
DBISAM Version 4 Manual

Table Of Contents

Chapter 1 - Before You Begin 1

1.1 Changes From Version 3.x 1

1.2 New Features in Version 4.x 10

Chapter 2 - Using DBISAM 17

2.1 DBISAM Architecture 17

2.2 Data Types and NULL Support 25

2.3 Exception Handling and Errors 31

2.4 Configuring and Starting the Server 34

2.5 Server Administration 43

2.6 Customizing the Engine 49

2.7 Starting Sessions 59

2.8 Calling Server-Side Procedures 63

2.9 Opening Databases 64

2.10 Transactions 66

2.11 Backing Up and Restoring Databases 70

2.12 In-Memory Tables 74

2.13 Creating and Altering Tables 75

2.14 Upgrading Tables 82

2.15 Deleting Tables 84

2.16 Renaming Tables 85

2.17 Adding and Deleting Indexes from a Table 86

2.18 Emptying Tables 89

2.19 Copying Tables 90

2.20 Optimizing Tables 92

2.21 Verifying and Repairing Tables 94

2.22 Opening Tables 97

2.23 Closing Tables 102

2.24 Executing SQL Queries 103

2.25 Live Queries and Canned Queries 111

2.26 Parameterized Queries 113

2.27 Navigating Tables and Query Result Sets 116

Table of Contents

Preface

2.28 Updating Tables and Query Result Sets 118

2.29 Searching and Sorting Tables and Query Result Sets 126

2.30 Setting Ranges on Tables 132

2.31 Setting Master-Detail Links on Tables 134

2.32 Setting Filters on Tables and Query Result Sets 137

2.33 Loading and Saving Streams with Tables and Query Result Sets 140

2.34 Importing and Exporting Tables and Query Result Sets 142

2.35 Cached Updates 146

Chapter 3 - Advanced Topics 149

3.1 Locking and Concurrency 149

3.2 Buffering and Caching 155

3.3 Change Detection 157

3.4 Index Compression 159

3.5 Filter Optimization 161

3.6 Multi-Threaded Applications 165

3.7 Full Text Indexing 168

3.8 Compression 172

3.9 Encryption 173

3.10 Recompiling the DBISAM Source Code 174

3.11 Replacement Memory Manager 176

Chapter 4 - SQL Reference 177

4.1 Overview 177

4.2 Naming Conventions 178

4.3 Unsupported SQL 188

4.4 Optimizations 190

4.5 Operators 200

4.6 Functions 209

4.7 SELECT Statement 237

4.8 INSERT Statement 251

4.9 UPDATE Statement 253

4.10 DELETE Statement 257

4.11 CREATE TABLE Statement 261

4.12 CREATE INDEX Statement 268

4.13 ALTER TABLE Statement 270

4.14 EMPTY TABLE Statement 273

4.15 OPTIMIZE TABLE Statement 274

Table of Contents

Preface

4.16 EXPORT TABLE Statement 275

4.17 IMPORT TABLE Statement 277

4.18 VERIFY TABLE Statement 279

4.19 REPAIR TABLE Statement 280

4.20 UPGRADE TABLE Statement 281

4.21 DROP TABLE Statement 282

4.22 RENAME TABLE Statement 283

4.23 DROP INDEX Statement 284

4.24 START TRANSACTION Statement 285

4.25 COMMIT Statement 286

4.26 ROLLBACK Statement 287

Chapter 5 - Component Reference 289

5.1 EDBISAMEngineError Component 289

5.2 TDBISAMBaseDataSet Component 305

5.3 TDBISAMBlobStream Component 306

5.4 TDBISAMDatabase Component 312

5.5 TDBISAMDataSet Component 342

5.6 TDBISAMDataSetUpdateObject Component 372

5.7 TDBISAMDBDataSet Component 373

5.8 TDBISAMEngine Component 381

5.9 TDBISAMFieldDef Component 542

5.10 TDBISAMFieldDefs Component 559

5.11 TDBISAMFunction Component 566

5.12 TDBISAMFunctionParam Component 572

5.13 TDBISAMFunctionParams Component 576

5.14 TDBISAMFunctions Component 582

5.15 TDBISAMIndexDef Component 590

5.16 TDBISAMIndexDefs Component 600

5.17 TDBISAMParam Component 607

5.18 TDBISAMParams Component 641

5.19 TDBISAMQuery Component 650

5.20 TDBISAMRecord Component 699

5.21 TDBISAMSession Component 714

5.22 TDBISAMSQLUpdateObject Component 835

5.23 TDBISAMStringList Component 836

5.24 TDBISAMTable Component 840

Table of Contents

Preface

5.25 TDBISAMUpdateSQL Component 927

Chapter 6 - Type Reference 939

6.1 TAbortAction Type 939

6.2 TAbortErrorEvent Type 940

6.3 TAbortProgressEvent Type 941

6.4 TCachedUpdateErrorEvent Type 942

6.5 TCompressEvent Type 943

6.6 TCryptoInitEvent Type 944

6.7 TCryptoResetEvent Type 945

6.8 TCustomFunctionEvent Type 946

6.9 TDatabaseRight Type 947

6.10 TDatabaseRights Type 949

6.11 TDataLossCause Type 950

6.12 TDataLostEvent Type 951

6.13 TDecompressEvent Type 952

6.14 TDecryptBlockEvent Type 953

6.15 TEncryptBlockEvent Type 954

6.16 TEndTransactionTriggerEvent Type 955

6.17 TEngineType Type 956

6.18 TErrorEvent Type 957

6.19 TEventDayOfMonth Type 958

6.20 TEventDayOfWeek Type 961

6.21 TEventDays Type 962

6.22 TEventMonths Type 963

6.23 TEventRunType Type 964

6.24 TFieldCharCase Type 965

6.25 TFilterOptimizeLevel Type 966

6.26 TIndexCompression Type 967

6.27 TLockProtocol Type 968

6.28 TLogCategory Type 969

6.29 TLogEvent Type 970

6.30 TLogEventType Type 971

6.31 TLoginEvent Type 973

6.32 TLogRecord Type 974

6.33 TPasswordEvent Type 975

6.34 TProcedureProgressEvent Type 976

Table of Contents

Preface

6.35 TProcedureRight Type 977

6.36 TProcedureRights Type 978

6.37 TProgressEvent Type 979

6.38 TReconnectEvent Type 980

6.39 TRecordLockTriggerEvent Type 981

6.40 TSendReceiveProgressEvent Type 982

6.41 TServerConnectEvent Type 983

6.42 TServerDisconnectEvent Type 984

6.43 TServerLogCountEvent Type 985

6.44 TServerLogEvent Type 986

6.45 TServerLoginEvent Type 987

6.46 TServerLogoutEvent Type 988

6.47 TServerLogRecordEvent Type 989

6.48 TServerProcedureEvent Type 990

6.49 TServerReconnectEvent Type 991

6.50 TServerScheduledEvent Type 992

6.51 TSessionType Type 993

6.52 TSQLStatementType Type 994

6.53 TSQLTriggerEvent Type 996

6.54 TStartTransactionTriggerEvent Type 997

6.55 TSteppedProgressEvent Type 998

6.56 TTextIndexFilterEvent Type 999

6.57 TTextIndexTokenFilterEvent Type 1000

6.58 TTimeoutEvent Type 1001

6.59 TTraceEvent Type 1002

6.60 TTraceEventType Type 1003

6.61 TTraceRecord Type 1004

6.62 TTriggerEvent Type 1006

6.63 TUpdateType Type 1007

Appendix A - Differences from the BDE 1009

Appendix B - Error Codes and Messages 1021

Appendix C - System Capacities 1039

Table of Contents

Preface

This page intentionally left blank

Table of Contents

Preface

Chapter 1
Before You Begin

1.1 Changes From Version 3.x

The following items have been changed in Version 4.x from Version 3.x:

The physical table format has changed for version 4 and all tables in 3.x and earlier formats will
require upgrading to the current format using the TDBISAMTable UpgradeTable method or the new
UPGRADE TABLE SQL statement. Please see the Upgrading Tables topic for more information.

The major changes to the format include:

Change Description

Table Signatures Every table is now stamped with an MD5 hash that
represents the hash of a "signature" that is specified in
the EngineSignature property of the TDBISAMEngine
component. In order to access any table, stream, or
backup created with a specific engine signature other than
the default requires that the engine be using the same
signature or else access will be denied. Please see the
Customizing the Engine topic for more information.

Locale IDs The language ID and sort ID values (Word values) for a
table in 3.x and lower have been replaced with one single
locale ID (Integer value). This causes a change in the
TDBISAMTable RestructureTable method, which has been
renamed to the AlterTable method to maintain consistency
with the ALTER TABLE SQL statement (see below). Also,
the LanguageID and SortID properties of the
TDBISAMTable component are now one LocaleID
property. Finally, the SQL LANGUAGE ID and SORT ID
keywords have been replaced with the single LOCALE
keyword in SQL statements, and some of the language
identifiers (string values) have been modified to reflect the
change to a locale instead of a language identifier.

Table Encryption The default table encryption in prior versions of DBISAM
was weak XOR encryption and, although it was fast, it was
also easily broken. The table encryption in version 4 is
Blowfish encryption that is not easily broken. All table
passwords are stored as MD5 hashes encrypted with the
same Blowfish encryption. Please see the Encryption topic
for more information.

System Fields There are two new "system" pseudo-fields in every table
called "RecordID and "RecordHash". These fields can be
indexed, filtered, etc. but do not show up in the field
definitions for the TDBISAMTable or TDBISAMQuery
components. RecordID is an integer value (4 bytes)
representing the fixed "row number" of a given record.
RecordHash is an MD5 binary value (16 bytes) that

Before You Begin

Page 1

represents the hash of a given record. If you upgrade a
table that already has a field named the same as either of
these fields, your field will be automatically renamed by
the UpgradeTable method or the UPGRADE TABLE SQL
statement to '_'+OldFieldName. In other words, an
underscore will be added to the front of the existing field
name.

Auto Primary Index In version 3.x and earlier you could have a table without a
primary index. In version 4, if you do not define a primary
index when creating or restructuring a table, DBISAM will
automatically add a primary index on the system RecordID
field mentioned above.

BLOB Compression You may now specify compression for BLOB fields when
creating or restructuring a table. The compression is
specified as a Byte value between 0 and 9, with the
default being 0, or none, and 6 being the best selection
for size/speed. The default compression is ZLib, but can
be replaced by using the TDBISAMEngine events for
specifying a different type of compression. Please see the
Compression and Customizing the Engine topics for more
information.

Maximum Field Size The maximum size of a string or bytes field is now 512
bytes instead of 250 bytes.

FixedChar Fields String fields that are of the ftFixedChar type do not
automatically right-trim spaces from strings assigned to
them as they have in the past. String fields that are of the
type ftString still treat strings like VarChars and right-trim
the strings assigned to them. For example, assigning the
value 'Test ' to the two different field types would result in
the following:

ftString='Test'
ftFixedChar='Test '

This is useful for situations where you want to keep
trailing spaces in string fields.

GUID Fields GUID fields are now supported and are implemented as a
38-byte field containing a GUID in string format.

AutoInc Fields Auto-increment fields are now always editable and you
may have more than one autoinc field per record, with
each field incrementing independently. Because these
fields are editable, the SuppressAutoIncValues property
has been removed from both the TDBISAMTable and
TDBISAMQuery component and the NOAUTOINC clause
has been removed from the SQL statements. The way
autoinc fields work now is that they will auto-increment if
a value is not specified for the field before the Post
operation (field is NULL), and will leave any existing value
alone if one is already specified before the Post operation.

Before You Begin

Page 2

Note
If you do not want an end user to modify any
autoinc fields directly then it is extremely important
that you mark any autoinc fields as read-only by
setting the TField ReadOnly property to True before
the user is allowed to access these fields.

Descending Index Fields You may now specify which fields are ascending or
descending in an index independently of one another. This
change also modifies the AddIndex method of the
TDBISAMTable component slightly as well as the
TDBISAMIndexDef objects used in creating and altering
the structure of tables. With SQL you can simply place an
appropriate ASC or DESC keyword after each field
specified for an index definition in a CREATE TABLE or
CREATE INDEX statement.

Index Page Size You may now specify the index page size when creating or
altering the structure of tables. This changes the
TDBISAMTable AlterTable method slightly as well as the
CREATE TABLE SQL statement syntax. Also, there is a new
IndexPageSize property for the TDBISAMTable
component. The minimum page size is 1024 bytes and the
maximum page size is 16 kilobytes.

Note
The index page size affects the maximum key size
that can be specified for an index, so if you try to
index very large string fields you may get an error
indicating that the index key size is invalid. Also,
regardless of page size the maximum key size for
any index is 4096 bytes. Finally, the maximum
number of fields that can be included in a given
index has been expanded from 16 to 128 fields.
However, the number of indexes per table is still
only 30 indexes and has not changed.

The TDBISAMTable RestructureTable method is now called the AlterTable method to be more in line
with the name of the ALTER TABLE SQL statement. Also, the TDBISAMTable OnRestructureProgress
event is now called the OnAlterProgress event.

The TDBISAMTable OnDataLost event will now fire when adding unique secondary or primary
indexes that cause key violations. Also, the ContinueRestructure parameter to this event is now
called the Continue parameter in order to be more in line with its new dual-purposes.

The TDBISAMQuery OnQueryProgress event is now of the type TAbortProgressEvent to reflect the
fact that it will be used for more than just the OnQueryProgress event in the future.

The addition and subtraction of dates, times, and timestamps in filter and SQL expressions have
changed slightly. Please see the SQL Reference Operators topic for more information.

Before You Begin

Page 3

There are also new filter and SQL functions for converting milliseconds into the appropriate number
of years, days, hours, etc. Please see the New Features in Version 4.x and the SQL Reference
Functions topics for more information.

The index compression/de-compression code has been vastly improved so as to be much more
efficient, especially when there are a large number of duplicate keys in the index and the
compression is set to duplicate-byte or full compression.

The DBISAM table stream format has changed completely. It is now more similar to a binary
import/export format and can now include just a subset of fields from the original table and does
not include index information that previously caused many problems with loading streams saved
from query result sets into tables, etc.

Note
Like tables themselves, streams are signed with the current engine signature to ensure that
only the current engine signature, or the default engine signature, can access the stream.
Also, even though the table that a stream is created from is encrypted, the resultant stream
will never be encrypted and you must make sure to take extra caution if you do not want to
expose data improperly. Please see the Loading and Saving Streams with Tables and Query
Result Sets topic for more information.

The table locking in DBISAM has changed completely in order to streamline transaction locking,
prevent deadlocks during transactions, and improve the performance of the table and transaction
locking. Previously table locking was done at the individual table level, so if you started a transaction
on a database with 50 physical tables opened for that database, DBISAM would have to place a
transaction lock on all 50 open tables before starting the transaction. It would also have to
subsequently write lock them during a commit and then unlock everything for each table after the
transaction was committed or rolled back. Now all table locking is centralized in one hidden file
called "dbisam.lck" (by default) and located in the physical database directory. In case anyone
mistakes this for a Paradox-style lock file, it is definitely not anything close. The lock file in DBISAM
version 4 is just an empty "container" used to perform byte offset locking at the operating system
level and the existence of the file is strictly optional - it will automatically be created by DBISAM as
needed. Likewise, if the file is left there (which it will be since DBISAM prefers not to have to
constantly recreate it when needed) it will not cause any harm, unlike with a Paradox lock file. With
this new type of locking, DBISAM only needs to place one lock call to the OS when a transaction is
started (instead of the previous scenario of 50 calls), one write lock call during a commit, and one
unlock call during a commit or rollback. It also completely eliminates deadlocks during transaction
locking since this architecture makes it impossible to get a deadlock. Please see the Locking and
Concurrency and Transactions topics for more information.

Note
The default lock file name "dbisam.lck" can be modified to any file name desired by modifying
the TDBISAMEngine LockFileName property.

Before You Begin

Page 4

A few TDBISAMSession properties have been modified slightly to reflect some changes in the remote
access. The RemoteType property has been removed and been replaced with the RemoteEncryption,
RemoteEncryptionPassword, and RemoteCompression properties. The RemoteEncryption property
specifies that any comms requests or responses should be encrypted using the strong crypto in the
engine, and the RemoteEncryptionPassword specifies the password to use for the encryption. This
password must match the password used by the server engine to encrypt/decrypt comms on its end.
Also, in version 4 *all* administrative access requires the use of RemoteEncryption=True. You
cannot log into the administrative port on a server without encryption turned on and the password
set to the proper password for the server that you are accessing. In addition to this, all login
information is automatically encrypted using the RemoteEncryptionPassword, so regardless of
whether RemoteEncryption is turned on or not, the password must still match that of the server or
you won't be able to log in using a non-encrypted connection either. The RemoteCompression
property allows you to dynamically change the compression for the comms at any time before,
during, or after logging into a database server. Each request and response is tagged with a specific
compression level, thus allowing unlimited flexibility in determining how much/little compression to
use. The property is specified as a Byte value between 0 and 9, with the default being 0, or none,
and 6 being the best selection for size/speed. Because of these property changes, the
TDBISAMSession GetRemoteSessionInfo method has been modified to reflect whether the session is
encrypted or not instead of the type of session (rtInternet or rtLAN previously).

The TDBISAMSession method GetRemoteLog for retrieving the server log from the server has been
removed and replaced with two different methods, one for retrieving the total number of log entries
called GetRemoteLogCount, and one for retrieving a specific log entry from the server based upon
its ordinal position in the log called GetRemoteLogRecord. This change is due to the abstraction of
the log storage in the TDBISAMEngine component when running as a server (EngineType=etServer).
Previously the log storage was a "black box" text file that was maintained by the server. Now the log
storage is abstract and is handled via the OnServerLogEvent event in the TDBISAMEngine
component. A TLogRecord record is passed to an event handler for this event and the event handler
is free to store this data in whatever way it deems appropriate. Likewise, the OnServerLogCount
event is triggered in the TDBISAMEngine component when the client session calls the
TDBISAMSession GetRemoteLogCount method and the OnServerLogRecord event is called when the
TDBISAMSession GetRemoteLogRecord method is called.

Note
By default, the server application that comes with DBISAM uses event handlers for these
events to simply write out these log records as binary records in a log file.

Please see the Customizing the Engine topic for more information.

Before You Begin

Page 5

The following types have been changed or removed:

Type New Type

TDBISAMPasswordEvent TPasswordEvent

TDBISAMDatabaseRight TDatabaseRight

Note
The TDatabaseRight type has also been expanded
to include new rights for backup (drBackup) and
restore (drRestore) of a database, as well as rights
for performing maintenance (drMaintain) on a
database like repairing and optimizing tables and
renaming objects in a database (drRename).

TDBISAMDatabaseRights TDatabaseRights

The following constants have been changed or removed:

Constant New Constant(s)

DBISAM_LOCKTIMEOUT DBISAM_READLOCK
DBISAM_READUNLOCK
DBISAM_WRITELOCK
DBISAM_WRITEUNLOCK
DBISAM_TRANSLOCK
DBISAM_TRANSUNLOCK

This was done to give the developer more control over
which condition he/she was responding to, especially
when it comes to transaction lock timeouts.

Before You Begin

Page 6

The RestructureFieldDefs and RestructureIndexDefs have been removed and replaced with common
TDBISAMFieldDefs and TDBISAMIndexDefs objects. These new objects allow the TDBISAMTable
CreateTable method to be changed so that it is identical to the AlterTable method (used to be called
RestructureTable), thus eliminating the need for the old way of creating a table and then
immediately altering its structure in order to add DBISAM-specific features to the table. These
objects are assignment-compatible with their TDataSet cousins TFieldDefs and TIndexDefs.

Note
There is one important change in the TDBISAMFieldDefs Add method that is different from
the standard TFieldDefs Add method. The TDBISAMFieldDefs Add method is overloaded to
allow for the direct specification of the FieldNo of the TDBISAMFieldDef being added. This is
to allow for moving fields around without losing any data with the AlterTable method. Also,
the TDBISAMFieldDefs object has an additional Insert method that allows for the insertion of
a TDBISAMFieldDef object in a specific position in the TDBISAMFieldDefs. Please see the
Creating and Altering Tables topic for more information.

The TDBISAMTable and TDBISAMQuery BlockReadSize property functionality has been modified so
that it behaves like the TDBISAMTable and TDBISAMQuery RemoteReadSize property, which does
not have the limitations that the BlockReadSize property used to have and can also very easily
optimize C/S access so that records are retrieved from the server in batches.

The TDBISAMTable RecordIsLocked and TableIsLocked methods no longer attempt to make locking
calls in order to determine whether a record or table is locked, and only reflect whether the current
table cursor has a given record or table locked. If you want to edit a record you should just edit the
record and respond accordingly to any locking exceptions that occur if a table or record is already
locked.

The TDBISAMTable and TDBISAMQuery Locate method implementation has internally been moved
into the engine itself, which should result in some faster performance for Locate calls, especially
when accessing a database server. Also, the Locate method can now take advantage of indexes in
live query result sets (as well as canned result sets) when optimizing its searching. These changes to
Locate do not cause any code changes in your application.

All DBISAM error strings are now marked with the resourcestring directive and are located in a new
unit (Delphi) or header file (C++) called dbisamst.

The TDBISAMQuery Params property is no longer the standard TParams object, but rather is now a
custom TDBISAMParams object. This also holds true for the individual TParam objects contained
within the Params property, as they are now TDBISAMParam object. This was done to fix a bug in
the parsing of parameters in SQL statements in the TParams object, as well as to enable the use of
a common set of objects for both queries, custom SQL and filter functions, and server-side
procedure calls. Also, with this change we have added the TDBISAMParam AsLargeInt property to
allow you to retrieve and assign 64-bit integer parameters.

Before You Begin

Page 7

The TDBISAMQuery component now processes SQL scripts client-side so as to allow for the use of
parameters with scripts. A new OnGetParams event is fired whenever a new SQL statement is
prepared. This allows one to execute an SQL script and populate the parameters in a step-by-step
fashion. However, it does come at a price when executing large SQL scripts using a remote session.
Previously with 3.x the entire script was executed on the database server, but with version 4 each
individual SQL statement is parsed and sent to the server independently, so this can result in much
more network traffic. The work-around is to send any very large SQL scripts to the server to be
executed in the context of a server-side procedure, which will keep the processing of the script
entirely on the server but still allow for parameters in the script.

SQL statements and filter expressions now require all constants to be enclosed in single quotes as
opposed to double-quotes. Identifiers such as table names and column names can still be (and must
be) enclosed in double quotes or brackets. This allows DBISAM's parser to distinguish properly
between identifiers and constants, which previously would confuse the parser, especially with
expressions like this:

MyColumName="MyColumnName"

where the parser didn't know whether to treat "MyColumnName" as a constant or a column value.

The use of the asterisk (*) as a wildcard along with the equality (=) operator in SQL statements is
no longer supported. Instead, you must use the LIKE operator and the percent (%) wildcard
character like this:

MyColumName LIKE 'Test%'

The SQL aggregate and distinct processing, as well as the result set ordering, has been improved so
as to reduce the amount of I/O used to perform these functions. The results should be fairly
improved over 3.x, especially with large source tables. In addition, the MIN and MAX aggregate
functions can now take advantage of indexes when SQL statements like the following are used:

SELECT max(MyField) FROM MyTable

where MyTable has an index on MyField. You can also now use the MIN and MAX aggregate
functions with string fields. Finally, the SQL SELECT statement's TOP clause can now take advantage
of indexes to optimize its performance quite a bit over 3.x.

The MEMORY keyword has been removed from SQL statements and should be replaced with a
database specification of "Memory\". For example, in 3.x you would specify the following SQL
SELECT statement to retrieve data from an in-memory table:

SELECT * FROM MEMORY biolife

In version 4 you should use:

Before You Begin

Page 8

SELECT * FROM "\Memory\biolife"

The WITH LOCKS clause has been removed from the SELECT SQL statement. To ensure that data
does not change during the course of a SELECT statement you should wrap the statement in a
transaction.

The SQL and filter LIKE operator now accepts an ESCAPE clause to specify an escape character:

SELECT * FROM MyTable WHERE MyColumn LIKE '100\%%' ESCAPE '\'

In the above example the backslash serves as the escape character indicating that the character
after it, the percent sign (%), should be interpreted literally and not as a wildcard like it normally is.
The above SQL statement will find all records where MyColumn begins with '100%'.

Before You Begin

Page 9

1.2 New Features in Version 4.x

The following items are new features in version 4.x:

There is a new TDBISAMEngine component that encapsulates the DBISAM engine inside of a visual
component. In the component hierarchy, the TDBISAMEngine component sits at the top above the
TDBISAMSession component(s). A default Engine function is available in the dbisamtb unit (Delphi)
or dbisamtb header file (C++) that points to a global instance of the TDBISAMEngine component.
You can also drop a TDBISAMEngine component on a form or data-module to visually change its
properties. However, only one instance of the TDBISAMEngine component can exist in a given
application, and both the Engine function and any TDBISAMEngine component on a form or data
module point to the same instance of the component (singleton model). Some of the functionality
found in the TDBISAMEngine component includes:

Functionality Description

Engine Type The EngineType property can be set to either etClient or
etServer in order to have the engine behave as a local
client engine or a server engine. If acting as a server
engine, many additional properties are provided for
configuring the server:

ServerName
ServerDescription
ServerMainAddress
ServerMainPort
ServerMainThreadCacheSize
ServerAdminAddress
ServerAdminPort
ServerAdminThreadCacheSize
ServerEncryptedOnly
ServerEncryptionPassword
ServerConfigFileName
ServerConfigPassword

There are also many events provided for the server
engine:

OnServerStart
OnServerStop
OnServerLogEvent
OnServerLogCount
OnServerLogRecord
OnServerConnect
OnServerReconnect
OnServerLogin
OnServerLogout
OnServerDisconnect
OnServerScheduledEvent
OnServerProcedure

Please see the Configuring and Starting the Server topic
for more information.

Full Text Indexing There are specific events for implementing full text index

Before You Begin

Page 10

filtering (either on a buffer basis or on a per-token basis):

OnTextIndexFilter
OnTextIndexTokenFilter

Also, there are two new methods for parsing strings into
word lists and retrieving the default text indexing
parameters:

BuildWordList
GetDefaultTextIndexParams

Note
The BuildWordList function used to be available in
the dbisamlb unit (Delphi) or dbisamlb header file
(C++) and it is still is, although different from the
one available as a method of the TDBISAMEngine
component. You should use the method of the
TDBISAMEngine component instead of the function
in the dbisamlb unit in version 4.

Please see the Full Text Indexing topic for more
information.

Custom Encryption There are specific events for customizing the encryption in
DBISAM (8-byte block ciphers only):

OnCryptoInit
OnEncryptBlock
OnDecryptBlock
OnCryptoReset

Please see the Encryption topic for more information.

Custom Compression There are specific events for customizing the compression
in DBISAM:

OnCompress
OnDecompress

Please see the Compression topic for more information.

Signatures There is an EngineSignature property in the
TDBISAMEngine component that is used to create an MD5
hash that is assigned to every table, table stream, backup,
comms request and response, etc. This allows one to
"assign" tables, etc. to a specific application and prevent
any other application from accessing the tables, server,
etc. without the proper engine signature. Please see the
Customizing the Engine for more information.

ANSI Conversions All of the ANSI string conversion functions that used to be
in the dbisamlb unit are now public methods of the
TDBISAMEngine component:

Before You Begin

Page 11

DateToAnsiStr
TimeToAnsiStr
DateTimeToAnsiStr
AnsiStrToDate
AnsiStrToTime
AnsiStrToDateTime
BooleanToAnsiStr
AnsiStrToBoolean
FloatToAnsiStr
AnsiStrToFloat
CurrToAnsiStr
AnsiStrToCurr

Locale Functionality There are new methods for working with the available
locales in DBISAM:

IsValidLocale
IsValidLocaleConstant
ConvertLocaleConstantToID
ConvertIDToLocaleConstant
GetLocaleNames

Memory Usage The amount of memory used for buffering tables can now
be controlled via the following properties:

MaxTableDataBufferSize
MaxTableDataBufferCount
MaxTableIndexBufferSize
MaxTableIndexBufferCount
MaxTableBlobBufferSize
MaxTableBlobBufferCount

Note
These properties used to be in the TDBISAMSession
component in 3.x and earlier and were only
applicable to the session for which they were
configured. The TDBISAMEngine properties above
are used for the all sessions in the application.

File Extensions The file extensions to use for physical table files, table
backup files, and table upgrade backup files can be
specified via the following properties:

TableDataExtension
TableIndexExtension
TableBlobExtension
TableDataBackupExtension
TableIndexBackupExtension
TableBlobBackupExtension
TableDataUpgradeExtension
TableIndexUpgradeExtension
TableBlobUpgradeExtension

Locking The lock wait times and retry counts for table read, write,
and transaction locks can now be modified via the

Before You Begin

Page 12

following properties:

TableReadLockTimeout
TableWriteLockTimeout
TableTransLockTimeout

Triggers You can now define trigger event handlers that allow for
processing both before and after the execution of an
insert, update, or delete operation:

BeforeInsertTrigger
AfterInsertTrigger
BeforeUpdateTrigger
AfterUpdateTrigger
BeforeDeleteTrigger
AfterDeleteTrigger

Please see the Customizing the Engine topic for more
information.

Custom Functions You can now add custom functions for use with filters and
SQL statements. They can be used anywhere that a
normal, non-aggregate function would be used. All
arguments to the functions are required and there is no
facility currently for optional arguments. The Functions
property of the TDBISAMEngine component allows you to
specify the functions and their arguments, and the
OnCustomFunction event of the TDBISAMEngine
component allows you to implement the functions. Please
see the Customizing the Engine topic for more
information.

You can now use restricted transactions on a given database where only certain tables that you
specify are involved in the transaction. Please see the Transactions topic for more information.

There is a new TDBISAMEngine FilterRecordCounts property that controls how record counts are
returned for filtered datasets and live query result sets. The default value of this property is True,
which indicates that record counts under these circumstances will be returned in the same fashion
as they were in 3.x and earlier. If the FilterRecordCounts property is set to False, the RecordCount
property of the TDBISAMTable and TDBISAMQuery components will always show the total record
count of the entire dataset or active range (if a range is set) only and will not take any active filters
(or WHERE clauses with live query result sets) into account. To get the record count including any
active filters, a FilterRecordCount property has been added to the TDBISAMTable and
TDBISAMQuery components that always shows the accurate record count, regardless of the current
setting of the TDBISAMEngine FilterRecordCounts propety.

Setting the TDBISAMEngine FilterRecordCounts property to False may be desirable for some
applications since it allows for more accurate positioning of the scroll bar in a TDBGrid or similar
multi-row, data-aware components. Please see the Customizing the Engine and Setting Filters on
Tables topics for more information.

Before You Begin

Page 13

The TDBISAMSession component now has new remote administrative methods for
adding/updating/deleting server-side procedures and events:

 GetRemoteProcedureNames
 GetRemoteProcedure
 AddRemoteProcedure
 ModifyRemoteProcedure
 DeleteRemoteProcedure
 GetRemoteProcedureUserNames
 GetRemoteProcedureUser
 AddRemoteProcedureUser
 ModifyRemoteProcedureUser
 DeleteRemoteProcedureUser
 GetRemoteEventNames
 GetRemoteEvent
 AddRemoteEvent
 ModifyRemoteEvent
 DeleteRemoteEvent

Please see the Server Administration topic for more information.

The TDBISAMSession component now has the ability to ping a database server using the
RemotePing and RemotePingInterval properties. These properties eliminate the need for user-
constructed pinging operations using timers and are safe to use for the purpose of shortening dead
session expiration times that are configured on a database server and eliminating dangling
pessimistic locks when client workstations go down while connected.

The TDBISAMSession component now has the capability to call a server-side procedure on a
database server using the CallRemoteProcedure method, the RemoteParams property, and the
RemoteParamByName method. Please see the Calling Server-Side Procedures topic for more
information.

The TDBISAMDatabase component has new backup and restore facilities available in the following
methods and events:

 Backup
 BackupInfo
 Restore

 OnBackupProgress
 OnBackupLog
 OnRestoreProgress
 OnRestoreLog

Please see the Backing Up and Restoring Databases topic for more information.

There is a new TableSize property for the TDBISAMTable component that reflects the total size (in
bytes) of the physical table on disk (or in-memory if an in-memory table).

The SQL SELECT statement now includes support for the EXCEPT [ALL] and INTERSECT [ALL] set
operations, in addition to the UNION [ALL] operation.

Before You Begin

Page 14

There are several new SQL statements available:

 EMPTY TABLE
 OPTIMIZE TABLE
 EXPORT TABLE
 IMPORT TABLE
 VERIFY TABLE
 REPAIR TABLE
 UPGRADE TABLE
 RENAME TABLE

There are several new filter and SQL functions:

 STDDEV (aggregate, SQL-only)
 CURRENT_GUID
 YEARSFROMMSECS
 DAYSFROMMSECS
 HOURSFROMMSECS
 MINSFROMMSECS
 SECSFROMMSECS
 MSECSFROMMSECS
 LTRIM
 RTRIM
 REPEAT
 CONCAT
 MOD
 ACOS
 ASIN
 ATAN
 ATAN2
 CEILING or CEIL
 COS
 COT
 DEGREES
 EXP
 FLOOR
 LOG
 LOG10
 PI
 POWER
 RADIANS
 RAND
 SIGN
 SIN
 SQRT
 TAN
 TRUNCATE or TRUNC

Please see the SQL Reference Functions topic for more information.

The SQL engine can now use the numeric 1 (or anything not 0) and 0 to represent TRUE and FALSE,
respectively. This is helpful for compatibility with generic front ends, such as those used with the
ODBC driver.

Before You Begin

Page 15

There is a new TDBISAMQuery OnQueryError event that can be used to trap SQL errors and decide
whether to abort an executing SQL statement or not. If an OnQueryError event handler is not
assigned, then any SQL errors will immediately surface as an EDBISAMEngineError exception in the
TDBISAMQuery component.

The TDBISAMQuery component now surfaces the OnAlterProgress, OnDataLost, OnIndexProgress,
OnOptimizeProgress, OnRepairLog, OnRepairProgress, OnUpgradeLog, OnUpgradeProgress,
OnVerifyLog, and OnVerifyProgress events just like the TDBISAMTable component. The only
difference is these events are triggered when the corresponding SQL statement is executed instead
of being triggered by a method call, including situations where an SQL statement is executed within
a script.

There are new OnLoadFromStreamProgress and OnSaveToStreamProgress events in the
TDBISAMTable and TDBISAMQuery components for tracking the loading/saving progress of streams.

Before You Begin

Page 16

Chapter 2
Using DBISAM

2.1 DBISAM Architecture

Introduction

DBISAM is a database engine that can be compiled directly into your Delphi or C++ application, be it a
program or library, or it can be distributed as a runtime package (equivalent to a library) as part of your
application. DBISAM was written in Delphi's Object Pascal and can be used with the VCL (Windows only).

General Architecture

DBISAM itself is a lightweight engine encapsulated within the TDBISAMEngine component. When the
TDBISAMEngine EngineType property is set to etClient, the TDBISAMEngine component is acting as a local
client engine, and when the EngineType property is set to etServer, the TDBISAMEngine component is
acting as a database server.

Sessions

DBISAM is session-based, where a session is equivalent to a virtual user and is encapsulated within the
TDBISAMSession component. There can be many sessions active in a given application, such as is the case
with a multi-threaded application. In multi-threaded applications DBISAM requires a separate session for
each thread performing database access. Please see the Multi-Threaded Applications topic for more
information.

A DBISAM session can be either local or remote:

Session Type Description

Local A local session gains direct access to database tables via the
operating system API to a given storage medium, which can
literally be any such medium that is accessible from the
operating system in use. This means that a local session on
the Windows operating system could access database tables
on a Linux file server. DBISAM automatically provides for the
sharing of database tables using a local session. For example,
an application can use local sessions on a small peer-to-peer
network to provide a low-cost, multi-user solution without the
added expense of using the client-server version of DBISAM.
A local session has all of the capabilities of a remote session
except for user and database security, which are only
available from a database server. Also, with a local session a
directory is synonymous with a database, whereas with a
remote session databases are defined as part of the server
configuration and the DBISAM client does not know the actual
location of a given database.

Remote A remote session uses sockets to communicate to a database
server over a network (or on the same physical machine)
using the TCP/IP protocol. DBISAM allows a remote session to

Using DBISAM

Page 17

be entirely encrypted using strong crypto. Compression is also
available for remote sessions and can be changed whenever it
is deemed necessary in order to improve the data transfer
speed. This is especially important with low-bandwidth
connections like a dial-up Internet connection. A remote
session connects to a given database server via an IP address
or host name and one of two different ports, depending upon
whether the connection is a regular connection or an
administrative connection. Before a remote session can
perform any operation on a database server it must be logged
in with a proper user ID and password. If a remote session is
connecting to the administration port on a database server,
the user ID specified during the login must be that of an
administrator or the login will be rejected. Also, an
administrative connection must be encrypted or the database
server will reject the connection.

Note
A developer can mix as many local and remote sessions in one application as needed, thus enabling
a single application to access data from a local hard drive, a shared file server, or a database
server. Also, local and remote sessions are completely identical from a programming perspective,
offering both navigational and SQL access methods. The only changes needed to switch from local
access to remote access for a session component is the modification of the TDBISAMSession
SessionType property.

Database Server

The database server listens for regular data connections on one port and administrative connections on a
second port. All administrative connections must be encrypted or they will be rejected by the database
server. When the TDBISAMEngine Active property is set to True, the database server will start listening on
the IP addresses and ports indicated by the following properties:

ServerMainAddress
ServerMainPort
ServerAdminAddress
ServerAdminPort

If the either ServerMainAddress or ServerAdminAddress property is blank (the default), the database
server will listen on all IP addresses available for the type of connection (either regular or administrative).
The default ports are 12005 for the ServerMainPort property and 12006 for the ServerAdminPort property.
Once the server is started, you cannot change any of these properties, as well as several other properties.
Please see the Configuring and Starting the Server topic for more information.

The database server is a multi-threaded server that uses one thread per client connection, which
corresponds to a client TDBISAMSession component set to run as a remote session via the SessionType
property. DBISAM will cache threads and keep a pool of unused threads available in order to improve
connect/disconnect times. The following properties control the default thread cache size uses by the
database server:

ServerMainThreadCacheSize
ServerAdminThreadCacheSize

The default for the ServerMainThreadCacheSize property is 10 threads and the default for the

Using DBISAM

Page 18

ServerAdminThreadCacheSize property is 1. Both of these properties must be set before the engine is
started and cannot be changed when the engine is started.

"Dead" sessions in the database server are sessions that have been inactive for a connection timeout
period (configurable) due to lack of client session requests or due to a physical network interruption in
service. Such sessions retain their complete state from the time that the disconnect occurred. The sessions
remain in this state until:

The client session attempts another data request or pings the server, in which case the connection
will automatically be re-established transparently between the client session and the database
server.

The database server's dead session expiration time period (configurable) is reached and the
database server automatically removes the session.

The number of dead sessions on the database server reaches the maximum threshhold
(configurable), thus causing the database server to remove dead sessions in order to bring the
number back under the threshhold, oldest dead session first.

Note
The age of a dead session is determined by the last time that the session was connected to the
server.

Please see the Server Administration topic for more information on configuring these settings on the
server.

Note
You can configure the remote sessions on the client to ping the database server at regular intervals
via the TDBISAMSession RemotePing and RemotePingInterval properties. Configuring remote
sessions to ping the database server in a smaller time period than the connection timeout
configuration on the database server allows you to specify a smaller dead session expiration timeout
and prevent sessions with active locks from being left around for too long. With pinging turned on,
the only reason a session would be disconnected by the server is if the client workstation or the
physical network connection has failed.

You may have a database server (or several) accessing a given database at the same time as other local
applications such as CGI or ISAPI web server applications. This allows you to put critical server-side
processing on the server where it belongs without incurring a lot of unnecessary overhead that would be
imposed by the transport protocol of the database server. This can improve the performance of server-
based local applications significantly, especially when they reside on the same machine as the database
server and the databases being accessed are local to the server machine.

The database server allows you to configure all users, databases, server-side procedures, and scheduled
events via a remote administrative connection or directly via the TDBISAMEngine component. User security
at the database and server-side procedure level allows the configuration of read, execute, insert, update,
delete, create, alter, drop, rename, maintain, backup, and restore privileges for a specific user or users.
Additionally, you may allow or block specific IP addresses or ranges of IP addresses (using wildcards) for
access to a given database server. A maximum number of connections may be set to prevent too many
inbound connections to a given server. Because the database server does not actively establish any
communication with a client session and all communication is controlled by the client session, you do not
have issues with firewalls as long as the firewall allows for inbound access to the main port and/or
administration port on the server. Please see the Server Administration topic for more information.

Using DBISAM

Page 19

All connections, errors, and other operational messages are logged and can be retrieved at a later time by
an administrator for examination.

Databases and Directories

DBISAM uses the physical directories in the operating system's file system to represent databases. This is
true for both local sessions and remote sessions, however with remote sessions these directories are
abstracted through logical database names in the server configuration. This allows applications written to
use remote sessions connecting to a database server to be portable between different servers with
different directory layouts. DBISAM creates a single hidden file called "dbisam.lck" (by default) in a
database directory that is used for locking. It is created as needed and may be deleted if not in use by
DBISAM. However, if DBISAM cannot write to this file it will treat the database as read-only. Please see
the Locking and Concurrency topic for more information.

Note
The default lock file name "dbisam.lck" can be modified to any file name desired by modifying the
TDBISAMEngine LockFileName property.

Physical Table Layout

DBISAM tables are divided into up to 3 physical files, one for data records, one for indexes, and one for
BLOB data (if there are BLOB fields present in the table):

File Type Description

Data File Used to store a fixed-length header for table-wide definitions
such as the table description, field counts, autoinc values,
etc., the fixed-length field definitions for the table, and the
fixed-length data records themselves. The use of a fixed-
length header, field definitions, and data records allows for
easier verification and/or repair of tables in the case of
physical table corruption. Please see the Verifying and
Repairing Tables topic for more information. All data records
contain a small record header and the field data. BLOB fields
contains a link to the BLOB file where the actual variable-
length BLOB data is stored in a blocked format.

Index File Used to store a fixed-length header for index statistics, index
counts, etc., the fixed-length index definitions, and the fixed-
length index pages themselves. The index page size is
variable and can be set between 1024 bytes and 16 kilobytes
on a per-table basis. All index pages for all primary,
secondary, and full text indexes are stored in this file.

BLOB File Used to store a fixed-length header for BLOB statistics, etc.
and the fixed-length BLOB blocks themselves. The BLOB block
size is variable and can be set between 64 bytes and 64
kilobytes on a per-table basis. All BLOB blocks for all BLOB
fields are stored in this file.

The file extensions used for these physical files can be changed. Please see the Customizing the Engine
topic for more information. The default file extensions are as follows:

Using DBISAM

Page 20

File Type File Extension

Data File .dat

Index File .idx

BLOB File .blb

In addition, during certain operations such as altering a table's structure, backup files will be created for
the physical table files. The default backup file extensions are as follows:

File Type Backup File Extension

Data File .dbk

Index File .ibk

BLOB File .bbk

Finally, during the process of upgrading a table from a previous version's format to the latest format,
backup files will be created for the physical table files. The default backup file extensions for upgraded
tables are as follows:

File Type Upgrade Backup File Extension

Data File .dup

Index File .iup

BLOB File .bup

Please see the Upgrading Tables topic for more information.

Component Architecture

DBISAM includes the following components:

Component Description

TDBISAMEngine The TDBISAMEngine component encapsulates the DBISAM
engine itself. A TDBISAMEngine component is created
automatically when the application is started and can be
referenced via the global Engine function in the dbisamtb unit
(Delphi) and dbisamtb header file (C++). You can also drop a
TDBISAMEngine component on a form or data-module to
visually change its properties. However, only one instance of
the TDBISAMEngine component can exist in a given
application, and both the global Engine function and any
TDBISAMEngine component on a form or data module point
to the same instance of the component (singleton model).
The TDBISAMEngine component can be configured so that it
acts like a local or client engine (etClient) or a database
server via the EngineType property. The engine can be
started by setting the Active property to True.

TDBISAMSession The TDBISAMSession component encapsulates a session in

Using DBISAM

Page 21

DBISAM. A default TDBISAMSession component is created
automatically when the application is started and can be
referenced via the global Session function in the dbisamtb unit
(Delphi) and dbisamtb header file (C++). The
TDBISAMSession component can be configured so that it acts
like a local (stLocal) or a remote session (stRemote) via the
SessionType property. A local session is single-tier in nature,
meaning that all TDBISAMDatabase components connected to
the session reference directories in a local or network file
system via the Directory property and all TDBISAMTable or
TDBISAMQuery components access the physical tables directly
from these directories using operating system API calls. A
remote session is two-tier in nature, meaning that all access is
done through the remote session to a database server using
the DBISAM messaging protocol over a TCP/IP connection.
The database server is specified through the following
properties:

RemoteHost or RemoteAddress
RemotePort or RemoteService

In a remote session, all TDBISAMDatabase components
reference databases that are defined on the database server
via the RemoteDatabase property and all TDBISAMTable or
TDBISAMQuery components access the physical tables
through the DBISAM messaging protocol rather than directly
accessing them.

Note
You cannot activate remote sessions in an application
whose TDBISAMEngine component is configured as a
database server via the EngineType property.

A session can be started by setting the Active property to True
or by calling the Open method. The TDBISAMSession
component contains a SessionName property that is used to
give a session a name within the application. All sessions must
have a name before they can be started. The default
TDBISAMSession component is called "Default". The
TDBISAMDatabase, TDBISAMTable, and TDBISAMQuery
components also have a SessionName property and these
properties are used to specify which session these
components belong to. Setting their SessionName property to
"Default" or blank ("") indicates that they will use the default
TDBISAMSession component. Please see the Starting Sessions
topic for more information.

TDBISAMDatabase The TDBISAMDatabase component encapsulates a database
in DBISAM. It is used as a container for a set of tables in a
physical directory for local sessions or as a container for a set
of tables in a database on a database server for remote
sessions. Please see the Server Administration topic for more
information on defining databases on a database server. A
database can be opened by setting the Connected property to

Using DBISAM

Page 22

True or by calling the Open method. A TDBISAMDatabase
component contains a DatabaseName property that is used to
give a database a name within the application. All databases
must have a name before they can be opened. The
TDBISAMTable and TDBISAMQuery components also have a
DatabaseName property and these properties are used to
specify which database these components belong to. Please
see the Opening Tables topic for more information.

The TDBISAMDatabase Directory property indicates the
physical location of the tables used by the TDBISAMTable and
TDBISAMQuery components. If a TDBISAMDatabase
component is being used with a local session (specified via
the SessionName property), then its Directory property should
be set to a valid physical path for the operating system in use.

The TDBISAMDatabase RemoteDatabase property indicates
the name of a database defined on a database server. If a
TDBISAMDatabase component is connected to a remote
session (specified via the SessionName property), then its
RemoteDatabase property should be set to a valid database
for the database server that the session is connected to.

The TDBISAMDatabase component is used for transaction
processing via the StartTransaction, Commit, and Rollback
methods. Please see the Transactions topic for more
information.

You can backup and restore databases via the Backup,
BackupInfo, Restore methods. Please see the Backing Up and
Restoring Databases topic for more information.

TDBISAMTable The TDBISAMTable component encapsulates a table cursor in
DBISAM. It is used to search and update data within the
physical table specified by the TableName property, as well as
create the table or alter its structure. A table cursor can be
opened by setting the Active property to True or by calling the
Open method. The DatabaseName property specifies the
database where the table resides. Please see the Opening
Tables topic for more information.

The TDBISAMTable component descends from the
TDBISAMDBDataSet component, which descends from the
TDBISAMDataSet component, which descends from the
common TDataSet component that is the basis for all data
access in Delphi and C++. None of these lower-level
components should be used directly and are only for internal
structuring purposes in the class hierarchy.

You can have multiple TDBISAMTable components using the
same physical table. Each TDBISAMTable component
maintains its own active index order, filter and range
conditions, current record position, record count statistics, etc.

TDBISAMQuery The TDBISAMQuery component encapsulates a single SQL
statement or multiple SQL statements in DBISAM. These SQL
statements may or may not return a result set. It is used to

Using DBISAM

Page 23

search and update data within the physical tables specified by
the SQL statement or statements in the SQL property. An SQL
statement or statements can be executed by setting the
Active property to True, by calling the Open method (for SQL
statements that definitely return a result set), or by calling the
ExecSQL method (for SQL statements that may or may not
return a result set). The DatabaseName property specifies the
database where the table or tables reside. Please see the
Executing SQL Queries topic for more information.

The TDBISAMQuery component descends from the
TDBISAMDBDataSet component, which descends from the
TDBISAMDataSet component, which descends from the
common TDataSet component that is the basis for all data
access in Delphi and C++. None of these lower-level
components should be used directly and are only for internal
structuring purposes in the class hierarchy.

You can have multiple TDBISAMQuery components using the
same physical table. Each TDBISAMQuery component
maintains its own result set filter and range conditions,
current record position, record count statistics, etc.

Note
Opening a TDBISAMTable or TDBISAMQuery component will automatically cause its corresponding
TDBISAMDatabase component to open, which will also automatically cause its corresponding
TDBISAMSession component to start, which will finally cause the TDBISAMEngine to start. This
design ensures that the necessary connections for a session, database, etc. are completed before
the opening of the table or query is attempted.

Using DBISAM

Page 24

2.2 Data Types and NULL Support

Introduction

DBISAM supports the most common data types available for the Delphi and C++ development products as
well as the SQL language. Below you will find a listing of the data types with a brief description, their
Delphi and C++ equivalent TFieldType type and TField object, and their SQL data type.

Note
The TFieldType type is also used with the TDBISAMFieldDef, TDBISAMParam, and
TDBISAMFunctionParam objects.

Data Type Description

String String fields are fixed in length and can store up to 512
characters in a single field. Trailing blank spaces are
automatically trimmed from any strings entered into string
fields. Internally, String fields are stored as a NULL-
terminated string. String fields can be indexed using normal
indexes as well as full text indexing. The equivalent Delphi
and C++ TFieldType is ftString, the TField object used for
String fields is the TStringField object, and the equivalent SQL
data type is the VARCHAR type. The SQL VARCHAR data type
is specified as:

VARCHAR(<number of characters>)

FixedChar FixedChar fields are basically the same as string fields with
the exception that trailing blank spaces are not automatically
removed from any strings entered into them. The equivalent
Delphi and C++ TFieldType is also ftString, but the
TStringField object that represents a FixedChar field will have
its FixedChar property set to True. The equivalent SQL data
type is either the CHAR or CHARACTER type. The SQL CHAR
and CHARACTER data types are specified as:

CHAR(<number of characters>) or
CHARACTER(<number of characters>)

GUID GUID fields are basically the same as string fields with the
exception that they are fixed at 38 bytes in length and are
always used to store the string representation of a GUID
value. The equivalent Delphi and C++ TFieldType is ftGuid,
the TField object used for GUID fields is the TGuidField object,
and the equivalent SQL data type is GUID.

Bytes Bytes fields are fixed in length and can store up to 512 bytes
in a single field. Bytes fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftBytes, the TField object used for Bytes fields is the
TBytesField object, and the equivalent SQL data type is
BYTES, VARBYTES, BINARY, or VARBINARY. The SQL BYTES,
VARBYTES, BINARY, OR VARBINARY data type is specified as:

Using DBISAM

Page 25

BYTES(<number of characters>)

Blob Blob fields are variable in length and may contain up to 2
gigabytes of data. The data stored in Blob fields is not typed
or interpreted in any fashion. Blob fields are stored in a
blocked fashion internally in the physical BLOB file that is part
of a logical DBISAM table. Blob fields cannot be indexed in
any fashion. The equivalent Delphi and C++ TFieldType is
ftBlob, the TField object used for Blob fields is the TBlobField
object, and the equivalent SQL data type is either the BLOB or
LONGVARBINARY type.

Memo Memo fields are variable in length and may contain up to 2
gigabytes of data minus a NULL terminator. The data stored
in Memo fields is always text. Memo fields are stored in a
blocked fashion internally in the physical BLOB file that is part
of a logical DBISAM table. Memo fields cannot be indexed
using normal indexes, but can be indexed using full text
indexing. The equivalent Delphi and C++ TFieldType is
ftMemo, the TField object used for Memo fields is the
TMemoField object, and the equivalent SQL data type is either
the MEMO or LONGVARCHAR type.

Graphic Graphic fields are variable in length and may contain up to 2
gigabytes of data. The data stored in Graphic fields is not
typed or interpreted in any fashion, however it is identified in
a special way to allow for Delphi and C++ to perform special
type-assignments with bitmap and other graphic objects.
Graphic fields are stored in a blocked fashion internally in the
physical BLOB file that is part of a logical DBISAM table.
Graphic fields cannot be indexed in any fashion. The
equivalent Delphi and C++ TFieldType is ftGraphic, the TField
object used for Graphic fields is the TGraphicField object, and
the equivalent SQL data type is the GRAPHIC type.

Date Date fields contain dates only. Internally, Date fields are
stored as a 32-bit integer representing cumulative days. Date
fields can be indexed using normal indexes only. The
equivalent Delphi and C++ TFieldType is ftDate, the TField
object used for Date fields is the TDateField object, and the
equivalent SQL data type is DATE.

Time Time fields contain times only. Internally, Time fields are
stored as a 32-bit integer representing cumulative
milliseconds. Time fields can be indexed using normal indexes
only. The equivalent Delphi and C++ TFieldType is ftTime,
the TField object used for Time fields is the TTimeField object,
and the equivalent SQL data type is TIME.

TimeStamp TimeStamp fields contain both a date and a time. Internally,
TimeStamp fields are stored as a 64-bit floating-point number
(a double) representing cumulative milliseconds. TimeStamp
fields can be indexed using normal indexes only. The
equivalent Delphi and C++ TFieldType is ftDateTime, the
TField object used for TimeStamp fields is the TDateTimeField
object, and the equivalent SQL data type is TIMESTAMP.

Boolean Boolean fields contain logical True/False values. Internally,

Using DBISAM

Page 26

Boolean fields are stored as a 16-bit integer. Boolean fields
can be indexed using normal indexes only. The equivalent
Delphi and C++ TFieldType is ftBoolean, the TField object
used for Boolean fields is the TBooleanField object, and the
equivalent SQL data type is BOOLEAN, BOOL, or BIT
(compatibility syntax, BOOLEAN or BOOL is preferred).

SmallInt SmallInt fields contain 16-bit, signed, integers and are stored
internally as such. SmallInt fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftSmallInt, the TField object used for SmallInt fields is the
TSmallIntField object, and the equivalent SQL data type is
SMALLINT.

Word Word fields contain 16-bit, unsigned, integers and are stored
internally as such. Word fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftWord, the TField object used for Word fields is the
TWordField object, and the equivalent SQL data type is
WORD.

Integer Integer fields contain 32-bit, signed, integers and are stored
internally as such. Integer fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftInteger, the TField object used for Integer fields is the
TIntegerField object, and the equivalent SQL data type is
INTEGER or INT.

AutoInc AutoInc fields contain 32-bit, signed, integers and are stored
internally as such. AutoInc fields are always editable and you
may have more than one AutoInc field per record, with each
field incrementing independently. AutoInc fields will increment
if you are appending or inserting a record and a value is not
specified for the field (field is NULL) when the Post operation
occurs, and will leave any existing value alone if one is
already specified. AutoInc fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftAutoInc, the TField object used for AutoInc fields is the
TAutoIncField object, and the equivalent SQL data type is
AUTOINC.

LargeInt LargeInt fields contain 64-bit, signed, integers and are stored
internally as such. LargeInt fields can be indexed using
normal indexes only. The equivalent Delphi and C++
TFieldType is ftLargeInt, the TField object used for LargeInt
fields is the TLargeIntField object, and the equivalent SQL
data type is LARGEINT.

Float Float fields contain 64-bit floating-point numbers (doubles)
and are stored internally as such. Float fields can be indexed
using normal indexes only. The equivalent Delphi and C++
TFieldType is ftFloat, the TField object used for Float fields is
the TFloatField object, and the equivalent SQL data type is
FLOAT.

Currency Currency fields are the same as Float fields except they are
identified in a special way to allow for Delphi and C++ to
format their values as monetary values when displayed as
strings. The equivalent Delphi and C++ TFieldType is

Using DBISAM

Page 27

ftCurrency, the TField object used for Currency fields is the
TCurrencyField object, and the equivalent SQL data type is
MONEY.

Note
Don't confuse the Currency field type with the Currency
data type found in Delphi and C++. The Currency field
type is essentially still a floating-point number and is
not always good for storing exact monetary values,
whereas the Currency data type is a fixed-point data
type that minimizes rounding errors in monetary
calculations. If you wish to have accurate financial
figures that use up to 4 decimal places stored in
DBISAM tables then you should use the BCD data type
described next.

BCD BCD fields contain a 34-byte TBcd type and are stored
internally as such. DBISAM always uses a maximum precision
of 20 significant digits with BCD numbers, and the maximum
scale is 4 decimal places. BCD fields can be indexed using
normal indexes only. The equivalent Delphi and C++
TFieldType is ftBCD, the TField object used for BCD fields is
the TBCDField object, and the equivalent SQL data type is
NUMERIC OR DECIMAL. The SQL NUMERIC or DECIMAL data
type is specified as:

NUMERIC(<precision>,<scale>)

NULL Support

The rules for NULL support in DBISAM are as follows:

• If a field has not been assigned a value and was not defined as having a default value in the table
structure, it is NULL.

• As soon as a field has been assigned a value it is not considered NULL anymore. String, FixedChar,
GUID, Blob, Memo, and Graphic fields are an exception this rule. When you assign a NULL value (empty
string) to a String, FixedChar, or GUID field the field will be set to NULL. When the contents of a Blob,
Memo, or Graphic field are empty, i.e. the length of the data is 0, the field will be set to NULL.

• If the Clear method of a TField object is called the field will be set to NULL.

• NULL values are treated as separate, distinct values when used as an index key. For example, let's say
that you have a primary index comprised of one Integer field. If you had a field value of 0 for this Integer
field in one record and a NULL value for this Integer field in another record, DBISAM will not report a key
violation error. This is a very important point and should be considered when designing your tables. As a
general rule of thumb, you should always provide values for fields that are part of the primary index.

• Any SQL or filter expression involving a NULL value and a non-NULL value will result in a NULL result. For
example:

100.52 * NULL = NULL

Using DBISAM

Page 28

10 + 20 + NULL = NULL

The exception to this rule is when concatenating a string value with a NULL. In this case the NULL value is
treated like an empty string. For example:

'Last Name is ' + NULL = 'Last Name is '

Note
String, FixedChar, or GUID field types in DBISAM treat empty strings as equivalent to NULL, and
vice-versa, in any filter or SQL expressions.

NULLs with SQL and Filter Operators

The following pseudo-expressions demonstrate the rules regarding NULLs (not empty strings) and the
various SQL and filter operators:

Expression Result

Column = NULL Returns True if the column is NULL, False, if not

Column <> NULL Returns True if the column is not NULL, False if it is

Column >= NULL Returns True if the column is NULL, False if not

Column <= NULL Returns True if the column is NULL, False if not

Column > NULL Returns False

Column < NULL Returns False

Column BETWEEN NULL AND NULL Returns True if the column is NULL, False if not

Column BETWEEN NULL AND <non-null
value>

Returns False

Column BETWEEN <non-null value>
AND NULL

Returns False

The rules are slightly different for String, FixedChar, and GUID expressions due to the fact that DBISAM
treats empty strings as equivalent to NULL, but also as a valid non-NULL empty string. The following
pseudo-expressions demonstrate the rules regarding empty strings and the various SQL and filter
operators:

Expression Result

Using DBISAM

Page 29

Column = '' Returns True if the column is NULL or equal to an empty
string, False, if not

Column <> '' Returns True if the column is not NULL or not equal to an
empty string, False if it is

Column >= '' Returns True if the column is NULL, equal to an empty string,
or greater than an empty string, False if not

Column <= '' Returns True if the column is NULL or equal to an empty
string, False if not

Column > '' Returns True if the column is greater than an empty string

Column < '' Returns False

Column BETWEEN '' AND '' Returns True if the column is NULL or equal to an empty
string, False if not

Column BETWEEN '' AND <non-empty
string>

Returns True if the column is NULL, equal to an empty string,
or greater than an empty string, False if not

Column BETWEEN <non-empty string>
AND ''

Returns False

Note
The IN and LIKE operators use the same rules as the equivalency (=) operator. The IN operator
behaves as if there are a series of equivalency tests joined together by OR operators.

Using DBISAM

Page 30

2.3 Exception Handling and Errors

Introduction

One of the first items to address in any application, and especially a database application, is how to
anticipate and gracefully handle exceptions. This is true as well with DBISAM. Fortunately, Delphi and C++
both provide elegant exception types and handling. DBISAM uses this exception handling architecture and
also expands upon it in several important ways. In certain situations DBISAM will intercept exceptions and
trigger events in order to allow for the continuation of a process without the interruption that would occur
if the exception were allowed to propagate through the call stack.

DBISAM Exception Types

DBISAM primarily uses the EDBISAMEngineError object as its exception object for all engine errors. This
object descends from the EDatabaseError exception object defined in the common DB unit, which itself
descends from the common Exception object. This hierarchy is important since it allows you to isolate the
type of error that is occurring according to the type of exception object that has been raised, as you will
see below when we demonstrate some exception handling.

Note
DBISAM also raises certain component-level exceptions as an EDatabaseError to maintain
consistency with the way the common DB unit and TDataSet component behaves. These mainly
pertain to design-time property modifications, but a few can be raised at runtime also.

The EDBISAMEngineError object contains several important properties that can be accessed to discover
specific information on the nature of the exception. The ErrorCode property is always populated with a
value which indicates the error code for the current exception. Other properties may or may not be
populated according to the error code being raised, and a list of all of the error codes raised by the
DBISAM engine along with this information can be found in Appendix B - Error Codes and Messages.

Exception Handling

The most basic form of exception handling is to use the try..except block (Delphi) or try..catch (C++) to
locally trap for specific error conditions. The error code that is returned when an open fails due to access
problem is 11013, which is defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). The following example shows how to trap for such an exception on open and display an
appropriate error message to the user:

begin
 with MyDBISAMTable do
 begin
 DatabaseName:='c:\testdata';
 TableName:='customer';
 Exclusive:=True;
 ReadOnly:=False;
 try
 Open;
 except
 on E: Exception do
 begin

Using DBISAM

Page 31

 if (E is EDatabaseError) and (E is EDBISAMEngineError) then
 begin
 if (EDBISAMEngineError(E).ErrorCode=DBISAM_OSEACCES) then
 ShowMessage('Cannot open table '+TableName+
 ', another user has the table open already')
 else
 ShowMessage('Unknown or unexpected '+
 'database engine error # '+
 IntToStr(EDBISAMEngineError(E).ErrorCode));
 end
 else
 ShowMessage('Unknown or unexpected '+
 'error has occurred');
 end;
 end;
 end;
end;

Exception Events

Besides trapping exceptions with a try..except or try..catch block, you may also use a global
TApplication.OnException event handler to trap database exceptions. However, doing so will eliminate the
ability to locally recover from the exception and possibly retry the operation or take some other course of
action. There are several events in DBISAM components that allow you to code event handlers that
remove the necessity of coding try..except or try..catch blocks while still providing for local recovery.
These events are as follows:

Event Description

OnEditError This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Edit method . The usual
cause of an error is a record lock failure if the current session
is using the pessimistic locking protocol (the default). Please
see the Updating Tables and the Locking and Concurrency
topics for more information on using this event and the
DBISAM locking protocols.

OnDeleteError This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Delete method. The
usual cause of an error is a record lock failure (a record lock is
always obtained before a delete regardless of the locking
protocol in use for the current session). Please see the
Updating Tables and Query Result Sets and the Locking and
Concurrency topics for more information on using this event
and the DBISAM locking protocols.

OnPostError This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Post method. The usual
cause of an error is a key violation for a unique index or the
violation of a table constraint, however it can also be
triggered by a record lock failure if the locking protocol for the
current session is set to optimistic. Please see the Updating
Tables and the Locking and Concurrency topics for more
information on using this event and the DBISAM locking
protocols.

OnQueryError This event is triggered when an error occurs during the

Using DBISAM

Page 32

preparation or execution of an SQL statement or script via the
TDBISAMQuery ExecSQL or Open methods. If this event is
assigned an event handler then it will get triggered and the
event handler will have the option of aborting the current SQL
statement or script. If this event is not assigned an event
handler then this event will not be triggered and the
exception will be raised.

OnDataLost This event is triggered when an error occurs during the
alteration of a table's structure via the TDBISAMTable
AlterTable or AddIndex methods, or via the execution of the
ALTER TABLE or CREATE INDEX SQL statements by the
TDBISAMQuery ExecSQL method. An error can be caused by
key violations, field deletions, field conversion problems, table
constraint failures, and any other type of problem during
these operations. The OnDataLost event allows you to react to
these errors by cancelling the current operation, continuing,
or continuing without triggering this event anymore.

The above events are all based in the TDBISAMTable or TDBISAMQuery components, and are mainly
geared toward application-level exception handling. There is a lower level of exception handling available
also in the following TDBISAMEngine events:

Event Description

OnInsertError This event is triggered whenever an exception occurs during
the insertion of any record in any table. The event handler for
this event can choose to retry, abort, or fail the insert
operation that raised the exception.

OnUpdateError This event is triggered whenever an exception occurs during
the update of any record in any table. The event handler for
this event can choose to retry, abort, or fail the update
operation that raised the exception.

OnDeleteError This event is triggered whenever an exception occurs during
the deletion of any record in any table. The event handler for
this event can choose to retry, abort, or fail the delete
operation that raised the exception.

Note
If any exception is raised in an BeforeInsertTrigger, AfterInsertTrigger, BeforeUpdateTrigger,
AfterUpdateTrigger, BeforeDeleteTrigger, or AfterDeleteTrigger event, the exception will be
converted into an EDBISAMEngineError exception object with an error code of
DBISAM_TRIGGERERROR. The original exception's error message will be assigned to the
ErrorMessage property of the EDBISAMEngineError exception object, as well as be included as part
of the error message in the EDBISAMEngineError exception object itself.

Using DBISAM

Page 33

2.4 Configuring and Starting the Server

Introduction

There are no extra steps required in order to use the TDBISAMEngine component in DBISAM as a client
engine since the default value of the EngineType property is etClient. However, in order to use the
TDBISAMEngine component in DBISAM as a database server you will need to make some property
changes before starting the engine.

Configuration Properties

The TDBISAMEngine component has several key properties that are used to configure the database
server, which are described below in order of importance:

Property Description

EngineType In order to start the TDBISAMEngine component as a
database server, you must set this property to etServer.

EngineSignature Normally this property is left at the default value. However, if
you do choose to change this property, you must make sure
that it is set to desired value before starting the server. The
default value is "DBISAM_SIG". Please see the Customizing
the Engine topic for more information.

ServerName This property is used to identify the database server to
external clients once they have connected to the database
server. The default value is "DBSRVR".

ServerDescription This property is used in conjunction with the ServerName
property to give more information about the database server
to external clients once they have connected to the database
server. The default value is "DBISAM Database Server".

ServerMainAddress This property specifies the IP address that the database
server should bind to when listening for regular incoming data
connections. The default value is blank (""), which specifies
that the database server should bind to all available IP
addresses.

ServerMainPort This property specifies the port that the database server
should bind to when listening for regular incoming data
connections. The default value is 12005.

ServerMainThreadCacheSize This property specifies the number of threads that the
database server should actively cache for regular data
connections. When a thread is terminated on the server it will
be added to this thread cache until the number of threads
cached reaches this property value. This allows the database
server to re-use the threads from the cache instead of having
to constantly create/destroy the threads as needed, which can
improve the performance of the database server if there are
many connections and disconnections occurring. The default
value is 10.

Using DBISAM

Page 34

ServerAdminAddress This property specifies the IP address that the database
server should bind to when listening for incoming
administrative connections. The default value is blank (""),
which specifies that the database server should bind to all
available IP addresses.

ServerAdminPort This property specifies the port that the database server
should bind to when listening for incoming administrative
connections. The default value is 12006.

ServerAdminThreadCacheSize This property specifies the number of threads that the
database server should actively cache for administrative
connections. The default value is 1.

ServerEncryptedOnly This property specifies whether all incoming regular data
connections should be encrypted or not. If this property is set
to True, then all incoming regular data connections to the
database server that are not encrypted will be rejected with
the error code 11277, which is defined as
DBISAM_REMOTEENCRYPTREQ in the dbisamcn unit (Delphi)
or dbisamcn header file (C++). The default value is False.

Note
Administrative connections to the database server must
always encrypted and will be rejected if they are not
encrypted, regardless of the current value of this
property.

ServerEncryptionPassword This property specifies the password to use for all encrypted
connections. If an incoming encrypted connection does not
use a password that matches this value of this property, the
database server will return the error code 11308, which is
defined as DBISAM_REMOTEINVREQUEST in the dbisamcn
unit (Delphi) or dbisamcn header file (C++), when any call to
the database server is attempted after the connection is
made. The default value is "elevatesoft".

Note
If you intend to use encrypted connections to a
database server over a public network then you should
always use a different encryption password from the
default password.

ServerConfigFileName This property specifies the name of the configuration file that
the database server will use for storing all server configuration
information including users, databases, server-side
procedures, user rights, and scheduled events. This file is
compressed and encrypted, and a backup is made, with the
extension ".scb", any time a modification is made. The default
value is "dbsrvr.scf".

Using DBISAM

Page 35

Note
Any new configuration file name specified via this
property will be given the default extension of ".scf"
automatically.

ServerConfigPassword This property specifies the password to use to encrypt the
contents of the server configuration file. This ensures that if
someone does obtain physical access to the configuration file
that they will still be unable to read its contents, especially
user names and passwords, without this password.

Note
All of the properties of the TDBISAMEngine component described above can only be modified when
the Active property is False and the engine has not been started.

Starting the Server

Once you have configured the database server using the above properties, starting the server is quite
simple. All you need to do is set the Active property to True. The following shows an example of how one
might configure and start a database server using the default global Engine function in the dbisamtb unit
(Delphi) or dbisamtb header file (C++):

with Engine do
 begin
 ServerName:='MyTestServer';
 ServerDescription:='My Test Server';
 { Only listen on this IP address }
 ServerMainAddress:='192.168.0.1';
 ServerConfigFileName:='mytest.scf';
 ServerConfigPassword:='test123456';
 Active:=True;
 end;

Note
You can also use the TDBISAMEngine OnStartup event to configure the TDBISAMEngine component
before it is started.

Default Login Information

The default user ID and password for the database server are:

User ID: Admin (case-insensitive)
Password: DBAdmin (case-sensitive)

This user has full administrator privileges and is widely known, so it is recommended that you delete it as
a user once you have established another administrative user on the database server.

Using DBISAM

Page 36

Database Servers Provided with DBISAM

DBISAM comes with an application (GUI) database server project for Delphi called dbsrvr.dpr and a
command-line (console) database server project for Delphi called dbcmd.dpr. You can examine the source
code of these projects to see how you would go about setting up a TDBISAMEngine component as a
database server in a project. Both of these projects are also provided in compiled form with DBISAM.

Note
If you wish to run either database server, either as a normal application or a Windows service, you
must copy the desired database server executable into a directory with read/write permissions,
based upon the user account under which you wish to run the database server, and run it from that
directory. This requirement is due to the fact that the database server writes its log and
configuration files to the directory where the database server executable is located. This is a legacy
behavior that is not compatible with running the database server from the default installation
directory in the default \Program Files (x86) sub-tree.

The dbsrvr database server can be run as a normal application or as a Windows service. When running the
dbsrvr database as a normal application, the server will display an icon in the system tray that can be
right-clicked to obtain general information about the server, as well as start and stop the server. You can
find the dbsrvr database server in the \servers\dbsrvr sub-directory under the main installation directory
for the version of DBISAM that you installed.

If you wish to run the dbsrvr database server as a Windows service you must first install it as a service by
running the database server with the /install command-line switch set. For example, to install the database
server as a service using a command prompt window under Windows (2000 or higher) you would specify
the following command:

dbsrvr.exe /install

To uninstall the dbsrvr database server as a Windows service you must run the database server with the
/uninstall command-line switch set. For example, to uninstall the dbsrvr database server as a service using
a command-prompt window under Windows (2000 or higher) you would specify the following command:

dbsrvr.exe /uninstall

Note
You must run the above commands while logged in as an Administrator, or they will not succeed
and you will see an "Access Denied" error message. Also, the dbsrvr database server will not display
an icon in the system tray, nor will it display a user interface, when run as a Windows service.
Recent versions of Windows restrict services from interacting with the desktop in order to permit
them to run in non-GUI server environments.

After installing the dbsrvr database server as a Windows service, you can run the database server by
starting the service interactively via the Windows Services management console, or by using the net start
command-line command:

Using DBISAM

Page 37

net start dbsrvr

You can stop the database service interactively via the Windows Services management console, or by
using the net stop command-line command:

net stop dbsrvr

The dbcmd database server can only be run as a normal (console) application. You can find the dbcmd
database server in the \servers\dbcmd sub-directory under the main installation directory for the version
of DBISAM that you installed.

The database servers will accept commmand-line switches that affect their behavior. The following
switches are supported when starting up either database server:

Switch Description

/sn Server name parameter
The /sn switch specifies the user-defined server name that
will be used to identify the server to remote sessions. You
must enclose the server name in double quotes if there are
spaces in the server name. The server name is informational
only.

/sd Server description parameter

The /sd switch specifies the user-defined server description
that will be displayed in the caption of the server's user
interface. You must enclose the server description in double
quotes if there are spaces in the server description. The
server description is informational only.

/sa Server address parameter

The /sa switch specifies the main server IP address that the
server will bind to for accepting inbound data connections.
The IP address must be specified directly after the /sp switch
using dot notation (i.e. 192.168.0.1). The default IP address
that the server will bind to if this switch is not specified is all
IP addresses available on the machine. Using this option will
cause the server to only listen on the specified address. This
means that it will no longer listen on the local loopback
127.0.0.1 address.

/sp Server port parameter

The /sp switch specifies the main server port that the server
will bind to for accepting inbound data connections. The port
number must be specified directly after the /sp switch. The
default main port that the server will bind to if this switch is
not specified is 12005.

/st Server thread cache size parameter

The /st switch specifies the main server thread cache size.

Using DBISAM

Page 38

The thread cache size controls how many threads the server
will cache in order to speed up connect/disconnect times. The
thread cache size must be specified directly after the /st
switch. The default main thread cache size that the server will
use if this switch is not specified is 10.

/aa Administration address parameter

The /aa switch specifies the administration server IP address
that the server will bind to for accepting administrative
connections. The IP address must be specified directly after
the /aa switch using dot notation (i.e. 192.168.0.1). The
default administration IP address that the server will bind to if
this switch is not specified is all IP addresses available on the
machine. Using this option will cause the server to only listen
on the specified address. This means that it will no longer
listen on the local loopback 127.0.0.1 address.

/ap Administration port parameter

The /ap switch specifies the administration server port that
the server will bind to for accepting administrative
connections. The port number must be specified directly after
the /ap switch. The default administration port that the server
will bind to if this switch is not specified is 12006.

/at Administration thread cache size parameter

The /at switch specifies the administration server thread
cache size. The thread cache size controls how many threads
the server will cache in order to speed up connect/disconnect
times. The thread cache size must be specified directly after
the /at switch. The default administration thread cache size
that the server will use if this switch is not specified is 1.

/cf Configuration file name parameter

The /cf switch specifies the server configuration file name.
The configuration file is where the server stores all
configuration information including databases, users,
permissions, etc. You must enclose the configuration file
name in double quotes if there are spaces in the configuration
file name. Do not specify a file extension for the file since the
server always uses the ".scf" extension for all configuration
files. The default configuration file name that the server will
use if this switch is not specified is "dbsrvr".

/cp Configuration file password parameter

The /cp switch specifies the server configuration file
password. The configuration file password is used to encrypt
the contents of the configuration file. You must enclose the
configuration file password in double quotes if there are
spaces in the configuration file password. The default
configuration file password that the server will use if this
switch is not specified is "elevatesoft".

Using DBISAM

Page 39

Note
Do not lose this password. If you do the server will not
be able to read the configuration information and there
is no way for Elevate Software to retrieve the
configuration information.

/en Encrypted connections only parameter

The /en switch specifies that the main server will require
encrypted connections only. By default the administration
server always requires encypted connections, but normally
encrypted connections are not required for the main server.

/ep Encrypted connnection password parameter

The /ep switch specifies the password to use for encrypting all
data between any remote sessions and the main and
administration server. This switch can be specified without the
above /en switch to change the password for encrypted
connections to the administration server only. If combined
with the above switch, this switch will change the password
for encrypted connections to both the main server and the
administration server. You must enclose the encryption
password in double quotes if there are spaces in the
encryption password. The default encryption password that
the server will use if this switch is not specified is
"elevatesoft".

Note
If this password is not set to the same value that is
used by the remote sessions connecting to either the
main or administration server, the remote sessions will
receive errors and not be able to connect to the server
at all.

/al Append to log parameter

The /al switch specifies that the server should append to any
existing server log file when the server process is started. The
default behavior is to overwrite the log every time the server
process is started.

The only difference between starting the dbsrvr database server as a normal application and starting the
dbsrvr database server as a Windows service is in the way the switches are specified. When the dbsrvr
database server is started as a normal application, you may specify the switches directly on the command-
line that you are using to start the database server. For example the following command will start the
dbsrvr database server using port 13000 for the main port and 13001 for the administration port:

dbsrvr.exe /sp13000 /ap13001

Using DBISAM

Page 40

When the dbsrvr database server is started as a Windows service, you may specify the switches via the
Startup Parameters in the properties for the service in the Services management console, or directly on
the command-line that you are using to start the dbsrvr database server with the net start command. For
example the following command will start the database server as a service with it using port 13000 for the
main port and 13001 for the administration port:

net start dbsrvr /sp13000 /ap13001

Note
In order to start the dbsrvr database server as a Windows service the database server must have
already been installed as a service using the /install command-line switch.

In addition to using command-line parameters, you may also use an .ini file to specify the parameters for
the database server. The following is a sample .ini file that can be used with either the dbsrvr or dbcmd
database servers:

; Sample DBISAM Database Server Parameters INI File

[Server Parameters]
; Default server name is the EXE name
Server Name=Test Server
; Default server description is DBISAM Database Server
; plus the Server Name
Server Description=Test Server Description
; Default server IP address is all addresses on the machine
Server Address=127.0.0.1
; Default server port is 12005
Server Port=10001
; Default server thread cache size is 10
Server Thread Cache Size=20
; Default admin IP address is all addresses on the machine
Administration Address=127.0.0.1
; Default admin port is 12006
Administration Port=10002
; Default admin thread cache size is 1
Administration Thread Cache Size=4
; Default configuration file name is dbsrvr
Configuration File=Test
; Default configuration file password is elevatesoft
Configuration Password=cannotguessme
; 0=main server allows unencrypted connections (default)
; 1=main server allows only encrypted
Encrypted Only=0
; Default encryption password is elevatesoft
Encryption Password=cannotguessme
; 0=overwrite log file (default) 1=append to log file
Append To Log=0

; SQL performance logging

; 0=no SQL performance logging (default) 1=log all statements with execution
 times above the min execution time (below)
SQL Performance Tracking=0

Using DBISAM

Page 41

; Minimum execution time, in seconds, required before an SQL statement is
 logged (default is 30 seconds)
Min SQL Performance Execution Time=30
; SQL performance log file name
SQL Performance File Name=
; Max SQL performance log file size (default is 128MB)
Max SQL Performance File Size=134217728
; 0=no auto-incrementing of SQL performance log file name 1=auto-increment
 SQL performance log file name
Auto-Increment SQL Performance File Name=0
; Max SQL performance log file autoinc (default is 64)
Max Auto-Increment SQL Performance File Name=64

Note
The .ini file that contains the database server parameters must have the same root file name as the
database server itself. For example, if you wanted to use the above .ini file with the dbsrvr
database server, you would need to save it to a dbsrvr.ini file in the same directory as the
dbsrvr.exe executable in order for the database server to find it and use its contents. Likewise, if
you wanted to use it with the dbcmd database server, you would need to save it to a dbcmd.ini file
in the same directory as the dbcmd.exe executable.

Multiple instances of the database server can be started on the same physical machine. The root name of
the database server executable is used to determine the name of the log and parameters (.ini) files to use
when the database server is started. Also, when running as a Windows service the dbsrvr database server
relies on the root name of the database server executable to determine the service name. What this
means is that to have multiple instances of the database server running on the same machine you must
put them in separate physical directories if running them as a normal application, or copy the database
server to different executable files with a different root name if running them as a service. For example, if
you wanted to run two instances of the database server as services, you would copy the dbsrvr.exe to two
separate executable files called dbsrvr1.exe and dbsrvr2.exe. Then you would install and run them as
follows:

First database server

dbsrvr1.exe /install

net start dbsrvr1

Second database server

dbsrvr2.exe /install

net start dbsrvr2

Using DBISAM

Page 42

2.5 Server Administration

Introduction

Administering a database server involves maintaining global connection settings as well as databases,
server-side procedures, users, and scheduled events. All of this information is stored in the configuration
file specified via the TDBISAMEngine ServerConfigFileName property. DBISAM offers the ability to
administer a database server both locally through the TDBISAMEngine component and remotely through
the TDBISAMSession component. Both types of administration are very similar except for some minor
differences.

Local Administration

Local administration of a database server involves calling methods of the TDBISAMEngine component
directly. The following methods are all for local administrative use:

Method Description

GetServerConfig This method retrieves the global database server settings for
maximum allowed connections, connection timeouts, dead
session settings, the temporary files directory, and authorized
and blocked IP addresses.

ModifyServerConfig This method modifies the global database server settings.

GetServerLogCount This method retrieves the total number of log records present
in the current log file. Calling this method triggers the
TDBISAMEngine OnServerLogCount event. If an event handler
is defined for this event, then it is called to retrieve the count
from whatever storage medium is being used for the log file.

GetServerLogRecord This method retrieves the Nth log record from the current log
file. Calling this method triggers the TDBISAMEngine
OnServerLogRecord event. If an event handler is defined for
this event, then it is called to retrieve the specified log record
from whatever storage medium is being used for the log file.

StartAdminServer This method causes the database server to begin listening for
administrative connections on the IP address and port
specified by the TDBISAMEngine ServerAdminAddress and
ServerAdminPort properties.

StopAdminServer This method causes the database server to stop listening for
administrative connections.

StartMainServer This method causes the database server to begin listening for
regular data connections on the IP address and port specified
by the TDBISAMEngine ServerMainAddress and
ServerMainPort properties. Calling this method triggers the
TDBISAMEngine OnServerStart event.

StopMainServer This method causes the database server to stop listening for
regular data connections. Calling this method triggers the
TDBISAMEngine OnServerStop event.

Using DBISAM

Page 43

GetServerUTCDateTime This method retrieves the current date and time from the
server in UTC (Coordinated Universal Time).

GetServerUpTime This method retrieves the total up time of the database server
in seconds.

GetServerMemoryUsage This method has been deprecated and always returns 0 as of
version 4.17 of DBISAM and the introduction of the new
memory manager used in the DBISAM database server.
Please see the Replacement Memory Manager topic for more
information.

GetServerSessionCount This method retrieves the total number of sessions present on
the database server at the time of the method call.

Note
This count does not include administrative sessions,
only regular sessions.

GetServerConnectedSessionCount This method retrieves the total number of sessions on the
database server that are currently connected at the time of
the method call.

Note
This count does not include administrative sessions,
only regular sessions.

GetServerSessionInfo This method retrieves information about the specified session
such as its unique session ID, when it was created, when it
was last connected, the user name, the IP address of the
user, and whether the connection is encrypted.

Note
This method does not return information about
administrative sessions, only regular sessions.

DisconnectServerSession This method disconnects the specified session, but does not
remove the session from the database server. Once the
session is disconnected it is considered to be a dead session.

Note
This method cannot be used on administrative
sessions, only regular sessions.

RemoveServerSession This method removes the specified session completely from
the database server.

Using DBISAM

Page 44

Note
This method cannot be used on administrative
sessions, only regular sessions.

GetServerUserNames This method will retrieve a list of user names that are
currently defined on the database server.

GetServerUser This method will retrieve information about a specific user,
including the user's password, a description of the user, and
whether the user is an administrator for this server.

AddServerUser This method will add a new user.

ModifyServerUser This method will modify a user's information.

ModifyServerUserPassword This method will modify only a user's password.

DeleteServerUser This method will delete a user.

GetServerDatabaseNames This method will retrieve a list of database names that are
currently defined on the database server.

GetServerDatabase This method will retrieve information about a specific
database, including the database's description and the actual
physical path to the database tables.

Note
All database server physical path information for
databases defined on the server are interpreted relative
to the drives, directories, etc. available to the database
server.

AddServerDatabase This method will add a new database.

ModifyServerDatabase This method will modify a database's information.

DeleteServerDatabase This method will delete a database.

GetServerDatabaseUserNames This method will retrieve a list of users that are assigned
rights to a specific database.

GetServerDatabaseUser This method will retrieve the user rights of a user for a
specific database.

AddServerDatabaseUser This method will add user rights for a specific user to a
specific database.

ModifyServerDatabaseUser This method will modify the user rights of a user for a specific
database.

DeleteServerDatabaseUser This method will delete the user rights of a user for a specific
database.

GetServerProcedureNames This method will retrieve a list of server-side procedure names
that are currently defined on the database server.

GetServerProcedure This method will retrieve information about a specific server-
side procedure, specifically the server-side procedure's
description.

Using DBISAM

Page 45

AddServerProcedure This method will add a new server-side procedure.

ModifyServerProcedure This method will modify a server-side procedure's information.

DeleteServerProcedure This method will delete a server-side procedure.

GetServerProcedureUserNames This method will retrieve a list of users that are assigned
rights to a specific server-side procedure.

GetServerProcedureUser This method will retrieve the user rights of a user for a
specific server-side procedure.

AddServerProcedureUser This method will add user rights for a specific user to a
specific server-side procedure.

ModifyServerProcedureUser This method will modify the user rights of a user for a specific
server-side procedure.

DeleteServerProcedureUser This method will delete the user rights of a user for a specific
server-side procedure.

GetServerEventNames This method will retrieve a list of scheduled event names that
are currently defined on the database server.

GetServerEvent This method will retrieve information about a specific
scheduled event, specifically the scheduled event's description
and scheduling parameters.

AddServerEvent This method will add a new scheduled event.

ModifyServerEvent This method will modify a scheduled event's information.

DeleteServerEvent This method will delete a scheduled event.

Remote Administration

Remotely administering a database server involves connecting to the server's administration port using a
TDBISAMSession component that has the following properties set properly:

Property Setting

SessionType This property must be set to stRemote.

RemoteEncryption This property must be set to True.

RemoteEncryptionPassword This property must be set to the same password as the
ServerEncryptionPassword property of the TDBISAMEngine
component that the session is connecting to.

RemoteAddress This property must be set to the IP address of the database
server as it appears to remote machines. You may optionally
use the RemoteHost property if there is DNS information
available for the database server that you are connecting to.

RemotePort This property must be set to the administrative port as it
appears to remote machines. You may optionally use the
RemoteService property if there is service information
available for the database server administrative port that you
are connecting to.

Using DBISAM

Page 46

Note
There is an important distinction to make here. The IP
address and port specified for a remote session is not
always the same as the IP address and port specified in
the ServerAdminAddress and ServerAdminPort
properties of the TDBISAMEngine component that the
session is connecting to. This is because network
routers can use port forwarding and other techniques
to forward network traffic destined for a specific public
IP address and port to a private, internal LAN IP
address and port.

RemoteUser This property must be set to the name of a valid administrator
user for the database server that you are connecting to.

RemotePassword This property must be set to the proper password for the user
name specified by the RemoteUser property.

Once you have set up the TDBISAMSession properties properly for administrative access you can proceed
to call the TDBISAMSession Open method or set the TDBISAMSession Active property to True. This will
cause the remote session to attempt to connect to the database server on the administrative port.
Provided that you have set up everything properly, you will connect to the database server on the
administrative port and can then proceed to use the remote administrative methods of the
TDBISAMSession component to administer the database server.

The remote administration methods of the TDBISAMSession component are identical to the local methods
of the TDBISAMEngine component except that the TDBISAMSession methods are named *Remote*
instead of *Server*. Also, there are no StartAdminServer or StopAdminServer methods, and the
StartMainServer and StopMainServer methods are called StartRemoteServer and StopRemoteServer,
respectively. For a complete list of the remote administration methods please see the TDBISAMSession
component.

The following example shows how to set up the TDBISAMSession properties for remotely administering a
database server, connect to the database server, add a new user (not an administrator), and then add
user rights to the "AccountingDB" database for this user:

begin
 with MyDBISAMSession do
 begin
 SessionType:=stRemote;
 RemoteEncryption:=True;
 { Assume the default encryption password in use }
 RemoteAddress:='192.168.0.1';
 RemotePort:=12006;
 RemoteUser:='Admin';
 RemotePassword:='DBAdmin';
 Open;
 try
 AddRemoteUser('Test','Test123456','Test User',False);
 AddRemoteDatabaseUser('AccountingDB','Test',
 [drRead,drInsert,drUpdate,drDelete]);
 finally
 Close;
 end;
 end;

Using DBISAM

Page 47

end;

Note
The Server Administration Utility that can be found in the additional software download (DBISAM-
ADD) on the Elevate Software web site also comes complete with source code and demonstrates
how to use all of the remote administration functionality described above.

Using DBISAM

Page 48

2.6 Customizing the Engine

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMEngine component represents the
engine in DBISAM. The following information will show how to customize the engine in an application.
Some of the customizations can be made for the engine when it is acting as a local engine or server
engine, while other customizations are only intended for the server engine. The TDBISAMEngine
EngineType property controls whether the engine is behaving as a local engine or a server engine.

Engine Signature

The TDBISAMEngine EngineSignature property controls the engine signature for the engine. The default
engine signature is "'DBISAM_SIG". The engine signature in DBISAM is used to "stamp" all tables, backup
files, and streams created by the engine so that only an engine with the same signature can open them or
access them afterwards. If an engine does attempt to access an existing table, backup file, or stream with
a different signature than that of the table, backup file, stream, an EDBISAMEngineError exception will be
raised. The error code that is returned when the access fails due to an invalid engine signature is 12036
and is defined as DBISAM_BADSIGNATURE in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Also, if the EngineType property is set to etClient, the engine signature is used to stamp all requests sent
from a remote session to a database server. If the database server is not using the same engine signature
then the requests will be treated as invalid and rejected by the database server. If the EngineType
property is set to etServer, the engine signature is used to stamp all responses sent from the database
server to any remote session. If the remote session is not using the same engine signature then the
requests will be treated as invalid and rejected by the database server. In summary, both the remote
sessions and the database server must be using the same engine signature or else communications
between the two will be impossible.

Triggers

Triggers can be implemented for a local or server engine by using the TDBISAMEngine
StartTransactionTrigger, CommitTrigger, RollbackTrigger, BeforeInsertTrigger, AfterInsertTrigger,
BeforeUpdateTrigger, AfterUpdateTrigger, BeforeDeleteTrigger, AfterDeleteTrigger, RecordLockTrigger,
and RecordUnlockTrigger events. These events are fired whenever a transaction is started, committed, or
rolled back, and whenever a record is inserted, updated, deleted, locked, or unlocked via navigational
methods or via SQL. However, these events are not triggered during any system processing such as
Creating and Altering Tables or Optimizing Tables. This allows for the freedom to change the table
metadata without having to worry about causing any errors due to constraints that may be enforced via
the triggers.

Note
These events can be called from multiple threads concurrently, so it is very important that you
observe the rules of multi-threading with DBISAM. The TDBISAMSession and TDBISAMDatabase
components are created automatically by the engine and passed as parameters to these events, so
if you create any TDBISAMTable or TDBISAMQuery components in an event handler for one or
more of these events, you need to make sure to assign the SessionName and DatabaseName
properties to that of these passed TDBISAMSession and TDBISAMDatabase components. Please see
the Multi-Threaded Applications topic for more information.

Using DBISAM

Page 49

The TDBISAMEngine triggers events can be used for audit logging, referential integrity, replication, hot
backups, etc. There really is no limit to what can be coded in an event handler attached to one or more of
these events. The following is an example of a BeforeDelete trigger that executes a query in order to
determine whether to permit the deletion or raise an exception:

procedure TMyForm.EngineBeforeDeleteTrigger(Sender: TObject;
 TriggerSession: TDBISAMSession; TriggerDatabase: TDBISAMDatabase;
 const TableName: String; CurrentRecord: TDBISAMRecord);
var
 OrdersQuery: TDBISAMQuery;
begin
 if (AnsiCompareText(TableName,'customer')=0) then
 begin
 OrdersQuery:=TDBISAMQuery.Create(nil);
 try
 with OrdersQuery do
 begin
 SessionName:=TriggerDatabase.SessionName;
 DatabaseName:=TriggerDatabase.DatabaseName;
 RequestLive:=True;
 SQL.Text:='SELECT * FROM Orders '+
 'WHERE CustNo=:CustNo AND '+
 'AmountPaid < ItemsTotal';
 ParamByName('CustNo').AsFloat:=
 CurrentRecord.FieldByName('CustNo').AsFloat;
 Open;
 try
 if (RecordCount > 0) then
 raise Exception.Create('Cannot delete this '+
 'customer, there are still '+
 IntToStr(RecordCount)+' active '+
 'orders present for this '+
 'customer');
 finally
 Close;
 end;
 end;
 finally
 OrdersQuery.Free;
 end;
 end;
end;

You can use the TDBISAMEngine OnInsertError, OnUpdateError, and OnDeleteError events to trap any
errors that may occur during an insert, update, or delete, and reverse any action that may have been
initiated in a Before*Trigger event handler. For example, if you start a transaction in a
BeforeDeleteTrigger event, you should be sure to rollback the transaction in an OnDeleteError event
handler or else you will inadvertently leave an active transaction hanging around.

The TriggerSession CurrentServerUser property can be referenced from within a trigger that is being
executed when the TDBISAMEngine EngineType property is set to etServer in order to retrieve the current
user name.

Using DBISAM

Page 50

Note
If any exception is raised in any trigger event handler, the exception will be converted into an
EDBISAMEngineError exception object with an error code of DBISAM_TRIGGERERROR. The original
exception's error message will be assigned to the ErrorMessage property of the
EDBISAMEngineError exception object, as well as be included as part of the error message in the
EDBISAMEngineError exception object itself.

Custom SQL and Filter Functions

Custom SQL and filter functions can be implemented for a local or server engine by using the
TDBISAMEngine Functions property in conjunction with the OnCustomFunction event. The Functions
property is a TDBISAMFunctions object, and the easiest way to add new functions is to use the Functions
property's CreateFunction method, which will create a new TDBISAMFunction object, add it to the
Functions property, and return a reference to the new function. You can then use this function reference
to add the parameters to the function using the TDBISAMFunction Params property. The Params property
is a TDBISAMFunctionParams object, and the easiest way to add new function parameters is to use the
Params property's CreateFunctionParam method, which will create a new TDBISAMFunctionParam object,
add it to the Params property, and return a reference to the new function parameter. You can then use
this function parameter reference to specify the data type of the parameters to the custom function. All
custom function result and parameter data types use the TFieldType type. Please see the Data Types and
NULL Support topic for more information.

The following example shows how you would use the CreateFunction method to create a function called
"DaysBetween" that returns the number of days between two date parameters as an integer:

begin
 { We'll just use the default Engine global function
 for this example }
 with Engine do
 begin
 with Functions.CreateFunction(ftInteger,'DaysBetween').Params do
 begin
 CreateFunctionParam(ftDate);
 CreateFunctionParam(ftDate);
 end;
 end;
end;

Note
Adding a custom function while the engine is active will result in the engine triggering an exception.
You should define all custom functions before activating the engine.

Once you have defined the custom function using the TDBISAMEngine Functions property, you must then
proceed to implement the function using an event handler assigned to the TDBISAMEngine
OnCustomFunction event. When DBISAM encounters a function name in a filter or SQL expression that
does not match that of a pre-defined function in DBISAM, the OnCustomFunction event is triggered with
the name of the function, the parameters to the function defined as a TDBISAMParams object, and a
parameter for returning the function result as a variant variable. Inside of the OnCustomFunction event
handler you must conditionally process each function using the name of the function passed to the event
handler. The following example implements the "DaysBetween" function that we defined previously in the

Using DBISAM

Page 51

above example:

procedure MyForm.CustomFunction(Sender: TObject;
 const FunctionName: String; FunctionParams: TDBISAMParams;
 var Result: Variant);
var
 Stamp1: TTimeStamp;
 Stamp2: TTimeStamp;
begin
 if (AnsiCompareText(FunctionName,'DaysBetween')=0) then
 begin
 { Notice that the function parameters are accessed
 in a 0-based manner }
 Stamp1:=DateTimeToTimeStamp(FunctionParams[0].AsDateTime);
 Stamp2:=DateTimeToTimeStamp(FunctionParams[1].AsDateTime);
 Result:=Trunc((Stamp2.Date-Stamp1.Date)+
 (((((Stamp2.Time-Stamp1.Time)/1000)/60)/60)/24));
 end;
end;

Note
The name of the parameters sent to the OnCustomFunction event handler will be:

"Param" plus an underscore (_) plus the position of the parameter (0-based)

for constants or expressions, and:

Table name plus underscore (_) plus column name plus (_) plus the position of the parameter (0-based)

for table columns. This allows you to identify which column from which table was passed to a custom
function.

Memory Buffer Customizations

The TDBISAMEngine MaxTableDataBufferCount, MaxTableDataBufferSize, MaxTableIndexBufferCount,
MaxTableIndexBufferSize, MaxTableBlobBufferCount, and MaxTableBlobBufferSize properties allow you to
control how much memory is used for buffering the data records, index pages, and BLOB blocks for each
physical table opened in a given session in the engine. The *Size properties dictate how much memory, in
bytes, to allocate. The *Count properties dictate the maximum number of data records, index pages, and
BLOB blocks that can be allocated regardless of the amount of memory available. This is to ensure that
the buffering architecture in DBISAM does not get overwhelmed by buffering too many small records, etc.

Lock File Name Customizations

The default lock file name, "dbisam.lck", can be modified using the TDBISAMEngine LockFileName
property.

File Extension Customizations

The default file extensions for tables are detailed in the DBISAM Architecture topic. You can modify these
default extensions using the following properties:

Using DBISAM

Page 52

Extensions Properties

Tables TableDataExtension
TableIndexExtension
TableBlobExtension

Backup Files TableDataBackupExtension
TableIndexBackupExtension
TableBlobBackupExtension

Upgrade Backup Files TableDataUpgradeExtension
TableIndexUpgradeExtension
TableBlobUpgradeExtension

Temporary Files TableDataTempExtension
TableIndexTempExtension
TableBlobTempExtension

Note
The temporary file extension customizations are useful when you wish to have any temporary tables
created by DBISAM use a file extension other than .dat, .idx, or .blb. Recent issues with certain
anti-virus software has shown that it may be necessary to change the extensions of the files that
make up temporary DBISAM tables in order to prevent the anti-virus software from interfering with
DBISAM's ability to create and open temporary tables on a local drive.

Encryption Customizations

By default DBISAM uses the Blowfish block cipher encryption algorithm with 128-bit MD5 hash keys for
encryption. However, you may replace the encryption in DBISAM with another 8-byte block cipher
algorithm by defining event handlers for the TDBISAMEngine OnCryptoInit, OnEncryptBlock,
OnDecryptBlock, and OnCryptoReset events. The OnCryptoInit event is triggered whenever DBISAM needs
to initialize the internal block cipher tables using a new key. The OnEncryptBlock event is triggered
whenever DBISAM needs to encrypt a block of data, and the OnDecryptBlock event is triggered whenever
DBISAM needs to decrypt a block of data. A block of data will always be 8-bytes in length. Finally, the
OnCryptoReset event is triggered after every encryption or decryption of a buffer (data record, index page,
or BLOB block) in order to reset the cipher data so that it is ready for encrypting or decrypting a new
buffer.

Please see the Encryption topic for more information.

Compression Customizations

By default DBISAM uses the ZLIB compression algorithm for compression. However, you may replace the
compression in DBISAM with another compression algorithm by defining event handlers for the
TDBISAMEngine OnCompress and OnDecompress events. The OnCompress event is triggered whenever
DBISAM needs to compress a buffer. The OnDecompress event is triggered whenever DBISAM needs to
decompress a buffer.

Please see the Compression topic for more information.

Full Text Indexing Customizations

Using DBISAM

Page 53

The full text indexing functionality in DBISAM allows the developer to index the words in string or memo
fields for very fast word-based searches. You can define event handlers for the TDBISAMEngine
OnTextIndexFilter and OnTextIndexTokenFilter events that allow you to filter the string and memo field
data prior to being indexed by DBISAM. The OnTextIndexFilter event is triggered before DBISAM parses
any string or memo fields that are included in the full text index for the table into words using the stop
words, space characters, and include characters defined for the table. This allows you to filter the raw
data, such as stripping out control codes from HTML, RTF, or other types of document formats. On the
other hand, the OnTextIndexTokenFilter event is triggered after any string and memo fields are parsed
into words using the stop words, space characters, and include characters defined for the table. This
allows you to further filter out certain words based upon conditional rules or custom dictionaries that aren't
easily expressed using just the static stop words for the table. Please see the Full Text Indexing topic for
more information.

Note
If you add or modify the OnTextIndexFilter or OnTextIndexTokenFilter event handlers when you
have existing tables with full text indexing defined for one or more fields, you must be sure to alter
the structure of these tables and turn off the full text indexing for all fields. After you have done
this, you can then alter the structure of these tables again to turn back on the full text indexing for
the desired fields. Doing this will ensure that any existing text is properly handled with the new
event handlers and will eliminate the possibility of confusing results when searching on the fields
that are part of the full text index. Please see the Creating and Altering Tables topic for more
information.

