTION
ALTER FUNCTION
DROP FUNCTION
RENAME FUNCTION
CREATE PROCEDURE
ALTER PROCEDURE
DROP PROCEDURE
RENAME PROCEDURE
SET BACKUPS STORE
BACKUP DATABASE
RESTORE DATABASE
PUBLISH DATABASE
UNPUBLISH DATABASE
SET UPDATES STORE
SAVE UPDATES

Page 92

Creates a new database migrator.

Alters an existing database migrator.
Drops an existing database migrator.
Renames an existing database migrator.
Creates a new trigger on an existing table.
Alters an existing trigger.

Drops an existing trigger from a table.
Renames an existing trigger on a table.
Creates a new text index on an existing table.
Alters an existing index.

Creates a new view.

Alters an existing view.

Drops an existing view.

Renames an existing view.

Creates a new function.

Alters an existing function.

Drops an existing function.

Renames an existing function.

Creates a new procedure.

Alters an existing procedure.

Drops an existing procedure.

Renames an existing procedure.

Sets the current backups store for ElevateDB.
Backs up an existing database.

Restores a database from a backup.
Publishes an existing database.
Unpublishes a database.

Sets the current updates store for ElevateDB.

Saves all logged updates to published tables in an existing

database.

LOAD UPDATES

COPY FILE

RENAME FILE

DELETE FILE

SET FILES STORE
DISCONNECT SERVER SESSION
REMOVE SERVER SESSION

DBISAM Migration

Loads logged updates from an update file into an existing
database.

Copies a file in a store to a new file name, and optionally,
store.

Renames a file in a store to a new file name.

Deletes a file in a store.

Sets the current files store for ElevateDB.
Disconnects a server session on an ElevateDB Server.

Removes a server session from an ElevateDB Server.

Page 93

Getting Started

This page intentionally left blank

Page 94

Getting Started

Chapter 4
Getting Started

4.1 Architecture

ElevateDB is a database engine that can be compiled directly into your Embarcadero Delphi, Embarcadero
C++, or Lazarus application, be it a program or library, or it can be distributed as a runtime package
(equivalent to a library) as part of your application. ElevateDB is available for Delphi 5 and later, as well as
Lazarus 0.924 and later. ElevateDB was written in Delphi's Object Pascal language and can be used with
the Delphi VCL (Win32, Win64, Mac0S32, Mac0S64, and Linux64) or Lazarus LCL (Win32, Win64, and
Linux64) runtime libraries.

The following image illustrates the general architecture of ElevateDB:

Page 95

Getting Started

3 TEDBENgine (EngineType=etClient)
- ConfigPath Property (Local Sessions Only)
- TempTablesPath Property (Local Sessions Only)

—% Local Session (SessionType=stLocal)

- LocalConfigPath Property and Other Local Session Cverrides
when LeelocalSessionEngineSettings Property Set ko Trus

@ Cperating Syskem File IO API

—_— % Local Drive ———
— @ Metwark Drive ———

Remote Session
| (SessionType=stRemote)

i TCP/IP Connection
I— E:] ElevateDB Server ——

- Configuration Path
- Temporary Tables Path

E‘] Configuration (EDBConfig.EDBCfg)

- Lkers, Roles, Databases, Jobs,
Logging, and External Modules

TEDBDatabase = E&a Database

TEDBTable Ej Path
TEDBStoredProc

TEDBEQuery

TEDBScript > (@ Catalog (EDBDatabase EDBCat)

- Tables, Constraints, Triggers. Indexes,
| Views, Procedures, and Functions

%Tahles (*.EDBTbI, *.EDBIdx, *.EDBBIb, *.EDBPbI)
- Rows, indexes, BLOBs, and published updates

The various components that make up this architecture are detailed next.

