DBISAM Version 4 Manual

Table Of Contents

Chapter 1 - Before You Begin
1.1 Changes From Version 3.x
1.2 New Features in Version 4.x
Chapter 2 - Using DBISAM
2.1 DBISAM Architecture
2.2 Data Types and NULL Support
2.3 Exception Handling and Errors
2.4 Configuring and Starting the Server
2.5 Server Administration
2.6 Customizing the Engine
2.7 Starting Sessions
2.8 Calling Server-Side Procedures
2.9 Opening Databases
2.10 Transactions
2.11 Backing Up and Restoring Databases
2.12 In-Memory Tables
2.13 Creating and Altering Tables
2.14 Upgrading Tables
2.15 Deleting Tables
2.16 Renaming Tables
2.17 Adding and Deleting Indexes from a Table
2.18 Emptying Tables
2.19 Copying Tables
2.20 Optimizing Tables
2.21 Verifying and Repairing Tables
2.22 Opening Tables
2.23 Closing Tables
2.24 Executing SQL Queries
2.25 Live Queries and Canned Queries
2.26 Parameterized Queries

2.27 Navigating Tables and Query Result Sets

Table of Contents

10
17
17
25
31
34
43
49
59
63
64
66
70
74
75
82
84
85
86
89
90
92
94
97
102
103
111
113
116

Preface



Table of Contents

2.28 Updating Tables and Query Result Sets

2.29 Searching and Sorting Tables and Query Result Sets

2.30 Setting Ranges on Tables

2.31 Setting Master-Detail Links on Tables

2.32 Setting Filters on Tables and Query Result Sets

2.33 Loading and Saving Streams with Tables and Query Result Sets
2.34 Importing and Exporting Tables and Query Result Sets

2.35 Cached Updates

Chapter 3 - Advanced Topics

3.1 Locking and Concurrency

3.2 Buffering and Caching

3.3 Change Detection

3.4 Index Compression

3.5 Filter Optimization

3.6 Multi-Threaded Applications

3.7 Full Text Indexing

3.8 Compression

3.9 Encryption

3.10 Recompiling the DBISAM Source Code

3.11 Replacement Memory Manager

Chapter 4 - SQL Reference

Preface

4.1 Overview

4.2 Naming Conventions

4.3 Unsupported SQL

4.4 Optimizations

4.5 Operators

4.6 Functions

4.7 SELECT Statement

4.8 INSERT Statement

4.9 UPDATE Statement

4.10 DELETE Statement

4.11 CREATE TABLE Statement
4.12 CREATE INDEX Statement
4.13 ALTER TABLE Statement
4.14 EMPTY TABLE Statement
4.15 OPTIMIZE TABLE Statement

118
126
132
134
137
140
142
146
149
149
155
157
159
161
165
168
172
173
174
176
177
177
178
188
190
200
209
237
251
253
257
261
268
270
273
274



4.16 EXPORT TABLE Statement
4.17 IMPORT TABLE Statement
4.18 VERIFY TABLE Statement
4.19 REPAIR TABLE Statement
4.20 UPGRADE TABLE Statement
4.21 DROP TABLE Statement
4.22 RENAME TABLE Statement
4.23 DROP INDEX Statement
4.24 START TRANSACTION Statement
4.25 COMMIT Statement
4.26 ROLLBACK Statement

Chapter 5 - Component Reference
5.1 EDBISAMENgineError Component
5.2 TDBISAMBaseDataSet Component
5.3 TDBISAMBIlobStream Component
5.4 TDBISAMDatabase Component
5.5 TDBISAMDataSet Component

5.6 TDBISAMDataSetUpdateObject Component

5.7 TDBISAMDBDataSet Component
5.8 TDBISAMEngine Component

5.9 TDBISAMFieldDef Component
5.10 TDBISAMFieldDefs Component
5.11 TDBISAMFunction Component

5.12 TDBISAMFunctionParam Component
5.13 TDBISAMFunctionParams Component

5.14 TDBISAMFunctions Component
5.15 TDBISAMIndexDef Component
5.16 TDBISAMIndexDefs Component
5.17 TDBISAMParam Component
5.18 TDBISAMParams Component
5.19 TDBISAMQuery Component
5.20 TDBISAMRecord Component
5.21 TDBISAMSession Component

5.22 TDBISAMSQLUpdateObject Component

5.23 TDBISAMStringList Component
5.24 TDBISAMTable Component

Table of Contents

275
277
279
280
281
282
283
284
285
286
287
289
289
305
306
312
342
372
373
381
542
559
566
572
576
582
590
600
607
641
650
699
714
835
836
840

Preface



Table of Contents

5.25 TDBISAMUpdateSQL Component

Chapter 6 - Type Reference

Preface

6.1 TAbortAction Type

6.2 TAbortErrorEvent Type

6.3 TAbortProgressEvent Type
6.4 TCachedUpdateErrorEvent Type
6.5 TCompressEvent Type

6.6 TCryptoInitEvent Type

6.7 TCryptoResetEvent Type

6.8 TCustomFunctionEvent Type
6.9 TDatabaseRight Type

6.10 TDatabaseRights Type
6.11 TDatalLossCause Type

6.12 TDatalLostEvent Type

6.13 TDecompressEvent Type
6.14 TDecryptBlockEvent Type
6.15 TEncryptBlockEvent Type
6.16 TEndTransactionTriggerEvent Type
6.17 TEngineType Type

6.18 TErrorEvent Type

6.19 TEventDayOfMonth Type
6.20 TEventDayOfWeek Type
6.21 TEventDays Type

6.22 TEventMonths Type

6.23 TEventRunType Type

6.24 TFieldCharCase Type

6.25 TFilterOptimizeLevel Type
6.26 TIndexCompression Type
6.27 TLockProtocol Type

6.28 TLogCategory Type

6.29 TLogEvent Type

6.30 TLogEventType Type

6.31 TLoginEvent Type

6.32 TLogRecord Type

6.33 TPasswordEvent Type

6.34 TProcedureProgressEvent Type

927
939
939
940
941
942
943
944
945
946
947
949
950
951
952
953
954
955
956
957
958
961
962
963
964
965
966
967
968
969
970
971
973
974
975
976



Table of Contents

6.35 TProcedureRight Type 977
6.36 TProcedureRights Type 978
6.37 TProgressEvent Type 979
6.38 TReconnectEvent Type 980
6.39 TRecordLockTriggerEvent Type 981
6.40 TSendReceiveProgressEvent Type 982
6.41 TServerConnectEvent Type 983
6.42 TServerDisconnectEvent Type 984
6.43 TServerLogCountEvent Type 985
6.44 TServerLogEvent Type 986
6.45 TServerLoginEvent Type 987
6.46 TServerLogoutEvent Type 988
6.47 TServerLogRecordEvent Type 989
6.48 TServerProcedureEvent Type 990
6.49 TServerReconnectEvent Type 991
6.50 TServerScheduledEvent Type 992
6.51 TSessionType Type 993
6.52 TSQLStatementType Type 994
6.53 TSQLTriggerEvent Type 996
6.54 TStartTransactionTriggerEvent Type 997
6.55 TSteppedProgressEvent Type 998
6.56 TTextIndexFilterEvent Type 999
6.57 TTextIndexTokenFilterEvent Type 1000
6.58 TTimeoutEvent Type 1001
6.59 TTraceEvent Type 1002
6.60 TTraceEventType Type 1003
6.61 TTraceRecord Type 1004
6.62 TTriggerEvent Type 1006
6.63 TUpdateType Type 1007
Appendix A - Differences from the BDE 1009
Appendix B - Error Codes and Messages 1021

Appendix C - System Capacities 1039

Preface



Table of Contents

This page intentionally left blank

Preface



Before You Begin

Chapter 1
Before You Begin

1.1 Changes From Version 3.x

The following items have been changed in Version 4.x from Version 3.x:

@ The physical table format has changed for version 4 and all tables in 3.x and earlier formats will
require upgrading to the current format using the TDBISAMTable UpgradeTable method or the new
UPGRADE TABLE SQL statement. Please see the Upgrading Tables topic for more information.

The major changes to the format include:

Change Description

Table Signatures Every table is now stamped with an MD5 hash that
represents the hash of a "signature" that is specified in
the EngineSignature property of the TDBISAMEngine
component. In order to access any table, stream, or
backup created with a specific engine signature other than
the default requires that the engine be using the same
signature or else access will be denied. Please see the
Customizing the Engine topic for more information.

Locale IDs The language ID and sort ID values (Word values) for a
table in 3.x and lower have been replaced with one single
locale ID (Integer value). This causes a change in the
TDBISAMTable RestructureTable method, which has been
renamed to the AlterTable method to maintain consistency
with the ALTER TABLE SQL statement (see below). Also,
the LanguagelD and SortID properties of the
TDBISAMTable component are now one LocaleID
property. Finally, the SQL LANGUAGE ID and SORT ID
keywords have been replaced with the single LOCALE
keyword in SQL statements, and some of the language
identifiers (string values) have been modified to reflect the
change to a locale instead of a language identifier.

Table Encryption The default table encryption in prior versions of DBISAM
was weak XOR encryption and, although it was fast, it was
also easily broken. The table encryption in version 4 is
Blowfish encryption that is not easily broken. All table
passwords are stored as MD5 hashes encrypted with the
same Blowfish encryption. Please see the Encryption topic
for more information.

System Fields There are two new "system" pseudo-fields in every table
called "RecordID and "RecordHash". These fields can be
indexed, filtered, etc. but do not show up in the field
definitions for the TDBISAMTable or TDBISAMQuery
components. RecordID is an integer value (4 bytes)
representing the fixed "row number" of a given record.
RecordHash is an MD5 binary value (16 bytes) that

Page 1



Before You Begin

Auto Primary Index

BLOB Compression

Maximum Field Size

FixedChar Fields

GUID Fields

Autolnc Fields

Page 2

represents the hash of a given record. If you upgrade a
table that already has a field named the same as either of
these fields, your field will be automatically renamed by
the UpgradeTable method or the UPGRADE TABLE SQL
statement to '_'+OldFieldName. In other words, an
underscore will be added to the front of the existing field
name.

In version 3.x and earlier you could have a table without a
primary index. In version 4, if you do not define a primary
index when creating or restructuring a table, DBISAM will
automatically add a primary index on the system RecordID
field mentioned above.

You may now specify compression for BLOB fields when
creating or restructuring a table. The compression is
specified as a Byte value between 0 and 9, with the
default being 0, or none, and 6 being the best selection
for size/speed. The default compression is ZLib, but can
be replaced by using the TDBISAMEngine events for
specifying a different type of compression. Please see the
Compression and Customizing the Engine topics for more
information.

The maximum size of a string or bytes field is now 512
bytes instead of 250 bytes.

String fields that are of the ftFixedChar type do not
automatically right-trim spaces from strings assigned to
them as they have in the past. String fields that are of the
type ftString still treat strings like VarChars and right-trim
the strings assigned to them. For example, assigning the
value 'Test ' to the two different field types would result in
the following:

ftString="Test'
ftFixedChar="Test '

This is useful for situations where you want to keep
trailing spaces in string fields.

GUID fields are now supported and are implemented as a
38-byte field containing a GUID in string format.

Auto-increment fields are now always editable and you
may have more than one autoinc field per record, with
each field incrementing independently. Because these
fields are editable, the SuppressAutoIncValues property
has been removed from both the TDBISAMTable and
TDBISAMQuery component and the NOAUTOINC clause
has been removed from the SQL statements. The way
autoinc fields work now is that they will auto-increment if
a value is not specified for the field before the Post
operation (field is NULL), and will leave any existing value
alone if one is already specified before the Post operation.



Descending Index Fields

Index Page Size

Before You Begin

Note

If you do not want an end user to modify any
autoinc fields directly then it is extremely important
that you mark any autoinc fields as read-only by
setting the TField ReadOnly property to True before
the user is allowed to access these fields.

You may now specify which fields are ascending or
descending in an index independently of one another. This
change also modifies the AddIndex method of the
TDBISAMTable component slightly as well as the
TDBISAMIndexDef objects used in creating and altering
the structure of tables. With SQL you can simply place an
appropriate ASC or DESC keyword after each field
specified for an index definition in a CREATE TABLE or
CREATE INDEX statement.

You may now specify the index page size when creating or
altering the structure of tables. This changes the
TDBISAMTable AlterTable method slightly as well as the
CREATE TABLE SQL statement syntax. Also, there is a new
IndexPageSize property for the TDBISAMTable
component. The minimum page size is 1024 bytes and the
maximum page size is 16 kilobytes.

Note

The index page size affects the maximum key size
that can be specified for an index, so if you try to
index very large string fields you may get an error
indicating that the index key size is invalid. Also,
regardless of page size the maximum key size for
any index is 4096 bytes. Finally, the maximum
number of fields that can be included in a given
index has been expanded from 16 to 128 fields.
However, the number of indexes per table is still
only 30 indexes and has not changed.

@ The TDBISAMTable RestructureTable method is now called the AlterTable method to be more in line

with the name of the ALTER TABLE SQL statement. Also, the TDBISAMTable OnRestructureProgress
event is now called the OnAlterProgress event.

@ The TDBISAMTable OnDataLost event will now fire when adding unique secondary or primary

indexes that cause key violations. Also, the ContinueRestructure parameter to this event is now
called the Continue parameter in order to be more in line with its new dual-purposes.

= The TDBISAMQuery OnQueryProgress event is now of the type TAbortProgressEvent to reflect the

fact that it will be used for more than just the OnQueryProgress event in the future.

@ The addition and subtraction of dates, times, and timestamps in filter and SQL expressions have

changed slightly. Please see the SQL Reference Operators topic for more information.

Page 3



Before You Begin

@ There are also new filter and SQL functions for converting milliseconds into the appropriate number
of years, days, hours, etc. Please see the New Features in Version 4.x and the SQL Reference
Functions topics for more information.

@ The index compression/de-compression code has been vastly improved so as to be much more
efficient, especially when there are a large number of duplicate keys in the index and the
compression is set to duplicate-byte or full compression.

@ The DBISAM table stream format has changed completely. It is now more similar to a binary
import/export format and can now include just a subset of fields from the original table and does
not include index information that previously caused many problems with loading streams saved
from query result sets into tables, etc.

Note

Like tables themselves, streams are signed with the current engine signature to ensure that
only the current engine signature, or the default engine signature, can access the stream.
Also, even though the table that a stream is created from is encrypted, the resultant stream
will never be encrypted and you must make sure to take extra caution if you do not want to
expose data improperly. Please see the Loading and Saving Streams with Tables and Query
Result Sets topic for more information.

@ The table locking in DBISAM has changed completely in order to streamline transaction locking,
prevent deadlocks during transactions, and improve the performance of the table and transaction
locking. Previously table locking was done at the individual table level, so if you started a transaction
on a database with 50 physical tables opened for that database, DBISAM would have to place a
transaction lock on all 50 open tables before starting the transaction. It would also have to
subsequently write lock them during a commit and then unlock everything for each table after the
transaction was committed or rolled back. Now all table locking is centralized in one hidden file
called "dbisam.Ick" (by default) and located in the physical database directory. In case anyone
mistakes this for a Paradox-style lock file, it is definitely not anything close. The lock file in DBISAM
version 4 is just an empty "container" used to perform byte offset locking at the operating system
level and the existence of the file is strictly optional - it will automatically be created by DBISAM as
needed. Likewise, if the file is left there (which it will be since DBISAM prefers not to have to
constantly recreate it when needed) it will not cause any harm, unlike with a Paradox lock file. With
this new type of locking, DBISAM only needs to place one lock call to the OS when a transaction is
started (instead of the previous scenario of 50 calls), one write lock call during a commit, and one
unlock call during a commit or rollback. It also completely eliminates deadlocks during transaction
locking since this architecture makes it impossible to get a deadlock. Please see the Locking and
Concurrency and Transactions topics for more information.

Note
The default lock file name "dbisam.Ick" can be modified to any file name desired by modifying
the TDBISAMENgine LockFileName property.

Page 4



Before You Begin

= A few TDBISAMSession properties have been modified slightly to reflect some changes in the remote
access. The RemoteType property has been removed and been replaced with the RemoteEncryption,
RemoteEncryptionPassword, and RemoteCompression properties. The RemoteEncryption property
specifies that any comms requests or responses should be encrypted using the strong crypto in the
engine, and the RemoteEncryptionPassword specifies the password to use for the encryption. This
password must match the password used by the server engine to encrypt/decrypt comms on its end.
Also, in version 4 *all* administrative access requires the use of RemoteEncryption=True. You
cannot log into the administrative port on a server without encryption turned on and the password
set to the proper password for the server that you are accessing. In addition to this, all login
information is automatically encrypted using the RemoteEncryptionPassword, so regardless of
whether RemoteEncryption is turned on or not, the password must still match that of the server or
you won't be able to log in using a non-encrypted connection either. The RemoteCompression
property allows you to dynamically change the compression for the comms at any time before,
during, or after logging into a database server. Each request and response is tagged with a specific
compression level, thus allowing unlimited flexibility in determining how much/little compression to
use. The property is specified as a Byte value between 0 and 9, with the default being 0, or none,
and 6 being the best selection for size/speed. Because of these property changes, the
TDBISAMSession GetRemoteSessionInfo method has been modified to reflect whether the session is
encrypted or not instead of the type of session (rtInternet or rtLAN previously).

= The TDBISAMSession method GetRemotelog for retrieving the server log from the server has been
removed and replaced with two different methods, one for retrieving the total number of log entries
called GetRemoteLogCount, and one for retrieving a specific log entry from the server based upon
its ordinal position in the log called GetRemoteLogRecord. This change is due to the abstraction of
the log storage in the TDBISAMENngine component when running as a server (EngineType=etServer).
Previously the log storage was a "black box" text file that was maintained by the server. Now the log
storage is abstract and is handled via the OnServerLogEvent event in the TDBISAMEngine
component. A TLogRecord record is passed to an event handler for this event and the event handler
is free to store this data in whatever way it deems appropriate. Likewise, the OnServerLogCount
event is triggered in the TDBISAMENgine component when the client session calls the
TDBISAMSession GetRemoteLogCount method and the OnServerLogRecord event is called when the
TDBISAMSession GetRemotelLogRecord method is called.