Reserved Customizations

There are certain customizations in the engine that are only for use in fine-tuning specific issues that you
may be having with an application and should not be modified unless instructed to do so by Elevate
Software. The TDBISAMEngine TableReadLockTimeout, TableWriteLockTimeout, TableTransLockTimeout,
TableFilterIndexThreshhold properties should only be modified when instructed to by Elevate Software.

Server-Only Customizations

The following customizations are only available when the TDBISAMEngine EngineType property is set to
etServer and the engine is behaving as a database server.

Licensed Connections

You can specify that a maximum number of licensed connections be used for the database server by
modifying the TDBISAMEngine ServerLicensedConnections property. The default is 65,535 connections.
Setting this property to a lower figure will allow no more than the specified number of connections to be
configured as the maximum number of connections for the database server in addition to actually
preventing any more than the specified number of connections active on the database server at the same
time.

Notification Events

You can define event handlers for the following TDBISAMEngine events to respond to various server
conditions:

Event Description

Using DBISAM

Page 54

OnServerStart This event will be triggered whenever the server starts
listening for incoming normal data connections. The server is
started via the TDBISAMEngine StartMainServer method or
remotely via the TDBISAMSession StartRemoteServer method.

OnServerStop This event will be triggered whenever the server stops
listening for incoming noraml data connections. The server is
stopped via the TDBISAMEngine StopMainServer method or
remotely via the TDBISAMSession StopRemoteServer method.

OnServerConnect This event will be triggered whenever a normal data
connection is established.

OnServerReconnect This event will be triggered whenever a normal data
connection is re-established by an automatic reconnection by
the remote session.

OnServerLogin This event will be triggered whenever a user logs in on a
normal data connection.

OnServerLogout This event will be triggered whenever a user logs out on a
normal data connection.

OnServerDisconnect This event will be triggered whenever a normal data
connection is closed.

Logging Events

DBISAM abstracts all server logging functionality so that you may choose to log server events in any
manner that you wish. The default server project that ships with DBISAM uses these events to store the
log records in a binary file. You can define event handlers for the following TDBISAMEngine events to
customize the logging functionality:

Event Description

OnServerLogEvent This event is triggered whenever the server needs to log an
event. The log record that is passed to the event handler is
defined as a TLogRecord type.

OnServerLogCount This event is triggered whenever the server needs to get a
count of the number of log records in the current log. This
event is triggered whenever the TDBISAMEngine
GetServerLogCount method is called or the TDBISAMSession
GetRemoteLogCount method is called by a remote session.

OnServerLogRecord This event is triggered whenever the server needs to get a
specific log record from the current log. This event is
triggered whenever the TDBISAMEngine GetServerLogRecord
method is called or the TDBISAMSession
GetRemoteLogRecord method is called by a remote session.

Scheduled Events

DBISAM allows the definition of scheduled events for a database server. Scheduled events are stored in
the configuration file for the server and are implemented via the TDBISAMEngine OnServerScheduledEvent
event. Scheduled events will simply do nothing unless they are actually implemented in the database
server via an event handler assigned to this event. Scheduled events are executed in a separate thread in
the server, one thread for each currently-executing scheduled event. If you have three scheduled events

Using DBISAM

Page 55

that are scheduled for the same time, then the server will create three threads, one for each scheduled
event. Any database access within the thread must be done according to the rules for using DBISAM in a
multi-threaded application. Please see the Multi-Threaded Applications topic for more information. Also,
scheduled events are run as if they are using a local engine accessing databases and tables directly and
cannot directly use database names that are defined in the database server configuration. You must use
the methods available in the TDBISAMEngine component for retrieving database information for databases
for retrieving the information necessary to access server databases and tables in the scheduled event (see
the example below).

The following is an example of a scheduled event called "DailyBackup" that calls the TDBISAMDatabase
Backup method to backup a databse every day at a certain time:

procedure TMyForm.ServerScheduledEvent(Sender: TObject;
 const EventName: String; var Completed: Boolean);
var
 TempSession: TDBISAMSession;
 TempDatabase: TDBISAMDatabase;
 TempDescription: string;
 TempPath: string;
 BackupFiles: TStrings;
begin
 TempDescription:='';
 TempPath:='';
 if (AnsiCompareText(EventName,'DailyBackup')=0) then
 begin
 { Create a new session component, remembering
 the multi-threading requirements of DBISAM
 for session names }
 TempSession:=TDBISAMSession.Create(Self);
 try
 with TempSession do
 begin
 SessionName:='DailyBackup'+IntToStr(GetCurrentThreadID);
 Active:=True;
 end;
 { Create a new database component }
 TempDatabase:=TDBISAMDatabase.Create(Self);
 try
 with TempDatabase do
 begin
 SessionName:=TempSession.SessionName;
 DatabaseName:='DailyBackup';
 { Get the actual local path for the Main
 database }
 ServerEngine.GetServerDatabase('Main',
 TempDescription,
 TempPath);
 Directory:=TempPath;
 Connected:=True;
 BackupFiles:=TStringList.Create;
 try
 TempSession.GetTableNames(DatabaseName,BackupFiles);
 Completed:=Backup(
 IncludeTrailingBackslash(TempPath)+'backup'+
 StringReplace(DateToStr(Date),'/',
 '',[rfReplaceAll])+'.bkp',
 'Daily Backup for '+DateToStr(Date),6,BackupFiles);
 finally

Using DBISAM

Page 56

 BackupFiles.Free;
 end;
 Connected:=False;
 end;
 finally
 TempDatabase.Free;
 end;
 finally
 TempSession.Free;
 end;
 end
 else
 Completed:=True;
end;

Note
If a scheduled event is not marked as completed by this event handler, it will continue to be
executed every minute by the database server until the time range for which it was scheduled is up.
For example, if the above scheduled event was scheduled to run every day between 11:00pm and
11:30pm, the database server will attempt to execute the scheduled event until it is either
completed or the time exceeds 11:30pm. Also, if an error occurs during the scheduled event
execution, the database server will consider the scheduled event not completed. Any time the
database server encounters an error in the scheduled event or detects that the scheduled event did
not complete it will log this information in the current log.

Server Procedures

DBISAM allows the definition of server-side procedures for a database server. Server-side procedures are
stored in the configuration file for the server and are implemented via the TDBISAMEngine
OnServerProcedure event. Server-side procedures will simply do nothing unless they are actually
implemented in the database server via an event handler assigned to this event. Server-side procedures
are executed in the context of the session thread currently running for the remote session that is calling
the server-side procedure. Any database access within the server-side procedure must be done according
to the rules for using DBISAM in a multi-threaded application. Please see the Multi-Threaded Applications
topic for more information. However, unlike scheduled events (see above), server-side procedures are
passed a TDBISAMSession component for use in the procedure for retrieving parameters passed in from
the remote session and for populating the result parameters that are passed back to the remote session
after the procedure is done, as well as sending progress information back to the calling session. This
TDBISAMSession component is automatically created and assigned a unique SessionName property to
ensure that it can be safely be used in a multi-threaded manner. This session name consists of the user
name plus an underscore (_) plus the session ID. Also, server-side procedures are run as if they are using
a local engine accessing databases and tables directly and cannot directly use database names that are
defined in the database server configuration. You must use the methods available in the TDBISAMEngine
component for retrieving database information for databases for retrieving the information necessary to
access server databases and tables in the server-side procedure.

The TDBISAMSession RemoteParams property is used both to pass the parameters to the server-side
procedure and to return any results to the remote session that called the server-side procedure. The
RemoteParams property is a TDBISAMParams object. Be sure to always clear the parameters using the
RemoteParams' Clear method before leaving the server-side procedure. Otherwise, the same parameters
that were passed to the server-side procedure will be returned to the remote session as results. You can
add new results to the RemoteParams property for return to the remote session using the RemoteParams'
CreateParam method.

Using DBISAM

Page 57

The following is an example of a server-side procedure called "TextFile" that sends a text file back to the
remote session that requested it:

procedure TMyForm.ServerProcedure(Sender: TObject;
 ServerSession: TDBISAMSession; const ProcedureName: String);
var
 TempFileName: string;
begin
 if (AnsiCompareText(ProcedureName,'TextFile')=0) then
 begin
 with ServerSession do
 begin
 TempFileName:=RemoteParams.ParamByName('FileName').AsString;
 { Now clear the parameters for use in populating
 the result parameters }
 RemoteParams.Clear;
 if FileExists(TempFileName) then
 begin
 { If the file exists, use the TDBISAMParam
 LoadFromFile method to load the file
 data into the parameter }
 with RemoteParams.CreateParam(ftMemo,'FileContents') do
 LoadFromFile(TempFileName,ftMemo);
 end
 else
 { If the file doesn't exist, just create a NULL
 parameter with the correct result name }
 RemoteParams.CreateParam(ftMemo,'FileContents');
 end;
 end;
end;

The ServerSession CurrentServerUser property can be referenced from within a trigger that is being
executed when the TDBISAMEngine EngineType property is set to etServer in order to retrieve the current
user name.

Note
If a server-side procedure raises any type of exception at all, the database server will send the
exception back to the remote session that called it as if the exception occurred in the remote
session.

To report progress information back to the calling session during the server-side procedure, use the
SendProcedureProgress method of the TDBISAMSession component passed as a parameter to the
OnServerProcedure event handler.

Using DBISAM

Page 58

2.7 Starting Sessions

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMSession component represents a
session in DBISAM. The following information will show how to start a session in an application.

Preparing a Local Session for Startup

If a TDBISAMSession component has its SessionType property set to stLocal, then it is considered a local
session as opposed to a remote session. There is nothing extra that must be done to prepare a local
session for startup.

Preparing a Remote Session for Startup

If a TDBISAMSession component has its SessionType property set to stRemote, then it is considered a
remote session as opposed to a local session. Starting a remote session will cause DBISAM to attempt a
connection to the database server specified by the RemoteAddress or RemoteHost and RemotePort or
RemoteService properties. In addition, the RemoteEncryption property indicates whether the session's
connection to the database server will be encrypted using the RemoteEncryptionPassword property. You
must set these properties properly before trying to open the remote session or an exception will be raised.

The RemoteAddress and RemoteHost properties are normally mutually exclusive. They can both be
specified, but the RemoteHost property will take precedence. The host name used for the server can be
specified via the "hosts" text file available from the operating system. In Windows 98, for example, it's
located in the Windows directory and is called "hosts.sam". Renaming this file to just "hosts" and adding
an entry in it for the database server will allow you to refer to the database server by host name instead of
IP address. The following is an example of an entry for a database server running on a LAN:

192.168.0.1 DBISAMLANServer

This is sometimes more convenient than remembering several IP addresses for different database servers.
It also allows the IP address to change without having to modify your application.

The RemotePort and RemoteService properties are also normally mutually exclusive. They can both be
specified, but the RemoteService property will take precedence. By default the ports that DBISAM
database servers use are:

Port Usage

12005 Normal access

12006 Administrative access

These ports can be changed, however, so check with your administrator or person in charge of the
database server configuration to verify that these are the ports being used.

The service name used for the database server can be specified via the "services" text file available from
the operating system. In Windows 98, for example, it's located in the \Windows directory and is called
"services". Adding an entry in it for the database server's port will allow you to refer to the server's port by
service name instead of port number. The following is an example of an entry for both the normal server

Using DBISAM

Page 59

port and the administrative port:

DBISAMServer 12005/tcp
DBISAMAdmin 12006/tcp

This is sometimes more convenient than remembering the port numbers for different database servers. It
also allows the port number to change without having to modify your application.

The RemoteEncryption property can be set to either True or False and determines whether the session's
connection to the server will be encrypted or not. If this property is set to True, the
RemoteEncryptionPassword property is used to encrypt and decrypt all data transmitted to and from the
database server. This property must match the same encryption password that the database server is
using or else an exception will be raised when a request is attempted on the server.

Note
When connecting as an administrator to the administrative port of the database server, you must
set the RemoteEncryption property to True since administrative connections always require
encryption.

If for any reason DBISAM cannot connect to a database server an exception will be raised. The error code
that is returned when a connection fails is 11280 and is defined as DBISAM_REMOTECONNECT in the
dbisamcn unit (Delphi) or dbisamcn header file (C++). It's also possible for DBISAM to be able to connect
to the server, but the connection will be rejected due to the database server's maximum connection
setting being reached (11282 and defined as DBISAM_REMOTEMAXCONNECT), the database server not
accepting any new logins (11281 and defined as DBISAM_REMOTENOLOGIN), the database server
blocking the client workstation's IP address from accessing the server (11283 and defined as
DBISAM_REMOTEADDRESSBLOCK), or an encrypted connection being required by the database server
(11277 and defined as DBISAM_REMOTEENCRYPTREQ).

The RemoteUser and RemotePassword properties can be used to automate the login to a database server.
Every DBISAM database server uses the following default user ID and password if the database server is
being started for the first time, or if it is being started with an empty or missing configuration file:

User ID: Admin (case-insensitive)
Password: DBAdmin (case-sensitive)

Starting a Session

To start a session you must set the TDBISAMSession Active property to True or call its Open method. For a
local session (SessionType property is set to stLocal), the session will be opened immediately. As
discussed above, for a remote session (SessionType property is set to stRemote), performing this
operation will cause the session to attempt a connection to the database server specified by the
RemoteAddress or RemoteHost and RemotePort or RemoteService properties. If the RemoteUser and
RemotePassword properties are specified and are valid, then neither the OnRemoteLogin event nor the
interactive login dialog will be triggered. If these properties are not specified or are not valid, the
OnRemoteLogin event will be triggered if there is an event handler assigned to it. If an event handler is
not assigned to the OnRemoteLogin event, DBISAM will display an interactive login dialog that will prompt
for a user ID and password. All database servers require a user ID and password in order to connect and
login. DBISAM will allow for up to 3 login attempts before issuing an exception. The error code that is

Using DBISAM

Page 60

returned when a connection fails due invalid login attempts is 11287 and is defined as
DBISAM_REMOTEINVLOGIN in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Note
Any version of DBISAM for Delphi 6 or higher (including C++Builder 6 and higher) requires that you
include the DBLogDlg unit to your uses clause in order to enable the display of a default remote
login dialog. This is done to allow for DBISAM to be included in applications without linking in the
forms support, which can add a lot of unnecessary overhead and also cause unwanted references to
user interface libraries. This is not required for Delphi 5 or C++Builder 5, but these versions always
include forms support.

The OnStartup event is useful for handling the setting of any pertinent properties for the session before
the session is started. This event is called right before the session is started, so it is useful for situations
where you need to change the session properties from values that were used at design-time to values that
are valid for the environment in which the application is now running. The following is an example of using
an OnStartup event handler to set the remote connection properties for a session:

procedure TMyForm.MySessionStartup(Sender: TObject);
var
 Registry: TRegistry;
begin
 Registry:=TRegistry.Create;
 try
 Registry.RootKey:=HKEY_LOCAL_MACHINE;
 if Registry.OpenKey('SOFTWARE/My Application',False) then
 begin
 if Registry.ReadBool('IsRemote') then
 begin
 with MySession do
 begin
 SessionType:=stRemote;
 RemoteAddress:=Registry.ReadString('RemoteAddress');
 RemotePort:=Registry.ReadString('RemotePort');
 end;
 end
 else
 MySession.SessionType:=stLocal;
 end
 else
 ShowMessage('Error reading connection information '+
 'from the registry');
 finally
 Registry.Free;
 end;
end;

Note
You should not call the session's Open method or toggle the Active property from within this event
handler. Doing so can cause infinite recursion.

The OnShutdown event can be used for taking specific actions after a session has been stopped. As is the

Using DBISAM

Page 61

case with the OnStartup event, the above warning regarding the Open method or Active property also
applies for the OnShutDown event.

More Session Properties

After a session is started, it can also be used to control certain global settings for all TDBISAMDatabase,
TDBISAMQuery, and TDBISAMTable components that link to the session via their SessionName properties.
The properties that represent these global settings are detailed below:

Property Description

ForceBufferFlush Controls whether the session will automatically force the
operating system to flush data to disk after every write
operation completed by DBISAM. Please see the Buffering and
Caching topic for more information.

LockProtocol Controls whether the session will use a pessimistic or
optimistic locking model when editing records via navigational
or SQL methods. Please see the Locking and Concurrency
topic for more information.

LockRetryCount Controls the number of times that the engine will retry a
record or table lock before raising an exception. This property
is used in conjunction with the LockWaitTime property.

LockWaitTime Controls the amount of time, in milliseconds, that the engine
will wait in-between lock attempts. This property is used in
conjuction with the LockRetryCount property.

KeepConnections Controls whether temporary TDBISAMDatabase components
are kept connected even after they are no longer needed.
This property has no effect upon a local session, but can
result in tremendous performance improvements for a remote
session, therefore it defaults to True and should be left as
such in most cases.

PrivateDir Controls where temporary files generated by DBISAM are
stored for a local session. This property is ignored for remote
sessions.

ProgressSteps Controls the maximum number of progress events that any
batch operation will generate. Setting this property to 0 will
cause the suppression of all progress messages.

StrictChangeDetection Controls whether DBISAM will use strict or lazy change
detection for the session. The default is False, or lazy change
detection. Please see the Change Detection topic for more
information.

Note
You can modify all of the above session properties both before and after a session is started.
However, they do not have any effect upon a session until the session is actually started.

Using DBISAM

Page 62

2.8 Calling Server-Side Procedures

Introduction

DBISAM allows a database server to be customized via server-side procedures. Remote sessions may then
call these server-side procedures in order to isolate batch processes and other types of processing on the
database server. This helps reduce network traffic and allow for all-or-nothing processes that will complete
regardless of whether the client workstation loses its connection to the database server or goes down
unexpectedly. To see how to define the actual server-side procedure on the server, please see the
Customizing the Engine topic.

Calling the Procedure

To successfully call a server-side procedure you must be logged into the database server as a user that
has been granted rights to execute the server-side procedure that you wish to call. Please see the Server
Administration topic for more information.

Before calling the server-side procedure, you must populate the TDBISAMSession RemoteParams property
as needed for any parameters to the procedure using the TDBISAMParams CreateParam method, call the
TDBISAMSession CallRemoteProcedure method with the proper procedure name (case-insensitive), and
then examine any needed return parameters using the RemoteParams property or the TDBISAMSession
RemoteParamByName method. The following example shows how you would call a server-side procedure
named "Test_Procedure" that accepts an integer and a string:

begin
 with MyRemoteSession do
 begin
 RemoteParams.CreateParam(ftInteger,'ID').AsInteger:=10;
 RemoteParams.CreateParam(ftString,'Name').AsInteger:='Test';
 try
 { Now call the procedure }
 CallRemoteProcedure('Test_Procedure');
 if RemoteParams.ParamByName('Result').AsBoolean then
 ShowMessage('The record was added successfully')
 else
 ShowMessage('The record was not added successfully');
 except
 ShowMessage('There was an error calling the '+
 'server-side procedure');
 end;
 end;
end;

Handling Exceptions in Procedures

If a server-side procedure raises any type of exception at all, the database server will send the exception
back to the remote session and raise it in the context of the CallRemoteProcedure method call. Defining a
try..except block (Delphi) or a try..catch block (C++) is the best way to handle these exceptions since you
can then respond to them accordingly based upon the server-side procedure that you are calling.

Using DBISAM

Page 63

2.9 Opening Databases

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMDatabase component represents a
database in DBISAM. The following information will show how to open a database in an application.

Preparing a Database for Opening

Before you can open a database using the TDBISAMDatabase component, you must set a couple of
properties. The TDBISAMDatabase DatabaseName property is the name given to the database within the
application and is required for naming purposes only. For a local database the Directory property should
contain a directory name, either in UNC format or using logical drive mapping notation. For a remote
database, the RemoteDatabase property will contain the name of a logical database set up on the
database server that you are connecting to.

Note
Setting the Directory property for a local database so that it points to an invalid directory and then
opening the database will not cause an error. However, an exception will be raised if a
TDBISAMTable or TDBISAMQuery component that is linked to the TDBISAMDatabase via its
DatabaseName property tries to open a table. The error code that is returned when a table open
fails due to the directory or table files not being present is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Opening a Database

To open a database you must set the TDBISAMDatabase Connected property to True or call its Open
method. For a local TDBISAMDatabase component whose SessionName property is linked to a local
TDBISAMSession component, the database will cause the local TDBISAMSession to be opened if it is not
already, and then the database will be opened. For a remote database whose SessionName property is
linked to a remote TDBISAMSession component, performing this operation will cause the remote session
to attempt a connection to the database server if it is not already connected. If the connection is
successful, the database will then be opened.

The BeforeConnect event is useful for handling the setting of any pertinent properties for the
TDBISAMDatabase component before it is opened. This event is triggered right before the database is
opened, so it's useful for situations where you need to change the database information from that which
was used at design-time to something that is valid for the environment in which the application is now
running. The following is an example of a BeforeConnect event handler that is used to set the properties
for a TDBISAMDatabase component before it is opened:

procedure TMyForm.MyDatabaseBeforeConnect(Sender: TObject);
var
 Registry: TRegistry;
begin
 Registry:=TRegistry.Create;
 try
 with MyDatabase do
 begin
 { Make sure that the DatabaseName is set }

Using DBISAM

Page 64

 DatabaseName:='MyDatabase';
 { Now set the Directory property to the value
 from the registry }
 Registry.RootKey:=HKEY_LOCAL_MACHINE;
 if Registry.OpenKey('SOFTWARE/My Application',False) then
 Directory:=Registry.ReadString('Directory')
 else
 ShowMessage('Error reading database information '+
 'from registry');
 end;
 finally
 Registry.Free;
 end;
end;

Note
You should not call the TDBISAMDatabase Open method or modify the Connected property from
within this event handler. Doing so can cause infinite recursion.

More Database Properties

A TDBISAMDatabase component has one other property of importance that is detailed below:

Property Description

KeepConnection Controls whether the database connection is kept active even
after it is no longer needed. This property has no effect upon
a local session, but can result in tremendous performance
improvements for a remote session, therefore it defaults to
True and should be left as such in most cases.

KeepTablesOpen Controls whether the physical tables opened with the
database connection are kept open even after they are closed
by the application. Setting this property to True can
dramatically improve the performance of large SQL scripts and
any other operations that involve constantly opening and
closing the same tables over and over.

Using DBISAM

Page 65

2.10 Transactions

Introduction

DBISAM allows for transactions in order to provide the ability to execute multi-table updates and have
them treated as an atomic unit of work. Transactions are implemented logically in the same fashion as
most other database engines, however at the physical level there are some important considerations to
take into account and these will be discussed here.

Executing a Transaction

A transaction is executed entirely by using the StartTransaction, Commit, and Rollback methods of the
TDBISAMDatabase component. A typical transaction block of code looks like this:

begin
 with MyDatabase do
 begin
 StartTransaction;
 try
 { Perform some updates to the table(s) in this database }
 Commit;
 except
 Rollback;
 end;
 end;
end;

Note
It is very important that you always ensure that the transaction is rolled back if there is an
exception of any kind during the transaction. This will ensure that the locks held by the transaction
are released and other sessions can continue to update data while the exception is dealt with. Also,
if you roll back a transaction it is always a good idea to refresh any open TDBISAMTable or
TDBISAMQuery components linked to the TDBISAMDatabase component involved in the transaction
so that they reflect the current data and not any data from the transaction that was just rolled back.
Along with refreshing, you should make sure that any pending inserts or edits for the
TDBISAMTable or TDBISAMQuery components are cancelled using the Cancel method before the
transaction is rolled back to ensure that the inserts or edits are not accidentally posted using the
Post method after the transaction is rolled back (unless that is specifically what you wish to do).

Restricted Transactions

It is also possible with DBISAM to start a restricted transaction. A restricted transaction is one that
specifies only certain tables be part of the transaction. The StartTransaction method accepts an optional
list of tables that can be used to specify what tables should be involved in the transaction and,
subsequently, locked as part of the transaction (see below regarding locking). If this list of tables is nil
(the default), then the transaction will encompass the entire database.

The following example shows how to use a restricted transaction on two tables, the Customer and Orders
table:

Using DBISAM

Page 66

var
 TablesList: TStrings;
begin
 TablesList:=TStringList.Create;
 try
 with MyDatabase do
 begin
 TablesList.Add('Customer');
 TablesList.Add('Orders');
 StartTransaction(TablesList);
 try
 { Perform some updates to the table(s) in the transaction }
 Commit;
 except
 Rollback;
 raise;
 end;
 finally
 TablesList.Free;
 end;
end;

Flushing Data to Disk During a Commit

By default, the Commit method will cause a flush of all data to disk within the operating system, which is
eqivalent to calling the FlushBuffers method of all TDBISAMTable or TDBISAMQuery components involved
in the transaction that were updated. The Commit method has an optional parameter that controls this
called ForceFlush and it defaults to True. Passing False as the ForceFlush parameter will improve the
performance of a commit operation at the expense of possible data corruption if the application is
improperly terminated after the commit takes place. This is due to the fact that the operating system may
wait several minutes before it lazily flushes any modified data to disk. Please see the Buffering and
Caching topic for more information.

Locking During a Transaction

When a transaction on the entire database is started, DBISAM acquires a special transaction write lock on
the entire database. This prevents any other sessions from adding, updating, or deleting any data from
the tables in the database while the current transaction is active. When a restricted transaction is started
on a specific set of tables, DBISAM will only acquire this special transaction write lock on the tables
specified as part of the transaction. This special transaction write lock is a very important concept since it
illustrates the importance of keeping transactions short (not more than a couple of seconds) in DBISAM.
However, this special transaction write lock does not prevent other sessions from reading data from the
tables involved in the transaction or acquiring record or table locks on the tables involved in the
transaction while the current transaction is active. This means that it is still possible for other sessions to
cause a TDBISAMTable or TDBISAMQuery Edit or Delete method call within the current transaction to fail
due to not being able to acquire the necessary record lock.

Any record locks acquired by calling the TDBISAMTable or TDBISAMQuery Edit or Delete methods during a
transaction will remain locked even after a call to the TDBISAMTable or TDBISAMQuery Post method. This
is also the case for table locks acquired via the TDBISAMTable LockTable method, which will remain locked
even after a call to the TDBISAMTable UnlockTable method has been made. These locks will be released
when the transaction is rolled back or committed, but not until that point.

Using DBISAM

Page 67

Opening and Closing Tables

If a transaction on the entire database is active and a new table is opened via the TBISAMTable or
TDBISAMQuery components, that table will automatically become part of the active transaction. Unlike a
transaction on the entire database, if a table involved in a restricted transaction is not currently open at
the time that StartTransaction is called, then an attempt will be made to open it at that time. Also, any
tables that are opened during the restricted transaction and not initially specified as part of the restricted
transaction will be excluded from the transaction. If a table involved in a transaction, either restricted or
not, is closed while the transaction is still active, the table will be kept open internally by DBISAM until the
transaction is committed or rolled back, at which point the table will then be closed. However, the
TDBISAMTable or TDBISAMQuery component that opened the table originally will indicate that the table is
closed.

SQL and Transactions

The INSERT, UPDATE, and DELETE SQL statements implicitly use a restricted transaction on the updated
tables if a transaction is not already active. The interval at which the implicit transaction is committed is
based upon the record size of the table being updated in the query and the amount of buffer space
configured for the TDBISAMEngine component via its MaxTableDataBufferCount and
MaxTableDataBufferSize properties. The COMMIT INTERVAL clause can be used within these SQL
statements to manually control the interval at which the transaction is committed, and applies both to
situations where a transaction was explicitly started by the developer and situations where the transaction
was implicitly started by DBISAM. In the case where a transaction was explicitly started by the developer,
the absence of a COMMIT INTERVAL clause in the SQL statement being executed will force DBISAM to
never commit any of the effects of the SQL statement and leaves this up to the developer to handle after
the SQL statement completes. The COMMIT INTERVAL clause can also contain the FLUSH keyword, which
indicates that any transaction commit that takes place during the execution of the SQL statement should
also force an operating system flush to disk. By default, commits that occur during the execution of SQL
statements do not force an operating system flush to disk.

In addition to implicit transactions with the INSERT, UPDATE, and DELETE SQL statements, DBISAM also
allows the use of the START TRANSACTION, COMMIT, and ROLLBACK SQL statements.

Incompatible Operations

The following operations are not compatible with transactions and will cause a transaction to commit if
encountered during a transaction.

 Backing Up and Restoring Databases
 Verifying and Repairing Tables
 Creating and Altering Tables
 Adding and Deleting Indexes from a Table
 Optimizing Tables
 Upgrading Tables
 Deleting Tables
 Renaming Tables
 Emptying Tables
 Copying Tables

Isolation Level

The default and only isolation level for transactions in DBISAM is serialized. This means that only the
session in which the transaction is taking place will be able to see any inserts, updates, or deletes made
during the transaction. All other sessions will see the data as it existed before the transaction began. Only

Using DBISAM

Page 68

after the transaction is committed will other sessions see the new inserts, updates, or deletes.

Data Integrity

A transaction in DBISAM is buffered, which means that all inserts, updates, or deletes that take place
during a transaction are cached in memory for the current session and are not physically applied to the
tables involved in the transaction until the transaction is committed. If the transaction is rolled back, then
the updates are discarded. With a local session this allows for a fair degree of stability in the case of a
power failure on the local workstation, however it will not prevent a problem if a power failure happens to
occur while the commit operation is taking place. Under such circumstances it's very likely that physical
and/or logical corruption of the tables involved in the transaction could take place. The only way
corruption can occur with a remote session is if the database server itself is terminated improperly during
the middle of a transaction commit. This type of occurrence is much more rare with a server than with a
workstation.

Using DBISAM

Page 69

2.11 Backing Up and Restoring Databases

Introduction

Backing up and restoring databases is accomplished through the TDBISAMDatabase Backup, BackupInfo,
and Restore methods. The properties used by the Backup, BackupInfo, and Restore methods include the
Connected,
DatabaseName, Directory, and RemoteDatabase properties. The OnBackupProgress, OnBackupLog,
OnRestoreProgress, and OnRestoreLog events can be used to track the progress of and log messages
about the backup or restore operation. Backing up a database copies all or some of the tables within the
database to a compressed or uncompressed backup file. Restoring a database copies all or some of the
tables in a compressed or uncompressed backup file into the database, overwriting any tables with the
same names that already exist in the database.

Backing Up a Database

To backup a database you must specify the DatabaseName and Directory or RemoteDatabase properties
of the TDBISAMDatabase component, set the Connected property to True, and then call the Backup
method. If you are backing up a database from a local session then you will specify the Directory property.
If you are backing up a database from a remote session then you will specify the RemoteDatabase
property. The TDBISAMDatabase component must be open when this method is called. If the
TDBISAMDatabase component is closed an exception will be raised.

Note
When the backup executes, it obtains a read lock for the entire database that prevents any sessions
from performing any writes to any of the tables in the database until the backup completes.
However, since the execution of this method is quite fast the time during which the tables cannot
be changed is usually pretty small. To ensure that the database is available as much as possible for
updating, it is recommended that you backup the tables to a file on a hard drive and then copy the
file to a CD, DVD, or other slower backup device outside of the scope of the database being locked.

The following example shows how to backup a local database using the Backup method:

The local database has the following tables:

Table Name

Customers
Orders
Items

var
 TablesToBackup: TStrings;
begin
 TablesToBackup:=TStringList.Create;
 try
 with MyDatabase do
 begin

Using DBISAM

Page 70

 DatabaseName:='MyDatabase';
 Directory:='d:\temp';
 with TablesToBackup do
 begin
 Add('Customers');
 Add('Orders');
 Add('Items');
 end;
 if Backup('d:\temp\'+
 StringReplace(DateToStr(Date),
 '/','',[rfReplaceAll])+'.bkp',
 'Daily Backup for '+DateToStr(Date),6,
 TablesToBackup) then
 ShowMessage('Backup was successful')
 else
 ShowMessage('Backup failed');
 end;
 finally
 TablesToBackup.Free;
 end;
end;

Note
Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Tracking the Backup Progress

To take care of tracking the progress of the backup we have provided the OnBackupProgress and
OnBackupLog events within the TDBISAMDatabase component. The OnBackupProgress event will report
the progress of the backup operation and the OnBackupLog event will report any log messages regarding
the backup operation.

Retrieving Information from a Backup File

To retrieve information from a backup file you must specify the DatabaseName and Directory or
RemoteDatabase properties of the TDBISAMDatabase component, set the Connected property to True,
and then call the BackupInfo method. If you are retrieving information from a backup file from a local
session then you will specify the Directory property. If you are retrieving information from a backup file
from a remote session then you will specify the RemoteDatabase property. The TDBISAMDatabase
component must be open when this method is called. If the TDBISAMDatabase component is closed an
exception will be raised.

Note
Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Restoring a Database

Using DBISAM

Page 71

To restore tables to a database you must specify the DatabaseName and Directory or RemoteDatabase
properties of the TDBISAMDatabase component, set the Connected property to True, and then call the
Restore method. If you are restoring tables to a database from a local session then you will specify the
Directory property. If you are restoring tables to a database from a remote session then you will specify
the RemoteDatabase property.

Note
The Restore method overwrites any existing tables with names that are the same as those specified
in this parameter. You should be very careful when using this method with an existing database to
prevent loss of data.

The TDBISAMDatabase component must be open when this method is called. If the TDBISAMDatabase
component is closed an exception will be raised.

Note
When the restore executes, it obtains a write lock for the entire database that prevents any sessions
from performing any reads or writes from or to any of the tables in the database until the restore
completes. However, since the execution of this method is quite fast the time during which the
tables cannot be accessed is usually pretty small.

The following example shows how to restore a table to a local database using the Restore method:

The local database has the following tables:

Table Name

Customers
Orders
Items

var
 TablesToRestore: TStrings;
begin
 TablesToRestore:=TStringList.Create;
 try
 with MyDatabase do
 begin
 DatabaseName:='MyDatabase';
 Directory:='d:\temp';
 with TablesToRestore do
 Add('Customers');
 if Restore('d:\temp\'+
 StringReplace(DateToStr(Date),
 '/','',[rfReplaceAll])+'.bkp',
 TablesToRestore) then
 ShowMessage('Restore was successful')
 else
 ShowMessage('Restore failed');
 end;

Using DBISAM

Page 72

 finally
 TablesToRestore.Free;
 end;
end;

Note
Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Tracking the Restore Progress

To take care of tracking the progress of the restore we have provided the OnRestoreProgress and
OnRestoreLog events within the TDBISAMDatabase component. The OnRestoreProgress event will report
the progress of the restore operation and the OnRestoreLog event will report any log messages regarding
the restore operation.

Using DBISAM

Page 73

2.12 In-Memory Tables

Introduction

DBISAM provides a complete and seamless in-memory table implementation within the same framework
as disk-based tables. There are only a few slight differences that should be taken into account when using
in-memory tables, and these are detailed below.

DatabaseName Property

The DatabaseName property in the TDBISAMTable and TDBISAMQuery components should always be set
to the special in-memory database name "Memory" in order to create or access any in-memory tables. All
in-memory tables reside in this same virtual database that is global to the application process. This means
that if you create an in-memory table called "mytable" using the TDBISAMTable CreateTable method and
then try to create it again elsewhere within the same application, you will receive an error indicating that
the table already exists. Because in-memory tables are global to the process, multiple sessions can access
and share the same in-memory tables.

Sharing In-Memory Tables

In-memory tables can be shared just like regular disk-based tables. They are also thread-safe and exhibit
the same locking and access behaviors.

Creating In-Memory Tables

Just like disk-based tables, in-memory tables must be created before they can be opened.

Deleting In-Memory Tables

Just like disk-based tables, in-memory tables must be deleted if they are no longer needed. If for any
reason an in-memory table is not deleted during the execution of an application, DBISAM will
automatically delete it when the application process is terminated.

Local and Remote In-Memory Tables

There are no differences between using in-memory tables with local sessions and using in-memory tables
with remote sessions other than the fact that in-memory tables created within a remote session are stored
on the database server whereas in-memory tables created within a local session are stored locally in the
application's memory space.

Using DBISAM

Page 74

2.13 Creating and Altering Tables

Introduction

Creating tables and altering the structure of existing tables is accomplished through the CreateTable and
AlterTable methods of the TDBISAMTable component. The properties used by the CreateTable and
AlterTable methods include the FieldDefs, IndexDefs, DatabaseName, TableName, and Exists properties.

Basic Steps

There are four basic steps that need to be completed when creating a table or altering the structure of an
existing table. They are as follows:

1) Define the field definitions using the FieldDefs property, which is a TDBISAMFieldDefs object.

2) Define the index definitions, if any, using the IndexDefs property, which is a TDBISAMIndexDefs object.

3) Set the database and table information using the DatabaseName and TableName properties.

4) Call the CreateTable method if creating a table or the AlterTable method if altering the structure of an
existing table.

Defining the field definitions

The FieldDefs property is used to specify which fields to define for the new or existing table. The FieldDefs
property is a list of TDBISAMFieldDef objects, each of which contains information about the fields that
make up the table. You may add new TDBISAMFieldDef objects using the Add method. There are two
different versions of the Add method. One is for use when creating a table and does not accept a FieldNo
parameter as the first parameter, and the other is for use when altering the structure of an existing table
and requires that you specify the FieldNo parameter as the first parameter. The reason for this difference
is that DBISAM uses field numbers (1-based) to distinguish between existing fields in a table and new
fields being added. It also uses field numbers in addition to the index position (0-based) of a field
definition in the FieldDefs property to determine if a field has been moved in the structure, but still exists.
The use of field numbers also allows for the renaming of existing fields in a table without losing data when
altering the structure of an existing table.

Note
You may use the FieldDefs property's Update method to automatically populate the field definitions
for the table from table itself specified by the TDBISAMTable TableName property.

The following summarizes how field numbers and the index position of field definitions are used when
creating a table or altering the structure of a table:

Value Rules

Using DBISAM

Page 75

Field Number A field number is 1-based, meaning that it starts at 1 for the
first field definition in a table. A field number is automatically
assigned for all field definitions when creating a table so it
need not be specified and will be ignored if specified.

When altering the structure of an existing table, a field
number is required for each field definition. As indicated
above, using the FieldDefs property's Update method will
automatically populate the correct field numbers from an
existing table. If adding a new field, the field number should
be set to the next largest field number based upon the
existing field numbers in the FieldDefs property. For example,
if you have 5 field definitions in the FieldDefs property and
wish to add another, the new field definition should be
specified with 6 as its field number.

Note
The field definitions represented by the FieldDefs
property can have gaps in the field numbers when
altering the structure of an existing table. The is
because it is possible that a given field definition has
been deleted, which means that its field number would
not be present anywhere in the field definitions. This
type of condition is exactly what indicates to DBISAM
that the field should be removed from the table
structure.

Index Position An index position is 0-based, meaning that the first field
definition is at index position 0, the second field definition at
index position 1, etc. When creating a table or altering the
structure of an existing table, the index position represents
the desired physical position of the field definition in the table
after the table creation or alteration takes place.

When altering the structure of an existing table, you can
move field definitions around to different index positions and
leave their field numbers intact. This will indicate to DBISAM
that the field has simply moved its position in the structure of
the table. You can also use the Insert method to insert a field
definition at a specific index position. Like the Add method,
there are two versions of the Insert method, one with a
FieldNo parameter for use when altering the structure of an
existing table and one without for use when creating a table.

Defining the index definitions

The IndexDefs property is used to specify which indexes to define for the new or existing table. The
IndexDefs property is a list of TDBISAMIndexDef objects, each of which contains information about the
indexes defined for the table. You may add new TDBISAMIndexDef objects using the Add method. Unlike
field definitions, DBISAM uses the index name to distinguish between different index definitions, and their
index position in the list of index definitions is irrelevant.

Using DBISAM

Page 76

Note
You may use the IndexDefs property's Update method to automatically populate the index
definitions for the table from table itself specified by the TDBISAMTable TableName property.

Please see the Index Compression topic for more information on the options for index compression in
DBISAM.

Setting the Database and Table Information

The DatabaseName and TableName properties are used to specify the name and location of the table to
create or the name of the table whose structure you wish to alter. The DatabaseName property can be set
to a value that matches the DatabaseName property of an existing TDBISAMDatabase component, or it
may directly specify the path to the new or existing table. The TableName property specifies the name of
the new or existing table.

Please see the DBISAM Architecture and Opening Tables topics for more information.

Creating the Table

After defining the field and index definitions and setting the database and table information, you can call
the CreateTable method to create the actual table. It is usually good practice to also examine the Exists
property of the TDBISAMTable component first to make sure that you don't attempt to overwrite an
existing table. If you do attempt to overwrite an existing table an EDBISAMEngineError exception will be
raised. The error code given when a table create fails due to the table already existing is 13060 and is
defined as DBISAM_TABLEEXISTS in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The CreateTable method can be called without any parameters or you may specify many different
parameters that set table-wide information for the table such as its description, locale, etc. The following
example shows how to create the local "customer" table using the CreateTable method without any
additional parameters:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 with FieldDefs do
 begin
 Clear;
 Add('CustNo',ftFloat,0,True);
 Add('Company',ftString,30,False);
 Add('Addr1',ftString,30,False);
 Add('Addr2',ftString,30,False);
 Add('City',ftString,15,False);
 Add('State',ftString,20,False);
 Add('Zip',ftString,10,False);
 Add('Country',ftString,20,False);
 Add('Phone',ftString,15,False);
 Add('FAX',ftString,15,False);
 Add('Contact',ftString,20,False);
 end;
 with IndexDefs do
 begin

Using DBISAM

Page 77

 Clear;
 Add('','CustNo',[ixPrimary]);
 Add('ByCompany','Company',[ixCaseInsensitive],
 '',icDuplicateByte);
 end;
 if not Exists then
 CreateTable;
 end;
end;

Altering the Structure of the Table

After defining the field and index definitions and setting the database and table information, you can call
the AlterTable method to alter the structure of the existing table. It is usually good practice to also
examine the Exists property of the TDBISAMTable component first to make sure that you don't attempt to
alter the structure of a non-existent table. If you do attempt to alter the structure of a non-existent table
an EDBISAMEngineError exception will be raised. The error code given when a table open fails due to the
table not being present is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi) or
dbisamcn header file (C++). Also, DBISAM requires exclusive access to the table during the process of
altering the table's structure and an EDBISAMEngineError exception will be raised if the table cannot be
opened exclusively. The error code given when a table open fails due to access problems is 11013 and is
defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The AlterTable method can be called without any parameters or you may specify many different
parameters that set table-wide information for the table such as its description, locale, etc. If you wish to
leave all of the table-wide information as it currently exists in the table, then you should pass the following
TDBISAMTable properties to the AlterTable method (in this order):

LocaleID
UserMajorVersion
UserMinorVersion
Encrypted
Password
Description
IndexPageSize
BlobBlockSize
LastAutoIncValue
TextIndexFields
TextIndexStopWords
TextIndexSpaceChars
TextIndexIncludeChars

These properties can be read from the exising table without requiring the table to be opened first.
However, in order for DBISAM to read the Password property of an encrypted DBISAM table or alter the
structure of an encrypted DBISAM table in general, the password for the encrypted table must already be
defined for the current session or else it must be provided via an event handler assigned to the
TDBISAMSession OnPassword event or by the user via the dialog that will be displayed by DBISAM if an
event handler is not assigned to this event for the current session. Please see the Opening Tables topic for
more information.

Using DBISAM

Page 78

Note
Calling the basic version of the AlterTable method without any parameters is not the same as calling
the AlterTable method with the above properties as parameters. Calling the AlterTable method with
no parameters instructs DBISAM to use the default parameters for all table-wide information.

The following example shows how to alter the local "customer" table's structure using the AlterTable
method without any additional parameters. In this example we want to add a LastSaleAmount (a BCD
field) to this table's structure in front of the LastSaleDate field and then add a secondary index on this new
LastSaleAmount field to speed up filtering in SQL queries:

Customer Table Structure Before Alteration

Field # Name DataType Size
--
1 CustomerID ftString 10
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30
7 LastSaleDate ftDate 0

Index Name Fields In Index Options
--
(none) CustomerID ixPrimary

begin
 with MyTable do
 begin
 DatabaseName:='c:\temp';
 TableName:='customer';
 { Always make sure the table is closed first }
 Active:=False;
 { Update the field definitions using the
 existing field definitions from the table }
 FieldDefs.Update;
 { Same for the index definitions }
 IndexDefs.Update;
 { Now insert the new field definition. Notice
 the index position of 6 which is 0-based and
 the field number of 8 which is 1-based and
 equal to the next available field number since
 there are currently 7 field definitions for this
 table }
 FieldDefs.Insert(6,8,'LastSaleAmount',ftBCD,2,False);
 IndexDefs.Add('LastSaleAmount','LastSaleAmount',[]);
 { Now alter the table's structure }
 AlterTable;
 end;
end;

Using DBISAM

Page 79

Customer Table Structure After Alteration

Field # Name DataType Size
--
1 CustomerID ftString 10
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30
7 LastSaleAmount ftBCD 2
8 LastSaleDate ftDate 0

Index Name Fields In Index Options
--
(none) CustomerID ixPrimary
LastSaleDate LastSaleDate (none)

In addition to using the TDBISAMTable CreateTable and AlterTable methods for creating and altering the
structure of existing tables, DBISAM also allows the use of the CREATE TABLE and ALTER TABLE SQL
statements.

Backup Files

Unless the SuppressBackups parameter to the AlterTable method is set to True (default is False), DBISAM
will make backups of a table's physical files before altering the structure of a table, except when the
following four conditions exist:

1) The only alteration of the structure that has taken place has been a change in the table description or
the user-defined major or minor version numbers.

2) The only alteration of the structure that has taken place has been a change in the name of a field or its
description.

3) The only alteration of the structure that has taken place has been a change in the name of an index.

4) Any combination of these three conditions.

In all other cases DBISAM will make a backup of each physical file associated with the table whose
structure is being altered. Each physical file will have the same root table name but with a different
extension. These extensions are as follows:

Original Extension Backup Extension

.dat (data) .dbk

.idx (indexes) .ibk

.blb (BLOBs) .bbk

Using DBISAM

Page 80

Note
There is one exception - if the alteration of the table structure has only changed one of the primary
or secondary indexes or the full text index (by changing the full text indexing parameters), then
only the index file will be backed up. This is designed in this fashion to speed up the process of
altering a table's structure when the only change has been to the index definitions.

To restore these files in case of a mistake, simply rename them to the proper extension or copy them to
the original file names. Also, these backup files will get overwritten without warning for each structure
alteration that occurs on the table. If you need the backup files for future use it's best to copy them to a
separate directory where they will be safe.

The file extensions described above are the default extensions and can be changed. Please see the
DBISAM Architecture and Customizing the Engine topics for more information.

Tracking the Progress of the Table Structure Alteration

To take care of tracking the progress of the table structure alteration, we have provided the
TDBISAMTable and TDBISAMQuery OnAlterProgress events.

Dealing with Data Loss in the Table Structure Alteration

To take care of dealing with data loss during the alteration of a table's structure, we have provided the
TDBISAMTable and TDBISAMQuery OnDataLost events. The OnDataLost event is used to track when data
is lost due to field conversions between incompatible types, field constraint failures, field deletions, or key
violations resulting from changes in the primary index definition or unique secondary index definitions.

Using DBISAM

Page 81

2.14 Upgrading Tables

Introduction

Upgrading tables is accomplished through the UpgradeTable method of the TDBISAMTable component.
The properties used by the UpgradeTable method include the DatabaseName, TableName, and Exists
properties. Upgrading a table takes table from a previous DBISAM table format and modifies its internal
format so that it is compatible with the table format used by the version of DBISAM in use during the
upgrade. DBISAM maintains a version number in all tables that indicates to DBISAM what format the table
is in. You can use the TDBISAMTable VersionNum property to see what table format version a table is
using.

Upgrading a Table

To upgrade a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the UpgradeTable method. The table component must be closed and the Active
property must be False. It is usually good practice to also examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to upgrade a non-existent table. If
you do attempt to upgrade a non-existent table an EDBISAMEngineError exception will be raised. The
error code given when a table upgrade fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). DBISAM will attempt to
open the table exclusively before upgrading the table. If another session has the table open then an
EDBISAMEngineError exception will be raised when this method is called. The error code given when
upgrading a table fails due to the table being open by another session is 11013 and is defined as
DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to upgrade the "customer" table using the UpgradeTable method:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 UpgradeTable;
 end;
end;

Note
If a table is already in the proper format for the current version of DBISAM, this method will do
nothing.

In addition to using the TDBISAMTable UpgradeTable method for upgrading tables, DBISAM also allows
the use of the UPGRADE TABLE SQL statement.

Logging Upgrade Messages

During the upgrade process, DBISAM will relay detailed log messages regarding the process start and stop
times and any information it deems pertinent. You can trap these log messages for further display or

Using DBISAM

Page 82

analysis via the TDBISAMTable and TDBISAMQuery OnUpgradeLog events.

Tracking the Upgrade Progress

To take care of tracking the progress of the upgrade we have provided the TDBISAMTable and
TDBISAMQuery OnUpgradeProgress events.

Backup Files

DBISAM will make backups of a table's physical files before upgrading the table. Each physical file will
have the same root table name but with a different extension. These extensions are as follows:

Original Extension Backup Extension

.dat (data) .dup

.idx (indexes) .iup

.blb (BLOBs) .bup

To restore these files in case of a mistake, simply rename them to the proper extension or copy them to
the original file names. Also, these backup files will get overwritten without warning for each upgrade that
occurs on the table. If you need the backup files for future use it's best to copy them to a separate
directory where they will be safe.

The file extensions described above are the default extensions and can be changed. Please see the
DBISAM Architecture and Customizing the Engine topics for more information.

Using DBISAM

Page 83

2.15 Deleting Tables

Introduction

Deleting tables is accomplished through the DeleteTable method of the TDBISAMTable component. The
properties used by the DeleteTable method include the DatabaseName, TableName, and Exists properties.

Deleting a Table

To delete a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the DeleteTable method. The table component must be closed and the Active
property must be False. It is usually good practice to also examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to delete a non-existent table. If you
do attempt to delete a non-existent table an EDBISAMEngineError exception will be raised. The error code
given when a table delete fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to delete the "customer" table using the DeleteTable method:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 DeleteTable;
 end;
end;

Note
You should be extremely careful when using this method since deleting a table will remove the table
and its contents permanently. Be sure to have a backup of your data before using this method in
order to avoid any costly mistakes.

In addition to using the TDBISAMTable DeleteTable method for deleting tables, DBISAM also allows the
use of the DROP TABLE SQL statement.

Using DBISAM

Page 84

2.16 Renaming Tables

Introduction

Renaming tables is accomplished through the RenameTable method of the TDBISAMTable component. The
properties used by the RenameTable method include the DatabaseName, TableName, and Exists
properties.

Renaming a Table

To rename a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the RenameTable method. The table component must be closed and the Active
property must be False. It is usually good practice to also examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to rename a non-existent table. If you
do attempt to rename a non-existent table an EDBISAMEngineError exception will be raised. The error
code given when a table rename fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to rename the "customer" table to the "oldcustomer" table using the
RenameTable method:

begin
 with MyDBISAMTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 RenameTable('oldcustomer');
 end;
end;

Note
You should be extremely careful when using this method since renaming a table can break
applications and cause them to encounter errors when trying to open up a table that no longer
exists under the same name.

In addition to using the TDBISAMTable RenameTable method for renaming tables, DBISAM also allows the
use of the RENAME TABLE SQL statement.

Using DBISAM

Page 85

2.17 Adding and Deleting Indexes from a Table

Introduction

Adding and Deleting indexes is accomplished through the AddIndex, DeleteIndex, and DeleteAllIndexes
methods of the TDBISAMTable component. The properties used by these methods include the
DatabaseName, TableName, and Exists properties.

Adding an Index

To add an index, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the AddIndex method. The table can be open or closed when this method is
called, however if the table is already open it must have been opened exclusively, meaning that the
Exclusive property should be set to True. If the Exclusive property is set to False, an EDBISAMEngineError
exception will be raised when this method is called. The error code given when an addition of an index
fails due to the table not being opened exclusively is 10253 and is defined as DBISAM_NEEDEXCLACCESS
in the dbisamcn unit (Delphi) or dbisamcn header file (C++). If the table is closed when this method is
called, then DBISAM will attempt to open the table exclusively before adding the index. If another session
has the table open then an EDBISAMEngineError exception will be raised when this method is called. The
error code given when an addition of an index fails due to the table being open by another session is
11013 and is defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).
It is usually good practice to also examine the Exists property of the TDBISAMTable component first to
make sure that you don't attempt to add an index to a non-existent table. If you do attempt to add an
index to a non-existent table an EDBISAMEngineError exception will be raised. The error code given when
adding an index to a table fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). If you attempt to add
an index with the name of an existing index an EDBISAMEngineError exception will be raised. The error
code given when adding an index to a table that already contains an index with the same name is 10027
and is defined as DBISAM_INDEXEXISTS in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following is an example of adding a case-insensitive index on the Company field in the "customer"
table:

begin
 with MyDBISAMTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 AddIndex('ByCompany','Company',
 [ixCaseInsensitive],'',icDuplicateByte);
 end;
end;

Please see the Index Compression topic for more information on the options for index compression in
DBISAM.

In addition to using the TDBISAMTable AddIndex method for adding indexes to tables, DBISAM also allows
the use of the CREATE INDEX SQL statement.

Backup Files

Using DBISAM

Page 86

DBISAM will make backups of a table's physical index file before adding an index to a table. The physical
index file will have the same root table name but a different extension. This extension is as follows:

Original Extension Backup Extension

.idx (indexes) .ibk

To restore this files in case of a mistake, simply rename them to the proper extension or copy them to the
original file name. Also, this backup file will get overwritten without warning for each index addition or
structure alteration that occurs on the table. If you need the backup file for future use it's best to copy it
to a separate directory where it will be safe.

The file extensions described above are the default extensions and can be changed. Please see the
DBISAM Architecture and Customizing the Engine topics for more information.

Tracking the Progress of the Index Addition

To take care of tracking the progress of the index addition, we have provided the TDBISAMTable and
TDBISAMQuery OnIndexProgress events.

Dealing with Data Loss in the Index Addition

To take care of dealing with data loss during the addition of an index, we have provided the
TDBISAMTable and TDBISAMQuery OnDataLost events. The OnDataLost event is used to track when data
is lost due to key violations resulting from the addition of a primary index or unique secondary index.

Deleting an Index

To delete an index, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the DeleteIndex method. The DeleteIndex method accepts one parameter, the
name of the index to delete. If you are deleting the primary index of the table you should use a blank
string ('') as the index name parameter. The same rules for exclusive table access that apply to the
AddIndex method also apply to the DeleteIndex method. If you attempt to delete an index that does not
exist an EDBISAMEngineError exception will be raised. The error code given when deleting an index that
does not exist in the table is 10022 and is defined as DBISAM_INVALIDINDEXNAME in the dbisamcn unit
(Delphi) or dbisamcn header file (C++).

The following is an example of deleting an index called ByCompany from the "customer" table:

begin
 with MyDBISAMTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 DeleteIndex('ByCompany');
 end;
end;

In addition to using the TDBISAMTable DeleteIndex method for deleting indexes from tables, DBISAM also
allows the use of the DROP INDEX SQL statement.

Using DBISAM

Page 87

Deleting All Indexes from a Table

To delete all indexes from a table, you must specify the DatabaseName and TableName properties of the
TDBISAMTable component and then call the DeleteAllIndexes method. The same rules for exclusive table
access that apply to the DeleteIndex method also apply to the DeleteAllIndexes method.

The following is an example of deleting all indexes from the "customer" table:

begin
 with MyDBISAMTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 DeleteAllIndexes;
 end;
end;

Using DBISAM

Page 88

2.18 Emptying Tables

Introduction

Emptying tables is accomplished through the EmptyTable method of the TDBISAMTable component. The
properties used by the EmptyTable method include the DatabaseName, TableName, and Exists properties.
Emptying a table very quickly removes all of its records while keeping the structure, including indexes,
intact.

Emptying a Table

To empty a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the EmptyTable method. The table can be open or closed when this method is
called, however if the table is already open it must have been opened exclusively, meaning that the
Exclusive property should be set to True. If the Exclusive property is set to False, an EDBISAMEngineError
exception will be raised when this method is called. The error code given when emptying a table fails due
to the table not being opened exclusively is 10253 and is defined as DBISAM_NEEDEXCLACCESS in the
dbisamcn unit (Delphi) or dbisamcn header file (C++). If the table is closed when this method is called,
then DBISAM will attempt to open the table exclusively before emptying the table. If another session has
the table open then an EDBISAMEngineError exception will be raised when this method is called. The error
code given when emptying a table fails due to the table being open by another session is 11013 and is
defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++). It is usually
good practice to also examine the Exists property of the TDBISAMTable component first to make sure that
you don't attempt to empty a non-existent table. If you do attempt to empty a non-existent table an
EDBISAMEngineError exception will be raised. The error code given when emptying a table fails due to the
table not existing is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi) or
dbisamcn header file (C++).

The following example shows how to empty the "customer" table using the EmptyTable method:

begin
 with MyDBISAMTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 EmptyTable;
 end;
end;

Note
You should be extremely careful when using this method since emptying a table will remove the
contents of the table permanently. Be sure to have a backup of your data before using this method
in order to avoid any costly mistakes.

In addition to using the TDBISAMTable EmptyTable method for emptying tables, DBISAM also allows the
use of the EMPTY TABLE SQL statement.

Using DBISAM

Page 89

2.19 Copying Tables

Introduction

Copying tables is accomplished through the CopyTable method of the TDBISAMTable component. The
properties used by the CopyTable method include the DatabaseName, TableName, and Exists properties.
By default, copying a table copies the entire structure and specified contents of a table to a new table. The
records that are copied can be controlled by setting a range or filter on the source table being copied prior
to calling the CopyTable method. You can also specify False for the last CopyData parameter in order to
only copy the table structure and not the table contents.

Note
The CopyTable method acquires a read lock on the source table at the beginning of the copy
operation and does not release it until the copy operation is complete. This is done to make sure
that no other sessions modify the data as well as make sure that the data that is copied is logically
consistent with the original table and does not contain partial updates. Please see the Locking and
Concurrency topic for more information.

Copying a Table

To copy a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the CopyTable method. The table can be open or closed when this method is
called, and the table does not need to be opened exclusively (Exclusive property=True). If the table is
closed when this method is called, then the DBISAM engine will attempt to open the table before copying
it. It is usually good practice to also examine the Exists property of the TDBISAMTable component first to
make sure that you don't attempt to copy a non-existent table. If you do attempt to copy a non-existent
table an EDBISAMEngineError exception will be raised. The error code given when copying a table fails
due to the table not existing is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi)
or dbisamcn header file (C++).

The following example shows how to copy the "customer" table to the "newcust" table in the same
database directory using the CopyTable method:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 CopyTable('d:\temp','newcust');
 end;
end;

Using DBISAM

Page 90

Note
When copying tables in a local session, you must specify the first database name parameter to the
CopyTable method as a local database directory. When copying tables in a remote session, you
must specify the first database name parameter to the CopyTable method as a database defined on
the database server. You cannot copy tables on a database server to local tables or vice-versa.
Please see the DBISAM Architecture topic for more information.

The CopyTable operation can also be performed on a table that is already open and has a range or filter
set. This is useful for limiting the copied records to a certain criteria. Please see the Setting Ranges on
Tables and Setting Filters on Tables and Query Result Sets topics for more information.

Tracking the Copy Progress

To take care of tracking the progress of the copy we have provided the TDBISAMTable OnCopyProgress
event.

Using DBISAM

Page 91

2.20 Optimizing Tables

Introduction

Optimizing tables is accomplished through the OptimizeTable method of the TDBISAMTable component.
The properties used by the OptimizeTable method include the DatabaseName, TableName, and Exists
properties. Optimizing a table will physically re-order a table's records based upon a specific index in order
to improve read-ahead performance and will also physically remove any empty space from a table. By
default the index used for the re-ordering of the table records is the primary index.

Optimizing a Table

To optimize a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the OptimizeTable method. The table component must be closed and the Active
property must be False. It is usually good practice to also examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to upgrade a non-existent table. If
you do attempt to upgrade a non-existent table an EDBISAMEngineError exception will be raised. The
error code given when a table upgrade fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). DBISAM will attempt to
open the table exclusively before optimizing the table. If another session has the table open then an
EDBISAMEngineError exception will be raised when this method is called. The error code given when
optimizing a table fails due to the table being open by another session is 11013 and is defined as
DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to optimize the "customer" table using the OptimizeTable method:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 OptimizeTable;
 end;
end;

In addition to using the TDBISAMTable OptimizeTable method for optimizing tables, DBISAM also allows
the use of the OPTIMIZE TABLE SQL statement.

Tracking the Optimize Progress

To take care of tracking the progress of the optimization we have provided the TDBISAMTable and
TDBISAMQuery OnOptimizeProgress events.

Backup Files

By default, DBISAM will make backups of a table's physical files before optimizing the table. You can turn
this off via the second parameter to the OptimizeTable method. Each physical file will have the same root
table name but with a different extension. These extensions are as follows:

Using DBISAM

Page 92

Original Extension Backup Extension

.dat (data) .dbk

.idx (indexes) .ibk

.blb (BLOBs) .bbk

To restore these files in case of a mistake, simply rename them to the proper extension or copy them to
the original file names. Also, these backup files will get overwritten without warning for each optimization
that occurs on the table. If you need the backup files for future use it's best to copy them to a separate
directory where they will be safe.

The file extensions described above are the default extensions and can be changed. Please see the
DBISAM Architecture and Customizing the Engine topics for more information.

Using DBISAM

Page 93

2.21 Verifying and Repairing Tables

Introduction

Verifying and repairing tables is accomplished through the VerifyTable and RepairTable methods of the
TDBISAMTable component. The properties used by the VerifyTable and RepairTable methods include the
DatabaseName, TableName, and Exists properties. Verifying a table will check the table for any corruption
and indicate whether the table is valid or whether it is corrupted. Repairing a table will perform the actual
repair of a table, which is primarily making sure that the table is structurally sound, and indicate whether
the table was valid or whether it was corrupted.

Verifying a Table

To verify a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the VerifyTable method. The VerifyTable method returns True if the table is valid
and False if the table is corrupted. The table component must be closed and the Active property must be
False. It is usually good practice to also examine the Exists property of the TDBISAMTable component first
to make sure that you don't attempt to verify a non-existent table. If you do attempt to verify a non-
existent table an EDBISAMEngineError exception will be raised. The error code given when a table
verification fails due to the table not existing is 11010 and is defined as DBISAM_OSENOENT in the
dbisamcn unit (Delphi) or dbisamcn header file (C++). DBISAM will attempt to open the table exclusively
before verifying the table. If another session has the table open then an EDBISAMEngineError exception
will be raised when this method is called. The error code given when verifying a table fails due to the table
being open by another session is 11013 and is defined as DBISAM_OSEACCES in the dbisamcn unit
(Delphi) or dbisamcn header file (C++).

The following example shows how to verify the "customer" table using the VerifyTable method:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 begin
 if VerifyTable then
 ShowMessage('Table is valid')
 else
 ShowMessage('Table is corrupted');
 end;
 end;
end;

In addition to using the TDBISAMTable VerifyTable method for verifying tables, DBISAM also allows the
use of the VERIFY TABLE SQL statement.

Logging Verification Messages

During the verification process, DBISAM will relay detailed log messages regarding the process start and
stop times and any information it deems pertinent. You can trap these log messages for further display or
analysis via the TDBISAMTable and TDBISAMQuery OnVerifyLog events.

Using DBISAM

Page 94

Tracking the Verification Progress

To take care of tracking the progress of the verification we have provided the TDBISAMTable and
TDBISAMQuery OnVerifyProgress events.

Repairing a Table

To repair a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the RepairTable method. The RepairTable method returns True if the table was
valid and False if the table was corrupted and needed to be repaired. The table component must be closed
and the Active property must be False. It is usually good practice to also examine the Exists property of
the TDBISAMTable component first to make sure that you don't attempt to repair a non-existent table. If
you do attempt to repair a non-existent table an EDBISAMEngineError exception will be raised. The error
code given when a table verification fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). DBISAM will attempt to
open the table exclusively before repairing the table. If another session has the table open then an
EDBISAMEngineError exception will be raised when this method is called. The error code given when
repairing a table fails due to the table being open by another session is 11013 and is defined as
DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to repair the "customer" table using the RepairTable method:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 begin
 if RepairTable then
 ShowMessage('Table was valid')
 else
 ShowMessage('Table was corrupted, check the log '+
 'messages for repair status');
 end;
 end;
end;

In addition to using the TDBISAMTable RepairTable method for repairing tables, DBISAM also allows the
use of the REPAIR TABLE SQL statement.

Logging Repair Messages

During the repair process, DBISAM will relay detailed log messages regarding the process start and stop
times and any information it deems pertinent. You can trap these log messages for further display or
analysis via the TDBISAMTable and TDBISAMQuery OnRepairLog events.

Tracking the Repair Progress

To take care of tracking the progress of the repair we have provided the TDBISAMTable and
TDBISAMQuery OnRepairProgress events.

Using DBISAM

Page 95

Using DBISAM

Page 96

2.22 Opening Tables

Introduction

Opening tables can be accomplished through the Open method of the TDBISAMTable component, or by
setting the Active property to True. Before opening a table, however, you must first specify the location of
the table and the table name itself. The location of the table is specified in the DatabaseName property of
the TDBISAMTable component, and the table name is specified in the TableName property.
Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TDBISAMTable component to the
DatabaseName property of an existing TDBISAMDatabase component within the application. In this case
the database location will come from either the Directory property or the RemoteDatabase property
depending upon whether the TDBISAMDatabase has its SessionName property set to a local or remote
session. Please see the Starting Sessions and Opening Databases topics for more information. The
following example shows how to use the DatabaseName property to point to an existing
TDBISAMDatabase component for the database location:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Directory:='c:\acctdata';
 Connected:=True;
 end;
 with MyTable do
 begin
 DatabaseName:='AccountingDB';
 TableName:='ledger';
 Active:=True;
 end;
end;

Note
The above example does not assign a value to the SessionName property of either the
TDBISAMDatabase or TDBISAMTable component because leaving this property blank for both
components means that they will use the default session that is automatically created by DBISAM
when the engine is initialized. This session is, by default, a local, not remote, session named
"Default" or "". Please see the Starting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TDBISAMDatabase component to
dynamically set the Directory or RemoteDatabase property before the TDBISAMDatabase component
attempts to connect to the database. This is especially important when you have the Connected property
for the TDBISAMDatabase component set to True at design-time during application development and wish
to change the Directory or RemoteDatabase property before the connection is attempted when the
application is run.

Using DBISAM

Page 97

2) The second method is to enter the name of a local directory, if the TDBISAMTable component's
SessionName property is set to a local session, or remote database, if the TDBISAMTable component's
SessionName property is set to a remote session, directly into the DatabaseName property. In this case a
temporary database component will be automatically created, if needed, for the database specified and
automatically destroyed when no longer needed. The following example shows how to use the
DatabaseName property to point directly to the desired database location without referring to a
TDBISAMDatabase component:

begin
 with MySession do
 begin
 SessionName:='Remote';
 SessionType:=stRemote;
 RemoteAddress:='192.168.0.2';
 Active:=True;
 end;
 with MyTable do
 begin
 SessionName:='Remote';
 DatabaseName:='AccountingDB';
 TableName:='ledger';
 Active:=True;
 end;
end;

Note
The above example uses a remote session called "Remote" to connect to a database server at the
IP address "192.168.0.2". Using a remote session in this fashion is not specific to this method. We
could have easily used the same technique with the TDBISAMDatabase component and its
SessionName and RemoteDatabase properties to connect the database in the first example to a
remote session instead of the default local session created by the engine. Also, database names are
defined on a database server using the remote administration facilities in DBISAM. Please see the
Server Administration topic for more information.

Exclusive and ReadOnly Open Modes

In the above two examples we have left the Exclusive and ReadOnly properties of the TDBISAMTable
component at their default value of False. However, you can use these two properties to control how the
table is opened and how that open affects the ability of other sessions and users to open the same table.

When the Exclusive property is set to True, the table specified in the TableName property will be opened
exclusively when the Open method is called or the Active property is set to True. This means that neither
the current session nor any other session or user may open this table again without causing an
EDBISAMEngineError exception. It also means that the table open will fail if anyone else has the table
opened either shared (Exclusive=False) or exclusively (Exclusive=True). The error code given when a
table open fails due to access problems is 11013 and is defined as DBISAM_OSEACCES in the dbisamcn
unit (Delphi) or dbisamcn header file (C++). The following example shows how to trap for such an
exception using a try..except block (Delphi) or try..catch block (C++) and display an appropriate error
message to the user:

begin

Using DBISAM

Page 98

 with MySession do
 begin
 SessionName:='Remote';
 SessionType:=stRemote;
 RemoteAddress:='192.168.0.2';
 Active:=True;
 end;
 with MyDatabase do
 begin
 SessionName:='Remote';
 DatabaseName:='AccountingData';
 RemoteDatabase:='AccountingDB';
 Connected:=True;
 end;
 with MyTable do
 begin
 SessionName:='Remote';
 { We're using a database component for the database
 location, so we use the same value as the DatabaseName
 property for the TDBISAMDatabase component above, not
 the same value as the RemoteDatabase property, which
 is the name of the database as defined on the DBISAM
 database server }
 DatabaseName:='AccountingData';
 TableName:='ledger';
 Exclusive:=True;
 ReadOnly:=False;
 try
 Open;
 except
 on E: Exception do
 begin
 if (E is EDatabaseError) and
 (E is EDBISAMEngineError) then
 begin
 if (EDBISAMEngineError(E).ErrorCode=
 DBISAM_OSEACCES) then
 ShowMessage('Cannot open table '+TableName+
 ', another user has the table '+
 'open already')
 else
 ShowMessage('Unknown or unexpected database '+
 'engine error # '+
 IntToStr(EDBISAMEngineError(E).ErrorCode));
 end
 else
 ShowMessage('Unknown or unexpected error has occurred');
 end;
 end;
 end;
end;

Note
Regardless of whether you are trying to open a table exclusively, you can still receive this exception
if another user or application has opened the table exclusively.

Using DBISAM

Page 99

When the ReadOnly property is set to True, the table specified in the TableName property will be opened
read-only when the Open method is called or the Active property is set to True. This means that the
TDBISAMTable component will not be able to modify the contents of the table until the table is closed and
re-opened with write access (ReadOnly=False). If any of the physical files that make up the table are
marked read-only at the operating system level (such as is the case with CD-ROMs) then DBISAM
automatically detects this condition and sets the ReadOnly property to True. DBISAM is also able to do
extensive read buffering on any table that is marked read-only at the operating system level, so if your
application is only requiring read-only access then it would provide a big performance boost to mark the
tables as read-only at the operating system level. Finally, if security permissions for any of the physical
files that make up the table prevent DBISAM from opening the table with write access, then DBISAM will
also automatically detect this condition and set the ReadOnly property to True.

Table Locale Support

It is possible that a table was created using a specific LocaleID that is not available or installed in the
operating system currently in use. In such a case this will cause an EDBISAMEngineError exception to be
raised when the table is opened. The error code given when a table open fails due to locale support
problems is 15878 and is defined as DBISAM_CANNOTLOADLDDRV in the dbisamcn unit (Delphi) or
dbisamcn header file (C++). The table cannot be opened until the locale support is installed or the table
locale is altered using an operating system with the proper local support.

Opening In-Memory Tables

Opening in-memory tables is the same as opening disk-based tables except for one slight difference. In-
memory tables, regardless of whether they are used in a local or remote session, use a special "Memory"
database name instead of a normal database name. This special database is always present and the
current session always has all rights to the database.

Note
Because in-memory tables in DBISAM act like regular disk-based tables, you must first create the
table using the TDBISAMTable CreateTable method and delete the table using the TDBISAMTable
DeleteTable method to get rid of the table. Also, all sharing and locking restrictions also apply to in-
memory tables just as they do with disk-based tables. Please see the In-Memory Tables topic for
more information.

Opening Encrypted Tables

When a table is marked as encrypted and given a password, its contents are then encrypted using this
password and any subsequent attempts to open the table only succeed if this password (in this order):

1) Is present in the in-memory list of passwords for the current TDBISAMSession component. You can use
the AddPassword, RemovePassword, and RemoveAllPasswords methods to add and remove passwords for
the current session.

2) Is provided on-demand through the OnPassword event of the current session.

3) Is provided on-demand through a visual password dialog that will be displayed if the OnPassword event
is not assigned an event handler.

Using DBISAM

Page 100

Note
When opening a table inside of a TDBISAMEngine scheduled event (OnServerScheduledEvent
event) or server procedure (OnServerProcedure event) a visual password dialog will not be
displayed and you must either use the TDBISAMSession AddPassword method for adding passwords
before trying to open the table or use the OnPassword event to provide passwords for tables as
needed or any attempts to open encrypted tables will fail. Also, any version of DBISAM for Delphi 6
or higher (including C++Builder 6 and higher) requires that you include the DBPWDlg unit to your
uses clause in order to enable the display of a default password dialog. This is done to allow for
DBISAM to be included in applications without linking in the forms support, which can add a lot of
unnecessary overhead and also cause unwanted references to user interface libraries. This is not
required for Delphi 5 or C++Builder 5, but these versions always include forms support.

The TDBISAMTable Encrypted property will indicate whether a given table is encrypted with a password.
This property does not require that the table be open before accessing it. DBISAM will automatically
attempt to open the table, read the encrypted status, and return the value of this property. The Password
property will indicate the password for the table in the same manner provided that the table can be
opened automatically with the correct password for the current session, as indicated above.

Please see the Creating and Altering Tables topics for more information on creating encrypted tables.

Using DBISAM

Page 101

2.23 Closing Tables

Introduction

Closing tables can be accomplished through the Close method of the TDBISAMTable component, or by
setting the Active property to False.

The following example shows how to use the Close method to close a table:

begin
 MyTable.Close;
end;

Note
Once a table is closed you cannot perform any operations on the table until the table is opened
again. The exception to this would be if you are trying to perform an operation that requires the
table to be closed, such as repairing or optimizing a table.

Using DBISAM

Page 102

2.24 Executing SQL Queries

Introduction

Executing SQL queries is accomplished through the ExecSQL and Open methods of the TDBISAMQuery
component, or by setting the Active property to True. Before executing a query you must first specify the
location of the table(s) referenced in the query. The location of the table(s) is specified in the
DatabaseName property of the TDBISAMQuery component. The actual SQL for the query is specified in the
SQL property. Please see the Overview topic in the SQL Reference for more information. You may select
whether you want a live or canned query via the RequestLive property. Please see the Live Queries and
Canned Queries topic for more information.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TDBISAMQuery component to the
DatabaseName property of an existing TDBISAMDatabase component within the application. In this case
the database location will come from either the Directory property or the RemoteDatabase property
depending upon whether the TDBISAMDatabase has its SessionName property set to a local or remote
session. Please see the Starting Sessions and Opening Databases topics for more information. The
following example shows how to use the DatabaseName property to point to an existing
TDBISAMDatabase component for the database location:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Directory:='c:\acctdata';
 Connected:=True;
 end;
 with MyQuery do
 begin
 DatabaseName:='AccountingDB';
 SQL.Clear;
 SQL.Add('SELECT * FROM ledger');
 Active:=True;
 end;
end;

Note
The above example does not assign a value to the SessionName property of either the
TDBISAMDatabase or TDBISAMQuery component because leaving this property blank for both
components means that they will use the default session that is automatically created by DBISAM
when the engine is initialized. This session is, by default, a local, not remote, session named
"Default" or "". Please see the Starting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TDBISAMDatabase component to
dynamically set the Directory or RemoteDatabase property before the TDBISAMDatabase component

Using DBISAM

Page 103

attempts to connect to the database. This is especially important when you have the Connected property
for the TDBISAMDatabase component set to True at design-time during application development and wish
to change the Directory or RemoteDatabase property before the connection is attempted when the
application is run.

2) The second method is to enter the name of a local directory, if the TDBISAMQuery component's
SessionName property is set to a local session, or remote database, if the TDBISAMQuery component's
SessionName property is set to a remote session, directly into the DatabaseName property. In this case a
temporary database component will be automatically created, if needed, for the database specified and
automatically destroyed when no longer needed. The following example shows how to use the
DatabaseName property to point directly to the desired database location without referring to a
TDBISAMDatabase component:

begin
 with MySession do
 begin
 SessionName:='Remote';
 SessionType:=stRemote;
 RemoteAddress:='192.168.0.2';
 Active:=True;
 end;
 with MyQuery do
 begin
 SessionName:='Remote';
 DatabaseName:='AccountingDB';
 SQL.Clear;
 SQL.Add('SELECT * FROM ledger');
 Active:=True;
 end;
end;

Note
The above example uses a remote session called "Remote" to connect to a database server at the
IP address "192.168.0.2". Using a remote session in this fashion is not specific to this method. We
could have easily used the same technique with the TDBISAMDatabase component and its
SessionName and RemoteDatabase properties to connect the database in the first example to a
remote session instead of the default local session created by the engine. Also, database names are
defined on a database server using the remote administration facilities in DBISAM. Please see the
Server Administration topic for more information.

Setting the SQL Property

The SQL statement or statements are specified via the SQL property of the TDBISAMQuery component.
The SQL property is a TStrings object. You may enter one SQL statement or multiple SQL statements by
using the Add method of the SQL property to specify the SQL statements line-by-line. You can also assign
the entire SQL to the Text property of the SQL property. If specifying multiple SQL statements, be sure to
separate each SQL statement with a semicolon (;). Multiple SQL statements in one execution is referred to
as a script. There is no limit to the number of SQL statements that can be specified in the SQL property
aside from memory constraints.

Whenever the SQL property is modified, any event handler assigned to the TDBISAMQuery OnSQLChanged
property will be executed.

Using DBISAM

Page 104

When dynamically building SQL statements that contain literal string constants, you can use the
TDBISAMEngine QuotedSQLStr method to properly format and escape any embedded single quotes or
non-printable characters in the string. For example, suppose you have a TMemo component that contains
the following string:

This is a
test

The string contains an embedded carriage-return and line feed, so it cannot be specified directly without
causing an error in the SQL statement.

To build an SQL INSERT statement that inserts the above string into a memo field, you should use the
following code:

MyDBISAMQuery.SQL.Text:='INSERT INTO MyTable '+
 '(MyMemoField) VALUES ('+
 Engine.QuotedSQLStr(MyMemo.Lines.Text)+')';

Note
If re-using the same TDBISAMQuery component for multiple query executions, please be sure to
call the SQL property's Clear method to clear the SQL from the previous query before calling the
Add method to add more SQL statement lines.

Preparing the Query

By default DBISAM will automatically prepare a query before it is executed. However, you may also
manually prepare a query using the TDBISAMQuery Prepare method. Once a query has been prepared,
the Prepared property will be True. Preparing a query parses the SQL, opens all referenced tables, and
prepares all internal structures for the execution of the query. You should only need to manually prepare a
query when executing a parameterized query. Please see the Parameterized Queries topic for more
information.

Executing the Query

To execute the query you should call the TDBISAMQuery ExecSQL or Open methods, or you should set the
Active property to True. Setting the Active property to True is the same as calling the Open method. The
difference between using the ExecSQL and Open methods is as follows:

Method Usage

Using DBISAM

Page 105

ExecSQL Use this method when the SQL statement or statements
specified in the SQL property may or may not return a result
set. The ExecSQL method can handle both situations.

Open Use this method only when you know that the SQL statement
or statements specified in the SQL property will return a result
set. Using the Open method with an SQL statement that does
not return a result set will result in an EDatabaseError
exception being raised with an error message "Error creating
table handle".

Note
The SQL SELECT statement is the only statement that returns a result set. All other types of SQL
statements do not.

The following example shows how to use the ExecSQL method to execute an UPDATE SQL statement:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Directory:='c:\acctdata';
 Connected:=True;
 end;
 with MyQuery do
 begin
 DatabaseName:='AccountingDB';
 SQL.Clear;
 SQL.Add('UPDATE ledger SET AccountNo=100');
 SQL.Add('WHERE AccountNo=300');
 ExecSQL;
 end;
end;

Retrieving Query Information

You can retrieve information about a query both after the query has been prepared and after the query
has been executed. The following properties can be interrogated after a query has been prepared or
executed:

Property Description

Using DBISAM

Page 106

SQLStatementType Indicates the type of SQL statement currently ready for
execution. If the TDBISAMQuery SQL property contains
multiple SQL statements (a script), then this property
represents the type of the current SQL statement about to be
executed. You can assign an event handler to the
TDBISAMQuery BeforeExecute event to interrogate the
SQLStatementType property before each SQL statement is
executed in the script.

TableName Indicates the target table of the SQL statement currently
ready for execution. If the TDBISAMQuery SQL property
contains multiple SQL statements (a script), then this property
represents the target table of the current SQL statement
about to be executed. You can assign an event handler to the
TDBISAMQuery BeforeExecute event to interrogate the
TableName property before each SQL statement is executed
in the script.

The following properties can only be interrogated after a query has been executed:

Property Description

Plan Contains information about how the current query was
executed, including any optimizations performed by DBISAM.
This information is very useful in determining how to optimize
a query further or to simply figure out what DBISAM is doing
behind the scenes. If there is more than one SQL statement
specified in the TDBISAMQuery SQL property (a script) then
this property indicates the query plan for the last SQL
statement executed. You can assign an event handler to the
TDBISAMQuery AfterExecute event to interrogate the Plan
property after each SQL statement is executed in the script.
The Plan property is cleared before each new SQL statement
is executed.

Note
Query plans are only generated for SQL SELECT,
INSERT, UPDATE, or DELETE statements.

RowsAffected Indicates the number of rows affected by the current query. If
there is more than one SQL statement specified in the
TDBISAMQuery SQL property (a script) then this property
indicates the cumulative number of rows affected for all SQL
statements executed so far. You can assign an event handler
to the TDBISAMQuery BeforeExecute and/or AfterExecute
events to interrogate the RowsAffected property before
and/or after each SQL statement is executed in the script.

ExecutionTime Indicates the amount of execution time in seconds consumed
by the current query. If there is more than one SQL statement
specified in the TDBISAMQuery SQL property (a script) then
this property indicates the cumulative execution time for all
SQL statements executed so far. You can assign an event
handler to the TDBISAMQuery BeforeExecute and/or

Using DBISAM

Page 107

AfterExecute events to interrogate the ExecutionTime
property before and/or after each SQL statement is executed
in the script.

The following example shows how to use the ExecSQL method to execute an UPDATE SQL statement and
report the number of rows affected as well as how long it took to execute the statement:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Directory:='c:\acctdata';
 Connected:=True;
 end;
 with MyQuery do
 begin
 DatabaseName:='AccountingDB';
 SQL.Clear;
 SQL.Add('UPDATE ledger SET AccountNo=100');
 SQL.Add('WHERE AccountNo=300');
 ExecSQL;
 ShowMessage(IntToStr(RowsAffected)+
 ' rows updated in '+
 FloatToStr(ExecutionTime)+' seconds');
 end;
end;

Trapping for Errors

To take care of trapping for errors during the preparation or execution of queries we have provided the
OnQueryError event. Whenever an exception is encountered by DBISAM during the preparation or
execution of a query, the exception is passed to the event handler assigned to this event. If there is no
event handler assigned to this event, DBISAM will go ahead and raise the exception. You may set the
Action parameter of this event to aaAbort in your event handler to indicate to DBISAM that you want to
abort the preparation or execution of the entire query, not just the current SQL statement being prepared
or executed. You may set the Action parameter of this event to aaContinue to indicate to DBISAM that you
want to skip the current SQL statement and continue on with the next SQL statement, if present. This is
especially useful for scripts because it gives you the ability to continue on with a script even though one or
more of the SQL statements in the script may have encountered an error. Finally, you may set the Action
parameter of this event to aaRetry to indicate to DBISAM that you want to retry the current SQL
statement. This is especially useful in situations where the application encounters a record lock error
during an SQL UPDATE or DELETE statement.

Note
If you use the START TRANSACTION statement within an SQL script, and the script encounters an
error in one of the subsequent SQL statements before reaching a COMMIT or ROLLBACK statement,
the transaction will be implicitly rolled back if:

1) An OnQueryError event handler is not assigned to the TDBISAMQuery component being used

OR

Using DBISAM

Page 108

2) The OnQueryError event handler sets the Action parameter to aaAbort, indicating that the script should
immediately terminate.

Tracking the Progress of a Query

To take care of tracking the progress of a query execution we have provided the TDBISAMQuery
OnQueryrogress event. You may set the Abort parameter of this event to True in your event handler to
indicate to DBISAM that you wish to abort the execution of the current SQL statement.

Note
The percentage of progress reported via the OnQueryProgress event is restarted for every SQL
statement specified in the TDBISAMQuery SQL property, so setting the Abort parameter to True will
only abort the current SQL statement and not the entire script. Also, the OnQueryProgress event will
not be triggered for a live query result. Please see the Live Queries and Canned Queries topic for
more information.

SQL-Specific Events

There are certain events that will be triggered when specific SQL statements are executed using the
TDBISAMQuery component. These are as follows:

SQL Statement Events

SELECT OnQueryProgress

INSERT None

UPDATE None

DELETE None

CREATE TABLE None

ALTER TABLE OnAlterProgress
OnDataLost

EMPTY TABLE None

OPTIMIZE TABLE OnOptimizeProgress

EXPORT TABLE OnExportProgress

IMPORT TABLE OnImportProgress

VERIFY TABLE OnVerifyProgress
OnVerifyLog

REPAIR TABLE OnRepairProgress
OnRepairLog

UPGRADE TABLE OnUpgradeProgress
OnUpgradeLog

DROP TABLE None

RENAME TABLE None

Using DBISAM

Page 109

CREATE INDEX OnIndexProgress
OnDataLost

DROP INDEX None

START TRANSACTION None

COMMIT None

ROLLBACK None

Using DBISAM

Page 110

2.25 Live Queries and Canned Queries

Introduction

DBISAM generates two types of query result sets depending upon the makeup of a given SELECT SQL
statement:

Type Description

Live The result set is editable and all changes are reflected in the
source table.

Canned The result set is editable but changes are not reflected in the
source table(s).

The following rules determine whether a query result set will be live or canned. Please see the Executing
SQL Queries for more information on executing queries.

Single-table queries

Queries that retrieve data from a single table will generate a live result set provided that:

1) The TDBISAMQuery RequestLive property is set to True.

2) There is no DISTINCT keyword in the SELECT SQL statement.

3) Everything in the SELECT clause is a simple column reference or a calculated column, and no
aggregation or calculated BLOB columns are allowed. Calculated columns remain read-only in the live
result set.

4) There is no GROUP BY clause.

5) There is no ORDER BY clause, or there is an ORDER BY clause that minimally matches an existing index
in the source table in terms of fields (from left to right) and case-sensitivity.

6) There is no TOP N clause.

7) There are no sub-queries in the WHERE clause.

Multi-table queries

All queries that join two or more tables or union two or more SELECT statements will automatically
produce a canned result set.

Calculated Columns

For live query result sets with calculated fields, additional internal information identifies a result column as
both read-only and calculated. Every update of any column in a given row causes recalculation of any
dependent calculated columns in that same row.

Identifying a Live Result Set

Using DBISAM

Page 111

You may use the TDBISAMQuery ResultIsLive property to determine if the result set of a given SELECT
SQL statement is live or canned after the query has been executed:

begin
with MyQuery do
 begin
 SQL.Clear;
 SQL.Add('SELECT * FROM customer INNER JOIN');
 SQL.Add('INNER JOIN orders ON customer.ID=orders.CustID');
 SQL.Add('WHERE customer.ID=1000');
 Open;
 { In this case the result set will be canned due
 to the join condition }
 if ResultIsLive then
 ShowMessage('The result set is live')
 else
 ShowMessage('The result set is canned');
 end;
end;

Temporary Files

If a SELECT SQL statement is generating a canned result set, a temporary table will be created in the
directory specified by the TDBISAMSession PrivateDir property for local sessions. If the query is being
executed within a remote session, the location of the temporary table for the canned result set will be
determined by the database server's configuration setting for the location of temporary tables, which can
be modified remotely via the TDBISAMSession ModifyRemoteConfig method or locally on the server via the
TDBISAMEngine ModifyServerConfig method. The TDBISAMQuery SessionName property determines what
session is being used for the execution of the SQL statement. Please see the DBISAM Architecture topic for
more information.

Using DBISAM

Page 112

2.26 Parameterized Queries

Introduction

Parameters allow the same SQL statement to be used with different data values, and are placeholders for
those data values. At runtime, the application prepares the query with the parameters and fills the
parameter with a value before the query is executed. When the query is executed, the data values passed
into the parameters are substituted for the parameter placeholder and the SQL statement is applied.

Specifying Parameters in SQL

Parameter markers can be used in SQL SELECT, INSERT, UPDATE, and DELETE statements in place of
constants. Parameters are identified by a preceding colon (:). For example:

SELECT Last_Name, First_Name
FROM Customer
WHERE (Last_Name=:LName) AND (First_Name=:FName)

Parameters are used to pass data values to be used in WHERE clause comparisons and as update values in
updating SQL statements such as UPDATE or INSERT. Parameters cannot be used to pass values for
database, table, column, or index names. The following example uses the TotalParam parameter to pass
the data value that needs to be assigned to the ItemsTotal column for the row with the OrderNo column
equal to 1014:

UPDATE Orders
SET ItemsTotal = :TotalParam
WHERE (OrderNo = 1014)

Populating Parameters with the TDBISAMQuery Component

You can use the TDBISAMQuery Params property to populate the parameters in an SQL statement with
data values. You may use two different methods of populating parameters using the Params property:

By referencing each parameter by its index position in the available list of parameters
By referencing each parameter by name using the ParamByName method

The following is an example of using the index positions of the parameters to populate the data values for
an INSERT SQL statement:

begin
 with MyQuery do
 begin
 SQL.Clear;
 SQL.Add('INSERT INTO Country (Name, Capital, Population)');
 SQL.Add('VALUES (:Name, :Capital, :Population)');
 Params[0].AsString := 'Lichtenstein';
 Params[1].AsString := 'Vaduz';
 Params[2].AsInteger := 420000;

Using DBISAM

Page 113

 ExecSQL;
 end;
end;

The next block of code is an example of using the TDBISAMQuery ParamByName method in order to
populate the data values for a SELECT SQL statement:

begin
 with MyQuery do
 begin
 SQL.Clear;
 SQL.Add('SELECT *');
 SQL.Add('FROM Orders');
 SQL.Add('WHERE CustID = :CustID');
 ParamByName('CustID').AsFloat:=1221;
 Open;
 end;
end;

Parameters and Multiple SQL Statements

If you have specified multiple SQL statements, or a script, in the SQL property and wish to execute these
multiple SQL statements with different parameters, you can assign an event handler to the TDBISAMQuery
OnGetParams event. The OnGetParams event is fired once before the execution of each SQL statement
specified in the SQL property. In the event handler you would specify the parameters in the same way as
you would for a single SQL statement described above. You can also use the SQLStatementType property
to find out the type of SQL statement currently being executed and the Text property to examine the
current SQL statement being executed.

Preparing Parameterized Queries

It is usually recommended that you manually prepare parameterized queries that you intend to execute
many times with different parameter values. This can result in significant performance improvements since
the process of preparing a query can be time-consuming. The following is an example of inserting 3
records with different values using a manually-prepared, parameterized query:

begin
 with MyQuery do
 begin
 SQL.Clear;
 SQL.Add('INSERT INTO Customer (CustNo, Company');
 SQL.Add('VALUES (:CustNo, :Company)');
 { Manually prepare the query }
 Prepare;
 ParamByName('CustNo').AsInteger:=1000;
 ParamByName('Company').AsString:='Chocolates, Inc.';
 ExecSQL;
 ParamByName('CustNo').AsInteger:=2000;
 ParamByName('Company').AsString:='Flowers, Inc.';
 ExecSQL;
 ParamByName('CustNo').AsInteger:=3000;
 ParamByName('Company').AsString:='Candies, Inc.';

Using DBISAM

Page 114

 ExecSQL;
 end;
end;

Note
Manually preparing a script with multiple SQL statements does not result in any performance benefit
since DBISAM still only prepares the first SQL statement in the script and must prepare each
subsequent SQL statement before it is executed.

Using DBISAM

Page 115

2.27 Navigating Tables and Query Result Sets

Introduction

Navigation of tables and query result sets is accomplished through several methods of the TDBISAMTable
and TDBISAMQuery components. The basic navigational methods include the First, Next, Prior, Last, and
MoveBy methods. The Bof and Eof properties indicate whether the record pointer is at the beginning or at
the end of the table or query result set, respectively. These methods and properties are used together to
navigate a table or query result set.

Moving to the First or Last Record

The First method moves to the first record in the table or query result set based upon the current index
order. The Last method moves to the last record in the table or query result set based upon the current
index order. The following example shows how to move to the first and last records in a table:

begin
 with MyTable do
 begin
 First;
 { do something to the first record }
 Last;
 { do something to the last record }
 end;
end;

Skipping Records

The Next method moves to the next record in the table or query result set based upon the current index
order. If the current record pointer is at the last record in the table or query result set, then calling the
Next method will set the Eof property to True and the record pointer will stay on the last record. The Prior
method moves to the previous record in the table or query result set based upon the current index order.
If the current record pointer is at the first record in the table or query result set, then calling the Prior
method will set the Bof property to True and the record pointer will stay on the first record. The following
example shows how to use the First and Next methods along with the Eof property to loop through an
entire table:

begin
 with MyTable do
 begin
 First;
 while not Eof do
 Next;
 end;
end;

The following example shows how to use the Last and Prior methods along with the Bof property to loop
backwards through an entire table:

Using DBISAM

Page 116

begin
 with MyTable do
 begin
 Last;
 while not Bof do
 Prior;
 end;
end;

Skipping Multiple Records

The MoveBy method accepts a positive or negative integer that represents the number of records to move
by within the table or query result set. A positive integer indicates that the movement will be forward
while a negative integer indicates that the movement will be backward. The return value of the MoveBy
method is the number of records actually visited during the execution of the MoveBy method. If the record
pointer hits the beginning of file or hits the end of file then the return value of the MoveBy method will be
less than the desired number of records. The following example shows how to use the MoveBy method to
loop through an entire table 10 records at a time:

begin
 with MyTable do
 begin
 First;
 while not Eof do
 MoveBy(10);
 end;
end;

Using DBISAM

Page 117

2.28 Updating Tables and Query Result Sets

Introduction

Updating of tables and query result sets is accomplished through several methods of the TDBISAMTable
and TDBISAMQuery components. The basic update methods include the Append, Insert, Edit, Delete,
FieldByName, Post, and Cancel methods. The State property indicates whether the current table or query
result set is in Append/Insert mode (dsInsert), Edit mode (dsEdit), or Browse mode (dsBrowse). These
methods and properties are used together in order to update a table or query result set. Depending upon
your needs, you may require additional methods to update BLOB fields within a given table or query result
set, and information on how to use these methods are discussed at the end of this topic.

Note
For the rest of this topic, a table or query result set will be referred to as a dataset to reduce the
amount of references to both. Also, it is important to note here that a query result set can be either
"live" or "canned", which affects whether an update to a query result set appears in the actual table
being queried or whether it is limited to the result set. Please see the Live Queries and Canned
Queries topic for more information.

Adding a New Record

The Append and Insert methods allow you to begin the process of adding a record to the dataset. The
only difference between these two methods is the Insert method will insert a blank record buffer at the
current position in the dataset, and the Append method will add a blank record buffer at the end of the
dataset. This record buffer does not exist in the physical datset until the record buffer is posted to the
actual dataset using the Post method. If the Cancel method is called, then the record buffer and any
updates to it will be discarded. Also, once the record buffer is posted using the Post method it will be
positioned in the dataset according to the active index order, not according to where it was positioned due
to the Insert or Append methods.

The FieldByName method can be used to reference a specific field for updating and accepts one
parameter, the name of the field to reference. This method returns a TField object if the field name exists
or an error if the field name does not exists. This TField object can be used to update the data for that
field in the record buffer via properties such as
AsString, AsInteger, etc.

The following example shows how to use the Append method to add a record to a table with the following
structure:

Field # Name DataType Size
--
1 CustomerID ftString 10
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30
7 LastSaleDate ftDate 0
8 Notes ftMemo 0

Using DBISAM

Page 118

Index Name Fields In Index Options
--
(none) CustomerID ixPrimary

begin
 with MyDBISAMDataSet do
 begin
 Append; { State property will now reflect dsInsert }
 FieldByName('CustomerID').AsString:='100';
 FieldByName('CustomerName').AsString:='The Hardware Store';
 FieldByName('ContactName').AsString:='Bob Smith';
 FieldByName('Phone').AsString:='5551212';
 FieldByName('Fax').AsString:='5551616';
 FieldByName('Email').AsString:='bobs@thehardwarestore.com';
 Post; { State property will now return to dsBrowse }
 end;
end;

If the record that is being posted violates a min/max or required constraint for the dataset then an
EDBISAMEngineError exception will be raised with the appropriate error code. This will also occur if the
record being posted will cause a key violation in either the primary index or a secondary index defined as
unique. The error codes for a min/max constraint exception are 9730 (min) and 9731 (max) and are
defined as DBISAM_MINVALERR and DBISAM_MAXVALERR in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). The error code for a required constraint exception is 9732 and is defined as
DBISAM_REQDERR in the dbisamcn unit (Delphi) or dbisamcn header file (C++). The error code for a key
violation exception is 9729 and is defined as DBISAM_KEYVIOL in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). Please see the Exception Handling and Errors and Appendix B - Error Codes and
Messages topics for general information on exception handling in DBISAM.

You may use the OnPostError event to trap for any of these error conditions and display a message to the
user. You can also use a try..except block to do the same, and the approach is very similar. The following
shows how to use an OnPostError event handler to trap for a key violation error:

procedure TMyForm.MyTablePostError(DataSet: TDataSet;
 E: EDatabaseError; var Action: TDataAction);
begin
 Action:=daAbort;
 if (E is EDBISAMEngineError) then
 begin
 if (EDBISAMEngineError(E).ErrorCode=DBISAM_KEYVIOL) then
 ShowMessage('A record with the same key value(s) '+
 'already exists, please change the '+
 'record to make the value(s) unique '+
 'and re-post the record')
 else
 ShowMessage(E.Message);
 end
 else
 ShowMessage(E.Message);
end;

Using DBISAM

Page 119

Note
You will notice that the OnPostError event handler uses the more general EDatabaseError exception
object for it's exception (E) parameter. Because of this, you must always first determine whether
the exception object being passed is actually an EDBISAMEngineError before casting the exception
object and trying to access specific properties such as the ErrorCode property. The
EDBISAMEngineError object descends from the EDatabaseError object.

The following shows how to use a try..except block to trap for a key violation error:

begin
 try
 with MyDBISAMDataSet do
 begin
 Append; { State property will now reflect dsInsert }
 FieldByName('CustomerID').AsString:='100';
 FieldByName('CustomerName').AsString:='The Hardware Store';
 FieldByName('ContactName').AsString:='Bob Smith';
 FieldByName('Phone').AsString:='5551212';
 FieldByName('Fax').AsString:='5551616';
 FieldByName('Email').AsString:='bobs@thehardwarestore.com';
 Post; { State property will now return to dsBrowse }
 end;
 except
 on E: Exception do
 begin
 if (E is EDBISAMEngineError) then
 begin
 if (EDBISAMEngineError(E).ErrorCode=DBISAM_KEYVIOL) then
 ShowMessage('A record with the same key value(s) '+
 'already exists, please change the '+
 'record to make the value(s) unique '+
 'and re-post the record')
 else
 ShowMessage(E.Message);
 end
 else
 ShowMessage(E.Message);
 end;
 end;
end;

Editing an Existing Record

The Edit method allows you to begin the process of editing an existing record in the dataset. DBISAM
offers the choice of a pessimistic or optimistic locking protocol, which is configurable via the LockProtocol
property for the TDBISAMSession assigned to the current dataset (see the SessionName property for more
information on setting the session for a dataset). With the pessimistic locking protocol a record lock is
obtained when the Edit method is called. As long as the record is being edited DBISAM will hold a record
lock on that record, and will not release this lock until either the Post or Cancel methods is called. With the
optimistic locking protocol a record lock is not obtained until the Post method is called, and never obtained
if the Cancel method is called. This means that another user or session is capable of editing the record and
posting the changes to the record before the Post method is called, thus potentially causing an
EDBISAMEngineError exception to be triggered with the error code 8708, which indicates that the record

Using DBISAM

Page 120

has been changed since the Edit method was called and cannot be overwritten. In such a case you must
discard the edited record by calling the Cancel method and begin again with a fresh copy of the record
using the Edit method.

Note
Any updates to the record are done via a record buffer and do not actually exist in the actual
dataset until the record is posted using the Post method. If the Cancel method is called, then any
updates to the record will be discarded. Also, once the record is posted using the Post method it will
be positioned in the dataset according to the active index order based upon any changes made to
the record. What this means is that if any field that is part of the current active index is changed,
then it is possible for the record to re-position itself in a completely different place in the dataset
after the Post method is called.

The following example shows how to use the Edit method to update a record in a dataset:

begin
 with MyDBISAMDataSet do
 begin
 Edit; { State property will now reflect dsEdit }
 { Set LastSaleDate field to today's date }
 FieldByName('LastSaleDate').AsDateTime:=Date;
 Post; { State property will now return to dsBrowse }
 end;
end;

If the record that you are attempting to edit (or post, if using the optimistic locking protocol) is already
locked by another user or session, then an EDBISAMEngineError exception will be triggered with the
appropriate error code. The error code for a record lock error is 10258 and is defined as
DBISAM_RECLOCKFAILED in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

It is also possible that the record that you are attempting to edit (or post) has been changed or deleted by
another user or session since it was last cached by DBISAM. If this is the case then a DBISAM exception
will be triggered with the error code 8708 which is defined as DBISAM_KEYORRECDELETED in the
dbisamcn unit (Delphi) or dbisamcn header file (C++).