Page 96

Getting Started

Component Architecture
ElevateDB uses a component architecture that includes the following components:
84 TEDBEngine

The TEDBEnNgine component encapsulates the ElevateDB engine itself. A TEDBEngine component is
created automatically when the application is started and can be referenced via the global Engine function
in the edbcomps unit. You can also drop a TEDBEngine component on a form or data-module to change its
properties at design-time. However, only one instance of the TEDBEngine component can exist in a given
application, and both the global Engine function and any TEDBEngine component on a form or data
module point to the same instance of the component (singleton model). The TEDBEngine component can
be configured so that it acts like a local or client engine (etClient) or a server engine (etServer) via the
EngineType property. The engine can be started by setting the Active property to True.

Note
Once the engine has been started, most of the properties that configure the engine cannot be
modified.

By default, ElevateDB allows you to configure all local sessions via the TEDBEngine component and its
ConfigMemory, ConfigPath, ConfigName, and TempTablesPath properties, as well as several other
properties that can customize the local session access for a particular application. However, you can also
set the UselLocalSessionEngineSettings property to True in order to tell ElevateDB to use the Local*
versions of these same properties from the TEDBSession component to override the engine configuration.
This is useful for applications that require access to multiple configuration files for multiple local sessions,
such as the ElevateDB Manager that is provided with ElevateDB. Please see the Configuring and Starting
the Engine topic for more information on the various engine properties that can be modified when
configuring local sessions via the TEDBEngine component.

Q“L_;i TEDBSession

The TEDBSession component encapsulates a session in ElevateDB. A default TEDBSession component is
created automatically when the application is started and can be referenced via the global Session function
in the edbcomps unit. The TEDBSession component can be configured so that it acts like a local (stLocal)
or a remote session (stRemote) via the SessionType property. A local session is single-tier in nature,
meaning that all TEDBDatabase components connected to the session reference databases in a local or
network file system and all TEDBTable, TEDBQuery, or TEDBStoredProc components access the physical
tables directly from these directories using operating system calls. A remote session is two-tier in nature,
meaning that all access is done through the remote session to an ElevateDB Server using a messaging
protocol over a TCP/IP connection. A remote session is configured using the following properties:

RemoteHost or RemoteAddress
RemotePort or RemoteService

In a remote session, all TEDBDatabase components reference databases that are defined on the

ElevateDB Server and all TEDBTable or TEDBQuery components access the physical tables through the
messaging protocol rather than directly through the operating system.

Page 97

Getting Started

Note
You cannot connect remote sessions in an application whose TEDBEngine component is configured
as a server via the EngineType property.

As mentioned above, a local session is usually configured via the TEDBEngine component. However, if the
UseLocalSessionEngineSettings property is set to True, then the Local* versions of the TEDBEngine
configuration properties that are found in the TEDBSession component will be used to override the
TEDBERgine configuration settings.

A session can be connected by setting the Connected property to True or by calling the Open method. The
TEDBSession component contains a SessionName property that is used to give a session a name and a
SessionDescription property that is used to assign a description to the session. All session components
must have a name before they can be connected. The default TEDBSession component is called "Default".
The TEDBDatabase, TEDBTable, TEDBQuery, and TEDBStoredProc components also have a SessionName
property and these properties are used to specify which session these components belong to. Setting their
SessionName property to "Default”" or blank ("") indicates that they will use the default TEDBSession
component. Please see the Connecting Sessions topic for more information.

ii-la TEDBDatabase

The TEDBDatabase component encapsulates a database in ElevateDB, and is used as an container for all
access to a specific database. A database can be opened by setting the Connected property to True or by
calling the Open method. A TEDBDatabase component contains a DatabaseName property that is used to
give a database a name within the application. All database components must have a name before they
can be opened. The TEDBTable, TEDBQuery, and TEDBStoredProc components also have a
DatabaseName property and these properties are used to specify which database these components
belong to. Please see the Opening Tables and Views topic for more information.

The TEDBDatabase Database property specifies the name of a database that you would like to connect to.

The TEDBDatabase component is used for transaction processing via the StartTransaction, Commit, and
Rollback methods. Please see the Transactions topic for more information.