Note
By default, the server application that comes with DBISAM uses event handlers for these
events to simply write out these log records as binary records in a log file.

Please see the Customizing the Engine topic for more information.

Page 5



Before You Begin

@ The following types have been changed or removed:

Type New Type

TDBISAMPasswordEvent TPasswordEvent

TDBISAMDatabaseRight TDatabaseRight
Note

The TDatabaseRight type has also been expanded
to include new rights for backup (drBackup) and
restore (drRestore) of a database, as well as rights
for performing maintenance (drMaintain) on a
database like repairing and optimizing tables and
renaming objects in a database (drRename).

TDBISAMDatabaseRights TDatabaseRights

@ The following constants have been changed or removed:

Constant New Constant(s)

DBISAM_LOCKTIMEOUT DBISAM_READLOCK
DBISAM_READUNLOCK
DBISAM_WRITELOCK
DBISAM_WRITEUNLOCK
DBISAM_TRANSLOCK
DBISAM_TRANSUNLOCK

This was done to give the developer more control over

which condition he/she was responding to, especially
when it comes to transaction lock timeouts.

Page 6



Before You Begin

@ The RestructureFieldDefs and RestructureIndexDefs have been removed and replaced with common
TDBISAMFieldDefs and TDBISAMIndexDefs objects. These new objects allow the TDBISAMTable
CreateTable method to be changed so that it is identical to the AlterTable method (used to be called
RestructureTable), thus eliminating the need for the old way of creating a table and then
immediately altering its structure in order to add DBISAM-specific features to the table. These
objects are assignment-compatible with their TDataSet cousins TFieldDefs and TIndexDefs.

Note

There is one important change in the TDBISAMFieldDefs Add method that is different from
the standard TFieldDefs Add method. The TDBISAMFieldDefs Add method is overloaded to
allow for the direct specification of the FieldNo of the TDBISAMFieldDef being added. This is
to allow for moving fields around without losing any data with the AlterTable method. Also,
the TDBISAMFieldDefs object has an additional Insert method that allows for the insertion of
a TDBISAMFieldDef object in a specific position in the TDBISAMFieldDefs. Please see the
Creating and Altering Tables topic for more information.

@ The TDBISAMTable and TDBISAMQuery BlockReadSize property functionality has been modified so
that it behaves like the TDBISAMTable and TDBISAMQuery RemoteReadSize property, which does
not have the limitations that the BlockReadSize property used to have and can also very easily
optimize C/S access so that records are retrieved from the server in batches.

= The TDBISAMTable RecordIsLocked and TableIsLocked methods no longer attempt to make locking
calls in order to determine whether a record or table is locked, and only reflect whether the current
table cursor has a given record or table locked. If you want to edit a record you should just edit the
record and respond accordingly to any locking exceptions that occur if a table or record is already
locked.

@ The TDBISAMTable and TDBISAMQuery Locate method implementation has internally been moved
into the engine itself, which should result in some faster performance for Locate calls, especially
when accessing a database server. Also, the Locate method can now take advantage of indexes in
live query result sets (as well as canned result sets) when optimizing its searching. These changes to
Locate do not cause any code changes in your application.

@ All DBISAM error strings are now marked with the resourcestring directive and are located in a new
unit (Delphi) or header file (C++) called dbisamst.

= The TDBISAMQuery Params property is no longer the standard TParams object, but rather is now a
custom TDBISAMParams object. This also holds true for the individual TParam objects contained
within the Params property, as they are now TDBISAMParam object. This was done to fix a bug in
the parsing of parameters in SQL statements in the TParams object, as well as to enable the use of
a common set of objects for both queries, custom SQL and filter functions, and server-side
procedure calls. Also, with this change we have added the TDBISAMParam AsLargelnt property to
allow you to retrieve and assign 64-bit integer parameters.

Page 7



Before You Begin

Page 8

@ The TDBISAMQuery component now processes SQL scripts client-side so as to allow for the use of

parameters with scripts. A new OnGetParams event is fired whenever a new SQL statement is
prepared. This allows one to execute an SQL script and populate the parameters in a step-by-step
fashion. However, it does come at a price when executing large SQL scripts using a remote session.
Previously with 3.x the entire script was executed on the database server, but with version 4 each
individual SQL statement is parsed and sent to the server independently, so this can result in much
more network traffic. The work-around is to send any very large SQL scripts to the server to be
executed in the context of a server-side procedure, which will keep the processing of the script
entirely on the server but still allow for parameters in the script.

= SQL statements and filter expressions now require all constants to be enclosed in single quotes as

opposed to double-quotes. Identifiers such as table names and column names can still be (and must
be) enclosed in double quotes or brackets. This allows DBISAM's parser to distinguish properly
between identifiers and constants, which previously would confuse the parser, especially with
expressions like this:

MyColumName="MyColumnName"

where the parser didn't know whether to treat "MyColumnName" as a constant or a column value.

@ The use of the asterisk (*) as a wildcard along with the equality (=) operator in SQL statements is

no longer supported. Instead, you must use the LIKE operator and the percent (%) wildcard
character like this:

MyColumName LIKE 'Test%'

= The SQL aggregate and distinct processing, as well as the result set ordering, has been improved so

as to reduce the amount of I/0 used to perform these functions. The results should be fairly
improved over 3.x, especially with large source tables. In addition, the MIN and MAX aggregate
functions can now take advantage of indexes when SQL statements like the following are used:

SELECT max (MyField) FROM MyTable

where MyTable has an index on MyField. You can also now use the MIN and MAX aggregate
functions with string fields. Finally, the SQL SELECT statement's TOP clause can now take advantage
of indexes to optimize its performance quite a bit over 3.x.

= The MEMORY keyword has been removed from SQL statements and should be replaced with a

database specification of "Memory\". For example, in 3.x you would specify the following SQL
SELECT statement to retrieve data from an in-memory table:

SELECT * FROM MEMORY biolife

In version 4 you should use:



Before You Begin

SELECT * FROM "\Memory\biolife"

= The WITH LOCKS clause has been removed from the SELECT SQL statement. To ensure that data
does not change during the course of a SELECT statement you should wrap the statement in a
transaction.

@ The SQL and filter LIKE operator now accepts an ESCAPE clause to specify an escape character:

SELECT * FROM MyTable WHERE MyColumn LIKE '100\%%' ESCAPE '\'

In the above example the backslash serves as the escape character indicating that the character
after it, the percent sign (%), should be interpreted literally and not as a wildcard like it normally is.
The above SQL statement will find all records where MyColumn begins with '100%'.

Page 9



Before You Begin

1.2 New Features in Version 4.x

The following items are new features in version 4.x:

@ There is a new TDBISAMEngine component that encapsulates the DBISAM engine inside of a visual
component. In the component hierarchy, the TDBISAMEngine component sits at the top above the
TDBISAMSession component(s). A default Engine function is available in the dbisamtb unit (Delphi)
or dbisamtb header file (C++) that points to a global instance of the TDBISAMEngine component.
You can also drop a TDBISAMEngine component on a form or data-module to visually change its
properties. However, only one instance of the TDBISAMEngine component can exist in a given
application, and both the Engine function and any TDBISAMEngine component on a form or data
module point to the same instance of the component (singleton model). Some of the functionality
found in the TDBISAMEngine component includes:

Functionality Description

Engine Type The EngineType property can be set to either etClient or
etServer in order to have the engine behave as a local
client engine or a server engine. If acting as a server
engine, many additional properties are provided for
configuring the server:

ServerName
ServerDescription
ServerMainAddress
ServerMainPort
ServerMainThreadCacheSize
ServerAdminAddress
ServerAdminPort
ServerAdminThreadCacheSize
ServerEncryptedOnly
ServerEncryptionPassword
ServerConfigFileName
ServerConfigPassword

There are also many events provided for the server
engine:

OnServerStart
OnServerStop
OnServerLogEvent
OnServerLogCount
OnServerLogRecord
OnServerConnect
OnServerReconnect
OnServerLogin
OnServerLogout
OnServerDisconnect
OnServerScheduledEvent
OnServerProcedure

Please see the Configuring and Starting the Server topic
for more information.

Full Text Indexing There are specific events for implementing full text index

Page 10



Custom Encryption

Custom Compression

Signatures

ANSI Conversions

Before You Begin

filtering (either on a buffer basis or on a per-token basis):

OnTextIndexFilter
OnTextIndexTokenFilter

Also, there are two new methods for parsing strings into
word lists and retrieving the default text indexing
parameters:

BuildWordList
GetDefaultTextIndexParams

Note

The BuildWordList function used to be available in
the dbisamlb unit (Delphi) or dbisamlb header file
(C++) and it is still is, although different from the
one available as a method of the TDBISAMEngine
component. You should use the method of the
TDBISAMENgine component instead of the function
in the dbisamlb unit in version 4.

Please see the Full Text Indexing topic for more
information.

There are specific events for customizing the encryption in
DBISAM (8-byte block ciphers only):

OnCryptolnit
OnEncryptBlock
OnDecryptBlock
OnCryptoReset

Please see the Encryption topic for more information.

There are specific events for customizing the compression
in DBISAM:

OnCompress
OnDecompress

Please see the Compression topic for more information.

There is an EngineSignature property in the
TDBISAMENgine component that is used to create an MD5
hash that is assigned to every table, table stream, backup,
comms request and response, etc. This allows one to
"assign" tables, etc. to a specific application and prevent
any other application from accessing the tables, server,
etc. without the proper engine signature. Please see the
Customizing the Engine for more information.

All of the ANSI string conversion functions that used to be
in the dbisamlb unit are now public methods of the
TDBISAMENgine component:

Page 11



Before You Begin

Locale Functionality

Memory Usage

File Extensions

Locking

Page 12

DateToAnsiStr
TimeToAnsiStr
DateTimeToAnsiStr
AnsiStrToDate
AnsiStrToTime
AnsiStrToDateTime
BooleanToAnsiStr
AnsiStrToBoolean
FloatToAnsiStr
AnsiStrToFloat
CurrToAnsiStr
AnsiStrToCurr

There are new methods for working with the available
locales in DBISAM:

IsValidLocale
IsValidLocaleConstant
ConvertLocaleConstantToID
ConvertIDToLocaleConstant
GetLocaleNames

The amount of memory used for buffering tables can now
be controlled via the following properties:

MaxTableDataBufferSize
MaxTableDataBufferCount
MaxTableIndexBufferSize
MaxTableIndexBufferCount
MaxTableBlobBufferSize
MaxTableBlobBufferCount

Note

These properties used to be in the TDBISAMSession
component in 3.x and earlier and were only
applicable to the session for which they were
configured. The TDBISAMEngine properties above
are used for the all sessions in the application.

The file extensions to use for physical table files, table
backup files, and table upgrade backup files can be
specified via the following properties:

TableDataExtension
TableIndexExtension
TableBlobExtension
TableDataBackupExtension
TableIndexBackupExtension
TableBlobBackupExtension
TableDataUpgradeExtension
TableIndexUpgradeExtension
TableBlobUpgradeExtension

The lock wait times and retry counts for table read, write,
and transaction locks can now be modified via the



Before You Begin

following properties:

TableReadLockTimeout
TableWriteLockTimeout
TableTransLockTimeout

Triggers You can now define trigger event handlers that allow for
processing both before and after the execution of an
insert, update, or delete operation:

BeforelnsertTrigger
AfterInsertTrigger
BeforeUpdateTrigger
AfterUpdateTrigger
BeforeDeleteTrigger
AfterDeleteTrigger

Please see the Customizing the Engine topic for more
information.

Custom Functions You can now add custom functions for use with filters and
SQL statements. They can be used anywhere that a
normal, non-aggregate function would be used. All
arguments to the functions are required and there is no
facility currently for optional arguments. The Functions
property of the TDBISAMEngine component allows you to
specify the functions and their arguments, and the
OnCustomFunction event of the TDBISAMEngine
component allows you to implement the functions. Please
see the Customizing the Engine topic for more
information.

@ You can now use restricted transactions on a given database where only certain tables that you
specify are involved in the transaction. Please see the Transactions topic for more information.

@ There is a new TDBISAMEngine FilterRecordCounts property that controls how record counts are
returned for filtered datasets and live query result sets. The default value of this property is True,
which indicates that record counts under these circumstances will be returned in the same fashion
as they were in 3.x and earlier. If the FilterRecordCounts property is set to False, the RecordCount
property of the TDBISAMTable and TDBISAMQuery components will always show the total record
count of the entire dataset or active range (if a range is set) only and will not take any active filters
(or WHERE clauses with live query result sets) into account. To get the record count including any
active filters, a FilterRecordCount property has been added to the TDBISAMTable and
TDBISAMQuery components that always shows the accurate record count, regardless of the current
setting of the TDBISAMEngine FilterRecordCounts propety.

Setting the TDBISAMENgine FilterRecordCounts property to False may be desirable for some
applications since it allows for more accurate positioning of the scroll bar in a TDBGrid or similar
multi-row, data-aware components. Please see the Customizing the Engine and Setting Filters on
Tables topics for more information.

Page 13



Before You Begin

@ The TDBISAMSession component now has new remote administrative methods for
adding/updating/deleting server-side procedures and events:

GetRemoteProcedureNames
GetRemoteProcedure
AddRemoteProcedure
ModifyRemoteProcedure
DeleteRemoteProcedure
GetRemoteProcedureUserNames
GetRemoteProcedureUser
AddRemoteProcedureUser
ModifyRemoteProcedureUser
DeleteRemoteProcedureUser
GetRemoteEventNames
GetRemoteEvent
AddRemoteEvent
ModifyRemoteEvent
DeleteRemoteEvent

Please see the Server Administration topic for more information.

@ The TDBISAMSession component now has the ability to ping a database server using the
RemotePing and RemotePinglInterval properties. These properties eliminate the need for user-
constructed pinging operations using timers and are safe to use for the purpose of shortening dead
session expiration times that are configured on a database server and eliminating dangling
pessimistic locks when client workstations go down while connected.

= The TDBISAMSession component now has the capability to call a server-side procedure on a
database server using the CallRemoteProcedure method, the RemoteParams property, and the
RemoteParamByName method. Please see the Calling Server-Side Procedures topic for more
information.

@ The TDBISAMDatabase component has new backup and restore facilities available in the following
methods and events:

Backup
BackupInfo
Restore

OnBackupProgress
OnBackuplLog
OnRestoreProgress
OnRestorelLog
Please see the Backing Up and Restoring Databases topic for more information.

@ There is a new TableSize property for the TDBISAMTable component that reflects the total size (in
bytes) of the physical table on disk (or in-memory if an in-memory table).

@ The SQL SELECT statement now includes support for the EXCEPT [ALL] and INTERSECT [ALL] set
operations, in addition to the UNION [ALL] operation.

Page 14



Before You Begin

@ There are several new SQL statements available:

EMPTY TABLE
OPTIMIZE TABLE
EXPORT TABLE
IMPORT TABLE
VERIFY TABLE
REPAIR TABLE
UPGRADE TABLE
RENAME TABLE

@ There are several new filter and SQL functions:

STDDEV (aggregate, SQL-only)
CURRENT_GUID
YEARSFROMMSECS
DAYSFROMMSECS
HOURSFROMMSECS
MINSFROMMSECS
SECSFROMMSECS
MSECSFROMMSECS
LTRIM

RTRIM

REPEAT

CONCAT

MOD

ACOS

ASIN

ATAN

ATAN2

CEILING or CEIL
Cos

cot

DEGREES

EXP

FLOOR

LOG

LOG10

PI

POWER

RADIANS

RAND

SIGN

SIN

SQRT

TAN

TRUNCATE or TRUNC

Please see the SQL Reference Functions topic for more information.
@ The SQL engine can now use the numeric 1 (or anything not 0) and 0 to represent TRUE and FALSE,

respectively. This is helpful for compatibility with generic front ends, such as those used with the
ODBC driver.

Page 15



Before You Begin

Page 16

@ There is a new TDBISAMQuery OnQueryError event that can be used to trap SQL errors and decide

whether to abort an executing SQL statement or not. If an OnQueryError event handler is not
assigned, then any SQL errors will immediately surface as an EDBISAMEngineError exception in the
TDBISAMQuery component.

@ The TDBISAMQuery component now surfaces the OnAlterProgress, OnDatalLost, OnIndexProgress,

OnOptimizeProgress, OnRepairLog, OnRepairProgress, OnUpgradelLog, OnUpgradeProgress,
OnVerifyLog, and OnVerifyProgress events just like the TDBISAMTable component. The only
difference is these events are triggered when the corresponding SQL statement is executed instead

of being triggered by a method call, including situations where an SQL statement is executed within
a script.

@ There are new OnLoadFromStreamProgress and OnSaveToStreamProgress events in the

TDBISAMTable and TDBISAMQuery components for tracking the loading/saving progress of streams.



Using DBISAM

Chapter 2
Using DBISAM

2.1 DBISAM Architecture

Introduction

DBISAM is a database engine that can be compiled directly into your Delphi or C++ application, be it a
program or library, or it can be distributed as a runtime package (equivalent to a library) as part of your
application. DBISAM was written in Delphi's Object Pascal and can be used with the VCL (Windows only).

General Architecture

DBISAM itself is a lightweight engine encapsulated within the TDBISAMENngine component. When the
TDBISAMENgine EngineType property is set to etClient, the TDBISAMENngine component is acting as a local
client engine, and when the EngineType property is set to etServer, the TDBISAMEngine component is
acting as a database server.

Sessions

DBISAM is session-based, where a session is equivalent to a virtual user and is encapsulated within the
TDBISAMSession component. There can be many sessions active in a given application, such as is the case
with a multi-threaded application. In multi-threaded applications DBISAM requires a separate session for
each thread performing database access. Please see the Multi-Threaded Applications topic for more
information.