You may use the OnEditError (or OnPostError, depending upon the locking protocol) event to trap for
these error conditions and display a message to the user. You can also use a try..except block to do the
same, and the approach is very similar. The following shows how to use an OnEditError event handler to
trap for several errors:

procedure TMyForm.MyTableEditError(DataSet: TDataSet;
 E: EDatabaseError; var Action: TDataAction);
begin
 Action:=daAbort;
 if (E is EDBISAMEngineError) then
 begin
 if (EDBISAMEngineError(E).ErrorCode=DBISAM_RECLOCKFAILED) then
 begin
 if MessageDlg('The record you are trying to edit '+
 'is currently locked, do you want to '+
 'try to edit this record again?',

Using DBISAM

Page 121

 mtWarning,[mbYes,mbNo],0)=mrYes then
 Action:=daRetry;
 end
 else if (EDBISAMEngineError(E).ErrorCode=DBISAM_KEYORRECDELETED) then
 begin
 MessageDlg('The record you are trying to edit '+
 'has been modified since it was last '+
 'retrieved, the record will now be '+
 'refreshed',mtWarning,[mbOk],0);
 DataSet.Refresh;
 Action:=daRetry;
 end
 else
 MessageDlg(E.Message,mtError,[mbOK],0);
 end
 else
 MessageDlg(E.Message,mtError,[mbOK],0);
end;

The following shows how to use a try..except block to trap for several errors:

begin
 while True do
 begin
 try
 with MyDBISAMDataSet do
 begin
 Edit; { State property will now reflect dsEdit }
 { Set LastSaleDate field to today's date }
 FieldByName('LastSaleDate').AsDateTime:=Date;
 Post; { State property will now return to dsBrowse }
 end;
 Break; { Break out of retry loop }
 except
 on E: Exception do
 begin
 if (E is EDBISAMEngineError) then
 begin
 if (EDBISAMEngineError(E).ErrorCode=
 DBISAM_RECLOCKFAILED) then
 begin
 if MessageDlg('The record you are trying '+
 'to edit is currently locked, '+
 'do you want to try to edit '+
 'this record again?,mtWarning,
 [mbYes,mbNo],0)=mrYes then
 Continue;
 end
 else if (EDBISAMEngineError(E).ErrorCode=
 DBISAM_KEYORRECDELETED) then
 begin
 MessageDlg('The record you are trying '+
 'to edit has been modified '+
 'since it was last retrieved, '+
 'the record will now be '+
 'refreshed',mtWarning,[mbOk],0);
 MyTable.Refresh;

Using DBISAM

Page 122

 Continue;
 end
 else
 begin
 MessageDlg(E.Message,mtError,[mbOK],0);
 Break;
 end;
 end
 else
 begin
 MessageDlg(E.Message,mtError,[mbOK],0);
 Break;
 end;
 end;
 end;
 end;
end;

Deleting an Existing Record

The Delete method allows you to delete an existing record in a dataset. Unlike the Append, Insert, and
Edit methods, the Delete method is a one-step process and does not require a call to the Post method to
complete its operation. A record lock is obtained when the Delete method is called and is released as soon
as the method completes. After the record is deleted the current position in the dataset will be the next
closest record based upon the active index order.

The following example shows how to use the Delete method to delete a record in a dataset:

begin
 with MyDBISAMDataSet do
 Delete;
end;

If the record that you are attempting to delete is already locked by another user or session, then an
EDBISAMEngineError exception will be triggered with the appropriate error code. The error code for a
record lock error is 10258 and is defined as DBISAM_RECLOCKFAILED in the dbisamcn unit (Delphi) or
dbisamcn header file (C++).

It is also possible that the record that you are attempting to delete has been changed or deleted by
another user since it was last cached by DBISAM. If this is the case then an EDBISAMEngineError
exception will be triggered with the error code 8708 which is defined as DBISAM_KEYORRECDELETED in
the dbisamcn unit (Delphi) or dbisamcn header file (C++).

You may use the OnDeleteError event to trap for these error conditions and display a message to the user.
You can also use a try..except block to do the same, and the approach is very similar. The code for an
handling Delete errors is the same as that of an Edit, so please refer to the above code samples for
handling Edit errors.

Cancelling an Insert/Append or Edit Operation

You may cancel an existing Insert/Append or Edit operation by calling the Cancel method. Doing this will
discard any updates to an existing record if you are editing, or will completely discard a new record if you
are inserting or appending. The following example shows how to cancel an edit operation on an existing

Using DBISAM

Page 123

record:

begin
 with MyDBISAMDataSet do
 begin
 Edit; { State property will now reflect dsEdit }
 { Set LastSaleDate field to today's date }
 FieldByName('LastSaleDate').AsDateTime:=Date;
 Cancel; { State property will now return to dsBrowse }
 end;
end;

Additional Events

There are several additional events that can be used to hook into the updating process for a dataset. They
include the BeforeInsert, AfterInsert, OnNewRecord, BeforeEdit, AfterEdit, BeforeDelete, AfterDelete,
BeforePost, AfterPost, BeforeCancel, and AfterCancel events. All of these events are fairly self-explanatory,
however the OnNewRecord is special in that it can be used to assign values to fields in a newly-inserted or
appended record without having the dataset mark the record as modified. If a record has not been
modified in any manner, then the dataset will not perform an implicit Post operation when navigating off
of the record. Instead, the Cancel method will be called and the record discarded.

Updating BLOB Fields

Most of the time you can simply use the general TField AsString and AsVariant properties to update a
BLOB field in the same fashion as you would any other field. Both of these properties allow very large
strings or binary data to be stored in a BLOB field. However, in certain cases you may want to take
advantage of additional methods and functionality that are available through the TBlobField object that
descends from TField or the TDBISAMBlobStream object that provides a stream interface to a BLOB field.
The most interesting methods of the TBlobField object are the LoadFromFile, LoadFromStream,
SaveToFile, and SaveToStream methods. These methods allow you to very easily load and save the data
to and from BLOB fields.

Note
You must make sure that the dataset's State property is either dsInsert or dsEdit before using the
LoadFromFile or LoadFromStream methods.

The following is an example of using the LoadFromFile method of the TBlobField object to load the
contents of a text file into a memo field:

begin
 with MyDBISAMDataSet do
 begin
 Edit; { State property will now reflect dsEdit }
 { Load a text file from disk }
 TBlobField(FieldByName('Notes')).LoadFromFile('c:\temp\test.txt');
 Post; { State property will now return to dsBrowse }
 end;
end;

Using DBISAM

Page 124

Note
You'll notice that we must cast the result of the FieldByName method, which returns a TField object
reference, to a TBlobField type in order to allow us to call the LoadFromFile method. This is okay
since a memo field is a TMemoField object, which descends directly from TBlobField, which itself
descends directly from TField.

In addition to these very useful methods, you can also directly manipulate a BLOB field like any other
stream by using the TDBISAMBlobStream object. The following is an example of using a
TDBISAMBlobStream component along with the TDBISAMTable or TDBISAMQuery SaveToStream method
for storing DBISAM tables themselves in the BLOB field of another table:

var
 MyBlobStream: TDBISAMBlobStream;
begin
 { First create the BLOB stream - be sure to make sure that
 we put the table into dsEdit or dsInsert mode first since
 we're writing to the BLOB stream }
 MyFirstDBISAMDataSet.Append;
 try
 MyBlobStream:=TDBISAMBlobStream.Create(TBlobField(
 MyFirstDBISAMDataSet.FieldByName('TableStream')),bmWrite);
 try
 { Now save the table to the BLOB stream }
 MySecondDBISAMDataSet.SaveToStream(MyBlobStream);
 finally
 { Be sure to free the BLOB stream *before* the Post }
 MyBlobStream.Free;
 end;
 MyFirstDBISAMDataSet.Post;
 except
 { Cancel on an exception }
 MyFirstDBISAMDataSet.Cancel;
 end;
end;

Note
For proper results when updating a BLOB field using a TDBISAMBlobStream object, you must create
the TDBISAMBlobStream object after calling the Append/Insert or Edit methods for the dataset
containing the BLOB field. Also, you must free the TDBISAMBlobStream object before calling the
Post method to post the changes to the dataset. Finally, be sure to use the proper open mode when
creating a TDBISAMBlobStream object for updating (either bmReadWrite or bmWrite).

Using DBISAM

Page 125

2.29 Searching and Sorting Tables and Query Result Sets

Introduction

Searching and sorting tables and query result sets is accomplished through several methods of the
TDBISAMTable and TDBISAMQuery components. The basic searching methods for tables (not query result
sets) include the FindKey, FindNearest, SetKey, EditKey, GotoKey, and GotoNearest methods. The
KeyFieldCount property is used with the SetKey and EditKey methods to control searching using the
GotoKey and GotoNearest methods. The extended searching methods that do not necessarily rely upon an
index and can be used with both tables and query result sets include the Locate, FindFirst, FindLast,
FindNext, and FindPrior methods. The basic sorting methods for tables include the IndexName and
IndexFieldNames properties.

Changing the Sort Order

You may use the IndexName and IndexFieldNames properties to set the current index order, and in effect,
sort the current table based upon the index definition for the selected index order.

The IndexName property is used to set the name of the current index. For primary indexes, this property
should always be set to blank (""). For secondary indexes, this property should be set to the name of the
secondary index that you wish to use as the current index order. The following example shows how you
would set the current index order for a table to a secondary index called "CustomerName":

begin
 with MyTable do
 begin
 IndexName:='CustomerName';
 { do something }
 end;
end;

Note
Changing the index order can cause the current record pointer to move to a different position in the
table (but not necessarily move off of the current record unless the record has been changed or
deleted by another session). Call the First method after setting the IndexName property if you want
to have the record pointer set to the beginning of the table based upon the next index order.
Changing the index order will also remove any ranges that are active. Since the record numbers in
DBISAM are based upon the index order the record number may also change.

If you attempt to set the IndexName property to a non-existent index an EDBISAMEngineError exception
will be raised with the appropriate error code. The error code given for an invalid index name is 10022 and
is defined as DBISAM_INVALIDINDEXNAME in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The IndexFieldNames property is used to set the current index order by specifying the field names of the
desired index instead of the index name. Multiple field names should be separated with a semicolon. Using
the IndexFieldNames property is desirable in cases where you are trying to set the current index order
based upon a known set of fields and do not have any knowledge of the index names available. The
IndexFieldNames property will attempt to match the given number of fields with the same number of
beginning fields in any of the available primary or secondary indexes. The following example shows how

Using DBISAM

Page 126

you would set the current index order to a secondary index called "CustomerName" that consists of the
CustomerName field and the CustomerNo field:

begin
 with MyTable do
 begin
 IndexFieldNames:='CustomerName;CustomerNo';
 { do something }
 end;
end;

Note
Setting the IndexFieldNames will not work on indexes that are marked as descending or case-
insensitive, so you must use the IndexName property instead. Also, if DBISAM cannot find any
indexes that match the desired field names an EDatabaseError exception will be raised instead of an
EDBISAMEngineError exception. If you are using this method of setting the current index order you
should also be prepared to trap for this exception and deal with it appropriately.

Searching Using an Index

The FindKey method accepts an array of search values to use in order to perform an exact search for a
given record using the active index. The return value of the FindKey method indicates whether the search
was successful. If the search was successful then the record pointer is moved to the desired record,
whereas if the search was not successful then the record pointer stays at its current position. The search
values must correspond to the fields that make up the active index or the search will not work properly.
However, FindKey does not require that you fill in all of the field values for all of the fields in the active
index, rather only that you fill in the field values from left to right. The following example shows how to
perform a search on the primary index comprised of the CustomerNo field:

begin
 with MyTable do
 begin
 { Set to the primary index }
 IndexName:='';
 { Search for customer 100 }
 if FindKey([100]) then
 { Record was found, now do something }
 else
 ShowMessage('Record was not found');
 end;
end;

The FindNearest method accepts an array of search values to use in order to perform a near search for a
given record using the active index. If the search was successful then the record pointer is moved to the
desired record, whereas if the search was not successful then the record pointer is moved to the next
record that most closely matches the current search values. If there are no records that are greater than
the search values then the record pointer will be positioned at the end of the table. The search values
must correspond to the fields that make up the active index or the search will not work properly. However,
FindNearest does not require that you fill in all of the field values for all of the fields in the active index,
rather only that you fill in the field values from left to right. The following example shows how to perform

Using DBISAM

Page 127

a near search on the primary index comprised of the CustomerNo field:

begin
 with MyTable do
 begin
 { Set to the primary index }
 IndexName:='';
 { Search for customer 100 or closest }
 FindNearest([100]);
 end;
end;

The SetKey and EditKey methods are used in conjunction with the GotoKey and GotoNearest methods to
perform searching using field assignments instead of an array of field values. The SetKey method begins
the search process by putting the TDBISAMTable component into the dsSetKey state and clearing all field
values. You can examine the state of the table using the State property. The application must then assign
values to the desired fields and call the GotoKey or GotoNearest method to perform the actual search. The
GotoNearest method may be used if you wish to perform a near search instead of an exact search. The
EditKey method extends or continues the current search process by putting the TDBISAMTable component
into the dsSetKey state but not clearing any field values. This allows you to change only one field without
being forced to re-enter all field values needed for the search. The KeyFieldCount property controls how
many fields, based upon the current index, are to be used in the actual search. By default the
KeyFieldCount property is set to the number of fields for the active index. The following example shows
how to perform an exact search using the SetKey and GotoKey methods and KeyFieldCount property. The
active index is a secondary index called "CustomerName" comprised of the CustomerName field and the
CustomerNo field:

begin
 with MyTable do
 begin
 { Set to the CustomerName secondary index }
 IndexName:='CustomerName';
 { Search for the customer with the
 name 'The Hardware Store' }
 SetKey;
 FieldByName('CustomerName').AsString:='The Hardware Store';
 { This causes the search to only look at the first field
 in the current index when searching }
 KeyFieldCount:=1;
 if GotoKey then
 { Record was found, now do something }
 else
 ShowMessage('Record was not found');
 end;
end;

Note
In the previous example we executed a partial-field search. What this means is that we did not
include all of the fields in the active index. DBISAM does not require that you use all of the fields in
the active index for searching.

Using DBISAM

Page 128

The following example shows how to perform a near search using the SetKey and GotoNearest methods,
and KeyFieldCount property. The active index is a secondary index called "CustomerName" comprised of
the CustomerName field and the CustomerNo field:

begin
 with MyTable do
 begin
 { Set to the CustomerName secondary index }
 IndexName:='CustomerName';
 { Search for the customer with the
 name 'The Hardware Store' }
 SetKey;
 FieldByName('CustomerName').AsString:='The Hardware Store';
 { This causes the search to only look at the first field
 in the current index when searching }
 KeyFieldCount:=1;
 GotoNearest;
 end;
end;

Searching Without a Specific Index Order Set

The Locate method is used to locate a record independent of the active index order or of any indexes at
all. This is why it can be used with query result sets in addition to tables. The Locate method will attempt
to use the active index for searching, but if the current search fields do not match the active index then
the Locate method will attempt to use another available index. Indexes are selected based upon the
options passed to the Locate method in conjunction with the field names that you wish to search upon.
The index fields are checked from left to right, and if a primary or secondary index is found that matches
the search fields from left to right and satisfies the options desired for the search it will be used to perform
the search. Finally, if no indexes can be found that can be used for the search, a filter will be used to
execute the search instead. This is usually a sub-optimal solution and can take a bit of time since the filter
will be completely un-optimized and will be forced to scan every record for the desired field values.

The Locate method accepts a list of field names as its first argument. Multiple field names should be
separated with a semicolon. These are the fields you wish to search on. The second argument to the
Locate method is an array of field values that should correspond to the field names passed in the first
argument. The third and final argument is a set of options for the Locate method. These options control
how the search is performed and how indexes are selected in order to perform the search. The return
value of the Locate method indicates whether the current search was successful. If the search was
successful then the record pointer is moved to the desired record, whereas if the search was not
successful then the record pointer stays at its current position.

The following example shows how to use the Locate method to find a record where the CustomerName
field is equal to "The Hardware Store":

begin
 with MyTable do
 begin
 { Search for the customer with the
 name "The Hardware Store" }
 if Locate('CustomerName',['The Hardware Store'],[]) then
 { Record was found, now do something }
 else
 ShowMessage('Record was not found');

Using DBISAM

Page 129

 end;
end;

The following example shows how to use the Locate method to find a record where the CustomerName
field is equal to "The Hardware Store", but this time the search will be case-insensitive:

begin
 with MyTable do
 begin
 { Search for the customer with the
 name "The Hardware Store" }
 if Locate('CustomerName',['The Hardware Store'],
 [loCaseInsensitive]) then
 { Record was found, now do something }
 else
 ShowMessage('Record was not found');
 end;
end;

The FindFirst, FindLast, FindNext, and FindPrior methods all rely on the Filter and FilterOptions properties
to do their work. These methods are the most flexible for searching and can be used with both tables and
query result sets, but there are some important caveats. To get acceptable performance from these
methods you must make sure that the filter expression being used for the Filter property is optimized or at
least partially-optimized. If the filter expression is un-optimized it will take a significantly greater amount
of time to complete every call to any of the FindFirst, FindLast, FindNext, or FindPrior methods unless the
table or query result set being searched only has a small number of records. Please see the Filter
Optimization topic for more information. Also, because the Filter property is being used for these methods,
you cannot use a different filter expression in combination with these methods. However, you can set the
Filtered property to True and show only the filtered records if you so desire. Finally, the FilterOptions
property controls how the filtering is performed during the searching, so you should make sure that these
options are set properly. The following example shows how to use the Filter property and FindFirst and
FindNext methods to find matching records and navigate through them in a table:

begin
 with MyTable do
 begin
 { Search for the first customer with the
 name "The Hardware Store" }
 Filter:='CustomerName='+QuotedStr('The Hardware Store');
 { We want the search to be case-insensitive }
 FilterOptions:=[foCaseInsensitive];
 if FindFirst then
 begin
 { Record was found, now search through
 the rest of the matching records }
 while FindNext do
 { Do something here }
 end
 else
 ShowMessage('Record was not found');
 end;
end;

Using DBISAM

Page 130

Using DBISAM

Page 131

2.30 Setting Ranges on Tables

Introduction

Setting ranges on tables is accomplished through several methods of the TDBISAMTable component. The
basic range methods include the SetRange, SetRangeStart, SetRangeEnd, EditRangeStart, EditRangeEnd,
and ApplyRange methods. The KeyFieldCount property is used with the SetRangeStart, SetRangeEnd,
EditRangeStart and EditRangeEnd methods to control searching using the ApplyRange method. All range
operations are dependent upon the active index order set using the IndexName or IndexFieldNames
properties. Ranges may be combined with expression filters set using the Filter and Filtered propertes
and/or callback filters set using the OnFilterRecord event to further filter the records in the table.

Setting a Range

The SetRange method accepts two arrays of values to use in order to set a range on a given table. If the
current record pointer does not fall into the range values specified, then the current record pointer will be
moved to the nearest record that falls within the range. These value arrays must contain the field values in
the same order as the field names in the active index or the range will not return the desired results.
However, SetRange does not require that you fill in all of the field values for all of the fields in the active
index, rather only that you fill in the field values from left to right. The following example shows how to
perform a range on the primary index comprised of the CustomerNo field:

begin
 with MyTable do
 begin
 { Set to the primary index }
 IndexName:='';
 { Set a range from customer 100 to customer 300 }
 SetRange([100],[300]);
 end;
end;

The SetRangeStart, SetRangeEnd, EditRangeStart, and EditRangeEnd methods are used in conjunction
with the ApplyRange method to perform a range using field assignments instead of arrays of field values.
The SetRangeStart method begins the range process by putting the TDBISAMTable component into the
dsSetKey state and clearing all field values. You can examine the state of the table using the State
property. The application must then assign values to the desired fields for the start of the range and then
proceed to call SetRangeEnd to assign values to the desired fields for the end of the range. After this is
done the application can call the ApplyRange method to perform the actual range operation. The
EditRangeStart and EditRangeEnd methods extend or continue the current range process by putting the
TDBISAMTable component into the dsSetKey state but not clearing any field values. You can examine the
state of the table using the State property. This allows you to change only one field without being forced
to re-enter all field values needed for the beginning or ending values of the range. The KeyFieldCount
property controls how many fields, based upon the active index, are to be used in the actual range and
can be set independently for both the starting and ending field values of the range. By default the
KeyFieldCount property is set to the number of fields in the active index. The following example shows
how to perform a range using the SetRangeStart, SetRangeEnd, and ApplyRange methods and
KeyFieldCount property. The active index is a secondary index called "CustomerName" that consists of the
CustomerName field and the CustomerNo field:

Using DBISAM

Page 132

begin
 with MyTable do
 begin
 { Set to the CustomerName secondary index }
 IndexName:='CustomerName';
 { Set a range to find all customers with
 a name beginning with 'A' }
 SetRangeStart;
 FieldByName('CustomerName').AsString:='A';
 { This causes the range to only look at
 the first field in the current index }
 KeyFieldCount:=1;
 SetRangeEnd;
 { Note the padding of the ending range
 values with lowercase z's
 to the length of the CustomerName
 field, which is 20 characters }
 FieldByName('CustomerName').AsString:='Azzzzzzzzzzzzzzzzzzz';
 { This causes the range to only look at
 the first field in the current index }
 KeyFieldCount:=1;
 ApplyRange;
 end;
end;

Note
In the previous example we executed a partial-field range. What this means is that we did not
include all of the fields in the active index in the range. DBISAM does not require that you use all of
the fields in the active index for the range.

Using DBISAM

Page 133

2.31 Setting Master-Detail Links on Tables

Introduction

A master-detail link is a property-based linkage between a master TDataSource component and a detail
TDBISAMTable component. Once a master-detail link is established, any changes to the master
TDataSource component will cause the detail TDBISAMTable component to automatically reflect the
change and show only the detail records that match the current master record based upon the link criteria.
Master-detail links use ranges for their functionality, and therefore are dependent upon the active index in
the detail table. Like ranges, master-detail links may be combined with expression filters set using the
Filter and Filtered propertes and/or callback filters set using the OnFilterRecord event to further filter the
records in the detail table.

Defining the Link Properties

Setting master-detail links on tables is accomplished through four properties in the detail TDBISAMTable
component. These properties are the MasterSource, MasterFields, IndexName, and IndexFieldNames
properties.

The first step in setting a master-detail link is to assign the MasterSource property. The MasterSource
property refers to a TDataSource component. This makes master-detail links very flexible, because the
TDataSource component can provide data from any TDataSet-descendant component such as a
TDBISAMTable or TDBISAMQuery component as well as many other non-DBISAM dataset components.

Note
For the link to be valid, the TDataSource DataSet property must refer to a valid TDataSet-
descendant component.

The next step is to assign the IndexName property, or IndexFieldNames property, so that the active index,
and the fields that make up that index, will match the fields that you wish to use for the link. The only
difference between specifying the IndexName property versus the IndexFieldNames property is that the
IndexName property expects the name of an index, whereas the IndexFieldNames only expects the names
of fields in the table that match the fields found in an index in the table from left-to-right. The
IndexFieldNames property also does not require that all of the fields in an existing index be specified in
order to match with that existing index, only enough to be able to select the index so that it will satisfy the
needs of the master-detail link.

Finally, the MasterFields property must be assigned a value. This property requires a field or list of fields
separated by semicolons from the master data source that match the fields in the active index for the
detail table.

To illustrate all of this we'll use an example. Let's suppose that we have two tables with the following
structure and we wish to link them via a master-detail link:

Customer Table

Field # Name DataType Size
--
1 CustomerID ftString 10
2 CustomerName ftString 30

Using DBISAM

Page 134

3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30

Note
Indexes in this case are not important since this will be the master table

Orders Table

Field # Name DataType Size
--
1 CustomerID ftString 10
2 OrderNumber ftString 10
3 OrderDate ftDate 0
4 OrderAmount ftBCD 2

Index Name Fields In Index Options
--
(none) CustomerID;OrderNumber ixPrimary

We would use the following example code to establish a master-detail link between the two tables. In this
example it is assumed that a TDataSource component called CustomerSource exists and points to a
TDBISAMTable component for the "customer" table:

begin
 with OrdersTable do
 begin
 { Select the primary index, which contains the
 CustomerID and OrderNumber fields }
 IndexName:='';
 { Assign the MasterSource property }
 MasterSource:=CustomerSource;
 { Set the MasterFields property to point to the
 CustomerID field from the Customer table }
 MasterFields:='CustomerID';
 end;
end;

Now any time the current record in the CustomerSource data source changes in any way, the OrdersTable
will automatically reflect that change and only show records that match the master record's CustomerID
field. Below is the same example, but changed to use the IndexFieldNames property instead:

begin
 with OrdersTable do
 begin
 { Select the primary index, which contains the
 CustomerID and OrderNumber fields }

Using DBISAM

Page 135

 IndexFieldNames:='CustomerID';
 { Assign the MasterSource property }
 MasterSource:=CustomerSource;
 { Set the MasterFields property to point to the
 CustomerID field from the Customer table }
 MasterFields:='CustomerID';
 end;
end;

Note
Because a master-detail link uses data-event notification in the TDataSource component for
maintaining the link, if the TDataSet component referred to by the TDataSource component's
DataSet property calls its DisableControls method, it will not only disable the updating of any data-
aware controls that refer to it, but it will also disable any master-detail links that refer to it also.
This is the way the TDataSet and TDataSource components have been designed, so this is an
expected behavior that you should keep in mind when designing your application.

Using DBISAM

Page 136

2.32 Setting Filters on Tables and Query Result Sets

Introduction

Setting filters on tables and query result sets is accomplished through several properties of the
TDBISAMTable and TDBISAMQuery components. These properties include the Filter, FilterOptions,
Filtered, and FilterOptimizeLevel properties. The OnFilterRecord event is used to assign a callback filter
event handler that can be used to filter records using Delphi or C++ code. All filter operations are
completely independent of any active index order.

Setting an Expression Filter

The Filter, FilterOptions, Filtered, and FilterOptimizeLevel properties are used to set an expression filter.
The steps to set an expression filter include setting the filter expression using the Filter property,
specifying any filter options using the FilterOptions property, and then making the expression filter active
by setting the Filtered property to True. You can turn off or disable an expression filter by setting the
Filtered property to False. If the current record pointer does not fall into the conditions specified by an
expression filter, then the current record pointer will be moved to the nearest record that falls within the
filtered set of records. Expression filters may be combined with ranges, master-detail links, and/or callback
filters to further filter the records in the table or query result set.

DBISAM's expression filters use the same naming conventions, operators, and functions as its SQL
implementation. The only differences are as follows:

Difference Description

Correlation Names You cannot use table or column correlation names in filter
expressions.

Aggregate functions You cannot use any aggregate functions like SUM(), COUNT(),
AVG(), etc. in filter expressions.

Please see the Naming Conventions, Operators, and Functions topics in the SQL Reference for more
information.

Note
Unlike with SQL, you may also use use the asterisk (*) character to specify a partial-length match
for string field comparisons in a filter expression. However, this only works when the
foNoPartialCompare element is not included in the FilterOptions property.

The following example shows how to set an expression filter where the LastSaleDate field is between
January 1, 1998 and December 31, 1998 and the TotalSales field is greater than 10,000 dollars:

begin
 with MyTable do
 begin
 { Set the filter expression }
 Filter:='(LastSaleDate >= '+QuotedStr('1998-01-01')+') '+
 'and (LastSaleDate <= '+QuotedStr('1998-12-31')+') '+
 'and (TotalSales > 10000)';

Using DBISAM

Page 137

 FilterOptions:=[];
 Filtered:=True;
 end;
end;

DBISAM attempts to optimize all expression filters. This means that DBISAM will try to use existing indexes
to speed up the filter operation. The FilterOptimizeLevel property indicates what level of optimization was,
or will be, achieved for the expression filter and can be examined after the Filtered property is set to True
to execute the filter. The following example displays a message dialog indicating the level of optimization
achieved for the expression filter:

begin
 with MyTable do
 begin
 { Set the filter expression, in this case for
 a partial-match, case-insensitive filter }
 Filter:='CustomerName = '+QuotedStr('A*');
 FilterOptions:=[foCaseInsensitive];
 Filtered:=True;
 case FilterOptimizeLevel of
 foNone: ShowMessage('The filter is completely unoptimized');
 foPartial: ShowMessage('The filter is partially optimized');
 foFull: ShowMessage('The filter is completely optimized');
 end;
 end;
end;

Note
The foCaseInsensitive filter option can affect the optimization level returned by the
FilterOptimizeLevel, so you should make sure to set any filter options before examining the
FilterOptimizeLevel property so as to avoid any confusion.

Please see the Filter Optimization topic for more information.

Setting a Callback Filter

The OnFilterRecord event and the Filtered property are used together to set a callback filter. The steps to
set a callback filter include assigning an event handler to the OnFilterRecord event and then making the
callback filter active by setting the Filtered property to True. You can turn off or disable a callback filter by
setting the Filtered property to False. If the current record pointer does not fall into the conditions
specified within the callback filter, then the current record pointer will be moved to the nearest record that
falls within the filtered set of records.

The following example shows how to write a callback filter event handler where the CustomerName field
contains the word "Hardware" (case-sensitive):

procedure TMyForm.TableFilterRecord(DataSet: TDataSet;
 var Accept: Boolean);
begin
 Accept:=False;

Using DBISAM

Page 138

 if Pos('Hardware',
 DataSet.FieldByName('CustomerName').AsString) > 0) then
 Accept:=True;
end;

Note
Callback filters implemented via the OnFilterRecord event are always completely un-optimized. In
order to satisfy the filter requirements, DBISAM must always read every record to determine if the
record falls into the desired set of records. You should only use OnFilterRecord on small sets of
data, or large sets of data that have been reduced to a small number of records by an existing
range and/or expression filter.

Using DBISAM

Page 139

2.33 Loading and Saving Streams with Tables and Query Result Sets

Introduction

Loading and saving tables and query result sets to and from streams is accomplished through the
LoadFromStream and SaveToStream methods of the TDBISAMTable and TDBISAMQuery components. The
properties used by the LoadFromStream and SaveToStream methods include the DatabaseName,
TableName, and Exists properties. A stream is any TStream-descendant object such as TFileStream,
TMemoryStream, or even the DBISAM TDBISAMBlobStream object used for reading and writing to BLOB
fields. Loading a stream copies the entire contents of a stream to an existing table or query result set.
When loading a stream, the contents of the stream must have been created using the SaveToStream
method or else an EDBISAMEngineError exception will be raised. The error code given when a load from a
stream fails because of an invalid stream is 11312 and is defined as DBISAM_LOADSTREAMERROR in the
dbisamcn unit (Delphi) or dbisamcn header file (C++). Saving to a stream copies the contents of a table
or query result set to the stream, overwriting the entire contents of the stream. The records that are
copied can be controlled by setting a range or filter on the source table or query result set prior to calling
the SaveToStream method. Please see the Setting Ranges on Tables and Setting Filters on Tables and
Query Result Sets topics for more information.

Loading Data from a Stream

To load data from a stream into an existing table, you must specify the DatabaseName and TableName
properties of the TDBISAMTable component and then call the LoadFromStream method. When using a
TDBISAMTable component, the table can be open or closed when this method is called, and the table does
not need to be opened exclusively. If the table is closed when this method is called, then DBISAM will
attempt to open the table before loading the data into it. It is usually good practice to examine the Exists
property of the TDBISAMTable component first to make sure that you don't attempt to load data into a
non-existent table. If you do attempt to load data into a non-existent table an EDBISAMEngineError
exception will be raised. The error code given when a load from a stream fails due to the table not existing
is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file
(C++). To load data from a stream into a query result set, the TDBISAMQuery SQL property must be
populated with a SELECT SQL statement and the Active property must be True.

The following example shows how to load data from a memory stream (assumed to already be created)
into a table using the LoadFromStream method:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 LoadFromStream(MyMemoryStream);
 end;
end;

Using DBISAM

Page 140

Note
Tables or query result sets in remote sessions can load streams from a local stream. However, since
the stream contents are sent as one buffer to the database server as part of the request, it is
recommended that you do not load particularly large streams since you will run the risk of
exceeding the available memory on the local workstation or database server.

Tracking the Load Progress

To take care of tracking the progress of the load we have provided the TDBISAMTable and TDBISAMQuery
OnLoadFromStreamProgress events.

Saving Data to a Stream

To save the data from a table to a stream, you must specify the DatabaseName and TableName properties
of the TDBISAMTable component and then call the SaveToStream method. When using a TDBISAMTable
component, the table can be open or closed when this method is called, and the table does not need to be
opened exclusively. If the table is closed when this method is called, then DBISAM will attempt to open
the table before saving the data. It is usually good practice to examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to save data from a non-existent
table. If you do attempt to save data from a non-existent table an EDBISAMEngineError exception will be
raised. The error code given when a save fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). To save data to a
stream from a query result set, the TDBISAMQuery SQL property must be populated with a SELECT SQL
statement and the Active property must be True.

The following example shows how to save the data from a table to a memory stream (assumed to already
be created) using the SaveToStream method of the TDBISAMTable component:

begin
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 SaveToStream(MyMemoryStream);
 end;
end;

Tracking the Save Progress

To take care of tracking the progress of the save we have provided the TDBISAMTable and
TDBISAMQuery OnSaveToStreamProgress events.

Using DBISAM

Page 141

2.34 Importing and Exporting Tables and Query Result Sets

Introduction

Importing and exporting tables and query result sets to and from delimited text files is accomplished
through the ImportTable and ExportTable methods of the TDBISAMTable and TDBISAMQuery components.
The properties used by the ImportTable and ExportTable methods include the DatabaseName,
TableName, and Exists properties. Importing a table copies the entire contents of a delimited text file to
an existing table or query result set. Exporting a table copies the contents of a table or query result set to
a new delimited text file. The records that are copied can be controlled by setting a range or filter on the
source table or query result set prior to calling the ExportTable method. Please see the Setting Ranges on
Tables and Setting Filters on Tables and Query Result Sets topics for more information.

Importing Data

To import a delimited text file into an existing table, you must specify the DatabaseName and TableName
properties of the TDBISAMTable component and then call the ImportTable method. When using a
TDBISAMTable component, the table can be open or closed when this method is called, and the table does
not need to be opened exclusively. If the table is closed when this method is called, then DBISAM will
attempt to open the table before importing the data into it. It is usually good practice to examine the
Exists property of the TDBISAMTable component first to make sure that you don't attempt to import data
into a non-existent table. If you do attempt to import data into a non-existent table an
EDBISAMEngineError exception will be raised. The error code given when an import fails due to the table
not existing is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). To import a delimited text file into a query result set, the TDBISAMQuery SQL property
must be populated with a SELECT SQL statement and the Active property must be True.

The following example shows how to import a delimited text file into a table using the ImportTable
method:

Incoming text file has following layout:

Field # Name DataType

1 CustomerName ftString
2 ContactName ftString
3 Phone ftString
4 Fax ftString
5 EMail ftString

Table has following structure:

Field # Name DataType Size
--
1 CustomerID ftAutoInc 0
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30
7 LastSaleDate ftDate 0

Index Name Fields In Index Options
--

Using DBISAM

Page 142

(none) CustomerID ixPrimary

{ In this example we'll use a comma as a delimiter }

var
 IncomingFields: TStrings;
begin
 IncomingFields:=TStringList.Create;
 try
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 begin
 with IncomingFields do
 begin
 Add('CustomerName');
 Add('ContactName');
 Add('Phone');
 Add('Fax');
 Add('Email');
 end;
 { Date, time, and number formatting left
 to defaults for this example }
 ImportTable('d:\incoming\customer.txt',
 ',',False,IncomingFields);
 end;
 end;
 finally
 IncomingFields.Free;
 end;
end;

Note
Tables or query result sets in remote sessions can only import delimited text files that are accessible
from the database server on which the tables or query result sets reside. You must specify the path
to the incoming text file in a form that the database server can use to open the file.

In addition to using the TDBISAMTable and TDBISAMQuery ImportTable methods for importing delimited
text files, DBISAM also allows the use of the IMPORT TABLE SQL statement.

Tracking the Import Progress

To take care of tracking the progress of the import we have provided the TDBISAMTable and
TDBISAMQuery OnImportProgress events.

Exporting Data

To export a table to a delimited text file, you must specify the DatabaseName and TableName properties
of the TDBISAMTable component and then call the ExportTable method. When using a TDBISAMTable

Using DBISAM

Page 143

component, the table can be open or closed when this method is called, and the table does not need to be
opened exclusively. If the table is closed when this method is called, then DBISAM will attempt to open
the table before exporting the data. It is usually good practice to examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to export data from a non-existent
table. If you do attempt to export data from a non-existent table an EDBISAMEngineError exception will be
raised. The error code given when an export fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). To export data to a
delimited text file from a query result set, the TDBISAMQuery SQL property must be populated with a
SELECT SQL statement and the Active property must be True.

The following example shows how to export a table to a delimited text file using the ExportTable method
of the TDBISAMTable component:

Outgoing text file should have the following layout:

Field # Name DataType

1 CustomerName ftString
2 ContactName ftString
3 Phone ftString
4 Fax ftString
5 EMail ftString

Table has following structure:

Field # Name DataType Size
--
1 CustomerID ftAutoInc 0
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30
7 LastSaleDate ftDate 0

Index Name Fields In Index Options
--
(none) CustomerID ixPrimary

{ In this example we'll use a comma as a delimiter
and only export records that have a non-blank email address }

var
 OutgoingFields: TStrings;
begin
 OutgoingFields:=TStringList.Create;
 try
 with MyTable do
 begin
 DatabaseName:='d:\temp';
 TableName:='customer';
 if Exists then
 begin
 Open;
 try

Using DBISAM

Page 144

 Filter:='EMail IS NOT NULL';
 Filtered:=True;
 with OutgoingFields do
 begin
 Add('CustomerName');
 Add('ContactName');
 Add('Phone');
 Add('Fax');
 Add('Email');
 end;
 { Date, time, and number formatting left
 to defaults for this example }
 ExportTable('d:\outgoing\customer.txt',
 ',',False,OutgoingFields);
 finally
 Close;
 end;
 end;
 end;
 finally
 OutgoingFields.Free;
 end;
end;

Note
Tables or query result sets in remote sessions can only export data to delimited text files that are
accessible from the database server on which the source tables or query result sets reside. You
must specify the path to the text file in a form that the database server can use to create the file.

In addition to using the TDBISAMTable and TDBISAMQuery ExportTable methods for exporting data to
delimited text files, DBISAM also allows the use of the EXPORT TABLE SQL statement.

Tracking the Export Progress

To take care of tracking the progress of the export we have provided the TDBISAMTable and
TDBISAMQuery OnExportProgress events.

Using DBISAM

Page 145

2.35 Cached Updates

Introduction

Using cached updates for table and query result sets is accomplished through the BeginCachedUpdates,
and ApplyCachedUpdates, and CancelCachedUpdates methods of the TDBISAMTable and TDBISAMQuery
components. The properties used by these methods include the CachingUpdates property. Using cached
updates permits an application to copy all existing records in a given table or query result set to a
temporary table that is then used for any inserts, updates, or deletes. Once all updates are complete, the
application may then call the ApplyCachedUpdates method to apply all updates to the source table or
query result set, or the CancelCachedUpdates method to cancel all updates and revert the table or query
result set to its original state prior to the cached updates. The records that are included in the cached
updates can be controlled by setting a range or filter on the source table or query result set prior to calling
the BeginCachedUpdates method. Please see the Setting Ranges on Tables and Setting Filters on Tables
and Query Result Sets topics for more information.

Note
Do not use cached updates on very tables or query result sets with large number of records in the
active set according to any active ranges and/or filters. Doing so can result in some serious
performance problems as the entire set of records will need to be copied when cached updates are
begun.

Beginning Cached Updates

To begin cached updates, you must call the BeginCachedUpdates method. When using either a
TDBISAMTable or TDBISAMQuery component, the table or query result set must be opened (Active
property is set to True) or an exception will be raised.

Applying Cached Updates

To apply any cached updates to the source table or query result set, you must call the
ApplyCachedUpdates method. This method will apply any updates that were made to the temporary table
used for the cached updates to the source table or query result set. Only records that were inserted,
updated, or deleted are processed, so the result is the same as calling the CancelCachedUpdates method
if no records were inserted, updated, or deleted while cached updates were enabled. You can examine the
CachingUpdates property to determine whether cached udpdates are in effect before trying to apply any
cached updates.

It is strongly recommend that you always wrap the ApplyCachedUpdates method with a
TDBISAMDatabase StartTransaction and Commit and Rollback block of code. This will allow the application
of the cached updates to behave as an atomic unit of work and will avoid any possible problems of partial
updates due to errors during the application of the updates.

The following example shows how to propery apply cached updates using a transaction around the
ApplyCachedUpdates method:

var
 TablesList: TStrings;
begin

Using DBISAM

Page 146

 TablesList:=TStringList.Create;
 try
 with MyTable do
 begin
 TablesList.Add(TableName);
 Database.StartTransaction(TablesList);
 try
 ApplyCachedUpdates;
 Database.Commit;
 except
 Database.Rollback;
 raise;
 end;
 finally
 TablesList.Free;
 end;
end;

Note
Notice that a restricted transaction is used in this example. It is wise to do this if only updating one
table because it helps increase multi-user concurrency. Please see the Transactions topic for more
information.

Reconciling Errors

Cached updates are handled in an optimistic manner, which means that DBISAM does not hold any locks
on the records that are held in the cache while the cached updates are in effect. Subsequently, it is
possible that another session has changed some or all of the records that were cached and updated or
deleted in the cache. When the cached updates are then applied using the ApplyCachedUpdates method,
an error message will be raised and it is possible that only a portion of the cached updates will be applied
to the source table or query result set. To avoid this, you can assign an event handler to the
OnCachedUpdateError event. This will cause DBISAM to instead call this event handler when an error
occurs during the application of the cached updates, giving the user an opportunity to correct any errors
and retry any update that is causing an error.

Note
No matter what happens with respect to errors, the ApplyCachedUpdates method always results in
cached updates being turned off and the source table or query result being returned to its normal
state.

The following is an example of an OnCachedUpdateError event handler that retries the current record
application if a record lock error is causing the problem:

procedure TMyForm.MyTableCachedUpdateError(Sender: TObject;
 CurrentRecord: TDBISAMRecord; E: Exception;
 UpdateType: TUpdateType; var Action: TUpdateAction);
begin
 Action:=uaFail;
 if (E is EDBISAMEngineError) then
 begin

Using DBISAM

Page 147

 if (EDBISAMEngineError(E).ErrorCode=DBISAM_RECLOCKFAILED) then
 Action:=uaRetry;
 end;
end;

Of course, there are many responses that can be made in this event handler depending upon the actual
error code and any input that the user may be able to provide. The TDBISAMRecord object passed in
contains both the current values and the old values of the record being applied, which allows you to
prompt the user for an answer to a possible issue with a key violation, locking issue, or a record being
modified by another user since it was last cached. In some cases, like duplicate key violations, it is
possible to modify the current values so that the record can still be inserted, updated, or deleted.

Filters, Ranges, and Master-Detail Links

Most of the operations that can be performed on a TDBISAMTable or TDBISAMQuery component behave
the same regardless of whether cached updates are active or not. This includes the following operations:

Navigating Tables and Query Result Sets
Searching and Sorting Tables and Query Result Sets
Updating Tables and Query Result Sets

However, certain states of the table or query result set are not carried over to the cached updates
temporary table. These include:

Filters
Ranges
Master-Detail Links

All of these states are reset for the cached updates temporary table. You may apply new filters, ranges,
and/or master-detail links on the cached updates temporary table if you wish, but they will not apply to
the base table nor will they affect the base table's state with respect to filters, ranges, or master-detail
links. After the cached updates are applied or cancelled, all of these states are set back to what they were
prior to the cached updates being active.

Refreshing During Cached Updates

If you call the TDBISAMTable or TDBISAMQuery Refresh method while cached updates are active, then
the current contents of the cached updates temporary table will be discarded and replaced with the latest
data from the base table. Cached updates will remain in effect after the Refresh is complete.

Using DBISAM

Page 148

Chapter 3
Advanced Topics

3.1 Locking and Concurrency

Introduction

DBISAM manages most locking and concurrency issues without requiring any action on the part of the
developer. The following information details the steps that DBISAM takes internally in order to maximize
concurrency while still resolving conflicts for shared resources using locking.

How DBISAM Performs Locking

All locks in DBISAM are performed using calls to the operating system. If using a local session accessing
DBISAM tables on a network file server, these calls are then routed by the operating system to the file
server's operating system, which could be Windows, Linux, etc. The benefit of this approach is that
dangling locks left from an improper shutdown can be cleaned up by the operating system rather quickly.

DBISAM takes advantage of the fact that both Windows and the Linux operating systems allow an
application to lock portions of a file beyond the actual size of the file. This process is known as virtual byte
offset locking. DBISAM restricts the size of any physical data, index, or BLOB file that is part of a table to
128,000,000,000 bytes by default, or a little under 128 gigabytes. DBISAM does this so it can reserve the
space available between the 128 gigabyte mark and the 128,000,000,000 byte mark for record and
semaphore locks in the table. For table locks DBISAM uses a special hidden file called "dbisam.lck" (by
default) that it automatically creates in the database directory where the tables are stored. This file is only
used for keeping a list of the tables in the database and for placing virtual byte offset locks for table read,
write, and transaction locks. Using this one file for table locks allows DBISAM to perform transaction
locking without encountering deadlocks, which was an issue in past versions of DBISAM. The default lock
file name "dbisam.lck" can be modified to any file name desired by modifying the TDBISAMEngine
LockFileName property.

Note
If the lock file does not exist and cannot be created due to issues with security permissions, then
the database will be treated as read-only and you will not be able to modify any tables in the
database.

Record Locking Protocols

DBISAM offers two types of record locking protocols, pessimistic (default) and optimistic locking. The
record locking protocol is configurable via the TDBISAMSession LockProtocol property.

Locking Model Description

Advanced Topics

Page 149

Pessimistic The pessimistic record locking model specifies that a record
should be locked when the record is retrieved for editing,
which is during a call to the TDBISAMTable or TDBISAMQuery
Edit method or during the record retrieval in an UPDATE SQL
statement.

Optimistic The optimistic locking model specifies that a record should be
locked when any record modifications are posted to the table,
which is during a call to the TDBISAMTable or TDBISAMQuery
Post method or during the record modification in an UPDATE
SQL statement. Using an optimistic record locking model for
remote sessions removes the possibility that dangling record
locks will be left on the database server if the application is
terminated unexpectedly.

The two record locking protocols can safely and reliably be used among multiple sessions on the same set
of tables, although it is not recommended due to the potential for confusion for the developer and user of
the application.

User or Developer-Controlled Locks

There are three types of user or developer-controlled locks in DBISAM:

 Record Locks
 Table Locks
 Semaphore Locks

Record locks are initiated by the user or developer when a record is appended, edited, or deleted. Table
locks and semaphore locks, on the other hand, must be specifically set by the developer.

Record Locks

Record locks are used to enforce DBISAM's pessimistic or optimistic record locking protocols and prevent
the same or multiple sessions from editing or posting modifications to the same record at the same time.
Record locks block other record or table lock attempts, but do not block any reads of the locked records.
The following details what happens in the various scenarios that use record locks:

Action Description

Advanced Topics

Page 150

Appending When adding a record using the Append or Insert method of
the TDBISAMTable or TDBISAMQuery component, no record
locks are acquired until the record is posted using the Post
method of the TDBISAMTable or TDBISAMQuery component.
During the posting of a new record, a record lock is implicity
acquired by DBISAM on the next available physical record.
This record lock will fail only if the entire table is already
locked by the same session or a different session. If the
record lock fails, then an EDBISAMEngineError exception will
be raised. The error code that is given when a record lock
fails is 10258 and is defined as DBISAM_RECLOCKFAILED in
the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Editing When editing a record using the Edit method of the
TDBISAMTable or TDBISAMQuery component, a record lock is
implicity acquired by DBISAM if the record locking protocol for
the session is set to pessimistic (see above). This record lock
will fail if the record or entire table is already locked by the
same session or a different session. If the record lock fails,
then an EDBISAMEngineError exception will be raised. The
error code that is given when a record lock fails is 10258 and
is defined as DBISAM_RECLOCKFAILED in the dbisamcn unit
(Delphi) or dbisamcn header file (C++). If the locking
protocol for the session is set to optmistic then the Edit
method will not attempt to implicitly acquire a record lock, but
will instead wait until the Post method is called to implicitly
acquire the record lock. This means that another session is
capable of editing the record and posting the changes to the
record before the Post method is called. If this occurs, then
an EDBISAMEngineError exception will be raised. The error
code that is given when a call to the Post method fails
because the record has been altered is 8708 and is defined as
DBISAM_KEYORRECDELETED in the dbisamcn unit (Delphi) or
dbisamcn header file (C++). In such a case you must discard
the edited record by calling the Cancel method, call the
Refresh method to refresh the record, and begin again with a
fresh copy of the record using the Edit method.

Deleting When deleting a record using the Delete method of the
TDBISAMTable or TDBISAMQuery component, a record lock is
implicity acquired by DBISAM. This record lock will fail if the
record or entire table is already locked by the same session or
a different session. If the record lock fails, then an
EDBISAMEngineError exception will be raised. The error code
that is given when a record lock fails is 10258 and is defined
as DBISAM_RECLOCKFAILED in the dbisamcn unit (Delphi) or
dbisamcn header file (C++). If another session edits the
record and posts the changes to the record before the Delete
method is called, an EDBISAMEngineError exception will be
raised. The error code that is given when a call to the Delete
method fails because the record has been altered is 8708 and
is defined as DBISAM_KEYORRECDELETED in the dbisamcn
unit (Delphi) or dbisamcn header file (C++). In such a case
you must call the Refresh method to refresh the record and
begin again with a fresh copy of the record using the Delete
method.

Advanced Topics

Page 151

Table Locks

Table locks are used to allow the developer to prevent any other sessions from adding, editing, or deleting
any records or placing any record or table locks on a given table. Table locks block other record or table
lock attempts, but do not block any reads of the locked table. A table lock is equivalent to locking all of the
records in a table, including any records that may be added in the future. Table locks are always
pessimistic and are not affected by the record locking protocol in use for record locks.

The TDBISAMTable LockTable method is used to acquire a table lock. If the table lock fails, then an
EDBISAMEngineError exception will be raised. The error code that is given when a table lock fails is 10241
and is defined as DBISAM_LOCKED in the dbisamcn unit (Delphi) or dbisamcn header file (C++). The
TDBISAMTable UnlockTable method is used to remove a table lock. The following is an example of using
the LockTable and UnlockTable methods of the TDBISAMTable component:

begin
 with MyTable do
 begin
 LockTable;
 try
 { Perform some updates to the table }
 finally
 UnlockTable;
 end;
 end;
end;

Locking all of the records in a table using the LockTable method is useful for ensuring that no other users
or processes make changes to a given table while a batch process is executing.

Semaphore Locks

Semaphore locks are used to provide access serialization in specific user-defined application functionality
such as batch updates or system configuration updates and are not required in the normal operation of
DBISAM. Semaphore locks can be placed in what are simply referred to as slots, and these slots are
numbered from 1 to 1024. Semaphore locks only block other semaphore lock attempts for the same slot.

Note
Semaphore locks are table-based, with a different set of semaphore slots per table.

The TDBISAMTable LockSemaphore method is used to place a semaphore lock. If the semaphore lock
fails, then the result of the LockSemaphore method will be False. The TDBISAMTable UnlockSemaphore
method is used to remove a semaphore lock. The following is an example of using the LockSemaphore
and UnlockSemaphore methods of the TDBISAMTable component:

begin
 with MyTable do
 begin
 if LockSemaphore(1) then
 begin

Advanced Topics

Page 152

 try
 { Perform a batch process }
 finally
 UnlockSemaphore(1);
 end;
 end;
 end;
end;

Lock Retry Count and Wait Time

The number of record and table lock retries and the amount of time between each retry can be controlled
using the TDBISAMSession LockRetryCount and LockWaitTime properties. In a busy multi-user application
it may be necessary to increase these values in order to relieve lock contention and provide for smoother
concurrency between multiple users. However, in most cases the default values should work just fine.

Internal Locks Used by the Engine

There are three types of internal locks in DBISAM:

 Table Read Locks
 Table Write Locks
 Database Transaction Locks

Table tead locks are used by DBISAM to allow reads by multiple sessions while blocking any table write
locks. Table read locks do not block other table read lock attempts. Table write locks, on the other hand,
are used to serialize writes to a given table and therefore block any table read lock attempts or table write
lock attempts.

Table Read Locks

Table read locks allow DBISAM to accurately treat reads on internal table structures such as the indexes or
BLOB fields as atomic, or a single unit of work. Table read locks ensure that no other session writes to the
table by blocking any table write locks. Table read locks are the most widely-used locks in DBISAM and are
the cornerstone of correct multi-user operation. They especially play a large role in change detection.
Please see the Change Detection topic for more information.

Table read locks are also acquired during table scans for un-optimized filter or query conditions. You can
control the maximum number of table read locks acquired during a table scan via the TDBISAMEngine
TableMaxReadLockCount property. Please see the Filter Optimization topic for more information on how
filter conditions are optimized, and the SQL Optimizations topic for more information on optimizing SQL
query conditions.

Table Write Locks

Table write locks allow DBISAM to accurately treat writes on internal table structures such as the indexes
or BLOB fields as atomic, or a single unit of work. Table write locks ensure that no other session reads
from or writes to the table by blocking any table read lock or write locks.

Database Transaction Locks

Database transaction locks allow DBISAM to treat multi-table updates within a transaction as atomic, or a
single unit of work. Database transaction locks ensure that no other session writes to the database by

Advanced Topics

Page 153

blocking any table write locks while the transaction is in effect. Table read locks are allowed, however, and
other sessions can read the data from tables and acquire record and table locks. During the commit of a
transaction, the database transaction lock is escalated so that table read locks are also blocked while the
transaction is written to the database.

Advanced Topics

Page 154

3.2 Buffering and Caching

Introduction

DBISAM uses caching and buffering algorithms internally to ensure that data is cached for as long as
possible and is accessible in the fastest possible manner when needed to perform an operation. The
following information details these internal processes.

Buffer Replacement Policy

Any buffer maintained within DBISAM is replaced using a LRU, or least-recently-used, algorithm. For
example, if the cache is full when reading a record, DBISAM will discard the least-recently-used record
buffer in order to make room for the new record buffer. The "age" of a given buffer is determined by the
access patterns at the time. Every time a buffer is accessed it is moved so it is the first buffer in the list of
available buffers. This would make it the "youngest" buffer present in the list of available buffers, and all
other buffers would be moved down the list. As a particular buffer moves down the list it becomes "older"
and will be more likely to be removed and discarded from the list of available buffers.

Read Ahead Buffering

DBISAM performs intelligent read-ahead when reading records and BLOB blocks. For read-ahead on
records, this intelligence is gathered from information in the active index for a given table and allows
DBISAM to determine how records physically align with one another on disk. Performing read-ahead in this
manner can reduce the number of I/O calls that DBISAM has to make to the operating system and can
significantly speed up sequential read operations such as those found in SQL queries and other bulk
operations.

Block Writes

When DBISAM writes data to disk it aligns the data according to its physical placement on disk and
attempts to write all of the needed data in the fewest number of I/O calls that is possible. This reduces the
number of I/O calls and can make commit operations for transactions extremely quick, especially for bulk
appends of records within a transaction.

OS Buffering

In addition to the buffering provided by DBISAM, additional buffering may be provided by the operating
system in use. When DBISAM writes data using operating system calls, there is no guarantee that the data
will be immediately written to disk. On the contrary, it may be several seconds or minutes until the
operating system lazily flushes the data to disk. This has implications in terms of data corruption if the
workstation is improperly shut down after updates have taken place in DBISAM. You can get around this
by using the TDBISAMSession ForceBufferFlush property or by using the TDBISAMTable or TDBISAMQuery
FlushBuffers method. The most desirable way to ensure that data is flushed to disk at the operating
system level is the FlushBuffers method since the ForceBufferFlush property is very disk-intensive and may
cause write performance to drop below an acceptable level. The FlushBuffers method, on the other hand,
can be used in critical places in an application to ensure that data is flushed to disk in a timely fashion
without necessarily sacrificing performance.

Modifying the Amount of Buffering

DBISAM enables you to modify the amount of memory used for buffering each table's record, index, and

Advanced Topics

Page 155

BLOB field data. Please see the Customizing the Engine topic for more information.

Advanced Topics

Page 156

3.3 Change Detection

Introduction

DBISAM automatically uses the proper change detection when dealing with updates to tables. However,
there are two different types of change detection policies that can be used when dealing with reading data
from tables:

 Strict Change Detection
 Lazy Change Detection

The choice of which policy to use is up to the developer and his/her needs and can be controlled via the
TDBISAMSession StrictChangeDetection property. Also, any time DBISAM checks for changes in a given
table it acquires a read lock on the table so as to ensure that no other changes occur while DBISAM
performs the actual checks. Please see the Locking and Concurrency topic for more information.

Strict Change Detection

Strict change detection uses a "brute-force" method of determining whether the data has been changed
by session during the process of reading data from a table. What this means is that every operation that
requires reading of data from a table such as moving between records, filtering, setting ranges, searching,
etc. will cause DBISAM to check for changes before the operation is executed. If DBISAM finds that the
data in the table has changed, it will dump the contents of its local cache and refresh it using the latest
data from the table. This can have some very significant performance implications, especially when the
table resides on a network file server, so you should use this policy only when it is absolutely necessary
that the data being read is always up-to-date at the time of the operation. It also tends to completely
defeat the local caching done by DBISAM if there are a lot of updates taking place concurrently on the
same tables. Please see the Buffering and Caching topic for more information.

Note
Strict change detection does not guarantee that the data you currently see is the latest data, only
that the next time you perform a read operation you will see the latest data. DBISAM does not
perform polling or background operations to constantly check for changes, only when it is instructed
to perform a read operation.

Lazy Change Detection

Lazy change detection is the default change detection policy and is the most desirable in terms of
efficiency and performance. Lazy change detection works by only checking for changes by other sessions
when DBISAM cannot find the desired data locally in its cache and must physically read the data from the
table. If changes are found, DBISAM will dump its cache and retry the read operation that it was in the
process of executing when it found that it needed more data from the table. Because of the fact that
DBISAM can cache a fairly large amount of data for each table open within a session, this policy tends to
be very efficient and will provide the best performance overall. However, it does leave the job of
refreshing data up to the developer so please take this into account when developing an application using
this change detection policy.

Advanced Topics

Page 157

Note
The amount of memory used for buffering tables can affect how often DBISAM detects changes
within tables using lazy change detection, and DBISAM allows you to change these settings. Please
see the Customizing the Engine topic for more information.

Updates and Change Detection

DBISAM always uses a strict change detection policy when performing updates. This means that anytime
you append, edit, or delete a record DBISAM will automatically make sure that it's local cache contains the
most up-to-date data before performing the actual update operation. In addition to this, DBISAM also
performs a record buffer comparison when editing or deleting records to make sure that the record that is
now present in it's cache is consistent with the record that was intended to be edited or deleted before the
operation was initiated (i.e. it's what the user sees). If the record is not the same due to a change or
deletion by another user or session, DBISAM will trigger the error DBISAM_KEYORRECDELETED indicating
that the record has been changed or deleted by another user and the operation will be aborted. This
record buffer comparison also includes the comparison of BLOB "signatures" in the record buffer so it is
safe when determining if BLOB fields have changed also.

Advanced Topics

Page 158

3.4 Index Compression

Introduction

DBISAM provides different ways of specifying how indexes should be compressed when creating or
altering the structure of tables, as well as adding new indexes to a table. Please see the Creating and
Altering Tables and Adding and Deleting Indexes from a Table topics for more information. The following
information details the different types of index compression and how they should be used.

Types of Compression

The four different types of index compression available are:

Type Description

No Compression In most cases it is not very useful to specify no compression
at all since almost every type of index can benefit from some
type of compression. The exception to this would be primary
or unique secondary indexes that are comprised of only one
SmallInt, Word, or very short (< 4 characters) String type of
field.

Duplicate-Byte Compression Duplicate-byte compression works by comparing a given index
key to its prior index key on the same index page and
removing any duplicate bytes (working from the beginning of
the index key to the end).

Trailing-Byte Compression Trailing-byte compression works by removing any trailing
blank or null bytes from a given index key (working from the
end of the index key to the beginning).

Full Compression Full compression works by combining both duplicate-byte
compression with trailing-byte compression at the same time.

Compression Recommendations

If you are using only non-String fields in an index key and the index is not unique (or primary), then the
highest compression level you should specify is duplicate-byte compression. You should not use trailing-
byte compression in such a case at all since it will most likely provide very little benefit for most scalar
data types (Integer, SmallInt, Word, Boolean, etc.).

If you're using a String field at the end of an index key and the index is not unique (or primary), then you
should specify full compression, since this will not only remove duplicate bytes from the beginning of the
index key it will also remove any trailing blanks or nulls from the end of the index key. This is especially
true with indexes with large index key sizes. However - if the String field at the end of the index key is
always filled entirely (such as may be the case with an ID field or something similar) then you should only
use duplicate-byte compression for the index. Trailing-byte compression is most effective with large String
fields that have a high likelihood of not being filled to capacity very often, such as is the case with an
address or company name field.

If you're using only a String field in an index and the index is unique (or primary), you should verify
whether the index will be smaller with just the trailing-byte compression specified. The amount of possible
compression for the full compression option in this case is limited with unique indexes because there will
be a smaller likelihood of duplicate bytes at the beginning of the index keys. It really is a factor of the data

Advanced Topics

Page 159

values in the table, so you have to experiment a little.

If you're using only a non-String field in an index and the index is unique (or primary), you should verify
whether the index will be smaller with no compression specified. The amount of possible compression for
the duplicate-byte compression option in this case is limited with unique indexes because there will be a
smaller likelihood of duplicate bytes at the beginning of the index keys. This is also a factor of the data
values in the table, so again you have to experiment a little.

Advanced Topics

Page 160

3.5 Filter Optimization

Introduction

DBISAM's filter optimizations rely on the use of available indexes and bitmaps in order to facilitate the
quick retrieval and manipulation of sets of records that satisy all, or a portion of, a set of filter constraints.

Setting the Filter Expression

When an expression filter is set on a table in DBISAM using the TDBISAMTable or TDBISAMQuery Filter
property, the following steps take place:

1) The filter expression is parsed and a set of token objects is created for each token in the expression.

2) The set of token objects is then examined for proper syntax and any errors in the filter expression are
reported at this time.

3) The set of token objects is then examined again in order to determine the optimization level and make
it available to the developer for examination via the TDBISAMTable or TDBISAMQuery FilterOptimizeLevel
property. This process looks at the available indexes for each filter condition and uses this information to
determine how optimized the filter expression is.

4) Once the filter is activated via the TDBISAMTable or TDBISAMQuery Filtered property, the optimization
and filtering processes are performed.

How DBISAM Selects Indexes for Optimization

The first step in the optimization process is determining which indexes are available that can be used to
speed up the filtering process. The rules for this index selection are as follows:

1) DBISAM only uses the first field of any given index for optimization. This means that if you have an
index containing the fields LastName and FirstName, then DBISAM can only use this index for optimizing
any filter conditions that refer to the LastName field.

2) DBISAM can use both ascending and descending indexes for optimization.

3) DBISAM will only use case-sensitive indexes for optimizing any filter conditions on string fields unless
the foCaseInsensitive option is used with the TDBISAMTable or TDBISAMQuery FilterOptions property. You
may also use the UPPER() or LOWER() functions on a column name to force DBISAM to use a case-
insensitive index for optimizing the filter condition. Filter conditions on non-string fields such as integer or
boolean fields can always use any index that contains the same field, regardless of the index's case-
insensitivity setting.

4) DBISAM can mix and match the optimization of filter conditions so that it is possible to have one
condition be optimized and the other not. This is known as a partially-optimized filter.

How DBISAM Builds the Filter Results

Once an index is selected for optimizing a given condition of the filter expression, a range is set on the
index in order to limit the index keys to those that match the current filter condition being optimized. The
index keys that satisfy the filter condition are then scanned, and during the scan a bitmap is built in
physical record number order. A bit is turned on if the physical record satisfies the condition, and a bit is

Advanced Topics

Page 161

turned off if it doesn't. This method of using bitmaps works well because it can represent sets of data with
minimal memory consumption. Also, DBISAM is able to quickly determine how many records are in the set
(how many bits are turned on), and it can easily AND, OR, and NOT bitmaps together to fulfill boolean
logic between multiple filter conditions. Finally, because the bitmap is in physical record order, accessing
the records using a bitmap is very direct since DBISAM uses fixed-length records with directly-addressable
offsets in the physical table format.

Further Optimizations Provided by DBISAM

In addition to just using indexes to speed up the filtering process, DBISAM also provides a few other
optimizations that can greatly increase a given filter's performance. When building a bitmap for a given
optimized condition, DBISAM can take advantage of statistics that are kept in DBISAM indexes. These
statistics accurately reflect the current make-up of the various values present in the index.

DBISAM looks at the optimization of the filter conditions, and when multiple conditions are joined by an
AND operator, DBISAM ensures that the most optimized filter condition is executed first. For example,
consider a table of 25,000 records with the following structure:

Customer table

Field Data Type Index

ID Integer Primary Index
Name String[30]
State String[2] Secondary, case-sensitive,
 non-unique, ascending, index
TotalOrders BCD[2]

And consider the following filter:

(TotalOrders > 10000) and (State='CA')

As you can see, the TotalOrders condition cannot be optimized since no indexes exist that would allow for
optimization, whereas the State condition can be optimized. If only 200 records in the table have a State
field that contains 'CA', then processing the filter in the order indicated by the expression would be very
inefficient, since the following steps would take place:

1) All 25,000 physical records would be read and evaluated to build a bitmap for the (TotalOrders >
10000) condition.

2) The resultant bitmap from the previous step would be ANDed together with a bitmap built using the
optimized index scan for the State condition.

DBISAM uses a much better approach because it knows that:

1) The TotalOrders condition is not optimized

2) The State condition is optimized

3) Both conditions are joined using the AND operator

Advanced Topics

Page 162

it is able to reverse the filter conditions in the WHERE clause and execute the index scan for the 200
records that satisfy the State condition first, and then proceed to only read the 200 records from disk in
order to evaluate the TotalOrders condition. DBISAM has just saved a tremendous amount of I/O by
simply reversing the filter conditions.

Note
This optimization only works with filter conditions that are joined by the AND operator. If the above
two conditions were joined using the OR operator, then DBISAM would simply read all 25,000
records and evaluate the entire filter expression for each record.

In the case of a completely un-optimized filter, DBISAM's read-ahead buffering can help tremendously in
reducing network traffic and providing the most efficient reads with the least amount of I/O calls to the
operating system. DBISAM will read up to 32 kilobytes of contiguous records on disk in the course of
processing an un-optimized filter.

DBISAM can also optimize for the UPPER() and LOWER() functions by using any case-insensitive indexes in
the table to optimize the filter condition. Take the following table for example:

Customer table

Field Data Type Index

ID Integer Primary Index
Name String[30]
State String[2] Secondary, case-insensitive,
 non-unique, ascending, index

And consider the following filter:

(UPPER(State)='CA')

In this filter, DBISAM will be able to select and use the case-insensitive index on the State field, and this is
caused by the presence of the UPPER() function around the field name.

Optimization Levels

DBISAM determines the level of optimization for a filter using the following rules:

Optimized Condition = Fully-Optimized filter

Un-Optimized Condition = Un-Optimized filter

Optimized Condition AND Optimized Condition = Fully-
Optimized filter

Optimized Condition AND Un-Optimized Condition = Partially-
Optimized filter

Un-Optimized Condition AND Optimized Condition = Partially-

Advanced Topics

Page 163

Optimized filter

Un-Optimized Condition AND Un-Optimized Condition = Un-
Optimized filter

Optimized Condition OR Optimized Condition = Fully-
Optimized filter

Optimized Condition OR Un-Optimized Condition = Un-
Optimized filter

Un-Optimized Condition OR Optimized Condition = Un-
Optimized filter

Un-Optimized Condition OR Un-Optimized Condition = Un-
Optimized filter

Note
The unary NOT operator causes any expression to become partially optimized. This is due to the
fact that DBISAM must scan for, and remove, deleted records from the current records bitmap once
it has taken the bitmap and performed the NOT operation on the bits.

DBISAM Limitations

DBISAM does not optimize multiple filter conditions joined by an AND operator) by mapping them to a
compound index that may be available. To illustrate this point, consider a table with the following
structure:

Employee

Field Data Type Index
--
LastName String[30] Primary Index (both fields are part of the
FirstName String[20] Primary Index primary index)

And consider the following filter:

(LastName='Smith') and (FirstName='John')

Logically you would assume that DBISAM can use the one primary index in order to optimize the entire
filter. Unfortunately this is not the case, and instead DBISAM will only use the primary index for optimizing
the LastName condition and resort to reading records in order to evaluate the FirstName condition.

Advanced Topics

Page 164

3.6 Multi-Threaded Applications

Introduction

DBISAM is internally structured to be thread-safe and usable within a multi-threaded application provided
that you follow the rules that are outlined below.

Unique Sessions

DBISAM requires that you use a unique TDBISAMSession component for every thread that must perform
any database access at all. Each of these TDBISAMSession components must also contain a SessionName
property that is unique among all TDBISAMSession components in the application. Doing this allows
DBISAM to treat each thread as a separate and distinct "user" and will isolate transactions and other
internal structures accordingly. You may use the AutoSessionName property of the TDBISAMSession
component to allow DBISAM to automatically name each session so that is unique or you may use code
similar to the following:

var
 LastSessionValue: Integer;
 SessionNameSection: TRTLCriticalSection;

{ Assume that the following code is being executed
 within a thread }

function UpdateAccounts: Boolean;
var
 LocalSession: TDBISAMSession;
 LocalDatabase: TDBISAMDatabase;
 LocalQuery: TDBISAMQuery;
begin
 Result:=False;
 LocalSession:=GetNewSession;
 try
 LocalDatabase:=TDBISAMDatabase.Create(nil);
 try
 with LocalDatabase do
 begin
 { Be sure to assign the same session name
 as the TDBISAMSession component }
 SessionName:=LocalSession.SessionName;
 DatabaseName:='Accounts';
 Directory:='g:\accountdb';
 Connected:=True;
 end;
 LocalQuery:=TDBISAMQuery.Create(nil);
 try
 with LocalQuery do
 begin
 { Be sure to assign the same session and
 database name as the TDBISAMDatabase
 component }
 SessionName:=LocalSession.SessionName;
 DatabaseName:=LocalDatabase.DatabaseName;
 SQL.Clear;

Advanced Topics

Page 165

 SQL.Add('UPDATE accounts SET PastDue=True');
 SQL.Add('WHERE DueDate < CURRENT_DATE'));
 Prepare;
 try
 { Start the transaction and execute the query }
 LocalDatabase.StartTransaction;
 try
 ExecSQL;
 LocalDatabase.Commit;
 Result:=True;
 except
 LocalDatabase.Rollback;
 end;
 finally
 UnPrepare;
 end;
 end;
 finally
 LocalQuery.Free;
 end;
 finally
 LocalDatabase.Free;
 end;
 finally
 LocalSession.Free;
 end;
end;

function GetNewSession: TDBISAMSession;
begin
 EnterCriticalSection(SessionNameSection);
 try
 LastSessionValue:=LastSessionValue+1;
 Result:=TDBISAMSession.Create(nil);
 with Result do
 SessionName:='AccountSession'+IntToStr(LastSessionValue);
 finally
 LeaveCriticalSection(SessionNameSection);
 end;
end;

{ initialization in application }
 LastSessionValue:=0;
 InitializeCriticalSection(SessionNameSection);
{ finalization in application }
 DeleteCriticalSection(SessionNameSection);

The AutoSessionName property is, by default, set to False so you must specifically turn it on if you want
this functionality. You may also use the thread ID of the currently thread to uniquely name a session since
the thread ID is guaranteed to be unique within the context of a process.

Unique Databases

Another requirement is that all TDBISAMDatabase components must also be unique and have their
SessionName properties referring to the unique SessionName property of the TDBISAMSession component
defined in the manner discussed above.

Advanced Topics

Page 166

Unique Tables and Queries

The final requirement is that all TDBISAMTable and TDBISAMQuery components must also be unique and
have their SessionName properties referring to the unique SessionName property of the TDBISAMSession
component defined in the manner discussed above. Also, if a TDBISAMTable or TDBISAMQuery
component refers to a TDBISAMDatabase component's DatabaseName property via its own
DatabaseName property, then the TDBISAMDatabase referred to must be defined in the manner discussed
above.

ISAPI Applications

ISAPI applications created using the Borland WebBroker components or a similar technology are implicitly
multi-threaded. Because of this, you should ensure that your ISAPI application is thread-safe according to
these rules for multi-threading when using DBISAM. Also, if you have simply dropped a TDBISAMSession
component on the WebModule of a WebBroker ISAPI application, you must set its AutoSessionName
property to True before dropping any other DBISAM components on the form so that DBISAM will
automatically give the TDBISAMSession component a unique SessionName property and propogate this
name to all of the other DBISAM components.

Further Considerations

There are some other things to keep in mind when writing a multi-threaded database application with
DBISAM, especially if the activity will be heavy and there will be many threads actively running. Be
prepared to handle any errors in a manner that allows the thread to terminate gracefully and properly free
any TDBISAMSssion, TDBISAMDatabase, TDBISAMTable, or TDBISAMQuery components that it has
created. Otherwise you may run into a situation where memory is being consumed at an alarming rate.
Finally, writing multi-threaded applications, especially with database access, is not a task for the beginning
developer so please be sure that you are well-versed in using threads and how they work before jumping
into writing a multi-threaded application with DBISAM.

Advanced Topics

Page 167

3.7 Full Text Indexing

Introduction

DBISAM provides the ability to index string and memo fields so that they may be quickly searched for a
given word or words. This is known as full text indexing since it results in the indexing of every word in
every column that is specified as part of the full text index for the table. This whole process is controlled
by full text indexing parameters that are defined as part of the table structure when creating or altering
the structure of tables, as well as events in the TDBISAMEngine component for customizing the full text
indexing. Please see the Customizing the Engine for more information.

Note
Full text indexing and searching is always case-insensitive in DBISAM. This means that words are
always compared without regard for case, however the include and space character full text
indexing parameters are compared on an exact character basis when parsing the text to be indexed
or searched.

Text Indexing Parameters

The three parameters that control the full text indexing behavior for a given table are:

Parameter Description

Stop Words List The stop words list is a list of words that are to be excluded
from the full text index. These words are usually very
common words and excluding them from the full text index
can result in tremendous space savings for the physical index.
The default stop words for a table are as follows:

A
AN
AND
BE
FOR
HOW
IN
IS
IT
OF
ON
OR
THAT
THE
THIS
TO
WAS
WHAT
WHEN
WHICH
WHY
WILL

Advanced Topics

Page 168

The stop words list is always case-insensitive, as is the full
text indexing in general.

Space Characters The space characters specify which characters in the ANSI
character set are to be used for word separator characters.
These characters usually consist of any character below the
ordinal value of 33 and other separators such as backslashes
(\)and commas (,). The default space characters for a table
are as follows:

Characters 1 through 32
*+,-./:;<=>\

Include Characters The include characters specify which characters in the ANSI
character set are to be included in the words that are finally
used for the full text index. These characters usually consist of
all alphanumeric characters as well as all high character
values in the ANSI character set that are used by non-English
languages for accented characters and other diacritically-
marked characters. The default include characters for a table
are as follows:

0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopqrstuvwxyz

 €‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™
 š›œžŸ ¡¢£¤¥¦§¨©ª«¬®¯°±²³

´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍ
ÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæç
èéêëìíîïðñòóôõö÷øùúûüýþ

Note
You must alter the structure of a table in order to change any of these parameters.

Performing a Text Search

DBISAM includes the filter and SQL TEXTSEARCH function in order to take advantage of the full text index
and also as a general-purpose, brute-force, word search function when searching on string or memo
columns that are not part of the full text index. The TEXTSEARCH function accepts a list of words in a
search string constant and a column name as its two parameters. The following is an example of using the
TEXTSEARCH function in an expression filter:

begin
 with MyTable do
 begin
 Filter:='TEXTSEARCH('+QuotedStr('DATABASE QUERY SPEED')+
 ' IN TextBody)';
 Filtered:=True;
 end;
end;

Advanced Topics

Page 169

In the above example, if the TextBody column is included as part of the indexed fields that make up the
full text index then the filter will execute very quickly. If the column is not part of the full text index, then
the filter will be forced to resort to a brute-force scan of the TextBody column for every record in the
table. To further explain how the text searching works, let's break down the previous process (assuming
an optimized text search):

1) DBISAM parses the search string constant "DATABASE QUERY SPEED" into three words (DATABASE,
QUERY, and SPEED) using the space characters and include characters specified for the table, which by
default would allow for the space character () as the word separator in this case. If there happened to be
a backslash in the search string such as "DATABASE C:\TEMP" then the search string would be parsed into
three words "DATABASE C TEMP". This is because the default full text indexing space characters include
the colon (:) and the backslash (\).

2) DBISAM takes the list of words created from the text indexing parameters and performs a case-
insensitive search of the stop words for the table to see if any of the words exist in the stop words. If one
or more does, then they are ignored when performing the actual search.

3) Finally, DBISAM searches the full text index and builds a bitmap for each word indicating which records
satisfy the search for that particular word. These bitmaps are ANDed together and the resultant bitmap is
used for filtering the records in the table. This process is very similar to a what happends with a normal
optimized filter expression or SQL WHERE clause.

Note
DBISAM only executes an AND search for the multiple words in the search string. If you want to
execute an OR search for multiple words you should split up the operation into multiple
TEXTSEARCH calls as the following example illustrates:

begin
 with MyTable do
 begin
 Filter:='TEXTSEARCH('+QuotedStr('DATABASE')+
 ' IN TextBody) OR '+
 'TEXTSEARCH('+QuotedStr('QUERY')+
 ' IN TextBody) OR '+
 'TEXTSEARCH('+QuotedStr('SPEED')+
 ' IN TextBody)';
 Filtered:=True;
 end;
end;

This will give the desired results of returning all records where either DATABASE, QUERY, or SPEED are
found in the TextBody column.

You can also specify partial-word searches using the asterisk as a trailing wildcard character. The following
is an example of using the TEXTSEARCH function in an expression filter with a partial-word search string:

begin
 with MyTable do
 begin
 Filter:='TEXTSEARCH('+QuotedStr('DATA*')+
 ' IN TextBody)';

Advanced Topics

Page 170

 Filtered:=True;
 end;
end;

Note
You can mix and match partial words and whole words in the same search string.

If you wish to find out what words were searched on in a TEXTSEARCH function or just want to test
various text indexing parameters, you can do so using the TDBISAMEngine BuildWordList method.

Retrieving the Number of Occurrences

DBISAM includes the filter and SQL TEXTOCCURS function in order to calculate the number of times a
specific list of words in a given search string occurs in a string or memo column. This function is always a
brute-force function and should not be used for the bulk of the filtering or searching but rather for ranking
purposes or something similar after the search has been completed using the TEXTSEARCH function. The
TEXTOCCURS function accepts a list of words in a search string constant and a column name as its two
parameters. The following is an example of using the TEXTOCCURS function in an SQL SELECT statement:

SELECT GroupNo, No, TEXTOCCURS('DATABASE QUERY SPEED' IN TextBody) AS
 NumOccurs
FROM article
WHERE TEXTSEARCH('DATABASE QUERY SPEED' IN TextBody)
ORDER BY 3 DESC

As you can see, the TEXTOCCURS function is being used to provide ranking of the results by the number
of times the search words occur in the TextBody column after the bulk of the search was already handled
by the optimized TEXTSEARCH function.

Advanced Topics

Page 171

3.8 Compression

Introduction

DBISAM uses the standard ZLib compression algorithm for compressing data such as BLOB fields and
remote session requests and responses to and from a database server. The ZLib compression is contained
within the zlibpas and zlibcomp units (Delphi) or zlibpas and zlibcomp header files (C++).

Copyright and Credits

The ZLib implementation in DBISAM was contributed by David Martin. The following are the citations and
copyrights for both the code that was contributed as well as for the ZLib algorithm itself.

 © Copyright 1995-98 Jean-loup Gailly & Mark Adler
 © Copyright 1998-00 Jacques Nomssi Nzali
 © Copyright 2000-2001 David O. Martin

These units build upon a pascal port of the ZLib compression routines by Jean-loup Gailly and Mark Adler.
The original pascal port was performed by Jacques Nomssi Nzali as contained in PasZLib which is based on
ZLib 1.1.2. There are some errors in that port which have been fixed in this version. Although most of the
code in this unit is derivative, there are some important changes (bug fixes). Nevertheless, this code is
released as freeware with the same permissions as granted by the preceding authors (Gailly, Adler, Nzali).

Replacing the Default Compression

You can replace the default compression implementation in DBISAM by using the events provided in the
TDBISAMEngine component. Please see the Customizing the Engine topic for more information.

Note
If you replace the default compression, keep in mind that you must make sure to not mix and
match different compression implementations with various applications or servers that access the
same databases and tables. Doing so can cause some serious problems and the potential for losing
data since one application or server will not be able to read or write data that was compressed
using a different compression implementation.

Advanced Topics

Page 172

3.9 Encryption

Introduction

DBISAM uses the Blowfish symmetric block cipher encryption algorithm along with the RSA Data Security,
Inc. MD5 message-digest algorithm for encrypting tables and remote session requests and responses to
and from a database server. Both of these algorithms are contained within the dbisamcr unit (Delphi) or
dbisamcr header file (C++).

Copyright and Credits

Both the Blowfish and MD5 implementations in DBISAM were written by us. The following are the citations
and copyrights for the Blowfish and MD5 algorithms.

 Blowfish Algorithm © Copyright 1993 Bruce Schneier
 MD5 Algorithm © Copyright 1991-1992, RSA Data Security, Inc.

DBISAM uses the MD5 message-digest algorithm to generate 128-bit MD5 hashes from plain-text
passwords. These hashes are then used with the Blowfish 8-byte symmetric block cipher algorithm to
encrypt the actual data.

Replacing the Default Encryption

You can replace the default block cipher encryption implementation in DBISAM by using the events
provided in the TDBISAMEngine component. Please see the Customizing the Engine topic for more
information. You can only replace the default encryption implementation with another 8-byte block cipher
implementation.

Note
If you replace the default encryption, keep in mind that you must make sure to not mix and match
different encryption implementations with various applications or servers that access the same
databases and tables. Doing so can cause some serious problems and the potential for losing data
since one application or server will not be able to read or write data that was encrypted using a
different encryption implementation.

Advanced Topics

Page 173

3.10 Recompiling the DBISAM Source Code

Introduction

In some cases you may want to change the DBISAM source code and recompile it to incorporate these
changes into your application. However, you must first have purchased a version of DBISAM that includes
source code to the engine in order to make changes to the source code.

Setting Search Paths

The first thing that you must do is make sure that any search paths, either global to DBISAM such as the
Library Search Path or local to your project, are pointing to the directory or path where the DBISAM source
code was installed. By default this directory or path is:

\<base directory>\<product>\<compiler> <n>\code\source

The <product> component of the path can be one of the following values:

Value Description

DBISAM <type> Standard with Source This indicates the standard version of DBISAM with source
code

DBISAM <type> Client-Server with
Source

This indicates the client-server version of DBISAM with source
code

The <type> component of the product name will be either VCL or ODBC.

The <compiler> <n> component of the path indicates the development environment in use and the
version number of the development environment. For example, for Delphi 6 this component would look
like this:

Delphi 6

Setting Compiler Switches

The second thing that must be done is to make sure that the compiler switches that you are using are set
properly for DBISAM. The build system used to compile DBISAM here at Elevate Software uses the
dcc32.exe, dcc64.exe, and dcc command-line compilers provided with Delphi and C++ to compile
DBISAM. The following switches are set during compilation and any other switches are assumed to be at
their default state for the compiler:

$D- Debug information off
$L- Local symbols off

Advanced Topics

Page 174

Note
These same switches are used to compile all DBISAM utilities and the DBISAM server project also.

A Word of Caution

Making changes to the DBISAM source code is not an easy task. A mistake in such changes could result in
the loss of critical data and Elevate Software cannot be held responsible for any losses incurred from such
changes. Occasionally our support staff may send a fix to a customer that owns the source code in order
to facilitate a quicker turnaround on a bug report, but it is the responsibility of the customer to weigh the
risks of implementing such a change with the possible problems that such a change could bring about.
Elevate Software tries very hard to also assist any customers that do want to make changes to the
DBISAM source code for custom purposes and will always make an attempt to guide the customer to a
solution that fits their needs and is reliable in operation. In general, however, it is usually recommended
that you use the generic customization facilities provided with DBISAM as opposed to making direct
changes to the source code. Please see the Customizing the Engine topic for more information.

Advanced Topics

Page 175

3.11 Replacement Memory Manager

Introduction

DBISAM uses a replacement memory manager for Delphi called FastMM with both the GUI and command-
line database servers that ship with all DBISAM products. The FastMM memory manager is designed to be
extremely efficient at allocating and de-allocating many small blocks of memory of similar sizes, which is
primarily what DBISAM does during most operations. The memory manager is also designed to overcome
issues with the default Delphi memory manager that cause it to perform very poorly with multi-threaded
applications that run on servers with multiple processors due to its use of a single critical section for all
access to the memory pool. This design becomes a major performance bottleneck in such situations.

You can download the FastMM memory manager from SourceForge here:

FastMM

Including the Memory Manager in an Application

In any cases that you wish to include the FastMM replacement memory manager in an application, there
are only a couple of steps involved:

1) Open the Delphi project .dpr file.

2) Include the FastMM4 unit that is shipped with FastMM as the first unit in the project's USES clause.

Note
It is extremely important that the FastMM4 unit is the very first unit in the USES clause.

The following is an partial excerpt of the dbsrvr.dpr project file that is shipped with DBISAM for the GUI
database server. It illustrates how to include the FastMM4 unit in the project's USES clause:

program dbsrvr;

uses

 {$I dbisamvr.inc}

 {$IFDEF MSWINDOWS}
 FastMM4,
 {$ENDIF}

 SysUtils,

Compatibility Issues

The FastMM replacement memory manager is for use only with Delphi and is not intended for use with
C++.

Advanced Topics

Page 176

Chapter 4
SQL Reference

4.1 Overview

Introduction

DBISAM does not support the complete ANSI SQL-92 specification. Rather, it supports a subset of the
specification that includes the most widely used SQL statements for data manipulation and definition, in
some cases with DBISAM extensions, as well as some SQL statements that are specific to DBISAM:

SQL Statement Standard

SELECT SQL-92 with DBISAM Extensions

INSERT SQL-92 with DBISAM Extensions

UPDATE SQL-92 with DBISAM Extensions

DELETE SQL-92 with DBISAM Extensions

CREATE TABLE SQL-92 with DBISAM Extensions

ALTER TABLE SQL-92 with DBISAM Extensions

EMPTY TABLE DBISAM-specific

OPTIMIZE TABLE DBISAM-specific

EXPORT TABLE DBISAM-specific

IMPORT TABLE DBISAM-specific

VERIFY TABLE DBISAM-specific

REPAIR TABLE DBISAM-specific

UPGRADE TABLE DBISAM-specific

DROP TABLE SQL-92 with DBISAM Extensions

RENAME TABLE DBISAM-specific

CREATE INDEX SQL-92 with DBISAM Extensions

DROP INDEX SQL-92 with DBISAM Extensions

START TRANSACTION SQL-92 with DBISAM Extensions

COMMIT SQL-92 with DBISAM Extensions

ROLLBACK SQL-92 with DBISAM Extensions

SQL Reference

Page 177

4.2 Naming Conventions

Introduction

DBISAM requires that certain naming conventions be adhered to when executing SQL. The following rules
and naming conventions apply to all supported SQL statements in DBISAM.

Table Names

ANSI-standard SQL specifies that each table name must be a single word comprised of alphanumeric
characters and the underscore symbol (_). However, DBISAM's SQL is enhanced to support multi-word
table names by enclosing them in double quotes ("") or square brackets ([]):

SELECT *
FROM "Customer Data"

DBISAM's SQL also supports full file and path specifications in table references for SQL statements being
executed within a local session. Table references with path or filename extensions must be enclosed in
double quotes ("") or square brackets ([]). For example:

SELECT *
FROM "c:\sample\parts"

or

SELECT *
FROM "parts.dat"

Note
It is not recommended that you specifiy the .dat file name extension in SQL statements for two
reasons:

1) First of all, it is possible for the developer to change the default table file extensions for data, index,
and BLOB files from the defaults of ".dat", ".idx", and ".blb" to anything that is desired. Please see the
DBISAM Architecture topic for more information.

2) Using file paths and extensions at all in SQL statements makes the SQL less portable to other database
engines or servers.

DBISAM's SQL also supports database name specifications in table references for SQL statements being
executed within a remote session. Table references with database must be enclosed in double quotes ("")
or square brackets ([]). For example:

SQL Reference

Page 178

SELECT *
FROM "\Sample Data\parts"

Note
The database name used with remote sessions is not a directory name like it is with local sessions.
Instead, it must be a logical database name that matches that of a database defined on the
database server that you are accessing with the SQL statement.

To use an in-memory table in an SQL statement within both local and remote sessions, just prefix the
table name with the special "Memory" database name:

SELECT *
FROM "\Memory\parts"

Please see the In-Memory Tables topic for more information.

Column Names

ANSI-standard SQL specifies that each column name be a single word comprised of alphanumeric
characters and the underscore symbol (_). However, DBISAM's SQL is enhanced to support multi-word
column names. Also, DBISAM's SQL supports multi-word column names and column names that duplicate
SQL keywords as long as those column names are enclosed in double quotes ("") or square brackets ([])
or prefaced with an SQL table name or table correlation name. For example, the following column name
consists of two words:

SELECT E."Emp Id"
FROM employee E

In the next example, the column name is the same as the SQL keyword DATE:

SELECT weblog.[date]
FROM weblog

String Constants

ANSI-standard SQL specifies that string constants be enclosed in single quotes (''), and DBISAM's SQL
follows this convention. For example, the following string constant is used in an SQL SELECT WHERE
clause:

SELECT *
FROM customer
WHERE Company='ABC Widgets'

SQL Reference

Page 179

Note
String constants can contain any character in the ANSI character set except for the non-printable
characters below character 32 (space). For example, if you wish to embed a carriage-return and line
feed in a string constant, you would need to use the following syntax:

UPDATE customer SET Notes='ABC Widgets'+
#13+#10+'Located in New York City'

The pound sign can be used with the ordinal value of any ANSI character in order to represent that single
character as a constant.

To streamline the above, you can use the TDBISAMEngine QuotedSQLStr method to properly format and
escape any embedded single quotes or non-printable characters in a string constant. Please see the
Executing SQL Queries topic for more information.

Date, Time, TimeStamp, and Number Constants

DBISAM's SQL uses ANSI/ISO date and number formatting for all date, time, timestamp (date/time), and
number constants, which is consistent with ANSI-standard SQL except for missing support for date and
time interval constants, which are not supported in DBISAM's SQL currently. The formats are as follows:

Constant Format

Dates The date format is yyyy-mm-dd where yyyy is the year (4
digits required), mm is the month (leading zero optional), and
the day (leading zero optional).

Times The time format is hh:mm:ss.zzz am/pm where hh is the hour
(leading zero optional), mm is the minutes (leading zero
optional), ss is the seconds (leading zero optional), zzz is the
milliseconds (leading zero optional), and the am/pm
designation for times using the 12-hour clock. The seconds
and milliseconds are optional when specifying a time, as is the
am/pm designation. If the am/pm designation is omitted, the
time is expected to be in 24-hour clock format.

Timestamps (date/time) The timestamp format is a combination of the date format
and the time format with a space in-between the two formats.

Numbers All numbers are expected to use the period (.) as the decimal
separator and no monetary symbols must be used. DBISAM's
SQL does not support scientific notation in number constants
currently.

All date, time, and timestamp constants must be enclosed in single quotes ('') when specified in an SQL
statement. For example:

SELECT *
FROM orders
WHERE (saledate <= '1998-01-23')

SQL Reference

Page 180

Boolean Constants

The boolean constants TRUE and FALSE can be used for specifying a True or False value. These constants
are case-insensitive (True=TRUE). For example:

SELECT *
FROM transfers
WHERE (paid = TRUE) AND NOT (incomplete = FALSE)

Table Correlation Names

Compliant with ANSI-standard SQL, table correlation names can be used in DBISAM's SQL to explicitly
associate a column with the table from which it is derived. This is especially useful when multiple columns
of the same name appear in the same query, typically in multi-table queries. A table correlation name is
defined by following the table reference in the SQL statement with a unique identifier. This identifier, or
table correlation name, can then be used to prefix a column name. The base table name is the default
implicit correlation name, irrespective of whether the table name is enclosed in double quotes ("") or
square brackets ([]). The base table name is defined as the table name for the DBISAM table not including
the full path or any file extensions. For example, the base table name for the physical table
"c:\temp\customer.dat" is "customer" as show in this example:

SELECT *
FROM "c:\temp\customer.dat"
LEFT OUTER JOIN "c:\temp\orders.dat"
ON (customer.custno = orders.custno)

You may also use the physical file name for the table as a table correlation name, although it's not
required nor recommended:

SELECT *
FROM "customer.dat"
LEFT OUTER JOIN "orders.dat"
ON ("customer.dat".custno = "orders.dat".custno)

And finally, you may use a distinctive token as a correlation name (and prefix all column references with
the same correlation name):

SELECT *
FROM "customer" C
LEFT OUTER JOIN "orders" O
ON (C.custno = O.custno)

Column Correlation Names

You can use the AS keyword to assign a correlation name to a column or column expression within a

SQL Reference

Page 181

DBISAM SQL SELECT statement, which is compliant with ANSI-standard SQL. Column correlation names
can be enclosed in double quotes ("") and can contain embedded spaces. The following example shows
how to use the AS keyword to assign a column correlation name:

SELECT
customer.company AS "Company Name",
orders.orderno AS "Order #",
sum(items.qty) AS "Total Qty"
FROM customer LEFT OUTER JOIN orders ON customer.custno=orders.custno
LEFT OUTER JOIN items ON orders.orderno=items.orderno
WHERE customer.company LIKE '%Diver%'
GROUP BY 1,2
ORDER BY 1

You may also optionally exclude the AS keyword and simply specify the column correlation name directly
after the column, as shown here:

SELECT
customer.company "Company Name",
orders.orderno "Order #",
sum(items.qty) "Total Qty"
FROM customer LEFT OUTER JOIN orders ON customer.custno=orders.custno
LEFT OUTER JOIN items ON orders.orderno=items.orderno
WHERE customer.company LIKE '%Diver%'
GROUP BY 1,2
ORDER BY 1

Embedded Comments

Per ANSI-standard SQL, comments, or remarks, can be embedded in SQL statements to add clarity or
explanation. Text is designated as a comment and not treated as SQL by enclosing it within the beginning
/* and ending */ comment symbols. The symbols and comments need not be on the same line:

/*
 This is a comment
*/
SELECT SUBSTRING(company FROM 1 FOR 4) AS abbrev
FROM customer

Comments can also be embedded within an SQL statement. This is useful when debugging an SQL
statement, such as removing one clause for testing.

SELECT company
FROM customer
/* WHERE (state = 'TX') */
ORDER BY company

Reserved Words

SQL Reference

Page 182

Below is an alphabetical list of words reserved by DBISAM's SQL. Avoid using these reserved words for the
names of metadata objects (tables, columns, and indexes). An exception occurs when reserved words are
used as names for metadata objects. If a metadata object must have a reserved word as it name, prevent
the error by enclosing the name in double-quotes ("") or square brackets ([]) or by prefixing the reference
with the table name (in the case of a column name).

ABS
ACOS
ADD
ALL
ALLTRIM
ALTER
AND
AS
ASC
ASCENDING
ASIN
AT
ATAN
ATAN2
AUTOINC
AVG
BETWEEN
BINARY
BIT
BLOB
BLOCK
BOOL
BOOLEAN
BOTH
BY
BYTES
CAST
CEIL
CEILING
CHAR
CHARACTER
CHARCASE
CHARS
COALESCE
COLUMN
COLUMNS
COMMIT
COMPRESS
CONCAT
CONSTRAINT
COS
COT
COUNT
CREATE
CURRENT_DATE
CURRENT_GUID
CURRENT_TIME
CURRENT_TIMESTAMP
DAY
DAYOFWEEK
DAYOFYEAR

SQL Reference

Page 183

DAYSFROMMSECS
DECIMAL
DEFAULT
DEGREES
DELETE
DELIMITER
DESC
DESCENDING
DESCRIPTION
DISTINCT
DROP
DUPBYTE
ELSE
EMPTY
ENCRYPTED
ESCAPE
EXCEPT
EXISTS
EXP
EXPORT
EXTRACT
FALSE
FLOAT
FLOOR
FLUSH
FOR
FORCEINDEXREBUILD
FROM
FULL
GRAPHIC
GROUP
GUID
HAVING
HEADERS
HOUR
HOURSFROMMSECS
IDENT_CURRENT
IDENTITY
IF
IFNULL
IMPORT
IN
INCLUDE
INDEX
INNER
INSERT
INT
INTEGER
INTERSECT
INTERVAL
INTO
IS
JOIN
KEY
LARGEINT
LAST
LASTAUTOINC
LCASE
LEADING
LEFT

SQL Reference

Page 184

LENGTH
LIKE
LOCALE
LOG
LOG10
LONGVARBINARY
LONGVARCHAR
LOWER
LTRIM
MAJOR
MAX
MAXIMUM
MEMO
MIN
MINIMUM
MINOR
MINSFROMMSECS
MINUTE
MOD
MONEY
MONTH
MSECOND
MSECSFROMMSECS
NOBACKUP
NOCASE
NOCHANGE
NOJOINOPTIMIZE
NONE
NOT
NULL
NUMERIC
OCCURS
ON
OPTIMIZE
OR
ORDER
OUTER
PAGE
PI
POS
POSITION
POWER
PRIMARY
RADIANS
RAND
RANGE
REDEFINE
RENAME
REPAIR
REPEAT
REPLACE
RIGHT
ROLLBACK
ROUND
RTRIM
RUNSUM
SECOND
SECSFROMMSECS
SELECT
SET

SQL Reference

Page 185

SIGN
SIN
SIZE
SMALLINT
SPACE
SQRT
START
STDDEV
STOP
SUBSTRING
SUM
TABLE
TAN
TEXT
TEXTOCCURS
TEXTSEARCH
THEN
TIME
TIMESTAMP
TO
TOP
TRAILBYTE
TRAILING
TRANSACTION
TRIM
TRUE
TRUNC
TRUNCATE
UCASE
UNION
UNIQUE
UPDATE
UPGRADE
UPPER
USER
VALUES
VARBINARY
VARBYTES
VARCHAR
VERIFY
VERSION
WEEK
WHERE
WITH
WORD
WORDS
WORK
YEAR
YEARSFROMMSECS

The following are operators used in DBISAM's SQL. Avoid using these characters in the names of metadata
objects:

|
+
-
*

SQL Reference

Page 186

/
<>
<
>
.
;
,
=
<=
>=
(
)
[
]
#

SQL Reference

Page 187

4.3 Unsupported SQL

The following ANSI-standard SQL-92 language elements are not used in DBISAM's SQL:

ALLOCATE CURSOR (Command)
ALLOCATE DESCRIPTOR (Command)
ALTER DOMAIN (Command)
CHECK (Constraint)
CLOSE (Command)
CONNECT (Command)
CONVERT (Function)
CORRESPONDING BY (Expression)
CREATE ASSERTION (Command)
CREATE CHARACTER SET (Command)
CREATE COLLATION (Command)
CREATE DOMAIN (Command)
CREATE SCHEMA (Command)
CREATE TRANSLATION (Command)
CREATE VIEW (Command)
CROSS JOIN (Relational operator)
DEALLOCATE DESCRIPTOR (Command)
DEALLOCATE PREPARE (Command)
DECLARE CURSOR (Command)
DECLARE LOCAL TEMPORARY TABLE (Command)
DESCRIBE (Command)
DISCONNECT (Command)
DROP ASSERTION (Command)
DROP CHARACTER SET (Command)
DROP COLLATION (Command)
DROP DOMAIN (Command)
DROP SCHEMA (Command)
DROP TRANSLATION (Command)
DROP VIEW (Command)
EXECUTE (Command)
EXECUTE IMMEDIATE (Command)
EXISTS (Predicate)
FETCH (Command)
FOREIGN KEY (Constraint)
GET DESCRIPTOR (Command)
GET DIAGNOSTICS (Command)
GRANT (Command)
MATCH (Predicate)
NATURAL (Relational operator)
NULLIF (Expression)
OPEN (Command)
OVERLAPS (Predicate)
PREPARE (Command)
REFERENCES (Constraint)
REVOKE (Command)
SET CATALOG (Command)
SET CONNECTION (Command)
SET CONSTRAINTS MODE (Command)
SET DESCRIPTOR (Command)
SET NAMES (Command)
SET SCHEMA (Command)
SET SESSION AUTHORIZATION (Command)

SQL Reference

Page 188

SET TIME ZONE (Command)
SET TRANSACTION (Command)
TRANSLATE (Function)
USING (Relational operator)

SQL Reference

Page 189

4.4 Optimizations

Introduction

DBISAM uses available indexes when optimizing SQL queries so that they execute in the least amount of
time possible. In addition, joins are re-arranged to allow for the least number of joins as possible since
joins tend to be fairly expensive in DBISAM.

Index Selection

DBISAM will use an available index to optimize any expression in the WHERE clause of an SQL SELECT,
UPDATE, or DELETE statement. It will also use an available index to optimize any join expressions
between multiple tables. This index selection is based on the following rules:

1) DBISAM only uses the first field of any given index for optimization. This means that if you have an
index containing the fields LastName and FirstName, then DBISAM can only use the this index for
optimizing any conditions that refer to the LastName field.

2) DBISAM can use both ascending and descending indexes for optimization.