You can execute dynamic SQL on a specific database by using the Execute method. Please see the
Executing Queries topic for more information.

% TEDBTable

The TEDBTable component encapsulates a cursor on a table or view in ElevateDB. It is used to
search,insert, update, or delete rows within the table or view specified by the TableName property. A table
or view cursor can be opened by setting the Active property to True or by calling the Open method. The
DatabaseName property specifies the name of the database component that references the database
where the table or view resides. Please see the Opening Tables and Views topic for more information.

Because the TEDBTable component represents a table or view cursor, you can have multiple TEDBTable

components referencing the same table or view. Each TEDBTable component maintains its own active
order, filter and range conditions, current row position, row count statistics, etc.

Page 98

Getting Started

Note

The TEDBTable component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in VCL or CLX applications. None of these lower-level components should
be used directly and are only for internal structuring purposes in the class hierarchy.

H'y TEDBQuery

The TEDBQuery component encapsulates a single SQL statement in ElevateDB. This SQL statement may or
may not return a result set, but if it does return a result set, then the TEDBQuery component will act as a
cursor on the result set in the same way that the TEDBTable component acts as a cursor on a table or
view. The SQL statement to execute is specified in the SQL property, and the statement can be executed
by setting the Active property to True, by calling the Open method (for SQL statements that definitely
return a result set), or by calling the ExecSQL method (for SQL statements that may or may not return a
result set). The DatabaseName property specifies the name of the database component that references
the database to be used when executing the SQL statement. Please see the Executing Queries topic for
more information.

Note

The TEDBQuery component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD Studio,
and Lazarus. None of these lower-level components should be used directly and are only for internal
structuring purposes in the class hierarchy.

[#yrEDBSCript

The TEDBScript component encapsulates a single SQL script in ElevateDB. This script may or may not
return a result set, but if it does return a result set, then the TEDBScript component will act as a cursor on
the result set in the same way that the TEDBTable component acts as a cursor on a table or view. The
script to execute is specified in the SQL property, and the script can be executed by setting the Active
property to True, by calling the Open method (for scripts that definitely return a result set), or by calling
the ExecScript method (for scripts that may or may not return a result set). The DatabaseName property
specifies the name of the database component that references the database to be used when executing
the script. Please see the Executing Scripts topic for more information.

Note

The TEDBScript component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD Studio,
and Lazarus. None of these lower-level components should be used directly and are only for internal
structuring purposes in the class hierarchy.

The TEDBStoredProc component encapsulates a single stored procedure in ElevateDB. This stored
procedure may or may not return a result set, but if it does return a result set, then the TEDBStoredProc
component will act as a cursor on the result set in the same way that the TEDBTable component acts as a

Page 99

Getting Started

cursor on a table or view. The stored procedure to execute is specified in the StoredProcName property,
and the stored procedure can be executed by setting the Active property to True, by calling the Open
method (for stored procedures that definitely return a result set), or by calling the ExecProc method (for
stored procedures that may or may not return a result set). The DatabaseName property specifies the
name of the database component that references the database to be used when executing the stored
procedure. Please see the Executing Stored Procedures topic for more information.

Note

The TEDBStoredProc component descends from the TEDBDBDataSet component, which descends
from the TEDBDataSet component, which descends from the common TDataSet component that is
the basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD
Studio, and Lazarus. None of these lower-level components should be used directly and are only for
internal structuring purposes in the class hierarchy.

Opening a TEDBTable, TEDBQuery, TEDBScript, or TEDBStoredProc component will automatically cause its
corresponding TEDBDatabase component to open, which will also automatically cause its corresponding
TEDBSession component to connect, which will finally cause the TEDBENgine to start. This design ensures
that the necessary connections for a session, database, etc. are completed before the opening of the
table, query, or stored procedure is attempted.

Page 100

Getting Started

4.2 Exception Handling and Errors

One of the first items to address in any application, and especially a database application, is how to
anticipate and gracefully handle exceptions. This is true as well with ElevateDB.