A DBISAM session can be either local or remote:

Session Type Description

Local A local session gains direct access to database tables via the
operating system API to a given storage medium, which can
literally be any such medium that is accessible from the
operating system in use. This means that a local session on
the Windows operating system could access database tables
on a Linux file server. DBISAM automatically provides for the
sharing of database tables using a local session. For example,
an application can use local sessions on a small peer-to-peer
network to provide a low-cost, multi-user solution without the
added expense of using the client-server version of DBISAM.
A local session has all of the capabilities of a remote session
except for user and database security, which are only
available from a database server. Also, with a local session a
directory is synonymous with a database, whereas with a
remote session databases are defined as part of the server
configuration and the DBISAM client does not know the actual
location of a given database.

Remote A remote session uses sockets to communicate to a database
server over a network (or on the same physical machine)
using the TCP/IP protocol. DBISAM allows a remote session to

Page 17



Using DBISAM

be entirely encrypted using strong crypto. Compression is also
available for remote sessions and can be changed whenever it
is deemed necessary in order to improve the data transfer
speed. This is especially important with low-bandwidth
connections like a dial-up Internet connection. A remote
session connects to a given database server via an IP address
or host name and one of two different ports, depending upon
whether the connection is a regular connection or an
administrative connection. Before a remote session can
perform any operation on a database server it must be logged
in with a proper user ID and password. If a remote session is
connecting to the administration port on a database server,
the user ID specified during the login must be that of an
administrator or the login will be rejected. Also, an
administrative connection must be encrypted or the database
server will reject the connection.

Note

A developer can mix as many local and remote sessions in one application as needed, thus enabling
a single application to access data from a local hard drive, a shared file server, or a database
server. Also, local and remote sessions are completely identical from a programming perspective,
offering both navigational and SQL access methods. The only changes needed to switch from local
access to remote access for a session component is the modification of the TDBISAMSession
SessionType property.

Database Server

The database server listens for regular data connections on one port and administrative connections on a
second port. All administrative connections must be encrypted or they will be rejected by the database
server. When the TDBISAMEngine Active property is set to True, the database server will start listening on
the IP addresses and ports indicated by the following properties:

ServerMainAddress
ServerMainPort
ServerAdminAddress
ServerAdminPort

If the either ServerMainAddress or ServerAdminAddress property is blank (the default), the database
server will listen on all IP addresses available for the type of connection (either regular or administrative).
The default ports are 12005 for the ServerMainPort property and 12006 for the ServerAdminPort property.
Once the server is started, you cannot change any of these properties, as well as several other properties.
Please see the Configuring and Starting the Server topic for more information.

The database server is a multi-threaded server that uses one thread per client connection, which
corresponds to a client TDBISAMSession component set to run as a remote session via the SessionType
property. DBISAM will cache threads and keep a pool of unused threads available in order to improve
connect/disconnect times. The following properties control the default thread cache size uses by the
database server:

ServerMainThreadCacheSize
ServerAdminThreadCacheSize

The default for the ServerMainThreadCacheSize property is 10 threads and the default for the

Page 18



Using DBISAM

ServerAdminThreadCacheSize property is 1. Both of these properties must be set before the engine is
started and cannot be changed when the engine is started.

"Dead" sessions in the database server are sessions that have been inactive for a connection timeout
period (configurable) due to lack of client session requests or due to a physical network interruption in
service. Such sessions retain their complete state from the time that the disconnect occurred. The sessions
remain in this state until:

@ The client session attempts another data request or pings the server, in which case the connection
will automatically be re-established transparently between the client session and the database
server.

@ The database server's dead session expiration time period (configurable) is reached and the
database server automatically removes the session.

@ The number of dead sessions on the database server reaches the maximum threshhold
(configurable), thus causing the database server to remove dead sessions in order to bring the
number back under the threshhold, oldest dead session first.

Note
The age of a dead session is determined by the last time that the session was connected to the
server.

Please see the Server Administration topic for more information on configuring these settings on the
server.

Note

You can configure the remote sessions on the client to ping the database server at regular intervals
via the TDBISAMSession RemotePing and RemotePingInterval properties. Configuring remote
sessions to ping the database server in a smaller time period than the connection timeout
configuration on the database server allows you to specify a smaller dead session expiration timeout
and prevent sessions with active locks from being left around for too long. With pinging turned on,
the only reason a session would be disconnected by the server is if the client workstation or the
physical network connection has failed.

You may have a database server (or several) accessing a given database at the same time as other local
applications such as CGI or ISAPI web server applications. This allows you to put critical server-side
processing on the server where it belongs without incurring a lot of unnecessary overhead that would be
imposed by the transport protocol of the database server. This can improve the performance of server-
based local applications significantly, especially when they reside on the same machine as the database
server and the databases being accessed are local to the server machine.

The database server allows you to configure all users, databases, server-side procedures, and scheduled
events via a remote administrative connection or directly via the TDBISAMEngine component. User security
at the database and server-side procedure level allows the configuration of read, execute, insert, update,
delete, create, alter, drop, rename, maintain, backup, and restore privileges for a specific user or users.
Additionally, you may allow or block specific IP addresses or ranges of IP addresses (using wildcards) for
access to a given database server. A maximum number of connections may be set to prevent too many
inbound connections to a given server. Because the database server does not actively establish any
communication with a client session and all communication is controlled by the client session, you do not
have issues with firewalls as long as the firewall allows for inbound access to the main port and/or
administration port on the server. Please see the Server Administration topic for more information.

Page 19



Using DBISAM

All connections, errors, and other operational messages are logged and can be retrieved at a later time by
an administrator for examination.

Databases and Directories

DBISAM uses the physical directories in the operating system'’s file system to represent databases. This is
true for both local sessions and remote sessions, however with remote sessions these directories are
abstracted through logical database names in the server configuration. This allows applications written to
use remote sessions connecting to a database server to be portable between different servers with
different directory layouts. DBISAM creates a single hidden file called "dbisam.Ick" (by default) in a
database directory that is used for locking. It is created as needed and may be deleted if not in use by
DBISAM. However, if DBISAM cannot write to this file it will treat the database as read-only. Please see
the Locking and Concurrency topic for more information.

Note
The default lock file name "dbisam.Ick" can be modified to any file name desired by modifying the
TDBISAMENgine LockFileName property.

Physical Table Layout

DBISAM tables are divided into up to 3 physical files, one for data records, one for indexes, and one for
BLOB data (if there are BLOB fields present in the table):

File Type Description

Data File Used to store a fixed-length header for table-wide definitions
such as the table description, field counts, autoinc values,
etc., the fixed-length field definitions for the table, and the
fixed-length data records themselves. The use of a fixed-
length header, field definitions, and data records allows for
easier verification and/or repair of tables in the case of
physical table corruption. Please see the Verifying and
Repairing Tables topic for more information. All data records
contain a small record header and the field data. BLOB fields
contains a link to the BLOB file where the actual variable-
length BLOB data is stored in a blocked format.

Index File Used to store a fixed-length header for index statistics, index
counts, etc., the fixed-length index definitions, and the fixed-
length index pages themselves. The index page size is
variable and can be set between 1024 bytes and 16 kilobytes
on a per-table basis. All index pages for all primary,
secondary, and full text indexes are stored in this file.

BLOB File Used to store a fixed-length header for BLOB statistics, etc.
and the fixed-length BLOB blocks themselves. The BLOB block
size is variable and can be set between 64 bytes and 64
kilobytes on a per-table basis. All BLOB blocks for all BLOB
fields are stored in this file.

The file extensions used for these physical files can be changed. Please see the Customizing the Engine
topic for more information. The default file extensions are as follows:

Page 20



Using DBISAM

File Type File Extension
Data File .dat
Index File .idx
BLOB File .blb

In addition, during certain operations such as altering a table's structure, backup files will be created for
the physical table files. The default backup file extensions are as follows:

File Type Backup File Extension
Data File .dbk
Index File .ibk
BLOB File .bbk

Finally, during the process of upgrading a table from a previous version's format to the latest format,
backup files will be created for the physical table files. The default backup file extensions for upgraded
tables are as follows:

File Type Upgrade Backup File Extension
Data File .dup
Index File .iup
BLOB File .bup

Please see the Upgrading Tables topic for more information.
Component Architecture

DBISAM includes the following components:

Component Description

TDBISAMENgine The TDBISAMEngine component encapsulates the DBISAM
engine itself. A TDBISAMEngine component is created
automatically when the application is started and can be
referenced via the global Engine function in the dbisamtb unit
(Delphi) and dbisamtb header file (C++). You can also drop a
TDBISAMEngine component on a form or data-module to
visually change its properties. However, only one instance of
the TDBISAMENgine component can exist in a given
application, and both the global Engine function and any
TDBISAMEngine component on a form or data module point
to the same instance of the component (singleton model).
The TDBISAMEngine component can be configured so that it
acts like a local or client engine (etClient) or a database
server via the EngineType property. The engine can be
started by setting the Active property to True.

TDBISAMSession The TDBISAMSession component encapsulates a session in

Page 21



Using DBISAM

TDBISAMDatabase

Page 22

DBISAM. A default TDBISAMSession component is created
automatically when the application is started and can be
referenced via the global Session function in the dbisamtb unit
(Delphi) and dbisamtb header file (C++). The
TDBISAMSession component can be configured so that it acts
like a local (stLocal) or a remote session (stRemote) via the
SessionType property. A local session is single-tier in nature,
meaning that all TDBISAMDatabase components connected to
the session reference directories in a local or network file
system via the Directory property and all TDBISAMTable or
TDBISAMQuery components access the physical tables directly
from these directories using operating system API calls. A
remote session is two-tier in nature, meaning that all access is
done through the remote session to a database server using
the DBISAM messaging protocol over a TCP/IP connection.
The database server is specified through the following
properties:

RemoteHost or RemoteAddress
RemotePort or RemoteService

In a remote session, all TDBISAMDatabase components
reference databases that are defined on the database server
via the RemoteDatabase property and all TDBISAMTable or
TDBISAMQuery components access the physical tables
through the DBISAM messaging protocol rather than directly
accessing them.

Note

You cannot activate remote sessions in an application
whose TDBISAMEngine component is configured as a
database server via the EngineType property.

A session can be started by setting the Active property to True
or by calling the Open method. The TDBISAMSession
component contains a SessionName property that is used to
give a session a name within the application. All sessions must
have a name before they can be started. The default
TDBISAMSession component is called "Default”. The
TDBISAMDatabase, TDBISAMTable, and TDBISAMQuery
components also have a SessionName property and these
properties are used to specify which session these
components belong to. Setting their SessionName property to
"Default" or blank ("") indicates that they will use the default
TDBISAMSession component. Please see the Starting Sessions
topic for more information.

The TDBISAMDatabase component encapsulates a database
in DBISAM. It is used as a container for a set of tables in a
physical directory for local sessions or as a container for a set
of tables in a database on a database server for remote
sessions. Please see the Server Administration topic for more
information on defining databases on a database server. A
database can be opened by setting the Connected property to



TDBISAMTable

TDBISAMQuery

Using DBISAM

True or by calling the Open method. A TDBISAMDatabase
component contains a DatabaseName property that is used to
give a database a name within the application. All databases
must have a name before they can be opened. The
TDBISAMTable and TDBISAMQuery components also have a
DatabaseName property and these properties are used to
specify which database these components belong to. Please
see the Opening Tables topic for more information.

The TDBISAMDatabase Directory property indicates the
physical location of the tables used by the TDBISAMTable and
TDBISAMQuery components. If a TDBISAMDatabase
component is being used with a local session (specified via
the SessionName property), then its Directory property should
be set to a valid physical path for the operating system in use.

The TDBISAMDatabase RemoteDatabase property indicates
the name of a database defined on a database server. If a
TDBISAMDatabase component is connected to a remote
session (specified via the SessionName property), then its
RemoteDatabase property should be set to a valid database
for the database server that the session is connected to.

The TDBISAMDatabase component is used for transaction
processing via the StartTransaction, Commit, and Rollback
methods. Please see the Transactions topic for more
information.

You can backup and restore databases via the Backup,
BackupInfo, Restore methods. Please see the Backing Up and
Restoring Databases topic for more information.

The TDBISAMTable component encapsulates a table cursor in
DBISAM. It is used to search and update data within the
physical table specified by the TableName property, as well as
create the table or alter its structure. A table cursor can be
opened by setting the Active property to True or by calling the
Open method. The DatabaseName property specifies the
database where the table resides. Please see the Opening
Tables topic for more information.

The TDBISAMTable component descends from the
TDBISAMDBDataSet component, which descends from the
TDBISAMDataSet component, which descends from the
common TDataSet component that is the basis for all data
access in Delphi and C++. None of these lower-level
components should be used directly and are only for internal
structuring purposes in the class hierarchy.

You can have multiple TDBISAMTable components using the
same physical table. Each TDBISAMTable component
maintains its own active index order, filter and range
conditions, current record position, record count statistics, etc.

The TDBISAMQuery component encapsulates a single SQL
statement or multiple SQL statements in DBISAM. These SQL
statements may or may not return a result set. It is used to

Page 23



Using DBISAM

Note

search and update data within the physical tables specified by
the SQL statement or statements in the SQL property. An SQL
statement or statements can be executed by setting the
Active property to True, by calling the Open method (for SQL
statements that definitely return a result set), or by calling the
ExecSQL method (for SQL statements that may or may not
return a result set). The DatabaseName property specifies the
database where the table or tables reside. Please see the
Executing SQL Queries topic for more information.

The TDBISAMQuery component descends from the
TDBISAMDBDataSet component, which descends from the
TDBISAMDataSet component, which descends from the
common TDataSet component that is the basis for all data
access in Delphi and C++. None of these lower-level
components should be used directly and are only for internal
structuring purposes in the class hierarchy.

You can have multiple TDBISAMQuery components using the
same physical table. Each TDBISAMQuery component
maintains its own result set filter and range conditions,
current record position, record count statistics, etc.

Opening a TDBISAMTable or TDBISAMQuery component will automatically cause its corresponding
TDBISAMDatabase component to open, which will also automatically cause its corresponding
TDBISAMSession component to start, which will finally cause the TDBISAMEngine to start. This
design ensures that the necessary connections for a session, database, etc. are completed before
the opening of the table or query is attempted.

Page 24



Using DBISAM

2.2 Data Types and NULL Support

Introduction

DBISAM supports the most common data types available for the Delphi and C++ development products as
well as the SQL language. Below you will find a listing of the data types with a brief description, their
Delphi and C++ equivalent TFieldType type and TField object, and their SQL data type.

Note

The TFieldType type is also used with the TDBISAMFieldDef, TDBISAMParam, and

TDBISAMFunctionParam objects.

Data Type
String

FixedChar

GUID

Bytes

Description

String fields are fixed in length and can store up to 512
characters in a single field. Trailing blank spaces are
automatically trimmed from any strings entered into string
fields. Internally, String fields are stored as a NULL-
terminated string. String fields can be indexed using normal
indexes as well as full text indexing. The equivalent Delphi
and C++ TFieldType is ftString, the TField object used for
String fields is the TStringField object, and the equivalent SQL
data type is the VARCHAR type. The SQL VARCHAR data type
is specified as:

VARCHAR(<number of characters>)

FixedChar fields are basically the same as string fields with
the exception that trailing blank spaces are not automatically
removed from any strings entered into them. The equivalent
Delphi and C++ TFieldType is also ftString, but the
TStringField object that represents a FixedChar field will have
its FixedChar property set to True. The equivalent SQL data
type is either the CHAR or CHARACTER type. The SQL CHAR
and CHARACTER data types are specified as:

CHAR(<number of characters>) or
CHARACTER(<number of characters>)

GUID fields are basically the same as string fields with the
exception that they are fixed at 38 bytes in length and are
always used to store the string representation of a GUID
value. The equivalent Delphi and C++ TFieldType is ftGuid,
the TField object used for GUID fields is the TGuidField object,
and the equivalent SQL data type is GUID.

Bytes fields are fixed in length and can store up to 512 bytes
in a single field. Bytes fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftBytes, the TField object used for Bytes fields is the
TBytesField object, and the equivalent SQL data type is
BYTES, VARBYTES, BINARY, or VARBINARY. The SQL BYTES,
VARBYTES, BINARY, OR VARBINARY data type is specified as:

Page 25



Using DBISAM

Blob

Memo

Graphic

Date

Time

TimeStamp

Boolean

Page 26

BYTES(<number of characters>)

Blob fields are variable in length and may contain up to 2
gigabytes of data. The data stored in Blob fields is not typed
or interpreted in any fashion. Blob fields are stored in a
blocked fashion internally in the physical BLOB file that is part
of a logical DBISAM table. Blob fields cannot be indexed in
any fashion. The equivalent Delphi and C++ TFieldType is
ftBlob, the TField object used for Blob fields is the TBlobField
object, and the equivalent SQL data type is either the BLOB or
LONGVARBINARY type.

Memo fields are variable in length and may contain up to 2
gigabytes of data minus a NULL terminator. The data stored
in Memo fields is always text. Memo fields are stored in a
blocked fashion internally in the physical BLOB file that is part
of a logical DBISAM table. Memo fields cannot be indexed
using normal indexes, but can be indexed using full text
indexing. The equivalent Delphi and C++ TFieldType is
ftMemo, the TField object used for Memo fields is the
TMemoField object, and the equivalent SQL data type is either
the MEMO or LONGVARCHAR type.

Graphic fields are variable in length and may contain up to 2
gigabytes of data. The data stored in Graphic fields is not
typed or interpreted in any fashion, however it is identified in
a special way to allow for Delphi and C++ to perform special
type-assignments with bitmap and other graphic objects.
Graphic fields are stored in a blocked fashion internally in the
physical BLOB file that is part of a logical DBISAM table.
Graphic fields cannot be indexed in any fashion. The
equivalent Delphi and C++ TFieldType is ftGraphic, the TField
object used for Graphic fields is the TGraphicField object, and
the equivalent SQL data type is the GRAPHIC type.

Date fields contain dates only. Internally, Date fields are
stored as a 32-bit integer representing cumulative days. Date
fields can be indexed using normal indexes only. The
equivalent Delphi and C++ TFieldType is ftDate, the TField
object used for Date fields is the TDateField object, and the
equivalent SQL data type is DATE.