3) DBISAM will only use case-sensitive indexes for optimizing any conditions on string fields unless the
condition contains the UPPER() or LOWER() SQL function. In such a case DBISAM will only look for and
use case-insensitive indexes for optimizing the condition. Conditions on non-string fields such as integer or
boolean fields can always use any index that contains the same field, regardless of the index's case-
insensitivity setting.

4) DBISAM can mix and match the optimization of conditions so that it is possible to have one condition be
optimized and the other not. This is known as a partially-optimized query.

How DBISAM Builds the Query Results

Once an index is selected for optimizing a given condition of the WHERE clause, a range is set on the
index in order to limit the index keys to those that match the current condition being optimized. The index
keys that satisfy the condition are then scanned, and during the scan a bitmap is built in physical record
number order. A bit is turned on if the physical record satisfies the condition, and a bit is turned off if it
doesn't. This method of using bitmaps works well because it can represent sets of data with minimal
memory consumption. Also, DBISAM is able to quickly determine how many records are in the set (how
many bits are turned on), and it can easily AND, OR, and NOT bitmaps together to fulfill boolean logic
between multiple conditions. Finally, because the bitmap is in physical record order, accessing the records
using a bitmap is very direct since DBISAM uses fixed-length records with directly-addressable offsets in
the physical table format.

When optimizing SQL SELECT queries that contain both join conditions and WHERE conditions, DBISAM
always processes the non-join conditions first if the conditions do not affect the target table, which is the
table on the right side of a LEFT OUTER JOIN or the table on the left side of a RIGHT OUTER JOIN. This
can speed up join operations tremendously since the join conditions will only take into account the records
existing in the source table(s) based upon the WHERE conditions. For example, consider the following
query:

SELECT
OrderHdr.Cust_ID,
OrderHdr.Order_Num,

SQL Reference

Page 190

OrderDet.Model_Num,
OrderDet.Cust_Item
FROM OrderHdr, OrderDet
WHERE OrderHdr.Order_Num=OrderDet.Order_Num AND
 OrderHdr.Cust_ID='C901'
ORDER BY 1,2,3

In this example, the WHERE condition:

OrderHdr.Cust_ID='C901'

will be evaluated first before the join condition:

OrderHdr.Order_Num=OrderDet.Order_Num

so that the joins only need to process a small number of records in the OrderHdr table.

When optimizing SQL SELECT queries that contain INNER JOINs that also contain selection conditions
(conditions in an INNER JOIN clause that do not specify an actual join), the selection conditions are always
processed at the same time as the join, even if they affect the target table, which is the table on the right
side of the join. This can speed up join operations tremendously since the join conditions will only take
into account the records existing in the source table(s) based upon the selection conditions. For example,
consider the following query:

SELECT
OrderHdr.Cust_ID,
OrderHdr.Order_Num,
OrderDet.Model_Num,
OrderDet.Cust_Item
FROM OrderHdr INNER JOIN OrderDet ON
OrderHdr.Order_Num=OrderDet.Order_Num AND OrderHdr.Cust_ID='C901'
ORDER BY 1,2,3

In this example, the selection condition:

OrderHdr.Cust_ID='C901'

will be evaluated first before the join condition:

OrderHdr.Order_Num=OrderDet.Order_Num

so that the joins only need to process a small number of records in the OrderHdr table.

SQL Reference

Page 191

Note
If an SQL SELECT query can return a live result set, then the WHERE clause conditions are applied
to the source table via an optimized filter and the table is opened. If an SQL SELECT query contains
joins or other items that cause DBISAM to only return a canned result set, then all of the records
from the source tables that satisfy the WHERE clause conditions and join conditions are copied to a
temporary table on disk and that table is opened as the query result set. This process can be time-
consuming when a large number of records are returned by the query, so it is recommended that
you try to make your queries as selective as possible.

How Joins are Processed

Join conditions in SQL SELECT, UPDATE, or DELETE statements are processed in DBISAM using a
technique known as nested-loop joins. This means that DBISAM recursively processes the source tables in
a master-detail, master-detail, etc. arrangement with a driving table and a destination table (which then
becomes the driving table for any subsequent join conditions). When using this technique, it is very
important that the table with the smallest record count (after any non-join conditions from the WHERE
clause have been applied) is specified as the first driving table in the processing of the joins. DBISAM's
SQL optimizer will automatically optimize the join ordering so that the table with the smallest record count
is placed as the first driving table as long as the joins are INNER JOINS or SQL-89 joins in the WHERE
clause. LEFT OUTER JOINs and RIGHT OUTER JOINs cannot be re-ordered in such a fashion and must be
left alone.

The following is an example that illustrates the nested-loop joins in DBISAM:

SELECT c.Company,
o.OrderNo,
e.LastName,
p.Description,
v.VendorName
FROM Customer c, Orders o, Items i, Vendors v, Parts p, Employee e
WHERE c.CustNo=o.CustNo AND
o.OrderNo=i.OrderNo AND
i.PartNo=p.PartNo AND
p.VendorNo=v.VendorNo AND
o.EmpNo=e.EmpNo
ORDER BY e.LastName

In this example, DBISAM would process the joins in this order:

1) Customer table joined to Orders table on the CustNo column

2) Orders table joined to Items table on the OrderNo column and Orders table joined to Employee table on
EmpNo column (this is also known as a multi-way, or star, join)

3) Items table joined to Parts table on the PartNo column

4) Parts table joined to Vendors table on the VendorNo column

In this case the Customer table is the smallest table in terms of record count, so making it the driving
table in this case is a good choice. Also, you'll notice that in the case of the multi-way, or star, join
between the Orders table and both the Items and Employee table, DBISAM will move the join order of the
Employee table up in order to keep the join ordering as close to the order of the source tables in the

SQL Reference

Page 192

FROM clause as possible.

Note
You can use the NOJOINOPTIMIZE keyword at the end of the SQL SELECT, UPDATE, or DELETE
statement in order to tell DBISAM not to reorder the joins. Also, SQL UPDATE and DELETE
statements cannot have their driver table reordered due to the fact that the driver table is the table
being updated by these statements.

Query Plans

You can use the TDBISAMQuery GeneratePlan property to indicate that you want DBISAM to generate a
query plan for the current SQL statement or script when it is executed. The resulting query plan will be
stored in the TDBISAMQuery Plan property. Examining this query plan can tell you exactly what the SQL
optimizer is doing when executing a given SQL statement or script. For example, the query mentioned
above would generate the following query plan:

===
 ===
SQL
 statement
==
 ==

SELECT c.Company,
o.OrderNo,
e.LastName,
p.Description,
v.VendorName
FROM Customer c, Orders o, Items i, Vendors v, Parts p, Employee e
WHERE c.CustNo=o.CustNo AND
o.OrderNo=i.OrderNo AND
i.PartNo=p.PartNo AND
p.VendorNo=v.VendorNo AND
o.EmpNo=e.EmpNo
ORDER BY e.LastName

Result Set Generation

Result set will be canned
Result set will consist of one or more rows
Result set will be ordered by the following column(s) using a case-sensitive
temporary index:

LastName ASC

Join Ordering

The driver table is the Customer table (c)

The Customer table (c) is joined to the Orders table (o) with the INNER JOIN
expression:

SQL Reference

Page 193

c.CustNo = o.CustNo

The Orders table (o) is joined to the Items table (i) with the INNER JOIN
expression:

o.OrderNo = i.OrderNo

The Orders table (o) is joined to the Employee table (e) with the INNER JOIN
expression:

o.EmpNo = e.EmpNo

The Items table (i) is joined to the Parts table (p) with the INNER JOIN
expression:

i.PartNo = p.PartNo

The Parts table (p) is joined to the Vendors table (v) with the INNER JOIN
expression:

p.VendorNo = v.VendorNo

Optimized Join Ordering

The driver table is the Vendors table (v)

The Vendors table (v) is joined to the Parts table (p) with the INNER JOIN
expression:

v.VendorNo = p.VendorNo

The Parts table (p) is joined to the Items table (i) with the INNER JOIN
expression:

p.PartNo = i.PartNo

The Items table (i) is joined to the Orders table (o) with the INNER JOIN
expression:

i.OrderNo = o.OrderNo

The Orders table (o) is joined to the Customer table (c) with the INNER JOIN
expression:

o.CustNo = c.CustNo

The Orders table (o) is joined to the Employee table (e) with the INNER JOIN
expression:

o.EmpNo = e.EmpNo

Join Execution

Costs ARE NOT being taken into account when executing this join
Use the JOINOPTIMIZECOSTS clause at the end of the SQL statement to force the

optimizer to consider costs when optimizing this join

SQL Reference

Page 194

The expression:

v.VendorNo = p.VendorNo

is OPTIMIZED

The expression:

p.PartNo = i.PartNo

is OPTIMIZED

The expression:

i.OrderNo = o.OrderNo

is OPTIMIZED

The expression:

o.CustNo = c.CustNo

is OPTIMIZED

The expression:

o.EmpNo = e.EmpNo

is
 OPTIMIZED

==
 ==

You'll notice that the joins have been re-ordered to be in the most optimal order. You'll also notice that the
query plan mentions that the JOINOPTIMIZECOSTS clause is not being used. Use a JOINOPTIMIZECOSTS
clause to force the query optimizer to use I/O cost projections to determine the most efficient way to
process the conditions in a join expression. If you have a join expression with multiple conditions in it,
then using this clause may help improve the performance of the join expression, especially if it is already
executing very slowly.

Further Optimizations Provided by DBISAM

In addition to just using indexes to speed up the querying process, DBISAM also provides a few other
optimizations that can greatly increase a given query's performance. When building a bitmap for a given
optimized condition, DBISAM can take advantage of statistics that are kept in DBISAM indexes. These
statistics accurately reflect the current make-up of the various values present in the index, and DBISAM
uses this information to optimize the actual scan of the index.

DBISAM looks at the optimization of the query conditions, and when multiple conditions are joined by an
AND operator, DBISAM ensures that the most optimized query condition is executed first. For example,
consider a table of 25,000 records with the following structure:

Customer table

SQL Reference

Page 195

Field Data Type Index

ID Integer Primary Index
Name String[30]
State String[2] Secondary, case-sensitive,
 non-unique, ascending, index
TotalOrders BCD[2]

And consider the following SQL SELECT query:

SELECT *
FROM customer
WHERE (TotalOrders > 10000) and (State='CA')

As you can see, the TotalOrders condition cannot be optimized since no indexes exist that would allow for
optimization, whereas the State condition can be optimized. If only 200 records in the table have a State
field that contains 'CA', then processing the query in the order indicated by the expression would be very
inefficient, since the following steps would take place:

1) All 25,000 physical records would be read and evaluated to build a bitmap for the (TotalOrders >
10000) condition.

2) The resultant bitmap from the previous step would be ANDed together with a bitmap built using the
optimized index scan for the State condition.

DBISAM uses a much better approach because it knows that:

1) The TotalOrders condition is not optimized

2) The State condition is optimized

3) Both conditions are joined using the AND operator

it is able to reverse the query conditions in the WHERE clause and execute the index scan for the 200
records that satisfy the State condition first, and then proceed to only read the 200 records from disk in
order to evaluate the TotalOrders condition. DBISAM has just saved a tremendous amount of I/O by
simply reversing the query conditions.

Note
This optimization only works with query conditions that are joined by the AND operator. If the
above two conditions were joined using the OR operator, then DBISAM would simply read all 25,000
records and evaluate the entire WHERE expression for each record.

In the case of a completely un-optimized query, DBISAM's read-ahead buffering can help tremendously in
reducing network traffic and providing the most efficient reads with the least amount of I/O calls to the
operating system. DBISAM will read up to 32 kilobytes of contiguous records on disk in the course of
processing an un-optimized query.

DBISAM can also optimize for the UPPER() and LOWER() SQL functions by using any case-insensitive
indexes in the source tables to optimize the query condition. Take the following table for example:

SQL Reference

Page 196

Customer table

Field Data Type Index

ID Integer Primary Index
Name String[30]
State String[2] Secondary, case-insensitive,
 non-unique, ascending, index

And consider the following SQL SELECT query:

SELECT *
FROM customer
WHERE (UPPER(State)='CA')

In this query, DBISAM will be able to select and use the case-insensitive index on the State field, and this
is caused by the presence of the UPPER() function around the field name. This can also be used to
optimize joins. For example, here are two tables that use case-insensitive indexes for optimizing joins:

Customer table

Field Data Type Index

ID String[10] Primary, case-insensitive
 index
Name String[30]
State String[2]

Orders table

Field Data Type Index

OrderNum String[20] Primary, case-insensitive
 index
CustID String[10] Secondary, case-insensitive
 index
TotalAmount BCD[2]

And consider the following SQL SELECT query:

SELECT *
FROM Customer, Orders
WHERE (UPPER(Customer.ID)=UPPER(Orders.CustID))

In this query, the join condition will be optimized due to the presence of the UPPER() function around the
Orders.CustID field. The UPPER() function around the Customer.ID field is simply to ensure that the join is

SQL Reference

Page 197

made on upper-case customer ID values only.

Optimization Levels

DBISAM determines the level of optimization for a WHERE or JOIN clause using the following rules:

Optimized Condition = Fully-Optimized WHERE or JOIN clause

Un-Optimized Condition = Un-Optimized WHERE or JOIN clause

Optimized Condition AND Optimized Condition = Fully-
Optimized WHERE or JOIN clause

Optimized Condition AND Un-Optimized Condition = Partially-
Optimized WHERE or JOIN clause

Un-Optimized Condition AND Optimized Condition = Partially-
Optimized WHERE or JOIN clause

Un-Optimized Condition AND Un-Optimized Condition = Un-
Optimized WHERE or JOIN clause

Optimized Condition OR Optimized Condition = Fully-
Optimized WHERE or JOIN clause

Optimized Condition OR Un-Optimized Condition = Un-
Optimized WHERE or JOIN clause

Un-Optimized Condition OR Optimized Condition = Un-
Optimized WHERE or JOIN clause

Un-Optimized Condition OR Un-Optimized Condition = Un-
Optimized WHERE or JOIN clause

Note
The unary NOT operator causes any expression to become partially optimized. This is due to the
fact that DBISAM must scan for, and remove, deleted records from the current records bitmap once
it has taken the bitmap and performed the NOT operation on the bits.

DBISAM Limitations

DBISAM does not optimize multiple query conditions joined by an AND operator) by mapping them to a
compound index that may be available. To illustrate this point, consider a table with the following
structure:

Employee

Field Data Type Index
--
LastName String[30] Primary Index (both fields are part of the
FirstName String[20] Primary Index primary index)

SQL Reference

Page 198

And consider the following query:

SELECT *
FROM Employee
WHERE (LastName='Smith') and (FirstName='John')

Logically you would assume that DBISAM can use the one primary index in order to optimize the entire
WHERE clause. Unfortunately this is not the case, and instead DBISAM will only use the primary index for
optimizing the LastName condition and resort to reading records in order to evaluate the FirstName
condition.

SQL Reference

Page 199

4.5 Operators

Introduction

DBISAM allows comparison operators, extended comparison operators, arithmetic operators, string
operators, date, time, and timestamp operators, and logical operators in SQL statements. These operators
are detailed below.

Comparison Operators

Use comparison operators to perform comparisons on data in SELECT, INSERT, UPDATE, or DELETE
queries. DBISAM's SQL supports the following comparison operators:

Operator Description

< Determines if a value is less than another value.

> Determines if a value is greater than another value.

= Determines if a value is equal to another value.

<> Determines if a value is not equal to another value.

>= Determines if a value is greater than or equal to another
value.

<= Determines if a value is less than or equal to another value.

Use comparison operators to compare two like values. Values compared can be: column values, literals, or
calculations. The result of the comparison is a boolean value that is used in contexts like a WHERE clause
to determine on a row-by-row basis whether a row meets the filtering criteria. The following example uses
the >= comparison operator to show only the orders where the ItemsTotal column is greater than or
equal to 1000:

SELECT *
FROM Orders
WHERE (ItemsTotal >= 1000)

Comparisons must be between two values of the same or a compatible data type. The result of a
comparison operation can be modified by a logical operator, such as NOT. The following example uses the
>= comparison operator and the logical NOT operator to show only the orders where the ItemsTotal
column is not greater than or equal to 1000:

SELECT *
FROM Orders
WHERE NOT (ItemsTotal >= 1000)

SQL Reference

Page 200

Note
Comparison operators can only be used in a WHERE or HAVING clause, or in the ON clause of a join
- they cannot be used in the SELECT clause. The only exception to this would be within the first
argument to the IF() function, which allows comparison expressions for performing IF...ELSE
boolean logic.

Extended Comparison Operators

Use extended comparison operators to perform comparisons on data in SELECT, INSERT, UPDATE, or
DELETE queries. DBISAM supports the following extended comparison operators:

Operator Description

[NOT] BETWEEN Compares a value to a range formed by two values.

[NOT] IN Determines whether a value exists in a list of values.

[NOT] LIKE Compares, in part or in whole, one value with another.

IS [NOT] NULL Compares a value with an empty, or NULL, value.

BETWEEN Extended Comparison Operator

The BETWEEN extended comparison operator determines whether a value falls inside a range. The syntax
is as follows:

value1 [NOT] BETWEEN value2 AND value3

Use the BETWEEN extended comparison operator to compare a value to a value range. If the value is
greater than or equal to the low end of the range and less than or equal to the high end of the range,
BETWEEN returns a TRUE value. If the value is less than the low end value or greater than the high end
value, BETWEEN returns a FALSE value. For example, the expression below returns a FALSE value because
10 is not between 1 and 5:

10 BETWEEN 1 AND 5

Use NOT to return the converse of a BETWEEN comparison. For example, the expression below returns a
TRUE value:

10 NOT BETWEEN 1 AND 5

BETWEEN can be used with all non-BLOB data types, but all values compared must be of the same or a
compatible data type. The left-side and right-side values used in a BETWEEN comparison may be columns,
literals, or calculated values. The following example returns all orders where the SaleDate column is
between January 1, 1998 and December 31, 1998:

SQL Reference

Page 201

SELECT SaleDate
FROM Orders
WHERE (SaleDate BETWEEN '1998-01-01' AND '1998-12-31')

BETWEEN is useful when filtering to retrieve rows with contiguous values that fall within the specified
range. For filtering to retrieve rows with noncontiguous values, use the IN extended comparison operator.

IN Extended Comparison Operator

The IN extended comparison operator indicates whether a value exists in a set of values. The syntax is as
follows:

value [NOT] IN (value_set)

Use the IN extended comparison operator to filter a table based on the existence of a column value in a
specified set of comparison values. The set of comparison values can be a comma-separated list of column
names, literals, or calculated values. The following example returns all customers where the State column
is either 'CA' or 'HI':

SELECT c.Company, c.State
FROM Customer c
WHERE (c.State IN ('CA', 'HI'))

The value to compare with the values set can be any or a combination of a column value, a literal value,
or a calculated value. Use NOT to return the converse of an IN comparison. IN can be used with all non-
BLOB data types, but all values compared must be of the same or a compatible data type.

IN is useful when filtering to retrieve rows with noncontiguous values. For filtering to retrieve rows with
contiguous values that fall within a specified range, use the BETWEEN extended comparison operator.

LIKE Extended Comparison Operator

The LIKE extended comparison operator indicates the similarity of one value as compared to another. The
syntax is as follows:

value [NOT] LIKE [substitution_char] comparison_value
[substitution_char] ESCAPE escape_char

Use the LIKE extended comparison operator to filter a table based on the similarity of a column value to a
comparison value. Use of substitution characters allows the comparison to be based on the whole column
value or just a portion. The following example returns all customers where the Company column is equal
to 'Adventure Undersea':

SELECT *
FROM Customer
WHERE (Company LIKE 'Adventure Undersea')

SQL Reference

Page 202

The wildcard substitution character (%) may be used in the comparison to represent an unknown number
of characters. LIKE returns a TRUE when the portion of the column value matches that portion of the
comparison value not corresponding to the position of the wildcard character. The wildcard character can
appear at the beginning, middle, or end of the comparison value (or multiple combinations of these
positions). The following example retrieves rows where the column value begins with 'A' and is followed by
any number of any characters. Matching values could include 'Action Club' and 'Adventure Undersea', but
not 'Blue Sports':

SELECT *
FROM Customer
WHERE (Company LIKE 'A%')

The single-character substitution character (_) may be used in the comparison to represent a single
character. LIKE returns a TRUE when the portion of the column value matches that portion of the
comparison value not corresponding to the position of the single-character substitution character. The
single-character substitution character can appear at the beginning, middle, or end of the comparison
value (or multiple combinations of these positions). Use one single-character substitution character for
each character to be wild in the filter pattern. The following example retrieves rows where the column
value begins with 'b' ends with 'n', with one character of any value between. Matching values could include
'bin' and 'ban', but not 'barn':

SELECT Words
FROM Dictionary
WHERE (Words LIKE 'b_n')

The ESCAPE keyword can be used after the comparison to represent an escape character in the
comparison value. When an escape character is found in the comparison value, DBISAM will treat the next
character after the escape character as a literal and not a wildcard character. This allows for the use of the
special wildcard characters as literal search characters in the comparison value. For example, the following
example retrieves rows where the column value contains the string constant '10%':

SELECT ID, Description
FROM Items
WHERE (Description LIKE '%10\%%') ESCAPE '\'

Use NOT to return the converse of a LIKE comparison. LIKE can be used only with string or compatible
data types such as memo columns. The comparison performed by the LIKE extended comparison operator
is always case-sensitive.

IS NULL Extended Comparison Operator

The IS NULL extended comparison operator indicates whether a column contains a NULL value. The syntax
is as follows:

column_reference IS [NOT] NULL

SQL Reference

Page 203

Use the IS NULL extended comparison operator to filter a table based on the specified column containing a
NULL (empty) value. The following example returns all customers where the InvoiceDate column is null:

SELECT *
FROM Customer
WHERE (InvoiceDate IS NULL)

Use NOT to return the converse of a IS NULL comparison.

Note
For a numeric column, a zero value is not the same as a NULL value.

Value Operators

Use value operators to return specific values based upon other expressions in SELECT, INSERT, UPDATE,
or DELETE queries. DBISAM supports the following value operators:

Operator Description

CASE Evaluates a series of boolean expressions and returns the
matching result value.

CASE Value Operator

The CASE value operator can be used in with two different syntaxes, one being the normal syntax while
the other being a shorthand syntax. The normal syntax is used to evaluate a series of boolean expressions
and return the matching result value for the first boolean expression that returns True, and is as follows:

CASE
WHEN boolean expression THEN value
[WHEN boolean expression THEN value]
[ELSE] value
END

The following is an example of the normal CASE syntax. It translate a credit card type into a more verbose
description:

SELECT CardType,
CASE
WHEN Upper(CardType)='A' THEN 'American Express'
WHEN Upper(CardType)='M' THEN 'Mastercard'
WHEN Upper(CardType)='V' THEN 'Visa'
WHEN Upper(CardType)='D' THEN 'Diners Club'
END AS CardDesc,
SUM(SalesAmount) AS TotalSales
FROM Transactions
GROUP BY CardType

SQL Reference

Page 204

ORDER BY TotalSales DESC

The shorthand syntax is as follows:

CASE expression
WHEN expression THEN value
[WHEN expression THEN value]
[ELSE] value
END

The primary difference between the shorthand syntax and the normal syntax is the inclusion of the
expression directly after the CASE operator itself. It is used as the comparison value for every WHEN
expression. All WHEN expressions must be type-compatible with this expression and can be any type,
unlike the normal syntax which requires boolean expressions. The rest of the shorthand syntax is the same
as the normal syntax.

The following is the above credit card type example using the shorthand syntax:

SELECT CardType,
CASE Upper(CardType)
WHEN 'A' THEN 'American Express'
WHEN 'M' THEN 'Mastercard'
WHEN 'V' THEN 'Visa'
WHEN 'D' THEN 'Diners Club'
END AS CardDesc,
SUM(SalesAmount) AS TotalSales
FROM Transactions
GROUP BY CardType
ORDER BY TotalSales DESC

Arithmetic Operators

Use arithmetic operators to perform arithmetic calculations on data in SELECT, INSERT, UPDATE, or
DELETE queries. DBISAM's SQL supports the following arithmetic operators:

Operator Description

+ Add two numeric values together numeric value.

- Subtract one numeric value from another numeric value.

* Multiply one numeric value by another numeric value.

/ Divide one numeric value by another numeric value.

MOD Returns the modulus of the two integer arguments as an
integer

Calculations can be performed wherever non-aggregated data values are allowed, such as in a SELECT or
WHERE clause. In following example, a column value is multiplied by a numeric literal:

SQL Reference

Page 205

SELECT (itemstotal * 0.0825) AS Tax
FROM orders

Arithmetic calculations are performed in the normal order of precedence: multiplication, division, modulus,
addition, and then subtraction. To cause a calculation to be performed out of the normal order of
precedence, use parentheses around the operation to be performed first. In the next example, the
addition is performed before the multiplication:

SELECT (n.numbers * (n.multiple + 1)) AS Result
FROM numbertable n

Arithmetic operators operate only on numeric values.

String Operators

Use string operators to perform string concatenation on character data in SELECT, INSERT, UPDATE, or
DELETE queries. DBISAM's SQL supports the following string operators:

Operator Description

+ Concatenate two string values together.

|| Concatenate two string values together.

String operations can be performed wherever non-aggregated data values are allowed, such as in a
SELECT or WHERE clause. In following example, a column value concatenated with a second column value
to provide a new calculated column in the query result set:

SELECT (LastName + ', ' + FirstName) AS FullName
FROM Employee

String operators operate only on string values or memo columns.

Date, Time, and Timestamp Operators

Use date, time, and timestamp operators to perform date, time, and timestamp calculations in SELECT,
INSERT, UPDATE, or DELETE queries. DBISAM's SQL supports the following date, time, and timestamp
operators:

Operator Description

+ Adding days or milliseconds to date, time, or timestamp
values.

- Subtracting days or milliseconds from date, time, or
timestamp values, or subtracting two date, time, or
timestamp values to get the difference in days or millseconds.

The rules for adding or subtracting dates, times, and timestamps in conjunction with integers are as
follows:

SQL Reference

Page 206

Adding an integer to a date is equivalent to adding days to the date

Adding an integer to a time is equivalent to adding milliseconds to the time (be careful of wraparound
since a time value is equal to the number of milliseconds elapsed since the beginning of the current day)

Adding an integer to a timestamp is equivalent to adding milliseconds to the time portion of the timestamp
(any milliseconds beyond the number of milliseconds in a day will result in an increment of the day value
in the timestamp by 1)

Subtracting an integer from a date is equivalent to subtracting days from the date

Subtracting an integer from a time is equivalent to subtracting milliseconds from the time (be careful of
going below 0, which will be ignored)

Subtracting an integer from a timestamp is equivalent to subtracting milliseconds from the time portion of
the timestamp (any milliseconds less than 0 for the time portion will result in a decrement of the day value
in the timestamp by 1)

Subtracting a date value from another date value will result in the number of days between the two dates
(be sure to use the ABS() function to ensure a positive value if the second value is larger than the first)

Subtracting a time value from another time value will result in the number of milliseconds between the two
times (be sure to use the ABS() function to ensure a positive value if the second value is larger than the
first)

Subtracting a date value from a timestamp value will result in the number of milliseconds between the
timestamp and the date (be sure to use the ABS() function to ensure a positive value if the second value is
larger than the first)

Subtracting a timestamp value from a timestamp value will result in the number of milliseconds between
the timestamp and the other timestamp (be sure to use the ABS() function to ensure a positive value if the
second value is larger than the first)

The following example shows how you would add 30 days to a date to get an invoice due date for an
invoice in a SELECT SQL statement:

SELECT InvoiceDate, (InvoiceDate + 30) AS DueDate, BalanceDue
FROM Invoices
WHERE InvoiceDate BETWEEN '1999-01-01' AND '1999-01-31'

Date, time, and timestamp operators operate only on date, time, or timestamp values in conjuction with
integer values.

Logical Operators

Use logical operators to perform Boolean logic between different predicates (conditions) in an SQL WHERE
clause. DBISAM's SQL supports the following logical operators:

Operator Description

SQL Reference

Page 207

NOT NOT a boolean value.

AND AND two boolean values together.

OR OR two boolean values together.

This allows the source table(s) to be filtered based on multiple conditions. Logical operators compare the
boolean result of two predicate comparisons, each producing a boolean result. If OR is used, either of the
two predicate comparisons can result on a TRUE value for the whole expression to evaluate to TRUE. If
AND is used, both predicate comparisons must evaluate to TRUE for the whole expression to be TRUE; if
either is FALSE, the whole is FALSE. In the following example, if only one of the two predicate
comparisons is TRUE, the row will be included in the query result set:

SELECT *
FROM Reservations
WHERE ((ReservationDate < '1998-01-31') OR (Paid = TRUE))

Logical operator comparisons are performed in the order of AND and then OR. To perform a comparison
out of the normal order of precedence, use parentheses around the comparison to be performed first. The
SELECT statement below retrieves all rows where the Shape column is 'Round' and the Color 'Blue':

SELECT Shape, Color
FROM Objects
WHERE (Color = 'Red' OR Shape = 'Round') AND Color = 'Blue'

Without the parentheses, the default order of precedence is used and the logic changes. The next
example, a variation on the above statement, would return rows where the Shape is 'Round' and the Color
is 'Blue', but would also return rows where the Color is 'Red', regardless of the Shape:

SELECT Shape, Color
FROM Objects
WHERE Color = 'Red' OR Shape = 'Round' AND Color = 'Blue'

Use the NOT operator to negate the boolean result of a comparison. In the following example, only those
rows where the Paid column contains a FALSE value are retrieved:

SELECT *
FROM reservations
WHERE (NOT (Paid = TRUE))

SQL Reference

Page 208

4.6 Functions

Introduction

DBISAM's SQL provides string functions, numeric functions, boolean functions, aggregate functions (used
in conjunction with an SQL SELECT GROUP BY clause), autoinc functions, full text indexing functions, and
data conversion functions.

String Functions

Use string functions to manipulate string values in SELECT, INSERT, UPDATE, or DELETE queries.
DBISAM's SQL supports the following string functions:

Function Description

LOWER or LCASE Forces a string to lowercase.

UPPER or UCASE Forces a string to uppercase.

LENGTH Returns the length of a string value.

SUBSTRING Extracts a portion of a string value.

LEFT Extracts a certain number of characters from the left side of a
string value.

RIGHT Extracts a certain number of characters from the right side of
a string value.

TRIM Removes repetitions of a specified character from the left,
right, or both sides of a string.

LTRIM Removes any leading space characters from a string.

RTRIM Removes any trailing space characters from a string.

POS or POSITION Finds the position of one string value within another string
value.

OCCURS Finds the number of times one string value is present within
another string value.

REPLACE Replaces all occurrences of one string value with a new string
value within another string value.

REPEAT Repeats a string value a specified number of times.

CONCAT Concatenates two string values together.

LOWER or LCASE Function

The LOWER or LCASE function converts all characters in a string value to lowercase. The syntax is as
follows:

LOWER(column_reference or string constant)
LCASE(column_reference or string constant)

SQL Reference

Page 209

In the following example, the values in the NAME column appear all in lowercase:

SELECT LOWER(Name)
FROM Country

The LOWER or LCASE function can be used in WHERE clause string comparisons to cause a case-
insensitive comparison. Apply LOWER or LCASE to the values on both sides of the comparison operator (if
one of the comparison values is a literal, simply enter it all in lower case).

SELECT *
FROM Names
WHERE LOWER(Lastname) = 'smith'

LOWER or LCASE can only be used with string or memo columns or constants.

UPPER or UCASE Function

The UPPER or UCASE function converts all characters in a string value to uppercase. The syntax is as
follows:

UPPER(column_reference or string constant)
UCASE(column_reference or string constant)

Use UPPER or UCASE to convert all of the characters in a table column or character literal to uppercase. In
the following example, the values in the NAME column are treated as all in uppercase. Because the same
conversion is applied to both the filter column and comparison value in the WHERE clause, the filtering is
effectively case-insensitive:

SELECT Name, Capital, Continent
FROM Country
WHERE UPPER(Name) LIKE UPPER('PE%')

UPPER can only be used with string or memo columns or constants.

LENGTH Function

The LENGTH function returns the length of a string value as an integer value. The syntax is as follows:

LENGTH(column_reference or string constant)

In the following example, the length of the values in the Notes column are returned as part of the SELECT
statement:

SQL Reference

Page 210

SELECT Notes, LENGTH(Notes) AS "Num Chars"
FROM Biolife

LENGTH can only be used with string or memo columns or constants.

SUBSTRING Function

The SUBSTRING function extracts a substring from a string. The syntax is as follows:

SUBSTRING(column_reference or string constant
 FROM start_index [FOR length])
SUBSTRING(column_reference or string constant,
 start_index[,length])

The second FROM parameter is the character position at which the extracted substring starts within the
original string. The index for the FROM parameter is based on the first character in the source value being
1.

The FOR parameter is optional, and specifies the length of the extracted substring. If the FOR parameter
is omitted, the substring goes from the position specified by the FROM parameter to the end of the string.

In the following example, the SUBSTRING function is applied to the literal string 'ABCDE' and returns the
value 'BCD':

SELECT SUBSTRING('ABCDE' FROM 2 FOR 3) AS Sub
FROM Country

In the following example, only the second and subsequent characters of the NAME column are retrieved:

SELECT SUBSTRING(Name FROM 2)
FROM Country

SUBSTRING can only be used with string or memo columns or constants.

LEFT Function

The LEFT function extracts a certain number of characters from the left side of a string. The syntax is as
follows:

LEFT(column_reference or string constant FOR length)
LEFT(column_reference or string constant,length)

The FOR parameter specifies the length of the extracted substring.

SQL Reference

Page 211

In the following example, the LEFT function is applied to the literal string 'ABCDE' and returns the value
'ABC':

SELECT LEFT('ABCDE' FOR 3) AS Sub
FROM Country

LEFT can only be used with string or memo columns or constants.

RIGHT Function

The RIGHT function extracts a certain number of characters from the right side of a string. The syntax is
as follows:

RIGHT(column_reference or string constant FOR length)
RIGHT(column_reference or string constant,length)

The FOR parameter specifies the length of the extracted substring.

In the following example, the RIGHT function is applied to the literal string 'ABCDE' and returns the value
'DE':

SELECT RIGHT('ABCDE' FOR 2) AS Sub
FROM Country

RIGHT can only be used with string or memo columns or constants.

TRIM Function

The TRIM function removes the trailing or leading character, or both, from a string. The syntax is as
follows:

TRIM([LEADING|TRAILING|BOTH] trimmed_char
 FROM column_reference or string constant)
TRIM([LEADING|TRAILING|BOTH] trimmed_char,
 column_reference or string constant)

The first parameter indicates the position of the character to be deleted, and has one of the following
values:

Keyword Description

LEADING Deletes the character at the left end of the string.

TRAILING Deletes the character at the right end of the string.

BOTH Deletes the character at both ends of the string.

SQL Reference

Page 212

The trimmed character parameter specifies the character to be deleted. Case-sensitivity is applied for this
parameter. To make TRIM case-insensitive, use the UPPER or UCASE function on the column reference or
string constant.

The FROM parameter specifies the column or constant from which to delete the character. The column
reference for the FROM parameter can be a string column or a string constant.

The following are examples of using the TRIM function:

TRIM(LEADING '_' FROM '_ABC_') will return 'ABC_'
TRIM(TRAILING '_' FROM '_ABC_') will return '_ABC'
TRIM(BOTH '_' FROM '_ABC_') will return 'ABC'
TRIM(BOTH 'A' FROM 'ABC') will return 'BC'

TRIM can only be used with string or memo columns or constants.

LTRIM Function

The LTRIM function removes any leading spaces from a string. The syntax is as follows:

LTRIM(column_reference or string constant)

The first and only parameter specifies the column or constant from which to delete the leading spaces, if
any are present. The following is an example of using the LTRIM function:

LTRIM(' ABC') will return 'ABC'

LTRIM can only be used with string or memo columns or constants.

RTRIM Function

The RTRIM function removes any trailing spaces from a string. The syntax is as follows:

RTRIM(column_reference or string constant)

The first and only parameter specifies the column or constant from which to delete the trailing spaces, if
any are present. The following is an example of using the RTRIM function:

RTRIM('ABC ') will return 'ABC'

RTRIM can only be used with string or memo columns or constants.

POS or POSITION Function

SQL Reference

Page 213

The POS or POSITION function returns the position of one string within another string. The syntax is as
follows:

POS(string constant IN column_reference or string constant)
POSITION(string constant IN column_reference or string constant)
POS(string constant,column_reference or string constant)
POSITION(string constant,column_reference or string constant)

If the search string is not present, then 0 will be returned.

In the following example, the POS function is used to select all rows where the literal string 'ABC' exists in
the Name column:

SELECT *
FROM Country
WHERE POS('ABC' IN Name) > 0

POS or POSITION can only be used with string or memo columns or constants.

OCCURS Function

The OCCURS function returns the number of occurrences of one string within another string. The syntax is
as follows:

OCCURS(string constant
 IN column_reference or string constant)
OCCURS(string constant,
 column_reference or string constant)

If the search string is not present, then 0 will be returned.

In the following example, the OCCURS function is used to select all rows where the literal string 'ABC'
occurs at least once in the Name column:

SELECT *
FROM Country
WHERE OCCURS('ABC' IN Name) > 0

OCCURS can only be used with string or memo columns or constants.

REPLACE Function

The REPLACE function replaces all occurrences of a given string with a new string within another string.
The syntax is as follows:

SQL Reference

Page 214

REPLACE(string constant WITH new string constant
 IN column_reference or string constant)
REPLACE(string constant,new string constant,
 column_reference or string constant)

If the search string is not present, then the result will be the original table column or string constant.

In the following example, the REPLACE function is used to replace all occurrences of 'Mexico' with 'South
America':

UPDATE biolife
SET notes=REPLACE('Mexico' WITH 'South America' IN notes)

REPLACE can only be used with string or memo columns or constants.

REPEAT Function

The REPEAT function repeats a given string a specified number of times and returns the concatenated
result. The syntax is as follows:

REPEAT(column_reference or string constant
 FOR number_of_occurrences)
REPEAT(column_reference or string constant,
 number_of_occurrences)

In the following example, the REPEAT function is used to replicate the dash (-) character 60 times to use
as a separator in a multi-line string:

UPDATE biolife
SET notes='Notes'+#13+#10+
REPEAT('-' FOR 60)+#13+#10+#13+#10+
'These are the notes'

REPEAT can only be used with string or memo columns or constants.

CONCAT Function

The CONCAT function concatenates two strings together and returns the concatenated result. The syntax
is as follows:

CONCAT(column_reference or string constant
 WITH column_reference or string constant)
CONCAT(column_reference or string constant,
 column_reference or string constant)

In the following example, the CONCAT function is used to concatenate two strings together:

SQL Reference

Page 215

UPDATE biolife
SET notes=CONCAT(Notes WITH #13+#10+#13+#10+'End of Notes')

CONCAT can only be used with string or memo columns or constants.

Numeric Functions

Use numeric functions to manipulate numeric values in SELECT, INSERT, UPDATE, or DELETE queries.
DBISAM's SQL supports the following numeric functions:

Function Description

ABS Converts a number to its absolute value (non-negative).

ACOS Returns the arccosine of a number as an angle expressed in
radians.

ASIN Returns the arcsine of a number as an angle expressed in
radians.

ATAN Returns the arctangent of a number as an angle expressed in
radians.

ATAN2 Returns the arctangent of x and y coordinates as an angle
expressed in radians.

CEIL or CEILING Returns the lowest integer greater than or equal to a number.

COS Returns the cosine of an angle.

COT Returns the cotangent of an angle.

DEGREES Converts a number representing radians into degrees.

EXP Returns the exponential value of a number.

FLOOR Returns the highest integer less than or equal to a number.

LOG Returns the natural logarithm of a number.

LOG10 Returns the base 10 logarithm of a number.

MOD Returns the modulus of two integers as an integer.

PI Returns the ratio of a circle's circumference to its diameter -
approximated as 3.1415926535897932385.

POWER Returns the value of a base number raised to the specified
power.

RADIANS Converts a number representing degrees into radians.

RAND Returns a random number.

ROUND Rounds a number to a specified number of decimal places.

SIGN Returns -1 if a number is less than 0, 0 if a number is 0, or 1
if a number is greater than 0.

SIN Returns the sine of an angle.

SQL Reference

Page 216

SQRT Returns the square root of a number.

TAN Returns the tangent of an angle.

TRUNC or TRUNCATE Truncates a numeric argument to the specified number of
decimal places

ABS Function

The ABS function converts a numeric value to its absolute, or non-negative value:

ABS(column_reference or numeric constant)

ABS can only be used with numeric columns or constants.

ACOS Function

The ACOS function returns the arccosine of a number as an angle expressed in radians:

ACOS(column_reference or numeric constant)

ACOS can only be used with numeric columns or constants.

ASIN Function

The ASIN function returns the arcsine of a number as an angle expressed in radians:

ASIN(column_reference or numeric constant)

ASIN can only be used with numeric columns or constants.

ATAN Function

The ATAN function returns the arctangent of a number as an angle expressed in radians:

ATAN(column_reference or numeric constant)

ATAN can only be used with numeric columns or constants.

ATAN2 Function

The ATAN2 function returns the arctangent of x and y coordinates as an angle expressed in radians:

SQL Reference

Page 217

ATAN2(column_reference or numeric constant,
 column_reference or numeric constant)

ATAN2 can only be used with numeric columns or constants.

CEIL or CEILING Function

The CEIL or CEILING function returns the lowest integer greater than or equal to a number:

CEIL(column_reference or numeric constant)
CEILING(column_reference or numeric constant)

CEIL or CEILING can only be used with numeric columns or constants.

COS Function

The COS function returns the cosine of an angle:

COS(column_reference or numeric constant)

COS can only be used with numeric columns or constants.

COT Function

The COT function returns the cotangent of an angle:

COT(column_reference or numeric constant)

COT can only be used with numeric columns or constants.

DEGREES Function

The DEGREES function converts a number representing radians into degrees:

DEGREES(column_reference or numeric constant)

DEGREES can only be used with numeric columns or constants.

EXP Function

The EXP function returns the exponential value of a number:

SQL Reference

Page 218

EXP(column_reference or numeric constant)

EXP can only be used with numeric columns or constants.

FLOOR Function

The FLOOR function returns the highest integer less than or equal to a number:

FLOOR(column_reference or numeric constant)

FLOOR can only be used with numeric columns or constants.

LOG Function

The LOG function returns the natural logarithm of a number:

LOG(column_reference or numeric constant)

LOG can only be used with numeric columns or constants.

LOG10 Function

The LOG10 function returns the base 10 logarithm of a number:

LOG10(column_reference or numeric constant)

LOG10 can only be used with numeric columns or constants.

MOD Function

The MOD function returns the modulus of two integers. The modulus is the remainder that is present
when dividing the first integer by the second integer:

MOD(column_reference or integer constant,
 column_reference or integer constant)

MOD can only be used with integer columns or constants.

PI Function

The PI function returns the ratio of a circle's circumference to its diameter - approximated as
3.1415926535897932385:

SQL Reference

Page 219

PI()

POWER Function

The POWER function returns value of a base number raised to the specified power:

POWER(column_reference or numeric constant
 TO column_reference or numeric constant)
POWER(column_reference or numeric constant,
 column_reference or numeric constant)

POWER can only be used with numeric columns or constants.

RADIANS Function

The RADIANS function converts a number representing degrees into radians:

RADIANS(column_reference or numeric constant)

RADIANS can only be used with numeric columns or constants.

RAND Function

The RAND function returns a random number:

RAND([RANGE range of random values])

The range value is optional used to limit the random numbers returned to between 0 and the range value
specified. If the range is not specified then any number within the full range of numeric values may be
returned.

ROUND Function

The ROUND function rounds a numeric value to a specified number of decimal places:

ROUND(column_reference or numeric constant
 [TO number of decimal places])
ROUND(column_reference or numeric constant
 [, number of decimal places])

The number of decimal places is optional, and if not specified the value returned will be rounded to 0
decimal places.

ROUND can only be used with numeric columns or constants.

SQL Reference

Page 220

Note
The ROUND function performs "normal" rounding where the number is rounded up if the fractional
portion beyond the number of decimal places being rounded to is greater than or equal to 5 and
down if the fractional portion is less than 5. Also, if using the ROUND function with floating-point
values, it is possible to encounter rounding errors due to the nature of floating-point values and
their inability to accurately express certain numbers. If you want to eliminate this possibility you
should use the CAST function to convert the floating-point column or constant to a BCD value
(DECIMAL or NUMERIC data type in SQL). This will allow for the rounding to occur as desired since
BCD values can accurately represent these numbers without errors.

SIGN Function

The SIGN function returns -1 if a number is less than 0, 0 if a number is 0, or 1 if a number is greater than
0:

SIGN(column_reference or numeric constant)

SIGN can only be used with numeric columns or constants.

SIN Function

The SIN function returns the sine of an angle:

SIN(column_reference or numeric constant)

SIN can only be used with numeric columns or constants.

SQRT Function

The SQRT function returns the square root of a number:

SQRT(column_reference or numeric constant)

SQRT can only be used with numeric columns or constants.

TAN Function

The TAN function returns the tangent of an angle:

TAN(column_reference or numeric constant)

SQL Reference

Page 221

TAN can only be used with numeric columns or constants.

TRUNC or TRUNCATE Function

The TRUNC or TRUNCATE function truncates a numeric value to a specified number of decimal places:

TRUNC(column_reference or numeric constant
 [TO number of decimal places])
TRUNCATE(column_reference or numeric constant
 [TO number of decimal places])
TRUNC(column_reference or numeric constant
 [, number of decimal places])
TRUNCATE(column_reference or numeric constant
 [, number of decimal places])

The number of decimal places is optional, and if not specified the value returned will be truncated to 0
decimal places.

TRUNC or TRUNCATE can only be used with numeric columns or constants.

Note
If using the TRUNC or TRUNCATE function with floating-point values, it is possible to encounter
truncation errors due to the nature of floating-point values and their inability to accurately express
certain numbers. If you want to eliminate this possibility you should use the CAST function to
convert the floating-point column or constant to a BCD value (DECIMAL or NUMERIC data type in
SQL). This will allow for the truncation to occur as desired since BCD values can accurately
represent these numbers without errors.

Boolean Functions

Use boolean functions to manipulate any values in SELECT, INSERT, UPDATE, or DELETE queries.
DBISAM's SQL supports the following boolean functions:

Function Description

IF Performs IF..ELSE type of inline expression handling.

IFNULL Performs IF..ELSE type of inline expression handling
specifically for NULL values.

NULLIF Returns a NULL if two values are equivalent.

COALESCE Returns the first non-NULL value from a list of expressions.

IF Function

The IF function performs inline IF..ELSE boolean expression handling:

IF(boolean expression THEN result expression
 ELSE result expression)

SQL Reference

Page 222

IF(boolean expression, result expression,
 result expression)

Both result expressions must be of the same resultant data type. Use the CAST function to ensure that
both expressions are of the same data type.

In the following example, if the Category column contains the value 'WRASSE', then the column value
returned will be the Common_Name column, otherwise it will be the Species Name column:

SELECT IF(Upper(Category)='WRASSE'
THEN Common_Name
ELSE "Species Name") AS Name
FROM Biolife

The IF function can be used in WHERE clause comparisons to cause a conditional comparison:

SELECT *
FROM Employee
WHERE IF(LastName='Young' THEN PhoneExt='233' ELSE PhoneExt='22')

IFNULL Function

The IFNULL function performs inline IF..ELSE boolean expression handling specifically on NULL values:

IFNULL(expression THEN result expression
 ELSE result expression)
IFNULL(expression, result expression,
 result expression)

Both result expressions must be of the same resultant data type. Use the CAST function to ensure that
both expressions are of the same data type.

In the following example, if the Category column contains a NULL value, then the column value returned
will be the Common_Name column, otherwise it will be the Species Name column:

SELECT IFNULL(Category THEN Common_Name
ELSE "Species Name") AS Name
FROM Biolife

The IFNULL function can be used in WHERE clause comparisons to cause a conditional comparison:

SELECT *
FROM Employee
WHERE IFNULL(Salary THEN 10000 ELSE Salary) > 8000

SQL Reference

Page 223

NULLIF Function

The NULLIF function returns a NULL if the two values passed as parameters are equal:

NULLIF(expression,expression)

Both expressions must be of the same data type. Use the CAST function to ensure that both expressions
are of the same data type.

In the following example, if the EmpNo column contains the value 14, then the value returned will be
NULL, otherwise it will be the EmpNo column value:

SELECT NULLIF(EmpNo,14) AS EmpNo
FROM Orders

The NULLIF function can be used in WHERE clause comparisons to cause a conditional comparison:

SELECT *
FROM Employee
WHERE NULLIF(Salary,10000) > 8000

COALESCE Function

The COALESCE function returns the first non-NULL value from a list of expressions:

COALESCE(expression [, expression [, expression]])

All expressions must be of the same resultant data type. Use the CAST function to ensure that all
expressions are of the same data type.

In the following example, if the Category column contains a NULL value, then the column value returned
will be the Common_Name column. If the Common_name column contains a NULL, then the literal string
'No Name' will be returned:

SELECT COALESCE(Category,Common_Name,'No Name') AS Name
FROM Biolife

Aggregate Functions

Use aggregate functions to perform aggregate calculations on values in SELECT queries containing a
GROUP BY clause. DBISAM's SQL supports the following aggregate functions:

SQL Reference

Page 224

Function Description

AVG Averages all numeric values in a column.

COUNT Counts the total number of rows or the number of rows where
the specified column is not NULL.

MAX Determines the maximum value in a column.

MIN Determines the minimum value in a column.

STDDEV Calculates the standard deviation of all numeric values in a
column.

SUM Totals all numeric values in a column.

RUNSUM Totals all numeric values in a column in a running total.

LIST Concatenates all string values in a column using a delimeter

AVG Function

The AVG function returns the average of the values in a specified column or expression. The syntax is as
follows:

AVG(column_reference or expression)

Use AVG to calculate the average value for a numeric column. As an aggregate function, AVG performs its
calculation aggregating values in the same column(s) across all rows in a dataset. The dataset may be the
entire table, a filtered dataset, or a logical group produced by a GROUP BY clause. Column values of zero
are included in the averaging, so values of 1, 2, 3, 0, 0, and 0 result in an average of 1. NULL column
values are not counted in the calculation. The following is an example of using the AVG function to
calculate the average order amount for all orders:

SELECT AVG(ItemsTotal)
FROM Orders

AVG returns the average of values in a column or the average of a calculation using a column performed
for each row (a calculated field). The following example shows how to use the AVG function to calculate
an average order amount and tax amount for all orders:

SELECT AVG(ItemsTotal) AS AverageTotal,
AVG(ItemsTotal * 0.0825) AS AverageTax
FROM Orders

When used with a GROUP BY clause, AVG calculates one value for each group. This value is the
aggregation of the specified column for all rows in each group. The following example aggregates the
average value for the ItemsTotal column in the Orders table, producing a subtotal for each company in the
Customer table:

SQL Reference

Page 225

SELECT c."Company",
AVG(o."ItemsTotal") AS Average,
MAX(o."ItemsTotal") AS Biggest,
MIN(o."ItemsTotal") AS Smallest
FROM "Customer.dat" c, "Orders.dat" o
WHERE (c."CustNo" = o."CustNo")
GROUP BY c."Company"
ORDER BY c."Company"

AVG operates only on numeric values.

COUNT Function

The COUNT function returns the number of rows that satisfy a query’s search condition or the number of
rows where the specified column is not NULL. The syntax is as follows:

COUNT(* | column_reference or expression)

Use COUNT to count the number of rows retrieved by a SELECT statement. The SELECT statement may be
a single-table or multi-table query. The value returned by COUNT reflects a reduced row count produced
by a filtered dataset. The following example returns the total number of rows in the Averaging source
table with a non-NULL Amount column:

SELECT COUNT(Amount)
FROM Averaging

The following example returns the total number of rows in the filtered Orders source table irrespective of
any NULL column values:

SELECT COUNT(*)
FROM Orders
WHERE (Orders.ItemsTotal > 5000)

MAX Function

The MAX function returns the largest value in the specified column. The syntax is as follows:

MAX(column_reference or expression)

Use MAX to calculate the largest value for a string, numeric, date, time, or timestamp column. As an
aggregate function, MAX performs its calculation aggregating values in the same column(s) across all rows
in a dataset. The dataset may be the entire table, a filtered dataset, or a logical group produced by a
GROUP BY clause. Column values of zero are included in the aggregation. NULL column values are not
counted in the calculation. If the number of qualifying rows is zero, MAX returns a NULL value. The
following is an example of using the MAX function to calculate the largest order amount for all orders:

SQL Reference

Page 226

SELECT MAX(ItemsTotal)
FROM Orders

MAX returns the largest value in a column or a calculation using a column performed for each row (a
calculated field). The following example shows how to use the MAX function to calculate the largest order
amount and tax amount for all orders:

SELECT MAX(ItemsTotal) AS HighestTotal,
MAX(ItemsTotal * 0.0825) AS HighestTax
FROM Orders

When used with a GROUP BY clause, MAX returns one calculation value for each group. This value is the
aggregation of the specified column for all rows in each group. The following example aggregates the
largest value for the ItemsTotal column in the Orders table, producing a subtotal for each company in the
Customer table:

SELECT c."Company",
AVG(o."ItemsTotal") AS Average,
MAX(o."ItemsTotal") AS Biggest,
MIN(o."ItemsTotal") AS Smallest
FROM "Customer.dat" c, "Orders.dat" o
WHERE (c."CustNo" = o."CustNo")
GROUP BY c."Company"
ORDER BY c."Company"

MAX can be used with all string, numeric, date, time, and timestamp columns. The return value is of the
same type as the column.

MIN Function

The MIN function returns the smallest value in the specified column. The syntax is as follows:

MIN(column_reference or expression)

Use MIN to calculate the smallest value for a string, numeric, date, time, or timestamp column. As an
aggregate function, MAX performs its calculation aggregating values in the same column(s) across all rows
in a dataset. The dataset may be the entire table, a filtered dataset, or a logical group produced by a
GROUP BY clause. Column values of zero are included in the aggregation. NULL column values are not
counted in the calculation. If the number of qualifying rows is zero, MAX returns a NULL value. The
following is an example of using the MAX function to calculate the smallest order amount for all orders:

SELECT MIN(ItemsTotal)
FROM Orders

SQL Reference

Page 227

MIN returns the smallest value in a column or a calculation using a column performed for each row (a
calculated field). The following example shows how to use the MIN function to calculate the smallest order
amount and tax amount for all orders:

SELECT MIN(ItemsTotal) AS LowestTotal,
MIN(ItemsTotal * 0.0825) AS LowestTax
FROM Orders

When used with a GROUP BY clause, MIN returns one calculation value for each group. This value is the
aggregation of the specified column for all rows in each group. The following example aggregates the
smallest value for the ItemsTotal column in the Orders table, producing a subtotal for each company in the
Customer table:

SELECT c."Company",
AVG(o."ItemsTotal") AS Average,
MAX(o."ItemsTotal") AS Biggest,
MIN(o."ItemsTotal") AS Smallest
FROM "Customer.dat" c, "Orders.dat" o
WHERE (c."CustNo" = o."CustNo")
GROUP BY c."Company"
ORDER BY c."Company"

MIN can be used with all string, numeric, date, time, and timestamp columns. The return value is of the
same type as the column.

STDDEV Function

The STDDEV function returns the standard deviation of the values in a specified column or expression. The
syntax is as follows:

STDDEV(column_reference or expression)

Use STDDEV to calculate the standard deviation value for a numeric column. As an aggregate function,
STDDEV performs its calculation aggregating values in the same column(s) across all rows in a dataset.
The dataset may be the entire table, a filtered dataset, or a logical group produced by a GROUP BY clause.
NULL column values are not counted in the calculation. The following is an example of using the STDDEV
function to calculate the standard deviation for a set of test scores:

SELECT STDDEV(TestScore)
FROM Scores

When used with a GROUP BY clause, STDDEV calculates one value for each group. This value is the
aggregation of the specified column for all rows in each group.

STDDEV operates only on numeric values.

SUM Function

SQL Reference

Page 228

The SUM function calculates the sum of values for a column. The syntax is as follows:

SUM(column_reference or expression)

Use SUM to sum all the values in the specified column. As an aggregate function, SUM performs its
calculation aggregating values in the same column(s) across all rows in a dataset. The dataset may be the
entire table, a filtered dataset, or a logical group produced by a GROUP BY clause. Column values of zero
are included in the aggregation. NULL column values are not counted in the calculation. If the number of
qualifying rows is zero, SUM returns a NULL value. The following is an example of using the SUM function
to calculate the total order amount for all orders:

SELECT SUM(ItemsTotal)
FROM Orders

SUM returns the total sum of a column or a calculation using a column performed for each row (a
calculated field). The following example shows how to use the SUM function to calculate the total order
amount and tax amount for all orders:

SELECT SUM(ItemsTotal) AS Total,
SUM(ItemsTotal * 0.0825) AS TotalTax
FROM orders

When used with a GROUP BY clause, SUM returns one calculation value for each group. This value is the
aggregation of the specified column for all rows in each group. The following example aggregates the total
value for the ItemsTotal column in the Orders table, producing a subtotal for each company in the
Customer table:

SELECT c."Company",
SUM(o."ItemsTotal") AS SubTotal
FROM "Customer.dat" c, "Orders.dat" o
WHERE (c."CustNo" = o."CustNo")
GROUP BY c."Company"
ORDER BY c."Company"

SUM operates only on numeric values.

RUNSUM Function

The RUNSUM function calculates the sum of values for a column in a running total. The syntax is as
follows:

RUNSUM(column_reference or expression)

SQL Reference

Page 229

Use RUNSUM to sum all the values in the specified column in a continuous running total. The RUNSUM
function is identical to the SUM function except for the fact that it does not reset itself when sub-totalling.

Note
The running total is only calculated according to the implicit order of the GROUP BY fields and is not
affected by an ORDER BY statement.

LIST Function

The LIST function calculates the concatenation of string values for a column, using a delimiter to separate
each value. The syntax is as follows:

LIST(column_reference or expression[,delimiter])

Use LIST to concatenate all the string values in the specified column into a single string value, using a
delimiter to separate one value from the next. If the delimiter is not specified, then the default delimiter is
the comma (,).

AutoInc Functions

Use autoinc functions to return the last autoinc value from a given table in INSERT, UPDATE, or DELETE
queries. DBISAM's SQL supports the following autoinc functions:

Function Description

LASTAUTOINC Returns the last autoinc value from a specified table.

IDENT_CURRENT Same as LASTAUTOINC, with a different name.

LASTAUTOINC Function

The LASTAUTOINC function returns the last autoinc value from a specified table. The syntax is as follows:

LASTAUTOINC(table name constant)

The LASTAUTOINC function will return the last autoinc value from the specified table relative to the start
of the SQL statement currently referencing the LASTAUTOINC function. Because of this, it is possible for
LASTAUTOINC to not return the most recent last autoinc value for the specified table. It is usually
recommended that you only use this function within the scope of a transaction in order to guarantee that
you have retrieved the correct last autoinc value from the table. The following example illustrates how this
would be accomplished using an SQL script and a master-detail insert:

START TRANSACTION;

INSERT INTO customer (company) VALUES ('Test');

INSERT INTO orders (custno,empno) VALUES (LASTAUTOINC('customer'),100);

SQL Reference

Page 230

INSERT INTO orders (custno,empno) VALUES (LASTAUTOINC('customer'),200);

COMMIT FLUSH;

Full Text Indexing Functions

Use full text indexing functions to search for specific words in a given column in SELECT, INSERT,
UPDATE, or DELETE queries. The word search is controlled by the text indexing parameters for the table in
which the column resides. DBISAM's SQL supports the following word search functions:

Function Description

TEXTSEARCH Performs an optimized text word search on a field, if the field
is part of the full text index for the table, or a brute-force text
word search if not.

TEXTOCCURS Counts the number of times a list of words appears in a field
based upon the full text indexing parameters for the table.

TEXTSEARCH Function

The TEXTSEARCH function searches a column for a given set of words in a search string constant. The
syntax is as follows:

TEXTSEARCH(search string constant
 IN column_reference)
TEXTSEARCH(search string constant,
 column_reference)

The optimization of the TEXTSEARCH function is controlled by whether the column being searched is part
of the full text index for the table in which the column resides. If the column is not part of the full text
index then the search will resort to a brute-force scan of the contents of the column in every record that
satisifies any prior conditions in the WHERE clause. Also, the parsing of the list of words in the search
string constant is controlled by the text indexing parameters for the table in which the column being
searched resides. Please see the Full Text Indexing topic for more information.

In the following example, the words 'DATABASE QUERY SPEED' are searched for in the TextBody column:

SELECT GroupNo, No
FROM article
WHERE TEXTSEARCH('DATABASE QUERY SPEED' IN TextBody)

TEXTSEARCH returns a boolean value indicating whether the list of words exists in the column for a given
record. TEXTSEARCH can only be used with string or memo columns.

TEXTOCCURS Function

The TEXTOCCURS function searches a column for a given set of words in a search string constant and
returns the number of times the words occur in the column. The syntax is as follows:

SQL Reference

Page 231

TEXTOCCURS(search string constant
 IN column_reference)
TEXTOCCURS(search string constant,
 column_reference)

TEXTOCCURS is always a brute-force operation and accesses the actual column contents to perform its
functionality, unlike the TEXTSEARCH function which can be optimized by adding the column being
searched to the full text index for the table. Also, the parsing of the list of words in the search string
constant is controlled by the text indexing parameters for the table in which the column being searched
resides. Please see the Full Text Indexing topic for more information.

In the following example, the number of occurrences of the words 'DATABASE QUERY SPEED' in the
TextBody column are used to order the results of a TEXTSEARCH query in order to provide ranking for the
text search:

SELECT GroupNo, No,
TEXTOCCURS('DATABASE QUERY SPEED' IN TextBody) AS NumOccurs
FROM article
WHERE TEXTSEARCH('DATABASE QUERY SPEED' IN TextBody)
ORDER BY 3 DESC

TEXTOCCURS returns an integer value indicating the total number of times the list of words occurs in the
column for a given record. TEXTOCCURS can only be used with string or memo columns.

Data Conversion Functions

Use data conversion functions to convert values from one type to another in SELECT, INSERT, UPDATE, or
DELETE queries. DBISAM's SQL supports the following data conversion functions:

Function Description

EXTRACT Extracts the year, month, week, day of week, or day value of
a date or the hours, minutes, or seconds value of a time.

CAST Converts a given data value from one data type to another.

YEARSFROMMSECS Takes milliseconds and returns the number of years.

DAYSFROMMSECS Takes milliseconds and returns the number of days (as a
remainder of the above years, not as an absolute).

HOURSFROMMSECS Takes milliseconds and returns the number of hours (as a
remainder of the above years and days, not as an absolute).

MINSFROMMSECS Takes milliseconds and returns the number of minutes (as a
remainder of the above years, days, and hours, not as an
absolute).

SECSFROMMSECS Takes milliseconds and returns the number of seconds (as a
remainder of the above years, days, hours, and minutes, not
as an absolute).

SQL Reference

Page 232

MSECSFROMMSECS Takes milliseconds and returns the number of milliseconds (as
a remainder of the above years, days, hours, minutes, and
seconds, not as an absolute).

EXTRACT Function

The EXTRACT function returns a specific value from a date, time, or timestamp value. The syntax is as
follows:

EXTRACT(extract_value
 FROM column_reference or expression)
EXTRACT(extract_value,
 column_reference or expression)

Use EXTRACT to return the year, month, week, day of week, day, hours, minutes, seconds, or milliseconds
from a date, time, or timestamp column. EXTRACT returns the value for the specified element as an
integer.

The extract_value parameter may contain any one of the specifiers:

YEAR
MONTH
WEEK
DAYOFWEEK
DAYOFYEAR
DAY
HOUR
MINUTE
SECOND
MSECOND

The specifiers YEAR, MONTH, WEEK, DAYOFWEEK, DAYOFYEAR, and DAY can only be used with date and
timestamp columns. The following example shows how to use the EXTRACT function to display the various
elements of the SaleDate column:

SELECT SaleDate,
EXTRACT(YEAR FROM SaleDate) AS YearNo,
EXTRACT(MONTH FROM SaleDate) AS MonthNo,
EXTRACT(WEEK FROM SaleDate) AS WeekNo,
EXTRACT(DAYOFWEEK FROM SaleDate) AS WeekDayNo,
EXTRACT(DAYOFYEAR FROM SaleDate) AS YearDayNo,
EXTRACT(DAY FROM SaleDate) AS DayNo
FROM Orders

The following example uses a DOB column (containing birthdates) to filter those rows where the date is in
the month of May. The month field from the DOB column is retrieved using the EXTRACT function and
compared to 5, May being the fifth month:

SQL Reference

Page 233

SELECT DOB, LastName, FirstName
FROM People
WHERE (EXTRACT(MONTH FROM DOB) = 5)

Note
The WEEK and DAYOFWEEK parameters will return the week number and the day of the week
according to ANSI/ISO standards. This means that the first week of the year (week 1) is the first
week that contains the first Thursday in January and January 4th and the first day of the week (day
1) is Monday. Also, while ANSI-standard SQL provides the EXTRACT function specifiers
TIMEZONE_HOUR and TIMEZONE_MINUTE, these specifiers are not supported in DBISAM's SQL.

EXTRACT operates only on date, time, and timestamp values.

CAST Function

The CAST function converts a specified value to the specified data type. The syntax is as follows:

CAST(column_reference AS data_type)
CAST(column_reference,data_type)

Use CAST to convert the value in the specified column to the data type specified. CAST can also be applied
to literal and calculated values. CAST can be used in the columns list of a SELECT statement, in the
predicate for a WHERE clause, or to modify the update atom of an UPDATE statement.

The data type parameter may be any valid SQL data type that is a valid as a destination type for the
source data being converted. Please see the Data Types and NULL Support topic for more information.

The statement below converts a timestamp column value to a date column value:

SELECT CAST(SaleDate AS DATE)
FROM ORDERS

Converting a column value with CAST allows use of other functions or predicates on an otherwise
incompatible data type, such as using the SUBSTRING function on a date column:

SELECT SaleDate,
SUBSTRING(CAST(CAST(SaleDate AS DATE) AS CHAR(10)) FROM 1 FOR 1)
FROM Orders

Note
All conversions of dates or timestamps to strings are done using the 24-hour clock (military time).

YEARSFROMMSECS Function

SQL Reference

Page 234

The YEARSFROMMSECS function takes milliseconds and returns the number of years. The syntax is as
follows:

YEARSFROMMSECS(column_reference or expression)

Use YEARSFROMMSECS to return the number of years present in a milliseconds value as an integer value.

DAYSFROMMSECS Function

The DAYSFROMMSECS function takes milliseconds and returns the number of days as a remainder of the
number of years present in the milliseconds. The syntax is as follows:

DAYSFROMMSECS(column_reference or expression)

Use DAYSFROMMSECS to return the number of days present in a milliseconds value as an integer value.
The number of days is represented as the remainder of days once the number of years is removed from
the milliseconds value using the YEARSFROMMSECS function.

HOURSFROMMSECS Function

The HOURSFROMMSECS function takes milliseconds and returns the number of hours as a remainder of
the number of years and days present in the milliseconds. The syntax is as follows:

HOURSFROMMSECS(column_reference or expression)

Use HOURSFROMMSECS to return the number of hours present in a milliseconds value as an integer value.
The number of hours is represented as the remainder of hours once the number of years and days is
removed from the milliseconds value using the YEARSFROMMSECS and DAYSFROMMSECS functions.

MINSFROMMSECS Function

The MINSFROMMSECS function takes milliseconds and returns the number of minutes as a remainder of
the number of years, days, and hours present in the milliseconds. The syntax is as follows:

MINSFROMMSECS(column_reference or expression)

Use MINSFROMMSECS to return the number of minutes present in a milliseconds value as an integer
value. The number of minutes is represented as the remainder of minutes once the number of years, days,
and hours is removed from the milliseconds value using the YEARSFROMMSECS, DAYSFROMMSECS, and
HOURSFROMMSECS functions.

SECSFROMMSECS Function

The SECSFROMMSECS function takes milliseconds and returns the number of seconds as a remainder of

SQL Reference

Page 235

the number of years, days, hours, and minutes present in the milliseconds. The syntax is as follows:

SECSFROMMSECS(column_reference or expression)

Use SECSFROMMSECS to return the number of seconds present in a milliseconds value as an integer
value. The number of seconds is represented as the remainder of seconds once the number of years,
days, hours, and minutes is removed from the milliseconds value using the YEARSFROMMSECS,
DAYSFROMMSECS, HOURSFROMMSECS, and MINSFROMMSECS functions.

MSECSFROMMSECS Function

The MSECSFROMMSECS function takes milliseconds and returns the number of milliseconds as a remainder
of the number of years, days, hours, minutes, and seconds present in the milliseconds. The syntax is as
follows:

MSECSFROMMSECS(column_reference or expression)

Use MSECSFROMMSECS to return the number of milliseconds present in a milliseconds value as an integer
value. The number of milliseconds is represented as the remainder of milliseconds once the number of
years, days, hours, minutes, and seconds is removed from the milliseconds value using the
YEARSFROMMSECS, DAYSFROMMSECS, HOURSFROMMSECS, MINSFROMMSECS, and SECSFROMMSECS
functions.

SQL Reference

Page 236

4.7 SELECT Statement

Introduction

The SQL SELECT statement is used to retrieve data from tables. You can use the SELECT statement to:

Retrieve a single row, or part of a row, from a table, referred to as a singleton select.
Retrieve multiple rows, or parts of rows, from a table.
Retrieve related rows, or parts of rows, from a join of two or more tables.

Syntax

SELECT [DISTINCT | ALL] * | column
[AS correlation_name | correlation_name], [column...]

[INTO destination_table]

FROM table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE]

[[[[INNER | [LEFT | RIGHT] OUTER JOIN] table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE]
ON join_condition]

[WHERE predicates]

[GROUP BY group_list]

[HAVING predicates]

[[UNION | EXCEPT| INTERSECT] [ALL] [SELECT...]]

[ORDER BY order_list [NOCASE]]

[TOP number_of_rows]

[LOCALE locale_name | LOCALE CODE locale_code]

[ENCRYPTED WITH password]

[NOJOINOPTIMIZE]
[JOINOPTIMIZECOSTS]
[NOWHEREJOINS]

The SELECT clause defines the list of items returned by the SELECT statement. The SELECT clause uses a
comma-separated list composed of: table columns, literal values, and column or literal values modified by
functions. You cannot use parameters in this list of items. Use an asterisk to retrieve values from all
columns. Columns in the column list for the SELECT clause may come from more than one table, but can
only come from those tables listed in the FROM clause. The FROM clause identifies the table(s) from which
data is retrieved.

The following example retrieves data for two columns in all rows of a table:

SQL Reference

Page 237

SELECT CustNo, Company
FROM Orders

You can use the AS keyword to specify a column correlation name, or alternately you can simply just
specify the column correlation name after the selected column. The following example uses both methods
to give each selected column a more descriptive name in the query result set:

SELECT Customer.CustNo AS "Customer #",
Customer.Company AS "Company Name",
Orders.OrderNo "Order #",
SUM(Items.Qty) "Total Qty"
FROM Customer LEFT OUTER JOIN Orders ON Customer.Custno=Orders.Custno
LEFT OUTER JOIN Items ON Orders.OrderNo=Items.OrderNo
WHERE Customer.Company LIKE '%Diver%'
GROUP BY 1,2
ORDER BY 1

Use DISTINCT to limit the retrieved data to only distinct rows. The distinctness of rows is based on the
combination of all of the columns in the SELECT clause columns list. DISTINCT can only be used with
simple column types like string and integer; it cannot be used with complex column types like blob.

INTO Clause

The INTO clause specifies a table into which the query results are generated. The syntax is as follows:

INTO destination_table

Use an INTO clause to specify the table where the query results will be stored when the query has
completed execution. The following example shows how to generate all of the orders in the month of
January as a table on disk named "Results":

SELECT *
INTO "Results"
FROM "Orders"

If you do not specify a drive and directory in the destination table name, for local sessions, or a database
name in the destination table name, for remote sessions, then the destination table will be created in the
current active database for the query being executed.

The following examples show the different options for the INTO clause and their resultant destination
table names.

This example produces a destination table in the current database called "Results":

SELECT *
INTO "Results"
FROM "Orders"

SQL Reference

Page 238

This example produces a destination table called "Results" in the specified local database directory (valid
for local sessions only):

SELECT *
INTO "c:\MyData\Results"
FROM "Orders"

This example produces a destination table called "Results" in the specified database (valid for remote
sessions only):

SELECT *
INTO "\MyRemoteDB\Results"
FROM "Orders"

This example produces an in-memory destination table called "Results":

SELECT *
INTO "\Memory\Results"
FROM "Orders"

There are some important caveats when using the INTO clause:

The INTO clause creates the resultant table from scratch, so if a table with the same name in the
same location already exists, it will be overwritten. This also means that any indexes defined for the
table will be removed or modified, even if the result set columns match those of the existing table.

You must make sure that you close the query before trying to access the destination table with
another table component. If you do not an exception will be raised.

You must make sure to delete the table after you are done if you don't wish to leave it on disk or in-
memory for further use.

Remote sessions can only produce tables that are accessible from the database server and cannot
automatically create a local table from a query on the database server by specifying a local path for
the INTO clause. The path for the INTO clause must be accessible from the database server in order
for the query to be successfully executed.

The destination table cannot be passed to the INTO clause via a parameter.

FROM Clause

The FROM clause specifies the tables from which a SELECT statement retrieves data. The syntax is as
follows:

FROM table_reference [AS] [correlation_name]
[, table_reference...]

SQL Reference

Page 239

Use a FROM clause to specify the table or tables from which a SELECT statement retrieves data. The value
for a FROM clause is a comma-separated list of table names. Specified table names must follow DBISAM's
SQL naming conventions for tables. Please see the Naming Conventions topic for more information. The
following SELECT statement below retrieves data from a single table:

SELECT *
FROM "Customer"

The following SELECT statement below retrieves data from a single in-memory table:

SELECT *
FROM "\Memory\Customer"

You can use the AS keyword to specify a table correlation name, or alternately you can simply just specify
the table correlation name after the source table name. The following example uses both methods to give
each source table a shorter name to be used in qualifying source columns in the query:

SELECT c.CustNo AS "Customer #",
c.Company AS "Company Name",
o.OrderNo "Order #",
SUM(i.Qty) "Total Qty"
FROM Customer AS c LEFT OUTER JOIN Orders AS o ON c.Custno=o.Custno
LEFT OUTER JOIN Items i ON o.OrderNo=i.OrderNo
WHERE c.Company LIKE '%Diver%'
GROUP BY 1,2
ORDER BY 1

Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

Note
Be careful when using the EXCLUSIVE keyword with a table that is specified more than once in the
same query, as is the case with recursive relationships between a table and itself.

See the section below entitled JOIN clauses for more information on retrieving data from multiple tables in
a single SELECT query.

The table reference cannot be passed to a FROM clause via a parameter.

JOIN Clauses

There are three types of JOIN clauses that can be used in the FROM clause to perform relational joins
between source tables. The implicit join condition is always Cartesian for source tables without an explicit
JOIN clause.

Join Type Description

SQL Reference

Page 240

Cartesian Joins two tables, matching each row of one table with each
row from the other.

INNER Joins two tables, filtering out non-matching rows.

OUTER Joins two tables, retaining non-matching rows.

Cartesan Join

A Cartesian join connects two tables in a non-relational manner. The syntax is as follows:

FROM table_reference, table_reference [,table_reference...]

Use a Cartesian join to connect the column of two tables into one result set, but without correlation
between the rows from the tables. Cartesian joins match each row of the source table with each row of
the joining table. No column comparisons are used, just simple association. If the source table has 10
rows and the joining table has 10, the result set will contain 100 rows as each row from the source table is
joined with each row from the joined table.

INNER JOIN Clause

An INNER join connects two tables based on column values common between the two, excluding non-
matches. The syntax is as follows:

FROM table_reference
[INNER] JOIN table_reference ON predicate
[[INNER] JOIN table_reference ON predicate...]

Use an INNER JOIN to connect two tables, a source and joining table, that have values from one or more
columns in common. One or more columns from each table are compared in the ON clause for equal
values. For rows in the source table that have a match in the joining table, the data for the source table
rows and matching joining table rows are included in the result set. Rows in the source table without
matches in the joining table are excluded from the joined result set. In the following example the
Customer and Orders tables are joined based on values in the CustNo column, which each table contains:

SELECT *
FROM Customer c INNER JOIN Orders o ON (c.CustNo=o.CustNo)

More than one table may be joined with an INNER JOIN. One use of the INNER JOIN operator and
corresponding ON clause is required for each each set of two tables joined. One columns comparison
predicate in an ON clause is required for each column compared to join each two tables. The following
example joins the Customer table to Orders, and then Orders to Items. In this case, the joining table
Orders acts as a source table for the joining table Items:

SELECT *
FROM Customer c JOIN Orders o ON (c.CustNo = o.CustNo)
JOIN Items i ON (o.OrderNo = i.OrderNo)

SQL Reference

Page 241

Tables may also be joined using a concatenation of multiple column values to produce a single value for
the join comparison predicate. In the following example the ID1 and ID2 columns in the Joining table are
concatenated and compared with the values in the single column ID in Source:

SELECT *
FROM Source s INNER JOIN Joining j ON (s.ID = j.ID1 || j.ID2)

OUTER JOIN Clause

The OUTER JOIN clause connects two tables based on column values common between the two, including
non-matches. The syntax is as follows:

FROM table_reference LEFT | RIGHT [OUTER]
JOIN table_reference ON predicate
[LEFT | RIGHT [OUTER] JOIN table_reference ON predicate...]

Use an OUTER JOIN to connect two tables, a source and joining table, that have one or more columns in
common. One or more columns from each table are compared in the ON clause for equal values. The
primary difference between inner and outer joins is that, in outer joins rows from the source table that do
not have a match in the joining table are not excluded from the result set. Columns from the joining table
for rows in the source table without matches have NULL values.

In the following example the Customer and Orders tables are joined based on values in the CustNo
column, which each table contains. For rows from Customer that do not have a matching value between
Customer.CustNo and Orders.CustNo, the columns from Orders contain NULL values:

SELECT *
FROM Customer c LEFT OUTER JOIN Orders o ON (c.CustNo = o.CustNo)

The LEFT modifier causes all rows from the table on the left of the OUTER JOIN operator to be included in
the result set, with or without matches in the table to the right. If there is no matching row from the table
on the right, its columns contain NULL values. The RIGHT modifier causes all rows from the table on the
right of the OUTER JOIN operator to be included in the result set, with or without matches. If there is no
matching row from the table on the left, its columns contain NULL values.

More than one table may be joined with an OUTER JOIN. One use of the OUTER JOIN operator and
corresponding ON clause is required for each each set of two tables joined. One column comparison
predicate in an ON clause is required for each column compared to join each two tables. The following
example joins the Customer table to the Orders table, and then Orders to Items. In this case, the joining
table Orders acts as a source table for the joining table Items:

SELECT *
FROM Customer c LEFT OUTER JOIN Orders o ON (c.CustNo = o.CustNo)
LEFT OUTER JOIN Items i ON (o.OrderNo = i.OrderNo)

Tables may also be joined using expressions to produce a single value for the join comparison predicate.

SQL Reference

Page 242

In the following example the ID1 and ID2 columns in Joining are separately compared with two values
produced by the SUBSTRING function using the single column ID in Source:

SELECT *
FROM Source s RIGHT OUTER JOIN Joining j
ON (SUBSTRING(s.ID FROM 1 FOR 2) = j.ID1) AND
(SUBSTRING(s.ID FROM 3 FOR 1) = j.ID2)

WHERE Clause

The WHERE clause specifies filtering conditions for the SELECT statement. The syntax is as follows:

WHERE predicates

Use a WHERE clause to limit the effect of a SELECT statement to a subset of rows in the table, and the
clause is optional.

The value for a WHERE clause is one or more logical expressions, or predicates, that evaluate to true or
false for each row in the table. Only those rows where the predicates evaluate to TRUE are retrieved by
the SELECT statement. For example, the SELECT statement below retrieves all rows where the State
column contains a value of 'CA':

SELECT Company, State
FROM Customer
WHERE State='CA'

A column used in the WHERE clause of a statement is not required to also appear in the SELECT clause of
that statement. In the preceding statement, the State column could be used in the WHERE clause even if
it was not also in the SELECT clause.

Multiple predicates must be separated by one of the logical operators OR or AND. Each predicate can be
negated with the NOT operator. Parentheses can be used to isolate logical comparisons and groups of
comparisons to produce different row evaluation criteria. For example, the SELECT statement below
retrieves all rows where the State column contains a value of 'CA' or a value of 'HI':

SELECT Company, State
FROM Customer
WHERE (State='CA') OR (State='HI')

Subqueries are supported in the WHERE clause. A subquery works like a search condition to restrict the
number of rows returned by the outer, or "parent" query. Such subqueries must be valid SELECT
statements. SELECT subqueries cannot be correlated in DBISAM's SQL, i.e. they cannot refer to columns in
the outer (or "parent") statement. In the following statement, the subquery is said to be un-correlated:

SELECT *
FROM "Clients" C

SQL Reference

Page 243

WHERE C.Acct_Nbr IN
 (SELECT H.Acct_Nbr
 FROM "Holdings" H
 WHERE H.Pur_Date BETWEEN '1994-01-01' AND '1994-12-31')

Note
Column correlation names cannot be used in filter comparisons in the WHERE clause. Use the actual
column name instead.

A WHERE clause filters data prior to the aggregation of a GROUP BY clause. For filtering based on
aggregated values, use a HAVING clause.

Columns devoid of data contain NULL values. To filter using such column values, use the IS NULL
predicate.

GROUP BY Clause

The GROUP BY clause combines rows with column values in common into single rows for the SELECT
statement. The syntax is as follows:

GROUP BY column_reference [, column reference...]

Use a GROUP BY clause to cause an aggregation process to be repeated once for each group of similar
rows. Similarity between rows is determined by the distinct values (or combination of values) in the
columns specified in the GROUP BY. For instance, a query with a SUM function produces a result set with a
single row with the total of all the values for the column used in the SUM function. But when a GROUP BY
clause is added, the SUM function performs its summing action once for each group of rows. In statements
that support a GROUP BY clause, the use of a GROUP BY clause is optional. A GROUP BY clause becomes
necessary when both aggregated and non-aggregated columns are included in the same SELECT
statement.

In the statement below, the SUM function produces one subtotal of the ItemsTotal column for each
distinct value in the CustNo column (i.e., one subtotal for each different customer):

SELECT CustNo, SUM(ItemsTotal)
FROM Orders
GROUP BY CustNo

The value for the GROUP BY clause is a comma-separated list of columns. Each column in this list must
meet the following criteria:

Be in one of the tables specified in the FROM clause of the query.
Also be in the SELECT clause of the query.
Cannot have an aggregate function applied to it (in the SELECT clause).
Cannot be a BLOB column.

When a GROUP BY clause is used, all table columns in the SELECT clause of the query must meet at least
one of the following criteria, or it cannot be included in the SELECT clause:

SQL Reference

Page 244

Be in the GROUP BY clause of the query.
Be the subject of an aggregate function.

Literal values in the SELECT clause are not subject to the preceding criteria and are not required to be in
the GROUP BY clause in addition to the SELECT clause.

The distinctness of rows is based on the columns in the column list specified. All rows with the same
values in these columns are combined into a single row (or logical group). Columns that are the subject of
an aggregate function have their values across all rows in the group combined. All columns not the subject
of an aggregate function retain their value and serve to distinctly identify the group. For example, in the
SELECT statement below, the values in the Sales column are aggregated (totalled) into groups based on
distinct values in the Company column. This produces total sales for each company:

SELECT C.Company, SUM(O.ItemsTotal) AS TotalSales
FROM Customer C, Orders O
WHERE C.CustNo=O.CustNo
GROUP BY C.Company
ORDER BY C.Company

A column may be referenced in a GROUP BY clause by a column correlation name, instead of actual
column names. The statement below forms groups using the first column, Company, represented by the
column correlation name Co:

SELECT C.Company Co, SUM(O.ItemsTotal) AS TotalSales
FROM Customer C, Orders O
WHERE C.CustNo=O.CustNo
GROUP BY Co
ORDER BY 1

HAVING Clause

The HAVING clause specifies filtering conditions for a SELECT statement. The syntax is as follows:

HAVING predicates

Use a HAVING clause to limit the rows retrieved by a SELECT statement to a subset of rows where
aggregated column values meet the specified criteria. A HAVING clause can only be used in a SELECT
statement when:

The statement also has a GROUP BY clause.
One or more columns are the subjects of aggregate functions.

The value for a HAVING clause is one or more logical expressions, or predicates, that evaluate to true or
false for each aggregate row retrieved from the table. Only those rows where the predicates evaluate to
true are retrieved by a SELECT statement. For example, the SELECT statement below retrieves all rows
where the total sales for individual companies exceed $1,000:

SELECT Company, SUM(sales) AS TotalSales

SQL Reference

Page 245

FROM Sales1998
GROUP BY Company
HAVING (SUM(sales) >= 1000)
ORDER BY Company

Multiple predicates must be separated by one of the logical operators OR or AND. Each predicate can be
negated with the NOT operator. Parentheses can be used to isolate logical comparisons and groups of
comparisons to produce different row evaluation criteria.

A SELECT statement can include both a WHERE clause and a HAVING clause. The WHERE clause filters the
data to be aggregated, using columns not the subject of aggregate functions. The HAVING clause then
further filters the data after the aggregation, using columns that are the subject of aggregate functions.
The SELECT query below performs the same operation as that above, but data limited to those rows
where the State column is 'CA':

SELECT Company, SUM(sales) AS TotalSales
FROM Sales1998
WHERE (State = 'CA')
GROUP BY Company
HAVING (TOTALSALES >= 1000)
ORDER BY Company

A HAVING clause filters data after the aggregation of a GROUP BY clause. For filtering based on row
values prior to aggregation, use a WHERE clause.

UNION, EXCEPT, or INTERSECT Clause

The UNION clause concatenates the rows of one query result set to the end of another query result set
and returns the resultant rows. The EXCEPT clause returns all of the rows from one query result set that
are not present in another query result set. The INTERSECT clause returns all of the rows from one query
result set that are also present in another query result set. The syntax is as follows:

[[UNION | EXCEPT| INTERSECT] [ALL] [SELECT...]]

The SELECT statement for the source and destination query result sets must include the same number of
columns for them to be UNION/EXCEPT/INTERSECT-compatible. The source table structures themselve
need not be the same as long as those columns included in the SELECT statements are:

SELECT CustNo, Company
FROM Customers
EXCEPT
SELECT OldCustNo, OldCompany
FROM Old_Customers

The data types for all columns retrieved by the UNION/EXCEPT/INTERSECT across the multiple query
result sets must be identical. If there is a data type difference between two query result sets for a given
column, an error will occur. The following query shows how to handle such a case to avoid an error:

SQL Reference

Page 246

SELECT S.ID, CAST(S.Date_Field AS TIMESTAMP)
FROM Source S
UNION ALL
SELECT J.ID, J.Timestamp_Field
FROM Joiner J

Matching names is not mandatory for result set columns retrieved by the UNION/EXCEPT/INTERSECT
across the multiple query result sets. Column name differences between the multiple query result sets are
automatically handled. If a column in two query result sets has a different name, the column in the
UNION/EXCEPT/INTERSECTed result set will use the column name from the first SELECT statement.

By default, non-distinct rows are aggregated into single rows in a UNION/EXCEPT/INTERSECT join. Use
ALL to retain non-distinct rows.

Note
When using the EXCEPT or INTERSECT clauses with the ALL keyword, the resultant rows will reflect
the total counts of duplicate matching rows in both query result sets. For example, if using EXCEPT
ALL with a query result set that has two 'A' rows and a query result set that has 1 'A' row, the result
set will contain 1 'A' row (1 matching out of the 2). The same is true with INTERSECT. If using
INTERSECT ALL with a query result set that has three 'A' rows and a query result set that has 2 'A'
rows, the result set will contain 2 'A' rows (2 matching out of the 3).

To join two query result sets with UNION/EXCEPT/INTERSECT where one query does not have a column
included by another, a compatible literal or expression may be used instead in the SELECT statement
missing the column. For example, if there is no column in the Joining table corresponding to the Name
column in Source an expression is used to provide a value for a pseudo Joining.Name column. Assuming
Source.Name is of type CHAR(10), the CAST function is used to convert an empty character string to
CHAR(10):

SELECT S.ID, S.Name
FROM Source S
INTERSECT
SELECT J.ID, CAST('' AS CHAR(10))
FROM Joiner J

If using an ORDER BY or TOP clause, these clauses must be specified after the last SELECT statement
being joined with a UNION/EXCEPT/INTERSECT clause. The WHERE, GROUP BY, HAVING, LOCALE,
ENCRYPTED, NOJOINOPTIMIZE, JOINOPTIMIZECOSTS, and NOWHEREJOINS clauses can be specified for
all or some of the individual SELECT statements being joined with a UNION/EXCEPT/INTERSECT clause.
The INTO clause can only be specified for the first SELECT statement in the list of unioned SELECT
statements. The following example shows how you could join two SELECT statements with a UNION clause
and order the final joined result set:

SELECT CustNo, Company
FROM Customers
UNION
SELECT OldCustNo, Company
FROM Old_Customers
ORDER BY CustNo

SQL Reference

Page 247

When referring to actual column names in the ORDER BY clause you must use the column name of the
first SELECT statement being joined with the UNION/EXCEPT/INTERSECT clause.

ORDER BY Clause

The ORDER BY clause sorts the rows retrieved by a SELECT statement. The syntax is as follows:

ORDER BY column_reference [ASC|DESC]
[, column_reference...[ASC|DESC]] [NOCASE]

Use an ORDER BY clause to sort the rows retrieved by a SELECT statement based on the values from one
or more columns. In SELECT statements, use of this clause is optional.

The value for the ORDER BY clause is a comma-separated list of column names. The columns in this list
must also be in the SELECT clause of the query statement. Columns in the ORDER BY list can be from one
or multiple tables. If the columns used for an ORDER BY clause come from multiple tables, the tables must
all be those that are part of a join. They cannot be a table included in the statement only through a
SELECT subquery.

BLOB columns cannot be used in the ORDER BY clause.

A column may be specified in an ORDER BY clause using a number representing the relative position of
the column in the SELECT of the statement. Column correlation names can also be used in an ORDER BY
clause columns list. Calculations cannot be used directly in an ORDER BY clause. Instead, assign a column
correlation name to the calculation and use that name in the ORDER BY clause.

Use ASC (or ASCENDING) to force the sort to be in ascending order (smallest to largest), or DESC (or
DESCENDING) for a descending sort order (largest to smallest). When not specified, ASC is the implied
default.

Use NOCASE to force the sort to be case-insensitive. This is also useful for allowing a live result set when
an index is available that matches the ORDER BY clause but is marked as case-insensitive. When not
specified, case-sensitive is the implied default.

The statement below sorts the result set ascending by the year extracted from the LastInvoiceDate
column, then descending by the State column, and then ascending by the uppercase conversion of the
Company column:

SELECT EXTRACT(YEAR FROM LastInvoiceDate) AS YY,
State,
UPPER(Company)
FROM Customer
ORDER BY YY DESC, State ASC, 3

TOP Clause

The TOP clause cause the query to only return the top N number of rows, respecting any GROUP BY,
HAVING, or ORDER BY clauses. The syntax is as follows:

SQL Reference

Page 248

TOP number_of_rows

Use a TOP clause to only extract a certain number of rows in a SELECT statement, based upon any GROUP
BY, HAVING, or ORDER BY clauses. The rows that are selected start at the logical top of the result set and
proceed to the total number of rows matching the TOP clause. In SELECT statements, use of the clause is
optional.

LOCALE Clause

Use a LOCALE clause to set the locale of a result set created by a canned query (not live). The syntax is:

LOCALE locale_name | LOCALE CODE locale_code

If this clause is not used, the default locale of any canned result set is based upon the locale of the first
table in the FROM clause of the SELECT statement. A list of locales and their IDs can be retrieved via the
TDBISAMEngine GetLocaleNames method.

ENCRYPTED WITH Clause

The ENCRYPTED WITH clause causes a SELECT statement that returns a canned result set to encrypt the
temporary table on disk used for the result set with the specified password. The syntax is as follows:

ENCRYPTED WITH password

Use an ENCRYPTED WITH clause to force the temporary table created by a SELECT statement that returns
a canned result set to be encrypted with the specified password. This clause can also be used to encrypt
the contents of a table created by a SELECT statement that uses the INTO clause.

NOJOINOPTIMIZE Clause

The NOJOINOPTIMIZE clause causes all join re-ordering to be turned off for a SELECT statement. The
syntax is as follows:

NOJOINOPTIMIZE

Use a NOJOINOPTIMIZE clause to force the query optimizer to stop re-ordering joins for a SELECT
statement. In certain rare cases the query optimizer might not have enough information to know that re-
ordering the joins will result in worse performance than if the joins were left in their original order, so in
such cases you can include this clause to force the query optimizer to not perform the join re-ordering.

JOINOPTIMIZECOSTS Clause

The JOINOPTIMIZECOSTS clause causes the optimizer to take into account I/O costs when optimizing join
expressions. The syntax is as follows:

SQL Reference

Page 249

JOINOPTIMIZECOSTS

Use a JOINOPTIMIZECOSTS clause to force the query optimizer to use I/O cost projections to determine
the most efficient way to process the conditions in a join expression. If you have a join expression with
multiple conditions in it, then using this clause may help improve the performance of the join expression,
especially if it is already executing very slowly.

NOWHEREJOINS Clause

The NOWHEREJOINS clause causes the optimizer to treat any join expressions in the WHERE clause (SQL-
89-style joins) as normal, un-optimized expressions instead of inner joins. The syntax is as follows:

NOWHEREJOINS

Use a NOWHEREJOINS clause to force the query optimizer to treat any joins in the WHERE clause as
normal, un-optimized expressions instead of inner joins. This is very useful when you need the conditions
for filtering the results, but do not want to treat them as inner joins because they exhibit a low cardinality
(there are lot of matching values). Join conditions with a low cardinality can be slow because they cause a
lot of overhead in processing the sets of rows in the DBISAM engine.

SQL Reference

Page 250

4.8 INSERT Statement

Introduction

The SQL INSERT statement is used to add one or more new rows of data in a table.

Syntax

INSERT INTO table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE]

[(columns_list)]

VALUES (update_values) | SELECT statement

[COMMIT [INTERVAL commit_interval] [FLUSH]]

Use the INSERT statement to add new rows of data to a single table. Use a table reference in the INTO
clause to specify the table to receive the incoming data. Use the EXCLUSIVE keyword to specify that the
table should be opened exclusively.

The columns list is a comma-separated list, enclosed in parentheses, of columns in the table and is
optional. The VALUES clause is a comma-separated list of update values, enclosed in parentheses. Unless
the source of new rows is a SELECT subquery, the VALUES clause is required and the number of update
values in the VALUES clause must match the number of columns in the columns list exactly.

If no columns list is specified, incoming update values are stored in fields as they are defined sequentially
in the table structure. Update values are applied to columns in the order the update values are listed in
the VALUES clause. The number of update values must match the number of columns in the table exactly.

The following example inserts a single row into the Holdings table:

INSERT INTO Holdings
VALUES (4094095,'INPR',5000,10.500,'1998-01-02')

If an explicit columns list is stated, incoming update values (in the order they appear in the VALUES
clause) are stored in the listed columns (in the order they appear in the columns list). NULL values are
stored in any columns that are not in a columns list. When a columns list is explicitly described, there must
be exactly the same number of update values in the VALUES clause as there are columns in the list.

The following example inserts a single row into the Customer table, adding data for only two of the
columns in the table:

INSERT INTO "Customer" (CustNo, Company)
VALUES (9842,'Elevate Software, Inc.')

To add rows to one table that are retrieved from another table, omit the VALUES keyword and use a

SQL Reference

Page 251

subquery as the source for the new rows:

INSERT INTO "Customer" (CustNo, Company)
SELECT CustNo, Company
FROM "OldCustomer"

The INSERT statement only supports SELECT subqueries in the VALUES clause. References to tables other
than the one to which rows are added or columns in such tables are only possible in SELECT subqueries.

The INSERT statement can use a single SELECT statement as the source for the new rows, but not
multiple statements joined with UNION.

COMMIT Clause

The COMMIT clause is used to control how often DBISAM will commit a transaction while the INSERT
statement is executing and/or whether the commit operation performs an operating system flush to disk.
The INSERT statement implicitly uses a transaction if one is not already active. The default interval at
which the implicit transaction is committed is based upon the record size of the table being updated in the
query and the amount of buffer space available in DBISAM. The COMMIT INTERVAL clause is used to
manually control the interval at which the transaction is committed based upon the number of rows
inserted, and applies in both situations where a transaction was explicitly started by the application and
where the transaction was implicitly started by DBISAM. In the case where a transaction was explicitly
started by the application, the absence of a COMMIT INTERVAL clause in the SQL statement being
executed will force DBISAM to never commit any of the effects of the SQL statement and leaves this up to
the application to handle after the SQL statement completes. The syntax is as follows:

COMMIT [INTERVAL nnnn] [FLUSH]

The INTERVAL keyword is optional, allowing the application to use the default commit interval but still
specify the FLUSH keyword to indicate that it wishes to have the transaction commits flushed to disk at the
operating system level. Please see the Transactions and Buffering and Caching topics for more
information.

Please see the Updating Tables and Query Result Sets topic for more information on adding records to a
table.

SQL Reference

Page 252

4.9 UPDATE Statement

Introduction

The SQL UPDATE statement is used to modify one or more existing rows in a table.

Syntax

UPDATE table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE]

SET column_ref = update_value
[, column_ref = update_value...]

[FROM table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE]

[[INNER | [LEFT | RIGHT] OUTER JOIN] table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE] ON join_condition]

[WHERE predicates]

[COMMIT [INTERVAL commit_interval] [FLUSH]]

[NOJOINOPTIMIZE]
[JOINOPTIMIZECOSTS]
[NOWHEREJOINS]

Use the UPDATE statement to modify one or more column values in one or more existing rows in a single
table per statement. Use a table reference in the UPDATE clause to specify the table to receive the data
changes. Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

SET Clause

The SET clause is a comma-separated list of update expressions for the UPDATE statement. The syntax is
as follows:

SET column_ref = update_value
[, column_ref = update_value...]

Each expression comprises the name of a column, the assignment operator (=), and the update value for
that column. The update values in any one update expression may be literal values or calculated values.

FROM and JOIN Clauses

You may use an optional FROM clause with additional JOIN clauses to specify multiple tables from which
an UPDATE statement retrieves data for the purpose of updating the target table. The value for a FROM
clause is a comma-separated list of table names, with the first table exactly matching the table name
specified after the UPDATE clause. Specified table names must follow DBISAM's SQL naming conventions

SQL Reference

Page 253

for tables. Please see the Naming Conventions topic for more information. The following UPDATE
statement below updates data in one table based upon a LEFT OUTER JOIN condition to another table:

UPDATE orders SET ShipToContact=Customer.Contact
FROM orders LEFT OUTER JOIN customer
ON customer.custno=orders.custno

Note
The orders table must be specified twice - once after the UPDATE clause and again as the first table
in the FROM clause.

You can use the AS keyword to specify a table correlation name, or alternately you can simply just specify
the table correlation name after the source table name. The following example uses the second method to
give each source table a shorter name to be used in qualifying source columns in the query:

UPDATE orders o SET ShipToContact=c.Contact
FROM orders o LEFT OUTER JOIN customer c
ON c.custno=o.custno

Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

Note
Be careful when using the EXCLUSIVE keyword with a table that is specified more than once in the
same query, as is the case with recursive relationships between a table and itself.

The table reference cannot be passed to a FROM clause via a parameter. Please see the SELECT
Statement topic for more information.

WHERE Clause

The WHERE clause specifies filtering conditions for the UPDATE statement. The syntax is as follows:

WHERE predicates

Use a WHERE clause to limit the effect of a UPDATE statement to a subset of rows in the table, and the
clause is optional.

The value for a WHERE clause is one or more logical expressions, or predicates, that evaluate to TRUE or
FALSE for each row in the table. Only those rows where the predicates evaluate to TRUE are modified by
an UPDATE statement. For example, the UPDATE statement below modifies all rows where the State
column contains a value of 'CA':

UPDATE SalesInfo

SQL Reference

Page 254

SET TaxRate=0.0825
WHERE (State='CA')

Subqueries are supported in the WHERE clause. A subquery works like a search condition to restrict the
number of rows updated by the outer, or "parent" query. Such subqueries must be valid SELECT
statements. SELECT subqueries cannot be correlated in DBISAM's SQL, i.e. they cannot refer to columns in
the outer (or "parent") statement.

Column correlation names cannot be used in filter comparisons in the WHERE clause. Use the actual
column name.

Columns devoid of data contain NULL values. To filter using such column values, use the IS NULL
predicate.

The UPDATE statement may reference any table that is specified in the UPDATE, FROM, or JOIN clauses in
the WHERE clause.

COMMIT Clause

The COMMIT clause is used to control how often DBISAM will commit a transaction while the UPDATE
statement is executing and/or whether the commit operation performs an operating system flush to disk.
The UPDATE statement implicitly uses a transaction if one is not already active. The default interval at
which the implicit transaction is committed is based upon the record size of the table being updated in the
query and the amount of buffer space available in DBISAM. The COMMIT INTERVAL clause is used to
manually control the interval at which the transaction is committed based upon the number of rows
updated, and applies in both situations where a transaction was explicitly started by the application and
where the transaction was implicitly started by DBISAM. In the case where a transaction was explicitly
started by the application, the absence of a COMMIT INTERVAL clause in the SQL statement being
executed will force DBISAM to never commit any of the effects of the SQL statement and leaves this up to
the application to handle after the SQL statement completes. The syntax is as follows:

COMMIT [INTERVAL nnnn] [FLUSH]

The INTERVAL keyword is optional, allowing the application to use the default commit interval but still
specify the FLUSH keyword to indicate that it wishes to have the transaction commits flushed to disk at the
operating system level. Please see the Transactions and Buffering and Caching topics for more
information.