ElevateDB Exception Types

ElevateDB uses the EEDBError object as its exception object for all errors. This object descends from the
EDatabaseError exception object defined in the common DB unit, which itself descends from the common
Exception object. This hierarchy is important since it allows you to isolate the type of error that is
occurring according to the type of exception object that has been raised, as you will see below when we
demonstrate some exception handling.

Note

ElevateDB also raises certain component-level exceptions as an EDatabaseError to maintain
consistency with the way the common DB unit and TDataSet component behaves. These mainly
pertain to design-time property modifications, but a few can be raised at runtime also.

The EEDBError object contains several important properties that can be accessed to discover specific
information on the nature of the exception. The ErrorCode property is always populated with a value which
indicates the error code for the current exception. Other properties may or may not be populated
according to the error code being raised, and a list of all of the error codes raised by the ElevateDB engine
along with this information can be found in Appendix A - Error Codes and Messages.

Exception Handling

The most basic form of exception handling is to use the try..except block (Delphi and Lazarus) or try..catch
(C++) to locally trap for specific error conditions. The error code that is returned when an open fails due
to an exclusive lock problem is 300, which is defined as EDB_ERROR_LOCK in the edberror unit. The
following example shows how to trap for such an exception on open and display an appropriate error
message to the user:

{
MyEDBTable->DatabaseName="Tutorial";

MyEDBTable->TableName="customer";
MyEDBTable->Exclusive=true;
MyEDBTable->ReadOnly=False;
try
{
MyEDBTable->Open () ;
}
catch (const Exception &E)
{
if (dynamic cast<EDatabaseError*>(E) &
dynamic_ cast<EEDBError*>(E))
{
if (dynamic cast<EEDBErroré&> (*E)->ErrorCode==
EDB_ERROR_LOCK)

{
ShowMessage ("Cannot open table "+TableName+

Page 101

Getting Started

", another user has the table open already");

}

else
{
ShowMessage ("Unknown or unexpected "+
"database engine error # +IntToStr (
dynamic cast<EEDBErroré&>(*E)->ErrorCode)) ;

}

else

{

ShowMessage ("Unknown or unexpected "+
"error has occurred");

}

Exception Events

Besides trapping exceptions with a try..except or try..catch block, you may also use a global
TApplication::OnException event handler to trap database exceptions. However, doing so will eliminate the
ability to locally recover from the exception and possibly retry the operation or take some other course of
action. There are several events in ElevateDB components that allow you to code event handlers that
remove the necessity of coding try..except or try..catch blocks while still providing for local recovery.
These events are as follows:

Event Description

OnEditError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Edit method
. The usual cause of an error is a row lock failure if the
current session is using the pessimistic row locking protocol
(the default). Please see the Inserting, Updating, and Deleting
Rows topic for more information on using this event, and the
Locking and Concurrency topic for more information on the
ElevateDB row locking protocols.

OnDeleteError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Delete
method. The usual cause of an error is a row lock failure (a
row lock is always obtained before a delete regardless of the
locking protocol in use for the current session). Please see the
Inserting, Updating, and Deleting Rows topic for more
information on using this event, and the Locking and
Concurrency topic for more information on the ElevateDB row
locking protocols.

OnPostError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Post
method. The usual cause of an error is a constraint violation,
however it can also be triggered by a row lock failure if the
locking protocol for the current session is set to optimistic.
Please see the Inserting, Updating, and Deleting Rows topic
for more information on using this event, and the Locking and
Concurrency topic for more information on the ElevateDB row

Page 102

Getting Started

locking protocols.

Page 103

Getting Started

4.3 Multi-Threaded Applications

ElevateDB is internally structured to be thread-safe and usable within a multi-threaded application
provided that you follow the rules that are outlined below.