Time fields contain times only. Internally, Time fields are
stored as a 32-bit integer representing cumulative
milliseconds. Time fields can be indexed using normal indexes
only. The equivalent Delphi and C++ TFieldType is ftTime,
the TField object used for Time fields is the TTimeField object,
and the equivalent SQL data type is TIME.

TimeStamp fields contain both a date and a time. Internally,
TimeStamp fields are stored as a 64-bit floating-point number
(a double) representing cumulative milliseconds. TimeStamp
fields can be indexed using normal indexes only. The
equivalent Delphi and C++ TFieldType is ftDateTime, the
TField object used for TimeStamp fields is the TDateTimeField
object, and the equivalent SQL data type is TIMESTAMP.

Boolean fields contain logical True/False values. Internally,



SmallInt

Word

Integer

Autolnc

Largelnt

Float

Currency

Using DBISAM

Boolean fields are stored as a 16-bit integer. Boolean fields
can be indexed using normal indexes only. The equivalent
Delphi and C++ TFieldType is ftBoolean, the TField object
used for Boolean fields is the TBooleanField object, and the
equivalent SQL data type is BOOLEAN, BOOL, or BIT
(compatibility syntax, BOOLEAN or BOOL is preferred).

SmallInt fields contain 16-bit, signed, integers and are stored
internally as such. SmallInt fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftSmallInt, the TField object used for SmallInt fields is the
TSmallIntField object, and the equivalent SQL data type is
SMALLINT.

Word fields contain 16-bit, unsigned, integers and are stored
internally as such. Word fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftWord, the TField object used for Word fields is the
TWordField object, and the equivalent SQL data type is
WORD.

Integer fields contain 32-bit, signed, integers and are stored
internally as such. Integer fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftInteger, the TField object used for Integer fields is the
TIntegerField object, and the equivalent SQL data type is
INTEGER or INT.

Autolnc fields contain 32-bit, signed, integers and are stored
internally as such. Autolnc fields are always editable and you
may have more than one Autolnc field per record, with each
field incrementing independently. AutoInc fields will increment
if you are appending or inserting a record and a value is not
specified for the field (field is NULL) when the Post operation
occurs, and will leave any existing value alone if one is
already specified. Autolnc fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftAutoInc, the TField object used for Autolnc fields is the
TAutolncField object, and the equivalent SQL data type is
AUTOINC.

Largelnt fields contain 64-bit, signed, integers and are stored
internally as such. Largelnt fields can be indexed using
normal indexes only. The equivalent Delphi and C++
TFieldType is ftLargelnt, the TField object used for Largelnt
fields is the TLargelntField object, and the equivalent SQL
data type is LARGEINT.

Float fields contain 64-bit floating-point numbers (doubles)
and are stored internally as such. Float fields can be indexed
using normal indexes only. The equivalent Delphi and C++
TFieldType is ftFloat, the TField object used for Float fields is
the TFloatField object, and the equivalent SQL data type is
FLOAT.

Currency fields are the same as Float fields except they are
identified in a special way to allow for Delphi and C++ to
format their values as monetary values when displayed as
strings. The equivalent Delphi and C++ TFieldType is

Page 27



Using DBISAM

ftCurrency, the TField object used for Currency fields is the
TCurrencyField object, and the equivalent SQL data type is
MONEY.

Note

Don't confuse the Currency field type with the Currency
data type found in Delphi and C++. The Currency field
type is essentially still a floating-point number and is
not always good for storing exact monetary values,
whereas the Currency data type is a fixed-point data
type that minimizes rounding errors in monetary
calculations. If you wish to have accurate financial
figures that use up to 4 decimal places stored in
DBISAM tables then you should use the BCD data type
described next.

BCD BCD fields contain a 34-byte TBcd type and are stored
internally as such. DBISAM always uses a maximum precision
of 20 significant digits with BCD numbers, and the maximum
scale is 4 decimal places. BCD fields can be indexed using
normal indexes only. The equivalent Delphi and C++
TFieldType is ftBCD, the TField object used for BCD fields is
the TBCDField object, and the equivalent SQL data type is
NUMERIC OR DECIMAL. The SQL NUMERIC or DECIMAL data
type is specified as:

NUMERIC(<precision>,<scale>)

NULL Support

The rules for NULL support in DBISAM are as follows:

« If a field has not been assigned a value and was not defined as having a default value in the table
structure, it is NULL.

» As soon as a field has been assigned a value it is not considered NULL anymore. String, FixedChar,
GUID, Blob, Memo, and Graphic fields are an exception this rule. When you assign a NULL value (empty
string) to a String, FixedChar, or GUID field the field will be set to NULL. When the contents of a Blob,
Memo, or Graphic field are empty, i.e. the length of the data is 0, the field will be set to NULL.

o If the Clear method of a TField object is called the field will be set to NULL.

* NULL values are treated as separate, distinct values when used as an index key. For example, let's say
that you have a primary index comprised of one Integer field. If you had a field value of 0 for this Integer
field in one record and a NULL value for this Integer field in another record, DBISAM will not report a key
violation error. This is a very important point and should be considered when designing your tables. As a
general rule of thumb, you should always provide values for fields that are part of the primary index.

* Any SQL or filter expression involving a NULL value and a non-NULL value will result in a NULL result. For
example:

100.52 * NULL = NULL

Page 28



10 + 20 + NULL = NULL

Using DBISAM

The exception to this rule is when concatenating a string value with a NULL. In this case the NULL value is

treated like an empty string. For example:

'Last Name is ' + NULL = 'Last Name is '

Note

String, FixedChar, or GUID field types in DBISAM treat empty strings as equivalent to NULL, and
vice-versa, in any filter or SQL expressions.

NULLs with SQL and Filter Operators

The following pseudo-expressions demonstrate the rules regarding NULLs (not empty strings) and the

various SQL and filter operators:

Expression

Column = NULL

Column <> NULL

Column >= NULL

Column <= NULL

Column > NULL

Column < NULL

Column BETWEEN NULL AND NULL

Column BETWEEN NULL AND <non-null
value>

Column BETWEEN <non-null value>
AND NULL

Result

Returns True if the column is NULL, False, if not
Returns True if the column is not NULL, False if it is
Returns True if the column is NULL, False if not
Returns True if the column is NULL, False if not
Returns False

Returns False

Returns True if the column is NULL, False if not

Returns False

Returns False

The rules are slightly different for String, FixedChar, and GUID expressions due to the fact that DBISAM
treats empty strings as equivalent to NULL, but also as a valid non-NULL empty string. The following
pseudo-expressions demonstrate the rules regarding empty strings and the various SQL and filter

operators:

Expression

Result

Page 29



Using DBISAM

Column ="

Column <>

Column >="

Column <="

Column > "
Column <"

Column BETWEEN " AND "

Column BETWEEN " AND <non-empty
string>

Column BETWEEN <non-empty string>
AND "

Note

Returns True if the column is NULL or equal to an empty
string, False, if not

Returns True if the column is not NULL or not equal to an
empty string, False if it is

Returns True if the column is NULL, equal to an empty string,
or greater than an empty string, False if not

Returns True if the column is NULL or equal to an empty
string, False if not

Returns True if the column is greater than an empty string
Returns False

Returns True if the column is NULL or equal to an empty
string, False if not

Returns True if the column is NULL, equal to an empty string,
or greater than an empty string, False if not

Returns False

The IN and LIKE operators use the same rules as the equivalency (=) operator. The IN operator
behaves as if there are a series of equivalency tests joined together by OR operators.

Page 30



Using DBISAM

2.3 Exception Handling and Errors

Introduction

One of the first items to address in any application, and especially a database application, is how to
anticipate and gracefully handle exceptions. This is true as well with DBISAM. Fortunately, Delphi and C++
both provide elegant exception types and handling. DBISAM uses this exception handling architecture and
also expands upon it in several important ways. In certain situations DBISAM will intercept exceptions and
trigger events in order to allow for the continuation of a process without the interruption that would occur
if the exception were allowed to propagate through the call stack.

DBISAM Exception Types

DBISAM primarily uses the EDBISAMENgineError object as its exception object for all engine errors. This
object descends from the EDatabaseError exception object defined in the common DB unit, which itself
descends from the common Exception object. This hierarchy is important since it allows you to isolate the
type of error that is occurring according to the type of exception object that has been raised, as you will
see below when we demonstrate some exception handling.

Note

DBISAM also raises certain component-level exceptions as an EDatabaseError to maintain
consistency with the way the common DB unit and TDataSet component behaves. These mainly
pertain to design-time property modifications, but a few can be raised at runtime also.

The EDBISAMEngineError object contains several important properties that can be accessed to discover
specific information on the nature of the exception. The ErrorCode property is always populated with a
value which indicates the error code for the current exception. Other properties may or may not be
populated according to the error code being raised, and a list of all of the error codes raised by the
DBISAM engine along with this information can be found in Appendix B - Error Codes and Messages.

Exception Handling

The most basic form of exception handling is to use the try..except block (Delphi) or try..catch (C++) to
locally trap for specific error conditions. The error code that is returned when an open fails due to access
problem is 11013, which is defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). The following example shows how to trap for such an exception on open and display an
appropriate error message to the user:

begin
with MyDBISAMTable do

begin
DatabaseName:='c:\testdata';
TableName:='customer';
Exclusive:=True;
ReadOnly:=False;
try

Open;
except

on E: Exception do

begin

Page 31



Using DBISAM

if (E is EDatabaseError) and (E is EDBISAMEngineError) then
begin
if (EDBISAMEngineError (E) .ErrorCode=DBISAM OSEACCES) then
ShowMessage ('Cannot open table '+TableName+
', another user has the table open already')
else
ShowMessage ('Unknown or unexpected '+
'database engine error # '+
IntToStr (EDBISAMEngineError (E) .ErrorCode)) ;
end
else
ShowMessage ('Unknown or unexpected '+
'error has occurred');
end;
end;
end;
end;

Exception Events

Besides trapping exceptions with a try..except or try..catch block, you may also use a global

TApplication.OnException event handler to trap database exceptions. However, doing so will eliminate the
ability to locally recover from the exception and possibly retry the operation or take some other course of
action. There are several events in DBISAM components that allow you to code event handlers that
remove the necessity of coding try..except or try..catch blocks while still providing for local recovery.

These events are as follows:

Event
OnEditError

OnDeleteError

OnPostError

OnQueryError

Page 32

Description

This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Edit method . The usual
cause of an error is a record lock failure if the current session
is using the pessimistic locking protocol (the default). Please
see the Updating Tables and the Locking and Concurrency
topics for more information on using this event and the
DBISAM locking protocols.

This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Delete method. The
usual cause of an error is a record lock failure (a record lock is
always obtained before a delete regardless of the locking
protocol in use for the current session). Please see the
Updating Tables and Query Result Sets and the Locking and
Concurrency topics for more information on using this event
and the DBISAM locking protocols.

This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Post method. The usual
cause of an error is a key violation for a unique index or the
violation of a table constraint, however it can also be
triggered by a record lock failure if the locking protocol for the
current session is set to optimistic. Please see the Updating
Tables and the Locking and Concurrency topics for more
information on using this event and the DBISAM locking
protocols.

This event is triggered when an error occurs during the



OnDatalost

Using DBISAM

preparation or execution of an SQL statement or script via the
TDBISAMQuery ExecSQL or Open methods. If this event is
assigned an event handler then it will get triggered and the
event handler will have the option of aborting the current SQL
statement or script. If this event is not assigned an event
handler then this event will not be triggered and the
exception will be raised.

This event is triggered when an error occurs during the
alteration of a table's structure via the TDBISAMTable
AlterTable or AddIndex methods, or via the execution of the
ALTER TABLE or CREATE INDEX SQL statements by the
TDBISAMQuery ExecSQL method. An error can be caused by
key violations, field deletions, field conversion problems, table
constraint failures, and any other type of problem during
these operations. The OnDataLost event allows you to react to
these errors by cancelling the current operation, continuing,
or continuing without triggering this event anymore.

The above events are all based in the TDBISAMTable or TDBISAMQuery components, and are mainly
geared toward application-level exception handling. There is a lower level of exception handling available
also in the following TDBISAMEngine events:

Event

OnlnsertError

OnUpdateError

OnDeleteError

Note

Description

This event is triggered whenever an exception occurs during
the insertion of any record in any table. The event handler for
this event can choose to retry, abort, or fail the insert
operation that raised the exception.

This event is triggered whenever an exception occurs during
the update of any record in any table. The event handler for
this event can choose to retry, abort, or fail the update
operation that raised the exception.

This event is triggered whenever an exception occurs during
the deletion of any record in any table. The event handler for
this event can choose to retry, abort, or fail the delete
operation that raised the exception.

If any exception is raised in an BeforelnsertTrigger, AfterInsertTrigger, BeforeUpdateTrigger,
AfterUpdateTrigger, BeforeDeleteTrigger, or AfterDeleteTrigger event, the exception will be
converted into an EDBISAMEngineError exception object with an error code of
DBISAM_TRIGGERERROR. The original exception's error message will be assigned to the
ErrorMessage property of the EDBISAMEngineError exception object, as well as be included as part
of the error message in the EDBISAMEngineError exception object itself.

Page 33



Using DBISAM

2.4 Configuring and Starting the Server

Introduction

There are no extra steps required in order to use the TDBISAMEngine component in DBISAM as a client
engine since the default value of the EngineType property is etClient. However, in order to use the
TDBISAMENgine component in DBISAM as a database server you will need to make some property
changes before starting the engine.

Configuration Properties

The TDBISAMENngine component has several key properties that are used to configure the database
server, which are described below in order of importance:

Property Description

EngineType In order to start the TDBISAMEngine component as a
database server, you must set this property to etServer.

EngineSignature Normally this property is left at the default value. However, if
you do choose to change this property, you must make sure
that it is set to desired value before starting the server. The
default value is "DBISAM_SIG". Please see the Customizing
the Engine topic for more information.

ServerName This property is used to identify the database server to
external clients once they have connected to the database
server. The default value is "DBSRVR".

ServerDescription This property is used in conjunction with the ServerName
property to give more information about the database server
to external clients once they have connected to the database
server. The default value is "DBISAM Database Server".

ServerMainAddress This property specifies the IP address that the database
server should bind to when listening for regular incoming data
connections. The default value is blank (""), which specifies
that the database server should bind to all available IP
addresses.

ServerMainPort This property specifies the port that the database server
should bind to when listening for regular incoming data
connections. The default value is 12005.

ServerMainThreadCacheSize This property specifies the number of threads that the
database server should actively cache for regular data
connections. When a thread is terminated on the server it will
be added to this thread cache until the number of threads
cached reaches this property value. This allows the database
server to re-use the threads from the cache instead of having
to constantly create/destroy the threads as needed, which can
improve the performance of the database server if there are
many connections and disconnections occurring. The default
value is 10.

Page 34



ServerAdminAddress

ServerAdminPort

ServerAdminThreadCacheSize

ServerEncryptedOnly

ServerEncryptionPassword

ServerConfigFileName

Using DBISAM

This property specifies the IP address that the database
server should bind to when listening for incoming
administrative connections. The default value is blank ("),
which specifies that the database server should bind to all
available IP addresses.

This property specifies the port that the database server
should bind to when listening for incoming administrative
connections. The default value is 12006.

This property specifies the number of threads that the
database server should actively cache for administrative
connections. The default value is 1.

This property specifies whether all incoming regular data
connections should be encrypted or not. If this property is set
to True, then all incoming regular data connections to the
database server that are not encrypted will be rejected with
the error code 11277, which is defined as
DBISAM_REMOTEENCRYPTREQ in the dbisamcn unit (Delphi)
or dbisamcn header file (C++). The default value is False.

Note

Administrative connections to the database server must
always encrypted and will be rejected if they are not
encrypted, regardless of the current value of this

property.

This property specifies the password to use for all encrypted
connections. If an incoming encrypted connection does not
use a password that matches this value of this property, the
database server will return the error code 11308, which is
defined as DBISAM_REMOTEINVREQUEST in the dbisamcn
unit (Delphi) or dbisamcn header file (C++), when any call to
the database server is attempted after the connection is
made. The default value is "elevatesoft".

Note

If you intend to use encrypted connections to a
database server over a public network then you should
always use a different encryption password from the
default password.

This property specifies the name of the configuration file that
the database server will use for storing all server configuration
information including users, databases, server-side
procedures, user rights, and scheduled events. This file is
compressed and encrypted, and a backup is made, with the
extension ".scb", any time a modification is made. The default
value is "dbsrvr.scf".

Page 35



Using DBISAM

Note

Any new configuration file name specified via this
property will be given the default extension of ".scf"
automatically.

ServerConfigPassword This property specifies the password to use to encrypt the
contents of the server configuration file. This ensures that if
someone does obtain physical access to the configuration file
that they will still be unable to read its contents, especially
user names and passwords, without this password.

Note
All of the properties of the TDBISAMEngine component described above can only be modified when
the Active property is False and the engine has not been started.

Starting the Server

Once you have configured the database server using the above properties, starting the server is quite
simple. All you need to do is set the Active property to True. The following shows an example of how one
might configure and start a database server using the default global Engine function in the dbisamtb unit
(Delphi) or dbisamtb header file (C++):

with Engine do
begin
ServerName:="'MyTestServer';
ServerDescription:='My Test Server';
{ Only listen on this IP address }
ServerMainAddress:='192.168.0.1";
ServerConfigFileName:="'mytest.scf';
ServerConfigPassword:="test123456";
Active:=True;
end;

Note
You can also use the TDBISAMENgine OnStartup event to configure the TDBISAMEngine component
before it is started.

Default Login Information

The default user ID and password for the database server are:

User ID: Admin (case-insensitive)
Password: DBAdmin (case-sensitive)

This user has full administrator privileges and is widely known, so it is recommended that you delete it as
a user once you have established another administrative user on the database server.

Page 36



Using DBISAM

Database Servers Provided with DBISAM

DBISAM comes with an application (GUI) database server project for Delphi called dbsrvr.dpr and a
command-line (console) database server project for Delphi called dbcmd.dpr. You can examine the source
code of these projects to see how you would go about setting up a TDBISAMEngine component as a
database server in a project. Both of these projects are also provided in compiled form with DBISAM.