NOJOINOPTIMIZE Clause

The NOJOINOPTIMIZE clause causes all join re-ordering to be turned off for a SELECT statement. The
syntax is as follows:

NOJOINOPTIMIZE

Use a NOJOINOPTIMIZE clause to force the query optimizer to stop re-ordering joins for a SELECT
statement. In certain rare cases the query optimizer might not have enough information to know that re-
ordering the joins will result in worse performance than if the joins were left in their original order, so in
such cases you can include this clause to force the query optimizer to not perform the join re-ordering.

SQL Reference

Page 255

JOINOPTIMIZECOSTS Clause

The JOINOPTIMIZECOSTS clause causes the optimizer to take into account I/O costs when optimizing join
expressions. The syntax is as follows:

JOINOPTIMIZECOSTS

Use a JOINOPTIMIZECOSTS clause to force the query optimizer to use I/O cost projections to determine
the most efficient way to process the conditions in a join expression. If you have a join expression with
multiple conditions in it, then using this clause may help improve the performance of the join expression,
especially if it is already executing very slowly.

Please see the Updating Tables and Query Result Sets topic for more information on updating records in a
table.

NOWHEREJOINS Clause

The NOWHEREJOINS clause causes the optimizer to treat any join expressions in the WHERE clause (SQL-
89-style joins) as normal, un-optimized expressions instead of inner joins. The syntax is as follows:

NOWHEREJOINS

Use a NOWHEREJOINS clause to force the query optimizer to treat any joins in the WHERE clause as
normal, un-optimized expressions instead of inner joins. This is very useful when you need the conditions
for filtering the results, but do not want to treat them as inner joins because they exhibit a low cardinality
(there are lot of matching values). Join conditions with a low cardinality can be slow because they cause a
lot of overhead in processing the sets of rows in the DBISAM engine.

SQL Reference

Page 256

4.10 DELETE Statement

Introduction

The SQL DELETE statement is used to delete one or more rows from a table.

Syntax

DELETE FROM table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE]

[[INNER | [LEFT | RIGHT] OUTER JOIN] table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE] ON join_condition]

[WHERE predicates]

[COMMIT [INTERVAL commit_interval] FLUSH]

[NOJOINOPTIMIZE]
[JOINOPTIMIZECOSTS]
[NOWHEREJOINS]

Use DELETE to delete one or more rows from one existing table per statement.

FROM Clause

The FROM clause specifies the table to use for the DELETE statement. The syntax is as follows:

FROM table_reference
[AS correlation_name | correlation_name] [EXCLUSIVE]

Specified table names must follow DBISAM's SQL naming conventions for tables. Please see the Naming
Conventions topic for more information.

Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

Note
Be careful when using the EXCLUSIVE keyword with a table that is specified more than once in the
same query, as is the case with recursive relationships between a table and itself.

JOIN Clauses

You may use optional JOIN clauses to specify multiple tables from which a DELETE statement retrieves
data for the purpose of deleting records in the target table. The following DELETE statement below deletes
data in one table based upon an INNER JOIN condition to another table:

SQL Reference

Page 257

DELETE FROM orders
INNER JOIN customer ON customer.custno=orders.custno
WHERE customer.country='Bermuda'

You can use the AS keyword to specify a table correlation name, or alternately you can simply just specify
the table correlation name after the source table name. The following example uses the second method to
give each source table a shorter name to be used in qualifying source columns in the query:

DELETE FROM orders o
INNER JOIN customer c ON c.custno=o.custno
WHERE c.country='Bermuda'

Please see the SELECT Statement topic for more information.

WHERE Clause

The WHERE clause specifies filtering conditions for the DELETE statement. The syntax is as follows:

WHERE predicates

Use a WHERE clause to limit the effect of a DELETE statement to a subset of rows in the table, and the
clause is optional.

The value for a WHERE clause is one or more logical expressions, or predicates, that evaluate to TRUE or
FALSE for each row in the table. Only those rows where the predicates evaluate to TRUE are deleted by a
DELETE statement. For example, the DELETE statement below deletes all rows where the State column
contains a value of 'CA':

DELETE FROM SalesInfo
WHERE (State='CA')

Multiple predicates must be separated by one of the logical operators OR or AND. Each predicate can be
negated with the NOT operator. Parentheses can be used to isolate logical comparisons and groups of
comparisons to produce different row evaluation criteria.

Subqueries are supported in the WHERE clause. A subquery works like a search condition to restrict the
number of rows deleted by the outer, or "parent" query. Such subqueries must be valid SELECT
statements. SELECT subqueries cannot be correlated in DBISAM's SQL, i.e. they cannot refer to columns in
the outer (or "parent") statement.

Column correlation names cannot be used in filter comparisons in the WHERE clause. Use the actual
column name.

Columns devoid of data contain NULL values. To filter using such column values, use the IS NULL
predicate.

The DELETE statement may reference any table that is specified in the FROM, or JOIN clauses in the
WHERE clause.

SQL Reference

Page 258

COMMIT Clause

The COMMIT clause is used to control how often DBISAM will commit a transaction while the DELETE
statement is executing and/or whether the commit operation performs an operating system flush to disk.
The DELETE statement implicitly uses a transaction if one is not already active. The default interval at
which the implicit transaction is committed is based upon the record size of the table being updated in the
query and the amount of buffer space available in DBISAM. The COMMIT INTERVAL clause is used to
manually control the interval at which the transaction is committed based upon the number of rows
deleted, and applies in both situations where a transaction was explicitly started by the application and
where the transaction was implicitly started by DBISAM. In the case where a transaction was explicitly
started by the application, the absence of a COMMIT INTERVAL clause in the SQL statement being
executed will force DBISAM to never commit any of the effects of the SQL statement and leaves this up to
the application to handle after the SQL statement completes. The syntax is as follows:

COMMIT [INTERVAL nnnn] [FLUSH]

The INTERVAL keyword is optional, allowing the application to use the default commit interval but still
specify the FLUSH keyword to indicate that it wishes to have the transaction commits flushed to disk at the
operating system level. Please see the Transactions and Buffering and Caching topics for more
information.

NOJOINOPTIMIZE Clause

The NOJOINOPTIMIZE clause causes all join re-ordering to be turned off for a SELECT statement. The
syntax is as follows:

NOJOINOPTIMIZE

Use a NOJOINOPTIMIZE clause to force the query optimizer to stop re-ordering joins for a SELECT
statement. In certain rare cases the query optimizer might not have enough information to know that re-
ordering the joins will result in worse performance than if the joins were left in their original order, so in
such cases you can include this clause to force the query optimizer to not perform the join re-ordering.

JOINOPTIMIZECOSTS Clause

The JOINOPTIMIZECOSTS clause causes the optimizer to take into account I/O costs when optimizing join
expressions. The syntax is as follows:

JOINOPTIMIZECOSTS

Use a JOINOPTIMIZECOSTS clause to force the query optimizer to use I/O cost projections to determine
the most efficient way to process the conditions in a join expression. If you have a join expression with
multiple conditions in it, then using this clause may help improve the performance of the join expression,
especially if it is already executing very slowly.

Please see the Updating Tables and Query Result Sets topic for more information on deleting records in a
table.

SQL Reference

Page 259

NOWHEREJOINS Clause

The NOWHEREJOINS clause causes the optimizer to treat any join expressions in the WHERE clause (SQL-
89-style joins) as normal, un-optimized expressions instead of inner joins. The syntax is as follows:

NOWHEREJOINS

Use a NOWHEREJOINS clause to force the query optimizer to treat any joins in the WHERE clause as
normal, un-optimized expressions instead of inner joins. This is very useful when you need the conditions
for filtering the results, but do not want to treat them as inner joins because they exhibit a low cardinality
(there are lot of matching values). Join conditions with a low cardinality can be slow because they cause a
lot of overhead in processing the sets of rows in the DBISAM engine.

SQL Reference

Page 260

4.11 CREATE TABLE Statement

Introduction

The SQL CREATE TABLE statement is used to create a table.

Syntax

CREATE TABLE [IF NOT EXISTS] table_reference

(

column_name data type [dimensions]
[DESCRIPTION column description]
[NULLABLE][NOT NULL]
[DEFAULT default value]
[MIN | MINIMUM minimum value]
[MAX | MAXIMUM maximum value]
[CHARCASE UPPER | LOWER | NOCHANGE]
[COMPRESS 0..9]

[, column_name...]

[, [CONSTRAINT constraint_name]
[UNIQUE] [NOCASE]
PRIMARY KEY (column_name [[ASC |ASCENDING] | [DESC | DESCENDING]]
[, column_name...])
[COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]
[NOKEYSTATS]

[TEXT INDEX (column_name, [column_name])]
[STOP WORDS space-separated list of words]
[SPACE CHARS list of characters]
[INCLUDE CHARS list of characters]

[DESCRIPTION table_description]

[INDEX PAGE SIZE index_page_size]
[BLOB BLOCK SIZE BLOB_block_size]

[LOCALE locale_name | LOCALE CODE locale_code]

[ENCRYPTED WITH password]

[USER MAJOR VERSION user-defined_major_version]
[USER MINOR VERSION user-defined_minor_version]

[LAST AUTOINC last_autoinc_value]
)

Use the CREATE TABLE statement to create a table, define its columns, and define a primary key
constraint.

The specified table name must follow DBISAM's SQL naming conventions for tables. Please see the

SQL Reference

Page 261

Naming Conventions topic for more information.

Column Definitions

The syntax for defining a column is as follows:

column_name data type [dimensions]
[DESCRIPTION column description]
[NULLABLE][NOT NULL]
[DEFAULT default value]
[MIN or MINIMUM minimum value] [MAX or MAXIMUM maximum value]
[CHARCASE UPPER | LOWER | NOCHANGE]
[COMPRESS 0..9]

Column definitions consist of a comma-separated list of combinations of column name, data type and (if
applicable) dimensions, and optionally their description, allowance of NULL values, default value, minimum
and maximum values, character-casing, and compression level (for BLOB columns). The list of column
definitions must be enclosed in parentheses. The number and type of dimensions that must be specified
varies with column type. Please see the Data Types and NULL Support topic for more information.

DESCRIPTION Clause

The DESCRIPTION clause specifies the description for the column. The syntax is as follows:

DESCRIPTION column description

The description must be enclosed in single or double quotes and can be any value up to 50 characters in
length.

NULLABLE and NOT NULL Clauses

The NULLABLE clause specifies that the column is not required and can be NULL. The NOT NULL clause
specifies that the column is required and cannot be NULL. The syntax is as follows:

NULLABLE

NOT NULL

DEFAULT Clause

The DEFAULT clause specifies the default value for the column. The syntax is as follows:

DEFAULT default value

SQL Reference

Page 262

The default value must be a value that matches the data type of the column being defined. Also, the value
must be expressed in ANSI/ISO format if it is a date, time, timestamp, or number. Please see the Naming
Conventions topic for more information.

MINIMUM Clause

The MINIMUM clause specifies the minimum value for the column. The syntax is as follows:

MIN | MINIMUM minimum value

The minimum value must be a value that matches the data type of the column being defined. Also, the
value must be expressed in ANSI/ISO format if it is a date, time, timestamp, or number. Please see the
Naming Conventions topic for more information.

MAXIMUM Clause

The MAXIMUM clause specifies the maximum value for the column. The syntax is as follows:

MAX | MAXIMUM maximum value

The maximum value must be a value that matches the data type of the column being defined. Also, the
value must be expressed in ANSI/ISO format if it is a date, time, timestamp, or number. Please see the
Naming Conventions topic for more information.

CHARCASE Clause

The CHARCASE clause specifies the character-casing for the column. The syntax is as follows:

CHARCASE UPPER | LOWER | NOCHANGE

If the UPPER keyword is used, then all data values in this column will be upper-cased. If the LOWER
keyword is used, then all data values in this column will be lower-cased. If the NOCHANGE keyword is
used, then all data values for this column will be left in their original form. This clause only applies to
string columns and is ignored for all others.

The following statement creates a table with columns that include descriptions and default values:

CREATE TABLE employee
(
 Last_Name CHAR(20) DESCRIPTION 'Last Name',
 First_Name CHAR(15) DESCRIPTION 'First Name',
 Hire_Date DATE DESCRIPTION 'Hire Date' DEFAULT CURRENT_DATE
 Salary NUMERIC(10,2) DESCRIPTION 'Salary' DEFAULT 0.00,
 Dept_No SMALLINT DESCRIPTION 'Dept #',
 PRIMARY KEY (Last_Name, First_Name)
)

SQL Reference

Page 263

Primary Index Definition

Use the PRIMARY KEY (or CONSTRAINT) clause to create a primary index for the new table. The syntax is
as follows:

[, [CONSTRAINT constraint_name]
[UNIQUE] [NOCASE]
PRIMARY KEY (column_name [[ASC |ASCENDING] | [DESC | DESCENDING]]
[, column_name...])
[COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]
[NOKEYSTATS]

The columns that make up the primary index must be specified. The UNIQUE flag is completely optional
and is ignored since primary indexes are always unique. The alternate CONSTRAINT syntax is also
completely optional and ignored.

A primary index definition can optionally specify that the index is case-insensitive and the compression
used for the index.

NOCASE Clause

The NOCASE clause specifies the that the primary index should be sorted in case-insensitive order as
opposed to the default of case-sensitive order. The syntax is as follows:

NOCASE

Columns Clause

The columns clause specifies a comma-separated list of columns that make up the primary index, and
optionally whether the columns should be sorted in ascending (default) or descending order. The syntax is
as follows:

PRIMARY KEY (column_name [[ASC |ASCENDING] | [DESC | DESCENDING]]
[, column_name...])

The column names specified here must conform to the column naming conventions for DBISAM's SQL and
must have been defined earlier in the CREATE TABLE statement. Please see the Naming Conventions topic
for more information.

COMPRESS Clause

The COMPRESS clause specifies the type of index key compression to use for the primary index. The
syntax is as follows:

COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE

SQL Reference

Page 264

The DUPBYTE keyword specifies that duplicate-byte index key compression will be used, the TRAILBYTE
keyword specifies that trailing-byte index key compression will be used, and the FULL keyword specifies
that both duplicate-byte and trailing-byte index key compression will be used. The default index key
compression is NONE. Please see the Index Compression topic for more information.

NOKEYSTATS Clause

The NOKEYSTATS clause specifies that the index being defined should not contain any statistics.. The
syntax is as follows:

NOKEYSTATS

Under most circumstances you should not specify this clause. Not using the index statistics is only useful
for very large tables where insert/update/delete performance is very important, and where it is acceptable
to not have logical record numbers or statistics for optimizing filters and queries.

The following statement creates a table with a primary index on the Last_Name and First_Name columns
that is case-insensitive and uses full index key compression:

CREATE TABLE employee
(
 Last_Name CHAR(20) DESCRIPTION 'Last Name',
 First_Name CHAR(15) DESCRIPTION 'First Name',
 Hire_Date DATE DESCRIPTION 'Hire Date' DEFAULT CURRENT_DATE
 Salary NUMERIC(10,2) DESCRIPTION 'Salary' DEFAULT 0.00,
 Dept_No SMALLINT DESCRIPTION 'Dept #',
 NOCASE PRIMARY KEY (Last_Name, First_Name) COMPRESS FULL
)

Note
Primary indexes are the only form of constraint that can be defined with CREATE TABLE.

Full Text Indexes Definitions

Use the TEXT INDEX, STOP WORDS, SPACE CHARS, and INCLUDE CHARS clauses (in that order) to create
a full text indexes for the new table. The syntax is as follows:

TEXT INDEX (column_name, [column_name])
STOP WORDS space-separated list of words
SPACE CHARS list of characters
INCLUDE CHARS list of characters

The TEXT INDEX clause is required and consists of a comma-separated list of columns that should be full
text indexed. The column names specified here must conform to the column naming conventions for
DBISAM's SQL and must have been defined earlier in the CREATE TABLE statement. Please see the

SQL Reference

Page 265

Naming Conventions topic for more information.

The STOP WORDS clause is optional and consists of a space-separated list of words as a string that specify
the stop words used for the full text indexes.

The SPACE CHARS and INCLUDE CHARS clauses are optional and consist of a set of characters as a string
that specify the space and include characters used for the full text indexes.

For more information on how these clauses work, please see the Full Text Indexing topic.

Table Description

Use the DESCRIPTION clause to specify a description for the table. The syntax is as follows:

DESCRIPTION table_description

The description is optional and should be specified as a string.

Table Index Page Size

Use the INDEX PAGE SIZE clause to specify the index page size for the table. The syntax is as follows:

INDEX PAGE SIZE index_page_size

The index page size is optional and should be specified as an integer. Please see Appendix C - System
Capacities for more information on the minimum and maximum index page sizes.

Table BLOB Block Size

Use the BLOB BLOCK SIZE clause to specify the BLOB block size for the table. The syntax is as follows:

BLOB BLOCK SIZE BLOB_block_size

The BLOB block size is optional and should be specified as an integer. Please see Appendix C - System
Capacities for more information on the minimum and maximum BLOB block sizes.

Table Locale

Use the LOCALE clause to specify the locale for the table. The syntax is as follows:

LOCALE locale_name | LOCALE CODE locale_code

The locale is optional and should be specified as an identifier enclosed in double quotes ("") or square
brackets ([]), if specifying a locale constant, or as an integer value, if specifying a locale ID. A list of locale
constants and their IDs can be retrieved via the TDBISAMEngine GetLocaleNames method. If this clause is

SQL Reference

Page 266

not specified, then the default "ANSI Standard" locale (ID 0) will be used for the table.

Table Encryption

Use the ENCRYPTED WITH clause to specify whether the table should be encrypted with a password. The
syntax is as follows:

ENCRYPTED WITH password

Table encryption is optional and the password for this clause should be specified as a string constant
enclosed in single quotes (''). Please see the Encryption topic for more information.

User-Defined Versions

Use the USER MAJOR VERSION and USER MINOR VERSION clauses to specify user-defined version
numbers for the table. The syntax is as follows:

USER MAJOR VERSION user-defined_major_version
[USER MINOR VERSION user-defined_minor_version]

User-defined versions are optional and the versions should be specified as integers.

Last Autoinc Value

Use the LAST AUTOINC clause to specify the last autoinc value for the table. The syntax is as follows:

LAST AUTOINC last_autoinc_value

The last autoinc value is optional and should be specified as an integer. If this clause is not specified, the
default last autoinc value is 0.

Please see the Creating and Altering Tables topic for more information on creating tables.

SQL Reference

Page 267

4.12 CREATE INDEX Statement

Introduction

The SQL CREATE INDEX statement is used to create a secondary index for a table.

Syntax

CREATE [UNIQUE] [NOCASE]
INDEX [IF NOT EXISTS] index_name

ON table_reference

(column_name [ASC or ASCENDING | DESC or DESCENDING]
[, column_name...])
[COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]
[NOKEYSTATS]

Use the CREATE INDEX statement to create a secondary index for an existing table. If index names
contain embedded spaces they must be enclosed in double quotes ("") or square brackets ([]). Secondary
indexes may be based on multiple columns.

UNIQUE Clause

Use the UNIQUE clause to create an index that raises an error if rows with duplicate column values are
inserted. By default, indexes are not unique. The syntax is as follows:

UNIQUE

NOCASE Clause

The NOCASE clause specifies the that the secondary index should be sorted in case-insensitive order as
opposed to the default of case-sensitive order. The syntax is as follows:

NOCASE

Columns Clause

The columns clause specifies a comma-separated list of columns that make up the secondary index, and
optionally whether the columns should be sorted in ascending (default) or descending order. The syntax is
as follows:

(column_name [[ASC |ASCENDING] | [DESC | DESCENDING]]
[, column_name...])

SQL Reference

Page 268

The column names specified here must conform to the column naming conventions for DBISAM's SQL and
must have been defined earlier in the CREATE TABLE statement. Please see the Naming Conventions topic
for more information.

COMPRESS Clause

The COMPRESS clause specifies the type of index key compression to use for the secondary index. The
syntax is as follows:

COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE

The DUPBYTE keyword specifies that duplicate-byte index key compression will be used, the TRAILBYTE
keyword specifies that trailing-byte index key compression will be used, and the FULL keyword specifies
that both duplicate-byte and trailing-byte index key compression will be used. The default index key
compression is NONE. Please see the Index Compression topic for more information.

NOKEYSTATS Clause

The NOKEYSTATS clause specifies that the index being defined should not contain any statistics.. The
syntax is as follows:

NOKEYSTATS

Under most circumstances you should not specify this clause. Not using the index statistics is only useful
for very large tables where insert/update/delete performance is very important, and where it is acceptable
to not have logical record numbers or statistics for optimizing filters and queries.

The following statement creates a multi-column secondary index that sorts in ascending order for the
CustNo column and descending order for the SaleDate column:

CREATE INDEX CustDate
ON Orders (CustNo, SaleDate DESC) COMPRESS DUPBYTE

The following statement creates a unique, case-insensitive secondary index:

CREATE UNIQUE NOCASE INDEX "Last Name"
ON Employee (Last_Name) COMPRESS FULL

Please see the Adding and Deleting Indexes from a Table topic for more information on creating indexes.

SQL Reference

Page 269

4.13 ALTER TABLE Statement

Introduction

The SQL ALTER TABLE statement is used to restructure a table.

Syntax

ALTER TABLE [IF EXISTS] table_reference

[[ADD [COLUMN] [IF NOT EXISTS]
column_name data type [dimensions]
[AT column_position]
[DESCRIPTION column description]
[NULLABLE][NOT NULL]
[DEFAULT default value]
[MIN or MINIMUM minimum value]
[MAX or MAXIMUM maximum value]
[CHARCASE UPPER | LOWER | NOCHANGE]
[COMPRESS 0..9]]

|

[REDEFINE [COLUMN] [IF EXISTS]
column_name [new_column_name] data type [dimensions]
[AT column_position]
[DESCRIPTION column description]
[NULLABLE][NOT NULL]
[DEFAULT default value]
[MIN or MINIMUM minimum value]
[MAX or MAXIMUM maximum value]
[CHARCASE UPPER | LOWER | NOCHANGE]
[COMPRESS 0..9]]

|

[DROP [COLUMN] [IF EXISTS] column_name]]

[, ADD [COLUMN] column_name
REDEFINE [COLUMN] column_name
DROP [COLUMN] column_name...]

[, ADD [CONSTRAINT constraint_name]
[UNIQUE] [NOCASE] PRIMARY KEY
(column_name [ASC or ASCENDING | DESC or DESCENDING]
[, column_name...])
[COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]
[NOKEYSTATS]

[, REDEFINE [CONSTRAINT constraint_name]
[UNIQUE] [NOCASE] PRIMARY KEY
(column_name [ASC or ASCENDING | DESC or DESCENDING]
[, column_name...])
[COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]
[NOKEYSTATS]

SQL Reference

Page 270

[, DROP [CONSTRAINT constraint_name] PRIMARY KEY]

[TEXT INDEX (column_name, [column_name])]
[STOP WORDS space-separated list of words]
[SPACE CHARS list of characters]
[INCLUDE CHARS list of characters]

[DESCRIPTION table_description]

[INDEX PAGE SIZE index_page_size]
[BLOB BLOCK SIZE BLOB_block_size]

[LOCALE locale_name | LOCALE CODE locale_code]

[ENCRYPTED WITH password]

[USER MAJOR VERSION user-defined_major_version]
[USER MINOR VERSION user-defined_minor_version]

[LAST AUTOINC last_autoinc_value]

[NOBACKUP]

Use the ALTER TABLE statement to alter the structure of an existing table. It is possible to delete one
column and add another in the same ALTER TABLE statement as well as redefine an existing column
without having to first drop the column and then re-add the same column name. This is what is sometimes
required with other database engines and can result in loss of data. DBISAM's REDEFINE keyword removes
this problem. In addition, the IF EXISTS and IF NOT EXISTS clauses can be used with the ADD, REDEFINE,
and DROP keywords to allow for action on columns only if they do or do not exist.

The DROP keyword requires only the name of the column to be deleted. The ADD keyword requires the
same combination of column name, data type and possibly dimensions, and extended column definition
information as the CREATE TABLE statement when defining new columns.

The statement below deletes the column FullName and adds the column LastName, but only if the
LastName column doesn't already exist:

ALTER TABLE Names
DROP FullName,
ADD IF NOT EXISTS LastName CHAR(25)

It is possible to delete and add a column of the same name in the same ALTER TABLE statement, however
any data in the column is lost in the process. An easier way is to use the extended syntax provided by
DBISAM's SQL with the REDEFINE keyword:

ALTER TABLE Names
REDEFINE LastName CHAR(30)

SQL Reference

Page 271

Note
In order to remove the full text index completely, you would specify no columns in the TEXT INDEX
clause like this:

ALTER TABLE Customer
TEXT INDEX ()

NOBACKUP Clause

The NOBACKUP clause specifies that no backup files should be created during the process of altering the
table's structure.

Please see the CREATE TABLE statement for more information on all other clauses used in the ALTER
TABLE statement. Their usage is the same as with the CREATE TABLE statement.

Please see the Creating and Altering Tables topic for more information on altering the structure of tables.

SQL Reference

Page 272

4.14 EMPTY TABLE Statement

Introduction

The SQL EMPTY TABLE statement is used to empty a table of all data.

Syntax

EMPTY TABLE [IF EXISTS] table_reference

Use the EMPTY TABLE statement to remove all data from an existing table. The statement below empties
a table:

EMPTY TABLE Employee

Please see the Emptying Tables topic for more information on emptying tables.

SQL Reference

Page 273

4.15 OPTIMIZE TABLE Statement

Introduction

The SQL OPTIMIZE TABLE statement is used to optimize a table.

Syntax

OPTIMIZE TABLE [IF EXISTS] table_reference

[ON index_name]

[NOBACKUP]

Use the OPTIMIZE TABLE statement to remove all free space from a table and organize the data more
efficiently.

ON Clause

The ON clause is optional and specifies the name of an index in the table to use for organizing the physical
data records. It is usually recommended that you do not specify this clause, which will result in the table
being organized using the primary index.

NOBACKUP Clause

The NOBACKUP clause specifies that no backup files should be created during the process of optimizing
the table.

The statement below optimizes a table and suppresses any backup files:

OPTIMIZE TABLE Employee NOBACKUP

Please see the Optimizing Tables topic for more information on optimizing tables.

SQL Reference

Page 274

4.16 EXPORT TABLE Statement

Introduction

The SQL EXPORT TABLE statement is used to export a table to a delimited text file.

Syntax

EXPORT TABLE [IF EXISTS] table_reference [EXCLUSIVE]

TO text_file_name

[DELIMITER delimiter_character]

[WITH HEADERS]

[COLUMNS (column_name [, column_name])]

[DATE date_format]
[TIME time_format]
[DECIMAL decimal_separator]

Use the EXPORT TABLE statement to export a table to a delimited text file specified by the TO clause. The
file name must be enclosed in double quotes ("") or square brackets ([]) if it contains a drive, path, or file
extension. Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

DELIMITER Clause

The DELIMITER clause is optional and specifies the delimiter character to use in the exported text file. The
DELIMITER character should be specified as a single character constant enclosed in single quotes ('') or
specified using the pound (#) sign and the ASCII character value. The default delimiter character is the
comma (,).

WITH HEADERS Clause

The WITH HEADERS clause is optional and specifies that the exported text file should contain column
headers for all columns as the first row.

COLUMNS Clause

The columns clause is optional and specifies a comma-separated list of columns that should be exported to
the text file. The column names specified here must conform to the column naming conventions for
DBISAM's SQL and must exist in the table being exported. Please see the Naming Conventions topic for
more information.

DATE, TIME, and DECIMAL Clauses

The DATE, TIME, and DECIMAL clauses are optional and specify the formats and decimal separator that
should be used when exporting dates, times, timestamps, and numbers. The DATE and TIME formats

SQL Reference

Page 275

should be specified as string constants enclosed in single quotes ('') and the DECIMAL separator should be
specified as a single character constant enclosed in single quotes ('') or specified using the pound (#) sign
and the ASCII character value. The default date format is 'yyyy-mm-dd', the default time format is
'hh:mm:ss.zzz ampm', and the default decimal separator is '.'.

The statement below exports three fields from the Employee table into a file called 'employee.txt':

EXPORT TABLE Employee
TO "c:\mydata\employee.txt"
WITH HEADERS
COLUMNS (ID, FirstName, LastName)

Please see the Importing and Exporting Tables and Query Result Sets topic for more information on
exporting tables.

SQL Reference

Page 276

4.17 IMPORT TABLE Statement

Introduction

The SQL IMPORT TABLE statement is used to import data from delimited text file into a table.

Syntax

IMPORT TABLE [IF EXISTS] table_reference

FROM text_file_name

[DELIMITER delimiter_character]

[WITH HEADERS]

[COLUMNS (column_name [, column_name])]

[DATE date_format]
[TIME time_format]
[DECIMAL decimal_separator]

Use the IMPORT TABLE statement to import data into a table from a delimited text file specified by the
FROM clause. The file name must be enclosed in double quotes ("") or square brackets ([]) if it contains a
drive, path, or file extension. Use the EXCLUSIVE keyword to specify that the table should be opened
exclusively.

DELIMITER Clause

The DELIMITER clause is optional and specifies the delimiter character used in the imported text file to
separate data from different columns. The DELIMITER character should be specified as a single character
constant enclosed in single quotes ('') or specified using the pound (#) sign and the ASCII character value.
The default delimiter character is the comma (,).

WITH HEADERS Clause

The WITH HEADERS clause is optional and specifies that the imported text file contains column headers
for all columns as the first row. In such a case DBISAM will not import this row as a record but will instead
ignore it.

COLUMNS Clause

The columns clause is optional and specifies a comma-separated list of columns that the imported text file
contains. If the imported text file contains column data in a different order than that of the table, or only a
subset of column data, then it is very important that this clause be used. Also, the column names specified
here must conform to the column naming conventions for DBISAM's SQL and must exist in the table being
exported. Please see the Naming Conventions topic for more information.

DATE, TIME, and DECIMAL Clauses

SQL Reference

Page 277

The DATE, TIME, and DECIMAL clauses are optional and specify the formats and decimal separator that
should be used when importing dates, times, timestamps, and numbers from the text file. The DATE and
TIME formats should be specified as string constants enclosed in single quotes ('') and the DECIMAL
separator should be specified as a single character constant enclosed in single quotes ('') or specified
using the pound (#) sign and the ASCII character value. The default date format is 'yyyy-mm-dd', the
default time format is 'hh:mm:ss.zzz ampm', and the default decimal separator is '.'.

The statement below imports three fields from a file called 'employee.txt' into the Employee table:

IMPORT TABLE Employee
FROM "c:\mydata\employee.txt"
WITH HEADERS
COLUMNS (ID, FirstName, LastName)

Please see the Importing and Exporting Tables and Query Result Sets topic for more information on
importing tables.

SQL Reference

Page 278

4.18 VERIFY TABLE Statement

Introduction

The SQL VERIFY TABLE statement is used to verify a table and make sure that there is no corruption in
the table.

Syntax

VERIFY TABLE [IF EXISTS] table_reference

Use the VERIFY TABLE statement to verify the physical structure of a table to make sure that it is not
corrupted. The statement below verifies a table:

VERIFY TABLE Employee

You can use the REPAIR TABLE SQL statement to repair a table that is determined to be corrupted via the
VERIFY TABLE statement.

Please see the Verifying and Repairing Tables topic for more information on verifying tables.

SQL Reference

Page 279

4.19 REPAIR TABLE Statement

Introduction

The SQL REPAIR TABLE statement is used to repair a table that is corrupted or suspected of being
corrupted.

Syntax

REPAIR TABLE [IF EXISTS] table_reference

FORCEINDEXREBUILD

Use the REPAIR TABLE statement to repair the physical structure of a table that is corrupted or suspected
of being corrupted.

FORCEINDEXREBUILD Clause

Use the FORCEINDEXREBUILD clause to force the indexes in the table to be rebuilt regardless of whether
they are determined to be corrupted or not. Sometimes there is corruption in indexes that DBISAM cannot
detect in the table verification or repair process, and this clause will resolve such an issue.

The statement below repairs a table:

REPAIR TABLE Employee

You can use the VERIFY TABLE SQL statement to verify a table and determine if it is corrupted.

Please see the Verifying and Repairing Tables topic for more information on repairing tables.

SQL Reference

Page 280

4.20 UPGRADE TABLE Statement

Introduction

The SQL UPGRADE TABLE statement is used to upgrade a table from a previous DBISAM table format to
the current table format.

Syntax

UPGRADE TABLE [IF EXISTS] table_reference

Use the UPGRADE TABLE statement to upgrade a table to the current DBISAM table format. The
statement below upgrades a table:

UPGRADE TABLE Employee

Please see the Upgrading Tables topic for more information on upgrading tables.

SQL Reference

Page 281

4.21 DROP TABLE Statement

Introduction

The SQL DROP TABLE statement is used to delete a table.

Syntax

DROP TABLE [IF EXISTS] table_reference

Use the DROP TABLE statement to delete an existing table. The statement below drops a table:

DROP TABLE Employee

Please see the Deleting Tables topic for more information on deleting tables.

SQL Reference

Page 282

4.22 RENAME TABLE Statement

Introduction

The SQL RENAME TABLE statement is used to rename a table.

Syntax

RENAME TABLE [IF EXISTS] table_reference
TO table_reference

Use the RENAME TABLE statement to rename a table. The statement below renames a table:

RENAME TABLE Employee
TO Employees

Please see the Renaming Tables topic for more information on renaming tables.

SQL Reference

Page 283

4.23 DROP INDEX Statement

Introduction

The SQL DROP INDEX statement is used to delete a primary or secondary index from a table.

Syntax

DROP INDEX [IF EXISTS]
table_reference.index_name | PRIMARY

Use the DROP INDEX statement to delete a primary or secondary index. To delete a secondary index,
identify the index using the table name and index name separated by an identifier connector symbol (.):

DROP INDEX Employee."Last Name"

To delete a primary index, identify the index with the keyword PRIMARY:

DROP INDEX Orders.PRIMARY

Please see the Adding and Deleting Indexes from a Table topic for more information on deleting indexes.

SQL Reference

Page 284

4.24 START TRANSACTION Statement

Introduction

The SQL START TRANSACTION statement is used to start a transaction on the current database.

Syntax

START TRANSACTION
[WITH <comma-separated list of tables>]

Use the START TRANSACTION statement to start a transaction. The WITH clause allows to to start a
restricted transaction on a specified set of tables. It accepts a comma-delimited list of table names to
include in the restricted transaction.

Please see the Transactions topic for more information on transactions.

SQL Reference

Page 285

4.25 COMMIT Statement

Introduction

The SQL COMMIT statement is used to commit an active transaction on the current database.

Syntax

COMMIT [WORK] [FLUSH]

Use the COMMIT statement to commit an active transaction. You may optionally include the WORK
keyword for compatibility with the SQL standard.

FLUSH Clause

Use the FLUSH clause to indicate that the commit operation should also instruct the operating system to
flush all committed data to disk.

Please see the Transactions topic for more information on transactions.

SQL Reference

Page 286

4.26 ROLLBACK Statement

Introduction

The SQL ROLLBACK statement is used to rollback an active transaction on the current database.

Syntax

ROLLBACK [WORK]

Use the ROLLBACK statement to rollback an active transaction. You may optionally include the WORK
keyword for compatibility with the SQL standard.

Please see the Transactions topic for more information on transactions.

SQL Reference

Page 287

This page intentionally left blank

Component Reference

Page 288

Chapter 5
Component Reference

5.1 EDBISAMEngineError Component

Unit: dbisamtb

Inherits From EDatabaseError

An EDBISAMEngineError exception object is raised whenever a DBISAM error occurs. You will find a list of
all DBISAM error codes along with instructions on how to change the default error messages in Appendix B
- Error Codes and Messages in this manual. For just general information on exception handling in DBISAM
please see the Exception Handling and Errors topic in this manual.

Properties Methods Events

ErrorCode Create

ErrorColumn

ErrorDatabaseName

ErrorEventName

ErrorFieldName

ErrorIndexName

ErrorLine

ErrorMessage

ErrorProcedureName

ErrorRemoteName

ErrorTableName

ErrorUserName

OSErrorCode

SocketErrorCode

Component Reference

Page 289

EDBISAMEngineError.ErrorCode Property

property ErrorCode: Word

Indicates the native DBISAM error code being raised in the current exception.

Note
This property is always set for every exception.

Component Reference

Page 290

EDBISAMEngineError.ErrorColumn Property

property ErrorColumn: Integer

Indicates the column of text in that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 291

EDBISAMEngineError.ErrorDatabaseName Property

property ErrorDatabaseName: AnsiString

Indicates the database name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 292

EDBISAMEngineError.ErrorEventName Property

property ErrorEventName: AnsiString

Indicates the scheduled event name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 293

EDBISAMEngineError.ErrorFieldName Property

property ErrorFieldName: AnsiString

Indicates the field or column name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 294

EDBISAMEngineError.ErrorIndexName Property

property ErrorIndexName: AnsiString

Indicates the index name that the current exception applies to. This property will be set to 'Primary' if the
exception refers to the primary index of a table.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 295

EDBISAMEngineError.ErrorLine Property

property ErrorLine: Integer

Indicates the line of text in that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 296

EDBISAMEngineError.ErrorMessage Property

property ErrorMessage: AnsiString

Indicates the extended error message that gives further information on the exception.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 297

EDBISAMEngineError.ErrorProcedureName Property

property ErrorProcedureName: AnsiString

Indicates the server-side procedure name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 298

EDBISAMEngineError.ErrorRemoteName Property

property ErrorRemoteName: AnsiString

Indicates the database server host name or IP address that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 299

EDBISAMEngineError.ErrorTableName Property

property ErrorTableName: AnsiString

Indicates the table name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 300

EDBISAMEngineError.ErrorUserName Property

property ErrorUserName: AnsiString

Indicates the user name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 301

EDBISAMEngineError.OSErrorCode Property

property OSErrorCode: Integer

Indicates the last operating system-specific error code logged by the operating system. This property is
always set, although it may not always contain a non-0 value. This property can be useful for debugging
unusual error conditions coming from the operating system.

Component Reference

Page 302

EDBISAMEngineError.SocketErrorCode Property

property SocketErrorCode: Integer

Indicates the last operating system-specific TCP/IP socket error code logged by the operating system. This
property is always set, although it may not always contain a non-0 value. This property can be useful for
debugging unusual error conditions coming from the operating system's TCP/IP socket subsystem.

Component Reference

Page 303

EDBISAMEngineError.Create Method

constructor Create(ErrorCode: Word)

Creates an instance of EDBISAMEngineError using a specified DBISAM engine error code. The constructor
calls the constructor method inherited from Exception (using an empty string) to construct an initialized
instance of EDBISAMEngineError.

Component Reference

Page 304

5.2 TDBISAMBaseDataSet Component

Unit: dbisamtb

Inherits From TDataSet

The TDBISAMBaseDataSet component is a dataset component that provides a base component for any
DBISAM dataset. Applications never use TDBISAMBaseDataSet components directly. Instead they use the
descendants of TDBISAMBaseDataSet, the TDBISAMQuery and TDBISAMTable components, which inherit
its database-related properties and methods.

Properties Methods Events

Component Reference

Page 305

5.3 TDBISAMBlobStream Component

Unit: dbisamtb

Inherits From TStream

Use the TDBISAMBlobStream object to access or modify the contents of a BLOB field in a dataset using a
stream interface. BLOB fields include TBlobField objects and descendants of TBlobField such as
TGraphicField and TMemoField objects. TBlobField objects use streams to implement many of their data
access properties and methods via the standard CreateBlobStream method that is implemented by the
DBISAM dataset components.

To use a TDBISAMBlobStream object, create an instance of TDBISAMBlobStream, use the methods of the
TDBISAMBlobStream object to read or write the data, and then free the object. Do not use the same
instance of a TDBISAMBlobStream object to access data from more than one record. Instead, create a
new TDBISAMBlobStream object every time you need to read or write BLOB data for a record.

Note
For proper results when updating a BLOB field using a TDBISAMBlobStream object, you must create
the TDBISAMBlobStream object after calling the Append/Insert or Edit method for the dataset
containing the BLOB field. Also, you must free the TDBISAMBlobStream object before calling the
Post method to post the changes to the dataset. Finally, be sure to use the proper open mode when
creating a TDBISAMBlobStream object for updating (either bmReadWrite or bmWrite).

Properties Methods Events

Create

Read

Seek

Truncate

Write

Component Reference

Page 306

TDBISAMBlobStream.Create Method

constructor Create(Field: TBlobField; Mode: TBlobStreamMode)

Call the constructor to obtain an instance of TDBISAMBlobStream for reading from or writing to a specific
TBlobField object. The constructor links the TDBISAMBlobStream to the field object specified by the Field
parameter. Mode specifies whether the stream will be used to read data (bmRead), write data (bmWrite)
or modify data (bmReadWrite).

Component Reference

Page 307

TDBISAMBlobStream.Read Method

function Read(var Buffer; Count: Integer): Integer

Read transfers up to Count bytes from the BLOB field into Buffer, starting in the current position, and then
advances the current position by the number of bytes actually transferred. Read returns the number of
bytes actually transferred (which may be less than the number requested in Count.) Buffer must have at
least Count bytes allocated to hold the data that was read from the field.

Read ignores the Transliterate property of the field since DBISAM always reads data using the ANSI
character set.

All the other data-reading methods of a TDBISAMBlobStream object (ReadBuffer, ReadComponent) call
Read to do their actual reading.

Note
Do not call Read when the TDBISAMBlobStream object was created in bmWrite mode.

Component Reference

Page 308

TDBISAMBlobStream.Seek Method

function Seek(Offset: Integer; Origin: Word): Integer

Use Seek to move the current position within the BLOB field by the indicated offset. Seek allows an
application to read from or write to a particular location within the BLOB field.

The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the
following values:

Origin Description

soFromBeginning Offset is from the beginning of the BLOB field. Seek moves to
the position Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the BLOB field. Seek
moves to Position + Offset.

soFromEnd Offset is from the end of the BLOB field. Offset must be <= 0
to indicate a number of bytes before the end of the BLOB.

Seek returns the new value of the Position property, the new current position in the BLOB field.

Component Reference

Page 309

TDBISAMBlobStream.Truncate Method

procedure Truncate

Use Truncate to limit the size of the BLOB field. Calling Truncate when the current position is 0 will clear
the contents of the BLOB field.

Note
Do not call Truncate when the TDBISAMBlobStream was created in bmRead mode.

Component Reference

Page 310

TDBISAMBlobStream.Write Method

function Write(const Buffer; Count: Integer): Integer

Use Write to write Count bytes to the BLOB field, starting at the current position. The Write method for
TDBISAMBlobStream always writes the entire Count bytes, as a BLOB field does not necessarily include a
termination character. Thus, Write is equivalent to the WriteBuffer method.

Write ignores the Transliterate property of the field since DBISAM always writes data using the ANSI
character set.

All the other data-writing methods of a TDBISAMBlobStream object (WriteBuffer, WriteComponent) call
Write to do their actual writing.

Note
Do not call Write when the TDBISAMBlobStream object was created in bmRead mode.

Component Reference

Page 311

5.4 TDBISAMDatabase Component

Unit: dbisamtb

Inherits From TCustomConnection

Use the TDBISAMDatabase component to manage a local or remote database within an application. A
database serves as a container for tables and allows for transaction control for multiple table updates as
well as easy online backup and restore of all tables contained within it.

Note
Explicit declaration of a TDBISAMDatabase component for each database connection in an
application is optional if the application does not need to explicitly control that database. If a
TDBISAMDatabase component is not explicitly declared and instantiated for a database, a
temporary TDBISAMDatabase component with a default set of properties is created for it at
runtime.

Also, you may have multiple TDBISAMDatabase components referring to the same local or remote
database and they will share the same transaction status, etc.

Properties Methods Events

DatabaseName Backup OnBackupLog

DataSets BackupInfo OnBackupProgress

Directory CloseDataSets OnCommit

EngineVersion Commit OnRestoreLog

Handle Execute OnRestoreProgress

InTransaction Restore OnRollback

KeepConnection Rollback OnStartTransaction

KeepTablesOpen StartTransaction

RemoteDatabase ValidateName

Session

SessionName

StoreConnected

Temporary

Component Reference

Page 312

TDBISAMDatabase.DatabaseName Property

property DatabaseName: String

Use to the DatabaseName property to specify the name of the database to associate with this
TDBISAMDatabase component. The database name is arbitrary and is used only for identification of the
database when connecting TDBISAMTable and TDBISAMQuery components. It is best to think of the
DatabaseName as an alias to the physical location of the database tables, which is represented by the
Directory property for local sessions and the RemoteDatabase property for remote sessions. The
DatabaseName property must begin with an alpha character.

Note
Attempting to set this property when the Connected property of the TDBISAMDatabase component
is True will result in an exception being raised.

Component Reference

Page 313

TDBISAMDatabase.DataSets Property

property DataSets[Index: Integer]: TDBISAMDBDataSet

The DataSets property provides an indexed array of all active datasets for a TDBISAMDatabase
component. An active dataset is one that is currently open.

Note
A "dataset" is either a TDBISAMTable or TDBISAMQuery component, both of which descend from
the TDBISAMDBDataSet component.

Component Reference

Page 314

TDBISAMDatabase.Directory Property

property Directory: String

Use the Directory property to specify the operating system directory where the database tables are located
for a TDBISAMDatabase component. This property only applies to TDBISAMDatabase components that are
connected to a local TDBISAMSession component whose SessionType property is set to stLocal. With local
sessions a database is synonymous with a directory. For TDBISAMDatabase components that are
connected to remote sessions you should use the RemoteDatabase property to specify the database.

It is not recommended that you leave this property blank since this will cause the TDBISAMDatabase
component to look in the current working directory for database tables, and the current working directory
may change frequently during the execution of an application.

Note
Attempting to set this property when the Connected property of the TDBISAMDatabase component
is True will result in an exception being raised.

Component Reference

Page 315

TDBISAMDatabase.EngineVersion Property

property EngineVersion: String

Indicates the current version of DBISAM being used. This property is read-only, but published so that it is
visible in the Object Inspector in Delphi, Kylix, and C++Builder.

Component Reference

Page 316

TDBISAMDatabase.Handle Property

property Handle: TDBISAMDatabaseManager

The Handle property is for internal use only and is not useful to the application developer using DBISAM.

Component Reference

Page 317

TDBISAMDatabase.InTransaction Property

property InTransaction: Boolean

Use the InTransaction property at run-time to determine if a transaction is currently in progress. The
InTransaction property is True if a transaction is in progress and False if a transaction is not in progress.

The value of the InTransaction property cannot be changed directly. Calling the TDBISAMDatabase
StartTransaction sets the InTransaction property to True. Calling the TDBISAMDatabase Commit or
Rollback methods sets the InTransaction property to False.

Note
If the current TDBISAMDatabase component is sharing its internal handle with another
TDBISAMDatabase component, then calling StartTransaction on one component will also cause the
other component's InTransaction property to reflect True. The same holds true for two
TDBISAMDatabase components that refer to the same local or remote database since DBISAM
never allocates more than one internal handle for a given database.

Component Reference

Page 318

TDBISAMDatabase.KeepConnection Property

property KeepConnection: Boolean

Use the KeepConnection property to specify whether an application remains connected to a database even
if no datasets are open. When the KeepConnection property is True (the default) the connection is
maintained. When the KeepConnection property is False a connection is dropped when there are no open
datasets. Dropping a connection releases system resources allocated to the connection, but if a dataset is
later opened that uses the database, the connection must be reestablished and initialized.

Note
The KeepConnection property setting for temporary TDBISAMDatabase components created
automatically as needed is determined by the KeepConnections property of the TDBISAMSession
component that the TDBISAMDatabase component is linked to.

Component Reference

Page 319

TDBISAMDatabase.KeepTablesOpen Property

property KeepTablesOpen: Boolean

Use the KeepTablesOpen property to specify that any tables opened for shared (non-exclusive) use are
kept open internally in DBISAM, even though they have been closed by the application. These tables are
kept open internally until the TDBISAMDatabase component is disconnected and the Active property is
False. This can result in significant performance improvements in situations where DBISAM must open and
close the same set of tables frequently, such as with large SQL scripts.

However, use this property very carefully since it can cause access problems that are hard to diagnose.
For example, you may try to alter the structure of a table that is internally still open in DBISAM and the
resulting DBISAM_OSEACCES error message issued by DBISAM could be very confusing. In situations like
this, disconnecting the TDBISAMDatabase component will solve the problem.

Note
Attempting to set this property when the Connected property of the TDBISAMDatabase component
is True will result in an exception being raised.

Component Reference

Page 320

TDBISAMDatabase.RemoteDatabase Property

property RemoteDatabase: String

Use the RemoteDatabase property to specify the database name on the database server where the
database tables are located for a TDBISAMDatabase component. This property only applies to
TDBISAMDatabase components that are connected to a remote TDBISAMSession component whose
SessionType property is set to stRemote. With remote sessions a database is synonymous with a logical
database name on a database server. For TDBISAMDatabase components that are connected to local
sessions you should use the Directory property to specify the database.

Note
Attempting to set this property when the Connected property of the TDBISAMDatabase component
is True will result in an exception being raised.

Component Reference

Page 321

TDBISAMDatabase.Session Property

property Session: TDBISAMSession

Use the Session property to determine the TDBISAMSession component that the TDBISAMDatabase
component is linked to. By default, a TDBISAMDatabase component is linked with the default
TDBISAMSession component that is automatically created for all applications (it can be referenced via the
global Session function in the dbisamtb unit (Delphi and Kylix) or the dbisamtb header file (C++Builder).
To assign a TDBISAMDatabase component to a different session in a multi-threaded application, specify
the name of a different TDBISAMSession component in the SessionName property.

Component Reference

Page 322

TDBISAMDatabase.SessionName Property

property SessionName: String

Use the SessionName property to specify the session with which the TDBISAMDatabase component is
linked. If the SessionName property is blank, a TDBISAMDatabase component is automatically linked with
the default TDBISAMSession component that can be referenced via the global Session function in the
dbisamtb unit (Delphi and Kylix) or the dbisamtb header file (C++Builder). To link a TDBISAMDatabase
component with a different session in an application, the SessionName property must match the
SessionName property of an existing TDBISAMSession component.

Component Reference

Page 323

TDBISAMDatabase.StoreConnected Property

property StoreConnected: Boolean

Use the StoreConnected property to determine if the database should store the current value of its
Connected property, and subsequently, the Active property values of all other DBISAM components such
as the TDBISAMTable, and TDBISAMQuery components, in the owner form or data module. The default
value for this property is True.

Component Reference

Page 324

TDBISAMDatabase.Temporary Property

property Temporary: Boolean

The Temporary property indicates whether a TDBISAMDatabase component is temporary and created by
DBISAM as needed, or persistent and explicitly created, managed, and freed within the application. A
temporary TDBISAMDatabase component is created when a dataset is opened and the dataset is not
already linked with an existing TDBISAMDatabase component via its DatabaseName property. If
Temporary remains True, then a temporary TDBISAMDatabase component is freed when the dataset is
closed. An application can prevent the destruction of a temporary TDBISAMDatabase component by
setting Temporary to False while the dataset is active, but the application is then responsible for closing
the TDBISAMDatabase component when it is no longer needed.

Note
A "dataset" is either a TDBISAMTable or TDBISAMQuery component, both of which descend from
the TDBISAMDBDataSet component.

Component Reference

Page 325

TDBISAMDatabase.Backup Method

function Backup(const BackupName: String; const
 BackupDescription: String; Compression: Byte; BackupTables:
 TStrings): Boolean

Call the Backup method to backup all tables specified by the BackupTables parameter into the backup file
specified by the BackupName parameter. You can specify a description for the backup with the
BackupDescription parameter. The Compression parameter is specified as a Byte value between 0 and 9,
with the default being 0, or none, and 6 being the best selection for size/speed. The default compression
is ZLib, but can be replaced by using the TDBISAMEngine events for specifying a different type of
compression. Please see the Compression and Customizing the Engine topics for more information.

The Backup method cannot be run when a transaction is currently active for the database. You can inspect
the InTransaction property to determine if a transaction is currently active for the database. When the
backup executes, it obtains a read lock for the entire database that prevents any sessions from performing
any writes to any of the tables in the database until the backup completes.

Note
The BackupName parameter can contain a full path and file name, however when calling this
method from within a remote session for a remote database you must make sure that the path is
relative to the database server, not the client workstation. The best solution is to run the backup
from a scheduled event on the server. Please see the Customizing the Engine topic for more
information.

Component Reference

Page 326

TDBISAMDatabase.BackupInfo Method

function BackupInfo(const BackupName: String; var
 BackupDescription: String; var BackupDateTime: TDateTime;
 BackupTables: TStrings): Boolean

Call the BackupInfo method to retrieve information about a backup from the backup file specified by the
BackupName parameter. The description for the backup is returned via the BackupDescription parameter.
The date and time of the backup is returned via the BackupDateTime parameter. The tables that were
backed up are returned via the BackupTables parameter.

Note
The BackupName parameter can contain a full path and file name, however when calling this
method from within a remote session for a remote database you must make sure that the path is
relative to the database server, not the client workstation.

Component Reference

Page 327

TDBISAMDatabase.CloseDataSets Method

procedure CloseDataSets

Call the CloseDataSets method to close all active datasets without disconnecting from the database.
Ordinarily, when an application calls the Close method, all datasets are closed, and the connection to the
database is dropped. Calling CloseDataSets instead of Close ensures that an application can close all active
datasets without having to reconnect to the database at a later time.

Component Reference

Page 328

TDBISAMDatabase.Commit Method

procedure Commit(ForceFlush: Boolean=True)

Call the Commit method to permanently store to the database all record updates, insertions, and deletions
that have occurred within the current transaction and then end the transaction. The current transaction is
the last transaction started by calling the StartTransaction method. The optional ForceFlush parameter
allows you to specifically indicate whether the commit should also perform an operating system flush. The
default value is True.

Note
Before calling the Commit method, an application may check the status of the InTransaction
property. If an application calls Commit and there is no current transaction, an exception is raised.

Component Reference

Page 329

TDBISAMDatabase.Execute Method

function Execute(const SQL: String; Params: TDBISAMParams=nil;
 Query: TDBISAMQuery=nil): Integer

Call the Execute method to execute an SQL statement directly. The number of rows affected is returned as
the result of this method. The SQL passed to this method can be a single SQL statement or an SQL script.
These SQL statements may also be parameterized.

Note
You may pass in a TDBISAMQuery component that has already been created for use with this
method. However, in such a case you should be aware that many properties of the TDBISAMQuery
component will be overwritten by this method in order to execute the SQL.

Component Reference

Page 330

TDBISAMDatabase.Restore Method

function Restore(const BackupName: String; BackupTables:
 TStrings): Boolean

Call the Restore method to restore all tables specified by the BackupTables parameter from the backup file
specified by the BackupName parameter.

The Restore method cannot be run when a transaction is currently active for the database. You can
inspect the InTransaction property to determine if a transaction is currently active for the database. When
the restore executes, it obtains a write lock for the entire database that prevents any sessions from
performing any operation on any of the tables in the database until the restore completes.

Note
The BackupName parameter can contain a full path and file name, however when calling this
method from within a remote session for a remote database you must make sure that the path is
relative to the database server, not the client workstation.

Component Reference

Page 331

TDBISAMDatabase.Rollback Method

procedure Rollback

Call the Rollback method to cancel all record updates, insertions, and deletions for the current transaction
and to end the transaction. The current transaction is the last transaction started by calling the Rollback
method.

Note
Before calling the Rollback method, an application may check the status of the InTransaction
property. If an application calls the Rollback method and there is no current transaction, an
exception is raised.

Component Reference

Page 332

TDBISAMDatabase.StartTransaction Method

procedure StartTransaction(Tables: TStrings=nil)

Call the StartTransaction method to begin a new transaction. Before calling the StartTransaction method,
an application should check the status of the InTransaction property. If the InTransaction property is True,
indicating that a transaction is already in progress, a subsequent call to StartTransaction without first
calling the Commit or Rollback methods to end the current transaction will raise an exception.

The Tables parameter allows you to specify a list of table names that should be included in the
transaction. This is called a restricted transaction, since it usually involves only a subset of tables in the
database. If the Tables parameter is nil, the default, then the transaction will encompass the entire
database.

After the StartTransaction method is called, any updates, insertions, and deletions that take place on
tables that are part of the active transaction are held by DBISAM until an application calls the Commit
method to save the changes or the Rollback method is to cancel them.

Note
The transaction isolation level in DBISAM is always read-committed, meaning that DBISAM will only
allow sessions to view data that has been committed by another session. Any uncommitted data will
be invisible until it is committed by the session.

Component Reference

Page 333

TDBISAMDatabase.ValidateName Method

procedure ValidateName(const Name: String)

Call the ValidateName method to prevent duplicate access to a TDBISAMDatabase component from within
a single TDBISAMSession component. The Name parameter contains the DatabaseName of the
TDBISAMDatabase component to test. If the TDBISAMDatabase component is already open, the
ValidateName method raises an exception. If the TDBISAMDatabase component is not open, the
procedure returns, and the application continues processing.

Note
Most applications should not need to call this method directly. It is called automatically each time a
TDBISAMDatabase component is opened.

Component Reference

Page 334

TDBISAMDatabase.OnBackupLog Event

property OnBackupLog: TLogEvent

The OnBackupLog event is fired when an application calls the Backup method and the backup operation
needs to report a backup log message to the application.

Component Reference

Page 335

TDBISAMDatabase.OnBackupProgress Event

property OnBackupProgress: TSteppedProgressEvent

The OnBackupProgress event is fired when an application calls the Backup method and the backup
operation needs to report a backup progress message to the application.

Note
The number of times that this event fires is controlled by the TDBISAMSession ProgressSteps
property of the current session.

Component Reference

Page 336

TDBISAMDatabase.OnCommit Event

property OnCommit: TNotifyEvent

The OnCommit event is fired after an application calls the Commit method and the commit operation
succeeds.

Component Reference

Page 337

TDBISAMDatabase.OnRestoreLog Event

property OnRestoreLog: TLogEvent

The OnRestoreLog event is fired when an application calls the Restore method and the restore operation
needs to report a restore log message to the application.

Component Reference

Page 338

TDBISAMDatabase.OnRestoreProgress Event

property OnRestoreProgress: TSteppedProgressEvent

The OnRestoreProgress event is fired when an application calls the Restore method and the restore
operation needs to report a restore progress message to the application.

Note
The number of times that this event fires is controlled by the TDBISAMSession ProgressSteps
property of the current session.

Component Reference

Page 339

TDBISAMDatabase.OnRollback Event

property OnRollback: TNotifyEvent

The OnRollback event is fired after an application calls the Rollback method and the rollback operation
succeeds.

Component Reference

Page 340

TDBISAMDatabase.OnStartTransaction Event

property OnStartTransaction: TNotifyEvent

The OnStartTransaction event is fired after an application calls the StartTransaction method, but before
the actual transaction is started.

Component Reference

Page 341

5.5 TDBISAMDataSet Component

Unit: dbisamtb

Inherits From TDBISAMBaseDataSet

The TDBISAMDataSet component is a dataset component that defines DBISAM-specific functionality for a
dataset. Applications never use TDBISAMDataSet components directly. Instead they use the descendants
of TDBISAMDataSet, the TDBISAMQuery and TDBISAMTable components, which inherit its database-
related properties and methods.

Properties Methods Events

AutoDisplayLabels ApplyCachedUpdates OnCachedUpdateError

CachedUpdatesModified BeginCachedUpdates OnUpdateRecord

CachingUpdates CancelCachedUpdates

CopyOnAppend ExportTable

FilterExecutionTime FlushBuffers

FilterOptimizeLevel GetFieldClass

FilterRecordCount GetIndexInfo

Handle GetNextRecords

KeySize GetPriorRecords

LocalReadSize ImportTable

RecordHash LoadFromStream

RecordID SaveToStream

RemoteReadSize

StoreActive

UpdateObject

Component Reference

Page 342

TDBISAMDataSet.AutoDisplayLabels Property

property AutoDisplayLabels: Boolean

Use the AutoDisplayLabels property to specify whether the descriptions for each field in the dataset should
be automatically populated as the DisplayLabel property of each TField component defined for this
TDBISAMDataSet component. This helps alleviate the hassle of constantly having to manually update
multiple instances of a TField component associated with multiple TDBISAMTable or TDBISAMQuery
components when you wish to change the "pretty" version of a field name. Since the TDBGrid component
uses the DisplayLabel property of a TField component automatically, this property is very useful when data
will be displayed in a TDBGrid component.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 343

TDBISAMDataSet.CachedUpdatesModified Property

property CachedUpdatesModified: Boolean

Component Reference

Page 344

TDBISAMDataSet.CachingUpdates Property

property CachingUpdates: Boolean

Use the CachingUpdates property to determine whether updates are being cached.

Component Reference

Page 345

TDBISAMDataSet.CopyOnAppend Property

property CopyOnAppend: Boolean

Use the CopyOnAppend property to control whether the current or last record's contents should be copied
automatically to any newly inserted or appended records.

Note
Using the Append method will cause the last record to be copied, not the current record. If you
wish to copy the current record's contents then you should use the Insert method. Also, this
property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 346

TDBISAMDataSet.FilterExecutionTime Property

property FilterExecutionTime: double

Use the FilterExecutionTime property to determine how long the current filter took to execute in seconds.

Component Reference

Page 347

TDBISAMDataSet.FilterOptimizeLevel Property

property FilterOptimizeLevel: TFilterOptimizeLevel

Use the FilterOptimizeLevel property to determine the optimization level of the current expression filter
specified via the Filter property.

You may examine this property after the Filtered property is set to True.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 348

TDBISAMDataSet.FilterRecordCount Property

property FilterRecordCount: Integer

Use the FilterRecordCount property to determine the total number of records, including active filters (or
WHERE clauses with live query result sets), when the TDBISAMEngine FilterRecordCounts property is set
to False. If the TDBISAMEngine FilterRecordCounts property is set to True, then the FilterRecordCount
property always matches that of the RecordCount property.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 349

TDBISAMDataSet.Handle Property

property Handle: TDBISAMCursor

The Handle property is for internal use only and is not useful to the application developer using DBISAM.

Component Reference

Page 350

TDBISAMDataSet.KeySize Property

property KeySize: Word

The KeySize property specifies the size, in bytes, of a key in the active index. KeySize varies depending on
the number and type of fields that make up the active index. The key size is for internal use only and is
not useful to the application developer using DBISAM.

Note
This property is only used in the context of a descendant TDBISAMTable component.

Component Reference

Page 351

TDBISAMDataSet.LocalReadSize Property

property LocalReadSize: Integer

Use the LocalReadSize property to specify how many records should be read at once whenever a local
session needs to read records from disk. This property is most useful when performing a sequential
navigation of a large table or query result set in a network sharing environment. However, you should be
careful to not set this property to too high of a value since doing so can result in excessive memory
consumption and network traffic. This is especially true when the access to the table or query result set is
mostly random and not sequential.

The actual number of records read is dependent upon the value of this property combined with an internal
intelligent read-ahead calculation performed by the engine, with the greater of the two values being used.
This means that if you increase this value from the default value of 1, then you may be causing the engine
to read more records than it normally would. Therefore, it is important that you also increase the record
buffering settings of the engine to avoid forcing the engine to spend excessive amounts of time ejecting
records from the cache. You can do so by modifying these properties in the TDBISAMEngine component:

MaxTableDataBufferCount
MaxTableDataBufferSize

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 352

TDBISAMDataSet.RecordHash Property

property RecordHash: String

The RecordHash property indicates the MD5 hash value of the current record in the form of a string.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 353

TDBISAMDataSet.RecordID Property

property RecordID: Integer

The RecordID property indicates the inviolate record ID of the current record.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 354

TDBISAMDataSet.RemoteReadSize Property

property RemoteReadSize: Integer

Use the RemoteReadSize property to specify how many records should be read at once whenever a
remote session needs to read records from a database server. This property is most useful when
performing a sequential navigation of a large remote table or query result set on a database server. You
should be careful to not set this property to too high of a value since doing so can result in excessive
memory consumption and network traffic. This is especially true when the access to a remote table or
query result set is mostly random and not sequential.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 355

TDBISAMDataSet.StoreActive Property

property StoreActive: Boolean

Use the StoreActive property to determine if the dataset should store the current value of its Active
property in the owner form or data module. The default value for this property is True.

Component Reference

Page 356

TDBISAMDataSet.UpdateObject Property

property UpdateObject: TDBISAMDataSetUpdateObject

Use the UpdateObject property to specify a TDBISAMUpdateSQL component that will be used to apply any
updates from a TClientDataSet component via the IProvider support in DBISAM.

Component Reference

Page 357

TDBISAMDataSet.ApplyCachedUpdates Method

procedure ApplyCachedUpdates

Use the ApplyCachedUpdates method to begin the process of apply any inserts, updates, or deletes that
were cached to the source table or query result set. If there are any errors during this process, you can
use an OnCachedUpdateError event handler to handle the errors and reconcile them so that the
application of the updates can complete successfully.

Note
You should always wrap the ApplyCachedUpdates method with a transaction. This allows the
application of the updates to either fail or succeed as a single atomic unit of work.

Component Reference

Page 358

TDBISAMDataSet.BeginCachedUpdates Method

procedure BeginCachedUpdates

Use the BeginCachedUpdates method to copy all records to a temporary table that will be used for caching
all inserts, updates, and deletes until the cached updates are applied using the ApplyCachedUpdates
method or cancelled using the CancelCachedUpdates method.

Component Reference

Page 359

TDBISAMDataSet.CancelCachedUpdates Method

procedure CancelCachedUpdates

Use the CancelCachedUpdates method to discard any cached updates and return the source table or query
result set to its original state.

Component Reference

Page 360

TDBISAMDataSet.ExportTable Method

procedure ExportTable(const ExportToFile: String; Delimiter:
 Char; WriteHeaders: Boolean=False; FieldsToExport: TStrings=nil;
 const DateFormat: String=ANSI_DATE_FORMAT; const TimeFormat:
 String=ANSI_TIME_FORMAT; DecSeparator:
 Char=ANSI_DECIMAL_SEPARATOR)

Call the ExportTable method to export data from the dataset into a delimited text file. The dataset may be
open or closed when executing this method. If the dataset is open, then this method will respect any
active filters or ranges on the dataset when copying the data to the delimited text file.

The FileToExport parameter indicates the name (including path) of the delimited text file to create when
exporting the dataset contents.

The Delimiter parameter indicates the char to be used as the delimiter in the text file being created during
the export.

The WriteHeaders parameter indicates whether to write the field names being exported to the first line of
the text file being created during the export.

The FieldsToExport parameter indicates the names of the fields that should be populated with data from
the dataset when exporting. This is useful for situations where the structure of the outgoing data needs to
be different from that of the source dataset.

The DateFormat parameter indicates the date formatting to be used for any date or timestamp (date and
time) fields in the exported text file. The rules for the date format specification are the same as with
Delphi, Kylix, and C++Builder date formats. The only restriction is that you must include a date separator
between the year (y), month (m), and day (d) placeholders. When exporting timestamp fields the
formatting is assumed to be DateFormat, space character, and then TimeFormat. All formatting is case-
insensitive and the default date format is "yyyy-mm-dd".

The TimeFormat parameter indicates the time formatting to be used for any time or timestamp (date and
time) fields in the exported text file. The rules for the time format specification are the same as with
Delphi, Kylix, and C++Builder time formats. The only restriction is that you must include a time separator
between the hours (h), minutes (m), and seconds (s) placeholders. Also, any milliseconds formatting must
use a period "." as the separator between the seconds and the milliseconds placeholders. Finally, when
specifying the "ampm" switch for 12-hour clock format, do not use a forward slash between the "am" and
"pm" placeholders. When exporting timestamp fields the formatting is assumed to be DateFormat, space
character, and then TimeFormat. All formatting is case-insensitive and the default time format is
"hh:mm:ss.zzz ampm".

The DecSeparator parameter indicates the decimal separator to be used for any number fields (Float or
BCD) in the exported text file. DBISAM does not support the use of thousands separators in exported
number field text data, only decimal separators. The default decimal separator is ".".

Component Reference

Page 361

TDBISAMDataSet.FlushBuffers Method

procedure FlushBuffers

Use the FlushBuffers method to flush data to disk. If the table or query result set is opened exclusively,
then the FlushBuffers method flushes all cached writes to disk and proceeds to instruct the operating
system to flush all writes to disk also. If the table or query result set is opened shared, then FlushBuffers
only instructs the operating system to flush all writes to disk since shared datasets do not cache any
writes.

Note
This method is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 362

TDBISAMDataSet.GetFieldClass Method

function GetFieldClass(FieldType: TFieldType): TFieldClass

This method is only used internally by DBISAM and should be ignored by application developers.

Component Reference

Page 363

TDBISAMDataSet.GetIndexInfo Method

procedure GetIndexInfo

This method is only used internally by DBISAM and should be ignored by application developers.

Component Reference

Page 364

TDBISAMDataSet.GetNextRecords Method

function GetNextRecords: Integer

This method is only used internally by DBISAM and should be ignored by application developers.

Component Reference

Page 365

TDBISAMDataSet.GetPriorRecords Method

function GetPriorRecords: Integer

This method is only used internally by DBISAM and should be ignored by application developers.

Component Reference

Page 366

TDBISAMDataSet.ImportTable Method

procedure ImportTable(const FileToImport: String; Delimiter:
 Char; ReadHeaders: Boolean=False; FieldsToImport: TStrings=nil;
 const DateFormat: String=ANSI_DATE_FORMAT; const TimeFormat:
 String=ANSI_TIME_FORMAT; DecSeparator:
 Char=ANSI_DECIMAL_SEPARATOR)

Call the ImportTable method to import data into the dataset from a delimited text file. The dataset may be
open or closed when executing this method.

The FileToImport parameter indicates the name (including path) of the delimited text file to import into
the dataset.

The Delimiter parameter indicates the char used as the delimiter in the text file being imported into the
dataset.

The ReadHeaders parameter indicates whether to read the field names to be imported directly from the
first line of the text file being imported.

The FieldsToImport parameter indicates the names of the fields that should be populated with data from
the incoming delimited text file. This is useful for situations where the structure of the incoming data does
not match that of the dataset.

The DateFormat parameter indicates the date formatting to be used for interpreting any incoming date or
timestamp (date and time) fields in the imported text file. The rules for the date format specification are
the same as with Delphi, Kylix, and C++Builder date formats. The only restriction is that you must include
a date separator between the year (y), month (m), and day (d) placeholders. When importing timestamp
fields the formatting is assumed to be DateFormat, space character, and then TimeFormat. All formatting
is case-insensitive and the default date format is "yyyy-mm-dd".

The TimeFormat parameter indicates the time formatting to be used for interpreting any incoming time or
timestamp (date and time) fields in the imported text file. The rules for the time format specification are
the same as with Delphi, Kylix, and C++Builder time formats. The only restriction is that you must include
a time separator between the hours (h), minutes (m), and seconds (s) placeholders. Also, any milliseconds
formatting must use a period "." as the separator between the seconds and the milliseconds placeholders.
Finally, when specifying the "ampm" switch for 12-hour clock format, do not use a forward slash between
the "am" and "pm" placeholders. When importing timestamp fields the formatting is assumed to be
DateFormat, space character, and then TimeFormat. All formatting is case-insensitive and the default time
format is "hh:mm:ss.zzz ampm".

The DecSeparator parameter indicates the decimal separator to be used for interpreting any incoming
number fields (Float or BCD) in the imported text file. DBISAM does not support the use of thousands
separators in incoming number field text data, only decimal separators. The default decimal separator is
".".

Component Reference

Page 367

TDBISAMDataSet.LoadFromStream Method

procedure LoadFromStream(SourceStream: TStream)

Call the LoadFromStream method to load the contents of the dataset from a stream containing data
previously created using the SaveToStream method.

Component Reference

Page 368

TDBISAMDataSet.SaveToStream Method

procedure SaveToStream(DestStream: TStream)

Call the SaveToStream method to save the contents of the dataset to a stream. You can then use
LoadFromStream method to load the data from the stream using another TDBISAMTable or
TDBISAMQuery component.

Note
Do not use this method with very large datasets. It is recommended that you do not use it with
datasets over a few megs in size.

Component Reference

Page 369

TDBISAMDataSet.OnCachedUpdateError Event

property OnCachedUpdateError: TCachedUpdateErrorEvent

The OnCachedUpdateError event is fired when there is an error during the application of a cached update.
You may use the CurrentRecord parameter to examine and/or modify the record being applied. The E
paramater contains the exception that was raised. The UpdateType parameter indicates what type of
operation was being applied. Finally, the Action parameter allows you to specify what action you would
like DBISAM to take in response to any adjustments that may have been made to the CurrentRecord
object.

Component Reference

Page 370

TDBISAMDataSet.OnUpdateRecord Event

property OnUpdateRecord: TUpdateRecordEvent

The OnUpdateRecord event is fired when the IProvider support in DBISAM is attempting to apply an
update from a TClientDataSet component. Write an event handler for this event to intercept an update
before it is applied automatically by DBISAM. This will allow you to provide custom processing for
situations where the standard update processing is not sufficient.

Component Reference

Page 371

5.6 TDBISAMDataSetUpdateObject Component

Unit: dbisamtb

Inherits From TComponent

The TDBISAMDataSetUpdate component is an abstract component that is implemented by the
TDBISAMUpdateSQL component. Normally, only developers interested in creating their own custom update
components would use the TDBISAMDataSetUpdateObject.

Properties Methods Events

Component Reference

Page 372

5.7 TDBISAMDBDataSet Component

Unit: dbisamtb

Inherits From TDBISAMDataSet

The TDBISAMDBDataSet component is a dataset component that defines database-related connectivity
properties and methods for a DBISAM dataset. Applications never use TDBISAMDBDataSet components
directly. Instead they use the descendants of TDBISAMDBDataSet, the TDBISAMQuery and TDBISAMTable
components, which inherit its database-related properties and methods.

Properties Methods Events

Database CloseDatabase

DatabaseName OpenDatabase

DBHandle

DBSession

SessionName

Component Reference

Page 373

TDBISAMDBDataSet.Database Property

property Database: TDBISAMDatabase

Use the Database property to access the properties, events, and methods of the TDBISAMDatabase
component linked to this TDBISAMDBDataSet component. The Database property is read-only and is
automatically set when the database specified by the DatabaseName property is opened.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 374

TDBISAMDBDataSet.DatabaseName Property

property DatabaseName: String

Use the DatabaseName property to specify the name of the TDBISAMDatabase component to link to this
TDBISAMDBDataSet component. The DatabaseName property should match the DatabaseName property
of an existing TDBISAMDatabase component or should specify a valid local path name, for local sessions,
or a remote database name, for remote sessions.

Note
Attempting to set the DatabaseName property when the TDBISAMDBDataSet component is open
(Active=True) will raise an exception. Also, this property is only used in the context of the
descendant TDBISAMTable and TDBISAMQuery components.

Component Reference

Page 375

TDBISAMDBDataSet.DBHandle Property

property DBHandle: TDBISAMDatabaseManager

The DBHandle property is for internal use only and is not useful to the application developer using
DBISAM.

Component Reference

Page 376

TDBISAMDBDataSet.DBSession Property

property DBSession: TDBISAMSession

Use the DBSession property to determine the TDBISAMSession component with which this
TDBISAMDBDataSet component is linked. By default, the TDBISAMDBDataset component is linked with the
default TDBISAMSession component, Session, that is automatically created by DBISAM.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 377

TDBISAMDBDataSet.SessionName Property

property SessionName: String

Use the SessionName property to specify the TDBISAMSession component to link to this
TDBISAMDBDataSet component. If the SessionName property is blank, the TDBISAMDBDataSet
component is automatically linked to the default TDBISAMSession component, Session. To link the
TDBISAMDBDataset component with a different TDBISAMSession component, the SessionName property
must match the SessionName property of an existing TDBISAMSession component.

Note
This property is only used in the context of the descendant TDBISAMTable and TDBISAMQuery
components.

Component Reference

Page 378

TDBISAMDBDataSet.CloseDatabase Method

procedure CloseDatabase(Database: TDBISAMDatabase)

The CloseDatabase method is just a local version of the TDBISAMSession CloseDatabase method for the
TDBISAMSession that the TDBISAMDBDataSet is linked to via its SessionName property.

Component Reference

Page 379

TDBISAMDBDataSet.OpenDatabase Method

function OpenDatabase: TDBISAMDatabase

The OpenDatabase method is just a local version of the TDBISAMSession OpenDatabase method for the
TDBISAMSession that the TDBISAMDBDataSet is linked to via its SessionName property.

Component Reference

Page 380

5.8 TDBISAMEngine Component

Unit: dbisamtb

Inherits From TComponent

Use the TDBISAMEngine component to manage the DBISAM engine from within an application. The
DBISAM engine can behave as either a local, or client, engine or as a database server engine.

A default TDBISAMEngine component is created automatically when the application is started and can be
referenced via the global Engine function in the dbisamtb unit (Delphi) and dbisamtb header file (C++).

Note
Use of any of the properties, methods, and events in the TDBISAMEngine component is completely
optional and not required for proper use of DBISAM. However, the TDBISAMEngine component can
be a very powerful tool for customizing DBISAM, especially when it is running as a database server.
Please see the Configuring and Starting the Server and Customizing the Engine topics for more
information.

Properties Methods Events

Active AddServerDatabase AfterDeleteTrigger

CreateTempTablesInDatabase AddServerDatabaseUser AfterInsertTrigger

EngineSignature AddServerEvent AfterUpdateTrigger

EngineType AddServerProcedure BeforeDeleteTrigger

EngineVersion AddServerProcedureUser BeforeInsertTrigger

FilterRecordCounts AddServerUser BeforeUpdateTrigger

Functions AnsiStrToBoolean CommitTrigger

LockFileName AnsiStrToCurr OnCompress

MaxTableBlobBufferCount AnsiStrToDate OnCryptoInit

MaxTableBlobBufferSize AnsiStrToDateTime OnCryptoReset

MaxTableDataBufferCount AnsiStrToFloat OnCustomFunction

MaxTableDataBufferSize AnsiStrToTime OnDecompress

MaxTableIndexBufferCount BooleanToAnsiStr OnDecryptBlock

MaxTableIndexBufferSize BuildWordList OnDeleteError

ServerAdminAddress ConvertIDToLocaleConstant OnEncryptBlock

ServerAdminPort ConvertLocaleConstantToID OnInsertError

ServerAdminThreadCacheSize Create OnServerConnect

ServerConfigFileName CurrToAnsiStr OnServerDisconnect

ServerConfigPassword DateTimeToAnsiStr OnServerLogCount

Component Reference

Page 381

ServerDescription DateToAnsiStr OnServerLogEvent

ServerEncryptedOnly DeleteServerDatabase OnServerLogin

ServerEncryptionPassword DeleteServerDatabaseUser OnServerLogout

ServerLicensedConnections DeleteServerEvent OnServerLogRecord

ServerMainAddress DeleteServerProcedure OnServerProcedure

ServerMainPort DeleteServerProcedureUser OnServerReconnect

ServerMainThreadCacheSize DeleteServerUser OnServerScheduledEvent

ServerName DisconnectServerSession OnServerStart

SessionCount FindSession OnServerStop

SessionList FloatToAnsiStr OnShutdown

Sessions GetDefaultTextIndexParams OnStartup

StoreActive GetLocaleNames OnTextIndexFilter

TableBlobBackupExtension GetServerConfig OnTextIndexTokenFilter

TableBlobExtension GetServerConnectedSessionCount OnUpdateError

TableBlobTempExtension GetServerDatabase RecordLockTrigger

TableBlobUpgradeExtension GetServerDatabaseNames RecordUnlockTrigger

TableDataBackupExtension GetServerDatabaseUser RollbackTrigger

TableDataExtension GetServerDatabaseUserNames SQLTrigger

TableDataTempExtension GetServerEvent StartTransactionTrigger

TableDataUpgradeExtension GetServerEventNames

TableFilterIndexThreshhold GetServerLogCount

TableIndexBackupExtension GetServerLogRecord

TableIndexExtension GetServerMemoryUsage

TableIndexTempExtension GetServerProcedure

TableIndexUpgradeExtension GetServerProcedureNames

TableMaxReadLockCount GetServerProcedureUser

TableReadLockTimeout GetServerProcedureUserNames

TableTransLockTimeout GetServerSessionCount

TableWriteLockTimeout GetServerSessionInfo

GetServerUpTime

GetServerUser

GetServerUserNames

GetServerUTCDateTime

GetSessionNames

IsValidLocale

IsValidLocaleConstant

Component Reference

Page 382

ModifyServerConfig

ModifyServerDatabase

ModifyServerDatabaseUser

ModifyServerEvent

ModifyServerProcedure

ModifyServerProcedureUser

ModifyServerUser

ModifyServerUserPassword

OpenSession

QuotedSQLStr

RemoveServerSession

StartAdminServer

StartMainServer

StopAdminServer

StopMainServer

TimeToAnsiStr

Component Reference

Page 383

TDBISAMEngine.Active Property

property Active: Boolean

Use the Active property to specify whether or not the engine is active. Setting Active to True starts the
engine.

If the EngineType property is set to etServer, then DBISAM will attempt to start the engine as a database
server using the:

 ServerConfigFileName
 ServerConfigPassword
 ServerName
 ServerDescription
 ServerEncryptedOnly
 ServerEncryptionPassword
 ServerMainAddress
 ServerMainPort
 ServerMainThreadCacheSize
 ServerAdminAddress
 ServerAdminPort
 ServerAdminThreadCacheSize

properties. Also, the OnServerStart event will be triggered.

If the EngineType property is set to etClient (the default), then DBISAM will simply start the engine.

Setting Active to False closes any open datasets, disconnects active database connections, and stops all
active sessions.

Component Reference

Page 384

TDBISAMEngine.CreateTempTablesInDatabase Property

property CreateTempTablesInDatabase: Boolean

Use the CreateTempTablesInDatabase property to control the location of any temporary tables created by
the TDBISAMTable AlterTable, OptimizeTable, or UpgradeTable methods, or their SQL counterparts, the
ALTER TABLE statement, the OPTIMIZE TABLE statement, or the UPGRADE TABLE Statement. The default
value of this property is False, which means that any temporary tables are stored in the location specified
by the TDBISAMSession PrivateDir property. If this property is set to True, then any temporary tables will
be created in the current database directory specified by the TDBISAMTable or TDBISAMQuery
DatabaseName property, or specified by the TDBISAMDatabase Directory property. This property only
applies to the above operations, and does not apply to the temporary tables created by DBISAM for
canned query result sets.

Note
Setting this property to True will help avoid any user rights issues that may occur with Windows XP
and higher when altering or optimizing tables. Under these operating systems, the rights assigned
to any temporary tables created in local directories are usually very restrictive with respect to
sharing the table with other users. When the temporary table is copied back to the main database
directory once the table alteration, optimization, or upgrade is complete, the table is copied with
these restrictive rights. This can make the table inaccessible to other users that need to open, read,
or write to the table.

Component Reference

Page 385

TDBISAMEngine.EngineSignature Property

property EngineSignature: String

Use the EngineSignature property to specify the signature to be used by the engine when accessing or
creating tables, backup files, or streams as well as any communications between a remote session and a
database server. The default value of the EngineSignature property is "DBISAM_SIG" and should not be
changed unless you are sure of the consequences. Using a custom value for the EngineSignature property
will prevent any other application that uses DBISAM from accessing any tables, backup files, or streams
created with the custom signature, as well as accessing a database server using the custom signature.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 386

TDBISAMEngine.EngineType Property

property EngineType: TEngineType

Use the EngineType property to specify whether the engine should behave as a local, client engine (the
default) or as a database server engine. DBISAM only allows one instance of the TDBISAMEngine
component per application, which means that an application can only behave as a local, client application,
or as a database server application, but not both.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 387

TDBISAMEngine.EngineVersion Property

property EngineVersion: String

Indicates the current version of DBISAM being used. This property is read-only, but published so that it is
visible in the Object Inspector in Delphi, Kylix, and C++Builder.

Component Reference

Page 388

TDBISAMEngine.FilterRecordCounts Property

property FilterRecordCounts: Boolean

Use the FilterRecordCounts property to specify how record counts are returned for filtered datasets and
live query result sets. The default value of this property is True, which means the RecordCount property of
the TDBISAMTable and TDBISAMQuery components will always take into account any active filters (or
WHERE clauses with live query result sets) when showing the record count of the dataset. If the
FilterRecordCounts property is set to False, the RecordCount property of the TDBISAMTable and
TDBISAMQuery components will always show the total record count of the entire dataset or active range
(if a range is set) only and will not take any active filters (or WHERE clauses with live query result sets)
into account. To get the record count including any active filters, use the FilterRecordCount property of the
TDBISAMTable and TDBISAMQuery components. This property always shows the accurate record count,
regardless of the current setting of the TDBISAMEngine FilterRecordCounts property.

Setting the TDBISAMEngine FilterRecordCounts property to False may be desirable for some applications
since it allows for more accurate positioning of the scroll bar in a TDBGrid or similar multi-row, data-aware
components.

Component Reference

Page 389

TDBISAMEngine.Functions Property

property Functions: TDBISAMFunctions

Use the Functions property to define custom functions for use with filter expressions and SQL statements.

Note
Adding a custom function while the engine is active will result in the engine triggering an exception.
You should define all custom functions before activating the engine.

Component Reference

Page 390

TDBISAMEngine.LockFileName Property

property LockFileName: String

Use the LockFileName property to specify the lock file name used by DBISAM for placing table and
transaction locks for each physical database directory.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 391

TDBISAMEngine.MaxTableBlobBufferCount Property

property MaxTableBlobBufferCount: Integer

Use the MaxTableBlobBufferCount property to specify the maximum number of BLOB block buffers to
allow in the buffer cache per physical table. This property only applies to locally-opened tables and is
ignored for tables opened on a remote database server. Increasing this value will help increase
performance at the cost of increased memory consumption per table.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 392

TDBISAMEngine.MaxTableBlobBufferSize Property

property MaxTableBlobBufferSize: Integer

Use the MaxTableBlobBufferSize property to specify the total amount of memory to use for BLOB block
buffers in the buffer cache per physical table. This property only applies to locally-opened tables and is
ignored for tables opened on a remote database server. Increasing this value will help increase
performance at the cost of increased memory consumption per table.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 393

TDBISAMEngine.MaxTableDataBufferCount Property

property MaxTableDataBufferCount: Integer

Use the MaxTableDataBufferCount property to specify the maximum number of record buffers to allow in
the buffer cache per physical table. This property only applies to locally-opened tables and is ignored for
tables opened on a remote database server. Increasing this value will help increase performance at the
cost of increased memory consumption per table.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 394

TDBISAMEngine.MaxTableDataBufferSize Property

property MaxTableDataBufferSize: Integer

Use the MaxTableDataBufferSize property to specify the total amount of memory to use for record buffers
in the buffer cache per physical table. This property only applies to locally-opened tables and is ignored for
tables opened on a remote database server. Increasing this value will help increase performance at the
cost of increased memory consumption per table.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 395

TDBISAMEngine.MaxTableIndexBufferCount Property

property MaxTableIndexBufferCount: Integer

Use the MaxTableIndexBufferCount property to specify the maximum number of index page buffers to
allow in the buffer cache per physical table. This property only applies to locally-opened tables and is
ignored for tables opened on a remote database server. Increasing this value will help increase
performance at the cost of increased memory consumption per table.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 396

TDBISAMEngine.MaxTableIndexBufferSize Property

property MaxTableIndexBufferSize: Integer

Use the MaxTableIndexBufferSize property to specify the total amount of memory to use for index page
buffers in the buffer cache per physical table. This property only applies to locally-opened tables and is
ignored for tables opened on a remote database server. Increasing this value will help increase
performance at the cost of increased memory consumption per table.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 397

TDBISAMEngine.ServerAdminAddress Property

property ServerAdminAddress: String

Use the ServerAdminAddress property to specify the IP address that the database server should listen on
for administrative connections when the EngineType property is set to etServer. A blank value (the
default) indicates that the database server should listen on all available IP addresses from the operating
system.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 398

TDBISAMEngine.ServerAdminPort Property

property ServerAdminPort: Integer

Use the ServerAdminPort property to specify the port that the database server should listen on for
administrative connections when the EngineType property is set to etServer. The default value is 12006.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 399

TDBISAMEngine.ServerAdminThreadCacheSize Property

property ServerAdminThreadCacheSize: Integer

Use the ServerAdminThreadCacheSize property to specify the total number of threads that should be
cached by the database server for administrative connections when the EngineType property is set to
etServer. The default value is 1. Caching threads helps improve connection times by eliminating the need
to constantly create and destroy threads as remote sessions connect to and disconnect from the database
server.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 400

TDBISAMEngine.ServerConfigFileName Property

property ServerConfigFileName: String

Use the ServerConfigFileName property to specify the name of the configuration file the database server
should use for storing all configuration information when the EngineType property is set to etServer. The
default value is "dbsrvr". You should not specify a file extension in this file name since DBISAM always
uses a default file extension of ".scf" for database server configuration files.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 401

TDBISAMEngine.ServerConfigPassword Property

property ServerConfigPassword: String

Use the ServerConfigPassword property to specify the password used to encrypt the the configuration file
the database server uses for storing all configuration information when the EngineType property is set to
etServer. The default value is "elevatesoft". The name of the configuration file itself is specified in the
ServerConfigFileName property.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 402

TDBISAMEngine.ServerDescription Property

property ServerDescription: String

Use the ServerDescription property to specify the description of the database server when the EngineType
property is set to etServer. The default value is "DBISAM Database Server". This description is used to
describe the database server when a remote session asks for the description using the TDBISAMSession
GetRemoteServerDescription method.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 403

TDBISAMEngine.ServerEncryptedOnly Property

property ServerEncryptedOnly: Boolean

Use the ServerEncryptedOnly property to specify that the database server should only accept encrypted
regular data connections when the EngineType property is set to etServer. The default value is False,
however administrative connections to the database server are always required to be encrypted.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 404

TDBISAMEngine.ServerEncryptionPassword Property

property ServerEncryptionPassword: String

Use the ServerEncryptedPassword property to specify the password the database server should use for
communicating with encrypted administrative or regular data connnections when the EngineType property
is set to etServer. The default value is "elevatesoft". Administrative connections to the database server are
always required to be encrypted.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 405

TDBISAMEngine.ServerLicensedConnections Property

property ServerLicensedConnections: Word

Use the ServerLicensedConnections property to specify the maximum number of licensed connections
allowed for the database server.

Note
This property overrides any maximum connection settings that may already be present in the
database server configuration. Also, this property cannot be set while the engine is active and the
TDBISAMEngine Active property is True.

Component Reference

Page 406

TDBISAMEngine.ServerMainAddress Property

property ServerMainAddress: String

Use the ServerMainAddress property to specify the IP address that the database server should listen on for
regular data connections when the EngineType property is set to etServer. A blank value (the default)
indicates that the database server should listen on all available IP addresses from the operating system.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 407

TDBISAMEngine.ServerMainPort Property

property ServerMainPort: Integer

Use the ServerMainPort property to specify the port that the database server should listen on for regular
data connections when the EngineType property is set to etServer. The default value is 12005.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 408

TDBISAMEngine.ServerMainThreadCacheSize Property

property ServerMainThreadCacheSize: Integer

Use the ServerMainThreadCacheSize property to specify the total number of threads that should be cached
by the database server for regular data connections when the EngineType property is set to etServer. The
default value is 10. Caching threads helps improve connection times by eliminating the need to constantly
create and destroy threads as remote sessions connect to and disconnect from the database server.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 409

TDBISAMEngine.ServerName Property

property ServerName: String

Use the ServerName property to specify the name of the database server when the EngineType property is
set to etServer. The default value is "DBSRVR". This name is used when a remote session asks for it using
the TDBISAMSession GetRemoteServerName method.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 410

TDBISAMEngine.SessionCount Property

property SessionCount: Integer

Use the SessionCount property to determine how many sessions are currently in use in DBISAM.

Component Reference

Page 411

TDBISAMEngine.SessionList Property

property SessionList[const SessionName: String]: TDBISAMSession

Use the SessionList property to access a given TDBISAMSession component by name. The name of a
session is specified via the TDBISAMSession SessionName property.

Note
This property only applies when the EngineType property is set to etClient.

Component Reference

Page 412

TDBISAMEngine.Sessions Property

property Sessions[Index: Integer]: TDBISAMSession

Use the Sessions property to access a given TDBISAMSession component by index. The Index parameter
must be in the range of zero to the current value of the Count property minus one.

Note
This property only applies when the EngineType property is set to etClient.

Component Reference

Page 413

TDBISAMEngine.StoreActive Property

property StoreActive: Boolean

Use the StoreActive property to determine if the DBISAM engine should store the current value of its
Active property, and subsequently, the Active/Connected property values of all other DBISAM components
such as the TDBISAMDatabase, TDBISAMTable, and TDBISAMQuery components, in the owner form or
data module. The default value for this property is True.

Setting this property to False will ensure that you never run into the situation where the TDBISAMEngine
component's Active property is automatically set to True (its design-time state) when the owning
form/data module is created at runtime. This is a common problem when a developer is working with the
DBISAM components at design-time, and then compiles the application with one or more of the DBISAM
components' Active/Connected property set to True. The end result is usually many DBISAM runtime errors
caused by the fact that the DBISAM engine has not been configured for the target machine and operating
system, but rather is still configured for the developer's machine and operating system.

Component Reference

Page 414

TDBISAMEngine.TableBlobBackupExtension Property

property TableBlobBackupExtension: String

Use the TableBlobBackupExtension to specify the file extension used by the engine for backup copies of
the physical BLOB file that makes up part of a logical DBISAM table. Backup files are created when altering
the structure of a table or optimizing the table. The default value is ".bbk". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 415

TDBISAMEngine.TableBlobExtension Property

property TableBlobExtension: String

Use the TableBlobExtension to specify the file extension used by the engine for the physical BLOB file that
makes up part of a logical DBISAM table. The default value is ".blb". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 416

TDBISAMEngine.TableBlobTempExtension Property

property TableBlobTempExtension: String

Use the TableIndexTempExtension to specify the file extension used by the engine for the physical BLOB
file that makes up part of a logical DBISAM temporary table. Temporary tables are created when altering
the structure of a table, optimizing the table, or for canned SQL result sets. The default value is ".blb". Be
sure to always include the filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 417

TDBISAMEngine.TableBlobUpgradeExtension Property

property TableBlobUpgradeExtension: String

Use the TableBlobUpgradeExtension to specify the file extension used by the engine for backup copies of
the physical BLOB file that makes up part of a logical DBISAM table. Backup files that use this file
extensions are created specifically when upgrading a table from a prior version format to the latest table
format. The default value is ".bup". Be sure to always include the filename extension separator (.) when
specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 418

TDBISAMEngine.TableDataBackupExtension Property

property TableDataBackupExtension: String

Use the TableDataBackupExtension to specify the file extension used by the engine for backup copies of
the physical data file that makes up part of a logical DBISAM table. Backup files are created when altering
the structure of a table or optimizing the table. The default value is ".dbk". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 419

TDBISAMEngine.TableDataExtension Property

property TableDataExtension: String

Use the TableDataExtension to specify the file extension used by the engine for the physical data file that
makes up part of a logical DBISAM table. The default value is ".dat". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 420

TDBISAMEngine.TableDataTempExtension Property

property TableDataTempExtension: String

Use the TableIndexTempExtension to specify the file extension used by the engine for the physical data
file that makes up part of a logical DBISAM temporary table. Temporary tables are created when altering
the structure of a table, optimizing the table, or for canned SQL result sets. The default value is ".dat". Be
sure to always include the filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 421

TDBISAMEngine.TableDataUpgradeExtension Property

property TableDataUpgradeExtension: String

Use the TableDataUpgradeExtension to specify the file extension used by the engine for backup copies of
the physical data file that makes up part of a logical DBISAM table. Backup files that use this file
extensions are created specifically when upgrading a table from a prior version format to the latest table
format. The default value is ".dup". Be sure to always include the filename extension separator (.) when
specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 422

TDBISAMEngine.TableFilterIndexThreshhold Property

property TableFilterIndexThreshhold: Byte

This property should only be modified when instructed to do so by Elevate Software in order to help tune a
performance problem with filters or live queries.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 423

TDBISAMEngine.TableIndexBackupExtension Property

property TableIndexBackupExtension: String

Use the TableIndexBackupExtension to specify the file extension used by the engine for backup copies of
the physical index file that makes up part of a logical DBISAM table. Backup files are created when altering
the structure of a table or optimizing the table. The default value is ".ibk". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 424

TDBISAMEngine.TableIndexExtension Property

property TableIndexExtension: String

Use the TableIndexExtension to specify the file extension used by the engine for the physical index file
that makes up part of a logical DBISAM table. The default value is ".idx". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 425

TDBISAMEngine.TableIndexTempExtension Property

property TableIndexTempExtension: String

Use the TableIndexTempExtension to specify the file extension used by the engine for the physical index
file that makes up part of a logical DBISAM temporary table. Temporary tables are created when altering
the structure of a table, optimizing the table, or for canned SQL result sets. The default value is ".idx". Be
sure to always include the filename extension separator (.) when specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 426

TDBISAMEngine.TableIndexUpgradeExtension Property

property TableIndexUpgradeExtension: String

Use the TableIndexUpgradeExtension to specify the file extension used by the engine for backup copies of
the physical index file that makes up part of a logical DBISAM table. Backup files that use this file
extensions are created specifically when upgrading a table from a prior version format to the latest table
format. The default value is ".iup". Be sure to always include the filename extension separator (.) when
specifying the file extension.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 427

TDBISAMEngine.TableMaxReadLockCount Property

property TableMaxReadLockCount: Word

Use the TableMaxReadLockCount property to control the maximum number of read locks that DBISAM can
acquire during a table scan to satisfy an un-optimized filter or query condition. The default value is 100
locks, and the maximum value is 65535. Increasing this property will increase concurrency, but at the cost
of a decrease in performance. Decreasing this property will increase performance, but at the cost of a
decrease in concurrency.

Component Reference

Page 428

TDBISAMEngine.TableReadLockTimeout Property

property TableReadLockTimeout: Word

This property should only be modified when instructed to do so by Elevate Software in order to help with
locking issues in a particular environment.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 429

TDBISAMEngine.TableTransLockTimeout Property

property TableTransLockTimeout: Word

This property should only be modified when instructed to do so by Elevate Software in order to help with
locking issues in a particular environment.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 430

TDBISAMEngine.TableWriteLockTimeout Property

property TableWriteLockTimeout: Word

This property should only be modified when instructed to do so by Elevate Software in order to help with
locking issues in a particular environment.

Note
This property cannot be set while the engine is active and the TDBISAMEngine Active property is
True.

Component Reference

Page 431

TDBISAMEngine.AddServerDatabase Method

procedure AddServerDatabase(const DatabaseName: String; const
 DatabaseDescription: String; const ServerPath: String)

Call the AddServerDatabase method to add a new database to a database server. Use the DatabaseName
parameter to specify the new database name, the DatabaseDescription parameter to give it a description,
and the ServerPath parameter to specify the physical path to the tables, relative to the database server.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 432

TDBISAMEngine.AddServerDatabaseUser Method

procedure AddServerDatabaseUser(const DatabaseName: String;
 const AuthorizedUser: String; RightsToAssign: TDatabaseRights)

Call the AddServerDatabaseUser method to add rights for an existing user to an existing database on a
database server. Use the DatabaseName parameter to specify the existing database name, the
AuthorizedUser parameter to specify the existing user, and the RightsToAssign parameter to specify the
rights to give to the user for the database. You may use a wildcard (*) for the AuthorizedUser parameter.
For example, you could specify just "*" for all users or "Accounting*" for all users whose user name begins
with "Accounting".

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 433

TDBISAMEngine.AddServerEvent Method

procedure AddServerEvent(const EventName: String; const
 EventDescription: String; EventRunType: TEventRunType;
 EventStartDate: TDateTime; EventEndDate: TDateTime;
 EventStartTime: TDateTime; EventEndTime: TDateTime;
 EventInterval: Word; EventDays: TEventDays; EventDayOfMonth:
 TEventDayOfMonth; EventDayOfWeek: TEventDayOfWeek; EventMonths:
 TEventMonths)

Call the AddServerEvent method to add a new scheduled event to a database server. Use the EventName
parameter to specify the new event name, the EventDescription parameter to give it a description, the
EventRunType parameter to specify how the event should be run, the EventStartDate and EventEndDate
parameter to specify the dates during which the event should be run, the EventStartTime and
EventEndTime parameters to specify the time of day during which the event can be run, the EventInterval
to specify how often the event should be run (actual interval unit depends upon the EventRunType, and
the EventDays, EventDayOfMonth, EventDayOfWeek, and EventMonths parameters to specify on what day
of the week or month the event should be run. The following describes which parameters are required for
each possible EventRunType value (all run types require the EventStartDate, EventEndDate,
EventStartTime, and EventEndTime parameters):

Run Type Parameters Needed

rtOnce No Other Parameters

rtHourly EventInterval (Hours)

rtDaily EventInterval (Days)

rtWeekly EventInterval (Weeks)
EventDays

Note
The EventDays parameter specifies which days of the
week to run on, with day 1 being Sunday and day 7
being Saturday. Just set the array index of the desired
day to True to cause the event to run on that day.

rtMonthly EventDayOfMonth
EventDayOfWeek
EventMonths

Component Reference

Page 434

Note
The EventDayOfMonth parameter specifies which day
of the month to run on, a numbered day (1-31) or a
specific day (Sunday-Saturday) of the 1st, 2nd, 3rd, or
4th week specified by the EventDayOfWeekParameter.
The EventMonths parameter specifies which months of
the year to run on, with month 1 being January and
month 12 being December. Just set the array index of
the desired month to True to cause the event to run on
that month.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 435

TDBISAMEngine.AddServerProcedure Method

procedure AddServerProcedure(const ProcedureName: String; const
 ProcedureDescription: String)

Call the AddServerProcedure method to add a new server-side procedure to a database server. Use the
ProcedureName parameter to specify the new procedure name and the ProcedureDescription parameter to
give it a description. This method only identifies the procedure to the database server for the purposes of
allowing user rights to be assigned to the server-side procedure. The actual server-side procedure itself
must be implemented via a TDBISAMEngine OnServerProcedure event handler.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 436

TDBISAMEngine.AddServerProcedureUser Method

procedure AddServerProcedureUser(const ProcedureName: String;
 const AuthorizedUser: String; RightsToAssign: TProcedureRights)

Call the AddServerProcedureUser method to add rights for an existing user to an existing server-side
procedure on a database server. Use the ProcedureName parameter to specify the existing server-side
procedure name, the AuthorizedUser parameter to specify the existing user, and the RightsToAssign
parameter to specify the rights to give to the user for the procedure. You may use a wildcard (*) for the
AuthorizedUser parameter. For example, you could specify just "*" for all users or "Accounting*" for all
users whose user name begins with "Accounting".