Unique Sessions

ElevateDB requires that you use a unique TEDBSession component for every thread that must perform any
database access at all. Each of these TEDBSession components must also be assigned a SessionName
property value that is unique among all TEDBSession components in the application. Doing this allows
ElevateDB to treat each thread as a separate and distinct session and will isolate transactions and other
internal structures accordingly. You may use the AutoSessionName property of the TEDBSession
component to allow ElevateDB to automatically name each session so that is unique or you may use code
similar to the following:

int LastSessionValue;
TRTLCriticalSection SessionNameSection;

// Assume that the following code is being executed
// within a thread

bool fastcall UpdateAccounts();
{
bool TempResult=false;
TEDBSession *LocalSession=GetNewSession;
try
{
TEDBDatabase *LocalDatabase=new TEDBDatabase (NULL) ;
try
{
// Be sure to assign the same session name
// as the TEDBSession component
LocalDatabase->SessionName=LocalSession->SessionName;
LocalDatabase->DatabaseName="AccountsDB";
LocalDatabase->Database="Accounting";
LocalDatabase->Connected=true;
TEDBQuery *LocalQuery=new TEDBQuery (NULL) ;
try
{
// Be sure to assign the same session and
// database name as the TEDBDatabase
// component
LocalQuery->SessionName=LocalSession->SessionName;
LocalQuery->DatabaseName=LocalDatabase->DatabaseName;
LocalQuery->SQL->Clear () ;
LocalQuery->SQL->Add ("UPDATE accounts SET PastDue=True");
LocalQuery->SQL->Add ("WHERE DueDate < CURRENT DATE")) ;
LocalQuery->Prepare;
try
{
// Start the transaction and execute the query
LocalDatabase->StartTransaction () ;
try
{

Page 104

Getting Started

LocalQuery->ExecSQL () ;
LocalDatabase->Commit () ;
TempResult=true;
catch
{
LocalDatabase->Rollback() ;
}
__finally
{
LocalQuery->UnPrepare () ;
}
}
__finally
{
delete LocalQuery;
}
}
__finally
{
delete LocalDatabase;
}
}
__finally
{
delete LocalSession;
}
return TempResult;
end;

TEDBSession* fastcall GetNewSession();
{
TEDBSession *TempResult=NULL;
EnterCriticalSection (SessionNameSection) ;
try
{

LastSessionValue= (LastSessionValue+1l) ;
TEDBSession *TempResult=new TEDBSession (NULL) ;
TempResult->SessionName="AccountSession"+
IntToStr (LastSessionValue) ;
}
__finally
{

LeaveCriticalSection (SessionNameSection) ;

}

return TempResult;

{ initialization in application }
LastSessionValue=0;
InitializeCriticalSection (SessionNameSection) ;
{ finalization in application }
DeleteCriticalSection (SessionNameSection) ;

The AutoSessionName property is, by default, set to False so you must specifically turn it on if you want
this functionality. You may also use the thread ID of the currently thread to uniquely name a session since
the thread ID is guaranteed to be unique within the context of a process.

Unique Databases

Page 105

Getting Started

Another requirement is that all TEDBDatabase components must also be unique and have values assigned
to their SessionName properties that refer to the unique SessionName property of the TEDBSession
component defined in the manner discussed above.

Unique Tables, Queries, and Stored Procedures

The final requirement is that all TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components
must also be unique and have values assigned to their SessionName properties that refer to the unique
SessionName property of the TEDBSession component defined in the manner discussed above. Also, if a
TEDBTable or TEDBQuery component refers to a TEDBDatabase component's DatabaseName property via
its own DatabaseName property, then the TEDBDatabase referred to must be defined in the manner
discussed above.

ISAPI Applications

ISAPI applications created using the WebBroker components or a similar technology are implicitly multi-
threaded. Because of this, you should ensure that your ISAPI application is thread-safe according to these
rules for multi-threading when using ElevateDB. Also, if you have simply dropped a TEDBSession
component on the WebModule of a WebBroker ISAPI application, you must set its AutoSessionName
property to True before dropping