Note

If you wish to run either database server, either as a normal application or a Windows service, you
must copy the desired database server executable into a directory with read/write permissions,
based upon the user account under which you wish to run the database server, and run it from that
directory. This requirement is due to the fact that the database server writes its log and
configuration files to the directory where the database server executable is located. This is a legacy
behavior that is not compatible with running the database server from the default installation
directory in the default \Program Files (x86) sub-tree.

The dbsrvr database server can be run as a normal application or as a Windows service. When running the
dbsrvr database as a normal application, the server will display an icon in the system tray that can be
right-clicked to obtain general information about the server, as well as start and stop the server. You can
find the dbsrvr database server in the \servers\dbsrvr sub-directory under the main installation directory
for the version of DBISAM that you installed.

If you wish to run the dbsrvr database server as a Windows service you must first install it as a service by
running the database server with the /install command-line switch set. For example, to install the database
server as a service using a command prompt window under Windows (2000 or higher) you would specify
the following command:

dbsrvr.exe /install

To uninstall the dbsrvr database server as a Windows service you must run the database server with the
/uninstall command-line switch set. For example, to uninstall the dbsrvr database server as a service using
a command-prompt window under Windows (2000 or higher) you would specify the following command:

dbsrvr.exe /uninstall

Note

You must run the above commands while logged in as an Administrator, or they will not succeed
and you will see an "Access Denied" error message. Also, the dbsrvr database server will not display
an icon in the system tray, nor will it display a user interface, when run as a Windows service.
Recent versions of Windows restrict services from interacting with the desktop in order to permit
them to run in non-GUI server environments.

After installing the dbsrvr database server as a Windows service, you can run the database server by
starting the service interactively via the Windows Services management console, or by using the net start
command-line command:

Page 37



Using DBISAM

net start dbsrvr

You can stop the database service interactively via the Windows Services management console, or by
using the net stop command-line command:

net stop dbsrvr

The dbcmd database server can only be run as a normal (console) application. You can find the dbcmd
database server in the \servers\dbcmd sub-directory under the main installation directory for the version

of DBISAM that you installed.

The database servers will accept commmand-line switches that affect their behavior. The following
switches are supported when starting up either database server:

Switch

/sn

/sd

/sa

/sp

/st

Page 38

Description

Server name parameter

The /sn switch specifies the user-defined server name that
will be used to identify the server to remote sessions. You
must enclose the server name in double quotes if there are
spaces in the server name. The server name is informational
only.

Server description parameter

The /sd switch specifies the user-defined server description
that will be displayed in the caption of the server's user
interface. You must enclose the server description in double
quotes if there are spaces in the server description. The
server description is informational only.

Server address parameter

The /sa switch specifies the main server IP address that the
server will bind to for accepting inbound data connections.
The IP address must be specified directly after the /sp switch
using dot notation (i.e. 192.168.0.1). The default IP address
that the server will bind to if this switch is not specified is all
IP addresses available on the machine. Using this option will
cause the server to only listen on the specified address. This
means that it will no longer listen on the local loopback
127.0.0.1 address.

Server port parameter

The /sp switch specifies the main server port that the server
will bind to for accepting inbound data connections. The port
number must be specified directly after the /sp switch. The
default main port that the server will bind to if this switch is
not specified is 12005.

Server thread cache size parameter

The /st switch specifies the main server thread cache size.



/aa

/ap

/at

/cf

/cp

Using DBISAM

The thread cache size controls how many threads the server
will cache in order to speed up connect/disconnect times. The
thread cache size must be specified directly after the /st
switch. The default main thread cache size that the server will
use if this switch is not specified is 10.

Administration address parameter

The /aa switch specifies the administration server IP address
that the server will bind to for accepting administrative
connections. The IP address must be specified directly after
the /aa switch using dot notation (i.e. 192.168.0.1). The
default administration IP address that the server will bind to if
this switch is not specified is all IP addresses available on the
machine. Using this option will cause the server to only listen
on the specified address. This means that it will no longer
listen on the local loopback 127.0.0.1 address.

Administration port parameter

The /ap switch specifies the administration server port that
the server will bind to for accepting administrative
connections. The port number must be specified directly after
the /ap switch. The default administration port that the server
will bind to if this switch is not specified is 12006.

Administration thread cache size parameter

The /at switch specifies the administration server thread
cache size. The thread cache size controls how many threads
the server will cache in order to speed up connect/disconnect
times. The thread cache size must be specified directly after
the /at switch. The default administration thread cache size
that the server will use if this switch is not specified is 1.

Configuration file name parameter

The /cf switch specifies the server configuration file name.
The configuration file is where the server stores all
configuration information including databases, users,
permissions, etc. You must enclose the configuration file
name in double quotes if there are spaces in the configuration
file name. Do not specify a file extension for the file since the
server always uses the ".scf" extension for all configuration
files. The default configuration file name that the server will
use if this switch is not specified is "dbsrvr".

Configuration file password parameter

The /cp switch specifies the server configuration file
password. The configuration file password is used to encrypt
the contents of the configuration file. You must enclose the
configuration file password in double quotes if there are
spaces in the configuration file password. The default
configuration file password that the server will use if this
switch is not specified is "elevatesoft".

Page 39



Using DBISAM

Note

Do not lose this password. If you do the server will not
be able to read the configuration information and there
is no way for Elevate Software to retrieve the
configuration information.

/en Encrypted connections only parameter

The /en switch specifies that the main server will require
encrypted connections only. By default the administration
server always requires encypted connections, but normally
encrypted connections are not required for the main server.

/ep Encrypted connnection password parameter

The /ep switch specifies the password to use for encrypting all
data between any remote sessions and the main and
administration server. This switch can be specified without the
above /en switch to change the password for encrypted
connections to the administration server only. If combined
with the above switch, this switch will change the password
for encrypted connections to both the main server and the
administration server. You must enclose the encryption
password in double quotes if there are spaces in the
encryption password. The default encryption password that
the server will use if this switch is not specified is
"elevatesoft".

Note

If this password is not set to the same value that is
used by the remote sessions connecting to either the
main or administration server, the remote sessions will
receive errors and not be able to connect to the server
at all.

/al Append to log parameter

The /al switch specifies that the server should append to any
existing server log file when the server process is started. The
default behavior is to overwrite the log every time the server
process is started.

The only difference between starting the dbsrvr database server as a normal application and starting the
dbsrvr database server as a Windows service is in the way the switches are specified. When the dbsrvr
database server is started as a normal application, you may specify the switches directly on the command-
line that you are using to start the database server. For example the following command will start the
dbsrvr database server using port 13000 for the main port and 13001 for the administration port:

dbsrvr.exe /spl3000 /apl3001

Page 40



Using DBISAM

When the dbsrvr database server is started as a Windows service, you may specify the switches via the
Startup Parameters in the properties for the service in the Services management console, or directly on
the command-line that you are using to start the dbsrvr database server with the net start command. For
example the following command will start the database server as a service with it using port 13000 for the
main port and 13001 for the administration port:

net start dbsrvr /spl3000 /apl3001

Note
In order to start the dbsrvr database server as a Windows service the database server must have
already been installed as a service using the /install command-line switch.

In addition to using command-line parameters, you may also use an .ini file to specify the parameters for
the database server. The following is a sample .ini file that can be used with either the dbsrvr or dbcmd
database servers:

; Sample DBISAM Database Server Parameters INI File

[Server Parameters]

; Default server name is the EXE name

Server Name=Test Server

; Default server description is DBISAM Database Server

; plus the Server Name

Server Description=Test Server Description

; Default server IP address is all addresses on the machine
Server Address=127.0.0.1

; Default server port is 12005

Server Port=10001

; Default server thread cache size is 10

Server Thread Cache Size=20

; Default admin IP address is all addresses on the machine
Administration Address=127.0.0.1

; Default admin port is 12006

Administration Port=10002

; Default admin thread cache size is 1

Administration Thread Cache Size=4

; Default configuration file name is dbsrvr
Configuration File=Test

; Default configuration file password is elevatesoft
Configuration Password=cannotguessme

; O=main server allows unencrypted connections (default)
; l=main server allows only encrypted

Encrypted Only=0

; Default encryption password is elevatesoft

Encryption Password=cannotguessme

; O=overwrite log file (default) l=append to log file
Append To Log=0

; SQL performance logging
; 0=no SQL performance logging (default) 1=log all statements with execution

times above the min execution time (below)
SQL Performance Tracking=0

Page 41



Using DBISAM

; Minimum execution time, in seconds, required before an SQL statement is
logged (default is 30 seconds)

Min SQL Performance Execution Time=30

; SQL performance log file name

SQL Performance File Name=

; Max SQL performance log file size (default is 128MB)

Max SQL Performance File Size=134217728

; 0=no auto-incrementing of SQL performance log file name l=auto-increment
SQL performance log file name

Auto-Increment SQL Performance File Name=0

; Max SQL performance log file autoinc (default is 64)

Max Auto-Increment SQL Performance File Name=64

Note

The .ini file that contains the database server parameters must have the same root file nhame as the
database server itself. For example, if you wanted to use the above .ini file with the dbsrvr
database server, you would need to save it to a dbsrvr.ini file in the same directory as the
dbsrvr.exe executable in order for the database server to find it and use its contents. Likewise, if
you wanted to use it with the dbcmd database server, you would need to save it to a dbcmd.ini file
in the same directory as the dbcmd.exe executable.

Multiple instances of the database server can be started on the same physical machine. The root name of
the database server executable is used to determine the name of the log and parameters (.ini) files to use
when the database server is started. Also, when running as a Windows service the dbsrvr database server
relies on the root name of the database server executable to determine the service name. What this
means is that to have multiple instances of the database server running on the same machine you must
put them in separate physical directories if running them as a normal application, or copy the database
server to different executable files with a different root name if running them as a service. For example, if
you wanted to run two instances of the database server as services, you would copy the dbsrvr.exe to two
separate executable files called dbsrvrl.exe and dbsrvr2.exe. Then you would install and run them as
follows:

First database server

dbsrvrl.exe /install

net start dbsrvrl

Second database server

dbsrvr2.exe /install

net start dbsrvr2

Page 42



Using DBISAM

2.5 Server Administration

Introduction

Administering a database server involves maintaining global connection settings as well as databases,
server-side procedures, users, and scheduled events. All of this information is stored in the configuration
file specified via the TDBISAMEngine ServerConfigFileName property. DBISAM offers the ability to
administer a database server both locally through the TDBISAMENngine component and remotely through
the TDBISAMSession component. Both types of administration are very similar except for some minor
differences.

Local Administration

Local administration of a database server involves calling methods of the TDBISAMEngine component
directly. The following methods are all for local administrative use:

Method Description

GetServerConfig This method retrieves the global database server settings for
maximum allowed connections, connection timeouts, dead
session settings, the temporary files directory, and authorized
and blocked IP addresses.

ModifyServerConfig This method modifies the global database server settings.

GetServerLogCount This method retrieves the total number of log records present
in the current log file. Calling this method triggers the
TDBISAMENgine OnServerLogCount event. If an event handler
is defined for this event, then it is called to retrieve the count
from whatever storage medium is being used for the log file.

GetServerLogRecord This method retrieves the Nth log record from the current log
file. Calling this method triggers the TDBISAMEngine
OnServerLogRecord event. If an event handler is defined for
this event, then it is called to retrieve the specified log record
from whatever storage medium is being used for the log file.

StartAdminServer This method causes the database server to begin listening for
administrative connections on the IP address and port
specified by the TDBISAMEngine ServerAdminAddress and
ServerAdminPort properties.

StopAdminServer This method causes the database server to stop listening for
administrative connections.

StartMainServer This method causes the database server to begin listening for
regular data connections on the IP address and port specified
by the TDBISAMEngine ServerMainAddress and
ServerMainPort properties. Calling this method triggers the
TDBISAMEnNgine OnServerStart event.

StopMainServer This method causes the database server to stop listening for
regular data connections. Calling this method triggers the
TDBISAMEnNgine OnServerStop event.

Page 43



Using DBISAM

GetServerUTCDateTime

GetServerUpTime

GetServerMemoryUsage

GetServerSessionCount

GetServerConnectedSessionCount

GetServerSessionInfo

DisconnectServerSession

RemoveServerSession

Page 44

This method retrieves the current date and time from the
server in UTC (Coordinated Universal Time).

This method retrieves the total up time of the database server
in seconds.

This method has been deprecated and always returns 0 as of
version 4.17 of DBISAM and the introduction of the new
memory manager used in the DBISAM database server.
Please see the Replacement Memory Manager topic for more
information.

This method retrieves the total number of sessions present on
the database server at the time of the method call.

Note
This count does not include administrative sessions,
only regular sessions.

This method retrieves the total number of sessions on the
database server that are currently connected at the time of
the method call.

Note
This count does not include administrative sessions,
only regular sessions.

This method retrieves information about the specified session
such as its unique session ID, when it was created, when it
was last connected, the user name, the IP address of the
user, and whether the connection is encrypted.

Note
This method does not return information about
administrative sessions, only regular sessions.

This method disconnects the specified session, but does not
remove the session from the database server. Once the
session is disconnected it is considered to be a dead session.

Note
This method cannot be used on administrative
sessions, only regular sessions.

This method removes the specified session completely from
the database server.



GetServerUserNames
GetServerUser
AddServerUser
ModifyServerUser
ModifyServerUserPassword

DeleteServerUser

GetServerDatabaseNames

GetServerDatabase

AddServerDatabase
ModifyServerDatabase
DeleteServerDatabase

GetServerDatabaseUserNames

GetServerDatabaseUser

AddServerDatabaseUser

ModifyServerDatabaseUser

DeleteServerDatabaseUser

GetServerProcedureNames

GetServerProcedure

Using DBISAM

Note
This method cannot be used on administrative
sessions, only regular sessions.

This method will retrieve a list of user names that are
currently defined on the database server.

This method will retrieve information about a specific user,
including the user's password, a description of the user, and
whether the user is an administrator for this server.

This method will add a new user.

This method will modify a user's information.
This method will modify only a user's password.
This method will delete a user.

This method will retrieve a list of database names that are
currently defined on the database server.

This method will retrieve information about a specific
database, including the database's description and the actual
physical path to the database tables.

Note

All database server physical path information for
databases defined on the server are interpreted relative
to the drives, directories, etc. available to the database
server.

This method will add a new database.
This method will modify a database's information.
This method will delete a database.

This method will retrieve a list of users that are assigned
rights to a specific database.

This method will retrieve the user rights of a user for a
specific database.

This method will add user rights for a specific user to a
specific database.

This method will modify the user rights of a user for a specific
database.

This method will delete the user rights of a user for a specific
database.

This method will retrieve a list of server-side procedure names
that are currently defined on the database server.

This method will retrieve information about a specific server-
side procedure, specifically the server-side procedure's
description.

Page 45



Using DBISAM

AddServerProcedure
ModifyServerProcedure
DeleteServerProcedure

GetServerProcedureUserNames

GetServerProcedureUser

AddServerProcedureUser

ModifyServerProcedureUser

DeleteServerProcedureUser

GetServerEventNames

GetServerEvent

AddServerEvent

ModifyServerEvent

DeleteServerEvent

Remote Administration

This method will add a new server-side procedure.
This method will modify a server-side procedure's information.
This method will delete a server-side procedure.

This method will retrieve a list of users that are assigned
rights to a specific server-side procedure.

This method will retrieve the user rights of a user for a
specific server-side procedure.

This method will add user rights for a specific user to a
specific server-side procedure.

This method will modify the user rights of a user for a specific
server-side procedure.

This method will delete the user rights of a user for a specific
server-side procedure.

This method will retrieve a list of scheduled event names that
are currently defined on the database server.

This method will retrieve information about a specific
scheduled event, specifically the scheduled event's description
and scheduling parameters.

This method will add a new scheduled event.
This method will modify a scheduled event's information.

This method will delete a scheduled event.

Remotely administering a database server involves connecting to the server's administration port using a
TDBISAMSession component that has the following properties set properly:

Property
SessionType
RemoteEncryption

RemoteEncryptionPassword

RemoteAddress

RemotePort

Page 46

Setting
This property must be set to stRemote.
This property must be set to True.

This property must be set to the same password as the
ServerEncryptionPassword property of the TDBISAMEngine
component that the session is connecting to.

This property must be set to the IP address of the database
server as it appears to remote machines. You may optionally
use the RemoteHost property if there is DNS information
available for the database server that you are connecting to.

This property must be set to the administrative port as it
appears to remote machines. You may optionally use the
RemoteService property if there is service information
available for the database server administrative port that you
are connecting to.



Using DBISAM

Note

There is an important distinction to make here. The IP
address and port specified for a remote session is not
always the same as the IP address and port specified in
the ServerAdminAddress and ServerAdminPort
properties of the TDBISAMEngine component that the
session is connecting to. This is because network
routers can use port forwarding and other techniques
to forward network traffic destined for a specific public
IP address and port to a private, internal LAN IP
address and port.

RemoteUser This property must be set to the name of a valid administrator
user for the database server that you are connecting to.

RemotePassword This property must be set to the proper password for the user
name specified by the RemoteUser property.

Once you have set up the TDBISAMSession properties properly for administrative access you can proceed
to call the TDBISAMSession Open method or set the TDBISAMSession Active property to True. This will
cause the remote session to attempt to connect to the database server on the administrative port.
Provided that you have set up everything properly, you will connect to the database server on the
administrative port and can then proceed to use the remote administrative methods of the
TDBISAMSession component to administer the database server.

The remote administration methods of the TDBISAMSession component are identical to the local methods
of the TDBISAMEngine component except that the TDBISAMSession methods are named *Remote*
instead of *Server*. Also, there are no StartAdminServer or StopAdminServer methods, and the
StartMainServer and StopMainServer methods are called StartRemoteServer and StopRemoteServer,
respectively. For a complete list of the remote administration methods please see the TDBISAMSession
component.