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 437

TDBISAMEngine.AddServerUser Method

procedure AddServerUser(const UserName: String; const
 UserPassword: String; const UserDescription: String;
 IsAdministrator: Boolean=False; MaxConnections:
 Word=DEFAULT_MAX_USER_CONNECTIONS)

Call the AddServerUser method to add a new user to a database server. Use the UserName parameter to
specify the new user name, the UserPassword parameter to specify the user's password, the
UserDescription parameter to specify a description of the user, the IsAdministrator parameter to indicate
whether the new user is an administrator, and the MaxConnections property is used to specify how many
concurrent connections this user is allowed to have at any given time.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 438

TDBISAMEngine.AnsiStrToBoolean Method

function AnsiStrToBoolean(const Value: String): Boolean

Use the AnsiStrToBoolean method to convert a string that contains an ANSI-formatted boolean value to an
actual Boolean value. All SQL and filter expressions in DBISAM require ANSI-formatted boolean values,
which are TRUE and FALSE (case-insensitive).

Component Reference

Page 439

TDBISAMEngine.AnsiStrToCurr Method

function AnsiStrToCurr(const Value: String): Currency

Use the AnsiStrToCurr method to convert a string that contains an ANSI-formatted BCD value to an actual
Currency value. All SQL and filter expressions in DBISAM require ANSI-formatted BCD values, which use
the period (.) as the decimal separator.

Component Reference

Page 440

TDBISAMEngine.AnsiStrToDate Method

function AnsiStrToDate(const Value: String): TDateTime

Use the AnsiStrToDate method to convert a string that contains an ANSI-formatted date value to an actual
TDateTime value. All SQL and filter expressions in DBISAM require ANSI-formatted date values, which use
the 'yyyy-mm-dd' format.

Component Reference

Page 441

TDBISAMEngine.AnsiStrToDateTime Method

function AnsiStrToDateTime(const Value: String): TDateTime

Use the AnsiStrToDateTime method to convert a string that contains an ANSI-formatted timestamp value
to an actual TDateTime value. All SQL and filter expressions in DBISAM require ANSI-formatted timestamp
values, which use the 'yyyy-mm-dd hh:mm:ss.zzz am/pm' format.

Component Reference

Page 442

TDBISAMEngine.AnsiStrToFloat Method

function AnsiStrToFloat(const Value: String): Extended

Use the AnsiStrToFloat method to convert a string that contains an ANSI-formatted float value to an actual
Double value. All SQL and filter expressions in DBISAM require ANSI-formatted float values, which use the
period (.) as the decimal separator.

Component Reference

Page 443

TDBISAMEngine.AnsiStrToTime Method

function AnsiStrToTime(const Value: String): TDateTime

Use the AnsiStrToTime method to convert a string that contains an ANSI-formatted time value to an actual
TDateTime value. All SQL and filter expressions in DBISAM require ANSI-formatted time values, which use
the 'hh:mm:ss.zzz am/pm' format.

Component Reference

Page 444

TDBISAMEngine.BooleanToAnsiStr Method

function BooleanToAnsiStr(Value: Boolean): String

Use the BooleanToAnsiStr method to convert a Boolean value to an ANSI-formatted boolean value string.
All SQL and filter expressions in DBISAM require ANSI-formatted boolean values, which are TRUE and
FALSE (case-insensitive).

Component Reference

Page 445

TDBISAMEngine.BuildWordList Method

procedure BuildWordList(const TableName: String; const
 FieldName: String; WordBuffer: String; WordList:
 TDBISAMStringList; const SpaceChars: String; const IncludeChars:
 String; Occurrences: Boolean; PartialWords: Boolean)

Use the BuildWordList method to populate the WordList parameter with the word tokens that are parsed
from the WordBuffer string parameter passed to the method, using the SpaceChars and IncludeChars
parameters to control the parsing. The TableName and FieldName parameters specify which table and
field the WordBuffer string applies to. The reason for this information is that it is passed on to the
TDBISAMEngine OnTextIndexFilter and OnTextIndexTokenFilter events in order to give the event handlers
attached to these events the proper information about how to perform any custom filtering. The
Occurrences parameter is used to specify whether you wish to have the Objects property for each string
list item (search word) populated with the number of occurrences of that word or with the position of the
start of that word (0-based) in the WordBuffer parameter. You'll have to cast these integer values from
TObject values when accessing them via the Objects property. The PartialWords parameter is used to
specify whether partial words should be allowed and asterisks in words should be left intact even if they
are designated as a space character or not designated as an include character. This parameter is useful
when using the BuildWordList method for parsing a search string that includes wildcards.

Note
The WordList parameter is a special descendant of the TStringList object called TDBISAMStringList
for performing locale-specific sorting and searching of a string list. The TDBIAMStringList object
contains an additional LocaleID property that can be set to match the locale of the table being
searched. The WordList parameter is where the results of this procedure are stored, and this
parameter is cleared during the operation of the procedure.

Component Reference

Page 446

TDBISAMEngine.ConvertIDToLocaleConstant Method

function ConvertIDToLocaleConstant(LocaleID: Integer): String

Use the ConvertIDToLocaleConstant method to convert a locale ID, which is a 32-bit signed integer, to its
equivalent string name. Many SQL statements in DBISAM require the name of a locale as part of a LOCALE
clause, and this method allows one to easily generate dynamic SQL statements that require a LOCALE
clause.

Component Reference

Page 447

TDBISAMEngine.ConvertLocaleConstantToID Method

function ConvertLocaleConstantToID(const LocaleConstant:
 String): Integer

Use the ConvertLocaleConstantToConstant method to convert a locale name to its equivalent ID, which is
a 32-bit signed integer. Many SQL statements in DBISAM require the name of a locale as part of a LOCALE
clause, and this method can help convert a locale name back to its proper ID if one is parsing SQL
statements for application-specific purposes.

Component Reference

Page 448

TDBISAMEngine.Create Method

constructor Create(AOwner: TComponent)

Call the Create constructor to create an instance of the TDBISAMEngine component.

Component Reference

Page 449

TDBISAMEngine.CurrToAnsiStr Method

function CurrToAnsiStr(Value: Currency): String

Use the CurrToAnsiStr method to convert a Currency value to an ANSI-formatted BCD value string. All SQL
and filter expressions in DBISAM require ANSI-formatted BCD values, which use the period (.) as the
decimal separator.

Component Reference

Page 450

TDBISAMEngine.DateTimeToAnsiStr Method

function DateTimeToAnsiStr(Value: TDateTime; MilitaryTime:
 Boolean): String

Use the DateTimeToAnsiStr method to convert a TDateTime value to an ANSI-formatted timestamp value
string. All SQL and filter expressions in DBISAM require ANSI-formatted timestamp values, which use the
'yyyy-mm-dd hh:mm:ss.zzz am/pm' format.

Component Reference

Page 451

TDBISAMEngine.DateToAnsiStr Method

function DateToAnsiStr(Value: TDateTime): String

Use the DateToAnsiStr method to convert a TDateTime value to an ANSI-formatted date value string. All
SQL and filter expressions in DBISAM require ANSI-formatted date values, which use the 'yyyy-mm-dd'
format.

Component Reference

Page 452

TDBISAMEngine.DeleteServerDatabase Method

procedure DeleteServerDatabase(const DatabaseName: String)

Call the DeleteServerDatabase method to remove an existing database from a database server. Use the
DatabaseName parameter to specify the existing database name.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 453

TDBISAMEngine.DeleteServerDatabaseUser Method

procedure DeleteServerDatabaseUser(const DatabaseName: String;
 const AuthorizedUser: String)

Call the DeleteServerDatabaseUser method to remove rights for an existing user to an existing database
on a database server. Use the DatabaseName parameter to specify the existing database name and the
AuthorizedUser parameter to specify the existing user.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 454

TDBISAMEngine.DeleteServerEvent Method

procedure DeleteServerEvent(const EventName: String)

Call the DeleteServerEvent method to remove an existing scheduled event from a database server. Use the
EventName parameter to specify the existing scheduled event name.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 455

TDBISAMEngine.DeleteServerProcedure Method

procedure DeleteServerProcedure(const ProcedureName: String)

Call the DeleteServerProcedure method to remove an existing server-side procedure from a database
server. Use the ProcedureName parameter to specify the existing server-side procedure name.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 456

TDBISAMEngine.DeleteServerProcedureUser Method

procedure DeleteServerProcedureUser(const ProcedureName: String;
 const AuthorizedUser: String)

Call the DeleteServerProcedureUser method to remove rights for an existing user to an existing server-side
procedure on a database server. Use the ProcedureName parameter to specify the existing server-side
procedure name and the AuthorizedUser parameter to specify the existing user.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 457

TDBISAMEngine.DeleteServerUser Method

procedure DeleteServerUser(const UserName: String)

Call the DeleteServerUser method to remove an existing user from a database server. Use the UserName
parameter to specify the existing user name.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 458

TDBISAMEngine.DisconnectServerSession Method

function DisconnectServerSession(SessionID: Integer): Boolean

Call the DisconnectServerSession method to disconnect a specific session on a database server.
Disconnecting a session only terminates its connection, it does not remove the session completely from the
database server nor does it release any resources for the session other than the thread used for the
connection and the connection itself at the operating system level. Use the SessionID parameter to specify
the session ID to disconnect. You can get the session ID for a particular session by using the
GetServerSessionCount and the GetServerSessionInfo methods.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 459

TDBISAMEngine.FindSession Method

function FindSession(const SessionName: String): TDBISAMSession

Use the FindSession method to search the list of TDBISAMSession components for a specified session
name. SessionName specifies the session to search for.

FindSession compares the SessionName parameter to the SessionName property for each
TDBISAMSession component in the available list of sessions in the engine. If a match is found, FindSession
returns a reference to the applicable TDBISAMSession component. If an application passes an empty
string in the SessionName parameter, FindSession returns the default global TDBISAMSession, Session. If
a match is not found, FindSession returns nil.

Component Reference

Page 460

TDBISAMEngine.FloatToAnsiStr Method

function FloatToAnsiStr(Value: Extended): String

Use the FloatToAnsiStr method to convert a Double value to an ANSI-formatted float value string. All SQL
and filter expressions in DBISAM require ANSI-formatted float values, which use the period (.) as the
decimal separator.

Component Reference

Page 461

TDBISAMEngine.GetDefaultTextIndexParams Method

procedure GetDefaultTextIndexParams(StopWordsList: TStrings; var
 TextSpaceChars: String; var TextIncludeChars: String)

Use the GetDefaultTextIndexParams to retrieve the default full text indexing parameters. When this
method is done, the StopWordsList parameter will contains a list of the default stop words, the
TextSpaceChars parameter will contain all of the default space characters, and the TextIncludeChars
parameter will contains all of the default include characters.

Component Reference

Page 462

TDBISAMEngine.GetLocaleNames Method

procedure GetLocaleNames(List: TStrings)

Use the GetLocaleNames method to populate a list of all locale names and their IDs that are available
through the operating system. Use the Objects property of the string list parameter to access the 32-bit
integer ID of a given locale. However, you will have to cast it from a TObject to an integer first. Many SQL
statements in DBISAM require the name of a locale as part of a LOCALE clause, and this method can allow
the application to offer the user a choice of the desired locale.

Note
This method will only return one name, 'ANSI Standard', under Kylix and Linux since that is the only
locale available currently under Linux for DBISAM.

Component Reference

Page 463

TDBISAMEngine.GetServerConfig Method

procedure GetServerConfig(var DenyLogins: Boolean; var
 MaxConnections: Word; var ConnectTimeout: Word; var
 DeadSessionInterval: Word; var DeadSessionExpires: Word; var
 MaxDeadSessions: Word; var TempDirectory: String;
 AuthorizedAddresses: TStrings; BlockedAddresses: TStrings)

Call the GetServerConfig method to retrieve the current configuration settings for a database server.
Please see the ModifyServerConfig method for more information on the parameters returned from this
method.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer. Also, if the maximum number of connections returned via this method is lower than
what was attempted to be configured via the ModifyServerConfig method, the
ServerLicensedConnections property has caused it to be lowered.

Component Reference

Page 464

TDBISAMEngine.GetServerConnectedSessionCount Method

function GetServerConnectedSessionCount: Integer

Call the GetServerConnectedSessionCount method to retrieve the total number of connected sessions on a
database server. Sessions that are present on the server, but not connected, are not reported in this
figure. To get a total count of the number of sessions on the database server use the
GetServerSessionCount method instead.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 465

TDBISAMEngine.GetServerDatabase Method

procedure GetServerDatabase(const DatabaseName: String; var
 DatabaseDescription: String; var ServerPath: String)

Call the GetServerDatabase method to retrieve information about an existing database from a database
server. Use the DatabaseName parameter to specify the existing database name.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 466

TDBISAMEngine.GetServerDatabaseNames Method

procedure GetServerDatabaseNames(List: TStrings)

Call the GetServerDatabaseNames method to retrieve a list of databases defined on a database server.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 467

TDBISAMEngine.GetServerDatabaseUser Method

procedure GetServerDatabaseUser(const DatabaseName: String;
 const AuthorizedUser: String; var UserRights: TDatabaseRights)

Call the GetServerDatabaseUser method to retrieve the rights for an existing user to an existing database
on a database server. Use the DatabaseName parameter to specify the existing database name and the
AuthorizedUser parameter to specify the existing user.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 468

TDBISAMEngine.GetServerDatabaseUserNames Method

procedure GetServerDatabaseUserNames(const DatabaseName: String;
 List: TStrings)

Call the GetServerDatabaseUserNames method to retrieve a list of existing users defined with rights for an
existing database on a database server. Use the DatabaseName parameter to specify an existing database
from which to retrieve a list of users.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 469

TDBISAMEngine.GetServerEvent Method

procedure GetServerEvent(const EventName: String; var
 EventDescription: String; var EventRunType: TEventRunType; var
 EventStartDate: TDateTime; var EventEndDate: TDateTime; var
 EventStartTime: TDateTime; var EventEndTime: TDateTime; var
 EventInterval: Word; var EventDays: TEventDays; var
 EventDayOfMonth: TEventDayOfMonth; var EventDayOfWeek:
 TEventDayOfWeek; var EventMonths: TEventMonths; var
 EventLastRun: TDateTime)

Call the GetServerEvent method to retrieve information about an existing scheduled event from a database
server. Use the EventName parameter to specify the existing event name. Please see the AddServerEvent
method for more information on the parameters returned from this method. The EventLastRun parameter
specifies the last date and time that the event was successfully run.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 470

TDBISAMEngine.GetServerEventNames Method

procedure GetServerEventNames(List: TStrings)

Call the GetServerEventNames method to retrieve a list of scheduled events defined on a database server.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 471

TDBISAMEngine.GetServerLogCount Method

function GetServerLogCount: Integer

Call the GetServerLogCount method to retrieve the total count of log records available in the current log
on a database server.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 472

TDBISAMEngine.GetServerLogRecord Method

function GetServerLogRecord(Number: Integer): TLogRecord

Call the GetServerLogRecord method to retrieve the Nth log record from the current log on a database
server.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 473

TDBISAMEngine.GetServerMemoryUsage Method

function GetServerMemoryUsage: double

Call the GetServerMemoryUsage method to retrieve the total amount of memory (in megabytes) currently
allocated by a database server.

Note
This method has been deprecated and always returns 0 as of version 4.17 of DBISAM and the
introduction of the new memory manager used in the DBISAM database server. Please see the
Replacement Memory Manager topic for more information.

Component Reference

Page 474

TDBISAMEngine.GetServerProcedure Method

procedure GetServerProcedure(const ProcedureName: String; var
 ProcedureDescription: String)

Call the GetServerProcedure method to retrieve information about an existing server-side procedure from
a database server. Use the ProcedureName parameter to specify the existing server-side procedure name.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 475

TDBISAMEngine.GetServerProcedureNames Method

procedure GetServerProcedureNames(List: TStrings)

Call the GetServerProcedureNames method to retrieve a list of server-side procedures defined on a
database server.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 476

TDBISAMEngine.GetServerProcedureUser Method

procedure GetServerProcedureUser(const ProcedureName: String;
 const AuthorizedUser: String; var UserRights: TProcedureRights)

Call the GetServerProcedureUser method to retrieve the rights for an existing user to an existing server-
side procedure on a database server. Use the ProcedureName parameter to specify the existing server-
side procedure name and the AuthorizedUser parameter to specify the existing user.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 477

TDBISAMEngine.GetServerProcedureUserNames Method

procedure GetServerProcedureUserNames(const ProcedureName:
 String; List: TStrings)

Call the GetServerProcedureUserNames method to retrieve a list of existing users defined with rights for
an existing server-side procedure on a database server. Use the ProcedureName parameter to specify an
existing server-side procedure from which to retrieve a list of users.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 478

TDBISAMEngine.GetServerSessionCount Method

function GetServerSessionCount: Integer

Call the GetServerSessionCount method to retrieve the total number of sessions on a database server. To
get a total count of just the number of connected sessions on a database server use the
GetServerConnectedSessionCount method instead.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 479

TDBISAMEngine.GetServerSessionInfo Method

function GetServerSessionInfo(SessionNum: Integer; var
 SessionID: Integer; var CreatedOn: TDateTime; var
 LastConnectedOn: TDateTime; var UserName: String; var
 UserAddress: String; var Encrypted: Boolean; var
 LastUserAddress: String): Boolean

Call the GetServerSessionInfo method to retrieve session information for a specific session on a database
server. The SessionNum parameter indicates the session number for which to retrieve the session
information. This number represents the logical position of a given session in the list of sessions on a
database server, from 1 to the return value of the GetServerSessionCount method. The SessionID
parameter returns unique ID assigned to the session by the database server. The CreatedOn parameter
returns the date and time when the session was created on the database server. The LastConnectedOn
parameter returns the date and time when the session was last connected to the database server. The
UserName parameter returns the name of the user that created the session on the database server. The
UserAddress parameter returns the IP address of the user that created the session on the database server.
If the session is not currently connected, then this parameter will be blank. The Encrypted parameter
returns whether the session is encrypted or not. The LastUserAddress parameter returns the last known IP
address of the session, regardless of whether the session is connected or not. This parameter is useful for
determining the location of a workstation that still has an active session but has disconnected.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 480

TDBISAMEngine.GetServerUpTime Method

function GetServerUpTime: Int64

Call the GetServerUpTime method to retrieve the number of seconds that the database server has been
active and accepting new connections.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 481

TDBISAMEngine.GetServerUser Method

procedure GetServerUser(const UserName: String; var
 UserPassword: String; var UserDescription: String; var
 IsAdministrator: Boolean; var MaxConnections: Word)

Call the GetServerUser method to retrieve information about an existing user from a database server. Use
the UserName parameter to specify the existing user name.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 482

TDBISAMEngine.GetServerUserNames Method

procedure GetServerUserNames(List: TStrings)

Call the GetServerUserNames method to retrieve a list of users defined on a database server.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 483

TDBISAMEngine.GetServerUTCDateTime Method

function GetServerUTCDateTime: TDateTime

Call the GetServerUTCDateTime method to retrieve the universal coordinate date and time from a
database server. This is especially useful if you are accessing a database server in a different time zone
and wish to get the date and time in a standard format that doesn't need to take into account the local
server time offset.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 484

TDBISAMEngine.GetSessionNames Method

procedure GetSessionNames(List: TStrings)

Call the GetSessionNames method to populate a string list with the names of all available TDBISAMSession
components. The List parameter is a string list object, created and maintained by the application, into
which to store session names. The names returned by GetSessionNames correspond to the SessionName
properties of all available TDBISAMSession components.

Component Reference

Page 485

TDBISAMEngine.IsValidLocale Method

function IsValidLocale(LocaleID: Integer): Boolean

Use the IsValidLocale method to verify whether a specific locale ID, which is a 32-bit signed integer, is
valid and available through the operating system.

Note
This method will only consider one locale, 'ANSI Standard' (ID of 0), as valid under Kylix and Linux
since that is the only locale available currently under Linux for DBISAM.

Component Reference

Page 486

TDBISAMEngine.IsValidLocaleConstant Method

function IsValidLocaleConstant(const LocaleConstant: String):
 Boolean

Use the IsValidLocaleConstant method to verify whether a specific locale name is valid and available
through the operating system. Many SQL statements in DBISAM require the name of a locale as part of a
LOCALE clause, and this method can help verify a locale name prior to being used in a dynamic SQL
statement.

Note
This method will only consider one locale, 'ANSI Standard' (ID of 0), as valid under Kylix and Linux
since that is the only locale available currently under Linux for DBISAM.

Component Reference

Page 487

TDBISAMEngine.ModifyServerConfig Method

procedure ModifyServerConfig(DenyLogins: Boolean;
 MaxConnections: Word; ConnectTimeout: Word; DeadSessionInterval:
 Word; DeadSessionExpires: Word; MaxDeadSessions: Word; const
 TempDirectory: String; AuthorizedAddresses: TStrings;
 BlockedAddresses: TStrings)

Call the ModifyServerConfig method to modify the current configuration settings for a database server.
The DenyLogins parameter indicates whether any new logins are denied on the database server. The
MaxConnections parameter indicates the maximum allowable number of connected sessions (not total
sessions) on the database server. The ConnectTimeout parameter indicates how long a session is allowed
to remain idle before the session is disconnected automatically by the database server. The
DeadSessionInterval parameter indicates how often the database server should check for dead sessions
(sessions that have been disconnected for DeadSessionExpires seconds). The DeadSessionExpires
parameter indicates when a disconnected session is considered "dead" based upon the number of seconds
since it was last connected. Specifying 0 for this parameter will cause the database server to never
consider disconnected sessions as dead and instead will keep them around based upon the
MaxDeadSessions parameter alone. The MaxDeadSessions parameter indicates how many dead sessions
are allowed on the database server before the database server will start removing dead sessions in oldest-
first order. The TempDirectory parameter indicates where temporary tables are stored relative to the
database server. This setting is global for all users. The AuthorizedAddresses and BlockedAddresses
parameters are lists of IP addresses that specify which IP addresses are allowed or blocked from accessing
the database server. Both of these accept the use of a leading * wildcard when specifying IP addresses.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 488

TDBISAMEngine.ModifyServerDatabase Method

procedure ModifyServerDatabase(const DatabaseName: String; const
 DatabaseDescription: String; const ServerPath: String)

Call the ModifyServerDatabase method to modify information about an existing database on a database
server. Use the DatabaseName parameter to specify the existing database.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 489

TDBISAMEngine.ModifyServerDatabaseUser Method

procedure ModifyServerDatabaseUser(const DatabaseName: String;
 const AuthorizedUser: String; RightsToAssign: TDatabaseRights)

Call the ModifyServerDatabaseUser method to modify the rights for an existing user to an existing
database on a database server. Use the DatabaseName parameter to specify the existing database name
and the AuthorizedUser parameter to specify the existing user. You may use a wildcard (*) for the
AuthorizedUser parameter , such as specifying just '*' for all users or 'Accounting*' for all users whose user
name begins with 'Accounting'.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 490

TDBISAMEngine.ModifyServerEvent Method

procedure ModifyServerEvent(const EventName: String; const
 EventDescription: String; EventRunType: TEventRunType;
 EventStartDate: TDateTime; EventEndDate: TDateTime;
 EventStartTime: TDateTime; EventEndTime: TDateTime;
 EventInterval: Word; EventDays: TEventDays; EventDayOfMonth:
 TEventDayOfMonth; EventDayOfWeek: TEventDayOfWeek; EventMonths:
 TEventMonths)

Call the ModifyServerEvent method to modify information about an existing scheduled event on a database
server. Use the EventName parameter to specify the existing event name. Please see the AddServerEvent
method for more information on the parameters returned from this method.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 491

TDBISAMEngine.ModifyServerProcedure Method

procedure ModifyServerProcedure(const ProcedureName: String;
 const ProcedureDescription: String)

Call the ModifyServerProcedure method to modify information about an existing server-side procedure on
a database server. Use the ProcedureName parameter to specify the existing server-side procedure.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 492

TDBISAMEngine.ModifyServerProcedureUser Method

procedure ModifyServerProcedureUser(const ProcedureName: String;
 const AuthorizedUser: String; RightsToAssign: TProcedureRights)

Call the ModifyServerProcedureUser method to modify the rights for an existing user to an existing server-
side procedure on a database server. Use the ProcedureName parameter to specify the existing server-
side procedure name and the AuthorizedUser parameter to specify the existing user. You may use a
wildcard (*) for the AuthorizedUser parameter , such as specifying just '*' for all users or 'Accounting*' for
all users whose user name begins with 'Accounting'.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 493

TDBISAMEngine.ModifyServerUser Method

procedure ModifyServerUser(const UserName: String; const
 UserPassword: String; const UserDescription: String;
 IsAdministrator: Boolean=False; MaxConnections:
 Word=DEFAULT_MAX_USER_CONNECTIONS)

Call the ModifyServerUser method to modify information about an existing user on a database server. Use
the UserName parameter to specify the existing user.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 494

TDBISAMEngine.ModifyServerUserPassword Method

procedure ModifyServerUserPassword(const UserName: String; const
 UserPassword: String)

Call the ModifyServerUserPassword method to modify the password for the current user logged in to the
database server. Use the UserName parameter to specify the current user name. This method is only valid
for changing the password for the current user.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 495

TDBISAMEngine.OpenSession Method

function OpenSession(const SessionName: String): TDBISAMSession

Call the OpenSession method to make an existing TDBISAMSession component active, or to create a new
TDBISAMSession component and make it active. SessionName specifies the name of the session to open.

OpenSession calls the TDBISAMEngine FindSession method to see if the TDBISAMSession component
specified in the SessionName parameter already exists. If it finds a match via the SessionName property of
an existing TDBISAMSession component, it starts that session if necessary, and makes the session active.
If OpenSession does not find an existing TDBISAMSession component with that name, it creates a new
TDBISAMSession component using the name specified in the SessionName parameter, starts the session,
and makes it active.

In either case, OpenSession returns the TDBISAMSession component.

Component Reference

Page 496

TDBISAMEngine.QuotedSQLStr Method

function QuotedSQLStr(const Value: String): String

Call the QuotedSQLStr method to format a string constant so that it can properly used as a literal constant
in an SQL statement. This method converts escapes all single quotes and converts all characters less than
#32 (space) into the #<ASCII value> syntax.

Component Reference

Page 497

TDBISAMEngine.RemoveServerSession Method

function RemoveServerSession(SessionID: Integer): Boolean

Call the RemoveServerSession method to completely remove a specific session on a database server.
Removing a session not only terminates its connection, but it also removes the session completely and
releases any resources for the session including the thread used for the connection and the connection
itself at the operating system level. Use the SessionID parameter to specify the session ID to disconnect.
You can get the session ID for a particular session by using the GetServerSessionCount and the
GetServerSessionInfo methods.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer.

Component Reference

Page 498

TDBISAMEngine.StartAdminServer Method

procedure StartAdminServer

Call the StartAdminServer method to cause the database server to start accepting administrative
connections from remote sessions. You may call the StartAdminServer or StopAdminServer methods
without removing existing administrative sessions. When stopping the administrative server, however, all
administrative sessions will be automatically disconnected.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer. Also, this method is implicitly called when the Active is set to True.

Component Reference

Page 499

TDBISAMEngine.StartMainServer Method

procedure StartMainServer

Call the StartMainServer method to cause the database server to start accepting regular data connections
from remote sessions. You may call the StartMainServer or StopMainServer methods without removing
existing sessions. When stopping the server, however, all sessions will be automatically disconnected.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer. Also, this method is implicitly called when the Active is set to True.

Component Reference

Page 500

TDBISAMEngine.StopAdminServer Method

procedure StopAdminServer

Call the StopAdminServer method to cause the database server to stop accepting administrative
connections from remote sessions. You may call the StartAdminServer or StopAdminServer methods
without removing existing administrative sessions. When stopping the administrative server, however, all
administrative sessions will be automatically disconnected.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer. Also, this method is implicitly called when the Active is set to False.

Component Reference

Page 501

TDBISAMEngine.StopMainServer Method

procedure StopMainServer

Call the StopMainServer method to cause the database server to stop accepting regular data connections
from remote sessions. You may call the StartMainServer or StopMainServer methods without removing
existing sessions. When stopping the server, however, all sessions will be automatically disconnected.

Note
This method is only valid when the engine is running as a database server and the EngineType is
set to etServer. Also, this method is implicitly called when the Active is set to False.

Component Reference

Page 502

TDBISAMEngine.TimeToAnsiStr Method

function TimeToAnsiStr(Value: TDateTime; MilitaryTime: Boolean):
 String

Use the TimeToAnsiStr method to convert a TDateTime value to an ANSI-formatted time value string. All
SQL and filter expressions in DBISAM require ANSI-formatted time values, which use the 'hh:mm:ss.zzz
am/pm' format.

Component Reference

Page 503

TDBISAMEngine.AfterDeleteTrigger Event

property AfterDeleteTrigger: TTriggerEvent

The AfterDeleteTrigger event is fired after the engine has deleted a record in a table. Assigning an event
handler to this event allows you to perform processing after the deletion of any record in any table.

Note
You cannot modify the contents of the CurrentRecord parameter in this event. Also, this event is not
triggered during any system processing such as Creating and Altering Tables or Optimizing Tables.

Component Reference

Page 504

TDBISAMEngine.AfterInsertTrigger Event

property AfterInsertTrigger: TTriggerEvent

The AfterInsertTrigger event is fired after the engine has inserted a record in a table. Assigning an event
handler to this event allows you to perform processing after the insertion of any record in any table.

Note
You cannot modify the contents of the CurrentRecord parameter in this event. Also, this event is not
triggered during any system processing such as Creating and Altering Tables or Optimizing Tables.

Component Reference

Page 505

TDBISAMEngine.AfterUpdateTrigger Event

property AfterUpdateTrigger: TTriggerEvent

The AfterUpdateTrigger event is fired after the engine has updated a record in a table. Assigning an event
handler to this event allows you to perform processing after the update of any record in any table.

Note
You cannot modify the contents of the CurrentRecord parameter in this event. Also, this event is not
triggered during any system processing such as Creating and Altering Tables or Optimizing Tables.

Component Reference

Page 506

TDBISAMEngine.BeforeDeleteTrigger Event

property BeforeDeleteTrigger: TTriggerEvent

The BeforeDeleteTrigger event is fired before the engine deletes a record in a table. Assigning an event
handler to this event allows you to perform processing before the deletion of any record in any table.

Note
You cannot modify the contents of the CurrentRecord parameter in this event. Also, this event is not
triggered during any system processing such as Creating and Altering Tables or Optimizing Tables.

Component Reference

Page 507

TDBISAMEngine.BeforeInsertTrigger Event

property BeforeInsertTrigger: TTriggerEvent

The BeforeInsertTrigger event is fired before the engine inserts a record in a table. Assigning an event
handler to this event allows you to perform processing before the insertion of any record in any table,
including modifying the contents of any field in the CurrentRecord parameter.

Note
This event is not triggered during any system processing such as Creating and Altering Tables or
Optimizing Tables.

Component Reference

Page 508

TDBISAMEngine.BeforeUpdateTrigger Event

property BeforeUpdateTrigger: TTriggerEvent

The BeforeUpdateTrigger event is fired before the engine updates a record in a table. Assigning an event
handler to this event allows you to perform processing before the update of any record in any table,
including modifying the contents of any field in the CurrentRecord parameter.

Note
This event is not triggered during any system processing such as Creating and Altering Tables or
Optimizing Tables.

Component Reference

Page 509

TDBISAMEngine.CommitTrigger Event

property CommitTrigger: TEndTransactionTriggerEvent

The CommitTrigger event is fired after the engine has committed a transaction for a database. Assigning
an event handler to this event allows you to perform processing after the transaction commit.

Component Reference

Page 510

TDBISAMEngine.OnCompress Event

property OnCompress: TCompressEvent

The OnCompress event is fired when the engine needs to compress a buffer. Please see the Compression
topic for more information on the default compression in DBISAM.

Note
If you assign an event handler to this event to override the default compression, you should make
sure that you also assign an event handler to the OnDecompress event. Failure to do so can cause
serious problems such as access violations.

Component Reference

Page 511

TDBISAMEngine.OnCryptoInit Event

property OnCryptoInit: TCryptoInitEvent

The OnCryptoInit event is fired when the engine needs to initialize the block ciper data for a specified key.
Please see the Encryption topic for more information on the default block cipher encryption in DBISAM.

Note
If you assign an event handler to this event to override the default encryption initialization, you
should make sure that you also assign an event handler to the OnCryptoReset, OnEncryptBlock,
OnDecryptBlock events. Failure to do so can cause serious problems such as access violations.

Component Reference

Page 512

TDBISAMEngine.OnCryptoReset Event

property OnCryptoReset: TCryptoResetEvent

The OnCryptoReset event is fired when the engine needs to reset the block ciper data after encrypting a
buffer. Please see the Encryption topic for more information on the default block cipher encryption in
DBISAM.

Note
If you assign an event handler to this event to override the default encryption reset, you should
make sure that you also assign an event handler to the OnCryptoInit, OnEncryptBlock,
OnDecryptBlock events. Failure to do so can cause serious problems such as access violations.

Component Reference

Page 513

TDBISAMEngine.OnCustomFunction Event

property OnCustomFunction: TCustomFunctionEvent

The OnCustomFunction event is fired when the engine has encountered a function name that it does not
recognize as a standard function in a filter expression or SQL statement. Assigning an event handler to this
event allows for the implementation of custom functions that can be used in filter expressions or SQL
statements.

Note
If an event handler is not assigned to this event or the event handler doesn't assign a value to the
Result variant parameter, DBISAM will treat the function as if it returned a NULL.

Component Reference

Page 514

TDBISAMEngine.OnDecompress Event

property OnDecompress: TDecompressEvent

The OnDecompress event is fired when the engine needs to decompress a buffer previously compressed
using an OnCompress event handler. Please see the Compression topic for more information on the
default compression in DBISAM.

Note
If you assign an event handler to this event to override the default decompression, you should
make sure that you also assign an event handler to the OnCompress event. Failure to do so can
cause serious problems such as access violations.

Component Reference

Page 515

TDBISAMEngine.OnDecryptBlock Event

property OnDecryptBlock: TDecryptBlockEvent

The OnDecryptBlock event is fired when the engine needs to decrypt an 8-byte block of data. Please see
the Encryption topic for more information on the default block cipher encryption in DBISAM.

Note
If you assign an event handler to this event to override the default block decryption, you should
make sure that you also assign an event handler to the OnCryptoInit, OnCryptoReset, and
OnEncryptBlock events. Failure to do so can cause serious problems such as access violations.

Component Reference

Page 516

TDBISAMEngine.OnDeleteError Event

property OnDeleteError: TErrorEvent

The OnDeleteError event is fired whenever the engine encounters an error during the deletion of a record
in a table. Assigning an event handler to this event allows you to retry, abort, or fail any delete operation
on any record in any table.

Note
You cannot modify the contents of the CurrentRecord parameter in this event. Also, this event is not
triggered during any system processing such as Creating and Altering Tables or Optimizing Tables.

Component Reference

Page 517

TDBISAMEngine.OnEncryptBlock Event

property OnEncryptBlock: TEncryptBlockEvent

The OnEncryptBlock event is fired when the engine needs to encrypt an 8-byte block of data. Please see
the Encryption topic for more information on the default block cipher encryption in DBISAM.

Note
If you assign an event handler to this event to override the default block encryption, you should
make sure that you also assign an event handler to the OnCryptoInit, OnCryptoReset, and
OnDecryptBlock events. Failure to do so can cause serious problems such as access violations.

Component Reference

Page 518

TDBISAMEngine.OnInsertError Event

property OnInsertError: TErrorEvent

The OnInsertError event is fired whenever the engine encounters an error during the insertion of a record
in a table. Assigning an event handler to this event allows you to retry, abort, or fail any insert operation
on any record in any table.

Note
You cannot modify the contents of the CurrentRecord parameter in this event. Also, this event is not
triggered during any system processing such as Creating and Altering Tables or Optimizing Tables.

Component Reference

Page 519

TDBISAMEngine.OnServerConnect Event

property OnServerConnect: TServerConnectEvent

The OnServerConnect event is fired when the EngineType property is set to etServer and the database
server has accepted a connection from a remote session. The UserData variable parameter allows the
association of a user-defined object, such as a TListItem object in a TListView component, with the session
until it is removed on the database server.

Component Reference

Page 520

TDBISAMEngine.OnServerDisconnect Event

property OnServerDisconnect: TServerDisconnectEvent

The OnServerDisconnect event is fired when the EngineType property is set to etServer and a remote
session disconnects from the database server. The UserData parameter is the same object reference that
was originally assigned to the connection in an OnServerConnect event handler.

Component Reference

Page 521

TDBISAMEngine.OnServerLogCount Event

property OnServerLogCount: TServerLogCountEvent

The OnServerLogCount event is fired when the EngineType property is set to etServer and the database
server needs to retrieve the total number of logs in the database server log. Log records are added to the
database server log via an OnServerLogEvent event handler.

Component Reference

Page 522

TDBISAMEngine.OnServerLogEvent Event

property OnServerLogEvent: TServerLogEvent

The OnServerLogEvent event is fired when the EngineType property is set to etServer and the database
server needs to log an event that has occurred. An event can be anything from a remote session
connection being initiated or destroyed to a general or severe error with the database server.

Component Reference

Page 523

TDBISAMEngine.OnServerLogin Event

property OnServerLogin: TServerLoginEvent

The OnServerLogin event is fired when the EngineType property is set to etServer and a remote session
logs in to the database server. The UserData parameter is the same object reference that was originally
assigned to the connection in an OnServerConnect event handler.

Component Reference

Page 524

TDBISAMEngine.OnServerLogout Event

property OnServerLogout: TServerLogoutEvent

The OnServerLogout event is fired when the EngineType property is set to etServer and a remote session
logs out from the database server. The UserData parameter is the same object reference that was
originally assigned to the connection in an OnServerConnect event handler.

Component Reference

Page 525

TDBISAMEngine.OnServerLogRecord Event

property OnServerLogRecord: TServerLogRecordEvent

The OnServerLogRecord event is fired when the EngineType property is set to etServer and the database
server needs to retrieve specific log record in the database server log. Log records are added to the
database server log via an OnServerLogEvent event handler.

Component Reference

Page 526

TDBISAMEngine.OnServerProcedure Event

property OnServerProcedure: TServerProcedureEvent

The OnServerProcedure event is fired when the EngineType property is set to etServer and a remote
session calls a server-side procedure. Assigning an event handler to this event allows for the
implementation of server-side procedures that can be called by remote sessions to perform any kind of
server-side processing.

Note
If an event handler is not assigned to this event or the event handler doesn't modify the parameters
passed to the server-side procedure, DBISAM will return the same parameters passed to the server-
side procedure back to the remote session.

Component Reference

Page 527

TDBISAMEngine.OnServerReconnect Event

property OnServerReconnect: TServerReconnectEvent

The OnServerReconnect event is fired when the EngineType property is set to etServer and a remote
session reconnects to the database server. The UserData parameter is the same object reference that was
originally assigned to the connection in an OnServerConnect event handler.

Component Reference

Page 528

TDBISAMEngine.OnServerScheduledEvent Event

property OnServerScheduledEvent: TServerScheduledEvent

The OnServerScheduledEvent event is fired when the EngineType property is set to etServer and a
scheduled event is launched by the database server. Assigning an event handler to this event allows for
the implementation of scheduled events like online backups on the database server.

Note
If an event handler is not assigned to this event or the event handler doesn't set the Completed
variable parameter to True, DBISAM will keep attempting to launch the scheduled event until the
Completed variable parameter is set to True or the time period configured for the scheduled event
elapses.

Component Reference

Page 529

TDBISAMEngine.OnServerStart Event

property OnServerStart: TNotifyEvent

The OnServerStart event is fired when the EngineType property is set to etServer the database server is
started by setting the Active property to True.

Component Reference

Page 530

TDBISAMEngine.OnServerStop Event

property OnServerStop: TNotifyEvent

The OnServerStop event is fired when the EngineType property is set to etServer the database server is
stopped by setting the Active property to False.

Component Reference

Page 531

TDBISAMEngine.OnShutdown Event

property OnShutdown: TNotifyEvent

The OnShutdown event is fired when the DBISAM engine is shut down. Assign an event handler to the
OnShutdown event to take specific actions when an application deactivates the engine. The engine is
deactivated by setting its Active property to False.

Note
You should not toggle the Active property from within this event handler. Doing so can cause
infinite recursion.

Component Reference

Page 532

TDBISAMEngine.OnStartup Event

property OnStartup: TNotifyEvent

The OnStartup event is fired when the DBISAM engine is started. Assign an event handler to the
OnStartup event to take specific actions when an application activates the engine. The engine is activated
by setting its Active property to True or by opening or activating a TDBISAMSession, TDBISAMDatabase,
TDBISAMQuery, or TDBISAMTable component.

Note
You should not toggle the Active property from within this event handler. Doing so can cause
infinite recursion.

Component Reference

Page 533

TDBISAMEngine.OnTextIndexFilter Event

property OnTextIndexFilter: TTextIndexFilterEvent

The OnTextIndexFilter event is fired when the engine needs to parse a string or memo field into the
appropriate words for use in full text indexing. Assigning an event handler to this event allows you to
modify the string or memo field prior to the parsing taking place. This is useful when the text being
indexed is in a document format like HTML or RTF and it needs to be stripped of any control or formatting
codes before it can be indexed properly.

Component Reference

Page 534

TDBISAMEngine.OnTextIndexTokenFilter Event

property OnTextIndexTokenFilter: TTextIndexTokenFilterEvent

The OnTextIndexTokenFilter event is fired after the engine has parsed a string or memo field into words
for full text indexing but before it actually performs the indexing. Assigning an event handler to this event
allows you to filter out any undesired words before they are added to the full text index.

Component Reference

Page 535

TDBISAMEngine.OnUpdateError Event

property OnUpdateError: TErrorEvent

The OnUpdateError event is fired whenever the engine encounters an error during the update of a record
in a table. Assigning an event handler to this event allows you to retry, abort, or fail any update operation
on any record in any table.

Note
You cannot modify the contents of the CurrentRecord parameter in this event. Also, this event is not
triggered during any system processing such as Creating and Altering Tables or Optimizing Tables.

Component Reference

Page 536

TDBISAMEngine.RecordLockTrigger Event

property RecordLockTrigger: TRecordLockTriggerEvent

The RecordLockTrigger event is fired after the engine has locked a record in a table. Assigning an event
handler to this event allows you to perform processing after the record is locked.

Component Reference

Page 537

TDBISAMEngine.RecordUnlockTrigger Event

property RecordUnlockTrigger: TRecordLockTriggerEvent

The RecordUnlockTrigger event is fired after the engine has unlocked a record in a table. Assigning an
event handler to this event allows you to perform processing after the record is unlocked.

Component Reference

Page 538

TDBISAMEngine.RollbackTrigger Event

property RollbackTrigger: TEndTransactionTriggerEvent

The RollbackTrigger event is fired after the engine has rolled back a transaction for a database. Assigning
an event handler to this event allows you to perform processing after the transaction rollback.

Component Reference

Page 539

TDBISAMEngine.SQLTrigger Event

property SQLTrigger: TSQLTriggerEvent

The SQLTrigger event is fired after the engine has executed an SQL statement for a database. Assigning
an event handler to this event allows you to perform processing after the SQL execution, such as logging
the SQL that was executed.

Component Reference

Page 540

TDBISAMEngine.StartTransactionTrigger Event

property StartTransactionTrigger: TStartTransactionTriggerEvent

The StartTransactionTrigger event is fired after the engine has started a transaction for a database.
Assigning an event handler to this event allows you to perform processing after the transaction start.

Component Reference

Page 541

5.9 TDBISAMFieldDef Component

Unit: dbisamtb

Inherits From TNamedItem

Use the TDBISAMFieldDef object to access a field definition for a table when reading the structure
information for a table or to define a field definition for a table when creating or altering the structure of a
table using the TDBISAMTable CreateTable or AlterTable method.

Properties Methods Events

Attributes Assign

CharCase AssignTo

Compression Create

DataType CreateField

DefaultValue

Description

FieldClass

FieldNo

MaxValue

MinValue

Required

Size

Component Reference

Page 542

TDBISAMFieldDef.Attributes Property

property Attributes: TFieldAttributes

Use the Attributes property to access or define the attributes for the field definition.

Component Reference

Page 543

TDBISAMFieldDef.CharCase Property

property CharCase: TFieldCharCase

Use the CharCase property to access or define the character-casing for the field definition.

Component Reference

Page 544

TDBISAMFieldDef.Compression Property

property Compression: Byte

Use the Compression property to access or define the compression for the field definition. The
compression is specified as a Byte value between 0 and 9, with the default being 0, or none, and 6 being
the best selection for size/speed. The default compression is ZLib, but can be replaced by using the
TDBISAMEngine events for specifying a different type of compression. Please see the Compression and
Customizing the Engine topics for more information.

Component Reference

Page 545

TDBISAMFieldDef.DataType Property

property DataType: TFieldType

Use the DataType property to access or define the data type for the field definition.

Component Reference

Page 546

TDBISAMFieldDef.DefaultValue Property

property DefaultValue: String

Use the DefaultValue property to access or define the default value for the field definition. The expression
used for the default value must be a simple literal constant or one of the following SQL functions:

 CURRENT_DATE
 CURRENT_TIME
 CURRENT_TIMESTAMP
 CURRENT_GUID

Component Reference

Page 547

TDBISAMFieldDef.Description Property

property Description: String

Use the Description property to access or define the description for the field definition.

Component Reference

Page 548

TDBISAMFieldDef.FieldClass Property

property FieldClass: TFieldClass

This property is used internally by DBISAM for creating TField compoonents from a TDBISAMFieldDef
object.

Component Reference

Page 549

TDBISAMFieldDef.FieldNo Property

property FieldNo: Integer

Use the DefaultValue property to access or define the field number for the field definition.

Note
The field number should only be specifically defined when altering the structure of a table using the
TDBISAMTable AlterTable method.

Component Reference

Page 550

TDBISAMFieldDef.MaxValue Property

property MaxValue: String

Use the MaxValue property to access or define the maximum value for the field definition. The expression
used for the default value must be a simple literal constant or one of the following SQL functions:

 CURRENT_DATE
 CURRENT_TIME
 CURRENT_TIMESTAMP
 CURRENT_GUID

Component Reference

Page 551

TDBISAMFieldDef.MinValue Property

property MinValue: String

Use the MinValue property to access or define the minimum value for the field definition. The expression
used for the default value must be a simple literal constant or one of the following SQL functions:

 CURRENT_DATE
 CURRENT_TIME
 CURRENT_TIMESTAMP
 CURRENT_GUID

Component Reference

Page 552

TDBISAMFieldDef.Required Property

property Required: Boolean

Use the Required property to access or define whether the field should be required in the field definition.

Component Reference

Page 553

TDBISAMFieldDef.Size Property

property Size: Integer

Use the Size property to access or define the size for the field definition. Only field definitions set to use
the following data types should have their Size property set:

 ftString
 ftFixedChar
 ftGuid
 ftBytes
 ftVarBytes
 ftBCD

Note
Field definitions set to use the ftBCD type use the Size property to determine the maximum number
of decimal places to use for the field definition. DBISAM allows a maximum of 4 decimal places for
BCD fields.

Component Reference

Page 554

TDBISAMFieldDef.Assign Method

procedure Assign(Source: TPersistent)

Call the Assign method to assign another TDBISAMFieldDef or TFieldDef object to the current
TDBISAMFieldDef object. The TDBISAMFieldDef object is assignment-compatible with the TFieldDef object.

Component Reference

Page 555

TDBISAMFieldDef.AssignTo Method

procedure AssignTo(Dest: TPersistent)

Call the AssignTo method to assign the current TDBISAMFieldDef object to another TDBISAMFieldDef or
TFieldDef object. The TDBISAMFieldDef object is assignment-compatible with the TFieldDef object.

Component Reference

Page 556

TDBISAMFieldDef.Create Method

constructor Create(Owner: TDBISAMFieldDefs; const Name: String;
 DataType: TFieldType; Size: Integer; Required: Boolean; const
 DefaultValue: String; const MinValue: String; const MaxValue:
 String; const Description: String; CharCase: TFieldCharCase;
 Compression: Byte; FieldNo: Integer)

Call the Create constructor to create an instance of a TDBISAMFieldDef object. However, you should never
need to create an instance of the TDBISAMFieldDef object since one is automatically created when using
the various methods of the TDBISAMFieldDefs object.

Component Reference

Page 557

TDBISAMFieldDef.CreateField Method

function CreateField(Owner: TComponent; ParentField:
 TObjectField=nil; const FieldName: String=''; CreateChildren:
 Boolean=True): TField

Call the CreateField method to create an appropriate TField descendant component for the current field
definition.

The only necessary parameter to this method is the Owner parameter, which is usually the form or data
module that is creating the field components. The rest of the parameters can be left as the default values.

Component Reference

Page 558

5.10 TDBISAMFieldDefs Component

Unit: dbisamtb

Inherits From TDefCollection

Use the TDBISAMFieldDefs object to access the field definitions for a table when reading the structure
information for a table or to define the field definitions for a table when creating or altering the structure
of a table using the TDBISAMTable CreateTable or AlterTable method.

Properties Methods Events

Items Add

AddFieldDef

Insert

InsertFieldDef

Update

Component Reference

Page 559

TDBISAMFieldDefs.Items Property

property Items[Index: Integer]: TDBISAMFieldDef

Use the Items property to access a specific field definition. The Index is an integer identifying the field
definition's position in the list of field definitions, in the range of 0 to the value of the Count property
minus 1.

Component Reference

Page 560

TDBISAMFieldDefs.Add Method

procedure Add(const Name: String; DataType: TFieldType; Size:
 Integer=0; Required: Boolean=False; const DefaultValue:
 String=''; const MinValue: String=''; const MaxValue: String='';
 const Description: String=''; CharCase:
 TFieldCharCase=fcNoChange; Compression: Byte=NO_COMPRESSION)

procedure Add(FieldNo: Integer; const Name: String; DataType:
 TFieldType; Size: Integer=0; Required: Boolean=False; const
 DefaultValue: String=''; const MinValue: String=''; const
 MaxValue: String=''; const Description: String=''; CharCase:
 TFieldCharCase=fcNoChange; Compression: Byte=NO_COMPRESSION)

Call the Add method to add a new field definition object to the list of field definitions for the table. Please
see the TDBISAMFieldDef object for more information on each parameter to this method.

Component Reference

Page 561

TDBISAMFieldDefs.AddFieldDef Method

function AddFieldDef: TDBISAMFieldDef

Call the AddFieldDef method to add an empty TDBISAMFieldDef field definition object to the list of field
definitions. You can then use the individual properties of the TDBISAMFieldDef object that is returned to
define the properties of the field.

Component Reference

Page 562

TDBISAMFieldDefs.Insert Method

procedure Insert(InsertPos: Integer; const Name: String;
 DataType: TFieldType; Size: Integer=0; Required: Boolean=False;
 const DefaultValue: String=''; const MinValue: String=''; const
 MaxValue: String=''; const Description: String=''; CharCase:
 TFieldCharCase=fcNoChange; Compression: Byte=NO_COMPRESSION)

procedure Insert(InsertPos: Integer; FieldNo: Integer; const
 Name: String; DataType: TFieldType; Size: Integer=0; Required:
 Boolean=False; const DefaultValue: String=''; const MinValue:
 String=''; const MaxValue: String=''; const Description:
 String=''; CharCase: TFieldCharCase=fcNoChange; Compression:
 Byte=NO_COMPRESSION)

Call the Insert method to insert a new field definition object at a specific position in the list of field
definitions for the table. The InsertPos parameter is an integer identifying the field definition's position in
the list of field definitions, in the range of 0 to the value of the Count property minus 1. Please see the
TDBISAMFieldDef object for more information on each parameter to this method.

Component Reference

Page 563

TDBISAMFieldDefs.InsertFieldDef Method

function InsertFieldDef(InsertPos: Integer): TDBISAMFieldDef

Call the InsertFieldDef method to insert an empty TDBISAMFieldDef field definition object at a specific
position in the list of field definitions. You can then use the individual properties of the TDBISAMFieldDef
object that is returned to define the properties of the field. The InsertPos parameter is an integer
identifying the field definition's position in the list of field definitions, in the range of 0 to the value of the
Count property minus 1.

Component Reference

Page 564

TDBISAMFieldDefs.Update Method

procedure Update

Call the Update method to retrieve the current field definitions from the table. Calling this method will
clear the existing field definitions in the list of field definitions and replace them the field definitions from
the table specified by the owner TDBISAMTable DatabaseName and TableName properties.

Component Reference

Page 565

5.11 TDBISAMFunction Component

Unit: dbisamtb

Inherits From TCollectionItem

Use the TDBISAMFunction object to access or define a custom SQL or filter function in the TDBISAMEngine
component. Please see the Customizing the Engine topic for more information.

Properties Methods Events

Name Assign

Params Create

ResultType

Component Reference

Page 566

TDBISAMFunction.Name Property

property Name: String

Use the Name property to specify the name of the custom function. This name is case-insensitive when
referred to in filter expressions or SQL statements.

Component Reference

Page 567

TDBISAMFunction.Params Property

property Params: TDBISAMFunctionParams

Use the Params property to define the parameters to the custom function using the CreateFunctionParam
method.

Component Reference

Page 568

TDBISAMFunction.ResultType Property

property ResultType: TFieldType

Use the ResultType property to define the resultant data type of the custom function.

Component Reference

Page 569

TDBISAMFunction.Assign Method

procedure Assign(Source: TPersistent)

Call the Assign method to assign another TDBISAMFunction object to the current TDBISAMFunction object.

Component Reference

Page 570

TDBISAMFunction.Create Method

constructor Create(Collection: TCollection)

Call the Create constructor to create an instance of a TDBISAMFunction object. However, you should never
need to create an instance of the TDBISAMFunction object since one is automatically created when using
the CreateFunction method of the TDBISAMFunctions object.

Component Reference

Page 571

5.12 TDBISAMFunctionParam Component

Unit: dbisamtb

Inherits From TCollectionItem

Use the TDBISAMFunctionParam object to access or define a parameter to a custom SQL or filter function
in the TDBISAMEngine component. Please see the Customizing the Engine topic for more information.

Properties Methods Events

DataType Assign

Create

Component Reference

Page 572

TDBISAMFunctionParam.DataType Property

property DataType: TFieldType

Use the DataType property to specify the data type of the parameter to the custom function.

Component Reference

Page 573

TDBISAMFunctionParam.Assign Method

procedure Assign(Source: TPersistent)

Call the Assign method to assign another TDBISAMFunctionParam object to the current
TDBISAMFunctionParam object.

Component Reference

Page 574

TDBISAMFunctionParam.Create Method

constructor Create(Collection: TCollection)

constructor Create(AFunctionParams: TDBISAMFunctionParams)

Call the Create constructor to create an instance of a TDBISAMFunctionParam object. However, you should
never need to create an instance of the TDBISAMFunctionParam object since one is automatically created
when using the CreateFunctionParam method of the TDBISAMFunctionParams object.

Component Reference

Page 575

5.13 TDBISAMFunctionParams Component

Unit: dbisamtb

Inherits From TCollection

Use the TDBISAMFunctionParams object to access or define the parameters to a custom SQL or filter
function in the TDBISAMEngine component. Please see the Customizing the Engine topic for more
information.

Properties Methods Events

Items Assign

Create

CreateFunctionParam

IsEqual

Component Reference

Page 576

TDBISAMFunctionParams.Items Property

property Items[Index: Integer]: TDBISAMFunctionParam

Use the Items property to access a specific function parameter definition. The Index is an integer
identifying the parameter definition's position in the list of parameter definitions, in the range of 0 to the
value of the Count property minus 1.

Component Reference

Page 577

TDBISAMFunctionParams.Assign Method

procedure Assign(Source: TPersistent)

Call the Assign method to assign another TDBISAMFunctionParams object to the current
TDBISAMFunctionParams object.

Component Reference

Page 578

TDBISAMFunctionParams.Create Method

constructor Create(Owner: TPersistent)

Call the Create constructor to create an instance of a TDBISAMFunctionParams object. However, you
should never need to create an instance of the TDBISAMFunctionParams object since one is automatically
created when using the CreateFunction method of the TDBISAMFunctions object.

Component Reference

Page 579

TDBISAMFunctionParams.CreateFunctionParam Method

function CreateFunctionParam(DataType: TFieldType):
 TDBISAMFunctionParam

Call the CreateFunctionParam method to create a new custom function parameter definition and return a
reference to the parameter definition. The DataType parameter specifies the data type of the parameter.

Component Reference

Page 580

TDBISAMFunctionParams.IsEqual Method

function IsEqual(Value: TDBISAMFunctionParams): Boolean

The IsEqual method compares the current custom function parameter definitions against another list of
parameter definitions and returns True if they are equal and False if they are not.

Component Reference

Page 581

5.14 TDBISAMFunctions Component

Unit: dbisamtb

Inherits From TCollection

Use the TDBISAMFunctions object to access or define the custom SQL or filter functions in the
TDBISAMEngine component. Please see the Customizing the Engine topic for more information.

Properties Methods Events

Items Assign

Create

CreateFunction

FindFunction

FunctionByName

IsEqual

Component Reference

Page 582

TDBISAMFunctions.Items Property

property Items[Index: Integer]: TDBISAMFunction

Use the Items property to access a specific custom function definition. The Index is an integer identifying
the custom function definition's position in the list of function definitions, in the range of 0 to the value of
the Count property minus 1.

Component Reference

Page 583

TDBISAMFunctions.Assign Method

procedure Assign(Source: TPersistent)

Call the Assign method to assign another TDBISAMFunctions object to the current TDBISAMFunctions
object.

Component Reference

Page 584

TDBISAMFunctions.Create Method

constructor Create(Owner: TComponent)

Call the Create constructor to create an instance of a TDBISAMFunctions object. However, you should
never need to create an instance of the TDBISAMFunctions object since one is automatically created when
the TDBISAMEngine component is created.

Component Reference

Page 585

TDBISAMFunctions.CreateFunction Method

function CreateFunction(ResultType: TFieldType; const
 FunctionName: String): TDBISAMFunction

Call the CreateFunction method to create a new custom function definition and return a reference to the
function definition. The ResultType parameter specifies the resultant data type and the FunctionName
parameter specifies the name of the custom function. This name is case-insensitive when referred to in
filter expressions or SQL statements.

Component Reference

Page 586

TDBISAMFunctions.FindFunction Method

function FindFunction(const Value: String): TDBISAMFunction

Call the FindFunction method to locate a specific custom function definition by the name of the custom
function. If a custom function definition is found with the same name, a reference to the function
definition is returned, otherwise nil is returned. The search against the function names is case-insensitive.

Component Reference

Page 587

TDBISAMFunctions.FunctionByName Method

function FunctionByName(const Value: String): TDBISAMFunction

Call the FunctionByName method to locate a specific custom function definition by the name of the custom
function. If a custom function definition is found with the same name, a reference to the function
definition is returned, otherwise an exception is raised. The search against the function names is case-
insensitive. The FunctionByName method is essentially a wrapper around the FindFunction method that
raises an exception if the FindFunction method returns nil.

Component Reference

Page 588

TDBISAMFunctions.IsEqual Method

function IsEqual(Value: TDBISAMFunctions): Boolean

The IsEqual method compares the current custom function definitions against another list of custom
function definitions and returns True if they are equal and False if they are not.

Component Reference

Page 589

5.15 TDBISAMIndexDef Component

Unit: dbisamtb

Inherits From TNamedItem

Use the TDBISAMIndexDef object to access an index definition for a table when reading the structure
information for a table or to define an index definition for a table when creating or altering the structure of
a table using the TDBISAMTable CreateTable or AlterTable method.

Properties Methods Events

Compression Assign

DescFields AssignTo

FieldExpression Create

Fields

NoKeyStatistics

Options

Component Reference

Page 590

TDBISAMIndexDef.Compression Property

property Compression: TIndexCompression

Use the Compression property to access or define the compression for the index definition. For more
information please see the Index Compression topic.

Component Reference

Page 591

TDBISAMIndexDef.DescFields Property

property DescFields: String

Use the DescFields property to access or define the descending fields for the index definition. Multiple field
names should be separated with a semicolon (;).

Component Reference

Page 592

TDBISAMIndexDef.FieldExpression Property

property FieldExpression: String

This property will always be the same value as the FieldExpression property and should be ignored.

Component Reference

Page 593

TDBISAMIndexDef.Fields Property

property Fields: String

Use the Fields property to access or define the fields being indexed in the index definition. Multiple field
names should be separated with a semicolon (;).

Component Reference

Page 594

TDBISAMIndexDef.NoKeyStatistics Property

property NoKeyStatistics: Boolean

Use the NoKeyStatistics property to set whether index statistics will be used for the index definition. Under
most circumstances you should leave this property set to the default of False. Not using the index statistics
is only useful for very large tables where insert/update/delete performance is very important, and where it
is acceptable to not have logical record numbers or statistics for optimizing filters and queries.

Component Reference

Page 595

TDBISAMIndexDef.Options Property

property Options: TIndexOptions

Use the Options property to access or define the indexing options for the index definition.

Component Reference

Page 596

TDBISAMIndexDef.Assign Method

procedure Assign(Source: TPersistent)

Call the Assign method to assign another TDBISAMIndexDef or TIndexDef object to the current
TDBISAMIndexDef object. The TDBISAMIndexDef object is assignment-compatible with the TIndexDef
object.

Component Reference

Page 597

TDBISAMIndexDef.AssignTo Method

procedure AssignTo(Dest: TPersistent)

Call the AssignTo method to assign the current TDBISAMIndexDef object to another TDBISAMIndexDef or
TIndexDef object. The TDBISAMIndexDef object is assignment-compatible with the TIndexDef object.

Component Reference

Page 598

TDBISAMIndexDef.Create Method

constructor Create(Owner: TDBISAMIndexDefs; const Name: String;
 const Fields: String; Options: TIndexOptions=[]; const
 DescFields: String=''; Compression: TIndexCompression=icNone;
 NoKeyStats: Boolean=False)

Call the Create constructor to create an instance of a TDBISAMIndexDef object. However, you should
never need to create an instance of the TDBISAMIndexDef object since one is automatically created when
using the various methods of the TDBISAMIndexDefs object.

Component Reference

Page 599

5.16 TDBISAMIndexDefs Component

Unit: dbisamtb

Inherits From TDefCollection

Use the TDBISAMIndexDefs object to access the index definitions for a table when reading the structure
information for a table or to define the index definitions for a table when creating or altering the structure
of a table using the TDBISAMTable CreateTable or AlterTable method.

Properties Methods Events

Items Add

AddIndexDef

FindIndexForFields

GetIndexForFields

Update

Component Reference

Page 600

TDBISAMIndexDefs.Items Property

property Items[Index: Integer]: TDBISAMIndexDef

Use the Items property to access a specific index definition. The Index is an integer identifying the index
definition's position in the list of index definitions, in the range of 0 to the value of the Count property
minus 1.

Component Reference

Page 601

TDBISAMIndexDefs.Add Method

procedure Add(const Name: String; const Fields: String; Options:
 TIndexOptions=[]; const DescFields: String=''; Compression:
 TIndexCompression=icNone; NoKeyStatistics: Boolean=False)

Call the Add method to add a new index definition object to the list of index definitions for the table.
Please see the TDBISAMIndexDef object for more information on each parameter to this method.

Component Reference

Page 602

TDBISAMIndexDefs.AddIndexDef Method

function AddIndexDef: TDBISAMIndexDef

Call the AddIndexDef method to add an empty TDBISAMIndexDef index definition object to the list of
index definitions. You can then use the individual properties of the TDBISAMIndexDef object that is
returned to define the properties of the field.

Component Reference

Page 603

TDBISAMIndexDefs.FindIndexForFields Method

function FindIndexForFields(const Fields: String):
 TDBISAMIndexDef

Call the FindIndexForFields method to locate a specific index definition by the fields that make up the
index. The Fields parameter specifies the fields to use in the search. If multiple field names are specified,
separate each field name with a semicolon (;). If an index definition is found that matches the specified
fields, a reference to the index definition is returned, otherwise an exception is raised. The search against
the field names is case-insensitive. The FindIndexForFields method is essentially a wrapper around the
GetIndexForFields method that raises an exception if the GetIndexForFields method returns nil.

Component Reference

Page 604

TDBISAMIndexDefs.GetIndexForFields Method

function GetIndexForFields(const Fields: String;
 CaseInsensitive: Boolean): TDBISAMIndexDef

Call the GetIndexForFields method to locate a specific index definition by the fields that make up the
index. The Fields parameter specifies the fields to use in the search. If multiple field names are specified,
separate each field name with a semicolon (;). If an index definition is found that matches the specified
fields, a reference to the index definition is returned, otherwise nil is returned. The search against the field
names is case-insensitive.

Component Reference

Page 605

TDBISAMIndexDefs.Update Method

procedure Update

Call the Update method to retrieve the current index definitions from the table. Calling this method will
clear the existing index definitions in the list of index definitions and replace them the index definitions
from the table specified by the owner TDBISAMTable DatabaseName and TableName properties.

Component Reference

Page 606

5.17 TDBISAMParam Component

Unit: dbisamtb

Inherits From TCollectionItem

Use the TDBISAMParam object to access or define a parameter to an SQL statement in the TDBISAMQuery
component or a server-side procedure in the TDBISAMSession and TDBISAMEnginecomponents. Please
see the Parameterized Queries, Calling Server-Side Procedures, and Customizing the Engine topics for
more information.

Properties Methods Events

AsBCD Assign

AsBlob AssignField

AsBoolean AssignFieldValue

AsCurrency Clear

AsDate Create

AsDateTime GetData

AsFloat GetDataSize

AsInteger LoadFromFile

AsLargeInt LoadFromStream

AsMemo SaveToFile

AsSmallInt SaveToStream

AsString SetBlobData

AsTime SetData

AsWord

Bound

DataType

IsNull

Name

Text

Value

Component Reference

Page 607

TDBISAMParam.AsBCD Property

property AsBCD: Currency

Use the AsBCD property to access or specify the current value of the parameter as a Currency type.
Setting the value of the parameter using the AsBCD method will set the DataType property to ftBCD.

Component Reference

Page 608

TDBISAMParam.AsBlob Property

property AsBlob: AnsiString

Use the AsBlob property to access or specify the current value of the parameter as a String type. Setting
the value of the parameter using the AsBlob method will set the DataType property to ftBlob.

Component Reference

Page 609

TDBISAMParam.AsBoolean Property

property AsBoolean: Boolean

Use the AsBoolean property to access or specify the current value of the parameter as a Boolean type.
Setting the value of the parameter using the AsBoolean method will set the DataType property to
ftBoolean.

Component Reference

Page 610

TDBISAMParam.AsCurrency Property

property AsCurrency: Currency

Use the AsCurrency property to access or specify the current value of the parameter as a Currency type.
Setting the value of the parameter using the AsCurrency method will set the DataType property to
ftCurrency.

Component Reference

Page 611

TDBISAMParam.AsDate Property

property AsDate: TDateTime

Use the AsDate property to access or specify the current value of the parameter as a TDateTime type.
Setting the value of the parameter using the AsDate method will set the DataType property to ftDate.

Component Reference

Page 612

TDBISAMParam.AsDateTime Property

property AsDateTime: TDateTime

Use the AsDateTime property to access or specify the current value of the parameter as a TDateTime
type. Setting the value of the parameter using the AsDateTime method will set the DataType property to
ftDateTime.

Component Reference

Page 613

TDBISAMParam.AsFloat Property

property AsFloat: Double

Use the AsFloat property to access or specify the current value of the parameter as a Double type. Setting
the value of the parameter using the AsFloat method will set the DataType property to ftFloat.

Component Reference

Page 614

TDBISAMParam.AsInteger Property

property AsInteger: Integer

Use the AsInteger property to access or specify the current value of the parameter as an Integer type.
Setting the value of the parameter using the AsInteger method will set the DataType property to ftInteger.

Component Reference

Page 615

TDBISAMParam.AsLargeInt Property

property AsLargeInt: Int64

Use the AsLargeInt property to access or specify the current value of the parameter as an LargeInt type.
Setting the value of the parameter using the AsLargeInt method will set the DataType property to
ftLargeInt.

Component Reference

Page 616

TDBISAMParam.AsMemo Property

property AsMemo: String

Use the AsMemo property to access or specify the current value of the parameter as a String type. Setting
the value of the parameter using the AsMemo method will set the DataType property to ftMemo.

Component Reference

Page 617

TDBISAMParam.AsSmallInt Property

property AsSmallInt: Integer

Use the AsSmallInt property to access or specify the current value of the parameter as a SmallInt type.
Setting the value of the parameter using the AsSmallInt method will set the DataType property to
ftSmallInt.

Component Reference

Page 618

TDBISAMParam.AsString Property

property AsString: String

Use the AsString property to access or specify the current value of the parameter as a String type. Setting
the value of the parameter using the AsString method will set the DataType property to ftString.

Component Reference

Page 619

TDBISAMParam.AsTime Property

property AsTime: TDateTime

Use the AsTime property to access or specify the current value of the parameter as a TDateTime type.
Setting the value of the parameter using the AsTime method will set the DataType property to ftTime.

Component Reference

Page 620

TDBISAMParam.AsWord Property

property AsWord: Integer

Use the AsWord property to access or specify the current value of the parameter as a Word type. Setting
the value of the parameter using the AsWord method will set the DataType property to ftWord.

Component Reference

Page 621

TDBISAMParam.Bound Property

property Bound: Boolean

Use the Bound property to determine whether a value has been assigned to the parameter. Whenever a
value is assigned to the TDBISAMParam object, the Bound property is automatically set to True. Set the
Bound property to False to undo the setting of the value. The Clear method will replace the value of the
parameter with NULL, but will not set the Bound property to False. If the Clear method is used to bind the
parameter to a NULL value, the Bound property must be separately set to True.

TDBISAMQuery components use the value of the Bound property to determine whether or not to assign a
default value for the parameter. If the Bound property is False, a TDBISAMQuery component attempts to
assign a value from the data source indicated by the DataSource property of the TDBISAMQuery
component.

Note
The Bound property is ignored when the TDBISAMParam object is used with server-side procedures.

Component Reference

Page 622

TDBISAMParam.DataType Property

property DataType: TFieldType

Use the DataType property to discover the type of data that was assigned to the parameter. The DataType
property is set automatically when a value is assigned to the parameter. Do not set the DataType property
for bound fields (Bound=True), as that may cause the assigned value to be misinterpreted.

Component Reference

Page 623

TDBISAMParam.IsNull Property

property IsNull: Boolean

Use the IsNull property to discover if the value of the parameter is NULL, indicating the value of a blank
field. NULL values can arise in the following ways:

• Assigning the value of another, NULL, parameter.
• Assigning the value of a blank TField object using the AssignFieldValue method.
• Calling the Clear method.

Note
NULL parameters are not the same as unbound parameters. Unbound parameters have not had a
value assigned. NULL parameters have a NULL value. NULL parameters may be bound or unbound.

Component Reference

Page 624

TDBISAMParam.Name Property

property Name: String

Use the Name property to specify the name for the parameter.

Component Reference

Page 625

TDBISAMParam.Text Property

property Text: String

Use the Text property to assign the value of the parameter to a string without changing the DataType
property. Unlike the AsString property, which sets the value to a string and changes the DataType
property, setting the Text property converts the string to the current data type of the parameter, and sets
the value accordingly. Thus, use the AsString property to treat the parameter as representing the value of
a string field. Use the Text property instead when assigning a value that is in string form, when making no
assumptions about the data type. For example, the Text property is useful for assigning user data that was
input using an edit control.

Component Reference

Page 626

TDBISAMParam.Value Property

property Value: Variant

Use the Value property to manipulate the value of a parameter as a Variant without needing to know the
data type the parameter represents.

Component Reference

Page 627

TDBISAMParam.Assign Method

procedure Assign(Source: TPersistent)

Call the Assign method to assign another TDBISAMParam or TParam object to the current TDBISAMParam
object. The TDBISAMParam object is assignment-compatible with the TParam object.

Note
You can assign a TDBISAMTable or TDBISAMQuery stream directly to a TDBISAMParam object
using this method. This is equivalent to using the TDBISAMTable or TDBISAMQuery SaveToStream
method and then the TDBISAMParam LoadFromStream method. Likewise, you can use the
TDBISAMTable or TDBISAMQuery component's Assign method to directly load a stream from a
TDBISAMParam object. This is equivalent to using the TDBISAMParam SaveToStream method and
then the TDBISAMTable or TDBISAMQuery LoadFromStream method.

Component Reference

Page 628

TDBISAMParam.AssignField Method

procedure AssignField(Field: TField)

Call the AssignField method to set a parameter to represent a particular TField object. The AssignField
method sets the Bound property to True.

Note
Unlike the AssignFieldValue method, the AssignField method names the parameter after the TField
object as well as taking its value.

Component Reference

Page 629

TDBISAMParam.AssignFieldValue Method

procedure AssignFieldValue(Field: TField; const Value: Variant)

Call the AssignFieldValue method to set the Value property to the value passed as the Value parameter.
The AssignFieldValue method assumes that the Value parameter represents a value from a field like the
Field parameter, and assigns the DataType property accordingly. The AssignFieldValue method sets the
Bound property to True.

Note
Unlike the AssignField method, the AssignFieldValue method does not name the parameter after the
TField object.

Component Reference

Page 630

TDBISAMParam.Clear Method

procedure Clear

Call the Clear method to assign a NULL value to a parameter. Calling Clear neither sets nor clears the
Bound property. When assigning a NULL value to a parameter, set the Bound property as well as calling
the Clear method.

Component Reference

Page 631

TDBISAMParam.Create Method

constructor Create(Collection: TCollection)

constructor Create(AParams: TDBISAMParams)

Call the Create constructor to create an instance of a TDBISAMParam object. However, you should never
need to create an instance of the TDBISAMParam object since one is automatically created when using the
CreateParam method of the TDBISAMParams object.

Component Reference

Page 632

TDBISAMParam.GetData Method

procedure GetData(Buffer: Pointer)

Call the GetData method to retrieve the value of a parameter in its native DBISAM format into a buffer.
The buffer must have enough space to hold the information. Use the GetDataSize method to determine
the necessary size.

Component Reference

Page 633

TDBISAMParam.GetDataSize Method

function GetDataSize: Integer

Call the GetDataSize method to determine the number of bytes used to represent the parameter's value in
its native DBISAM format.

Component Reference

Page 634

TDBISAMParam.LoadFromFile Method

procedure LoadFromFile(const FileName: String; BlobType:
 TBlobType)

Call the LoadFromFile method to set the value of a BLOB parameter from a value stored in the file
specified by the FileName parameter. The DataType property is set to the value passed as the BlobType
parameter.

Component Reference

Page 635

TDBISAMParam.LoadFromStream Method

procedure LoadFromStream(Stream: TStream; BlobType: TBlobType)

Call the LoadFromStream method to set the value of a BLOB parameter from a value stored in the stream
specified by the Stream parameter. The DataType property is set to the value passed as the BlobType
parameter.

Component Reference

Page 636

TDBISAMParam.SaveToFile Method

procedure SaveToFile(const FileName: String)

Call the SaveToFile method to copy the value of a BLOB parameter to the file specified by the FileName
parameter.

Component Reference

Page 637

TDBISAMParam.SaveToStream Method

procedure SaveToStream(Stream: TStream)

Call the SaveToStream method to copy the value of a BLOB parameter to the stream specified by the
Stream parameter.

Component Reference

Page 638

TDBISAMParam.SetBlobData Method

procedure SetBlobData(Buffer: Pointer; Size: Integer)

Call the SetBlobData method to set the value of a parameter from a buffer. The SetBlobData method
copies the number of bytes specified by the Size parameter from the buffer specified by the Buffer
parameter, and sets the DataType property to ftBlob.

Component Reference

Page 639

TDBISAMParam.SetData Method

procedure SetData(Buffer: Pointer)

Call the SetData method to set the value of a parameter from a buffer that contains data in its native
DBISAM format.

Component Reference

Page 640

5.18 TDBISAMParams Component

Unit: dbisamtb

Inherits From TCollection

Use the TDBISAMParams object to access or define parameters to an SQL statement in the TDBISAMQuery
component or a server-side procedure in the TDBISAMSession and TDBISAMEnginecomponents. Please
see the Parameterized Queries, Calling Server-Side Procedures, and Customizing the Engine topics for
more information.

Properties Methods Events

Items AssignValues

ParamValues Create

CreateParam

FindParam

IsEqual

ParamByName

Component Reference

Page 641

TDBISAMParams.Items Property

property Items[Index: Integer]: TDBISAMParam

Use the Items property to access a specific parameter. The Index is an integer identifying the parameter's
position in the list of parameters, in the range of 0 to the value of the Count property minus 1.

Component Reference

Page 642

TDBISAMParams.ParamValues Property

property ParamValues[const ParamName: String]: Variant

Use the ParamValues property to get or set the values of parameters that are identified by name. The
ParamName is a string containing the names of the individual parameters of interest. If the ParamValues
property is used to access more than one parameter, the names of the parameters should be separated by
a semicolon (;).

Setting the ParamValues property sets the Value property for each parameter listed in the ParamName
string. Specify the values as Variants, in order, in a variant array.

If ParamName includes a name that does not match any of the parameters, an exception is raised.

Component Reference

Page 643

TDBISAMParams.AssignValues Method

procedure AssignValues(Value: TDBISAMParams)

procedure AssignValues(Value: TParams)

Call the AssignValues method to assign the values from parameters in another TDBISAMParams or
TParams object. The TDBISAMParams object is assignment-compatible with the TParams object. For each
parameter, the AssignValues method attempts to find a parameter with the same Name property in Value.
If successful, the parameter information (type and current data) from the Value parameter is assigned to
the parameter. Parameters for which no match is found are left unchanged.

Component Reference

Page 644

TDBISAMParams.Create Method

constructor Create(Owner: TComponent)

Call the Create constructor to create an instance of a TDBISAMParams object. However, you should never
need to create an instance of the TDBISAMParams object since one is automatically created when the
TDBISAMQuery or TDBISAMSessioncomponent is created.

Component Reference

Page 645

TDBISAMParams.CreateParam Method

function CreateParam(FldType: TFieldType; const ParamName:
 String): TDBISAMParam

Call the CreateParam method to create a new parameter and return a reference to the parameter. The
FldType parameter specifies the data type and the ParamName parameter specifies the name of the
parameter. This name is case-insensitive.

Component Reference

Page 646

TDBISAMParams.FindParam Method

function FindParam(const Value: String): TDBISAMParam

Call the FindParam method to locate a specific parameter by the name of the parameter. If a parameter is
found with the same name, a reference to the parameter is returned, otherwise nil is returned. The search
against the parameter names is case-insensitive.

Component Reference

Page 647

TDBISAMParams.IsEqual Method

function IsEqual(Value: TDBISAMParams): Boolean

The IsEqual method compares the current parameters against another list of parameters and returns True
if they are equal and False if they are not.

Component Reference

Page 648

TDBISAMParams.ParamByName Method

function ParamByName(const Value: String): TDBISAMParam

Call the ParamByName method to locate a specific parameter by the name of the parameter. If a
parameter is found with the same name, a reference to the parameter is returned, otherwise an exception
is raised. The search against the parameter names is case-insensitive. The ParamByName method is
essentially a wrapper around the FindParam method that raises an exception if the FindParam method
returns nil.

Component Reference

Page 649

5.19 TDBISAMQuery Component

Unit: dbisamtb

Inherits From TDBISAMDBDataSet

Use the TDBISAMQuery component to access or update one or more tables in a database using SQL
statements. Please see the SQL Reference Overview topic for more information on the SQL support in
DBISAM.

Properties Methods Events

DataSource DefineProperties AfterExecute

EngineVersion ExecSQL BeforeExecute

ExecutionTime ParamByName OnAlterProgress

GeneratePlan Prepare OnCopyProgress

LocaleID SaveToTable OnDataLost

MaxRowCount UnPrepare OnExportProgress

ParamCheck OnGetParams

ParamCount OnImportProgress

Params OnIndexProgress

Plan OnLoadFromStreamProgress

Prepared OnOptimizeProgress

ReadOnly OnQueryError

RequestLive OnQueryProgress

ResultIsLive OnRepairLog

RowsAffected OnRepairProgress

SQL OnSaveProgress

SQLStatementType OnSaveToStreamProgress

StmtHandle OnSQLChanged

TableName OnUpgradeLog

Text OnUpgradeProgress

OnVerifyLog

OnVerifyProgress

Component Reference

Page 650

TDBISAMQuery.DataSource Property

property DataSource: TDataSource

The DataSource property specifies the TDataSource component from which to extract current field values
to use in the identically-named parameters in the query's SQL statement specified via the SQL property.
This allows you to automatically fill parameters in a query with fields values from another data source.
Parameters that have the same name as fields in the other data source are filled with the field values.
Parameters with names that are not the same as fields in the other dataset do not automatically get
values, and must be set by the application manually.

DataSource must point to a TDataSource component linked to another dataset component; it cannot point
to this TDBISAMQuery component. The dataset specified in the TDataSource component's DataSet
property must be created, populated, and opened before attempting to bind parameters. Parameters are
bound by calling the Prepare method prior to executing the query using the ExecSQL or Open method. If
the SQL statement used by the query does not contain parameters, or all parameters are bound by the
application using the Params property or the ParamByName method, the DataSource property need not be
assigned.

If the SQL statement specified in the SQL property of the TDBISAMQuery component is a SELECT
statement, the query is executed using the new field values each time the record pointer in the other data
source is changed. It is not necessary to call the Open method of the TDBISAMQuery component each
time. This makes using the DataSource property to dynamically filter a query result set useful for
establishing master-detail relationships. Set the DataSource property in the detail query to the
TDataSource component for the master data source.

Note
If the SQL statement contains parameters with the same name as fields in the other dataset, do not
manually set values for these parameters. Any values manually set, either by using the Params
property or the ParamByName method, will be overridden with automatic values.

Component Reference

Page 651

TDBISAMQuery.EngineVersion Property

property EngineVersion: String

Indicates the current version of DBISAM being used. This property is read-only, but published so that it is
visible in the Object Inspector in Delphi, Kylix, and C++Builder.

Component Reference

Page 652

TDBISAMQuery.ExecutionTime Property

property ExecutionTime: Double

The ExecutionTime property indicates the total time, in seconds, that the current SQL statement or script
took to execute. This time does not include any time taken to prepare and parse the query, only the
execution time itself. If executing multiple SQL statements separated by semicolons (a script), this
property will reflect the cumulative execution time of all of the SQL statements.

Component Reference

Page 653

TDBISAMQuery.GeneratePlan Property

property GeneratePlan: Boolean

The GeneratePlan property can be used to specify that a query plan be generated and stored in the Plan
property when the SQL statement(s) specified in the SQL property is/are executed.

Note
Query plans are only generated for SQL SELECT, INSERT, UPDATE, or DELETE statements.

Component Reference

Page 654

TDBISAMQuery.LocaleID Property

property LocaleID: Integer

The LocaleID property indicates the locale ID of the result set for the SQL SELECT statement currently
specified in the SQL property. This property is only populated when the current SQL statement is a SELECT
statement.

Note
This property is only valid after the current SQL SELECT statement has been prepared by calling the
Prepare method, or by executing the SQL statement using the Open or ExecSQL methods.

Component Reference

Page 655

TDBISAMQuery.MaxRowCount Property

property MaxRowCount: Integer

Use the MaxRowCount property to control the maximum number of rows that will be returned when
executing an SQL SELECT statement. Setting this property to -1 will indicate that the number of rows
returned is unlimited.

Note
This property does not respect any DISTINCT, GROUP BY, or ORDER BY claues in the SQL
statement. It is primarily useful for making sure that end users do not accidentally construct SQL
queries that generate cartesian products or other types of queries that can cause the number of
rows to be returned to be enormous.

Component Reference

Page 656

TDBISAMQuery.ParamCheck Property

property ParamCheck: Boolean

Use the ParamCheck property to specify whether or not the Params property is cleared and regenerated if
an application modifies the SQL property at runtime. By default the ParamCheck property is True, meaning
that the Params property is automatically regenerated at runtime. When ParamCheck is True, the proper
number of parameters is guaranteed to be generated for the current SQL statement.

Note
The TDBISAMQuery component always behaves like the ParamCheck property is set to True at
design-time. The ParamCheck property setting is only respected at runtime.

Component Reference

Page 657

TDBISAMQuery.ParamCount Property

property ParamCount: Word

Use the ParamCount property to determine how many parameters are in the Params property. If the
Params property is True, the ParamCount property always corresponds to the number of actual
parameters in the SQL statement specified in the SQL property.

Note
An application can add or delete parameters to the Params property. Such additions and deletions
are automatically reflected in ParamCount.

Component Reference

Page 658

TDBISAMQuery.Params Property

property Params: TDBISAMParams

Use the Params property to specify the parameters for an SQL statement. The Params proerty is a zero-
based array of TDBISAMParam parameter objects. Index specifies the array element to access.

Note
An easier way to set and retrieve parameter values when the name of each parameter is known is
to call the ParamByName method.

Component Reference

Page 659

TDBISAMQuery.Plan Property

property Plan: TStrings

The Plan property is where the query plan is stored when the SQL statement(s) specified in the SQL
property is/are executed and the GeneratePlan property is set to True. The Plan property is cleared before
each new SQL statement specified in the SQL property is executed.

Note
Query plans are only generated for SQL SELECT, INSERT, UPDATE, or DELETE statements.

Component Reference

Page 660

TDBISAMQuery.Prepared Property

property Prepared: Boolean

Use the Prepared property to determine if an SQL statement is already prepared for execution. If Prepared
is True, the SQL statement is prepared, and if Prepared is False, the SQL statement is not prepared. While
an SQL statement need not be prepared before execution, execution performance is enhanced if the SQL
statement is prepared beforehand, particularly if it is a parameterized SQL statement that is executed
more than once using the same parameter values.

Note
An application can change the current setting of Prepared to prepare or unprepare an SQL
statement. If Prepared is True, setting it to False calls the UnPrepare method to unprepare the SQL
statement. If Prepared is False, setting it to True calls the Prepare method to prepare the SQL
statement.

Component Reference

Page 661

TDBISAMQuery.ReadOnly Property

property ReadOnly: Boolean

Use the ReadOnly property to specify that the contents of the query result set generated by a SELECT SQL
statement cannot be edited by the application. By default, DBISAM allows all result sets, either live or
canned, to be edited.

Component Reference

Page 662

TDBISAMQuery.RequestLive Property

property RequestLive: Boolean

Use the RequestLive property to specify whether or not DBISAM should attempt to return a live result set
when the current SELECT SQL statement is excuted. The RequestLive property is False by default,
meaning that a canned result set will be returned. Set the RequestLive property to True to request a live
result set.

Note
Setting RequestLive to True does not guarantee that a live result set is returned by DBISAM. A live
result set will be returned only if the SELECT SQL statement syntax conforms to the syntax
requirements for a live result set. If the RequestLive property is True, but the syntax does not
conform to the requirements, DBISAM returns a canned result set. After executing the query,
inspect the ResultIsLive property to determine whether the request for a live result set was
successful.

Component Reference

Page 663

TDBISAMQuery.ResultIsLive Property

property ResultIsLive: Boolean

The ResultIsLive property indicates whether the current SELECT SQL statement returned a live result set.

Component Reference

Page 664

TDBISAMQuery.RowsAffected Property

property RowsAffected: Integer

Use the RowsAffected property to determine how many rows were inserted, updated or deleted by the
execution of the current SQL statement specified via the SQL property. If RowsAffected is 0, the SQL
statement did not insert, update or delete any rows.

Note
This property is only useful for INSERT, UPDATE, or DELETE SQL statements and will always be
equal to the RecordCount property for any SELECT SQL statement that returns a result set.

Component Reference

Page 665

TDBISAMQuery.SQL Property

property SQL: TStrings

Use the SQL property to specify the text of the SQL statement that the TDBISAMQuery component
executes when its Open or ExecSQL methods are called. The SQL property may contain multiple SQL
statements as long as they are separated by semicolons (;).

Component Reference

Page 666

TDBISAMQuery.SQLStatementType Property

property SQLStatementType: TSQLStatementType

The SQLStatementType property indicates the kind of SQL statement currently specified in the SQL
property.

Note
This property is only valid after the current SQL statement has been prepared by calling the Prepare
method, or by executing the SQL statement using the Open or ExecSQL methods. Also, the
SQLStatementType property is useful when executing multiple SQL statements in a script since it
always indicates the type of the current SQL statement being executed.

Component Reference

Page 667

TDBISAMQuery.StmtHandle Property

property StmtHandle: TDBISAMStatementManager

The StmtHandle property is for internal use only and is not useful to the application developer using
DBISAM.

Component Reference

Page 668

TDBISAMQuery.TableName Property

property TableName: String

The TableName property indicates the target table of the SQL statement currently specified in the SQL
property. This property is only populated when the current SQL statement is not a SELECT statement.

Note
This property is only valid after the current SQL statement has been prepared by calling the Prepare
method, or by executing the SQL statement using the Open or ExecSQL methods. Also, the
TableName property is useful when executing multiple SQL statements in a script since it always
indicates the target table of the current SQL statement being executed.

Component Reference

Page 669

TDBISAMQuery.Text Property

property Text: String

The Text property indicates the actual text of the SQL statement passed to DBISAM. For parameterized
SQL statements, the Text property contains the SQL statement with parameters replaced by the parameter
substitution symbol (?) in place of actual parameter values.

Note
The Text property is useful when executing multiple SQL statements in a script since it always
indicates the text of the current SQL statement being executed, not the entire script.

Component Reference

Page 670

TDBISAMQuery.DefineProperties Method

procedure DefineProperties(Filer: TFiler)

Do not use this method. It is used internally by the TDBISAMQuery component to instantiate published
design-time property information.

Component Reference

Page 671

TDBISAMQuery.ExecSQL Method

procedure ExecSQL

Call the ExecSQL method to execute the SQL statement currently assigned to the SQL property. Use the
ExecSQL method to execute any type of SQL statement, including scripts comprised of multiple SQL
statements. If the SQL statement is a SELECT SQL statement or it ends with a SELECT SQL statement
(such as with scripts), then the ExecSQL method will automatically call the Open method to open the
query result set returned by the SELECT statement.

The ExecSQL method prepares the SQL statement or statements in the SQL property for execution if they
have not already been prepared. To speed performance in situations where an SQL statement will be
executed multiple times with parameters, an application should ordinarily call the Prepare method before
calling the ExecSQL method for the first time.

Component Reference

Page 672

TDBISAMQuery.ParamByName Method

function ParamByName(const Value: String): TDBISAMParam

Call the ParamByName method to set or access parameter information for a specific parameter based on
its name. Value is the name of the parameter to access.

Component Reference

Page 673

TDBISAMQuery.Prepare Method

procedure Prepare

Call the Prepare method to have DBISAM allocate resources for the execution of an SQL statement, parse
the SQL statement, and perform the process of setting up the SQL statement for execution by opening up
source tables, etc. The SQL statement is specified via the SQL property.

DBISAM automatically prepares an SQL statement if it is executed without first being prepared. After
execution, DBISAM unprepares the SQL statement. When an SQL statement will be executed a number of
times, an application should always explicitly prepare the SQL statement using the Prepare method to
avoid multiple and unnecessary prepares and unprepares.

Preparing a query consumes some database resources, so it is good practice for an application to
unprepare a query once it is done using it. The UnPrepare method unprepares a query.

Note
When you change the SQL property, the current SQL statement is automatically closed and
unprepared.

Component Reference

Page 674

TDBISAMQuery.SaveToTable Method

procedure SaveToTable(const NewDatabaseName: String; const
 NewTableName: String)

Call the SaveToTable method to save the contents of a query result set to a permanent table for use in
subsequent database operations or queries.

Note
If you wish to store the result set in a table in a different database you must provide a different
database directory, for local sessions, or database name, for remote sessions, in the
NewDatabaseName parameter.

Component Reference

Page 675

TDBISAMQuery.UnPrepare Method

procedure UnPrepare

Call the UnPrepare method to free the resources allocated for an SQL statement previously prepared with
the Prepare method.

Component Reference

Page 676

TDBISAMQuery.AfterExecute Event

property AfterExecute: TNotifyEvent

The AfterExecute event is fired after the execution of any SQL statement using the ExecSQL or Open
method. If executing multiple SQL statements in a script, the AfterExecute event will fire after each SQL
statement in the script.

Component Reference

Page 677

TDBISAMQuery.BeforeExecute Event

property BeforeExecute: TNotifyEvent

The BeforeExecute event is fired before the execution of any SQL statement using the ExecSQL or Open
method. If executing multiple SQL statements in a script, the BeforeExecute event will fire before each
SQL statement in the script.

Component Reference

Page 678

TDBISAMQuery.OnAlterProgress Event

property OnAlterProgress: TProgressEvent

The OnAlterProgress event is fired when the structure of a table is altered by executing an ALTER TABLE
SQL statement using the ExecSQL or Open method. Use the PercentDone parameter to display progress
information in your application while the table's structure is being altered.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 679

TDBISAMQuery.OnCopyProgress Event

property OnCopyProgress: TProgressEvent

The OnCopyProgress event is fired when a table is copied to a new table name by executing a COPY
TABLE SQL statement using the ExecSQL or Open method. Use the PercentDone parameter to display
progress information in your application while the table is copied.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 680

TDBISAMQuery.OnDataLost Event

property OnDataLost: TDataLostEvent

The OnDataLost event is fired when executing an ALTER TABLE or CREATE INDEX StatementSQL
statement using the ExecSQL or Open method and a change in the structure of the table has caused data
to be lost or the addition of a unique index has caused a key violation.

The Cause parameter allows you to determine the cause of the data loss.

The ContextInfo parameter allows you to determine the exact field, index, or table name that is causing or
involved in the loss of data.

The Continue parameter allows you to abort the table structure alteration of index addition process and
return the table to it's original state with all of the data intact.

The StopAsking parameter allows you to tell DBISAM to stop reporting data loss problems and simply
complete the operation.

Note
You may set the Continue parameter to True several times and at a later time set the Continue
parameter to False and still have the table retain its original content and structure.

Component Reference

Page 681

TDBISAMQuery.OnExportProgress Event

property OnExportProgress: TProgressEvent

The OnExportProgress event is fired when a table is exported to a text file by executing an EXPORT TABLE
SQL statement using the ExecSQL or Open method. Use the PercentDone parameter to display progress
information in your application while the table is exported.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 682

TDBISAMQuery.OnGetParams Event

property OnGetParams: TNotifyEvent

The OnGetParams event is fired before the execution of any SQL statement using the ExecSQL or Open
method, but after the SQL statement is prepared. This event gives the application an opportunity to
dynamically populate parameters in an SQL statement prior to the SQL statement being executed. This
event is especially useful for scripts that contain multiple parameterized SQL statements.

Component Reference

Page 683

TDBISAMQuery.OnImportProgress Event

property OnImportProgress: TProgressEvent

The OnImportProgress event is fired when a table is imported from a text file by executing an IMPORT
TABLE SQL statement using the ExecSQL or Open method. Use the PercentDone parameter to display
progress information in your application while the table is imported.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 684

TDBISAMQuery.OnIndexProgress Event

property OnIndexProgress: TProgressEvent

The OnIndexProgress event is fired when a new index is added to a table by executing a CREATE INDEX
SQL statement using the ExecSQL or Open method. Use the PercentDone parameter to display progress
information in your application while the index is being added.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 685

TDBISAMQuery.OnLoadFromStreamProgress Event

property OnLoadFromStreamProgress: TProgressEvent

The OnLoadFromStreamProgress event is fired when a stream is loaded into a query result set using the
LoadFromStream method. Use the PercentDone parameter to display progress information in your
application while the query result set is being loaded from the stream.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 686

TDBISAMQuery.OnOptimizeProgress Event

property OnOptimizeProgress: TProgressEvent

The OnOptimizeProgress event is fired when a table is optimized by executing an OPTIMIZE TABLE SQL
statement using the ExecSQL or Open method. Use the PercentDone parameter to display progress
information in your application while the table is being optimized.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 687

TDBISAMQuery.OnQueryError Event

property OnQueryError: TAbortErrorEvent

The OnQueryError event is fired whenever there is an error of any kind encountered in the preparation or
execution of an SQL statement. This event is especially useful for scripts that contain multiple SQL
statements since this event offers the ability to continue with a script even though one of the SQL
statements has encountered an error.

Component Reference

Page 688

TDBISAMQuery.OnQueryProgress Event

property OnQueryProgress: TAbortProgressEvent

The OnQueryProgress event is fired when an SQL statement is executed using the ExecSQL or Open
method. Use the PercentDone parameters to display progress information in your application while the
SQL statement is executing. Setting the Abort parameter to True at any time during the execution of the
SQL statement will cause the execution to stop. This event is not triggered for live query result sets.
Please see the Live Queries and Canned Queries topic for more information.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 689

TDBISAMQuery.OnRepairLog Event

property OnRepairLog: TLogEvent

The OnRepairLog event is fired when a table is repaired by executing a REPAIR TABLE SQL statement
using the ExecSQL or Open method and DBISAM needs to indicate the current status of the repair (such as
the start or finish) or an error is found in the integrity of the table. Use the LogMesssage parameter to
display repair log information in your application while the table is being repaired or to save the log
messages to a file for later viewing.

Component Reference

Page 690

TDBISAMQuery.OnRepairProgress Event

property OnRepairProgress: TSteppedProgressEvent

The OnRepairProgress event is fired when a table is repaired by executing a REPAIR TABLE SQL statement
using the ExecSQL or Open method. Use the Step and PercentDone parameters to display progress
information in your application while the table is being repaired.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 691

TDBISAMQuery.OnSaveProgress Event

property OnSaveProgress: TProgressEvent

The OnSaveProgress event is fired when a query result set saved to a table using the SaveToTable
method. Use the PercentDone parameter to display progress information in your application while the
result set is being saved to the table.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 692

TDBISAMQuery.OnSaveToStreamProgress Event

property OnSaveToStreamProgress: TProgressEvent

The OnSaveToStreamProgress event is fired when a query result set is saved to a stream using the
SaveToStream method. Use the PercentDone parameter to display progress information in your application
while the query result set is being saved to the stream.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 693

TDBISAMQuery.OnSQLChanged Event

property OnSQLChanged: TNotifyEvent

The OnSQLChanged event is fired whenever the SQL property is modified.

Component Reference

Page 694

TDBISAMQuery.OnUpgradeLog Event

property OnUpgradeLog: TLogEvent

The UpgradeLog event is fired when a table is upgraded from an old table format by executing an
UPGRADE TABLE SQL statement using the ExecSQL or Open method. Use the LogMesssage parameter to
display upgrade log information in your application while the table is being upgraded or to save the log
messages to a file for later viewing.

Component Reference

Page 695

TDBISAMQuery.OnUpgradeProgress Event

property OnUpgradeProgress: TSteppedProgressEvent

The OnUpgradeProgress event is fired when a table is upgraded from an old table format by executing an
UPGRADE TABLE SQL statement using the ExecSQL or Open method. Use the Step and PercentDone
parameters to display progress information in your application while the table is being upgraded.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 696

TDBISAMQuery.OnVerifyLog Event

property OnVerifyLog: TLogEvent

The OnVerifyLog event is fired when a table is verified by executing a VERIFY TABLE SQL statement using
the ExecSQL or Open method and DBISAM needs to indicate the current status of the verification (such as
the start or finish) or an error is found in the integrity of the table. Use the LogMesssage parameter to
display verification log information in your application while the table is being verified or to save the log
messages to a file for later viewing.

Component Reference

Page 697

TDBISAMQuery.OnVerifyProgress Event

property OnVerifyProgress: TSteppedProgressEvent

Occurs when a table is verified by executing a VERIFY TABLE SQL statement using the ExecSQL or Open
method. Use the Step and PercentDone parameters to display progress information in your application
while the table is being repaired.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 698

5.20 TDBISAMRecord Component

Unit: dbisamtb

Inherits From TObject

Use the TDBISAMRecord object to access and/or update the current record in the scope of a before and/or
after trigger, or error event in the TDBISAMEngine component. Please see the Customizing the Engine
topic for more information.

Properties Methods Events

FieldCount Create

Fields CreateBlobStream

FieldValues FieldByName

Modified FindField

RecNo GetBlobFieldData

RecordHash GetFieldNames

RecordID

RecordSize

Component Reference

Page 699

TDBISAMRecord.FieldCount Property

property FieldCount: Integer

The FieldCount property indicates the number of fields present in the current record. You can use the
FieldCount property to iterate through the 0-based Fields property and access fields by their ordinal
position in the current record.

Component Reference

Page 700

TDBISAMRecord.Fields Property

property Fields: TFields

The Fields property allows you to access a given TField in the current record by its ordinal position (0-
based) in the current record.

Component Reference

Page 701

TDBISAMRecord.FieldValues Property

property FieldValues[const FieldName: String]: Variant

The FieldValues property allows you read or update the value of a given field using its field name.

Note
The FieldValues property only returns field values as variants, so the usual caveats regarding
variants and NULL values applies.

Component Reference

Page 702

TDBISAMRecord.Modified Property

property Modified: Boolean

The Modified property indicates whether the current record has been modified since the insert, update, or
delete operation started. The Modified property is initially False at the beginning of an insert, update or
delete, and is only set to True if a Before or After trigger, or an error handler, modifies the current record.