The following example shows how to set up the TDBISAMSession properties for remotely administering a
database server, connect to the database server, add a new user (not an administrator), and then add
user rights to the "AccountingDB" database for this user:

begin
with MyDBISAMSession do

begin

SessionType:=stRemote;

RemoteEncryption:=True;

{ Assume the default encryption password in use }

RemoteAddress:="'192.168.0.1";

RemotePort:=12006;

RemoteUser:='Admin';

RemotePassword:='DBAdmin';

Open;

try
AddRemoteUser ('Test', 'Test123456"', '"Test User',6 False);
AddRemoteDatabaseUser ('AccountingDB', 'Test',

[drRead,drInsert,drUpdate,drDelete]) ;

finally
Close;

end;

end;

Page 47



Using DBISAM
end;

Note
The Server Administration Utility that can be found in the additional software download (DBISAM-

ADD) on the Elevate Software web site also comes complete with source code and demonstrates
how to use all of the remote administration functionality described above.

Page 48



Using DBISAM

2.6 Customizing the Engine

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMEngine component represents the
engine in DBISAM. The following information will show how to customize the engine in an application.
Some of the customizations can be made for the engine when it is acting as a local engine or server
engine, while other customizations are only intended for the server engine. The TDBISAMEngine
EngineType property controls whether the engine is behaving as a local engine or a server engine.

Engine Signature

The TDBISAMENgine EngineSignature property controls the engine signature for the engine. The default
engine signature is "'DBISAM_SIG". The engine signature in DBISAM is used to "stamp" all tables, backup
files, and streams created by the engine so that only an engine with the same signature can open them or
access them afterwards. If an engine does attempt to access an existing table, backup file, or stream with
a different signature than that of the table, backup file, stream, an EDBISAMEngineError exception will be
raised. The error code that is returned when the access fails due to an invalid engine signature is 12036
and is defined as DBISAM_BADSIGNATURE in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Also, if the EngineType property is set to etClient, the engine signature is used to stamp all requests sent
from a remote session to a database server. If the database server is not using the same engine signature
then the requests will be treated as invalid and rejected by the database server. If the EngineType
property is set to etServer, the engine signature is used to stamp all responses sent from the database
server to any remote session. If the remote session is not using the same engine signature then the
requests will be treated as invalid and rejected by the database server. In summary, both the remote
sessions and the database server must be using the same engine signature or else communications
between the two will be impossible.

Triggers

Triggers can be implemented for a local or server engine by using the TDBISAMEngine
StartTransactionTrigger, CommitTrigger, RollbackTrigger, BeforelnsertTrigger, AfterInsertTrigger,
BeforeUpdateTrigger, AfterUpdateTrigger, BeforeDeleteTrigger, AfterDeleteTrigger, RecordLockTrigger,
and RecordUnlockTrigger events. These events are fired whenever a transaction is started, committed, or
rolled back, and whenever a record is inserted, updated, deleted, locked, or unlocked via navigational
methods or via SQL. However, these events are not triggered during any system processing such as
Creating and Altering Tables or Optimizing Tables. This allows for the freedom to change the table
metadata without having to worry about causing any errors due to constraints that may be enforced via
the triggers.

Note

These events can be called from multiple threads concurrently, so it is very important that you
observe the rules of multi-threading with DBISAM. The TDBISAMSession and TDBISAMDatabase
components are created automatically by the engine and passed as parameters to these events, so
if you create any TDBISAMTable or TDBISAMQuery components in an event handler for one or
more of these events, you need to make sure to assign the SessionName and DatabaseName
properties to that of these passed TDBISAMSession and TDBISAMDatabase components. Please see
the Multi-Threaded Applications topic for more information.

Page 49



Using DBISAM

The TDBISAMENgine triggers events can be used for audit logging, referential integrity, replication, hot
backups, etc. There really is no limit to what can be coded in an event handler attached to one or more of
these events. The following is an example of a BeforeDelete trigger that executes a query in order to
determine whether to permit the deletion or raise an exception:

procedure TMyForm.EngineBeforeDeleteTrigger (Sender: TObject;
TriggerSession: TDBISAMSession; TriggerDatabase: TDBISAMDatabase;
const TableName: String; CurrentRecord: TDBISAMRecord) ;

var
OrdersQuery: TDBISAMQuery;
begin
if (AnsiCompareText (TableName, 'customer')=0) then
begin
OrdersQuery:=TDBISAMQuery.Create (nil) ;
try
with OrdersQuery do
begin
SessionName:=TriggerDatabase.SessionName;
DatabaseName:=TriggerDatabase.DatabaseName;
RequestLive:=True;
SQL.Text:='SELECT * FROM Orders '+
'WHERE CustNo=:CustNo AND '+
'AmountPaid < ItemsTotal';
ParamByName ('CustNo') .AsFloat:=
CurrentRecord.FieldByName ('CustNo') .AsFloat;
Open;
try
if (RecordCount > 0) then
raise Exception.Create('Cannot delete this '+
'customer, there are still '+
IntToStr (RecordCount)+' active '+
'orders present for this '+
'customer') ;
finally
Close;
end;
end;
finally
OrdersQuery.Free;
end;
end;
end;

You can use the TDBISAMEngine OnlnsertError, OnUpdateError, and OnDeleteError events to trap any
errors that may occur during an insert, update, or delete, and reverse any action that may have been
initiated in a Before*Trigger event handler. For example, if you start a transaction in a
BeforeDeleteTrigger event, you should be sure to rollback the transaction in an OnDeleteError event
handler or else you will inadvertently leave an active transaction hanging around.

The TriggerSession CurrentServerUser property can be referenced from within a trigger that is being

executed when the TDBISAMENgine EngineType property is set to etServer in order to retrieve the current
user name.

Page 50



Using DBISAM

Note

If any exception is raised in any trigger event handler, the exception will be converted into an
EDBISAMENgineError exception object with an error code of DBISAM_TRIGGERERROR. The original
exception's error message will be assigned to the ErrorMessage property of the
EDBISAMENgineError exception object, as well as be included as part of the error message in the
EDBISAMENgineError exception object itself.

Custom SQL and Filter Functions

Custom SQL and filter functions can be implemented for a local or server engine by using the
TDBISAMENgine Functions property in conjunction with the OnCustomFunction event. The Functions
property is a TDBISAMFunctions object, and the easiest way to add new functions is to use the Functions
property's CreateFunction method, which will create a new TDBISAMFunction object, add it to the
Functions property, and return a reference to the new function. You can then use this function reference
to add the parameters to the function using the TDBISAMFunction Params property. The Params property
is a TDBISAMFunctionParams object, and the easiest way to add new function parameters is to use the
Params property's CreateFunctionParam method, which will create a new TDBISAMFunctionParam object,
add it to the Params property, and return a reference to the new function parameter. You can then use
this function parameter reference to specify the data type of the parameters to the custom function. All
custom function result and parameter data types use the TFieldType type. Please see the Data Types and
NULL Support topic for more information.

The following example shows how you would use the CreateFunction method to create a function called
"DaysBetween" that returns the number of days between two date parameters as an integer:

begin
{ We'll just use the default Engine global function
for this example }
with Engine do
begin
with Functions.CreateFunction (ftInteger, 'DaysBetween') .Params do
begin
CreateFunctionParam (ftDate) ;
CreateFunctionParam (ftDate) ;
end;
end;
end;

Note
Adding a custom function while the engine is active will result in the engine triggering an exception.
You should define all custom functions before activating the engine.

Once you have defined the custom function using the TDBISAMENgine Functions property, you must then
proceed to implement the function using an event handler assigned to the TDBISAMEngine
OnCustomFunction event. When DBISAM encounters a function name in a filter or SQL expression that
does not match that of a pre-defined function in DBISAM, the OnCustomFunction event is triggered with
the name of the function, the parameters to the function defined as a TDBISAMParams object, and a
parameter for returning the function result as a variant variable. Inside of the OnCustomFunction event
handler you must conditionally process each function using the name of the function passed to the event
handler. The following example implements the "DaysBetween" function that we defined previously in the

Page 51



Using DBISAM

above example:

procedure MyForm.CustomFunction (Sender: TObject;
const FunctionName: String; FunctionParams: TDBISAMParams;
var Result: Variant);
var
Stampl: TTimeStamp;
Stamp2: TTimeStamp;
begin
if (AnsiCompareText (FunctionName, 'DaysBetween')=0) then
begin
{ Notice that the function parameters are accessed
in a 0O-based manner }
Stampl:=DateTimeToTimeStamp (FunctionParams[0] .AsDateTime) ;
Stamp2:=DateTimeToTimeStamp (FunctionParams[1l] .AsDateTime) ;
Result:=Trunc ((Stamp2.Date-Stampl.Date) +
(((((Stamp2.Time-Stampl.Time) /1000)/60)/60)/24));
end;
end;

Note
The name of the parameters sent to the OnCustomFunction event handler will be:

"Param" plus an underscore (_) plus the position of the parameter (0-based)
for constants or expressions, and:
Table name plus underscore (_) plus column name plus (_) plus the position of the parameter (0-based)

for table columns. This allows you to identify which column from which table was passed to a custom
function.

Memory Buffer Customizations

The TDBISAMEngine MaxTableDataBufferCount, MaxTableDataBufferSize, MaxTableIndexBufferCount,
MaxTableIndexBufferSize, MaxTableBlobBufferCount, and MaxTableBlobBufferSize properties allow you to
control how much memory is used for buffering the data records, index pages, and BLOB blocks for each
physical table opened in a given session in the engine. The *Size properties dictate how much memory, in
bytes, to allocate. The *Count properties dictate the maximum number of data records, index pages, and
BLOB blocks that can be allocated regardless of the amount of memory available. This is to ensure that
the buffering architecture in DBISAM does not get overwhelmed by buffering too many small records, etc.

Lock File Name Customizations

The default lock file name, "dbisam.Ick", can be modified using the TDBISAMEngine LockFileName
property.

File Extension Customizations

The default file extensions for tables are detailed in the DBISAM Architecture topic. You can modify these
default extensions using the following properties:

Page 52



Using DBISAM

Extensions Properties

Tables TableDataExtension
TableIndexExtension
TableBlobExtension

Backup Files TableDataBackupExtension

TableIndexBackupExtension
TableBlobBackupExtension

Upgrade Backup Files TableDataUpgradeExtension
TableIndexUpgradeExtension
TableBlobUpgradeExtension

Temporary Files TableDataTempExtension
TableIndexTempExtension
TableBlobTempExtension
Note

The temporary file extension customizations are useful when you wish to have any temporary tables
created by DBISAM use a file extension other than .dat, .idx, or .blb. Recent issues with certain
anti-virus software has shown that it may be necessary to change the extensions of the files that
make up temporary DBISAM tables in order to prevent the anti-virus software from interfering with
DBISAM's ability to create and open temporary tables on a local drive.

Encryption Customizations

By default DBISAM uses the Blowfish block cipher encryption algorithm with 128-bit MD5 hash keys for
encryption. However, you may replace the encryption in DBISAM with another 8-byte block cipher
algorithm by defining event handlers for the TDBISAMENngine OnCryptolnit, OnEncryptBlock,
OnDecryptBlock, and OnCryptoReset events. The OnCryptolnit event is triggered whenever DBISAM needs
to initialize the internal block cipher tables using a new key. The OnEncryptBlock event is triggered
whenever DBISAM needs to encrypt a block of data, and the OnDecryptBlock event is triggered whenever
DBISAM needs to decrypt a block of data. A block of data will always be 8-bytes in length. Finally, the
OnCryptoReset event is triggered after every encryption or decryption of a buffer (data record, index page,
or BLOB block) in order to reset the cipher data so that it is ready for encrypting or decrypting a new
buffer.

Please see the Encryption topic for more information.
Compression Customizations

By default DBISAM uses the ZLIB compression algorithm for compression. However, you may replace the
compression in DBISAM with another compression algorithm by defining event handlers for the
TDBISAMENgine OnCompress and OnDecompress events. The OnCompress event is triggered whenever
DBISAM needs to compress a buffer. The OnDecompress event is triggered whenever DBISAM needs to
decompress a buffer.

Please see the Compression topic for more information.

Full Text Indexing Customizations

Page 53



Using DBISAM

The full text indexing functionality in DBISAM allows the developer to index the words in string or memo
fields for very fast word-based searches. You can define event handlers for the TDBISAMEngine
OnTextIndexFilter and OnTextIndexTokenFilter events that allow you to filter the string and memo field
data prior to being indexed by DBISAM. The OnTextIndexFilter event is triggered before DBISAM parses
any string or memo fields that are included in the full text index for the table into words using the stop
words, space characters, and include characters defined for the table. This allows you to filter the raw
data, such as stripping out control codes from HTML, RTF, or other types of document formats. On the
other hand, the OnTextIndexTokenFilter event is triggered after any string and memo fields are parsed
into words using the stop words, space characters, and include characters defined for the table. This
allows you to further filter out certain words based upon conditional rules or custom dictionaries that aren't
easily expressed using just the static stop words for the table. Please see the Full Text Indexing topic for
more information.

Note

If you add or modify the OnTextIndexFilter or OnTextIndexTokenFilter event handlers when you
have existing tables with full text indexing defined for one or more fields, you must be sure to alter
the structure of these tables and turn off the full text indexing for all fields. After you have done
this, you can then alter the structure of these tables again to turn back on the full text indexing for
the desired fields. Doing this will ensure that any existing text is properly handled with the new
event handlers and will eliminate the possibility of confusing results when searching on the fields
that are part of the full text index. Please see the Creating and Altering Tables topic for more
information.

Reserved Customizations

There are certain customizations in the engine that are only for use in fine-tuning specific issues that you
may be having with an application and should not be modified unless instructed to do so by Elevate
Software. The TDBISAMENgine TableReadLockTimeout, TableWriteLockTimeout, TableTransLockTimeout,
TableFilterIndexThreshhold properties should only be modified when instructed to by Elevate Software.

Server-Only Customizations

The following customizations are only available when the TDBISAMENgine EngineType property is set to
etServer and the engine is behaving as a database server.

Licensed Connections

You can specify that a maximum number of licensed connections be used for the database server by
modifying the TDBISAMEngine ServerLicensedConnections property. The default is 65,535 connections.
Setting this property to a lower figure will allow no more than the specified number of connections to be
configured as the maximum number of connections for the database server in addition to actually
preventing any more than the specified number of connections active on the database server at the same
time.

Notification Events

You can define event handlers for the following TDBISAMENngine events to respond to various server
conditions:

Event Description

Page 54



Using DBISAM

OnServerStart This event will be triggered whenever the server starts
listening for incoming normal data connections. The server is
started via the TDBISAMEngine StartMainServer method or
remotely via the TDBISAMSession StartRemoteServer method.

OnServerStop This event will be triggered whenever the server stops
listening for incoming noraml data connections. The server is
stopped via the TDBISAMEngine StopMainServer method or
remotely via the TDBISAMSession StopRemoteServer method.

OnServerConnect This event will be triggered whenever a normal data
connection is established.

OnServerReconnect This event will be triggered whenever a normal data
connection is re-established by an automatic reconnection by
the remote session.

OnServerLogin This event will be triggered whenever a user logs in on a
normal data connection.

OnServerLogout This event will be triggered whenever a user logs out on a
normal data connection.

OnServerDisconnect This event will be triggered whenever a normal data
connection is closed.

Logging Events

DBISAM abstracts all server logging functionality so that you may choose to log server events in any
manner that you wish. The default server project that ships with DBISAM uses these events to store the
log records in a binary file. You can define event handlers for the following TDBISAMEngine events to
customize the logging functionality:

Event Description

OnServerLogEvent This event is triggered whenever the server needs to log an
event. The log record that is passed to the event handler is
defined as a TLogRecord type.

OnServerLogCount This event is triggered whenever the server needs to get a
count of the number of log records in the current log. This
event is triggered whenever the TDBISAMEngine
GetServerLogCount method is called or the TDBISAMSession
GetRemoteLogCount method is called by a remote session.

OnServerLogRecord This event is triggered whenever the server needs to get a
specific log record from the current log. This event is
triggered whenever the TDBISAMENgine GetServerLogRecord
method is called or the TDBISAMSession
GetRemotelLogRecord method is called by a remote session.

Scheduled Events

DBISAM allows the definition of scheduled events for a database server. Scheduled events are stored in
the configuration file for the server and are implemented via the TDBISAMEngine OnServerScheduledEvent
event. Scheduled events will simply do nothing unless they are actually implemented in the database
server via an event handler assigned to this event. Scheduled events are executed in a separate thread in
the server, one thread for each currently-executing scheduled event. If you have three scheduled events

Page 55



Using DBISAM

that are scheduled for the same time, then the server will create three threads, one for each scheduled
event. Any database access within the thread must be done according to the rules for using DBISAM in a
multi-threaded application. Please see the Multi-Threaded Applications topic for more information. Also,
scheduled events are run as if they are using a local engine accessing databases and tables directly and
cannot directly use database names that are defined in the database server configuration. You must use
the methods available in the TDBISAMENngine component for retrieving database information for databases
for retrieving the information necessary to access server databases and tables in the scheduled event (see
the example below).