Component Reference

Page 703

TDBISAMRecord.RecNo Property

property RecNo: Integer

The RecNo property indicates the physical record number of the current record.

Note
This value is not necessarily the same as the RecNo property for the TDBISAMTable or
TDBISAMQuery components, which is a logical record number.

Component Reference

Page 704

TDBISAMRecord.RecordHash Property

property RecordHash: String

The RecordHash property indicates the MD5 hash value of the current record in the form of a string.

Component Reference

Page 705

TDBISAMRecord.RecordID Property

property RecordID: Integer

The RecordID property indicates the inviolate record ID of the current record.

Component Reference

Page 706

TDBISAMRecord.RecordSize Property

property RecordSize: Word

The RecordSize property indicates the total physical size, in bytes, of the current record.

Component Reference

Page 707

TDBISAMRecord.Create Method

constructor Create

Call the Create constructor to create an instance of a TDBISAMRecord object. However, you should never
need to create an instance of the TDBISAMRecord object since one is automatically created when any of
the TDBISAMEngine trigger or error events is called.

Component Reference

Page 708

TDBISAMRecord.CreateBlobStream Method

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode):
 TStream

Call the CreateBlobStream method to obtain a stream for reading data from or writing data to a BLOB
field. The Field parameter must specify a TBlobField component from the Fields property. The Mode
parameter specifies whether the stream will be used for reading, writing, or updating the contents of the
field.

Component Reference

Page 709

TDBISAMRecord.FieldByName Method

function FieldByName(const FieldName: String): TField

Call the FieldByName method to access a TField component by its name. If the specified field does not
exist, an EDatabaseError exception is triggered.

Component Reference

Page 710

TDBISAMRecord.FindField Method

function FindField(const FieldName: String): TField

Call the FindField method to determine if a specified TField component exists in the current record. If the
FindField method finds a field with a matching name, it returns the TField component for the specified
field. Otherwise it returns nil.

Note
The FindField method is the same as the FieldByName method, except that it returns nil rather than
raising an exception when the field is not found.

Component Reference

Page 711

TDBISAMRecord.GetBlobFieldData Method

function GetBlobFieldData(FieldNo: Integer; var Buffer:
 TBlobByteData): Integer

Call the GetBlobFieldData method to read BLOB data from the field specified by FieldNo direcctory into a
buffer. The buffer is a dynamic array of bytes, so that it can grow to accommodate the size of the BLOB
data. The GetBlobFieldData method returns the size of the buffer.

Component Reference

Page 712

TDBISAMRecord.GetFieldNames Method

procedure GetFieldNames(List: TStrings)

Call the GetFieldNames method to retrieve the list of fields for the current record into a TStrings object.

Note
The TStrings object must be created by the application prior to calling this method, and the
application is responsible for its destruction after the method is called.

Component Reference

Page 713

5.21 TDBISAMSession Component

Unit: dbisamtb

Inherits From TComponent

Use the TDBISAMSession component to manage a local or remote session within an application. A session
acts like a "virtual user" and each new session component used in an application maintains its own
database connections, table buffers, table cursors, etc. Because of the unique requirements of a multi-
threaded application, DBISAM requires that you use a separate TDBISAMSession component for each
thread in use, thus treating each thread as a separate "virtual user".

A default TDBISAMSession component is created automatically when the application is started and can be
referenced via the global Session function in the dbisamtb unit (Delphi) and dbisamtb header file (C++).

Note
Applications that maintain multiple sessions can manage them through the TDBISAMEngine
component. A TDBISAMEngine component is created automatically when an application is started
and can be referenced via the global Engine function in the dbisamtb unit (Delphi) and dbisamtb
header file (C++).

Properties Methods Events

Active AddPassword OnPassword

AutoSessionName AddRemoteDatabase OnRemoteLogin

CurrentRemoteID AddRemoteDatabaseUser OnRemoteProcedureProgress

CurrentRemoteUser AddRemoteEvent OnRemoteReceiveProgress

CurrentServerUser AddRemoteProcedure OnRemoteReconnect

CurrentServerUserAddress AddRemoteProcedureUser OnRemoteSendProgress

DatabaseCount AddRemoteUser OnRemoteTimeout

Databases CallRemoteProcedure OnRemoteTrace

EngineVersion Close OnShutdown

ForceBufferFlush CloseDatabase OnStartup

Handle Create

KeepConnections DeleteRemoteDatabase

LockProtocol DeleteRemoteDatabaseUser

LockRetryCount DeleteRemoteEvent

LockWaitTime DeleteRemoteProcedure

PrivateDir DeleteRemoteProcedureUser

ProgressSteps DeleteRemoteUser

RemoteAddress DisconnectRemoteSession

Component Reference

Page 714

RemoteCompression DropConnections

RemoteEncryption FindDatabase

RemoteEncryptionPassword GetDatabaseNames

RemoteHost GetPassword

RemoteParams GetRemoteAdminAddress

RemotePassword GetRemoteAdminPort

RemotePing GetRemoteAdminThreadCacheSize

RemotePingInterval GetRemoteConfig

RemotePort GetRemoteConnectedSessionCount

RemoteService GetRemoteDatabase

RemoteTimeout GetRemoteDatabaseNames

RemoteTrace GetRemoteDatabaseUser

RemoteUser GetRemoteDatabaseUserNames

SessionName GetRemoteDateTime

SessionType GetRemoteEngineVersion

StoreActive GetRemoteEvent

StrictChangeDetection GetRemoteEventNames

GetRemoteLogCount

GetRemoteLogRecord

GetRemoteMainAddress

GetRemoteMainPort

GetRemoteMainThreadCacheSize

GetRemoteMemoryUsage

GetRemoteProcedure

GetRemoteProcedureNames

GetRemoteProcedureUser

GetRemoteProcedureUserNames

GetRemoteServerDescription

GetRemoteServerName

GetRemoteSessionCount

GetRemoteSessionInfo

GetRemoteUpTime

GetRemoteUser

GetRemoteUserNames

GetRemoteUTCDateTime

GetTableNames

Component Reference

Page 715

ModifyRemoteConfig

ModifyRemoteDatabase

ModifyRemoteDatabaseUser

ModifyRemoteEvent

ModifyRemoteProcedure

ModifyRemoteProcedureUser

ModifyRemoteUser

ModifyRemoteUserPassword

Open

OpenDatabase

RemoteParamByName

RemoveAllPasswords

RemoveAllRemoteMemoryTables

RemovePassword

RemoveRemoteSession

SendProcedureProgress

StartRemoteServer

StopRemoteServer

Component Reference

Page 716

TDBISAMSession.Active Property

property Active: Boolean

Use the Active property to specify whether or not a session is active. Setting Active to True starts the
session and triggers the OnStartup event for the session. If the SessionType property is set to stRemote,
then DBISAM will attempt to connect to the database server specified by the RemoteHost or
RemoteAddressand RemotePort or RemoteService properties. If the session can successfully connect to
the database server, it will then automatically login to the server using the RemoteUser and
RemotePasword properties.

Setting Active to False closes any open datasets, and disconnects active database connections. If the
SessionType property is set to stRemote, then the connection to the database server is closed and the
user is logged out.

Component Reference

Page 717

TDBISAMSession.AutoSessionName Property

property AutoSessionName: Boolean

Use the AutoSessionName property to specify whether or not a unique session name is automatically
generated for the TDBISAMSession component. AutoSessionName is intended to guarantee developers of
multi-threaded applications that TDBISAMSession components created for each thread are assigned
unique names at runtime.

When AutoSessionName is False (the default), the application must set the SessionName property for a
session component to a unique name within the context of the application. When AutoSessionName is
True, the TDBISAMSession component assigns the SessionName property automatically and replicates this
session name across the SessionName properties of all TDBISAMDatabase, TDBISAMQuery, and
TDBISAMTable components in the data module or form where the session component is created. This
allows applications to use TDBISAMSession components in data modules that are replicated over multiple
threads without having to worry about providing unique names for each session when the data module is
created. The TDBISAMSession component constructs a session name by taking the current value of the
Name property and appending an underscore (_) followed by a numeric value. For example, if the Name
property was set to "CustomerSession", then the AutoSessionName property would be set to
"CustomerSession_2" for the second session created.

Note
The following restrictions apply to the AutoSessionName property:

• You cannot set the AutoSessionName property to True for a TDBISAMSession component in a data
module or form that contains more than one TDBISAMSession component.

• You cannot add a TDBISAMSession component to a data module or form that already contains a
TDBISAMSession component with its AutoSessionName property set to True.

• You cannot directly set the SessionName property of a TDBISAMSession component when its
AutoSessionName property is True.

Component Reference

Page 718

TDBISAMSession.CurrentRemoteID Property

property CurrentRemoteID: Integer

Indicates the ID of the session that is currently logged in to a database server.

Component Reference

Page 719

TDBISAMSession.CurrentRemoteUser Property

property CurrentRemoteUser: String

Indicates the user name of the session that is currently logged in to a database server.

Note
This property is only valid when the current session is a remote session (SessionType=stRemote)
and is successfully logged into a DBISAM database server.

Component Reference

Page 720

TDBISAMSession.CurrentServerUser Property

property CurrentServerUser: String

Indicates the user name of the session that is currently logged in to a database server.

Note
This property is only used from within triggers or server-side procedures when the engine is
behaving as a database server and the TDBISAMEngine EngineType is equal to etServer. It returns
an empty string at any other time.

Component Reference

Page 721

TDBISAMSession.CurrentServerUserAddress Property

property CurrentServerUserAddress: String

Indicates the IP address of the session that is currently logged in to a database server.

Note
This property is only used from within triggers or server-side procedures when the engine is
behaving as a database server and the TDBISAMEngine EngineType is equal to etServer. It returns
an empty string at any other time.

Component Reference

Page 722

TDBISAMSession.DatabaseCount Property

property DatabaseCount: Integer

Indicates the number of active TDBISAMDatabase components currently associated with the session. This
number can change as TDBISAMDatabase components are opened and closed. If the DatabaseCount
property is zero, there are currently no active TDBISAMDatabase components associated with the session.

DatabaseCount is typically used with the Databases property to iterate through the current set of active
TDBISAMDatabase components in a session.

Component Reference

Page 723

TDBISAMSession.Databases Property

property Databases[Index: Integer]: TDBISAMDatabase

Use the Databases property to access active TDBISAMDatabase components associated with a session. An
active TDBISAMDatabase component is one that has its Connected property set to True.

The Databases property is typically used with the DatabaseCount property to iterate through the current
set of active TDBISAMDatabase components in a session.

Component Reference

Page 724

TDBISAMSession.EngineVersion Property

property EngineVersion: String

Indicates the current version of DBISAM being used. This property is read-only, but published so that it is
visible in the Object Inspector in Delphi, Kylix, and C++Builder.

Component Reference

Page 725

TDBISAMSession.ForceBufferFlush Property

property ForceBufferFlush: Boolean

Use the ForceBufferFlush property to specify that the all TDBISAMQuery and TDBISAMTable components
in this session should automatically force the operating system to flush its write buffers to disk after
DBISAM has written any data using operating system calls. This can significantly reduce instances of
corruption in the event of an improper application shutdown, however it can also cause performance
degradation for batch updates, repairing tables, etc. A better alternative for reducing the performance
implications of this property is to use the FlushBuffers method of the TDBISAMTable or TDBISAMQuery
components to selectively flush the operating system write buffers to disk as necessary.

Component Reference

Page 726

TDBISAMSession.Handle Property

property Handle: TDBISAMSessionManager

The Handle property is for internal use only and is not useful to the application developer using DBISAM.

Component Reference

Page 727

TDBISAMSession.KeepConnections Property

property KeepConnections: Boolean

Use the KeepConnections property to specify whether or not a temporary TDBISAMDatabase component
created in the context of a session maintains a database connection even if there are no active
TDBISAMQuery or TDBISAMTable components associated with the TDBISAMDatabase component. If the
KeepConnections property is True (the default), the application maintains TDBISAMDatabase connections
until the application exits or calls the DropConnections method. For remote sessions, the KeepConnections
property should remain True to reduce network traffic and avoid constantly opening and closing
databases.

When the KeepConnections property is False, an application disconnects from a database when all
TDBISAMQuery and TDBISAMTable components associated with a TDBISAMDatabase component are
closed. Dropping a connection releases system resources allocated to the connection, but if a dataset is
later reopened that uses the same database, the connection must be reestablished and initialized.

Note
The duration of a connection for a persistent, not temporary, TDBISAMDatabase component is
determined by the TDBISAMDatabase component's KeepConnection property instead of the
session's KeepConnections property.

Component Reference

Page 728

TDBISAMSession.LockProtocol Property

property LockProtocol: TLockProtocol

Use the LockProtocol property to specify whether the session will use a pessimistic or optimistic locking
model when editing records via navigational or SQL methods. The pessimistic locking model dictates that
records should be locked when the record is retrieved for editing, which is during the Edit method of a
TDBISAMTable or TDBISAMQuery component and during the execution of an SQL UPDATE statement. The
optimistic locking model dictates that records should be locked when the record modifications are posted
to the database table, which is during the Post method of a TDBISAMTable or TDBISAMQuery component
and during the execution of an SQL UPDATE statement. Using an optimistic locking model for remote
connections to a database server removes the possibility that dangling record locks will be left on the
server if a client application is terminated unexpectedly.

The default value is lpPessimistic.

Component Reference

Page 729

TDBISAMSession.LockRetryCount Property

property LockRetryCount: Byte

Use the LockRetryCount property to specify the number of times DBISAM will retry a record lock or table
lock before displaying a lock failure message. The amount of time between each lock retry is controlled by
the LockWaitTime property of the TDBISAMSession component.

Note
This property only affects datasets (TDBISAMTable or TDBISAMQuery components) attached to this
TDBISAMSession component via their SessionName property.

Component Reference

Page 730

TDBISAMSession.LockWaitTime Property

property LockWaitTime: Word

Use the LockWaitTime property to specify the amount of time, in milliseconds, DBISAM will wait between
retries of a record lock or table lock. The number of times that a lock is retried is controlled by the
LockRetryCount property of the TDBISAMSession component.

Note
This property only affects datasets (TDBISAMTable or TDBISAMQuery components) attached to this
TDBISAMSession component via their SessionName property.

Component Reference

Page 731

TDBISAMSession.PrivateDir Property

property PrivateDir: String

Use the PrivateDir property to set the physical directory in which to store temporary tables such as those
generated by DBISAM to store canned query result sets of SQL SELECT statements. This property defaults
to the local temporary files directory for the current user.

Note
This property is ignored for remote sessions. The database server has a specific configuration
setting for the location of temporary tables that are created on the database server.

Component Reference

Page 732

TDBISAMSession.ProgressSteps Property

property ProgressSteps: Word

Use the ProgressSteps property to specify how many times a progress event will be fired during a batch
operation on any TDBISAMQuery or TDBISAMTable component attached to this TDBISAMSssion
component via their SessionName property. This property can be set to any value between 0 and 100.
Setting this property to 0 will suppress all progress events.

Component Reference

Page 733

TDBISAMSession.RemoteAddress Property

property RemoteAddress: String

Use the RemoteAddress property to specify the IP address of a database server that you wish to connect
to. This property only applies to remote sessions where the SessionType property is set to stRemote.
When the session is opened via the Open method or by setting the Active property to True, DBISAM will
attempt to connect to the database server specified by the RemoteAddress or RemoteHost and
RemotePort or RemoteService properties.

Component Reference

Page 734

TDBISAMSession.RemoteCompression Property

property RemoteCompression: Byte

Use the RemoteCompression property to set the level of compression used for a remote session. This
property only applies to remote sessions where the SessionType property is set to stRemote. The
compression is specified as a Byte value between 0 and 9, with the default being 0, or none, and 6 being
the best selection for size/speed. The default compression is ZLib, but can be replaced by using the
TDBISAMEngine events for specifying a different type of compression. Please see the Compression and
Customizing the Engine topics for more information.

Note
This property can be changed while the session is connected so that you may adjust the level of
compression for individual situations.

Component Reference

Page 735

TDBISAMSession.RemoteEncryption Property

property RemoteEncryption: Boolean

Use the RemoteEncryption property to specify that a remote session will be encrypted using the
RemoteEncryptionPassword property. This property only applies to remote sessions where the
SessionType property is set to stRemote. The default encryption uses the 128-bit Blowfish algorithm, but
can be replaced by using the TDBISAMEngine events for specifying a different type of block-cipher
encryption. Please see the Encryption and Customizing the Engine topics for more information.

Note
This property must be set prior to connecting the session to the database server via the Open
method or the Active property.

Component Reference

Page 736

TDBISAMSession.RemoteEncryptionPassword Property

property RemoteEncryptionPassword: String

Use the RemoteEncryptionPassword property to specify the password for an encrypted remote session.
The RemoteEncryption property controls whether the session is encrypted or not. This property only
applies to remote sessions where the SessionType property is set to stRemote. The default encryption
uses the 128-bit Blowfish algorithm, but can be replaced by using the TDBISAMEngine events for
specifying a different type of block-cipher encryption. Please see the Encryption and Customizing the
Engine topics for more information.

Note
This property must be set prior to connecting the session to the database server via the Open
method or the Active property.

Component Reference

Page 737

TDBISAMSession.RemoteHost Property

property RemoteHost: String

Use the RemoteHost property to specify the host name of a database server that you wish to connect to. A
host name is alternate way of specifying a remote IP address by relying on DNS to translate the host name
into a usable IP address. This property only applies to remote sessions where the SessionType property is
set to stRemote. When the session is opened via the Open method or by setting the Active property to
True, DBISAM will attempt to connect to the database server specified by the RemoteAddress or
RemoteHost and RemotePort or RemoteService properties.

Component Reference

Page 738

TDBISAMSession.RemoteParams Property

property RemoteParams: TDBISAMParams

Use the RemoteParams property to manipulate TDBISAMParam objects when calling server-side
procedures from a remote session using the CallRemoteProcedure method or from within a server-side
procedure via a TDBISAMEngine OnServerProcedure event handler. You should populate the
RemoteParams property with the desired parameters prior to calling the CallRemoteProcedure method
and, once the server-side procedure returns, you can then inspect the RemoteParams property to retrieve
the return values, if any, from the server-side procedure.

Component Reference

Page 739

TDBISAMSession.RemotePassword Property

property RemotePassword: String

Use the RemotePassword property to specify the password for automating the login to a database server.
This property only applies to remote sessions where the SessionType property is set to stRemote. When
the session is opened via the Open method or by setting the Active property to True, DBISAM will attempt
to connect to the database server specified by the RemoteAddress or RemoteHost and RemotePort or
RemoteService properties, and automatically login to the server using the RemoteUser and
RemotePassword properties. If for any reason these properties are not set correctly then the
OnRemoteLogin event will fire. If an event handler is not assigned to the OnRemoteLogin event then a
remote login dialog will be displayed in order to prompt the user for a user name and password.

Component Reference

Page 740

TDBISAMSession.RemotePing Property

property RemotePing: Boolean

Use the RemotePing property to enable or disable pinging to a database server. Pinging the database
server allows for the use of a smaller dead session expiration time and can be used to prevent dangling
locks when a client workstation shuts down and leaves an open session on the database server. When the
RemotePing property is set to True, the remote session will ping the database server according to the
interval in seconds specified by the RemotePingInterval property. This property only applies to remote
sessions where the SessionType property is set to stRemote.

Component Reference

Page 741

TDBISAMSession.RemotePingInterval Property

property RemotePingInterval: Word

Use the RemotePingInterval property to specify the interval in seconds between pings to a database server
when the RemotePing property is set to True. This property only applies to remote sessions where the
SessionType property is set to stRemote.

Component Reference

Page 742

TDBISAMSession.RemotePort Property

property RemotePort: Integer

Use the RemotePort property to specify the port of a database server that you wish to connect to. This
property only applies to remote sessions where the SessionType property is set to stRemote. When the
session is opened via the Open method or by setting the Active property to True, DBISAM will attempt to
connect to the database server specified by the RemoteAddress or RemoteHost and RemotePort or
RemoteService properties.

Note
A database server listens on two different ports, one for normal data connections and one for
administrative connections. Be sure to set the correct port using this property or you will get errors
when trying to execute administrative functions on the normal data port or vice-versa. This is
especially important since the administrative port requires encrypted connections
(RemoteEncryption=True).

Component Reference

Page 743

TDBISAMSession.RemoteService Property

property RemoteService: String

Use the RemoteService property to specify the service name of a database server that you wish to connect
to. A service name is an alternate way of specifying a remote port using a standard name instead of a port
number. This property only applies to remote sessions where the SessionType property is set to stRemote.
When the session is opened via the Open method or by setting the Active property to True, DBISAM will
attempt to connect to the database server specified by the RemoteAddress or RemoteHost and
RemotePort or RemoteService properties.

Note
A database server listens on two different ports, one for normal data connections and one for
administrative connections. Be sure to set the correct service name using this property that
translates to the correct port on the database server or you will get errors when trying to execute
administrative functions on the normal data port or vice-versa. This is especially important since the
administrative port requires encrypted connections (RemoteEncryption=True).

Component Reference

Page 744

TDBISAMSession.RemoteTimeout Property

property RemoteTimeout: Word

Use the RemoteTimeout property to specify the amount of time, in seconds, that a remote session should
wait for a response from a database server before firing the OnRemoteTimeout event. If the
OnRemoteTimeout event is assigned an event handler, then the event handler can decide whether to
disconnect the session or not. If the OnRemoteTimeout event is not assigned an event handler, then
DBISAM will disconnect the session. This property only applies to remote sessions where the SessionType
property is set to stRemote.

Note
Just because the session disconnects its side of the connection with the server does not necessarily
mean that the server knows the session is disconnected or immediately treats the session as a
"dead" session. The server may just simply be executing a very long process and has not sent a
progress message in a longer period of time than what is configured for the RemoteTimeout
property. Please see the DBISAM Architecture topic for more information on the meaning of "dead"
sessions on a database server.

Component Reference

Page 745

TDBISAMSession.RemoteTrace Property

property RemoteTrace: Boolean

Use the RemoteTrace property to enable or disable tracing of all requests sent to and responses received
from a database server. When the RemoteTrace property is set to True, the OnRemoteTrace event is fired
whenever a request is sent to or a response is received from the database server. This can be useful in
debugging performance issues with a database server connection. This property only applies to remote
sessions where the SessionType property is set to stRemote.

Component Reference

Page 746

TDBISAMSession.RemoteUser Property

property RemoteUser: String

Use the RemoteUser property to specify the user name for automating the login to a database server. This
property only applies to remote sessions where the SessionType property is set to stRemote. When the
session is opened via the Open method or by setting the Active property to True, DBISAM will attempt to
connect to the database server specified by the RemoteAddress or RemoteHost and RemotePort or
RemoteService properties, and automatically login to the server using the RemoteUser and
RemotePassword properties. If for any reason these properties are not set correctly then the
OnRemoteLogin event will fire. If an event handler is not assigned to the OnRemoteLogin event then a
remote login dialog will be displayed in order to prompt the user for a user name and password.

Component Reference

Page 747

TDBISAMSession.SessionName Property

property SessionName: String

Use the SessionName property to specify a unique session name that can be used by TDBISAMDatabase,
TDBISAMQuery, and TDBISAMTable components to link to this session via their own SessionName
properties, which must either match the SessionName property of an active session or be blank, indicating
that they should be associated with the default global TDBISAMSession component that is created
automatically when the application is started and can be referenced via the global Session function in the
dbisamtb unit (Delphi and Kylix) and dbisamtb header file (C++Builder).

Note
If the AutoSessionName property is True, an application cannot set the SessionName property
directly.

Component Reference

Page 748

TDBISAMSession.SessionType Property

property SessionType: TSessionType

Use the SessionType property to specify the type of session represented by the session component.
Setting this property to stLocal (the default) will cause DBISAM to access all databases and tables in the
session directly using operating system calls. Setting this property to stRemote will cause DBISAM to
access all databases and tables in the session remotely through the database server specified by the
RemoteAddress or RemoteHost and RemotePort or RemoteService properties.

Note
This property must be set prior to starting the session via the Open method or the Active property.

Component Reference

Page 749

TDBISAMSession.StoreActive Property

property StoreActive: Boolean

Use the StoreActive property to determine if the session should store the current value of its Active
property, and subsequently, the Active/Connected property values of all other DBISAM components such
as the TDBISAMDatabase, TDBISAMTable, and TDBISAMQuery components, in the owner form or data
module. The default value for this property is True.

Component Reference

Page 750

TDBISAMSession.StrictChangeDetection Property

property StrictChangeDetection: Boolean

Use the StrictChangeDetection property to indicate that all TDBISAMQuery and TDBISAMTable components
linked to this TDBISAMSession component will use either a strict or lazy change detection policy when
checking for changes made by other users or sessions. The default value is False, meaning that lazy
change detection is the default change detection policy.

Component Reference

Page 751

TDBISAMSession.AddPassword Method

procedure AddPassword(const Password: String)

Call the AddPasssword method to add a password to the session for use when accessing encrypted
database tables. If an application opens a table using a TDBISAMQuery or TDBISAMTable component that
is encrypted with a password and the session does not currently contain the password in memory, then
the session will first try to trigger the OnPassword event. If the OnPassword event does have an event
handler assigned to it, then DBISAM will display a password dialog prompting the user for a valid
password before allowing access to the encrypted table.

Note
If an application defines an OnPassword event handler, the handler should call the AddPassword
method to add passwords for the session.

Component Reference

Page 752

TDBISAMSession.AddRemoteDatabase Method

procedure AddRemoteDatabase(const DatabaseName: String; const
 DatabaseDescription: String; const ServerPath: String)

Call the AddRemoteDatabase method to add a new database to a database server. Use the
DatabaseName parameter to specify the new database name, the DatabaseDescription parameter to give
it a description, and the ServerPath parameter to specify the physical path to the tables, relative to the
database server.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 753

TDBISAMSession.AddRemoteDatabaseUser Method

procedure AddRemoteDatabaseUser(const DatabaseName: String;
 const AuthorizedUser: String; RightsToAssign: TDatabaseRights)

Call the AddRemoteDatabaseUser method to add rights for an existing user to an existing database on a
database server. Use the DatabaseName parameter to specify the existing database name, the
AuthorizedUser parameter to specify the existing user, and the RightsToAssign parameter to specify the
rights to give to the user for the database. You may use a wildcard (*) for the AuthorizedUser parameter.
For example, you could specify just "*" for all users or "Accounting*" for all users whose user name begins
with "Accounting".

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 754

TDBISAMSession.AddRemoteEvent Method

procedure AddRemoteEvent(const EventName: String; const
 EventDescription: String; EventRunType: TEventRunType;
 EventStartDate: TDateTime; EventEndDate: TDateTime;
 EventStartTime: TDateTime; EventEndTime: TDateTime;
 EventInterval: Word; EventDays: TEventDays; EventDayOfMonth:
 TEventDayOfMonth; EventDayOfWeek: TEventDayOfWeek; EventMonths:
 TEventMonths)

Call the AddRemoteEvent method to add a new scheduled event to a database server. Use the EventName
parameter to specify the new event name, the EventDescription parameter to give it a description, the
EventRunType parameter to specify how the event should be run, the EventStartDate and EventEndDate
parameter to specify the dates during which the event should be run, the EventStartTime and
EventEndTime parameters to specify the time of day during which the event can be run, the EventInterval
to specify how often the event should be run (actual interval unit depends upon the EventRunType, and
the EventDays, EventDayOfMonth, EventDayOfWeek, and EventMonths parameters to specify on what day
of the week or month the event should be run. The following describes which parameters are required for
each possible EventRunType value (all run types require the EventStartDate, EventEndDate,
EventStartTime, and EventEndTime parameters):

Run Type Parameters Needed

rtOnce No Other Parameters

rtHourly EventInterval (Hours)

rtDaily EventInterval (Days)

rtWeekly EventInterval (Weeks)
EventDays

Note
The EventDays parameter specifies which days of the
week to run on, with day 1 being Sunday and day 7
being Saturday. Just set the array index of the desired
day to True to cause the event to run on that day.

rtMonthly EventDayOfMonth
EventDayOfWeek
EventMonths

Component Reference

Page 755

Note
The EventDayOfMonth parameter specifies which day
of the month to run on, a numbered day (1-31) or a
specific day (Sunday-Saturday) of the 1st, 2nd, 3rd, or
4th week specified by the EventDayOfWeekParameter.
The EventMonths parameter specifies which months of
the year to run on, with month 1 being January and
month 12 being December. Just set the array index of
the desired month to True to cause the event to run on
that month.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 756

TDBISAMSession.AddRemoteProcedure Method

procedure AddRemoteProcedure(const ProcedureName: String; const
 ProcedureDescription: String)

Call the AddRemoteProcedure method to add a new server-side procedure to a database server. Use the
ProcedureName parameter to specify the new procedure name and the ProcedureDescription parameter to
give it a description. This method only identifies the procedure to the database server for the purposes of
allowing user rights to be assigned to the server-side procedure. The actual server-side procedure itself
must be implemented via a TDBISAMEngine OnServerProcedure event handler on the database server
itself.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 757

TDBISAMSession.AddRemoteProcedureUser Method

procedure AddRemoteProcedureUser(const ProcedureName: String;
 const AuthorizedUser: String; RightsToAssign: TProcedureRights)

Call the AddRemoteProcedureUser method to add rights for an existing user to an existing server-side
procedure on a database server. Use the ProcedureName parameter to specify the existing server-side
procedure name, the AuthorizedUser parameter to specify the existing user, and the RightsToAssign
parameter to specify the rights to give to the user for the procedure. You may use a wildcard (*) for the
AuthorizedUser parameter. For example, you could specify just "*" for all users or "Accounting*" for all
users whose user name begins with "Accounting".

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 758

TDBISAMSession.AddRemoteUser Method

procedure AddRemoteUser(const UserName: String; const
 UserPassword: String; const UserDescription: String;
 IsAdministrator: Boolean=False; MaxConnections:
 Word=DEFAULT_MAX_USER_CONNECTIONS)

Call the AddRemoteUser method to add a new user to a database server. Use the UserName parameter to
specify the new user name, the UserPassword parameter to specify the user's password, the
UserDescription parameter to specify a description of the user, the IsAdministrator parameter to indicate
whether the new user is an administrator, and the MaxConnections property is used to specify how many
concurrent connections this user is allowed to have at any given time.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 759

TDBISAMSession.CallRemoteProcedure Method

procedure CallRemoteProcedure(const ProcedureName: String)

Call the CallRemoteProcedure method to call a server-side procedure on a database server. Use the
ProcedureName parameter to specify which procedure to call. You should populate the RemoteParams
property with the desired parameters prior to calling the CallRemoteProcedure method and, once the
server-side procedure returns, you can then inspect the RemoteParams property to retrieve the return
values, if any, from the server-side procedure.

Note
You must have execute rights to the specified server-side procedure or an error will result.

Component Reference

Page 760

TDBISAMSession.Close Method

procedure Close

Call the Close method to close the session and disconnect from a database server if the SessionType
property is set to stRemote. The Close method disconnects all active TDBISAMDatabase components that
are linked to the session via their SessionName property, which in turn closes all TDBISAMQuery and
TDBISAMTable components linked to these databases.

Note
Setting the Active property to False also closes a session.

Component Reference

Page 761

TDBISAMSession.CloseDatabase Method

procedure CloseDatabase(Database: TDBISAMDatabase)

Call the CloseDatabase method to close a TDBISAMDatabase component linked to the current session. The
Database parameter specifies TDBISAMDatabase component that you wish to close.

The CloseDatabase method decrements the specified TDBISAMDatabase component's reference count and
then, if the reference count is zero and the TDBISAMDatabase component's KeepConnection property is
False, closes the TDBISAMDatabase component.

Component Reference

Page 762

TDBISAMSession.Create Method

constructor Create(AOwner: TComponent)

Call the Create constructor to create an instance of a TDBISAMSession component. The default
TDBISAMSession component, represented by the global Session function in the dbisamtb unit (Delphi and
Kylix) or dbisamtb header file (C++Builder), is created automatically when the application starts.

Component Reference

Page 763

TDBISAMSession.DeleteRemoteDatabase Method

procedure DeleteRemoteDatabase(const DatabaseName: String)

Call the DeleteRemoteDatabase method to remove an existing database from a database server. Use the
DatabaseName parameter to specify the existing database name.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 764

TDBISAMSession.DeleteRemoteDatabaseUser Method

procedure DeleteRemoteDatabaseUser(const DatabaseName: String;
 const AuthorizedUser: String)

Call the DeleteRemoteDatabaseUser method to remove rights for an existing user to an existing database
on a database server. Use the DatabaseName parameter to specify the existing database name and the
AuthorizedUser parameter to specify the existing user.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 765

TDBISAMSession.DeleteRemoteEvent Method

procedure DeleteRemoteEvent(const EventName: String)

Call the DeleteRemoteEvent method to remove an existing scheduled event from a database server. Use
the EventName parameter to specify the existing scheduled event name.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 766

TDBISAMSession.DeleteRemoteProcedure Method

procedure DeleteRemoteProcedure(const ProcedureName: String)

Call the DeleteRemoteProcedure method to remove an existing server-side procedure from a database
server. Use the ProcedureName parameter to specify the existing server-side procedure name.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 767

TDBISAMSession.DeleteRemoteProcedureUser Method

procedure DeleteRemoteProcedureUser(const ProcedureName: String;
 const AuthorizedUser: String)

Call the DeleteRemoteProcedureUser method to remove rights for an existing user to an existing server-
side procedure on a database server. Use the ProcedureName parameter to specify the existing server-
side procedure name and the AuthorizedUser parameter to specify the existing user.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 768

TDBISAMSession.DeleteRemoteUser Method

procedure DeleteRemoteUser(const UserName: String)

Call the DeleteRemoteUser method to remove an existing user from a database server. Use the UserName
parameter to specify the existing user name.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 769

TDBISAMSession.DisconnectRemoteSession Method

function DisconnectRemoteSession(SessionID: Integer): Boolean

Call the DisconnectRemoteSession method to disconnect a specific session on a database server.
Disconnecting a session only terminates its connection, it does not remove the session completely from the
database server nor does it release any resources for the session other than the thread used for the
connection and the connection itself at the operating system level. Use the SessionID parameter to specify
the session ID to disconnect. You can get the session ID for a particular session by using the
GetRemoteSessionCount and the GetRemoteSessionInfo methods.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 770

TDBISAMSession.DropConnections Method

procedure DropConnections

Call the DropConnections method to free all temporary TDBISAMDatabase components for the session that
are inactive. If the KeepConnections property of the session is True (the default), then temporary
TDBISAMDatabase components created as needed for the session by DBISAM at runtime are not
automatically freed when their database connections are closed. DropConnections enables an application
to free these TDBISAMDatabase components when they are no longer needed.

Component Reference

Page 771

TDBISAMSession.FindDatabase Method

function FindDatabase(const DatabaseName: String):
 TDBISAMDatabase

Call the FindDatabase method to searches a session's list of TDBISAMDatabase components for a specified
database. The DatabaseName parameter specifies the name of the TDBISAMDatabase component to
search for. The FindDatabase method compares the DatabaseName parameter to the DatabaseName
property for each TDBISAMDatabase component linked to the session via its SessionName property. If a
match is found, the FindDatabase method returns a reference to the TDBISAMDatabase component.
Otherwise the FindDatabase method returns nil.

Component Reference

Page 772

TDBISAMSession.GetDatabaseNames Method

procedure GetDatabaseNames(List: TStrings)

Call the GetDatabaseNames method to populate a string list with the names of all TDBISAMDatabase
components linked to the session via their SessionName property. List is a string list object, created and
maintained by the application, into which to store the database names.

Note
This method is not the same as the GetRemoteDatabaseNames method, which returns a list of
databases defined on a database server.

Component Reference

Page 773

TDBISAMSession.GetPassword Method

function GetPassword: Boolean

Call the GetPassword method to trigger the OnPassword event handler for the session, if one is assigned
to the OnPassword event, or display the default password dialog box if an OnPassword event handler is
not assigned.

An application can use the return value of the GetPassword method to control program logic. The
GetPassword method returns True if a user chooses OK from the default password dialog or the
OnPassword event handler sets its Continue parameter to True. The GetPassword method returns False if
the user chooses Cancel from the default password dialog or the OnPassword event handler sets its
Continue parameter to False.

Component Reference

Page 774

TDBISAMSession.GetRemoteAdminAddress Method

function GetRemoteAdminAddress: String

Call the GetRemoteAdminAddress method to retrieve the IP address that the database server is listening
on for administrative connections.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 775

TDBISAMSession.GetRemoteAdminPort Method

function GetRemoteAdminPort: Integer

Call the GetRemoteAdminPort method to retrieve the port that the database server is listening on for
administrative connections.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 776

TDBISAMSession.GetRemoteAdminThreadCacheSize Method

function GetRemoteAdminThreadCacheSize: Integer

Call the GetRemoteAdminThreadCacheSize method to retrieve the number of threads that the database
server will cache in order to improve connect/disconnect performance for administrative connections.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 777

TDBISAMSession.GetRemoteConfig Method

procedure GetRemoteConfig(var DenyLogins: Boolean; var
 MaxConnections: Word; var ConnectTimeout: Word; var
 DeadSessionInterval: Word; var DeadSessionExpires: Word; var
 MaxDeadSessions: Word; var TempDirectory: String;
 AuthorizedAddresses: TStrings; BlockedAddresses: TStrings)

Call the GetRemoteConfig method to retrieve the current configuration settings for a database server.
Please see the ModifyRemoteConfig method for more information on the parameters returned from this
method.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server. Also, if the maximum number of connections returned via
this method is lower than what was attempted to be configured via the ModifyRemoteConfig
method, the ServerLicensedConnections property has caused it to be lowered.

Component Reference

Page 778

TDBISAMSession.GetRemoteConnectedSessionCount Method

function GetRemoteConnectedSessionCount: Integer

Call the GetRemoteConnectedSessionCount method to retrieve the total number of connected sessions on
a database server. Sessions that are present on the server, but not connected, are not reported in this
figure. To get a total count of the number of sessions on the database server use the
GetRemoteSessionCount method instead.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 779

TDBISAMSession.GetRemoteDatabase Method

procedure GetRemoteDatabase(const DatabaseName: String; var
 DatabaseDescription: String; var ServerPath: String)

Call the GetRemoteDatabase method to retrieve information about an existing database from a database
server. Use the DatabaseName parameter to specify the existing database name.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 780

TDBISAMSession.GetRemoteDatabaseNames Method

procedure GetRemoteDatabaseNames(List: TStrings)

Call the GetRemoteDatabaseNames method to retrieve a list of databases defined on a database server.

Note
Only databases for which the current user has at least drRead rights to will show up in the list
populated by the GetRemoteDatabaseNames method. This method is valid for both administrative
and regular data connections.

Component Reference

Page 781

TDBISAMSession.GetRemoteDatabaseUser Method

procedure GetRemoteDatabaseUser(const DatabaseName: String;
 const AuthorizedUser: String; var UserRights: TDatabaseRights)

Call the GetRemoteDatabaseUser method to retrieve the rights for an existing user to an existing database
on a database server. Use the DatabaseName parameter to specify the existing database name and the
AuthorizedUser parameter to specify the existing user.

Note
This method is valid for both administrative and regular data connections. However, for regular data
connections this method is only valid if the AuthorizedUser parameter matches that of the
CurrentRemoteUser property.

Component Reference

Page 782

TDBISAMSession.GetRemoteDatabaseUserNames Method

procedure GetRemoteDatabaseUserNames(const DatabaseName: String;
 List: TStrings)

Call the GetRemoteDatabaseUserNames method to retrieve a list of existing users defined with rights for
an existing database on a database server. Use the DatabaseName parameter to specify an existing
database from which to retrieve a list of users.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 783

TDBISAMSession.GetRemoteDateTime Method

function GetRemoteDateTime: TDateTime

Call the GetRemoteDateTime method to retrieve the local date and time from a database server.

Note
This method is valid for both administrative and regular data connections.

Component Reference

Page 784

TDBISAMSession.GetRemoteEngineVersion Method

function GetRemoteEngineVersion: String

Call the GetRemoteEngineVersion method to retrieve the DBISAM version from a database server.

Note
This method is valid for both administrative and regular data connections.

Component Reference

Page 785

TDBISAMSession.GetRemoteEvent Method

procedure GetRemoteEvent(const EventName: String; var
 EventDescription: String; var EventRunType: TEventRunType; var
 EventStartDate: TDateTime; var EventEndDate: TDateTime; var
 EventStartTime: TDateTime; var EventEndTime: TDateTime; var
 EventInterval: Word; var EventDays: TEventDays; var
 EventDayOfMonth: TEventDayOfMonth; var EventDayOfWeek:
 TEventDayOfWeek; var EventMonths: TEventMonths; var
 EventLastRun: TDateTime)

Call the GetRemoteEvent method to retrieve information about an existing scheduled event from a
database server. Use the EventName parameter to specify the existing event name. Please see the
AddRemoteEvent method for more information on the parameters returned from this method. The
EventLastRun parameter specifies the last date and time that the event was successfully run.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 786

TDBISAMSession.GetRemoteEventNames Method

procedure GetRemoteEventNames(List: TStrings)

Call the GetRemoteEventNames method to retrieve a list of scheduled events defined on a database
server.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 787

TDBISAMSession.GetRemoteLogCount Method

function GetRemoteLogCount: Integer

Call the GetRemoteLogCount method to retrieve the total count of log records available in the current log
on a database server.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 788

TDBISAMSession.GetRemoteLogRecord Method

function GetRemoteLogRecord(Number: Integer): TLogRecord

Call the GetRemoteLogRecord method to retrieve the Nth log record from the current log on a database
server.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 789

TDBISAMSession.GetRemoteMainAddress Method

function GetRemoteMainAddress: String

Call the GetRemoteMainAddress method to retrieve the IP address that the database server is listening on
for regular data connections.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 790

TDBISAMSession.GetRemoteMainPort Method

function GetRemoteMainPort: Integer

Call the GetRemoteMainPort method to retrieve the port that the database server is listening on for regular
data connections.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 791

TDBISAMSession.GetRemoteMainThreadCacheSize Method

function GetRemoteMainThreadCacheSize: Integer

Call the GetRemoteMainThreadCacheSize method to retrieve the number of threads that the database
server will cache in order to improve connect/disconnect performance for regular data connections.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 792

TDBISAMSession.GetRemoteMemoryUsage Method

function GetRemoteMemoryUsage: double

Call the GetRemoteMemoryUsage method to retrieve the total amount of memory (in megabytes) currently
allocated by a database server.

Note
This method has been deprecated and always returns 0 as of version 4.17 of DBISAM and the
introduction of the new memory manager used in the DBISAM database server. Please see the
Replacement Memory Manager topic for more information.

Component Reference

Page 793

TDBISAMSession.GetRemoteProcedure Method

procedure GetRemoteProcedure(const ProcedureName: String; var
 ProcedureDescription: String)

Call the GetRemoteProcedure method to retrieve information about an existing server-side procedure from
a database server. Use the ProcedureName parameter to specify the existing server-side procedure name.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 794

TDBISAMSession.GetRemoteProcedureNames Method

procedure GetRemoteProcedureNames(List: TStrings)

Call the GetRemoteProcedureNames method to retrieve a list of server-side procedures defined on a
database server.

Note
Only server-side procedures for which the current user has at least prExecute rights to will show up
in the list populated by the GetRemoteProcedureNames method. This method is valid for both
administrative and regular data connections.

Component Reference

Page 795

TDBISAMSession.GetRemoteProcedureUser Method

procedure GetRemoteProcedureUser(const ProcedureName: String;
 const AuthorizedUser: String; var UserRights: TProcedureRights)

Call the GetRemoteProcedureUser method to retrieve the rights for an existing user to an existing server-
side procedure on a database server. Use the ProcedureName parameter to specify the existing server-
side procedure name and the AuthorizedUser parameter to specify the existing user.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 796

TDBISAMSession.GetRemoteProcedureUserNames Method

procedure GetRemoteProcedureUserNames(const ProcedureName:
 String; List: TStrings)

Call the GetRemoteProcedureUserNames method to retrieve a list of existing users defined with rights for
an existing server-side procedure on a database server. Use the ProcedureName parameter to specify an
existing server-side procedure from which to retrieve a list of users.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 797

TDBISAMSession.GetRemoteServerDescription Method

function GetRemoteServerDescription: String

Use the GetRemoteServerDescription method to retrieve the description of a database server.

Note
This method is valid for both administrative and regular data connections.

Component Reference

Page 798

TDBISAMSession.GetRemoteServerName Method

function GetRemoteServerName: String

Use the GetRemoteServerName method to retrieve the name of a database server.

Note
This method is valid for both administrative and regular data connections.

Component Reference

Page 799

TDBISAMSession.GetRemoteSessionCount Method

function GetRemoteSessionCount: Integer

Call the GetRemoteSessionCount method to retrieve the total number of sessions on a database server. To
get a total count of just the number of connected sessions on a database server use the
GetRemoteConnectedSessionCount method instead.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 800

TDBISAMSession.GetRemoteSessionInfo Method

function GetRemoteSessionInfo(SessionNum: Integer; var
 SessionID: Integer; var CreatedOn: TDateTime; var
 LastConnectedOn: TDateTime; var UserName: String; var
 UserAddress: String; var Encrypted: Boolean; var
 LastUserAddress: String): Boolean

Call the GetRemoteSessionInfo method to retrieve session information for a specific session on a database
server. The SessionNum parameter indicates the session number for which to retrieve the session
information. This number represents the logical position of a given session in the list of sessions on a
database server, from 1 to the return value of the GetRemoteSessionCount method. The SessionID
parameter returns unique ID assigned to the session by the database server. The CreatedOn parameter
returns the date and time when the session was created on the database server. The LastConnectedOn
parameter returns the date and time when the session was last connected to the database server. The
UserName parameter returns the name of the user that created the session on the database server. The
UserAddress parameter returns the IP address of the user that created the session on the database server.
If the session is not currently connected, then this parameter will be blank. The Encrypted parameter
returns whether the session is encrypted or not. The LastUserAddress parameter returns the last known IP
address of the session, regardless of whether the session is connected or not. This parameter is useful for
determining the location of a workstation that still has an active session but has disconnected.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 801

TDBISAMSession.GetRemoteUpTime Method

function GetRemoteUpTime: Int64

Call the GetRemoteUpTime method to retrieve the number of seconds that the database server has been
active and accepting new connections.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 802

TDBISAMSession.GetRemoteUser Method

procedure GetRemoteUser(const UserName: String; var
 UserPassword: String; var UserDescription: String; var
 IsAdministrator: Boolean; var MaxConnections: Word)

Call the GetRemoteUser method to retrieve information about an existing user from a database server.
Use the UserName parameter to specify the existing user name.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 803

TDBISAMSession.GetRemoteUserNames Method

procedure GetRemoteUserNames(List: TStrings)

Call the GetRemoteUserNames method to retrieve a list of users defined on a database server.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 804

TDBISAMSession.GetRemoteUTCDateTime Method

function GetRemoteUTCDateTime: TDateTime

Call the GetRemoteUTCDateTime method to retrieve the universal coordinate date and time from a
database server. This is especially useful if you are accessing a database server in a different time zone
and wish to get the date and time in a standard format that doesn't need to take into account the local
server time offset.

Note
This method is valid for both administrative and regular data connections.

Component Reference

Page 805

TDBISAMSession.GetTableNames Method

procedure GetTableNames(const DatabaseName: String; List:
 TStrings)

Call the GetTableNames method to populate a string list with the names of all tables found in the
TDBISAMDatabase component specified by the DatabaseName parameter. List is a string list object,
created and maintained by the application, into which to store the database names.

Note
The DatabaseName parameter can refer to either the DatabaseName property of a
TDBISAMDatabase component or the directory or remote database name of an actual database. If
the DatabaseName parameter matches the DatabaseName property of an existing
TDBISAMDatabase component, then the table names returned will be from that TDBISAMDatabase
component. Otherwise, the DatabaseName parameter will be treated as a directory for a local
session and a database name for a remote session and the table names will be retrieved from the
appropriate database.

Component Reference

Page 806

TDBISAMSession.ModifyRemoteConfig Method

procedure ModifyRemoteConfig(DenyLogins: Boolean;
 MaxConnections: Word; ConnectTimeout: Word; DeadSessionInterval:
 Word; DeadSessionExpires: Word; MaxDeadSessions: Word; const
 TempDirectory: String; AuthorizedAddresses: TStrings;
 BlockedAddresses: TStrings)

Call the ModifyRemoteConfig method to modify the current configuration settings for a database server.
The DenyLogins parameter indicates whether any new logins are denied on the database server. The
MaxConnections parameter indicates the maximum allowable number of connected sessions (not total
sessions) on the database server. The ConnectTimeout parameter indicates how long a session is allowed
to remain idle before the session is disconnected automatically by the database server. The
DeadSessionInterval parameter indicates how often the database server should check for dead sessions
(sessions that have been disconnected for DeadSessionExpires seconds). The DeadSessionExpires
parameter indicates when a disconnected session is considered "dead" based upon the number of seconds
since it was last connected. Specifying 0 for this parameter will cause the database server to never
consider disconnected sessions as dead and instead will keep them around based upon the
MaxDeadSessions parameter alone. The MaxDeadSessions parameter indicates how many dead sessions
are allowed on the database server before the database server will start removing dead sessions in oldest-
first order. The TempDirectory parameter indicates where temporary tables are stored relative to the
database server. This setting is global for all users. The AuthorizedAddresses and BlockedAddresses
parameters are lists of IP addresses that specify which IP addresses are allowed or blocked from accessing
the database server. Both of these accept the use of a leading * wildcard when specifying IP addresses.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 807

TDBISAMSession.ModifyRemoteDatabase Method

procedure ModifyRemoteDatabase(const DatabaseName: String; const
 DatabaseDescription: String; const ServerPath: String)

Call the ModifyRemoteDatabase method to modify information about an existing database on a database
server. Use the DatabaseName parameter to specify the existing database.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 808

TDBISAMSession.ModifyRemoteDatabaseUser Method

procedure ModifyRemoteDatabaseUser(const DatabaseName: String;
 const AuthorizedUser: String; RightsToAssign: TDatabaseRights)

Call the ModifyRemoteDatabaseUser method to modify the rights for an existing user to an existing
database on a database server. Use the DatabaseName parameter to specify the existing database name
and the AuthorizedUser parameter to specify the existing user. You may use a wildcard (*) for the
AuthorizedUser parameter , such as specifying just '*' for all users or 'Accounting*' for all users whose user
name begins with 'Accounting'.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 809

TDBISAMSession.ModifyRemoteEvent Method

procedure ModifyRemoteEvent(const EventName: String; const
 EventDescription: String; EventRunType: TEventRunType;
 EventStartDate: TDateTime; EventEndDate: TDateTime;
 EventStartTime: TDateTime; EventEndTime: TDateTime;
 EventInterval: Word; EventDays: TEventDays; EventDayOfMonth:
 TEventDayOfMonth; EventDayOfWeek: TEventDayOfWeek; EventMonths:
 TEventMonths)

Call the ModifyRemoteEvent method to modify information about an existing scheduled event on a
database server. Use the EventName parameter to specify the existing event name. Please see the
AddRemoteEvent method for more information on the parameters returned from this method.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 810

TDBISAMSession.ModifyRemoteProcedure Method

procedure ModifyRemoteProcedure(const ProcedureName: String;
 const ProcedureDescription: String)

Call the ModifyRemoteProcedure method to modify information about an existing server-side procedure on
a database server. Use the ProcedureName parameter to specify the existing server-side procedure.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 811

TDBISAMSession.ModifyRemoteProcedureUser Method

procedure ModifyRemoteProcedureUser(const ProcedureName: String;
 const AuthorizedUser: String; RightsToAssign: TProcedureRights)

Call the ModifyRemoteProcedureUser method to modify the rights for an existing user to an existing
server-side procedure on a database server. Use the ProcedureName parameter to specify the existing
server-side procedure name and the AuthorizedUser parameter to specify the existing user. You may use a
wildcard (*) for the AuthorizedUser parameter , such as specifying just '*' for all users or 'Accounting*' for
all users whose user name begins with 'Accounting'.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 812

TDBISAMSession.ModifyRemoteUser Method

procedure ModifyRemoteUser(const UserName: String; const
 UserPassword: String; const UserDescription: String;
 IsAdministrator: Boolean=False; MaxConnections:
 Word=DEFAULT_MAX_USER_CONNECTIONS)

Call the ModifyRemoteUser method to modify information about an existing user on a database server.
Use the UserName parameter to specify the existing user.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 813

TDBISAMSession.ModifyRemoteUserPassword Method

procedure ModifyRemoteUserPassword(const UserName: String; const
 UserPassword: String)

Call the ModifyRemoteUserPassword method to modify the password for the current user logged in to the
database server. Use the UserName parameter to specify the current user name. This method is only valid
for changing the password for the current user.

Note
This method is only valid for remote sessions connected to the regular data port on a database
server. If you are logged in to the administration port and are an administrator, use the
ModifyRemoteUser method instead.

Component Reference

Page 814

TDBISAMSession.Open Method

procedure Open

Call the Open method to start a session. The Open method starts the session and triggers the OnStartup
event for the session. If the SessionType property is set to stRemote, then DBISAM will attempt to connect
to the database server specified by the RemoteHost or RemoteAddressand RemotePort or RemoteService
properties. If the session can successfully connect to the database server, it will then automatically login to
the server using the RemoteUser and RemotePasword properties.

Calling the Close method closes any open datasets, and disconnects active database connections. If the
SessionType property is set to stRemote, then the connection to the database server is closed and the
user is logged out.

Component Reference

Page 815

TDBISAMSession.OpenDatabase Method

function OpenDatabase(const DatabaseName: String):
 TDBISAMDatabase

Call the OpenDatabase method to open an existing TDBISAMDatabase component, or create a temporary
TDBISAMDatabase component and open it. OpenDatabase calls the FindDatabase method to determine if
the DatabaseName parameter corresponds to the DatabaseName property of an existing
TDBISAMDatabase component. If it does not, OpenDatabase creates a temporary TDBISAMDatabase
component, assigning the DatabaseName parameter to the DatabaseName property. It also assigns the
DatabaseName parameter to the Directory property if the session is local or the RemoteDatabase property
if the session is remote. Finally, OpenDatabase calls the Open method of the TDBISAMDatabase
component.

Component Reference

Page 816

TDBISAMSession.RemoteParamByName Method

function RemoteParamByName(const Value: String): TDBISAMParam

Call the RemoteParamByName method to retrieve a specific TDBISAMParam object by name from the
RemoteParams property. The Value parameter indicates the name of the parameter that you wish to
retrieve. If there are no parameters with that name, the RemoteParamByName method will raise an
exception.

Component Reference

Page 817

TDBISAMSession.RemoveAllPasswords Method

procedure RemoveAllPasswords

Call the RemoveAllPasswords method to delete all current database table passwords defined for the
session. Subsequent attempts to open encrypted database tables that need a password via the
TDBISAMQuery or TDBISAMTable components will fail unless an application first calls the AddPassword
method to reestablish the necessary password or password for the session.

Component Reference

Page 818

TDBISAMSession.RemoveAllRemoteMemoryTables Method

procedure RemoveAllRemoteMemoryTables

Call the RemoveAllRemoteMemoryTables method to delete all in-memory tables residing on the database
server for the current client workstation. DBISAM uses the current computer name (Windows) or terminal
ID (Linux) along with the current process ID to isolate in-memory tables between various client processes.
This method can be called after a process on a client workstation terminates improperly and leaves in-
memory tables on the database server that need to be removed.

Note
This method will attempt to delete all in-memory tables for a given client workstation. It is not
specific to a client process, so do not call this method if you have multiple processes running on the
same client workstation unless you are prepared to possibly have one process delete another
process's in-memory tables. However, any failure to delete an in-memory table because it is in use,
etc. is ignored by this method and is not raised as an exception.

Component Reference

Page 819

TDBISAMSession.RemovePassword Method

procedure RemovePassword(const Password: String)

Call the RemovePassword method to delete a single database table password defined for the session.
Subsequent attempts to open any encrypted database table that requires this password via the
TDBISAMQuery or TDBISAMTable components will fail unless an application first calls the AddPassword
method to reestablish a password.

Component Reference

Page 820

TDBISAMSession.RemoveRemoteSession Method

function RemoveRemoteSession(SessionID: Integer): Boolean

Call the RemoveRemoteSession method to completely remove a specific session on a database server.
Removing a session not only terminates its connection, but it also removes the session completely and
releases any resources for the session including the thread used for the connection and the connection
itself at the operating system level. Use the SessionID parameter to specify the session ID to disconnect.
You can get the session ID for a particular session by using the GetRemoteSessionCount and the
GetRemoteSessionInfo methods.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 821

TDBISAMSession.SendProcedureProgress Method

procedure SendProcedureProgress(const Status: String;
 PercentDone: Word; var Abort: Boolean)

Call the SendProcedureProgress method to send progress information from a server-side procedure on a
database server back to the calling session. When the session receives this progress information, it then
triggers the OnRemoteProcedureProgress event. Use the Status parameter to specify status information
regarding the progress, the PercentDone parameter to indicate the percentage of progress, and the Abort
parameter to allow the session to force an abort of the current processing.

Note
The server-side procedure code can choose to respect the Abort parameter or ignore it. It is strictly
up to the developer of the server-side procedure.

Component Reference

Page 822

TDBISAMSession.StartRemoteServer Method

procedure StartRemoteServer

Call the StartRemoteServer method to cause the database server to start accepting regular data
connections from remote sessions. You may call the StartRemoteServer or StopRemoteServer methods
without removing existing sessions. When stopping the server, however, all sessions will be automatically
disconnected.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 823

TDBISAMSession.StopRemoteServer Method

procedure StopRemoteServer

Call the StopRemoteServer method to cause the database server to stop accepting regular data
connections from remote sessions. You may call the StartRemoteServer or StopRemoteServer methods
without removing existing sessions. When stopping the server, however, all sessions will be automatically
disconnected.

Note
This method is only valid for encrypted remote sessions connected as an administrator to the
administration port on a database server.

Component Reference

Page 824

TDBISAMSession.OnPassword Event

property OnPassword: TPasswordEvent

The OnPassword event is fired when an application attempts to open an encrypted database table for the
first time using a TDBISAMQuery or TDBISAMTable component and DBISAM cannot locate the password in
the list of defined passwords for the session. To gain access to the database table, the OnPassword event
handler must pass a valid password to DBISAM. The event handler should call the AddPassword method to
define the password for the session. If the Continue parameter is set to True by the OnPassword event
handler, the table open is attempted again. If the Continue parameter is set to False, DBISAM does not try
to open the table again and an exception is raised.

Note
If an OnPassword event handler is not assigned to the OnPassword event, but DBISAM needs a
password in order to open an encrypted database table, a default password dialog will be displayed
to the user that prompts for a password. However, any version of DBISAM for Delphi 6 or higher
(including C++Builder 6 and higher as well as Kylix 2 and higher) requires that you include the
DBPWDlg unit to your uses clause in order to enable the display of a default password dialog. This
is done to allow for DBISAM to be included in applications without linking in the forms support,
which can add a lot of unnecessary overhead and also cause unwanted references to user interface
libraries. This is not required for Delphi 5 or C++Builder 5, but these versions always include forms
support.

Component Reference

Page 825

TDBISAMSession.OnRemoteLogin Event

property OnRemoteLogin: TLoginEvent

The OnRemoteLogin event is fired when the session connects to a database server and the RemoteUser
and RemotePassword properties have not been assigned or have been assigned but are not valid for the
database server. You can specify the user name and password via the UserName and Password
parameters. The Continue parameter indicates whether the connection process should continue or whether
the session should stop trying to connect to the database server.

Note
Any version of DBISAM for Delphi 6 or higher (including C++Builder 6 and higher as well as Kylix 2
and higher) requires that you include the DBLogDlg unit to your uses clause in order to enable the
display of a default remote login dialog. This is done to allow for DBISAM to be included in
applications without linking in the forms support, which can add a lot of unnecessary overhead and
also cause unwanted references to user interface libraries. This is not required for Delphi 5 or
C++Builder 5, but these versions always include forms support.

Component Reference

Page 826

TDBISAMSession.OnRemoteProcedureProgress Event

property OnRemoteProcedureProgress: TProcedureProgressEvent

The OnRemoteProcedureProgress event is fired whenever a server-side procedure that has been called by
the current remote session sends a progress notification back to the remote session using the
SendProcedureProgress method. The Status parameter is a status message defined by the server-side
procedure, the PercentDone parameter indicates the percentage of the server-side procedure currently
executed, and the Abort variable parameter allows the remote session to abort the server-side procedure.

Note
Whether the server-side procedure respects the setting of the Abort parameter is completely up to
the server-side procedure and how it is implemented. It can choose to ignore this parameter
completely, if desired.

Component Reference

Page 827

TDBISAMSession.OnRemoteReceiveProgress Event

property OnRemoteReceiveProgress: TSendReceiveProgressEvent

The OnRemoteReceiveProgress event is fired whenever a remote session receives a response from the
database server. The NumBytes parameter indicates the amount of data in bytes that has been received
so far, and always starts at 0 bytes to indicate the beginning of a response. The PercentDone parameter
indicates the percentage of the response that has been received so far, and is also 0 at the beginning of a
response.

Component Reference

Page 828

TDBISAMSession.OnRemoteReconnect Event

property OnRemoteReconnect: TReconnectEvent

The OnRemoteReconnect event is fired when a remote session tries to send a request to the database
server and cannot because the connection to the database server has been broken. This is usually due to
network issues or the remote session being disconnected by the database server because the connection
timeout setting configured for the database server has been exceeded. In such a case the remote session
would normally attempt an automatic reconnection. However, attaching an event handler to this event
intercepts this reconnection process and allows the application to choose to skip the automatic
reconnection by setting the Continue parameter to False (the default value is True). This can be useful in
situations where the application knows that the network is down or there is a configuration issue that
would prevent the remote session from reconnecting successfully. The application can also set the
StopAsking parameter to True to tell DBISAM that it should stop firing this event from now until the
connection is finally terminated. This avoids a lot of calls to the event handler as tables and databases are
closed and each of them try to send requests to the database server.

Component Reference

Page 829

TDBISAMSession.OnRemoteSendProgress Event

property OnRemoteSendProgress: TSendReceiveProgressEvent

The OnRemoteSendProgress event is fired whenever a remote session sends a request to the database
server. The NumBytes parameter indicates the amount of data in bytes that has been sent so far, and
always starts at 0 bytes to indicate the beginning of a request. The PercentDone parameter indicates the
percentage of the request that has been sent so far, and is also 0 at the beginning of a request.

Component Reference

Page 830

TDBISAMSession.OnRemoteTimeout Event

property OnRemoteTimeout: TTimeoutEvent

The OnRemoteTimeout event is fired when a remote session is waiting on a response from a database
server and has not received a response within the number of seconds indicated by the RemoteTimeout
property. The StayConnected parameter indicates whether the remote session should stay connected and
keep waiting on a response or whether it should disconnect from the server.

Component Reference

Page 831

TDBISAMSession.OnRemoteTrace Event

property OnRemoteTrace: TTraceEvent

The OnRemoteTrace event is fired when remote message tracing is enabled for a remote session via the
RemoteTrace property and a request is being sent to the database server or a response is being received
from the database server. You can use the TraceRecord parameter to log information about the request or
response.

Component Reference

Page 832

TDBISAMSession.OnShutdown Event

property OnShutdown: TNotifyEvent

The OnShutdown event is fired when an application deactivates a session. Assign an event handler to the
OnShutdown event to take specific actions when an application deactivates a session. A session is
deactivated by setting its Active property to False or calling its Close method.

Note
You should not call the TDBISAMSession Open method or toggle the Active property from within this
event handler. Doing so can cause infinite recursion.

Component Reference

Page 833

TDBISAMSession.OnStartup Event

property OnStartup: TNotifyEvent

The OnStartup event is fired when an application activates a session. Assign an event handler to the
OnStartup event to take specific actions when an application activates a session. A session is activated by
setting its Active property to True, calling its Open method, or by opening or activating a
TDBISAMDatabase, TDBISAMQuery, or TDBISAMTable component linked to the session via their
SessionName properties.

Note
You should not call the TDBISAMSession Open method or toggle the Active property from within this
event handler. Doing so can cause infinite recursion.

Component Reference

Page 834

5.22 TDBISAMSQLUpdateObject Component

Unit: dbisamtb

Inherits From TDBISAMDataSetUpdateObject

The TDBISAMSQLUpdate component is an abstract component that is implemented by the
TDBISAMUpdateSQL component. Normally, only developers interested in creating their own custom update
components would use the TDBISAMSQLUpdateObject.

Properties Methods Events

Component Reference

Page 835

5.23 TDBISAMStringList Component

Unit: dbisamtb

Inherits From TDBISAMLocaleStringList

Use the TDBISAMStringList component with the TDBISAMEngine BuildWordList method as a string list that
sorts its contents using a specific locale.

Properties Methods Events

LocaleID FindPartial

FindUsingPartials

Component Reference

Page 836

TDBISAMStringList.LocaleID Property

property LocaleID: Integer

Use the LocaleID property to specify what locale you wish to use for sorting the contents of the string list.
You can use the TDBISAMEngine GetLocaleNames to get a list of locale names and their IDs.

Component Reference

Page 837

TDBISAMStringList.FindPartial Method

function FindPartial(const S: String; var Index: Integer;
 PartialLength: Word): Boolean

Use the FindPartial method to find a given string in the string list using only the first N characters indicated
by the PartialLength parameter. This method returns True if the string is found in the list and False if it is
not. If the string is found, the Index variable parameter will contain the 0-based position of the string in
the string list.

Component Reference

Page 838

TDBISAMStringList.FindUsingPartials Method

function FindUsingPartials(const S: String; var Index: Integer):
 Boolean

Use the FindUsingPartials method to find a given string in the string list where the list may contain strings
with wildcard (*) characters. This method returns True if the string is found in the list and False if it is not.
If the string is found, the Index variable parameter will contain the 0-based position of the string in the
string list.

Component Reference

Page 839

5.24 TDBISAMTable Component

Unit: dbisamtb

Inherits From TDBISAMDBDataSet

Use the TDBISAMTable component to access records and fields in an underlying table. A TDBISAMTable
component can also work with a subset of records within a table using ranges and filters as well as access
both disk-based and in-memory tables.

Properties Methods Events

BlobBlockSize AddIndex OnAlterProgress

Description AlterTable OnCopyProgress

Encrypted ApplyRange OnDataLost

EngineVersion CancelRange OnExportProgress

Exclusive CopyTable OnImportProgress

Exists CreateTable OnIndexProgress

FieldDefs DeleteAllIndexes OnLoadFromStreamProgress

FullTableName DeleteIndex OnOptimizeProgress

IndexDefs DeleteTable OnRepairLog

IndexFieldCount EditKey OnRepairProgress

IndexFieldNames EditRangeEnd OnSaveToStreamProgress

IndexFields EditRangeStart OnUpgradeLog

IndexName EmptyTable OnUpgradeProgress

IndexPageSize FindKey OnVerifyLog

KeyFieldCount FindNearest OnVerifyProgress

LastAutoIncValue GetIndexNames

LastUpdated GotoCurrent

LocaleID GotoKey

MasterFields GotoNearest

MasterSource LockSemaphore

Password LockTable

PhysicalRecordCount OptimizeTable

Ranged RecordIsLocked

ReadOnly RenameTable

StoreDefs RepairTable

TableName SetKey

TableSize SetRange

Component Reference

Page 840

TextIndexFields SetRangeEnd

TextIndexIncludeChars SetRangeStart

TextIndexSpaceChars TableIsLocked

TextIndexStopWords UnlockSemaphore

UserMajorVersion UnlockTable

UserMinorVersion UpgradeTable

VersionNum VerifyTable

Component Reference

Page 841

TDBISAMTable.BlobBlockSize Property

property BlobBlockSize: Integer

The BlobBlockSize property indicates the BLOB block size being used for the table.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 842

TDBISAMTable.Description Property

property Description: String

The Description property indicates the description of the table. DBISAM allows you to assign a description
to any table.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 843

TDBISAMTable.Encrypted Property

property Encrypted: Boolean

Indicates whether the current database table is encrypted. If a table is encrypted with a password, you
must provide this password before DBISAM will allow you to open the table or access it in any way.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 844

TDBISAMTable.EngineVersion Property

property EngineVersion: String

Indicates the current version of DBISAM being used. This property is read-only, but published so that it is
visible in the Object Inspector in Delphi, Kylix, and C++Builder.

Component Reference

Page 845

TDBISAMTable.Exclusive Property

property Exclusive: Boolean

Use the Exclusive property to True to specify that a table should be opened exclusively when calling the
Open method or when setting the Active property to True. When the Exclusive property is set to True and
the application successfully opens the table, no other application can access the table. If the table for
which the application has requested exclusive access is already in use by another application, an exception
is raised.

A table must be closed (Active property should be False) before changing the setting of the Exclusive
property. Do not set Exclusive to True at design time if you also intend to set the Active property to True
at design time. In this case an exception is raised because the table is already in use by the IDE.

Component Reference

Page 846

TDBISAMTable.Exists Property

property Exists: Boolean

The Exists property indicates whether the underlying table exists. This property uses the current
DatabaseName and TableName properties to determine the location of the table.

Component Reference

Page 847

TDBISAMTable.FieldDefs Property

property FieldDefs: TDBISAMFieldDefs

The FieldDefs property lists the field definitions for a dataset. While an application can examine FieldDefs
to explore the field definitions for a table, it should not change these definitions unless creating a new
table with the CreateTable method. To access fields and field values in a table, use the Fields property
and the FieldByName method. If the FieldDefs property is updated or manually edited, the StoreDefs
property is automatically set to True.

Note
The field definitions in the FieldDefs may not always reflect the current field definitions available for
a table unless the table has been opened. Before using the field definitions from an existing table
for in a call to the AlterTable method, call the Update method to read the field definitions from the
actual table.

Component Reference

Page 848

TDBISAMTable.FullTableName Property

property FullTableName: String

The FullTableName property indicates the full table name, including the path, for the table. This read-only
property can be examined at runtime to find out the exact physical location of a table on disk, if the
session is local, or the logical location of a table on a database server, if the session is remote.

Component Reference

Page 849

TDBISAMTable.IndexDefs Property

property IndexDefs: TDBISAMIndexDefs

The IndexDefs property lists the index definitions for a dataset. While an application can examine
IndexDefs to explore the index definitions for a table, it should not change these definitions unless
creating a new table with the CreateTable method. To set the active index for a table, use the IndexName
or IndexFieldNames property. If the IndexDefs property is updated or manually edited, the StoreDefs
property is automatically set to True.

Note
The index definitions in the IndexDefs may not always reflect the current index definitions available
for a table unless the table has been opened and the IndexName or IndexFieldNames property has
been assigned a value. Before using the index definitions from an existing table for in a call to the
AlterTable method, call the Update method to read the index definitions from the actual table.

Component Reference

Page 850

TDBISAMTable.IndexFieldCount Property

property IndexFieldCount: Integer

The IndexFieldCount property indicates the number of fields that make up the active index. The
IndexName or IndexFieldNames property can be used to set and inspect the active index for the table.

Component Reference

Page 851

TDBISAMTable.IndexFieldNames Property

property IndexFieldNames: String

Use the IndexFieldNames property as an alternative method to the IndexName property of specifying the
active index for a table. Each column name should be separated with a semicolon. Any column names
specified in the IndexFieldNames property must already be indexed, and must exist in the index in the
order specified, from left to right.

Note
The IndexFieldNames and IndexName properties are mutually exclusive. Setting one clears the
other.

Component Reference

Page 852

TDBISAMTable.IndexFields Property

property IndexFields[Index: Integer]: TField

Use the IndexFields property to access a TField object for a given field in an index. The IndexFields
property provides a zero-based array of TField objects. The first field in the index is referenced as
IndexFields[0], the second is referenced as IndexFields[1], and so on.

Note
Do not set the IndexFields propety directly. Instead use the IndexName or IndexFieldNames
property to set the active index for a table.

Component Reference

Page 853

TDBISAMTable.IndexName Property

property IndexName: String

Use the IndexName property to specify the active index for a table. If the IndexName property is empty
(the default), the active index is set to the primary index. If the IndexName property is set to a valid index
name, then that index is used to determine the sort order of records, otherwise an exception will be
raised.

Note
The IndexName and IndexFieldNames properties are mutually exclusive. Setting one clears the
other.

Component Reference

Page 854

TDBISAMTable.IndexPageSize Property

property IndexPageSize: Integer

The IndexPageSize property indicates the index page size being used for the table.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 855

TDBISAMTable.KeyFieldCount Property

property KeyFieldCount: Integer

Use the KeyFieldCount property to limit a search on the active multi-field index to a consecutive sub-set
(left to right) of those fields. For example, if the active index for a table consists of three fields, a partial-
key search can be conducted using only the first field in the index by setting KeyFieldCount to 1. If the
KeyFieldCount property is 0, the table searches on all fields in the index. The active index for a table is
specified via the IndexName or IndexFieldNames property.

Note
Searches are only conducted based on consecutive key fields beginning with the first field in the
key. For example if an index consists of three fields, an application can set the KeyFieldCount
property to 1 to search on the first field, 2 to search on the first and second fields, or 3 to search on
all fields. By default KeyFieldCount is initially set to include all fields in a search.

Component Reference

Page 856

TDBISAMTable.LastAutoIncValue Property

property LastAutoIncValue: Integer

The LastAutoIncValue property indicates the last auto-increment value used for the table. This read-only
property can be examined to determine what value will be assigned to the next auto-increment field when
a record is appended to the table.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 857

TDBISAMTable.LastUpdated Property

property LastUpdated: TDateTime

The LastUpdated property indicates the last date and time the table was modified. The LastUpdated
property is maintained automatically by DBISAM whenever an update occurs on the table.

Note
The table must be open (Active=True) before the LastUpdated property can be accessed.

Component Reference

Page 858

TDBISAMTable.LocaleID Property

property LocaleID: Integer

The LocaleID property indicates the locale being used for the table.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 859

TDBISAMTable.MasterFields Property

property MasterFields: String

After setting the MasterFields property, use the MasterFields property to specify the names of one or more
fields to use in establishing a master-detail link between this table and the data source specified in the
MasterSource property. Separate multiple field names with a semicolon. Each time the current record in
the master data source changes, the new values in the master fields are used to select corresponding
records in this table for display.

Note
At design time, you can use the Field Link property editor to establish a master-detail link between
a data source and the current table.

Component Reference

Page 860

TDBISAMTable.MasterSource Property

property MasterSource: TDataSource

Use the MasterSource property to specify the name of a TDataSource component whose DataSet property
identifies a dataset to use as a master table in establishing a master-detail link with this table. After
setting the MasterSource property, specify which fields to use in the master data source by setting the
MasterFields property.

Component Reference

Page 861

TDBISAMTable.Password Property

property Password: String

The Password property indicates the password used to encrypt the table, if it is encrypted, or a blank
string if it is not encrypted. If a table is encrypted with a password, you must provide this password before
DBISAM will allow you to open the table or access it in any way.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 862

TDBISAMTable.PhysicalRecordCount Property

property PhysicalRecordCount: Integer

The PhysicalRecordCount property indicates the number of records present in the table, irrespective of any
filters or ranges that may currently be active.

Component Reference

Page 863

TDBISAMTable.Ranged Property

property Ranged: Boolean

The Ranged property indicates whether a range if active for the current table.

Component Reference

Page 864

TDBISAMTable.ReadOnly Property

property ReadOnly: Boolean

Use the ReadOnly property to prevent any updates in the table. The default value is False, meaning users
can insert, update, and delete data in the table. When the ReadOnly property is True, the table's
CanModify property is False.

Note
If, due to the security configuration of the operating system or the database server, the table
cannot be opened in a read-write fashion, the ReadOnly property will automatically be set to True
when the table is opened.

Component Reference

Page 865

TDBISAMTable.StoreDefs Property

property StoreDefs: Boolean

The StoreDefs property indicates whether the FieldDefs property and its contained list of TDBISAMFieldDef
objects, as well as the IndexDefs property and its contained list of TDBISAMIndexDef objects, will be
stored at design-time. This is especially useful for in-memory tables that do not actually have a physical
table structure on disk, and will eliminate having to constantly specify this information prior to calling the
CreateTable method.

Note
It is not recommended that you set this property to True for disk-based tables.

Component Reference

Page 866

TDBISAMTable.TableName Property

property TableName: String

Use the TableName property to specify the name of the table this TDBISAMTable component should
access. The TableName property is used in conjunction with the DatabaseName property to specify the
location and name of the table.

Note
To set the TableName property, the Active property must be False.

Component Reference

Page 867

TDBISAMTable.TableSize Property

property TableSize: Int64

The TableSize property indicates the total size, in bytes, that the table consumes in space on the storage
medium where it is stored.

Component Reference

Page 868

TDBISAMTable.TextIndexFields Property

property TextIndexFields: String

The TextIndexFields property indicates the string or memo fields that are currently part of the full text
index for the table.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 869

TDBISAMTable.TextIndexIncludeChars Property

property TextIndexIncludeChars: String

The TextIncludeChars property indicates the include characters used for building the full text index for the
table. Include characters are used to determine how words are formed by specifying which characters are
included in the word and which are ignored.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 870

TDBISAMTable.TextIndexSpaceChars Property

property TextIndexSpaceChars: String

The TextIndexSpaceChars property indicates the space characters used for building the full text index for
the table. Space characters are used to determine how words are separated from one another for the
purposes of indexing the words in the full text index.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 871

TDBISAMTable.TextIndexStopWords Property

property TextIndexStopWords: TStrings

The TextIndexStopWords property indicates the stop words used for building the full text index for the
table. Stop words are words that will be removed from the index due to the fact that they are too
common, such as is the case with the word "the".

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table. Finally, this property is a TStrings object, which
by the nature of the property behavior in Delphi, Kylix, or C++Builder can be modified. However,
these modifications will not be saved and the property will revert to the correct list of stop words for
the table whenever the property is accessed.

Component Reference

Page 872

TDBISAMTable.UserMajorVersion Property

property UserMajorVersion: Word

The UserMajorVersion property indicates the user-defined major version number of the table. DBISAM
allows you to assign a user-defined major and minor version number to any table that can aid the
database developer in tracking application-specific structure information. This is especially useful for
determining whether a table has the correct structure for the current release of an application. The minor
version number can be retrieved using the UserMinorVersion property.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 873

TDBISAMTable.UserMinorVersion Property

property UserMinorVersion: Word

The UserMinorVersion property indicates the user-defined minor version number of the table. DBISAM
allows you to assign a user-defined major and minor version number to any table that can aid the
database developer in tracking application-specific structure information. This is especially useful for
determining whether a table has the correct structure for the current release of an application. The major
version number can be retrieved using the UserMajorVersion property.

Note
This property is read-only, you must alter the structure of a table in order to change it. Also, this
property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 874

TDBISAMTable.VersionNum Property

property VersionNum: String

The VersionNum property indicates the internal format version number of the table. DBISAM assigns each
table an internal format version number so that it can make sure that an application does not try to open a
table using a different format than what DBISAM expects. The format version number changes whenever
the internal format of the DBISAM tables change.

The following is a list of all of the version numbers returned by the VersionNum property:

'1.00'
'1.02'
'1.04'
'1.08'
'2.00'
'3.00'
'4.00' (current)

You'll notice that the most current version of DBISAM does not always coincide with the latest table format
version number.

Note
This property does not require that the table be open in order to return a value. This allows the the
property to be examined without opening the table.

Component Reference

Page 875

TDBISAMTable.AddIndex Method

procedure AddIndex(const Name,Fields: String; Options:
 TIndexOptions=[]; const DescFields: String=''; Compression:
 TIndexCompression=icNone; NoKeyStatistics: Boolean=False)

Call the AddIndex method to create a new index for the table. The table may be open or closed when
executing this method. If the table is open, then is must have been opened exclusively (Exclusive=True)
or an exception will be raised.

The Name parameter is the name of the new index. The Fields parameter is a semicolon-delimited list of
the fields to include in the index. The Options parameter is a potentially restricted set of attributes for the
index:

Option Description

ixPrimary Represents the primary index for a table.

ixUnique Represents a unique index which does not permit duplicate
index key values. The primary index is always implicitly
unique.

ixDescending Represents an index that sorts some or all fields in the index
in descending order. The DescFields parameter controls which
fields.

ixCaseInsensitive Represents an index that sorts without case-sensitivity.

The DescFields parameter indicates if you wish only certain fields in the index to sort in descending order.
The Compression parameter indicates what type of index compression should be used for the new index.

Component Reference

Page 876

TDBISAMTable.AlterTable Method

procedure AlterTable(NewLocaleID: Integer=LOCALE_ANSI_STD;
 NewUserMajorVersion: Word=1; NewUserMinorVersion: Word=0;
 NewEncrypted: Boolean=False; const NewPassword: String=''; const
 NewDescription: String=''; NewIndexPageSize:
 Integer=DEFAULT_PAGE_SIZE; NewBlobBlockSize:
 Integer=DEFAULT_BLOCK_SIZE; NewLastAutoIncValue: Integer=-1;
 const NewTextIndexFields: String=''; NewTextIndexStopWords:
 TStrings=nil; const NewTextIndexSpaceChars: String=''; const
 NewTextIndexIncludeChars: String=''; SuppressBackups:
 Boolean=False)

Call the AlterTable method to alter the structure of a table using the field definitions and index definitions
specified in the FieldDefs and IndexDefs properties, respectively.

The NewLocaleID parameter specifies the new locale ID for the table. If this parameter is 0, then the table
will use the default locale of "ANSI Standard".

The NewUserMajorVersion and NewUserMinorVersion parameters specify the new user-defined major and
minor version numbers for the table.

The NewEncrypted parameter specifies whether the table should be encrypted, and the NewPassword
parameter specifies the specifies the password for the encryption.
The NewDescription parameter specifies the new description for the table.

The NewIndexPageSize and NewBlobBlockSize parameters specify the index page size and BLOB block size
for the table, respectively. Please see Appendix C - System Capacities for more information on the proper
values for these parameters.

The NewLastAutoIncValue parameter specifies the new last autoinc value for the table.

The NewTextIndexFields is a list of field names that should be included in the full text index for the table.
These field names should be separated by semicolons and should only be the names of string or memo
fields. Leaving this parameter blank will remove any entries in the full text index. There is no explicit limit
to the number of string or memo fields that can be text indexed.

The NewTextIndexStopWords parameter specifies a list of stop words to be used for the full text index.
Stop words are words that will be removed from the index due to the fact that they are too common, such
as is the case with the word "the". This parameter is a TStrings object, and if you leave this parameter nil
DBISAM will use the default stop words list for the full text index.

The NewTextIndexSpaceChars parameter specifies a set of characters to be used as word separators for
the full text index. Space characters are used to determine how words are separated from one another for
the purposes of indexing the words in the full text index. This parameter is a string, and if you leave this
parameter blank DBISAM will use the default space characters above for the full text index.

The NewTextIndexIncludeChars parameter specifies a set of characters to be used as valid characters in a
word for the full text index. Include characters are used to determine how words are formed by specifying
which characters are included in the word and which are ignored. This parameter is a string, and if you
leave this parameter blank DBISAM will use the default include characters above for the full text index.

Component Reference

Page 877

Note
You can retrieve the default full text indexing parameters using the TDBISAMEngine
GetDefaultTextIndexParams method. Please see the Full Text Indexing topic for more information.

The SuppressBackups parameter specifies whether the creation of backup files should take place during
the alteration of the table structure.

Component Reference

Page 878

TDBISAMTable.ApplyRange Method

procedure ApplyRange

Call the ApplyRange method to cause a range established with the SetRangeStart and SetRangeEnd or
EditRangeStart and EditRangeEnd methods to take effect. When a range is in effect, only those records
that fall within the range are available for viewing and editing.

Component Reference

Page 879

TDBISAMTable.CancelRange Method

procedure CancelRange

Call the CancelRange method to remove a range currently applied to a table using the SetRange or
ApplyRange methods. Cancelling a range reenables access to all records in the table.

Component Reference

Page 880

TDBISAMTable.CopyTable Method

procedure CopyTable(const NewDatabaseName: String; const
 NewTableName: String; CopyData: Boolean=True)

Call the CopyTable method to copy the contents of the table to another new table. The
NewDatabaseName parameter specifies the new database directory, for local sessions, or database name,
for remote sessions, in which to copy the table. The NewTable parameter specifies the name of the table
to create. The CopyData parameter indicates whether the data in the table should be copied, and defaults
to True. The table may be open or closed when executing this method. If the table is open, then this
method will respect any active filters or ranges on the table when copying the data to the new table.

Note
This method will overwrite any existing table with the same name in the specified destination
database without raising an exception, so please be careful when using this method.

Component Reference

Page 881

TDBISAMTable.CreateTable Method

procedure CreateTable(NewLocaleID: Integer=0;
 NewUserMajorVersion: Word=1; NewUserMinorVersion: Word=0;
 NewEncrypted: Boolean=False; const NewPassword: String=''; const
 NewDescription: String=''; NewIndexPageSize:
 Integer=DEFAULT_PAGE_SIZE; NewBlobBlockSize:
 Integer=DEFAULT_BLOCK_SIZE; NewLastAutoIncValue: Integer=-1;
 const NewTextIndexFields: String=''; NewTextIndexStopWords:
 TStrings=nil; const NewTextIndexSpaceChars: String=''; const
 NewTextIndexIncludeChars: String='')

Call the CreateTable method to create a table using the field definitions and index definitions specified in
the FieldDefs and IndexDefs properties, respectively. CreateTable will not overwrite an existing table and
will instead raise an exception if it encounters an existing table with the same name. To avoid this error,
check the Exists property before calling the CreateTable method.

The NewLocaleID parameter specifies the new locale ID for the table. If this parameter is 0, then the table
will use the default locale of "ANSI Standard".

The NewUserMajorVersion and NewUserMinorVersion parameters specify the new user-defined major and
minor version numbers for the table.

The NewEncrypted parameter specifies whether the table should be encrypted, and the NewPassword
parameter specifies the specifies the password for the encryption.

The NewDescription parameter specifies the new description for the table.

The NewIndexPageSize and NewBlobBlockSize parameters specify the index page size and BLOB block size
for the table, respectively. Please see Appendix C - System Capacities for more information on the proper
values for these parameters.

The NewLastAutoIncValue parameter specifies the new last autoinc value for the table.

The NewTextIndexFields is a list of field names that should be included in the full text index for the table.
These field names should be separated by semicolons and should only be the names of string or memo
fields. Leaving this parameter blank will remove any entries in the full text index. There is no explicit limit
to the number of string or memo fields that can be text indexed.

The NewTextIndexStopWords parameter specifies a list of stop words to be used for the full text index.
Stop words are words that will be removed from the index due to the fact that they are too common, such
as is the case with the word "the". This parameter is a TStrings object, and if you leave this parameter nil
DBISAM will use the default stop words list for the full text index.

The NewTextIndexSpaceChars parameter specifies a set of characters to be used as word separators for
the full text index. Space characters are used to determine how words are separated from one another for
the purposes of indexing the words in the full text index. This parameter is a string, and if you leave this
parameter blank DBISAM will use the default space characters above for the full text index.

The NewTextIndexIncludeChars parameter specifies a set of characters to be used as valid characters in a
word for the full text index. Include characters are used to determine how words are formed by specifying
which characters are included in the word and which are ignored. This parameter is a string, and if you

Component Reference

Page 882

leave this parameter blank DBISAM will use the default include characters above for the full text index.

Note
You can retrieve the default full text indexing parameters using the TDBISAMEngine
GetDefaultTextIndexParams method. Please see the Full Text Indexing topic for more information.

Component Reference

Page 883

TDBISAMTable.DeleteAllIndexes Method

procedure DeleteAllIndexes

Call the DeleteAllIndexes method to remove all indexes from the table and cause the table to revert to
using the natural record order. The table may be open or closed when executing this method. If the table
is open, then is must have been opened exclusively (Exclusive=True) or an exception will be raised.

Component Reference

Page 884

TDBISAMTable.DeleteIndex Method

procedure DeleteIndex(const Name: String)

Call the DeleteIndex method to remove a secondary index for a table. The Name parameter is the name of
the index to delete. Leave this parameter blank to delete the primary index for the table. The table may be
open or closed when executing this method. If the table is open, then is must have been opened
exclusively (Exclusive=True) or an exception will be raised.

Component Reference

Page 885

TDBISAMTable.DeleteTable Method

procedure DeleteTable

Call the DeleteTable method to delete an existing table. A table must be closed before this method can be
called.

Note
Deleting a table erases any data the table contains and destroys the table's structure information.

Component Reference

Page 886

TDBISAMTable.EditKey Method

procedure EditKey

Call the EditKey method to put the table in dsSetKey state while preserving the current contents of the
current search key buffer. To set the current search values, you can use the IndexFields property to iterate
over the fields used by the active index. The IndexName or IndexFieldNames property specifies the active
index. Once the search values are set, you can then use the GotoKey or GotoNearest method to perform
the actual search.

EditKey is especially useful when performing multiple searches where only one or two field values among
many change between each search.

Component Reference

Page 887

TDBISAMTable.EditRangeEnd Method

procedure EditRangeEnd

Call the EditRangeEnd method to change the ending value for an existing range. To specify an end range
value, call the FieldByName method after calling the EditRangeEnd method. After assigning a new ending
value, call the ApplyRange method to activate the modified range.

Component Reference

Page 888

TDBISAMTable.EditRangeStart Method

procedure EditRangeStart

Call the EditRangeStart method to change the starting value for an existing range. To specify a starting
range value, call the FieldByName method after calling the EditRangeStart method. After assigning a new
starting value, call the ApplyRange method to activate the modified range.

Component Reference

Page 889

TDBISAMTable.EmptyTable Method

procedure EmptyTable

Call the EmptyTable method to delete all records from the table specified by the DatabaseName and
TableName properties. The table may be open or closed when executing this method. If the table is open,
then is must have been opened exclusively (Exclusive=True) or an exception will be raised.

Component Reference

Page 890

TDBISAMTable.FindKey Method

function FindKey(const KeyValues: array of const): Boolean

Call the FindKey method to search for a specific record in a table using the active index. The IndexName
or IndexFieldNames property specifies the active index. The KeyValues parameter contains a comma-
delimited array of field values. Each value in the KeyValues parameter can be a literal, a variable, a null, or
nil. If the number of values passed in the KeyValues parameters is less than the number of columns in the
active index, the missing values are assumed to be null. If a search is successful, the FindKey method
positions the table on the matching record and returns True. Otherwise the current table position is not
altered, and FindKey returns False.

Component Reference

Page 891

TDBISAMTable.FindNearest Method

procedure FindNearest(const KeyValues: array of const)

Call the FindNearest method search for a record in the table that is greater than or equal to the values
specified in the KeyValues parameter using the active index. The IndexName or IndexFieldNames property
specifies the active index. The KeyValues parameter contains a comma-delimited array of field values. If
the number of values passed in the KeyValues parameter is less than the number of columns in the active
index, the missing values are assumed to be null. FindNearest positions the table either on a record that
exactly matches the search criteria, or on the first record whose values are greater than those specified in
the search criteria.

Component Reference

Page 892

TDBISAMTable.GetIndexNames Method

procedure GetIndexNames(List: TStrings)

Call the GetIndexNames method to retrieve a list of all available indexes for a table. The List parameter is
a string list object, created and maintained by the application, into which to retrieve the index names.

Component Reference

Page 893

TDBISAMTable.GotoCurrent Method

procedure GotoCurrent(Table: TDBISAMTable)

Call the GotoCurrent method to synchronize the current position for the table based on the current position
in another table TDBISAMTable component, but which is connected to the same underlying table. The
Table parameters is the name of the TDBISAMTable component whose position should be used for
synchronizing.

Note
This procedure works only for TDBISAMTable components that have the same DatabaseName and
TableName properties. Otherwise an exception is raised.

Component Reference

Page 894

TDBISAMTable.GotoKey Method

function GotoKey: Boolean

Use the GotoKey method to move to a record specified by search values assigned with previous calls to
the SetKey or EditKey methods. The search is peformed using the active index. The IndexName or
IndexFieldNames property specifies the active index. If the GotoKey method finds a matching record, it
positions the table on the record and returns True. Otherwise the current table position remains
unchanged, and GotoKey returns False.

Component Reference

Page 895

TDBISAMTable.GotoNearest Method

procedure GotoNearest

Call the GotoNearest method to position the table on the record that is either the exact record specified by
the current search values, or on the first record whose values exceed those specified. The search is
peformed using the active index. The IndexName or IndexFieldNames property specifies the active index.
Before calling the GotoNearest method, an application must specify the search values by calling the SetKey
or EditKey methods, which put the table into the dsSetKey state. The application then uses the
FieldByName method to populate the search values.

Component Reference

Page 896

TDBISAMTable.LockSemaphore Method

function LockSemaphore(Value: Integer): Boolean

Call the LockSemaphore method to lock the semaphore specified by the Value paramater in the table. You
may reference any semaphore value from 1-1024 in the Value parameter. DBISAM allows the database
developer to use semaphores on tables to convey concurrency information not available through normal
locking methods. For example, it allows for synchronization of different batch processes that may require
exclusive access to a given table.

Component Reference

Page 897

TDBISAMTable.LockTable Method

procedure LockTable

Call the LockTable method to lock all of the records in a table and prevent other sessions from placing a
record lock or table lock on the table.

Component Reference

Page 898

TDBISAMTable.OptimizeTable Method

procedure OptimizeTable(const OptimizeIndexName: String='';
 SuppressBackups: Boolean=False)

Call the OptimizeTable method to optimize the physical organization of a table according to a specified
index, and permanently remove any free space from the table. Use the OptimizeIndexName parameter to
specify what index should be used to physically reorder the records in the table. Use the SuppressBackups
parameter to suppress the creation of backup files for the physical files that make up a table on disk. The
backup files are created in the same physical location as the source table being optimized. The table must
be closed when executing this method.

Note
Under normal circumstances you should specify the primary index (blank string "") as the index to
use for reorganization of the physical records on disk since this is the order most commonly used for
SQL joins and the default display of data. Reorganizing the data in this manner will improve read-
ahead buffering in DBISAM, thus improving overall performance of SQL and navigation using the
index specified for the optimization.

Component Reference

Page 899

TDBISAMTable.RecordIsLocked Method

function RecordIsLocked: Boolean

Call the RecordIsLocked method to determine if the current record in the table is locked by the current
session.

Note
This method only indicates whether the current session has the record locked and does not indicate
whether other sessions have the record locked.

Component Reference

Page 900

TDBISAMTable.RenameTable Method

procedure RenameTable(const NewTableName: String)

Call the RenameTable method to give a new name to a table. A table must be closed before this method
can be called.

Component Reference

Page 901

TDBISAMTable.RepairTable Method

function RepairTable(ForceIndexRebuild: Boolean=False): Boolean

Call the RepairTable method to repair any damage or corruption that may occur to a table due to an
improper operating system or application shutdown. This method will return True if the table is okay and
False if there is any damage or corruption present in the table. A table must be closed before this method
can be called.

The optional ForceIndexRebuild parameter indicates that you wish to have the RepairTable method rebuild
the indexes for the current table regardless of whether the RepairTable method finds any corruption in the
indexes. In some rare cases of corruption you may need to pass True for this parameter to fix corruption
in the indexes for a table that DBISAM cannot detect.

Component Reference

Page 902

TDBISAMTable.SetKey Method

procedure SetKey

Call the SetKey method to put the table into dsSetKey state and clear the current search values. The
FieldByName method can then be used to supply a new set of search values prior to conducting a search
using the active index. The IndexName or IndexFieldNames property specifies the active index.

Note
To modify existing search values, call the EditKey method instead.

Component Reference

Page 903

TDBISAMTable.SetRange Method

procedure SetRange(const StartValues,EndValues: array of const)

Call the SetRange method to specify a range and apply it to the table. A range is set using the active
index. The IndexName or IndexFieldNames property specifies the active index. The StartValues parameter
indicates the field values that designate the first record in the range. The EndValues parameter indicates
the field values that designate the last record in the range. If either the StartValues or EndValues
parameters has fewer elements than the number of fields in the active index, then the remaining entries
are set to NULL.

The SetRange method combines the functionality of the SetRangeStart, SetRangeEnd, and ApplyRange
methods in a single method call.

Component Reference

Page 904

TDBISAMTable.SetRangeEnd Method

procedure SetRangeEnd

Call the SetRangeEnd method to put the table into dsSetKey state, erase any previous end range values,
and set them to NULL. The FieldByName method can be used to set the ending values for a range.

After assigning ending range values to FieldValues, call the ApplyRange method to activate the modified
range.

Component Reference

Page 905

TDBISAMTable.SetRangeStart Method

procedure SetRangeStart

Call the SetRangeStart method to put the table into dsSetKey state, erase any previous start range values,
and set them to NULL. The FieldByName method can be used to set the starting values for a range.

After assigning starting range values to FieldValues, call the ApplyRange method to activate the modified
range.

Component Reference

Page 906

TDBISAMTable.TableIsLocked Method

function TableIsLocked: Boolean

Call the TableIsLocked method to determine if the table is locked by the current session.

Note
This method only indicates whether the current session has the table locked and does not indicate
whether other sessions have the table locked.

Component Reference

Page 907

TDBISAMTable.UnlockSemaphore Method

function UnlockSemaphore(Value: Integer): Boolean

Call the UnlockSemaphore method to unlock the semaphore specified by the Value parameter for the
table. The semaphore should have been locked previously using the LockSemaphore method.

Component Reference

Page 908

TDBISAMTable.UnlockTable Method

procedure UnlockTable

Call the UnlockTable method to unlock the table. The table should have been locked previously using the
LockTable method.

Component Reference

Page 909

TDBISAMTable.UpgradeTable Method

procedure UpgradeTable

Call the UpgradeTable method to upgrade a table from a previous DBISAM table format to the most recent
format. Occasionally the format used for tables is changed in order to introduce new features or to
improve performance and this method provides and easy way for the developer to transparently upgrade
tables to the new table format. A table must be closed before this method can be called.

Component Reference

Page 910

TDBISAMTable.VerifyTable Method

function VerifyTable: Boolean

Call the VerifyTable method to verify a table and see if there is any damage or corruption that may
occurred in a table due to an improper operating system or application shutdown. This method will return
True if the table is okay and False if there is any damage or corruption present in the table. A table must
be closed before this method can be called.

Component Reference

Page 911

TDBISAMTable.OnAlterProgress Event

property OnAlterProgress: TProgressEvent

The OnAlterProgress event is fired when the structure of a table is altered using the AlterTable method.
Use the PercentDone parameter to display progress information in your application while the table's
structure is being altered.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 912

TDBISAMTable.OnCopyProgress Event

property OnCopyProgress: TProgressEvent

The OnCopyProgress event is fired when a table is copied to a new table name using the CopyTable
method. Use the PercentDone parameter to display progress information in your application while the
table is copied.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 913

TDBISAMTable.OnDataLost Event

property OnDataLost: TDataLostEvent

The OnDataLost event is fired when using the AlterTable or AddIndexmethod and a change in the
structure of the table has caused data to be lost or the addition of a unique index has caused a key
violation.

The Cause parameter allows you to determine the cause of the data loss.

The ContextInfo parameter allows you to determine the exact field, index, or table name that is causing or
involved in the loss of data.

The Continue parameter allows you to abort the table structure alteration of index addition process and
return the table to it's original state with all of the data intact.

The StopAsking parameter allows you to tell DBISAM to stop reporting data loss problems and simply
complete the operation.

Note
You may set the Continue parameter to True several times and at a later time set the Continue
parameter to False and still have the table retain its original content and structure.

Component Reference

Page 914

TDBISAMTable.OnExportProgress Event

property OnExportProgress: TProgressEvent

The OnExportProgress event is fired when a table is exported to a text file using the ExportTable method.
Use the PercentDone parameter to display progress information in your application while the table is
exported.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 915

TDBISAMTable.OnImportProgress Event

property OnImportProgress: TProgressEvent

The OnImportProgress event is fired when a table is imported from a text file using the ImportTable
method. Use the PercentDone parameter to display progress information in your application while the
table is imported.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 916

TDBISAMTable.OnIndexProgress Event

property OnIndexProgress: TProgressEvent

The OnIndexProgress event is fired when a new index is added to a table using the AddIndex method.
Use the PercentDone parameter to display progress information in your application while the index is
being added.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 917

TDBISAMTable.OnLoadFromStreamProgress Event

property OnLoadFromStreamProgress: TProgressEvent

The OnLoadFromStreamProgress event is fired when a stream is loaded into a table using the
LoadFromStream method. Use the PercentDone parameter to display progress information in your
application while the table is being loaded from the stream.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 918

TDBISAMTable.OnOptimizeProgress Event

property OnOptimizeProgress: TProgressEvent

The OnOptimizeProgress event is fired when a table is optimized using the OptimizeTable method. Use the
PercentDone parameter to display progress information in your application while the table is being
optimized.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 919

TDBISAMTable.OnRepairLog Event

property OnRepairLog: TLogEvent

The OnRepairLog event is fired when a table is repaired using the RepairTable method and DBISAM needs
to indicate the current status of the repair (such as the start or finish) or an error is found in the integrity
of the table. Use the LogMesssage parameter to display repair log information in your application while the
table is being repaired or to save the log messages to a file for later viewing.

Component Reference

Page 920

TDBISAMTable.OnRepairProgress Event

property OnRepairProgress: TSteppedProgressEvent

The OnRepairProgress event is fired when a table is repaired using the RepairTable method. Use the Step
and PercentDone parameters to display progress information in your application while the table is being
repaired.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 921

TDBISAMTable.OnSaveToStreamProgress Event

property OnSaveToStreamProgress: TProgressEvent

The OnSaveToStreamProgress event is fired when a table is saved to a stream using the SaveToStream
method. Use the PercentDone parameter to display progress information in your application while the
table is being saved to the stream.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 922

TDBISAMTable.OnUpgradeLog Event

property OnUpgradeLog: TLogEvent

The UpgradeLog event is fired when a table is upgraded from an old table format using the UpgradeTable
method. Use the LogMesssage parameter to display upgrade log information in your application while the
table is being upgraded or to save the log messages to a file for later viewing.