The following is an example of a scheduled event called "DailyBackup" that calls the TDBISAMDatabase
Backup method to backup a databse every day at a certain time:

procedure TMyForm.ServerScheduledEvent (Sender: TObject;
const EventName: String; var Completed: Boolean);
var
TempSession: TDBISAMSession;
TempDatabase: TDBISAMDatabase;
TempDescription: string;
TempPath: string;
BackupFiles: TStrings;
begin
TempDescription:="";
TempPath:="";
if (AnsiCompareText (EventName, 'DailyBackup')=0) then
begin
{ Create a new session component, remembering
the multi-threading requirements of DBISAM
for session names }
TempSession:=TDBISAMSession.Create (Self);
try
with TempSession do
begin
SessionName:='DailyBackup'+IntToStr (GetCurrentThreadID) ;
Active:=True;
end;
{ Create a new database component }
TempDatabase:=TDBISAMDatabase.Create (Self);
try
with TempDatabase do
begin
SessionName:=TempSession.SessionName;
DatabaseName:='DailyBackup';
{ Get the actual local path for the Main
database }
ServerEngine.GetServerDatabase ('Main',
TempDescription,
TempPath) ;
Directory:=TempPath;
Connected:=True;
BackupFiles:=TStringList.Create;
try
TempSession.GetTableNames (DatabaseName, BackupFiles) ;
Completed:=Backup (
IncludeTrailingBackslash (TempPath) +'backup'+
StringReplace (DateToStr (Date),'/",
'', [rfReplaceAll])+"'.bkp',
'Daily Backup for '+DateToStr (Date),6,BackupFiles);
finally

Page 56



Using DBISAM

BackupFiles.Free;
end;
Connected:=False;
end;

finally
TempDatabase.Free;

end;

finally
TempSession.Free;

end;

end

else
Completed:=True;
end;

Note

If a scheduled event is not marked as completed by this event handler, it will continue to be
executed every minute by the database server until the time range for which it was scheduled is up.
For example, if the above scheduled event was scheduled to run every day between 11:00pm and
11:30pm, the database server will attempt to execute the scheduled event until it is either
completed or the time exceeds 11:30pm. Also, if an error occurs during the scheduled event
execution, the database server will consider the scheduled event not completed. Any time the
database server encounters an error in the scheduled event or detects that the scheduled event did
not complete it will log this information in the current log.

Server Procedures

DBISAM allows the definition of server-side procedures for a database server. Server-side procedures are
stored in the configuration file for the server and are implemented via the TDBISAMEngine
OnServerProcedure event. Server-side procedures will simply do nothing unless they are actually
implemented in the database server via an event handler assigned to this event. Server-side procedures
are executed in the context of the session thread currently running for the remote session that is calling
the server-side procedure. Any database access within the server-side procedure must be done according
to the rules for using DBISAM in a multi-threaded application. Please see the Multi-Threaded Applications
topic for more information. However, unlike scheduled events (see above), server-side procedures are
passed a TDBISAMSession component for use in the procedure for retrieving parameters passed in from
the remote session and for populating the result parameters that are passed back to the remote session
after the procedure is done, as well as sending progress information back to the calling session. This
TDBISAMSession component is automatically created and assigned a unique SessionName property to
ensure that it can be safely be used in a multi-threaded manner. This session name consists of the user
name plus an underscore (_) plus the session ID. Also, server-side procedures are run as if they are using
a local engine accessing databases and tables directly and cannot directly use database names that are
defined in the database server configuration. You must use the methods available in the TDBISAMEngine
component for retrieving database information for databases for retrieving the information necessary to
access server databases and tables in the server-side procedure.

The TDBISAMSession RemoteParams property is used both to pass the parameters to the server-side
procedure and to return any results to the remote session that called the server-side procedure. The
RemoteParams property is a TDBISAMParams object. Be sure to always clear the parameters using the
RemoteParams' Clear method before leaving the server-side procedure. Otherwise, the same parameters
that were passed to the server-side procedure will be returned to the remote session as results. You can
add new results to the RemoteParams property for return to the remote session using the RemoteParams'
CreateParam method.

Page 57



Using DBISAM

The following is an example of a server-side procedure called "TextFile" that sends a text file back to the
remote session that requested it:

procedure TMyForm.ServerProcedure (Sender: TObject;
ServerSession: TDBISAMSession; const ProcedureName: String);
var
TempFileName: string;
begin
if (AnsiCompareText (ProcedureName, 'TextFile')=0) then
begin
with ServerSession do
begin
TempFileName:=RemoteParams.ParamByName ('FileName') .AsString;
{ Now clear the parameters for use in populating
the result parameters }
RemoteParams.Clear;
if FileExists (TempFileName) then
begin
{ If the file exists, use the TDBISAMParam
LoadFromFile method to load the file
data into the parameter }

with RemoteParams.CreateParam (ftMemo, 'FileContents') do
LoadFromFile (TempFileName, ftMemo) ;
end
else

{ If the file doesn't exist, just create a NULL
parameter with the correct result name }
RemoteParams.CreateParam (ftMemo, 'FileContents"') ;
end;
end;
end;

The ServerSession CurrentServerUser property can be referenced from within a trigger that is being
executed when the TDBISAMENgine EngineType property is set to etServer in order to retrieve the current
user name.

Note

If a server-side procedure raises any type of exception at all, the database server will send the
exception back to the remote session that called it as if the exception occurred in the remote
session.

To report progress information back to the calling session during the server-side procedure, use the
SendProcedureProgress method of the TDBISAMSession component passed as a parameter to the
OnServerProcedure event handler.

Page 58



Using DBISAM

2.7 Starting Sessions

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMSession component represents a
session in DBISAM. The following information will show how to start a session in an application.

Preparing a Local Session for Startup

If a TDBISAMSession component has its SessionType property set to stLocal, then it is considered a local
session as opposed to a remote session. There is nothing extra that must be done to prepare a local
session for startup.

Preparing a Remote Session for Startup

If a TDBISAMSession component has its SessionType property set to stRemote, then it is considered a
remote session as opposed to a local session. Starting a remote session will cause DBISAM to attempt a
connection to the database server specified by the RemoteAddress or RemoteHost and RemotePort or
RemoteService properties. In addition, the RemoteEncryption property indicates whether the session's
connection to the database server will be encrypted using the RemoteEncryptionPassword property. You
must set these properties properly before trying to open the remote session or an exception will be raised.

The RemoteAddress and RemoteHost properties are normally mutually exclusive. They can both be
specified, but the RemoteHost property will take precedence. The host hame used for the server can be
specified via the "hosts" text file available from the operating system. In Windows 98, for example, it's
located in the Windows directory and is called "hosts.sam". Renaming this file to just "hosts" and adding
an entry in it for the database server will allow you to refer to the database server by host nhame instead of
IP address. The following is an example of an entry for a database server running on a LAN:

192.168.0.1 DBISAMLANServer

This is sometimes more convenient than remembering several IP addresses for different database servers.
It also allows the IP address to change without having to modify your application.

The RemotePort and RemoteService properties are also normally mutually exclusive. They can both be
specified, but the RemoteService property will take precedence. By default the ports that DBISAM
database servers use are:

Port Usage
12005 Normal access
12006 Administrative access

These ports can be changed, however, so check with your administrator or person in charge of the
database server configuration to verify that these are the ports being used.

The service name used for the database server can be specified via the "services" text file available from
the operating system. In Windows 98, for example, it's located in the \Windows directory and is called
"services". Adding an entry in it for the database server's port will allow you to refer to the server's port by
service name instead of port number. The following is an example of an entry for both the normal server

Page 59



Using DBISAM

port and the administrative port:

DBISAMServer 12005/tcp
DBISAMAdmin 12006/tcp

This is sometimes more convenient than remembering the port numbers for different database servers. It
also allows the port number to change without having to modify your application.

The RemoteEncryption property can be set to either True or False and determines whether the session's
connection to the server will be encrypted or not. If this property is set to True, the
RemoteEncryptionPassword property is used to encrypt and decrypt all data transmitted to and from the
database server. This property must match the same encryption password that the database server is
using or else an exception will be raised when a request is attempted on the server.

Note

When connecting as an administrator to the administrative port of the database server, you must
set the RemoteEncryption property to True since administrative connections always require
encryption.

If for any reason DBISAM cannot connect to a database server an exception will be raised. The error code
that is returned when a connection fails is 11280 and is defined as DBISAM_REMOTECONNECT in the
dbisamcn unit (Delphi) or dbisamcn header file (C++). It's also possible for DBISAM to be able to connect
to the server, but the connection will be rejected due to the database server's maximum connection
setting being reached (11282 and defined as DBISAM_REMOTEMAXCONNECT), the database server not
accepting any new logins (11281 and defined as DBISAM_REMOTENOLOGIN), the database server
blocking the client workstation's IP address from accessing the server (11283 and defined as
DBISAM_REMOTEADDRESSBLOCK), or an encrypted connection being required by the database server
(11277 and defined as DBISAM_REMOTEENCRYPTREQ).

The RemoteUser and RemotePassword properties can be used to automate the login to a database server.
Every DBISAM database server uses the following default user ID and password if the database server is
being started for the first time, or if it is being started with an empty or missing configuration file:

User ID: Admin (case-insensitive)
Password: DBAdmin (case-sensitive)

Starting a Session

To start a session you must set the TDBISAMSession Active property to True or call its Open method. For a
local session (SessionType property is set to stLocal), the session will be opened immediately. As
discussed above, for a remote session (SessionType property is set to stRemote), performing this
operation will cause the session to attempt a connection to the database server specified by the
RemoteAddress or RemoteHost and RemotePort or RemoteService properties. If the RemoteUser and
RemotePassword properties are specified and are valid, then neither the OnRemoteLogin event nor the
interactive login dialog will be triggered. If these properties are not specified or are not valid, the
OnRemoteLogin event will be triggered if there is an event handler assigned to it. If an event handler is
not assigned to the OnRemoteLogin event, DBISAM will display an interactive login dialog that will prompt
for a user ID and password. All database servers require a user ID and password in order to connect and
login. DBISAM will allow for up to 3 login attempts before issuing an exception. The error code that is

Page 60



Using DBISAM

returned when a connection fails due invalid login attempts is 11287 and is defined as
DBISAM_REMOTEINVLOGIN in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Note

Any version of DBISAM for Delphi 6 or higher (including C++Builder 6 and higher) requires that you
include the DBLogDIg unit to your uses clause in order to enable the display of a default remote
login dialog. This is done to allow for DBISAM to be included in applications without linking in the
forms support, which can add a lot of unnecessary overhead and also cause unwanted references to
user interface libraries. This is not required for Delphi 5 or C++Builder 5, but these versions always
include forms support.

The OnStartup event is useful for handling the setting of any pertinent properties for the session before
the session is started. This event is called right before the session is started, so it is useful for situations
where you need to change the session properties from values that were used at design-time to values that
are valid for the environment in which the application is now running. The following is an example of using
an OnStartup event handler to set the remote connection properties for a session:

procedure TMyForm.MySessionStartup (Sender: TObject) ;
var
Registry: TRegistry;
begin
Registry:=TRegistry.Create;
try
Registry.RootKey:=HKEY LOCAL MACHINE;
if Registry.OpenKey ('SOFTWARE/My Application',False) then
begin
if Registry.ReadBool ('IsRemote') then
begin
with MySession do
begin
SessionType:=stRemote;
RemoteAddress:=Registry.ReadString ('RemoteAddress') ;
RemotePort:=Registry.ReadString ('RemotePort');
end;
end
else
MySession.SessionType:=stLocal;
end
else
ShowMessage ('Error reading connection information '+
'from the registry');
finally
Registry.Free;
end;
end;

Note
You should not call the session's Open method or toggle the Active property from within this event
handler. Doing so can cause infinite recursion.

The OnShutdown event can be used for taking specific actions after a session has been stopped. As is the

Page 61



Using DBISAM

case with the OnStartup event, the above warning regarding the Open method or Active property also

applies for the OnShutDown event.

More Session Properties

After a session is started, it can also be used to control certain global settings for all TDBISAMDatabase,
TDBISAMQuery, and TDBISAMTable components that link to the session via their SessionName properties.
The properties that represent these global settings are detailed below:

Property

ForceBufferFlush

LockProtocol

LockRetryCount

LockWaitTime

KeepConnections

PrivateDir

ProgressSteps

StrictChangeDetection

Note

Description

Controls whether the session will automatically force the
operating system to flush data to disk after every write
operation completed by DBISAM. Please see the Buffering and
Caching topic for more information.

Controls whether the session will use a pessimistic or
optimistic locking model when editing records via navigational
or SQL methods. Please see the Locking and Concurrency
topic for more information.

Controls the number of times that the engine will retry a
record or table lock before raising an exception. This property
is used in conjunction with the LockWaitTime property.

Controls the amount of time, in milliseconds, that the engine
will wait in-between lock attempts. This property is used in
conjuction with the LockRetryCount property.

Controls whether temporary TDBISAMDatabase components
are kept connected even after they are no longer needed.
This property has no effect upon a local session, but can
result in tremendous performance improvements for a remote
session, therefore it defaults to True and should be left as
such in most cases.

Controls where temporary files generated by DBISAM are
stored for a local session. This property is ignored for remote
sessions.

Controls the maximum number of progress events that any
batch operation will generate. Setting this property to 0 will
cause the suppression of all progress messages.

Controls whether DBISAM will use strict or lazy change
detection for the session. The default is False, or lazy change
detection. Please see the Change Detection topic for more
information.

You can modify all of the above session properties both before and after a session is started.
However, they do not have any effect upon a session until the session is actually started.

Page 62



Using DBISAM

2.8 Calling Server-Side Procedures

Introduction

DBISAM allows a database server to be customized via server-side procedures. Remote sessions may then
call these server-side procedures in order to isolate batch processes and other types of processing on the
database server. This helps reduce network traffic and allow for all-or-nothing processes that will complete
regardless of whether the client workstation loses its connection to the database server or goes down
unexpectedly. To see how to define the actual server-side procedure on the server, please see the
Customizing the Engine topic.

Calling the Procedure

To successfully call a server-side procedure you must be logged into the database server as a user that
has been granted rights to execute the server-side procedure that you wish to call. Please see the Server
Administration topic for more information.

Before calling the server-side procedure, you must populate the TDBISAMSession RemoteParams property
as needed for any parameters to the procedure using the TDBISAMParams CreateParam method, call the
TDBISAMSession CallRemoteProcedure method with the proper procedure name (case-insensitive), and
then examine any needed return parameters using the RemoteParams property or the TDBISAMSession
RemoteParamByName method. The following example shows how you would call a server-side procedure
named "Test_Procedure" that accepts an integer and a string:

begin
with MyRemoteSession do
begin
RemoteParams.CreateParam(ftInteger, 'ID') .AsInteger:=10;
RemoteParams.CreateParam (ftString, 'Name') .AsInteger:="'Test';
try

{ Now call the procedure }
CallRemoteProcedure ('Test Procedure');

if RemoteParams.ParamByName ('Result') .AsBoolean then
ShowMessage ('The record was added successfully')
else
ShowMessage ('The record was not added successfully');
except

ShowMessage ('There was an error calling the '+
'server-side procedure');
end;
end;
end;

Handling Exceptions in Procedures

If a server-side procedure raises any type of exception at all, the database server will send the exception
back to the remote session and raise it in the context of the CallRemoteProcedure method call. Defining a
try..except block (Delphi) or a try..catch block (C++) is the best way to handle these exceptions since you
can then respond to them accordingly based upon the server-side procedure that you are calling.

Page 63



Using DBISAM

2.9 Opening Databases

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMDatabase component represents a
database in DBISAM. The following information will show how to open a database in an application.

Preparing a Database for Opening

Before you can open a database using the TDBISAMDatabase component, you must set a couple of
properties. The TDBISAMDatabase DatabaseName property is the name given to the database within the
application and is required for naming purposes only. For a local database the Directory property should
contain a directory name, either in UNC format or using logical drive mapping notation. For a remote
database, the RemoteDatabase property will contain the name of a logical database set up on the
database server that you are connecting to.

Note

Setting the Directory property for a local database so that it points to an invalid directory and then
opening the database will not cause an error. However, an exception will be raised if a
TDBISAMTable or TDBISAMQuery component that is linked to the TDBISAMDatabase via its
DatabaseName property tries to open a table. The error code that is returned when a table open
fails due to the directory or table files not being present is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Opening a Database

To open a database you must set the TDBISAMDatabase Connected property to True or call its Open
method. For a local TDBISAMDatabase component whose SessionName property is linked to a local
TDBISAMSession component, the database will cause the local TDBISAMSession to be opened if it is not
already, and then the database will be opened. For a remote database whose SessionName property is
linked to a remote TDBISAMSession component, performing this operation will cause the remote session
to attempt a connection to the database server if it is not already connected. If the connection is
successful, the database will then be opened.

The BeforeConnect event is useful for handling the setting of any pertinent properties for the
TDBISAMDatabase component before it is opened. This event is triggered right before the database is
opened, so it's useful for situations where you need to change the database information from that which
was used at design-time to something that is valid for the environment in which the application is now
running. The following is an example of a BeforeConnect event handler that is used to set the properties
for a TDBISAMDatabase component before it is opened:

procedure TMyForm.MyDatabaseBeforeConnect (Sender: TObject);
var
Registry: TRegistry;

begin
Registry:=TRegistry.Create;
try
with MyDatabase do

begin
{ Make sure that the DatabaseName is set }

Page 64



Using DBISAM

DatabaseName:='MyDatabase';
{ Now set the Directory property to the value
from the registry }
Registry.RootKey:=HKEY LOCAL MACHINE;
if Registry.OpenKey ('SOFTWARE/My Application',False) then
Directory:=Registry.ReadString ('Directory')
else
ShowMessage ('Error reading database information '+
'from registry');
end;
finally
Registry.Free;
end;
end;

Note
You should not call the TDBISAMDatabase Open method or modify the Connected property from
within this event handler. Doing so can cause infinite recursion.

More Database Properties

A TDBISAMDatabase component has one other property of importance that is detailed below:

Property Description

KeepConnection Controls whether the database connection is kept active even
after it is no longer needed. This property has no effect upon
a local session, but can result in tremendous performance
improvements for a remote session, therefore it defaults to
True and should be left as such in most cases.

KeepTablesOpen Controls whether the physical tables opened with the
database connection are kept open even after they are closed
by the application. Setting this property to True can
dramatically improve the performance of large SQL scripts and
any other operations that involve constantly opening and
closing the same tables over and over.

Page 65



Using DBISAM

2.10 Transactions

Introduction

DBISAM allows for transactions in order to provide the ability to execute multi-table updates and have
them treated as an atomic unit of work. Transactions are implemented logically in the same fashion as
most other database engines, however at the physical level there are some important considerations to
take into account and these will be discussed here.

Executing a Transaction

A transaction is executed entirely by using the StartTransaction, Commit, and Rollback methods of the
TDBISAMDatabase component. A typical transaction block of code looks like this:

begin
with MyDatabase do
begin
StartTransaction;
try
{ Perform some updates to the table(s) in this database }
Commit;
except
Rollback;
end;
end;
end;

Note

It is very important that you always ensure that the transaction is rolled back if there is an
exception of any kind during the transaction. This will ensure that the locks held by the transaction
are released and other sessions can continue to update data while the exception is dealt with. Also,
if you roll back a transaction it is always a good idea to refresh any open TDBISAMTable or
TDBISAMQuery components linked to the TDBISAMDatabase component involved in the transaction
so that they reflect the current data and not any data from the transaction that was just rolled back.
Along with refreshing, you should make sure that any pending inserts or edits for the
TDBISAMTable or TDBISAMQuery components are cancelled using the Cancel method before the
transaction is rolled back to ensure that the inserts or edits are not accidentally posted using the
Post method after the transaction is rolled back (unless that is specifically what you wish to do).

Restricted Transactions

It is also possible with DBISAM to start a restricted transaction. A restricted transaction is one that
specifies only certain tables be part of the transaction. The StartTransaction method accepts an optional
list of tables that can be used to specify what tables should be involved in the transaction and,
subsequently, locked as part of the transaction (see below regarding locking). If this list of tables is nil
(the default), then the transaction will encompass the entire database.

The following example shows how to use a restricted transaction on two tables, the Customer and Orders
table:

Page 66



Using DBISAM

var
TablesList: TStrings;
begin
TablesList:=TStringlList.Create;
try
with MyDatabase do
begin
TablesList.Add ('Customer') ;
TablesList.Add ('Orders');
StartTransaction (TablesList) ;
try
{ Perform some updates to the table(s) in the transaction }
Commit;
except
Rollback;
raise;
end;
finally
TablesList.Free;
end;
end;

Flushing Data to Disk During a Commit

By default, the Commit method will cause a flush of all data to disk within the operating system, which is
egivalent to calling the FlushBuffers method of all TDBISAMTable or TDBISAMQuery components involved
in the transaction that were updated. The Commit method has an optional parameter that controls this
called ForceFlush and it defaults to True. Passing False as the ForceFlush parameter will improve the
performance of a commit operation at the expense of possible data corruption if the application is
improperly terminated after the commit takes place. This is due to the fact that the operating system may
wait several minutes before it lazily flushes any modified data to disk. Please see the Buffering and
Caching topic for more information.

Locking During a Transaction

When a transaction on the entire database is started, DBISAM acquires a special transaction write lock on
the entire database. This prevents any other sessions from adding, updating, or deleting any data from
the tables in the database while the current transaction is active. When a restricted transaction is started
on a specific set of tables, DBISAM will only acquire this special transaction write lock on the tables
specified as part of the transaction. This special transaction write lock is a very important concept since it
illustrates the importance of keeping transactions short (not more than a couple of seconds) in DBISAM.
However, this special transaction write lock does not prevent other sessions from reading data from the
tables involved in the transaction or acquiring record or table locks on the tables involved in the
transaction while the current transaction is active. This means that it is still possible for other sessions to
cause a TDBISAMTable or TDBISAMQuery Edit or Delete method call within the current transaction to fail
due to not being able to acquire the necessary record lock.

Any record locks acquired by calling the TDBISAMTable or TDBISAMQuery Edit or Delete methods during a
transaction will remain locked even after a call to the TDBISAMTable or TDBISAMQuery Post method. This
is also the case for table locks acquired via the TDBISAMTable LockTable method, which will remain locked
even after a call to the TDBISAMTable UnlockTable method has been made. These locks will be released
when the transaction is rolled back or committed, but not until that point.

Page 67



Using DBISAM

Opening and Closing Tables

If a transaction on the entire database is active and a new table is opened via the TBISAMTable or
TDBISAMQuery components, that table will automatically become part of the active transaction. Unlike a
transaction on the entire database, if a table involved in a restricted transaction is not currently open at
the time that StartTransaction is called, then an attempt will be made to open it at that time. Also, any
tables that are opened during the restricted transaction and not initially specified as part of the restricted
transaction will be excluded from the transaction. If a table involved in a transaction, either restricted or
not, is closed while the transaction is still active, the table will be kept open internally by DBISAM until the
transaction is committed or rolled back, at which point the table will then be closed. However, the
TDBISAMTable or TDBISAMQuery component that opened the table originally will indicate that the table is
closed.

SQL and Transactions

The INSERT, UPDATE, and DELETE SQL statements implicitly use a restricted transaction on the updated
tables if a transaction is not already active. The interval at which the implicit transaction is committed is
based upon the record size of the table being updated in the query and the amount of buffer space
configured for the TDBISAMENgine component via its MaxTableDataBufferCount and
MaxTableDataBufferSize properties. The COMMIT INTERVAL clause can be used within these SQL
statements to manually control the interval at which the transaction is committed, and applies both to
situations where a transaction was explicitly started by the developer and situations where the transaction
was implicitly started by DBISAM. In the case where a transaction was explicitly started by the developer,
the absence of a COMMIT INTERVAL clause in the SQL statement being executed will force DBISAM to
never commit any of the effects of the SQL statement and leaves this up to the developer to handle after
the SQL statement completes. The COMMIT INTERVAL clause can also contain the FLUSH keyword, which
indicates that any transaction commit that takes place during the execution of the SQL statement should
also force an operating system flush to disk. By default, commits that occur during the execution of SQL
statements do not force an operating system flush to disk.

In addition to implicit transactions with the INSERT, UPDATE, and DELETE SQL statements, DBISAM also
allows the use of the START TRANSACTION, COMMIT, and ROLLBACK SQL statements.

Incompatible Operations

The following operations are not compatible with transactions and will cause a transaction to commit if
encountered during a transaction.

Backing Up and Restoring Databases
Verifying and Repairing Tables

Creating and Altering Tables

Adding and Deleting Indexes from a Table
Optimizing Tables

Upgrading Tables

Deleting Tables

Renaming Tables

Emptying Tables

Copying Tables

Isolation Level

The default and only isolation level for transactions in DBISAM is serialized. This means that only the
session in which the transaction is taking place will be able to see any inserts, updates, or deletes made
during the transaction. All other sessions will see the data as it existed before the transaction began. Only

Page 68



Using DBISAM

after the transaction is committed will other sessions see the new inserts, updates, or deletes.
Data Integrity

A transaction in DBISAM is buffered, which means that all inserts, updates, or deletes that take place
during a transaction are cached in memory for the current session and are not physically applied to the
tables involved in the transaction until the transaction is committed. If the transaction is rolled back, then
the updates are discarded. With a local session this allows for a fair degree of stability in the case of a
power failure on the local workstation, however it will not prevent a problem if a power failure happens to
occur while the commit operation is taking place. Under such circumstances it's very likely that physical
and/or logical corruption of the tables involved in the transaction could take place. The only way
corruption can occur with a remote session is if the database server itself is terminated improperly during
the middle of a transaction commit. This type of occurrence is much more rare with a server than with a
workstation.

Page 69



Using DBISAM

2.11 Backing Up and Restoring Databases

Introduction

Backing up and restoring databases is accomplished through the TDBISAMDatabase Backup, BackupInfo,
and Restore methods. The properties used by the Backup, BackupInfo, and Restore methods include the
Connected,

DatabaseName, Directory, and RemoteDatabase properties. The OnBackupProgress, OnBackupLog,
OnRestoreProgress, and OnRestoreLog events can be used to track the progress of and log messages
about the backup or restore operation. Backing up a database copies all or some of the tables within the
database to a compressed or uncompressed backup file. Restoring a database copies all or some of the
tables in a compressed or uncompressed backup file into the database, overwriting any tables with the
same names that already exist in the database.

Backing Up a Database

To backup a database you must specify the DatabaseName and Directory or RemoteDatabase properties
of the TDBISAMDatabase component, set the Connected property to True, and then call the Backup
method. If you are backing up a database from a local session then you will specify the Directory property.
If you are backing up a database from a remote session then you will specify the RemoteDatabase
property. The TDBISAMDatabase component must be open when this method is called. If the
TDBISAMDatabase component is closed an exception will be raised.

Note

When the backup executes, it obtains a read lock for the entire database that prevents any sessions
from performing any writes to any of the tables in the database until the backup completes.
However, since the execution of this method is quite fast the time during which the tables cannot
be changed is usually pretty small. To ensure that the database is available as much as possible for
updating, it is recommended that you backup the tables to a file on a hard drive and then copy the
file to a CD, DVD, or other slower backup device outside of the scope of the database being locked.

The following example shows how to backup a local database using the Backup method:

The local database has the following tables:

Table Name
Customers
Orders
Items

var
TablesToBackup: TStrings;

begin
TablesToBackup:=TStringList.Create;
try
with MyDatabase do

begin

Page 70



Using DBISAM

DatabaseName:='MyDatabase';
Directory:="'d:\temp';
with TablesToBackup do
begin
Add ('Customers') ;
Add ('Orders') ;
Add('Items') ;
end;
if Backup('d:\temp\'+
StringReplace (DateToStr (Date),
'/','"", [rfReplaceAll])+"'.bkp',
'Daily Backup for '+DateToStr (Date), 6,
TablesToBackup) then
ShowMessage ('Backup was successful')
else
ShowMessage ('Backup failed');
end;
finally
TablesToBackup.Free;
end;
end;

Note

Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Tracking the Backup Progress

To take care of tracking the progress of the backup we have provided the OnBackupProgress and
OnBackupLog events within the TDBISAMDatabase component. The OnBackupProgress event will report
the progress of the backup operation and the OnBackupLog event will report any log messages regarding
the backup operation.

Retrieving Information from a Backup File

To retrieve information from a backup file you must specify the DatabaseName and Directory or
RemoteDatabase properties of the TDBISAMDatabase component, set the Connected property to True,
and then call the BackupInfo method. If you are retrieving information from a backup file from a local
session then you will specify the Directory property. If you are retrieving information from a backup file
from a remote session then you will specify the RemoteDatabase property. The TDBISAMDatabase
component must be open when this method is called. If the TDBISAMDatabase component is closed an
exception will be raised.

Note

Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Restoring a Database

Page 71



Using DBISAM

To restore tables to a database you must specify the DatabaseName and Directory or RemoteDatabase

properties of the TDBISAMDatabase component, set the Connected property to True, and then call the

Restore method. If you are restoring tables to a database from a local session then you will specify the

Directory property. If you are restoring tables to a database from a remote session then you will specify
the RemoteDatabase property.

Note

The Restore method overwrites any existing tables with names that are the same as those specified
in this parameter. You should be very careful when using this method with an existing database to
prevent loss of data.

The TDBISAMDatabase component must be open when this method is called. If the TDBISAMDatabase
component is closed an exception will be raised.

Note

When the restore executes, it obtains a write lock for the entire database that prevents any sessions
from performing any reads or writes from or to any of the tables in the database until the restore
completes. However, since the execution of this method is quite fast the time during which the
tables cannot be accessed is usually pretty small.

The following example shows how to restore a table to a local database using the Restore method:

The local database has the following tables:

Table Name
Customers
Orders
Items

var
TablesToRestore: TStrings;

begin
TablesToRestore:=TStringList.Create;
try
with MyDatabase do

begin
DatabaseName:="'MyDatabase';
Directory:='d:\temp';
with TablesToRestore do
Add ('Customers') ;
if Restore('d:\temp\'+
StringReplace (DateToStr (Date),
'/', "', [rfReplaceAll])+"'.bkp"',
TablesToRestore) then
ShowMessage ('Restore was successful')
else
ShowMessage ('Restore failed');
end;

Page 72



Using DBISAM

finally
TablesToRestore.Free;
end;
end;

Note

Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Tracking the Restore Progress

To take care of tracking the progress of the restore we have provided the OnRestoreProgress and
OnRestorelLog events within the TDBISAMDatabase component. The OnRestoreProgress event will report
the progress of the restore operation and the OnRestoreLog event will report any log messages regarding
the restore operation.

Page 73



Using DBISAM

2.12 In-Memory Tables

Introduction

DBISAM provides a complete and seamless in-memory table implementation within the same framework
as disk-based tables. There are only a few slight differences that should be taken into account when using
in-memory tables, and these are detailed below.

DatabaseName Property

The DatabaseName property in the TDBISAMTable and TDBISAMQuery components should always be set
to the special in-memory database name "Memory" in order to create or access any in-memory tables. All
in-memory tables reside in this same virtual database that is global to the application process. This means
that if you create an in-memory table called "mytable" using the TDBISAMTable CreateTable method and
then try to create it again elsewhere within the same application, you will receive an error indicating that
the table already exists. Because in-memory tables are global to the process, multiple sessions can access
and share the same in-memory tables.

Sharing In-Memory Tables

In-memory tables can be shared just like regular disk-based tables. They are also thread-safe and exhibit
the same locking and access behaviors.

Creating In-Memory Tables

Just like disk-based tables, in-memory tables must be created before they can be opened.

Deleting In-Memory Tables

Just like disk-based tables, in-memory tables must be deleted if they are no longer needed. If for any
reason an in-memory table is not deleted during the execution of an application, DBISAM will
automatically delete it when the application process is terminated.

Local and Remote In-Memory Tables

There are no differences between using in-memory tables with local sessions and using in-memory tables
with remote sessions other than the fact that in-memory tables created within a remote session are stored
on the database server whereas in-memory tables created within a local session are stored locally in the
application's memory space.

Page 74



Using DBISAM

2.13 Creating and Altering Tables

Introduction

Creating tables and altering the structure of existing tables is accomplished through the CreateTable and
AlterTable methods of the TDBISAMTable component. The properties used by the CreateTable and
AlterTable methods include the FieldDefs, IndexDefs, DatabaseName, TableName, and Exists properties.

Basic Steps

There are four basic steps that need to be completed when creating a table or altering the structure of an
existing table. They are as follows:

1) Define the field definitions using the FieldDefs property, which is a TDBISAMFieldDefs object.
2) Define the index definitions, if any, using the IndexDefs property, which is a TDBISAMIndexDefs object.
3) Set the database and table information using the DatabaseName and TableName properties.

4) Call the CreateTable method if creating a table or the AlterTable method if altering the structure of an
existing table.

Defining the field definitions

The FieldDefs property is used to specify which fields to define for the new or existing table. The FieldDefs
property is a list of TDBISAMFieldDef objects, each of which contains information about the fields that
make up the table. You may add new TDBISAMFieldDef objects using the Add method. There are two
different versions of the Add method. One is for use when creating a table and does not accept a FieldNo
parameter as the first parameter, and the other is for use when altering the structure of an existing table
and requires that you specify the FieldNo parameter as the first parameter. The reason for this difference
is that DBISAM uses field numbers (1-based) to distinguish between existing fields in a table and new
fields being added. It also uses field numbers in addition to the index position (0-based) of a field
definition in the FieldDefs property to determine if a field has been moved in the structure, but still exists.
The use of field numbers also allows for the renaming of existing fields in a table without losing data when
altering the structure of an existing table.

Note
You may use the FieldDefs property's Update method to automatically populate the field definitions
for the table from table itself specified by the TDBISAMTable TableName property.

The following summarizes how field numbers and the index position of field definitions are used when
creating a table or altering the structure of a table:

Value Rules

Page 75



Using DBISAM

Field Number

Index Position

Defining the index definitions

A field number is 1-based, meaning that it starts at 1 for the
first field definition in a table. A field number is automatically
assigned for all field definitions when creating a table so it
need not be specified and will be ignored if specified.

When altering the structure of an existing table, a field
number is required for each field definition. As indicated
above, using the FieldDefs property's Update method will
automatically populate the correct field numbers from an
existing table. If adding a new field, the field number should
be set to the next largest field number based upon the
existing field numbers in the FieldDefs property. For example,
if you have 5 field definitions in the FieldDefs property and
wish to add another, the new field definition should be
specified with 6 as its field number.

Note

The field definitions represented by the FieldDefs
property can have gaps in the field numbers when
altering the structure of an existing table. The is
because it is possible that a given field definition has
been deleted, which means that its field number would
not be present anywhere in the field definitions. This
type of condition is exactly what indicates to DBISAM
that the field should be removed from the table
structure.

An index position is 0-based, meaning that the first field
definition is at index position 0, the second field definition at
index position 1, etc. When creating a table or altering the
structure of an existing table, the index position represents
the desired physical position of the field definition in the table
after the table creation or alteration takes place.

When altering the structure of an existing table, you can
move field definitions around to different index positions and
leave their field numbers intact. This will indicate to DBISAM
that the field has simply moved its position in the structure of
the table. You can also use the Insert method to insert a field
definition at a specific index position. Like the Add method,
there are two versions of the Insert method, one with a
FieldNo parameter for use when altering the structure of an
existing table and one without for use when creating a table.

The IndexDefs property is used to specify which indexes to define for the new or existing table. The
IndexDefs property is a list of TDBISAMIndexDef objects, each of which contains information about the
indexes defined for the table. You may add new TDBISAMIndexDef objects using the Add method. Unlike
field definitions, DBISAM uses the index name to distinguish between different index definitions, and their
index position in the list of index definitions is irrelevant.

Page 76



Using DBISAM

Note
You may use the IndexDefs property's Update method to automatically populate the index
definitions for the table from table itself specified by the TDBISAMTable TableName property.

Please see the Index Compression topic for more information on the options for index compression in
DBISAM.

Setting the Database and Table Information

The DatabaseName and TableName properties are used to specify the name and location of the table to
create or the name of the table whose structure you wish to alter. The DatabaseName property can be set
to a value that matches the DatabaseName property of an existing TDBISAMDatabase component, or it
may directly specify the path to the new or existing table. The TableName property specifies the name of
the new or existing table.

Please see the DBISAM Architecture and Opening Tables topics for more information.
Creating the Table

After defining the field and index definitions and setting the database and table information, you can call
the CreateTable method to create the actual table. It is usually good practice to also examine the Exists
property of the TDBISAMTable component first to make sure that you don't attempt to overwrite an
existing table. If you do attempt to overwrite an existing table an EDBISAMEngineError exception will be
raised. The error code given when a table create fails due to the table already existing is 13060 and is
defined as DBISAM_TABLEEXISTS in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The CreateTable method can be called without any parameters or you may specify many different
parameters that set table-wide information for the table such as its description, locale, etc. The following
example shows how to create 