Component Reference

Page 923

TDBISAMTable.OnUpgradeProgress Event

property OnUpgradeProgress: TSteppedProgressEvent

The OnUpgradeProgress event is fired when a table is upgraded from an old table format using the
UpgradeTable method. Use the Step and PercentDone parameters to display progress information in your
application while the table is being upgraded.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 924

TDBISAMTable.OnVerifyLog Event

property OnVerifyLog: TLogEvent

The OnVerifyLog event is fired when a table is verified using the VerifyTable method and DBISAM needs to
indicate the current status of the verification (such as the start or finish) or an error is found in the
integrity of the table. Use the LogMesssage parameter to display verification log information in your
application while the table is being verified or to save the log messages to a file for later viewing.

Component Reference

Page 925

TDBISAMTable.OnVerifyProgress Event

property OnVerifyProgress: TSteppedProgressEvent

Occurs when a table is verified using the VerifyTable method. Use the Step and PercentDone parameters
to display progress information in your application while the table is being repaired.

Note
The number of times that this event is fired is controlled by the TDBISAMSession ProgressSteps
property.

Component Reference

Page 926

5.25 TDBISAMUpdateSQL Component

Unit: dbisamtb

Inherits From TDBISAMSQLUpdateObject

Use the TDBISAMUpdateSQL component to update single or multiple source tables during the application
of updates from a TClientDataSet component through the IProvider support in DBISAM. Usually the
TDBISAMUpdateSQL component is used to handle complex updates to multiple tables that cannot be
handled by the default IProvider support.

Properties Methods Events

DataSet Apply

DeleteSQL Create

InsertSQL ExecSQL

ModifySQL SetParams

Query

SQL

Component Reference

Page 927

TDBISAMUpdateSQL.DataSet Property

property DataSet: TDBISAMDataSet

This property is automatically internally set by DBISAM.

Component Reference

Page 928

TDBISAMUpdateSQL.DeleteSQL Property

property DeleteSQL: TStrings

Use the DeleteSQL property to specify the DELETE statement to use when applying a deletion to a source
table. Use parameters with the same names as any field names in the source table for any WHERE clause
conditions, and use the prefix "OLD_" on any parameter names where you want an original field value to
be used instead of the current field value being used for the update.

Component Reference

Page 929

TDBISAMUpdateSQL.InsertSQL Property

property InsertSQL: TStrings

Use the InsertSQL property to specify the INSERT statement to use when applying an insert to a source
table. Use parameters with the same names as any field names in the source table.

Component Reference

Page 930

TDBISAMUpdateSQL.ModifySQL Property

property ModifySQL: TStrings

Use the ModifySQL property to specify the UPDATE statement to use when applying an update to a source
table. Use parameters with the same names as any field names in the source table for any SET operations
or WHERE clause conditions, and use the prefix "OLD_" on any parameter names where you want an
original field value to be used instead of the current field value being used for the update.

Component Reference

Page 931

TDBISAMUpdateSQL.Query Property

property Query[UpdateKind: TUpdateKind]: TDBISAMQuery

The Query property provides a reference to the internal TDBISAMQuery component actually used to
execute the SQL in the InsertSQL, ModifySQL, and DeleteSQL properties.

Component Reference

Page 932

TDBISAMUpdateSQL.SQL Property

property SQL[UpdateKind: TUpdateKind]: TStrings

The SQL property indicates the SQL statement in the InsertSQL, ModifySQL, or DeleteSQL property,
depending on the setting of the UpdateKind index.

Component Reference

Page 933

TDBISAMUpdateSQL.Apply Method

procedure Apply(UpdateKind: TUpdateKind)

Call the Apply method to set the parameters for an SQL statement and execute it in order to update a
record. The UpdateKind parameter indicates which SQL statement to bind and execute. The Apply method
is primarily intended for manually executing update statements from an OnUpdateRecord event handler.

Note
If an SQL statement does not contain parameters, it is more efficient to call the ExecSQL method
instead of the Apply method.

Component Reference

Page 934

TDBISAMUpdateSQL.Create Method

constructor Create(AOwner: TComponent)

Call the Create constructor to create an instance of a TDBISAMUpdateSQL component.

Component Reference

Page 935

TDBISAMUpdateSQL.ExecSQL Method

procedure ExecSQL(UpdateKind: TUpdateKind)

Call the ExecSQL method to execute an SQL statement in order to update a record. The UpdateKind
parameter indicates which SQL statement to execute.

Note
If the statement to execute contains any parameters, an application must call the SetParams
method to bind the parameters before calling the ExecSQL method.

Component Reference

Page 936

TDBISAMUpdateSQL.SetParams Method

procedure SetParams(UpdateKind: TUpdateKind)

Call the SetParams method to bind any parameters in an SQL statement associated with the update object
prior to executing the statement. Parameters are indicated in an SQL statement by a colon. Except for the
leading colon in the parameter name, the parameter name must exactly match the name of an existing
field name for the source table.

Note
Parameter names can be prefaced by the "OLD_" prefix. If so, the old value of the field is used to
perform the update instead of any updates in the cache.

Component Reference

Page 937

This page intentionally left blank

Type Reference

Page 938

Chapter 6
Type Reference

6.1 TAbortAction Type

Unit: dbisamtb

TAbortAction = (aaContinue,aaRetry,aaAbort)

This type is used as a parameter to the TDBISAMQuery OnQueryError event to determine whether the
application wishes to continue with the next SQL statement in the current SQL script (if one is present),
wishes to abort the current SQL script or single statement, or wishes to retry the current SQL statement.

Element Description

aaAbort Indicates the application wishes to abort the current action
and stop what it is doing without issuing an error message.

aaContinue Indicates the application wishes to continue on and skip the
current error.

aaRetry Indicates the application wishes to retry the current action.

Type Reference

Page 939

6.2 TAbortErrorEvent Type

Unit: dbisamtb

TAbortErrorEvent = procedure (Sender: TObject; E: Exception; var
 Action: TAbortAction) of object

This type is used for the TDBISAMQuery OnQueryError event.

Type Reference

Page 940

6.3 TAbortProgressEvent Type

Unit: dbisamtb

TAbortProgressEvent = procedure (Sender: TObject; PercentDone:
 Word; var Abort: Boolean) of object

This type is used for the TDBISAMQuery OnQueryProgress event.

Type Reference

Page 941

6.4 TCachedUpdateErrorEvent Type

Unit: dbisamtb

TCachedUpdateErrorEvent = procedure (Sender: TObject;
 CurrentRecord: TDBISAMRecord; E: Exception; UpdateType:
 TUpdateType; var Action: TUpdateAction) of object

This type is used for the TDBISAMTable and TDBISAMQuery OnCachedUpdateError event.

Type Reference

Page 942

6.5 TCompressEvent Type

Unit: dbisamtb

TCompressEvent = procedure (Sender: TObject; const InBuffer:
 Pointer; InBytes: Integer; Level: Byte; out OutBuffer: Pointer;
 out OutBytes: Integer) of object

This type is used for the TDBISAMEngine OnCompress event. Please see the Customizing the Engine topic
for more information.

Type Reference

Page 943

6.6 TCryptoInitEvent Type

Unit: dbisamtb

TCryptoInitEvent = procedure (Sender: TObject; Key: Pointer;
 KeyLen: Integer; out OutData: Pointer; out OutDataBytes:
 Integer) of object

This type is used for the TDBISAMEngine OnCryptoInit event. Please see the Customizing the Engine topic
for more information.

Type Reference

Page 944

6.7 TCryptoResetEvent Type

Unit: dbisamtb

TCryptoResetEvent = procedure (Sender: TObject; Data: Pointer)
 of object

This type is used for the TDBISAMEngine OnCryptoReset event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 945

6.8 TCustomFunctionEvent Type

Unit: dbisamtb

TCustomFunctionEvent = procedure (Sender: TObject; const
 FunctionName: String; FunctionParams: TDBISAMParams; var Result:
 Variant) of object

This type is used for the TDBISAMEngine OnCustomFunction event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 946

6.9 TDatabaseRight Type

Unit: dbisamtb

TDatabaseRight = (drRead,drInsert,drUpdate,drDelete,drCreate,
 drAlter,drDrop,drRename,drMaintain, drBackup,drRestore)

This type is used to indicate the type of right currently granted to a given user for a given database on a
database server. It is used as part of a set of rights represented in the TDatabaseRights type, which is
used as a parameter to the TDBISAMSession AddRemoteDatabaseUser, ModifyRemoteDatabaseUser, and
GetRemoteDatabaseUser methods, as well as the TDBISAMEngine AddServerDatabaseUser,
ModifyServerDatabaseUser, and GetServerDatabaseUser methods.

Element Description

drAlter Indicates that the user has or is being granted the right to
alter the structure of tables in the database on the database
server.

drBackup Indicates that the user has or is being granted the right to
backup tables in the database on the database server.

drCreate Indicates that the user has or is being granted the right to
create tables and indexes in the database on the database
server.

drDelete Indicates that the user has or is being granted the right to
delete records from tables in the database on the database
server.

drDrop Indicates that the user has or is being granted the right to
delete tables and indexes in the database on the database
server.

drInsert Indicates that the user has or is being granted the right to
insert records into tables in the database on the database
server.

drMaintain Indicates that the user has or is being granted the right to
perform maintenance functions like repair or optimize on
tables in the database on the database server.

drRead Indicates that the user has or is being granted the right to
read tables in the database on the database server.

Note
This right also determines if a database is visible to a
user when getting a list of databases from a database
server using the TDBISAMSession
GetRemoteDatabaseNames method.

drRename Indicates that the user has or is being granted the right to
rename tables in the database on the database server.

Type Reference

Page 947

drRestore Indicates that the user has or is being granted the right to
restore tables in the database on the database server.

drUpdate Indicates that the user has or is being granted the right to
update records in tables in the database on the database
server.

Type Reference

Page 948

6.10 TDatabaseRights Type

Unit: dbisamtb

TDatabaseRights = set of TDatabaseRight

This type is used as a set of TDatabaseRight enumerated types to indicate the set of rights currently
granted to a given user for a given database on a database server. It is used as a parameter to the
TDBISAMSession AddRemoteDatabaseUser, ModifyRemoteDatabaseUser, and GetRemoteDatabaseUser
methods, as well as the TDBISAMEngine AddServerDatabaseUser, ModifyServerDatabaseUser, and
GetServerDatabaseUser methods.

Type Reference

Page 949

6.11 TDataLossCause Type

Unit: dbisamtb

TDataLossCause = (dlUnknown,dlKeyViolation,dlValidityCheckFail,
 dlFieldDeletion,dlFieldConversion)

This type is used as a parameter to the TDBISAMTable and TDBISAMQuery OnDataLost event to
determine the type of data loss incurred during the process of altering a table's structure or adding an
index.

Element Description

dlFieldConversion Indicates that the cause of the data loss is the inability of
DBISAM to handle the conversion of a given field from one
data type to another due to incompatible data types. The
ContextInfo parameter of the OnDataLost event will indicate
the field name for which the failure is occurring.

dlFieldDeletion Indicates that the cause of the data loss is the deletion of a
field. The ContextInfo parameter of the OnDataLost event will
indicate the field name that has been deleted.

dlKeyViolation Indicates that the cause of the data loss is a duplicate index
key. The ContextInfo parameter of the OnDataLost event will
indicate the index name for which the key violation is
occurring.

dlUnknown Indicates that the cause of the data loss is unknown or
undetermined by DBISAM.

dlValidityCheckFail Indicates that the cause of the data loss is a failure of a
constraint for a given field. The ContextInfo parameter of the
OnDataLost event will indicate the field name for which the
failure is occurring.

Type Reference

Page 950

6.12 TDataLostEvent Type

Unit: dbisamtb

TDataLostEvent = procedure (Sender: TObject; Cause:
 TDataLossCause; const ContextInfo: String; var Continue: Boolean;
 var StopAsking: Boolean) of object

This type is used for the TDBISAMTable and TDBISAMQuery OnDataLost event.

Type Reference

Page 951

6.13 TDecompressEvent Type

Unit: dbisamtb

TDecompressEvent = procedure (Sender: TObject; const InBuffer:
 Pointer; InBytes: Integer; out OutBuffer: Pointer; out OutBytes:
 Integer) of object

This type is used for the TDBISAMEngine OnDecompress event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 952

6.14 TDecryptBlockEvent Type

Unit: dbisamtb

TDecryptBlockEvent = procedure (Sender: TObject; Data: Pointer;
 BlockBuffer: Pointer) of object

This type is used for the TDBISAMEngine OnDecryptBlock event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 953

6.15 TEncryptBlockEvent Type

Unit: dbisamtb

TEncryptBlockEvent = procedure (Sender: TObject; Data: Pointer;
 BlockBuffer: Pointer) of object

This type is used for the TDBISAMEngine OnEncryptBlock event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 954

6.16 TEndTransactionTriggerEvent Type

Unit: dbisamtb

TEndTransactionTriggerEvent = procedure (Sender: TObject;
 TriggerSession: TDBISAMSession; TriggerDatabase:
 TDBISAMDatabase) of object

This type is used for the TDBISAMEngine CommitTrigger and RollbackTrigger events.

Type Reference

Page 955

6.17 TEngineType Type

Unit: dbisamtb

TEngineType = (etClient,etServer)

This type is used to indicate the type of engine that the TDBISAMEngine component is being used as in
the application. Please see the DBISAM Architecture for more information.

Element Description

etClient Indicates that the engine is configured as a client engine.

etServer Indicates that the engine is configured as a database server.

Type Reference

Page 956

6.18 TErrorEvent Type

Unit: dbisamtb

TErrorEvent = procedure (Sender: TObject; ErrorSession:
 TDBISAMSession; ErrorDatabase: TDBISAMDatabase; const TableName:
 String; CurrentRecord: TDBISAMRecord; E: Exception; var Action:
 TDataAction) of object

This type is used for the TDBISAMEngine OnInsertError, OnUpdateError, OnDeleteError events.

Type Reference

Page 957

6.19 TEventDayOfMonth Type

Unit: dbisamtb

TEventDayOfMonth = (md1st,md2nd,md3rd,md4th,md5th,md6th,md7th,
 md8th,md9th, md10th,md11th,md12th,md13th,md14th,md15th,md16th,
 md17th, md18th,md19th,md20th,md21st,md22nd,md23rd,md24th,md25th,
 md26th,md27th,md28th,md29th,md30th,md31st, mdFirstDayOfWeek,
 mdSecondDayOfWeek,mdThirdDayOfWeek, mdFourthDayOfWeek,
 mdLastDayOfWeek)

This type is used to indicate the type of day in a month, either independently as a specific numeric day or
in conjunction with the TEventDayOfWeek type to specify a given day in a particular week in a month -
either the first, second, third, fourth, or last week - that an event should run on. It is used a parameter to
the TDBISAMSession AddRemoteEvent, ModifyRemoteEvent, and GetRemoteEvent methods, as well as the
TDBISAMEngine AddServerEvent, ModifyServerEvent, and GetServerEvent methods.

Element Description

md10th Indicates that the event should run on the 10th day of the
month.

md11th Indicates that the event should run on the 11th day of the
month.

md12th Indicates that the event should run on the 12th day of the
month.

md13th Indicates that the event should run on the 13th day of the
month.

md14th Indicates that the event should run on the 14th day of the
month.

md15th Indicates that the event should run on the 15th day of the
month.

md16th Indicates that the event should run on the 16th day of the
month.

md17th Indicates that the event should run on the 17th day of the
month.

md18th Indicates that the event should run on the 18th day of the
month.

md19th Indicates that the event should run on the 19th day of the
month.

md1st Indicates that the event should run on the 1st day of the
month.

md20th Indicates that the event should run on the 20th day of the
month.

md21st Indicates that the event should run on the 21st day of the
month.

Type Reference

Page 958

md22nd Indicates that the event should run on the 22nd day of the
month.

md23rd Indicates that the event should run on the 23rd day of the
month.

md24th Indicates that the event should run on the 24th day of the
month.

md25th Indicates that the event should run on the 25th day of the
month.

md26th Indicates that the event should run on the 26th day of the
month.

md27th Indicates that the event should run on the 27th day of the
month.

md28th Indicates that the event should run on the 28th day of the
month.

md29th Indicates that the event should run on the 29th day of the
month.

md2nd Indicates that the event should run on the 2nd day of the
month.

md30th Indicates that the event should run on the 30th day of the
month.

md31st Indicates that the event should run on the 31st day of the
month.

md3rd Indicates that the event should run on the 3rd day of the
month.

md4th Indicates that the event should run on the 4th day of the
month.

md5th Indicates that the event should run on the 5th day of the
month.

md6th Indicates that the event should run on the 6th day of the
month.

md7th Indicates that the event should run on the 7th day of the
month.

md8th Indicates that the event should run on the 8th day of the
month.

md9th Indicates that the event should run on the 9th day of the
month.

mdFirstDayOfWeek Indicates that the event should run on a specific day in the
first week of the month.

mdFourthDayOfWeek Indicates that the event should run on a specific day in the
fourth week of the month.

mdLastDayOfWeek Indicates that the event should run on a specific day in the
last week of the month.

mdSecondDayOfWeek Indicates that the event should run on a specific day in the
second week of the month.

Type Reference

Page 959

mdThirdDayOfWeek Indicates that the event should run on a specific day in the
third week of the month.

Type Reference

Page 960

6.20 TEventDayOfWeek Type

Unit: dbisamtb

TEventDayOfWeek = (wdSunday,wdMonday,wdTuesday,wdWednesday,
 wdThursday,wdFriday,wdSaturday)

This type is used in conjunction with the TEventDayOfMonth type to specify a given day in a particular
week in a month - either the first, second, third, fourth, or last week - that an event should run on. It is
used a parameter to the TDBISAMSession AddRemoteEvent, ModifyRemoteEvent, and GetRemoteEvent
methods, as well as the TDBISAMEngine AddServerEvent, ModifyServerEvent, and GetServerEvent
methods.

Element Description

wdFriday Indicates that the event should run on the Friday of a specific
week of the month.

wdMonday Indicates that the event should run on the Monday of a
specific week of the month.

wdSaturday Indicates that the event should run on the Saturday of a
specific week of the month.

wdSunday Indicates that the event should run on the Sunday of a
specific week of the month.

wdThursday Indicates that the event should run on the Thursday of a
specific week of the month.

wdTuesday Indicates that the event should run on the Tuesday of a
specific week of the month.

wdWednesday Indicates that the event should run on the Wednesday of a
specific week of the month.

Type Reference

Page 961

6.21 TEventDays Type

Unit: dbisamtb

TEventDays = array [1..7] of Boolean

This type is used to specify which days of the week an event should run on, with day 1 being Sunday and
day 7 being Saturday. It is used a parameter to the TDBISAMSession AddRemoteEvent,
ModifyRemoteEvent, and GetRemoteEvent methods, as well as the TDBISAMEngine AddServerEvent,
ModifyServerEvent, and GetServerEvent methods.

Type Reference

Page 962

6.22 TEventMonths Type

Unit: dbisamtb

TEventMonths = array [1..12] of Boolean

This type is used to specify which months of the year an event should run on, with month 1 being January
and month 12 being December. It is used a parameter to the TDBISAMSession AddRemoteEvent,
ModifyRemoteEvent, and GetRemoteEvent methods, as well as the TDBISAMEngine AddServerEvent,
ModifyServerEvent, and GetServerEvent methods.

Type Reference

Page 963

6.23 TEventRunType Type

Unit: dbisamtb

TEventRunType = (rtOnce,rtHourly,rtDaily,rtWeekly,rtMonthly,
 rtMinute)

This type is used to specify the run type of an event, either once, every X minutes, hourly, daily, weekly,
or monthly. It is used a parameter to the TDBISAMSession AddRemoteEvent, ModifyRemoteEvent, and
GetRemoteEvent methods, as well as the TDBISAMEngine AddServerEvent, ModifyServerEvent, and
GetServerEvent methods.

Element Description

rtDaily Indicates that the event should be run daily.

rtHourly Indicates that the event should be run hourly.

rtMinute Indicates that the event should be run every X minutes.

rtMonthly Indicates that the event should be run monthly.

rtOnce Indicates that the event should be run once.

rtWeekly Indicates that the event should be run weekly.

Type Reference

Page 964

6.24 TFieldCharCase Type

Unit: dbisamtb

TFieldCharCase = (fcNoChange,fcLowerCase,fcUpperCase)

This type is used to specify the automatic character-casing of a field in the TDBISAMFieldDef CharCase
property.

Note
This type only applies to string fields.

Element Description

fcLowerCase Indicates that the field's data will be lower-cased
automatically by DBISAM whenever any data is input.

fcNoChange Indicates that the field data's character case will not be
changed by DBISAM whenever any data is input.

fcUpperCase Indicates that the field's data will be upper-cased
automatically by DBISAM whenever any data is input.

Type Reference

Page 965

6.25 TFilterOptimizeLevel Type

Unit: dbisamtb

TFilterOptimizeLevel = (foNone,foPartial,foFull)

This type is used with the TDBISAMTable and TDBISAMQuery FilterOptimizeLevel properties to express the
optimization level of the filter expression specified via the Filter property. Please see the Setting Filters on
Tables topic for more information.

Element Description

foFull Indicates that the filter expression is completely optimized.

foNone Indicates that the filter expression is completely un-optimized.

foPartial Indicates that the filter expression is partially optimized.

Type Reference

Page 966

6.26 TIndexCompression Type

Unit: dbisamtb

TIndexCompression = (icNone,icDuplicateByte,icTrailingByte,
 icFull)

This type is used to specify the type of compression used for an index in the TDBISAMIndexDef
Compression property. Please see the Index Compression topic for more information.

Element Description

icDuplicateByte Indicates that the compression is duplicate-byte compression.
Duplicate-byte compression works by removing all duplicate
bytes from adjacent index keys in an index.

icFull Indicates that the compression is both duplicate-byte and
trailing-byte compression (or full compression).

icNone Indicates that there is no compression.

icTrailingByte Indicates that the compression is trailing-byte compression.
Trailing-byte compression works by removing all trailing
spaces and NULLs from the index keys in an index, and is
most useful with string fields.

Type Reference

Page 967

6.27 TLockProtocol Type

Unit: dbisamtb

TLockProtocol = (lpPessimistic,lpOptimistic)

This type is used with the TDBISAMSession LockProtocol property. Please see the Locking and
Concurrency topic for more information.

Element Description

lpOptimistic Indicates an optimistic locking model.

lpPessimistic Indicates an pessimistic locking model.

Type Reference

Page 968

6.28 TLogCategory Type

Unit: dbisamtb

TLogCategory = (lcInformation,lcWarning,lcError)

This type is used as part of the TLogRecord parameter to the TDBISAMEngine OnServerLogEvent event to
determine the category of log entry that is being logged for the server.

Element Description

lcError Indicates that an error is being logged.

lcInformation Indicates that an informational message is being logged.

lcWarning Indicates that a warning is being logged.

Type Reference

Page 969

6.29 TLogEvent Type

Unit: dbisamtb

TLogEvent = procedure (Sender: TObject; const LogMessage:
 String) of object

This type is used for the TDBISAMEngine OnServerLogEvent event.

Type Reference

Page 970

6.30 TLogEventType Type

Unit: dbisamtb

TLogEventType = (leNone,leServerStart,leServerStop,leConnect,
 leReconnect,leDisconnect,leLogin,leLogout, leDeadSession,
 leNoSession,leAddressBlock,leMaxConnect, leInvalidLogin,
 leLoginDenied,leConfiguration, leScheduledEvent,
 leEncryptionMismatch,leVersionMismatch)

This type is used as part of the TLogRecord parameter to the TDBISAMEngine OnServerLogEvent event to
determine the type of log entry that is being logged for the server.

Element Description

leAddressBlock Indicates that a session could not connect to the database
server because the IP address of the connecting session had
been blocked in the server configuration.

leConfiguration Indicates that a there was an issue with either loading or
saving the configuration file to or from disk.

leConnect Indicates that a session connected successfully to the
database server.

leDeadSession Indicates that a dead session was removed or that there was
a problem encountered while removing a dead session.

leDisconnect Indicates that a session disconnected or was disconnected by
the server due to a connection timeout.

leEncryptionMismatch Indicates that a session's connection isn't encrypted and the
DBISAM Database Server requires encrypted connections.

leInvalidLogin Indicates that a session attempted to login using an invalid
user name and/or password.

leLogin Indicates that a session logged in successfully.

leLoginDenied Indicates that a session attempted to login but was rejected
because the database server was configured to deny any new
logins.

leLogout Indicates that a session logged out successfully from the
database server.

leMaxConnect Indicates that a session could not connect to the database
server because the maximum number of connections in the
server configuration would have been exceeded.

leNone Indicates that the database server could not determine the
type of log entry.

leNoSession Indicates that a session could not re-connect to the database
server because the session ID specified in the reconnect
request was not valid. This is most likely due to it being
removed as part of the dead session cleanup process.

Type Reference

Page 971

leReconnect Indicates that a session re-connected successfully to the
database server.

leScheduledEvent Indicates that a scheduled event has been started or
completed, or that there was an error during the execution of
a scheduled event.

leServerStart Indicates that the database server has been started or that an
error was encountered while starting the server.

leServerStop Indicates that the database server has been stopped or that
an error was encountered while stopping the server.

leVersionMismatch Indicates that a session's major version of DBISAM does not
match that of the major version of the DBISAM Database
Server.

Type Reference

Page 972

6.31 TLoginEvent Type

Unit: dbisamtb

TLoginEvent = procedure (Sender: TObject; var UserName: String;
 var Password: String; var Continue: Boolean) of object

This type is used for the TDBISAMSession OnRemoteLogin event.

Type Reference

Page 973

6.32 TLogRecord Type

Unit: dbisamtb

TLogRecord = packed record DateTime: TDateTime; Category:
 TLogCategory; EventType: TLogEventType; Text: String[255];
 ServerVersion: Currency; ClientVersion: Currency; ClientAddress:
 String[60]; ClientEncrypted: Boolean; ClientUser: String[30];
 ClientRequest: Word; ClientRequestName: String[30];
 ClientThread: Integer; ClientSession: Integer; end;

This type is used as a parameter to the TDBISAMEngine OnServerLogEvent event. The fields of the record
are as follows:

Field Description

DateTime Indicates the date and time of the log entry.

Category Indicates the category of the log entry - an information
message, a warning, or an error.

EventType Indicates the type of log entry.

Text Indicates the actual log entry message or error message, if
the log entry is for an error.

ServerVersion Indicates the version of DBISAM in use with the database
server.

ClientVersion Indicates the version of DBISAM in use with the client session,
if applicable, when the log entry was generated.

ClientAddress Indicates the client session's IP address, if applicable, when
the log entry was generated.

ClientEncrypted Indicates whether the client session was encrypted or not, if
applicable, when the log entry was generated.

ClientUser Indicates the client session's user name, if applicable, when
the log entry was generated.

ClientRequest Indicates the request code that was being processed, if
applicable, when the log entry was generated.

ClientRequestName Indicates the request name (as text) that was being
processed, if applicable, when the log entry was generated.

ClientThread Indicates the client session thread ID that was being used for
the connection, if applicable, when the log entry was
generated.

ClientSession Indicates the client session ID that was being used, if
applicable, when the log entry was generated.

Type Reference

Page 974

6.33 TPasswordEvent Type

Unit: dbisamtb

TPasswordEvent = procedure (Sender: TObject; var Continue:
 Boolean) of object

This type is used for the TDBISAMSession OnPassword event.

Type Reference

Page 975

6.34 TProcedureProgressEvent Type

Unit: dbisamtb

TProcedureProgressEvent = procedure (Sender: TObject; const
 Status: String; PercentDone: Word; var Abort: Boolean) of object

This type is used for the TDBISAMSession OnRemoteProcedureProgress event.

Type Reference

Page 976

6.35 TProcedureRight Type

Unit: dbisamtb

TProcedureRight = (prExecute)

This type is used to indicate the type of right currently granted to a given user for a given server-side
procedure on a database server. It is used as part of a set of rights represented in the TProcedureRights
type, which is used as a parameter to the TDBISAMSession AddRemoteProcedureUser,
ModifyRemoteProcedureUser, and GetRemoteProcedureUser methods, as well as the TDBISAMEngine
AddServerProcedureUser, ModifyServerProcedureUser, and GetServerProcedureUser methods.

Element Description

prExecute Indicates that the user has or is being granted the right to
execute the server-side procedure on the database server.

Type Reference

Page 977

6.36 TProcedureRights Type

Unit: dbisamtb

TProcedureRights = set of TProcedureRight

This type is used as a set of TProcedureRight enumerated types to indicate the set of rights currently
granted to a given user for a given server-side procedure on a database server. It is used as a parameter
to the TDBISAMSession AddRemoteProcedureUser, ModifyRemoteProcedureUser, and
GetRemoteProcedureUser methods, as well as the TDBISAMEngine AddServerProcedureUser,
ModifyServerProcedureUser, and GetServerProcedureUser methods.

Type Reference

Page 978

6.37 TProgressEvent Type

Unit: dbisamtb

TProgressEvent = procedure (Sender: TObject; PercentDone: Word)
 of object

This type is used for the TDBISAMQuery and TDBISAMTable OnIndexProgress, OnCopyProgress,
OnOptimizeProgress, OnAlterProgress, OnImportProgress, OnExportProgress, OnLoadFromStreamProgress
, OnSaveToStreamProgress, and OnSaveProgress events.

Type Reference

Page 979

6.38 TReconnectEvent Type

Unit: dbisamtb

TReconnectEvent = procedure (Sender: TObject; var Continue:
 Boolean; var StopAsking: Boolean) of object

This type is used for the TDBISAMSession OnRemoteReconnect event.

Type Reference

Page 980

6.39 TRecordLockTriggerEvent Type

Unit: dbisamtb

TRecordLockTriggerEvent = procedure (Sender: TObject;
 TriggerSession: TDBISAMSession; TriggerDatabase: TDBISAMDatabase;
 const TableName: String; RecordNumber: Integer) of object

Type Reference

Page 981

6.40 TSendReceiveProgressEvent Type

Unit: dbisamtb

TSendReceiveProgressEvent = procedure (Sender: TObject;
 NumBytes: Integer; PercentDone: Word) of object

This type is used for the TDBISAMSession OnRemoteSendProgress and OnRemoteReceiveProgress events.

Type Reference

Page 982

6.41 TServerConnectEvent Type

Unit: dbisamtb

TServerConnectEvent = procedure (Sender: TObject; IsEncrypted:
 Boolean; const ConnectAddress: String; var UserData: TObject) of
 object

This type is used for the TDBISAMEngine OnServerConnect event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 983

6.42 TServerDisconnectEvent Type

Unit: dbisamtb

TServerDisconnectEvent = procedure (Sender: TObject; UserData:
 TObject; const LastConnectAddress: String) of object

This type is used for the TDBISAMEngine OnServerDisconnect event. Please see the Customizing the
Engine topic for more information.

Type Reference

Page 984

6.43 TServerLogCountEvent Type

Unit: dbisamtb

TServerLogCountEvent = procedure (Sender: TObject; var LogCount:
 Integer) of object

This type is used for the TDBISAMEngine OnServerLogCount event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 985

6.44 TServerLogEvent Type

Unit: dbisamtb

TServerLogEvent = procedure (Sender: TObject; const LogRecord:
 TLogRecord) of object

This type is used for the TDBISAMEngine OnServerLogEvent event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 986

6.45 TServerLoginEvent Type

Unit: dbisamtb

TServerLoginEvent = procedure (Sender: TObject; const UserName:
 String; UserData: TObject) of object

This type is used for the TDBISAMEngine OnServerLogin event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 987

6.46 TServerLogoutEvent Type

Unit: dbisamtb

TServerLogoutEvent = procedure (Sender: TObject; var UserData:
 TObject) of object

This type is used for the TDBISAMEngine OnServerLogout event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 988

6.47 TServerLogRecordEvent Type

Unit: dbisamtb

TServerLogRecordEvent = procedure (Sender: TObject; Number:
 Integer; var LogRecord: TLogRecord) of object

This type is used for the TDBISAMEngine OnServerLogRecord event. Please see the Customizing the
Engine topic for more information.

Type Reference

Page 989

6.48 TServerProcedureEvent Type

Unit: dbisamtb

TServerProcedureEvent = procedure (Sender: TObject;
 ServerSession: TDBISAMSession; const ProcedureName: String) of
 object

This type is used for the TDBISAMEngine OnServerProcedure event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 990

6.49 TServerReconnectEvent Type

Unit: dbisamtb

TServerReconnectEvent = procedure (Sender: TObject; IsEncrypted:
 Boolean; const ConnectAddress: String; UserData: TObject) of
 object

This type is used for the TDBISAMEngine OnServerReconnect event. Please see the Customizing the
Engine topic for more information.

Type Reference

Page 991

6.50 TServerScheduledEvent Type

Unit: dbisamtb

TServerScheduledEvent = procedure (Sender: TObject; const
 EventName: String; var Completed: Boolean) of object

This type is used for the TDBISAMEngine OnServerScheduledEvent event. Please see the Customizing the
Engine topic for more information.

Type Reference

Page 992

6.51 TSessionType Type

Unit: dbisamtb

TSessionType = (stLocal,stRemote)

This type is used to indicate the type of session that the TDBISAMSession component is being used as in
the application. Please see the DBISAM Architecture for more information.

Element Description

stLocal Indicates the session is a local session directly accessing a
local or network-based hard drive where the databases
(directories) and tables are located.

stRemote Indicates the session is a remote session connecting to a
database server.

Type Reference

Page 993

6.52 TSQLStatementType Type

Unit: dbisamtb

TSQLStatementType = (stUnknown,stSelect,stInsert,stUpdate,
 stDelete, stCreateTable,stCreateIndex,stAlterTable, stEmptyTable,
 stOptimizeTable,stExportTable, stImportTable,stVerifyTable,
 stRepairTable, stUpgradeTable,stDropIndex,stDropTable,
 stRenameTable,stStartTransaction, stRollbackTransaction,
 stCommitTransaction, stBackup,stRestore)

This type is used to indicate the type of SQL statement that the TDBISAMQuery component has currently
prepared or is in the process of executing. Please see the Executing SQL Queries for more information.

Element Description

stAlterTable Indicates the SQL statement is an ALTER TABLE statement.

stBackup Indicates the SQL statement is a BACKUP DATABASE
statement.

stCommitTransaction Indicates the SQL statement is a COMMIT statement.

stCreateIndex Indicates the SQL statement is a CREATE INDEX statement.

stCreateTable Indicates the SQL statement is a CREATE TABLE statement.

stDelete Indicates the SQL statement is a DELETE statement.

stDropIndex Indicates the SQL statement is a DROP INDEX statement.

stDropTable Indicates the SQL statement is a DROP TABLE statement.

stEmptyTable Indicates the SQL statement is an EMPTY TABLE statement.

stExportTable Indicates the SQL statement is an EXPORT TABLE statement.

stImportTable Indicates the SQL statement is an IMPORT TABLE statement.

stInsert Indicates the SQL statement is an INSERT statement.

stOptimizeTable Indicates the SQL statement is an OPTIMIZE TABLE
statement.

stRenameTable Indicates the SQL statement is a RENAME TABLE statement.

stRepairTable Indicates the SQL statement is a REPAIR TABLE statement.

stRestore Indicates the SQL statement is a RESTORE DATABASE
statement.

stRollbackTransaction Indicates the SQL statement is a ROLLBACK statement.

stSelect Indicates the SQL statement is a SELECT statement.

stStartTransaction Indicates the SQL statement is a START TRANSACTION
statement.

stUnknown Indicates the SQL statement type is unknown or not available.

stUpdate Indicates the SQL statement is an UPDATE statement.

Type Reference

Page 994

stUpgradeTable Indicates the SQL statement is an UPGRADE TABLE
statement.

stVerifyTable Indicates the SQL statement is a VERIFY TABLE statement.

Type Reference

Page 995

6.53 TSQLTriggerEvent Type

Unit: dbisamtb

TSQLTriggerEvent = procedure (Sender: TObject; TriggerSession:
 TDBISAMSession; TriggerDatabase: TDBISAMDatabase; StatementType:
 TSQLStatementType; const SQL: String; ExecutionTime: Double;
 RowsAffected: Integer) of object

This type is used for the TDBISAMEngine SQLTrigger event.

Type Reference

Page 996

6.54 TStartTransactionTriggerEvent Type

Unit: dbisamtb

TStartTransactionTriggerEvent = procedure (Sender: TObject;
 TriggerSession: TDBISAMSession; TriggerDatabase: TDBISAMDatabase;
 Tables: TStrings) of object

This type is used for the TDBISAMEngine StartTransactionTrigger event.

Type Reference

Page 997

6.55 TSteppedProgressEvent Type

Unit: dbisamtb

TSteppedProgressEvent = procedure (Sender: TObject; const Step:
 String; PercentDone: Word) of object

This type is used for the TDBISAMQuery and TDBISAMTable OnVerifyProgress, OnRepairProgress, and
OnUpgradeProgress events.

Type Reference

Page 998

6.56 TTextIndexFilterEvent Type

Unit: dbisamtb

TTextIndexFilterEvent = procedure (Sender: TObject; const
 TableName: String; const FieldName: String; var TextToIndex:
 String) of object

This type is used for the TDBISAMEngine OnTextIndexFilter event. Please see the Customizing the Engine
topic for more information.

Type Reference

Page 999

6.57 TTextIndexTokenFilterEvent Type

Unit: dbisamtb

TTextIndexTokenFilterEvent = procedure (Sender: TObject; const
 TableName: String; const FieldName: String; const
 TextIndexToken: String; var Include: Boolean) of object

This type is used for the TDBISAMEngine OnTextIndexTokenFilter event. Please see the Customizing the
Engine topic for more information.

Type Reference

Page 1000

6.58 TTimeoutEvent Type

Unit: dbisamtb

TTimeoutEvent = procedure (Sender: TObject; var StayConnected:
 Boolean) of object

This type is used for the TDBISAMSession OnRemoteTimeout event.

Type Reference

Page 1001

6.59 TTraceEvent Type

Unit: dbisamtb

TTraceEvent = procedure (Sender: TObject; TraceRecord:
 TTraceRecord) of object

This type is used for the TDBISAMSession OnRemoteTrace event.

Type Reference

Page 1002

6.60 TTraceEventType Type

Unit: dbisamtb

TTraceEventType = (teConnect,teReconnect,teDisconnect,teRequest,
 teReply)

This type is used as a parameter to the TDBISAMSession OnRemoteTimeout event to determine the type
of event represented by the trace message.

Element Description

teConnect Indicates that a session is connecting to the database server.

teDisconnect Indicates that a session is disconnecting from the database
server.

teReconnect Indicates that a session is re-connecting to the database
server.

teReply Indicates that a reply has been received from the database
server.

teRequest Indicates that a request is being made to the database server.

Type Reference

Page 1003

6.61 TTraceRecord Type

Unit: dbisamtb

TTraceRecord = packed record DateTime: TDateTime; EventType:
 TTraceEventType; ElapsedTime: LongWord; RemoteEncryption:
 Boolean; RemoteCompression: Byte; RemoteHost: ShortString;
 RemoteAddress: ShortString; RemotePort: Integer; RemoteService:
 ShortString; RemoteUser: ShortString; RemoteRequestID: Word;
 RemoteRequestName: ShortString; RemoteRequestSize: Integer;
 RemoteReplyResultID: Word; RemoteReplyResultName: ShortString;
 RemoteReplySize: Integer; end

This type is used as a parameter to the TDBISAMSession OnRemoteTrace event. The fields of the record
are as follows:

Field Description

DateTime Indicates the date and time of the trace message.

EventType Indicates the type of event represented by the trace message.

ElapsedTime Indicates the total elapsed time for the event in milliseconds.

RemoteEncryption Indicates whether the current session is encrypted.

RemoteCompression Indicates the current compression level. This value normally
ranges from 0 (no compression) to 9 (best compression), but
in some cases may actually appear in the trace record as
values greater than or equal to 10. In these cases, the
compression has been adjusted by the engine due to the size
of the data being too small (less than 1024 bytes). The
adjusted compression level can be found by doing this
calculation:

RemoteCompression mod 10

And the original compression level before the adjustment can
be found by using the following calculation:

RemoteCompression div 10

Any adjustments to the compression such as this are active
for the current request or response only and do not persist
any further.

RemoteHost Indicates the host name of the database server that the
session is connecting or connected to.

RemoteAddress Indicates the IP address of the database server that the
session is connecting or connected to.

RemotePort Indicates the port of the database server that the session is
connecting or connected to.

Type Reference

Page 1004

RemoteService Indicates the service name of the database server that the
session is connecting or connected to.

RemoteUser Indicates the user name of the current session.

RemoteRequestID Indicates the request ID of the current request.

RemoteRequestName Indicates the request name of the current request.

RemoteRequestSize Indicates the size, in bytes, of the current request.

RemoteReplyResultID Indicates the reply result ID of the current reply from the
database server.

RemoteReplyResultName Indicates the reply result name of the current reply from the
database server.

RemoteReplySize Indicates the reply result size, in bytes, of the current reply
from the database server.

Type Reference

Page 1005

6.62 TTriggerEvent Type

Unit: dbisamtb

TTriggerEvent = procedure (Sender: TObject; TriggerSession:
 TDBISAMSession; TriggerDatabase: TDBISAMDatabase; const
 TableName: String; CurrentRecord: TDBISAMRecord) of object

This type is used for the TDBISAMEngine BeforeInsertTrigger, AfterInsertTrigger, BeforeUpdateTrigger,
AfterUpdateTrigger, BeforeDeleteTrigger, or AfterDeleteTrigger events.

Type Reference

Page 1006

6.63 TUpdateType Type

Unit: dbisamtb

TUpdateType = (utInsert,utUpdate,utDelete)

This type is used to indicate the type of cached update that is being applied when an error occurs during
the execution of the ApplyCachedUpdates method and an OnCachedUpdateError event is triggered.

Element Description

utDelete Indicates that the current operation is a deletion.

utInsert Indicates that the current operation is an insertion.

utUpdate Indicates that the current operation is an update.

Type Reference

Page 1007

This page intentionally left blank

Appendix A - Differences from the BDE

Page 1008

Appendix A - Differences from the BDE

There are several key differences between the BDE and DBISAM that should be taken into account,
especially when converting an existing application that uses the BDE over to DBISAM.

Note
All comparisons below assume usage of only the Paradox and dBase/FoxPro local table formats
available in the BDE. For numerous reasons Access is not included in this comparison.

Difference Further Details

BLOBs The BDE allows (using Paradox tables) a portion of BLOB
fields to be stored in the actual records in addition to
storing the BLOB fields in a separate physical BLOB file.
DBISAM does not support this and more closely
resembles the dBase table format where all of the BLOB
fields are stored in a separate physical BLOB file. Also,
DBISAM always buffers BLOBs in memory when records
are being added or edited. This is in contrast to the BDE,
which will write overflow BLOB data to temporary files on
disk when they exceed an acceptable amount of memory
consumption (acceptable is determined internally by the
BDE).

Batch Moves DBISAM does not currently contain a batch move
component, however bulk inserts and updates can be
accomplished via SQL INSERT and UPDATE statements.
DBISAM also allows for importing and exporting tables to
text files via the ExportTable and ImportTable methods
of the TDBISAMTable and TDBISAMQuery components.

Cached Updates DBISAM supports cached updates, although there are
some differences between the way the BDE handles
cached updates and DBISAM handles cached updates.
DBISAM caches the entire source dataset immediately
upon beginning cached updates, whereas the BDE
caches records "on demand" as the dataset is updated.
Also, the reconciliation event is different for DBISAM,
although the basic principles of reconciliation are the
same.

Concurrency (Multi-User Usage) The BDE in general, and Paradox tables in particular, can
be difficult to set up for proper multi-user usage. There
is the .NET file, .LCK files, and the Local Share setting to
deal with and improper settings can cause data refresh
problems and in the worst case, data corruption and loss
of data. With DBISAM, all locking is done through the
operating system and does not involve any external files
that must be configured. There is absolutely nothing
extra that you must do when writing an application for
single-user or multi-user use. All of the hard work is
done for you, transparently, and the only task left up to

Appendix A - Differences from the BDE

Page 1009

you is copying the tables onto the network file server.
Please see the Locking and Concurrency topic for more
information.

Distribution DBISAM can be compiled completely into your
application and does not require any other DLLs or
external components. Runtime package support is also
provided with the dbxxxxxr.bpl (Delphi and C++Builder)
or bpldbxxxxx.so (Kylix) package that is distributed with
DBISAM (the XXXXX is replaced with a 3-digit DBISAM
version number, for example 300 is version 3.00, and a d
for Delphi, a c for C++Builder, or a k for Kylix, along
with a single digit version number such as 5 for Delphi
5).

Encryption and User Security The BDE includes support for user security through
encryption and passwords with the Paradox table format.
DBISAM also supports encrypting a table with a
password as well. Whenever you attempt any operation
on an encrypted table in DBISAM you will be prompted
for the password. You should be extremely careful with
this functionality since you will not be able to open an
encrypted table if you lose the password. The encryption
in DBISAM is a strong 8-byte block cipher called Blowfish
and can be replaced with the block cipher of your choice.
Please see the Starting Sessions and Opening Tables
topics for more information.

In addition to this basic security, the DBISAM database
server allows for a more complete security model by
offering complete user-based security along with
database-level rights that can be assigned on a per-user
basis. Also, all communications in the with the DBISAM
database server can be encrypted with the same strong
Blowfish encryption technology to prevent any data from
being "sniffed" on the network. By default, all
administrative access and all login and password
information are automatically encrypted and are never
sent in an unencrypted fashion over any network. Please
see the Encryption, Server Administration, and
Customizing the Engine topics for more information.

Error Trapping DBISAM uses its own exception class called
EDBISAMEngineError, not the BDE-specific
EDBEngineError exception class. The behavior between
the the two exception classes is similar, however the
EDBISAMEngineError exception class only contains an
ErrorCode property (and some additional context
information) whereas the EDBEngineError exception
class contains an array of error classes, each with its
own error code. The reason for this is that the BDE can
raise multiple error codes in one exception, whereas
DBISAM only raises one error per exception. Please see
the Exception Handling and Errors topic for more
information.

Filters Both the BDE and DBISAM provide expression filters
through the Filter, FilterOptions, and Filtered properties,

Appendix A - Differences from the BDE

Page 1010

and a callback-based filter mechanism exposed as the
OnFilterRecord event that allows you to filter on any type
of arbitrary data.

DBISAM uses straight SQL syntax for its filters, including
the ability to use SQL functions and extended operators
such as IN, LIKE, and BETWEEN. Because of this, filters
in DBISAM are strongly-typed and you cannot mix strings
with integers, and vice-versa. The BDE uses a pseudo-
SQL filter syntax that allows some implicit type
conversions such as this. However, other than this
difference the two syntaxes are almost exactly the same
for basic expressions that do not use SQL-specific
extensions.

The expression filters in both DBISAM and the BDE are
optimized by the database engine, which means that
whenever an index (either primary or secondary) is
available that satisifies a portion or all of the filter
criteria, then that index is used to locate the appropriate
records instead of scanning top to bottom through the
actual data records. Please see the Filter Optimization
topic for more information.

The record sequencing when filters are in effect is
identical to that of the BDE as well as the record counts.
One of the main differences between the BDE and
DBISAM is the inclusion of NULL values when performing
less than (or equal to) comparisons. The BDE will include
NULLs in the result of such a filter, but DBISAM will not.
The standard behavior for SQL selection is to not include
NULLs, which is the reason behind this difference.

Please see the Setting Filters on Tables topic for
information.

Free Space Management The BDE practices free space recycling in the Paradox
table format but not in the dBase or FoxPro table
formats. In these formats free space is not recycled and
after many inserts and deletes the tables tend to get
bloated. This is primarily because with these formats the
records are not physically deleted, only marked for
deletion, and their corresponding index keys are kept in
the indexes. DBISAM recycles all free space in data
records, indexes, and BLOBs transparently and without
any user intervention required. When a record is deleted,
the space is marked as free and available for re-use
immediately. An OptimizeTable method is also provided
with the TDBISAMTable component that allows you to
optimize a table for a particular index order (i.e.
"clustering" the table), optimize BLOB access, and also
remove any free space from the data records, indexes,
and BLOBs. Please see the Optimizing Tables topic for
more information.

In-Memory Tables The BDE allows for the creation of in-memory tables that
behave somewhat like a regular table, but are severely

Appendix A - Differences from the BDE

Page 1011

limited in several areas such as the ability to add and
use indexes (both primary and secondary) and the ability
to use BLOB fields. Also, an in-memory table created
through the BDE is automatically destroyed upon closing
and cannot be shared by multiple TTable components.
The low-level BDE calls to take advantage of in-memory
tables are also quite confusing to most novice
developers. DBISAM, on the other hand, overcomes all
of these limitations and even allows in-memory tables to
be shared by multiple TDBISAMTable components. Also,
to use in-memory tables in DBISAM is as simple as
setting the DatabaseName property to "Memory" for the
TDBISAMTable component. Please see the In-Memory
Tables and Opening Tables topics for more information.

Note
Because in-memory tables in DBISAM act like
regular disk-based tables, you must first create
the table using the TDBISAMTable CreateTable
method and delete the table using the
TDBISAMTable DeleteTable method to get rid of
the table. You can also use the SQL CREATE
TABLE and DROP TABLE statements to perform
the equivalent functions using only SQL.

Indexes The BDE supports several different indexing schemes for
local databases through separate drivers. DBISAM most
closely resembles the Paradox table format in that it
supports primary and secondary indexes, but it does
offer some features that are found in the FoxPro and
dBase index formats also. The following are notes on the
differences between the BDE local database index
formats and DBISAM's index format:

• Primary Indexes

Paradox allows for tables with no primary index defined.
DBISAM also supports tables without a primary index
defined by the user or developer, but will automatically
define a primary index if one is not defined explicitly.
This automatically defined primary index is based upon
the special, non-changing, RecordID psuedo-field found
in every DBISAM record.

• Case-Insensitivity

Paradox supports case insensitive indexes for secondary
indexes. DBISAM also support case-insensitive indexes,
but for both primary and secondary indexes.

• Secondary Indexes

Paradox stores secondary index definitions in separate
files, one file for each separate index. This is in addition

Appendix A - Differences from the BDE

Page 1012

to a separate file for the primary index. DBISAM stores
all primary and secondary indexes in one .idx file, which
cuts down on file handle usage and headaches
associated with distribution. This is similar to the index
formats of FoxPro and dBase.

• Key Compression

The Paradox and dBase index formats do not include any
type of index key compression at all, while the FoxPro
index format includes very good index key compression.
DBISAM allows you to choose from duplicate-byte
compression, trailing-byte compression, or full
compression (both types of compression combined). The
Foxpro index format always uses full compression and
does not allow you to choose the compression method.

• Descending Indexes

The Paradox index format allows for descending
secondary indexes in version 7.0 and above. DBISAM
allows for descending indexes also, but for both primary
and secondary indexes. Both the Paradox and DBISAM
index formats allow for individual fields within an index
to be marked as descending so that you an mix
ascending with descending fields in the same index.

In addition to the index formats, the BDE supports
several features for searching on indexes and setting
ranges that are noteworthy:

• Partial Field Search

The BDE will allow you to search on a partial field count
of the entire active index. For example, if you had a
primary index on a Paradox table that consisted of
CustomerNum, OrderNum, and LineNum, the BDE would
allow you to search on just CustomerNum to find the
record you are looking for. DBISAM also supports this
feature in the exact same manner as the BDE.

• Partial Field Range

The BDE also allows you to use this same principle when
applying ranges to a table, and again DBISAM fully
supports this method of setting ranges.

• Logical Record #'s

When using the Paradox table format with the BDE, you
can retrieve a logical record number based upon the
currently active index. DBISAM supports this feature.

• Exact Record Count

Paradox allows you to get an instantaneous and exact

Appendix A - Differences from the BDE

Page 1013

record count even when a range is currently set. DBISAM
also supports this feature.

International Support Both the BDE and DBISAM provide international support
in the form of proper collation and sorting of indexes for
tables that use a non-US language. DBISAM provides
international support for Delphi and C++Builder through
the Windows locale support provided in the operating
system. The locale can be specified on a table basis and
multiple tables with multiple locales can be used in the
same application. For Kylix applications, the only locale
supported currently is the default ANSI Standard locale
provided by DBISAM. DBISAM will raise an exception if a
table is attempted to be opened or created on a machine
that does not have the proper support installed in the
operating system for a desired locale, including Linux.
Please see the Creating and Altering Tables and Opening
Tables topics for more information. In contrast, the
international support in the BDE is provided via custom
language drivers that are provided by Borland with the
BDE.

Note
DBISAM does not support international date, time,
or number formats in filter or SQL statements, but
rather uses a standard ANSI format for all dates,
times, and numbers.

Low-Level API Calls The BDE requires that you must use low-level API calls
to accomplish certain tasks. Restructuring tables,
providing progress information to users during batch
processes, and copying tables require lengthy and
cryptic amounts of code to accomplish the desired task.
DBISAM provides well-documented and easy-to-use
properties, methods, and events via the various DBISAM
components for these purposes and completely removes
the need to make any API calls at all.

Memory Usage DBISAM does not pre-allocate memory for data, index,
and BLOB buffers like the BDE does. In contrast,
DBISAM only allocates memory for caching on an as-
needed basis and is restricted to the following limits by
default:

• Data Record Buffers

32 kilobytes is the maximum amount of record buffer
cache and 8192 record buffers are the maximum that
will be cached at one time

• Index Page Buffers

64 kilobytes is the maximum amount of index page
buffer cache and 8192 index page buffers are the
maximum that will be cached at one time

Appendix A - Differences from the BDE

Page 1014

• BLOB Block Buffers

32 kilobytes is the maximum amount of BLOB block
buffer cache and 8192 BLOB block buffers are the
maximum that will be cached at one time

Note
These figures are on a per physical table basis
within the same session. Tables opened in
different sessions use different caches, hence they
use additional memory. In contrast, if you open
the same physical table multiple times within the
same session DBISAM will only use one cache for
the table and share this cache among all of the
open table instances. Also, if the number of
records updated in a transaction exceeds the
above figures then the memory consumption will
automatically be expanded to accomodate the
transacton and reset back to the default values
when the transaction commits or rolls back.

These figures can be changed via the following
properties in the TDBISAMEngine component, so they
are only default values:

• MaxTableDataBufferCount property
• MaxTableDataBufferSize property
• MaxTableIndexBufferCount property
• MaxTableIndexBufferSize property
• MaxTableBlobBufferCount property
• MaxTableBlobBufferSize property

NULL Support DBISAM includes complete NULL support that behaves
identically to that of Paradox, although it is implemented
in a safer and more thorough manner. The rules for
NULL support in DBISAM are as follows:

• If a field has not been assigned a value and was not
defined as having a default value in the table structure,
it is NULL.

• As soon as a field has been assigned a value it is not
considered NULL anymore. String, FixedChar, GUID,
Blob, Memo, and Graphic fields are an exception this
rule. When you assign a NULL value (empty string) to a
String, FixedChar, or GUID field the field will be set to
NULL. When the contents of a Blob, Memo, or Graphic
field are empty, i.e. the length of the data is 0, the field
will be set to NULL.

• If the Clear method of a TField object is called the field
will be set to NULL.

Appendix A - Differences from the BDE

Page 1015

• NULL values are treated as separate, distinct values
when used as an index key. For example, let's say that
you have a primary index comprised of one Integer field.
If you had a field value of 0 for this Integer field in one
record and a NULL value for this Integer field in another
record, DBISAM will not report a key violation error. This
is a very important point and should be considered when
designing your tables. As a general rule of thumb, you
should always provide values for fields that are part of
the primary index.

• The BDE will include NULL values when performing less
than (or equal to) comparisons in filters or SQL queries,
but DBISAM will not. The standard behavior for SQL
selection is to not include NULLs, which is the behavior
that DBISAM uses.

Performance DBISAM handles automatic change detection differently
than the BDE, and this can cause differences in
performance. With the Paradox table format, the BDE
only checks for changes on disk (and subsequently
refreshes its local buffers) when it needs to read data
physically from the disk and when also when a record
lock is acquired. With the dBase and FoxPro table
formats, the BDE will never refresh local buffers unless it
is forced to read data physically from the disk or a record
lock is acquired. By default DBISAM uses the same type
of change detection as the BDE does with the Paradox
table format. This is controlled by the
StrictChangeDetection property of the TDBISAMSession
component. The default value is False, indicating that
lazy change detection is in effect. If this property is set
to True, indicating that strict change detection is in
effect, DBISAM will always check for changes by other
users before any read operation and will always ensure
that its local buffers contain the most up-to-date data.
Please see the Change Detection topic for more
information.

Finally, the BDE has a Local Share setting that
determines whether writes are cached for shared tables.
Setting the Local Share setting to False can lead to very
disastrous results if the application is unexpectedly
terminated since it can cause all updates to be lost
forever. DBISAM, on the other hand, never caches writes
for shared tables. If you wish to ensure that the
operating system subsequently physically flushes the
updates to disk (some operating systems such as
Windows 95/98/ME/NT/2000/XP may cache writes for a
short period of time) you may use the TDBISAMTable or
TDBISAMQuery FlushBuffers method or the
TDBISAMSession ForceBufferFlush property to do so.
Please see the Buffering and Caching topic fore more
information.

Appendix A - Differences from the BDE

Page 1016

Note
Opening a table exclusively in DBISAM will cause
DBISAM to cache all writes, which will result in
excellent performance. However, an unexpected
termination of the application can cause data loss
similar to setting Local Share to False with the
BDE. Please see the Opening Tables topic for
more information.

Queries (SQL and QBE) DBISAM includes complete support for queries using SQL
SELECT, INSERT, UPDATE, DELETE, CREATE TABLE,
ALTER TABLE, DROP TABLE, CREATE INDEX, DROP
INDEX statements that is almost entirely compliant with
the Local SQL syntax available in the BDE. The features
that are currently not supported in DBISAM's
implementation of these SQL statements include:

• FULL OUTER JOIN clause

DBISAM does not provide for a FULL OUTER JOIN
clause, although LEFT OUTER JOINs and RIGHT OUTER
JOINs are fully supported.

• ANY or EXISTS operators for sub-selects

DBISAM does not provide for the ANY or EXISTS
operators for specifying sub-select predicates in WHERE
clauses. However, DBISAM does allow for using the IN
operator for sub-select queries within an SQL SELECT
statement.

• DISTINCT clause with aggregates

DBISAM does not support the use of the DISTINCT
clause with the COUNT, MIN, MAX, AVG, SUM, or
RUNSUM aggregate functions.

DBISAM also includes many additional features and
enhancements that are not found in the Local SQL
syntax provided by the BDE. Please see the SQL
Reference Overview topic for more information.

DBISAM also does not support using QBE for queries.

The BDE issues cryptic SQL error messages that usually
provide little or no indication of where an error exists in
an SQL statement. DBISAM always provides for complete
and descriptive error messages that indicate exactly
where an error exists in the SQL syntax.

DBISAM supports the use of multi-statement SQL scripts
in the TDBISAMQuery component, complete with
parameter events for each statement, progress events,
and error-trapping events. DBISAM SQL statements such
as ALTER TABLE and CREATE INDEX fire progress and

Appendix A - Differences from the BDE

Page 1017

status events through the TDBISAMQuery component.
Please see the Executing SQL Queries topic for more
information.

Stored Procedures DBISAM does not support stored procedures in the
traditional sense or per the SQL standards. However,
DBISAM does provide for server-side procedures
implemented via the TDBISAMEngine.OnServerProcedure
event in the TDBISAMEngine component, and this event
can very easily launch any type of scripting language on
the server to implement a scripted server-side procedure
similar to a traditional stored procedure. You can also
use the TDBISAMEngine OnServerScheduledEvent event
to implement scheduled processes that run on the server
in the same fashion as a server-side procedure. Please
see the Customizing the Engine topic for more
information.

Also, DBISAM provides support for DDL and DML SQL
statements in scripts within the SQL property of the
TDBISAMQuery component. This allows you to write
scripts that contain multiple SQL statements. The only
requirement is that each SQL statement is separated by
a semicolon. Please see the Executing SQL Queries topic
for more information.

Transaction Support Transaction support in the BDE for local databases is
somewhat limited in the amount of records that can
participate in a given transaction. The highest limit
currently imposed is 255 records and this depends upon
whether you're using the dBase/Foxpro or Paradox table
formats. DBISAM does not impose any limits on
transactions, and you may have as many records
participating in a transaction as available memory will
allow. Unlike the BDE, which uses a log-based
transaction system for local database formats, DBISAM
implements transactions completely in memory and
buffers all updates during a transaction. These updates
are not written to disk until the transaction is committed,
and are discarded if the transaction is rolled back. Also,
the BDE uses a dirty-read transaction isolation level for
transactions on local databases, whereas DBISAM always
uses a read-committed transaction isolation level for all
transactions. Please see the Transactions topic for more
information.

Appendix A - Differences from the BDE

Page 1018

Note
Neither the BDE or DBISAM offer fail-safe
transactions, so do not rely on them to prevent
data inconsistencies with complicated transactions
that affect multiple files unless you can guarantee
that the application will not get unexpectedly
interrupted. DBISAM is slightly more immune to
these type of problems due to its buffered
transaction design, but problems may still arise if
the application is unexpectedly interrupted during
the process of committing a transaction.

Appendix A - Differences from the BDE

Page 1019

This page intentionally left blank

Appendix B - Error Codes and Messages

Page 1020

Appendix B - Error Codes and Messages

The following is a table of the error messages used by DBISAM, their corresponding error codes and
constants used to represent them, and additional information about the error message. DBISAM uses the
EDBISAMEngineError exception object to raise exceptions when an engine error occurs. In each error
message below, the specific properties that will be populated in the EDBISAMEngineError object are
indicated by the <> brackets. The ErrorCode property is always populated with the error code of the
current exception. In addition, certain properties such as the ErrorDatabaseName, ErrorRemoteName
(Client-Server only), and ErrorUserName (Client-Server only) properties are almost always populated even
if they are not used in the actual error message.

Note
This list only covers the exceptions raised by the DBISAM database engine itself and does not cover
the general EDatabaseError exceptions raised by the component units. If you wish to use the error
constants defined by DBISAM in your applications for error trapping you need to make sure:

• For Delphi applications, that the dbisamcn unit file is included in your uses clause for the source unit in
question

• For C++ applications, that the dbisamcn header file is included in your .h header file for the source file
in question

If you wish to change the following error messages or translate them into a different language, you may
do so by altering the contents of the dbisamst unit that can be found in the same directory where the
other DBISAM units were installed. This file includes both the DBISAM database engine error messages
shown below and the more general database errors raised by the component units as resource strings.
After altering this unit be sure to recompile your application so that the changes will be incorporated into
your application.

For more information on exception handling and error trapping in your application along with the
exception types used by DBISAM, please see the Exception Handling and Errors topic in this manual.

Error Code Message and Further Details

DBISAM_BOF (8705) Beginning of table '<TableName>' unexpectedly
encounteredThis error should not normally occur since
encountering the beginning of a table is a normal
occurrence. The only time this error is triggered is when
the beginning of the table is encountered unexpectedly.
If this error does occur the most likely reason is
corruption in the table, and you should repair the table.
Please see the Verifying and Repairing Tables topic for
more information.

DBISAM_EOF (8706) End of table '<TableName>' unexpectedly
encounteredThis error should not normally occur since
encountering the end of the table is a normal
occurrence. The only time this error is triggered is when
the end of the table is encountered unexpectedly. This
error should never occur, however if it does the most
likely reason is corruption in the table. You should repair
the table if this error occurs. Please see the Verifying

Appendix B - Error Codes and Messages

Page 1021

and Repairing Tables topic for more information.

DBISAM_KEYORRECDELETED (8708) Record has been changed or deleted by another user,
session, or table cursor in the table '<TableName>'This
error occurs when an attempt is made to edit or delete a
record and the record has already been changed or
deleted by another user, session, or table cursor since
DBISAM last cached the record. Please see the Updating
Tables and Query Result Sets and Change Detection
topics for more information.

DBISAM_NOCURRREC (8709) No current record in the table '<TableName>'This error
occurs when DBISAM internally attempts to retrieve the
current record and the current record is not present,
most likely due to the table being empty because of a
range or filter condition. Please see the Setting Filters on
Tables and Query Result Sets, Setting Ranges on Tables,
and Searching and Sorting Tables and Query Result Sets
topics for more information.

DBISAM_RECNOTFOUND (8710) Record not found in the table '<TableName>'This error
occurs when when a call to the TDBISAMTable
GotoCurrent method fails to find the corresponding
record in the destination table parameter.

DBISAM_ENDOFBLOB (8711) End of BLOB field in the table '<TableName>' reached
prematurelyThis error occurs when DBISAM attempts to
read from a BLOB field that is expected to be x number
of bytes in length but encounters the end of the BLOB
before reaching the desired number of bytes. This error
should never occur, however if it does the most likely
reason is corruption in the table. You should repair the
table if this error occurs. Please see the Verifying and
Repairing Tables topic for more information.

DBISAM_HEADERCORRUPT (8961) Header information corrupt in table <TableName>This
error occurs when DBISAM opens a table and detects
that the actual data in the table does not match the
header information, which is always an indication of
corruption in the table. Please see the Verifying and
Repairing Tables topic for more information.

DBISAM_FILECORRUPT (8962) Data record buffers corrupt in the table
'<TableName>'This error occurs when DBISAM attempts
to read, write, or manipulate an internal record buffer
and cannot do so due to table corruption. You should
repair the table if this error occurs. Please see the
Verifying and Repairing Tables topic for more
information.

DBISAM_MEMOCORRUPT (8963) BLOB block buffers corrupt in the table
'<TableName>'This error occurs when DBISAM attempts
to read, write, or manipulate an internal BLOB block
buffer and cannot do so due to table corruption. You
should repair the table if this error occurs. Please see the
Verifying and Repairing Tables topic for more
information.

DBISAM_INDEXCORRUPT (8965) Index page buffers corrupt in the table
'<TableName>'This error occurs when DBISAM attempts

Appendix B - Error Codes and Messages

Page 1022

to read, write, or manipulate an internal index page
buffer and cannot do so due to table corruption. You
should repair the table if this error occurs. Please see the
Verifying and Repairing Tables topic for more
information.

DBISAM_READERR (9217) Error reading from the table or backup file '<Name>'This
error occurs when DBISAM attempts to read from the
table or backup file and cannot read the desired number
of bytes. This error should never occur, however if it
does the most likely reason is corruption in the table or
backup file. You should repair the table if this error
occurs with a table, but there is currently no way to
recover data from a corrupted backup file. Please see
the Verifying and Repairing Tables topic for more
information on repairing tables.

DBISAM_WRITEERR (9218) Error writing to the table or backup file '<Name>'This
error occurs when DBISAM attempts to write to a table
or backup file and cannot write the desired number of
bytes. This error should never occur, however if it does
the most likely reason is corruption in the table or
backup file, or a lack of available disk space. You should
repair the table if this error occurs, or if the error occurs
for a backup file, check the available disk space and
restart the backup process. Please see the Verifying and
Repairing Tables topic for more information.

DBISAM_RECTOOBIG (9477) Maximum record size exceeded in the table
'<TableName>'This error occurs when an attempt is
made to create a new table or alter an existing table's
structure and doing so would exceed the maximum
allowable record size. Please see Appendix C - System
Capacities for more information.

DBISAM_TABLEFULL (9479) The table '<TableName>' is full and cannot contain any
more dataThis error occurs when an attempt is made to
add data to a table and doing so would cause any one of
the physical files that make up a logical table to be
larger than the allowable maximum file size, or it would
cause the table to exceed the maximum number of
allowable records. Please see Appendix C - System
Capacities and the Enabling Large File Support for more
information.

DBISAM_DATABASEFULL (9480) The database '<DatabaseName>' is full and cannot
contain any more tablesThis error occurs when an
attempt is made to create a new table and doing so
would cause the number of tables to exceed the
maximum number of tables allowed for a given
database. Please see Appendix C - System Capacities
and the Creating and Altering Tables for more
information.

DBISAM_INTERNALLIMIT (9482) Too many filters defined for the table
'<TableName>'This error occurs when DBISAM internally
attempts to define more filters than allowed. This error
should never occur so if it does you should contact
Elevate Software immediately for a resolution to the

Appendix B - Error Codes and Messages

Page 1023

problem.

DBISAM_INDEXLIMIT (9487) Maximum or minimum limits on the index page size, the
number of indexes, or the number of fields in an index
exceeded in the table '<TableName>'This error occurs
when an attempt is made to add a new primary or
secondary index, create a new table, or alter an existing
table's structure and doing so would exceed the
maximum or minimum index page size, the maximum
number of indexes, or the maximum number of fields
per index that can be present in a table. Please see
Appendix C - System Capacities for more information.

DBISAM_FLDLIMIT (9492) Maximum or minimum limits on number of fields
exceeded in the table '<TableName>'This error occurs
when an attempt is made to create a new table or alter
an existing table's structure and doing so would exceed
the maximum or minimum number of fields that can be
present in a table. Please see Appendix C - System
Capacities for more information.

DBISAM_OPENBLOBLIMIT (9494) Too many BLOBs opened in the table
'<TableName>'This error occurs when DBISAM attempts
to open more BLOBs than what is allowed. Please see
Appendix C - System Capacities for more information.

DBISAM_BLOBLIMIT (9498) Too many BLOB fields or invalid BLOB block size
specified for the table '<TableName>'This error occurs
when DBISAM internally attempts to open more blobs
than allowed or attempts to create a table or alter an
existing table's structure with an invalid BLOB block size.
Please see Appendix C - System Capacities for more
information.

DBISAM_KEYVIOL (9729) Duplicate key found in the index '<IndexName>' of the
table '<TableName>'This is a non-fatal error that occurs
when an attempt is made to add a record to a table and
the record would cause a duplicate key to be added for
the primary index or for a secondary index that it is
defined as being unique. Primary indexes implicitly
enforce uniqueness and therefore cannot permit
duplicates to be added, while secondary indexes must be
explicitly defined as unique. Please see the Updating
Tables and Query Result Sets topic for more information.

DBISAM_MINVALERR (9730) The value for the field '<FieldName>' in the table
'<TableName>' is below the minimum allowable
valueThis is a non-fatal error that occurs when an
attempt is made to add a record to a table or update a
record in a table, and a field in the record would violate
a minimum value constraint for that field. Constraints
ensure that data is either present or within an approved
range of values for any given field. Please see the
Updating Tables and Query Result Sets and Creating and
Altering Tables topics for more information.

DBISAM_MAXVALERR (9731) The value for the field '<FieldName>' in the table
'<TableName>' is above the maximum allowable
valueThis is a non-fatal error that occurs when an

Appendix B - Error Codes and Messages

Page 1024

attempt is made to add a record to a table or update a
record in a table, and a field in the record would violate
a maximum value constraint for that field. Constraints
ensure that data is either present or within an approved
range of values for any given field. Please see the
Updating Tables and Query Result Sets and Creating and
Altering Tables topics for more information.

DBISAM_REQDERR (9732) A value must be provided for the field '<FieldName>' in
the table '<TableName>'This is a non-fatal error that
occurs when an attempt is made to add a record to a
table or update a record in a table, and a field in the
record would violate a required constraint for that field.
Constraints ensure that data is either present or within
an approved range of values for any given field. Please
see the Updating Tables and Query Result Sets and
Creating and Altering Tables topics for more information.

DBISAM_OUTOFRANGE (9985) Invalid field number or name '<FieldName>' specified
for the table '<TableName>'This error occurs when a
field number is referenced in an operation and that field
number does not exist.

DBISAM_PRIMARYKEYREDEFINE (9993) A primary index is already defined for the table
'<TableName>' and cannot be added againThis error
occurs when an attempt is made to add a primary index
to a table when one already exists. You must first
remove the existing primary index before you can add a
new one. Please see the Adding and Deleting Indexes
from a Table and Creating and Altering Tables topics for
more information.

DBISAM_INVALIDBLOBOFFSET (9998) Invalid BLOB offset into the table '<TableName>'
specifiedThis error occurs when DBISAM attempts to
access a BLOB field in a table and the offset at which it
is trying to access the data is invalid. This error should
never occur, however if it does the most likely reason is
corruption in the table. You should repair the table if this
error occurs. Please see the Verifying and Repairing
Tables topic for more information.

DBISAM_INVALIDFLDTYPE (10000) Invalid field definition specified for the field
'<FieldName>' in the table '<TableName>'This error
occurs when an attempt is made to create a new table or
alter an existing table's structure, and a field definition
specified is invalid due to an incorrect field number, data
type, or length. Please see the Creating and Altering
Tables topic for more information.

DBISAM_INVALIDVCHKSTRUCT (10006) Invalid default expression or min/max constraint
specified for the field '<FieldName>' in the table
'<TableName>'This error occurs when a default value or
minimum/maximum constraint expression for the
indicated field is invalid. You need to verify that the
expression provided is appropriate for the data type of
the indicated field. If the expression contains constants,
you need to verify that the expression is properly
formatted, especially with date, time, or number
expressions. Please see the Creating and Altering Tables

Appendix B - Error Codes and Messages

Page 1025

topic for more information.

DBISAM_INDEXNAMEREQUIRED (10010) The secondary index name is missing or not specified for
the table '<TableName>'This error occurs when an
attempt is made to add a new secondary index and the
secondary index name is missing or not specified. All
secondary indexes require a unique name (case-
insensitive) that is used to identify the index. Please see
the Adding and Deleting Indexes from a Table and
Creating and Altering Tables topics for more information.

DBISAM_INVALIDPASSWORD (10015) Password provided for the table '<TableName>' is
invalidThis error occurs when an attempt is made to
create a table or alter an existing table's structure with a
password that is invalid. Please see the Creating and
Altering Tables topic for more information.

DBISAM_INVALIDINDEXNAME (10022) Invalid secondary index name '<IndexName>' specified
for the table '<TableName>'This error occurs when an
attempt is made to set the active index to a secondary
index that does not exist, delete a secondary index that
does not exist, create a table or alter an existing table's
structure with an index name that is invalid, or add a
secondary index with an invalid index name. Please see
the Searching and Sorting Tables and Query Result Sets,
Adding and Deleting Indexes from a Table, and Creating
and Altering Tables topics for more information.

DBISAM_INVALIDIDXDESC (10023) Invalid field number '<FieldName>' specified in the
index '<IndexName>' for the table '<TableName>'This
error occurs when an index definition contains an invalid
field number. This error should never occur, however if it
does the most likely reason is corruption in the table.
You should repair the table if this error occurs. Please
see the Verifying and Repairing Tables topic for more
information.

DBISAM_INVALIDKEY (10026) Invalid key size specified in the index '<IndexName>' for
the table '<TableName>'This error occurs when an
attempt is made to add a new primary or secondary
index, create a new table, or alter an existing table's
structure, and doing so would exceed the maximum
length of an index key that can be present in a table.
Please see Appendix C - System Capacities for more
information.

DBISAM_INDEXEXISTS (10027) The secondary index '<IndexName>' already exists for
the table '<TableName>'This error occurs when an
attempt is made to add a new secondary index and the
secondary index name already exists in the table. All
secondary indexes require a unique name (case-
insensitive) that is used to identify the index. Please see
the Adding and Deleting Indexes from a Table and
Creating and Altering Tables topics for more information.

DBISAM_INVALIDBLOBLEN (10029) Invalid BLOB length in the table '<TableName>'This
error occurs when DBISAM attempts to access a BLOB
field in the table and the length of the BLOB it is trying
to access is invalid. This error should never occur,

Appendix B - Error Codes and Messages

Page 1026

however if it does the most likely reason is corruption in
the table. You should repair the table if this error occurs.
Please see the Verifying and Repairing Tables topic for
more information.

DBISAM_INVALIDBLOBHANDLE (10030) Invalid BLOB handle for the table '<TableName>'
specifiedThis error occurs when DBISAM internally
attempts to access a BLOB field with an invalid handle to
the BLOB. This error should never occur, however if it
does the most likely reason is corruption in the table.
You should repair the table if this error occurs. Please
see the Verifying and Repairing Tables topic for more
information.

DBISAM_TABLEOPEN (10031) The table '<TableName>' is already in useThis error
occurs when an attempt is made to perform an operation
on a table that requires the table to be closed in order to
complete the operation. The operations that require the
table to be closed are as follows:

• Verifying and Repairing Tables

• Creating and Altering Tables

• Optimizing Tables

• Upgrading Tables

• Deleting Tables

• Renaming Tables

DBISAM_INVALIDFIELDNAME (10038) Invalid or duplicate field name '<FieldName>' specified
for the table '<TableName>'This error occurs when an
attempt is made to create a table or alter an existing
table's structure with a field name that is invalid. Please
see the Creating and Altering Tables topic for more
information.

DBISAM_NOSUCHFILTER (10050) Invalid filter handle specified for the table
'<TableName>'This error occurs when an attempt is
made by DBISAM to refer to a filter expression or
callback filter that does not exist. This error should never
occur so if it does you should contact Elevate Software
immediately for a resolution to the problem.

DBISAM_INVALIDFILTER (10051) Filter error for the table '<TableName>' -
<Message>This error occurs when an invalid filter
statement is passed to DBISAM. The most common
cause of this error is improperly formatted date, time, or
number constants or some other type of syntax error.
Please see the Setting Filters on Tables and Query Result
Sets topic for more information.

DBISAM_LOCKREADLOCK (10221) Cannot read lock the lock file for the database
'<DatabaseName>'This error occurs when DBISAM
internally attempts to place a read lock on the lock file
(dbisam.lck) for a given database and it fails. Under
normal circumstances this error should never occur so if

Appendix B - Error Codes and Messages

Page 1027

it does you should contact Elevate Software immediately
for a resolution to the problem. Please see the Locking
and Concurrency topic for more information.

DBISAM_LOCKREADUNLOCK (10222) Cannot read unlock the lock file for the database
'<DatabaseName>'This error occurs when DBISAM
internally attempts to remove a read lock on the lock file
(dbisam.lck) for a given database and it fails. This error
should never occur so if it does you should contact
Elevate Software immediately for a resolution to the
problem.

DBISAM_LOCKWRITELOCK (10223) Cannot write lock the lock file for the database
'<DatabaseName>'This error occurs when DBISAM
internally attempts to place a write lock on the lock file
(dbisam.lck) for a given database and it fails. Under
normal circumstances this error should never occur so if
it does you should contact Elevate Software immediately
for a resolution to the problem. Please see the Locking
and Concurrency topic for more information.

DBISAM_LOCKWRITEUNLOCK (10224) Cannot write unlock the lock file for the database
'<DatabaseName>'This error occurs when DBISAM
internally attempts to remove a write lock on the lock file
(dbisam.lck) for a given database and it fails. Under
normal circumstances this error should never occur so if
it does you should contact Elevate Software immediately
for a resolution to the problem.

DBISAM_READLOCK (10225) Cannot read lock the table '<TableName>'This error
occurs when an attempt is made to place a read lock on
a table and it fails. Usually this indicates a hardware
failure or a failure due to an excessively large amount of
write activity on a given table that is preventing the read
lock from being acquired. Please see the Locking and
Concurrency topic for more information.

DBISAM_READUNLOCK (10226) Cannot read unlock the table '<TableName>'This error
occurs when an attempt is made to remove a read lock
on a table and it fails. This error should never occur so if
it does you should contact Elevate Software immediately
for a resolution to the problem.

DBISAM_WRITELOCK (10227) Cannot write lock the table '<TableName>'This error
occurs when an attempt is made to place a write lock on
a table and it fails. Usually this indicates a hardware
failure or a failure due to an excessively large amount of
read or write activity on a given table that is preventing
the write lock from being acquired. Please see the
Locking and Concurrency topic for more information.

DBISAM_WRITEUNLOCK (10228) Cannot write unlock the table '<TableName>'This error
occurs when an attempt is made to remove a write lock
on a table and it fails. This error should never occur so if
it does you should contact Elevate Software immediately
for a resolution to the problem.

DBISAM_TRANSLOCK (10229) Transaction cannot lock the database
'<DatabaseName>'This error occurs when an attempt is
made to start a transaction and the transaction cannot

Appendix B - Error Codes and Messages

Page 1028

place a special transaction lock on the database. Usually
this indicates a hardware failure or a failure due to an
excessively large amount of transaction or write activity
on the database that is preventing the transaction lock
from being acquired. Please see the Locking and
Concurrency topic for more information.

DBISAM_TRANSUNLOCK (10230) Transaction cannot unlock the database
'<DatabaseName>'This error occurs when a transaction
commits or rolls back and the transaction cannot remove
the special transaction lock on the database. This error
should never occur so if it does you should contact
Elevate Software immediately for a resolution to the
problem.

DBISAM_LOCKED (10241) Cannot lock the table '<TableName>'This error occurs
when an attempt is made to lock a table that is already
locked by another application or the same application.
Since locking a table is the equivalent of locking all of
the records in the table (including new records), this
error will also occur if an attempt is made to lock a table
and there are individual record(s) already locked in the
table. Please see the Locking and Concurrency topic for
more information.

DBISAM_UNLOCKFAILED (10242) Cannot unlock the table or record in the table
'<TableName>'This error occurs when DBISAM cannot
unlock a record in a table or the entire table itself. This
error should never occur so if it does you should contact
Elevate Software immediately for a resolution to the
problem.

DBISAM_NEEDEXCLACCESS (10253) The table '<TableName>' must be opened
exclusivelyThis error occurs when an attempt is made to
perform an operation on a table that requires the table
to be opened exclusively in order to complete the
operation. The operations that require exclusive use of
the table are as follows:

• Creating and Altering Tables

• Verifying and Repairing Tables

• Adding and Deleting Indexes from a Table

• Optimizing Tables

• Upgrading Tables

• Emptying Tables

DBISAM_RECLOCKFAILED (10258) Cannot lock record in the table '<TableName>'This error
occurs when an attempt is made to lock a record in a
table that is already locked by another application or the
same application. Since locking a table is the equivalent
of locking all of the records in the table (including new
records), this error will also occur if an attempt is made
to lock a record and there the table is already locked.

Appendix B - Error Codes and Messages

Page 1029

Please see the Locking and Concurrency topic for more
information.

DBISAM_NOTSUFFTABLERIGHTS (10498) Insufficient rights to the table '<TableName>', a
password is requiredThis error occurs when an attempt
is made to perform an operation on an encrypted table
and a valid password has not been provided for the
current session. Please see the Starting Sessions and
Opening Tables topics for more information.

DBISAM_NOTABLOB (10753) Invalid BLOB field '<FieldName>' specified for the table
'<TableName>'This error occurs when an attempt is
made by DBISAM internally to perform a BLOB operation
on a field that is not a BLOB field. This error should
never occur so if it does you should contact Elevate
Software immediately for a resolution to the problem.

DBISAM_NOTINITIALIZED (10758) The database engine is not initializedThis error occurs
when an attempt is made to use DBISAM without first
intializing the database engine. This error should never
occur so if it does you should contact Elevate Software
immediately for a resolution to the problem.

DBISAM_OSENOENT (11010) Table or backup file '<Name>' does not existThis error
occurs when an attempt is made to open a table or
backup file that does not exist. Please see the Opening
Tables and Backing Up and Restoring Databases topics
for more information.

DBISAM_OSEMFILE (11012) Too many operating system files open while attempting
to open the table or backup file '<Name>'This error
occurs when an attempt is made to open up a table or
backup file and the operating system rejects the open
because it has run out of available file handles. This
error should never occur so if it does you should contact
Elevate Software immediately for a resolution to the
problem.

DBISAM_OSEACCES (11013) Access denied to table or backup file '<Name>'This error
usually occurs when an attempt is made to open up a
table or backup file and the operating system does not
allow access to the table or backup file due to the fact
that it has already been opened up exclusively by
another application or the same application or a user
rights issue. A table can be opened exclusively only
once. It can also occur when an attempt is made to open
up a table for read/write access that is in a read-only
directory or on a read-only drive and not marked as
read-only as an attribute. Please see the Opening Tables
topic for more information. It is also possible that a
table's backup files cannot be overwritten during the
processing of altering the structure of a table, adding
indexes to a table or deleting indexes from a table, or
optimizing a table. Please see the Creating and Altering
Tables, Adding and Deleting Indexes from a Table, and
Optimizing Tables topics for more information.

DBISAM_OSEBADF (11014) Invalid operating system file handle for the table or
backup file '<Name>'This error occurs when DBISAM

Appendix B - Error Codes and Messages

Page 1030

internally attempts to perform an operation on a table or
backup file using an invalid file handle. This error should
never occur so if it does you should contact Elevate
Software immediately for a resolution to the problem.

DBISAM_OSENOMEM (11016) There is insufficient operating system memory available
for the current operationThis error is reported by the
memory manager in Delphi or C++Builder when there is
insufficient memory available for current operation. If
you receive this error you should contact Elevate
Software in order to find out how to reduce the amount
of memory being consumed and to find alternate
solutions to the problem.

DBISAM_OSENODEV (11023) Access denied to logical operating system device for the
table or backup file '<Name>'This error occurs when the
operating system reports that the logical device for the
table or backup file is invalid or inaccessible. This
problem can occur with removable disks in floppy drives
or CD-ROM drives.

DBISAM_OSENOTSAM (11025) The table or backup file '<Name>' has been movedThis
error occurs when the operating system detects that a
table or backup file has been moved from one device to
another after being opened. This error should never
occur so if it does you should contact Elevate Software
immediately for a resolution to the problem.

DBISAM_OSUNKNOWN (11047) An unknown operating system error <OSErrorCode>
occurred with the table or backup file '<Name>'This
error occurs when DBISAM detects a general operating
system error, indicated by the error code in the error
message, but cannot translate it into a more specific
error message. DBISAM identifies and translates certain
operating system errors such as sharing violations, file
and directory not found errors, etc. into specific error
messages. If you receive this error you should contact
Elevate Software immediately for a resolution to the
problem.

DBISAM_REMOTECOMMLOST (11276) The connection to the database server at
'<RemoteName>' has been lostThis error occurs when
an application attempts an operation on a database
server, the operation fails, and DBISAM is unable to
automatically re-connect to the database server. This is
most often caused by a physical interruption in the
connection between the client and server processes.
Please see the Starting Sessions topic for more
information.

DBISAM_REMOTEENCRYPTREQ (11277) The database server at '<RemoteName>' requires an
encrypted connectionThis error occurs when an
application attempts a regular connection to a database
server and the database server requires encrypted
connections only. This error can also occur if an
administrator is attempting to connect to the
administrative port on the database server and the
connection is unencrypted. Administrative connections
always require encryption. Please see the Starting

Appendix B - Error Codes and Messages

Page 1031

Sessions and Server Administration topics for more
information.

DBISAM_REMOTEUNKNOWN (11279) An unknown error ('<Message>') occurred with the
connection to the database server at '<RemoteName>',
please check the server logThis error occurs when an
unknown error has occurred during an operation on the
database server. You should check the server log as
soon as possible using an administrative connection in
order to find out the nature of the error. Please see the
Server Administration topic for more information.

DBISAM_REMOTECONNECT (11280) A connection to the database server at '<RemoteName>'
cannot be establishedThis error occurs when an
application attempts to connect to a database server via
a TDBISAMSession component and the connection fails.
This is most often caused by the lack of a server process
listening on the specified port at the specified IP
address. Please see the Starting Sessions topic for more
information.

DBISAM_REMOTENOLOGIN (11281) A connection to the database server at '<RemoteName>'
cannot be established, the server is not accepting new
loginsThis error occurs when an application attempts to
connect to a database server and the connection fails
because the server administrator has configured the
server to refuse any new logins. Please see the Starting
Sessions and Server Administration topics for more
information.

DBISAM_REMOTEMAXCONNECT (11282) A connection to the database server at '<RemoteName>'
cannot be established, the maximum number of server
or user connections has been reachedThis error occurs
when an application attempts to connect to a database
server and the connection fails because the maximum
number of connections configured for the server would
be exceeded by the new connection. This error can also
occur when a user connects and logs in to the database
server and the maximum number of connections
configured for that user would be exceeded by the new
connection. Please see the Starting Sessions and Server
Administration topics for more information.

DBISAM_REMOTEADDRESSBLOCK (11283) A connection to the database server at '<RemoteName>'
cannot be established, the client address is blockedThis
error occurs when an application attempts to connect to
a database server and the connection fails because the
IP address of the machine the application is running on
has been blocked in the server configuration. Please see
the Starting Sessions and Server Administration topics for
more information.

DBISAM_REMOTECALLBACKERR (11285) A server callback error occurred for the database server
at '<RemoteName>'This error occurs when an internal
callback used by DBISAM when connected to a database
server fails for some reason. This error should never
occur so if it does you should contact Elevate Software
immediately for a resolution to the problem.

Appendix B - Error Codes and Messages

Page 1032

DBISAM_REMOTEVERSION (11286) A call to the database server at '<RemoteName>' failed,
the client engine version does not match the serverThis
error occurs when an application attempts to execute
functionality that results in a call to a database server,
and the call fails because the DBISAM version of the
application does not match the required version of the
database server for that particular call. Only in certain
cases where database server calls have been altered due
to an enhancement or bug fix will this error be seen, and
those cases will be documented in an incident report.
Please see the Starting Sessions topic for more
information.

DBISAM_REMOTEINVLOGIN (11287) A connection to the database server at '<RemoteName>'
cannot be established, the login information provided is
invalidThis error occurs when an application attempts to
connect to a database server and the connection fails
because the login information (user name and/or
password) specified is invalid. Please see the Starting
Sessions topic for more information.

DBISAM_REMOTENOTAUTH (11288) The user '<UserName>' is not authorized to perform this
operation with the database '<DatabaseName>' on the
database server at '<RemoteName>'This error occurs
when an application attempts to perform a function on a
database server and it fails because the user has not
been granted rights to perform such a function on the
current database. Please see the Server Administration
topic for more information.

DBISAM_REMOTENOTADMIN (11289) The user '<UserName>' is not authorized to perform
administration functions on the database server at
'<RemoteName>'This error occurs when an application
attempts to perform an administrative function on a
database server and it fails because the user is not
designated as an administrator for that databse server.
Please see the Server Administration topic for more
information.

DBISAM_REMOTEINVUSER (11290) The user name is either invalid or blankThis error occurs
when an attempt is made to add a new user to a
database server and the user name is either missing or
invalid. Only administrators can add new users to a
database server. Please see the Server Administration
topic for more information.

DBISAM_REMOTENOUSER (11291) The user '<UserName>' does not exist on the database
server at '<RemoteName>'This error occurs when an
application attempts to edit or remove a user on a
database server that does not exist. Only administrators
can edit or remove users from a database server. Please
see the Server Administration topic for more information.

DBISAM_REMOTEDUPUSER (11292) The user '<UserName>' already exists on the database
server at '<RemoteName>'This error occurs when an
attempt is made to add a new user to a database server
and the user name (case-insensitive) already exists on
that database server. Only administrators can add users
to a database server. Please see the Server

Appendix B - Error Codes and Messages

Page 1033

Administration topic for more information.

DBISAM_REMOTEINVDB (11293) The database name or directory is either invalid or
blankThis error occurs when an attempt is made to add a
new database to a database server and the database
name is either missing or invalid or the directory
specified cannot be created from the server. Only
administrators can add databases to a database server.
Please see the Server Administration topic for more
information.

DBISAM_REMOTENODB (11294) The database '<DatabaseName>' does not exist on the
database server at '<RemoteName>'This error occurs
when an application attempts to edit or remove a
database that does not exists from a database server.
Only administrators can edit or remove databases from a
database server. Please see the Server Administration
topic for more information.

DBISAM_REMOTEDUPDB (11295) The database '<DatabaseName>' already exists on the
database server at '<RemoteName>'This error occurs
when an attempt is made to add a new database to a
database server and the database name (case-
insensitive) already exists on that database server. Only
administrators can add databases to a database server.
Please see the Server Administration topic for more
information.

DBISAM_REMOTEINVDBUSER (11296) The database user name is either invalid or blankThis
error occurs when an attempt is made to add a new user
to a database on a database server and the user name is
either missing or invalid. Only administrators can add
users to a given database on a database server. Please
see the Server Administration topic for more information.

DBISAM_REMOTENODBUSER (11297) The database user '<UserName>' does not exist for the
database '<DatabaseName>' on the database server at
'<RemoteName>'This error occurs when an application
attempts to edit or remove a user that does not exist
from a database on a database server. Only
administrators can edit or remove users from a given
database on a database server. Please see the Server
Administration topic for more information.

DBISAM_REMOTEDUPDBUSER (11298) The database user '<UserName>' already exists for the
database '<DatabaseName>' on the database server at
'<RemoteName>'This error occurs when an attempt is
made to add a new user to a database on a database
server and the user name (case-insensitive) already
exists for the specified database on that database
server. Only administrators can add users to a given
database on a database server. Please see the Server
Administration topic for more information.

DBISAM_REMOTEINVPROC (11299) The procedure name is either invalid or blankThis error
occurs when an attempt is made to add a new server-
side procedure to a database server and the procedure
name is either missing or invalid. Only administrators can
add server-side procedures to a database server. Please

Appendix B - Error Codes and Messages

Page 1034

see the Server Administration and Customizing the
Engine topics for more information.

DBISAM_REMOTENOPROC (11300) The procedure '<ProcedureName>' does not exist on the
database server at '<RemoteName>'This error occurs
when an application attempts to edit or remove a server-
side procedure that does not exist from a database
server. Only administrators can edit or remove server-
side procedures from a database server. Please see the
Server Administration and Customizing the Engine topics
for more information.

DBISAM_REMOTEDUPPROC (11301) The procedure '<ProcedureName>' already exists on the
database server at '<RemoteName>'This error occurs
when an attempt is made to add a new server-side
procedure to a database server and the procedure name
(case-insensitive) already exists on that database server.
Only administrators can add server-side procedures to a
database server. Please see the Server Administration
and Customizing the Engine topics for more information.

DBISAM_REMOTEINVPROCUSER (11302) The procedure user name is either invalid or blankThis
error occurs when an attempt is made to add a new user
to a server-side procedure on a database server and the
user name is either missing or invalid. Only
administrators can add users to a given server-side
procedure on a database server. Please see the Server
Administration and Customizing the Engine topics for
more information.

DBISAM_REMOTENOPROCUSER (11303) The procedure user '<UserName>' does not exist for the
procedure '<ProcedureName>' on the database server at
'<RemoteName>'This error occurs when an application
attempts to edit or remove a user that does not exist
from a server-side procedure on a database server. Only
administrators can edit or remove users from a given
server-side procedure on a database server. Please see
the Server Administration and Customizing the Engine
topics for more information.

DBISAM_REMOTEDUPPROCUSER (11304) The procedure user '<UserName>' already exists for the
procedure '<ProcedureName>' on the database server at
'<RemoteName>'This error occurs when an attempt is
made to add a new user to a server-side procedure on a
database server and the user name (case-insensitive)
already exists for the specified procedure on that
database server. Only administrators can add users to a
given server-side procedure on a database server. Please
see the Server Administration and Customizing the
Engine topics for more information.

DBISAM_REMOTEINVEVENT (11305) The event name is either invalid or blankThis error
occurs when an attempt is made to add a new scheduled
event to a database server and the event name is either
missing or invalid. Only administrators can add
scheduled events to a database server. Please see the
Server Administration and Customizing the Engine topics
for more information.

Appendix B - Error Codes and Messages

Page 1035

DBISAM_REMOTENOEVENT (11306) The event '<EventName>' does not exist on the
database server at '<RemoteName>'This error occurs
when an application attempts to edit or remove a
scheduled event that does not exist from a database
server. Only administrators can edit or remove scheduled
events from a database server. Please see the Server
Administration and Customizing the Engine topics for
more information.

DBISAM_REMOTEDUPEVENT (11307) The event '<EventName>' already exists on the
database server at '<RemoteName>'This error occurs
when an attempt is made to add a new scheduled event
to a database server and the event name (case-
insensitive) already exists on that database server. Only
administrators can add scheduled events to a database
server. Please see the Server Administration and
Customizing the Engine topics for more information.

DBISAM_REMOTEINVREQUEST (11308) An invalid or unknown request was made to the
database server at '<RemoteName>'This error occurs
when an application makes a call to a database server
that is invalid or malformed. This error should never
occur under normal operation, but if it does it usually
indicates an improper client engine or an attempt to
break into the server.

DBISAM_EXPORTERROR (11310) An error occurred during the export from the table
'<TableName>' - <Message>This error occurs when any
error is encountered during the export of a table to a
text file. The message will give the specific details of the
error and why the error occurred. Please see the
Importing and Exporting Tables topic for more
information.

DBISAM_IMPORTERROR (11312) An error occurred during the import into the table
'<TableName>' - <Message>This error occurs when any
error is encountered during the import of a text file into
a table. The message will give the specific details of the
error and why the error occurred. Please see the
Importing and Exporting Tables topic for more
information.

DBISAM_LOADSTREAMERROR (11312) An error occurred during the loading of a stream into the
table '<TableName>' - <Message>This error occurs
when any error is encountered during the loading of a
stream into a table. The message will give the specific
details of the error and why the error occurred. Please
see the Loading and Saving Streams topic for more
information.

DBISAM_SAVESTREAMERROR (11313) An error occurred during the saving of the table
'<TableName>' to a stream - <Message>This error
occurs when any error is encountered during the saving
of a table or query to a stream. The message will give
the specific details of the error and why the error
occurred. Please see the Loading and Saving Streams
topic for more information.

DBISAM_TRIGGERERROR (11314) An error occurred during a trigger on the table

Appendix B - Error Codes and Messages

Page 1036

'<TableName>' - <Message>This error occurs when any
error is encountered during the execution of an insert,
update, or delete trigger for a table. The message will
give the specific details of the error and why the error
occurred. Please see the Customizing the Engine topic
for more information.

DBISAM_SQLPARSE (11949) SQL parsing error - <Message>This error occurs when
any error is encountered during the parsing or
preparation of an SQL statement. The message will give
the specific details of the error and why the error
occurred. Please see the TDBISAMQuery OnQueryError
event for more information on trapping these kind of
errors.

DBISAM_SQLEXEC (11950) SQL execution error - <Message>This error occurs when
any error is encountered during the execution of an SQL
statement. The message will give the specific details of
the error and why the error occurred. Please see the
TDBISAMQuery OnQueryError event for more
information on trapping these kind of errors.

DBISAM_OLDVERSION (12035) The table '<TableName>' is not the correct versionThis
error occurs when an attempt is made to open a table
that is either the incorrect version for the current version
of DBISAM or is not a DBISAM table at all (but may have
the same extensions as the physical files that make up a
logical DBISAM table). Please see the Upgrading Tables
topic for more information.

DBISAM_BADSIGNATURE (12036) The table or backup file '<Name>' is not validThis error
occurs when an attempt is made to open a table or
backup file that was created using a different engine
signature than the current engine signature in use. It is
also possible that the file is not a DBISAM table at all
(but may have the same extensions as the physical files
that make up a logical DBISAM table).

DBISAM_SEARCHCOLREQD (12292) Invalid field type specified for the index '<IndexName>'
in the table '<TableName>'This error occurs when an
attempt is made to add a primary or secondary index,
create a table, or alter an existing table's structure and
one or more of the indexes contain BLOB fields as one of
the index fields. BLOB fields cannot be directly indexed
in DBISAM and must be indexed using the full text
indexing instead. Please see the Full Text Indexing topic
for more information.

DBISAM_TABLEEXISTS (13060) The table '<TableName>' already existsThis error occurs
when an attempt is made to create a table and the table
already exists. Please see the Creating and Altering
Tables topic for more information.

DBISAM_COMPRESS (15001) Error compressing dataThis error occurs when DBISAM
attempts to compress a buffer and the compression fails.
This error should never occur, so if you receive this error
you should immediately contact Elevate Software for
more information on how to resolve this issue.

Appendix B - Error Codes and Messages

Page 1037

DBISAM_UNCOMPRESS (15002) Error uncompressing dataThis error occurs when DBISAM
attempts to uncompress a buffer and the uncompression
fails. This error should never occur, so if you receive this
error you should immediately contact Elevate Software
for more information on how to resolve this issue.

DBISAM_CANNOTLOADLDDRV (15878) The locale support for the table '<TableName>' is not
available or installedThis error occurs when an attempt is
made to open or create a table with a locale that is not
available or installed on the current machine's operating
system. Please see the Creating and Altering Tables
topic for more information.

Appendix B - Error Codes and Messages

Page 1038

Appendix C - System Capacities

The following is a detailed list of the capacities for the different components in DBISAM. Unless where
noted all capacities are absolute and not dependent upon the underlying operating system or network.

Capacity Details

of BLOB Fields in a Table The maximum number of BLOB fields in a table is 128.

of Decimal Places in a BCD Field The maximum number of decimals places in a BCD field
is 4.

of Fields in Table The maximum number of fields in a table is 1024.

of Fields in an Index Key The maximum number of fields in an index key is 128.

of Indexes in a Table The maximum number of primary indexes in a table is 1.
The maximum number of secondary indexes in a table is
30.

of Open BLOBs in a Table The maximum number of open BLOBs in a table is 128.

of Open Tables The maximum number of open tables is only limited by
the available memory constraints of the operating
system or hardware.

Note
DBISAM has a limit of 4096 tables per database,
but a single application can open the same table
in the same database many times as well as open
many tables from other databases.

of Records in a Table The maximum number of records in a table is 1 billion.

of Records in a Transaction The maximum number of records in a single transaction
is only limited by the available memory constraints of the
operating system or hardware.

of Tables in a Database The maximum number of tables in a database is 4096
tables.

Size Of Database Names The maximum size of a database name is 60 bytes.

Size Of Field Constraint The maximum size of a field constraint expression is 100
bytes.

Size Of Field Descriptions The maximum size of a field description is 100 bytes.

Size Of Field Names The maximum size of a field name is 60 bytes.

Size Of Index Names The maximum size of an index name is 60 bytes.

Size Of Physical Table Files The maximum size of the physical files that make up a
table - <TableName>.dat for data, <TableName>.idx for
indexes, and <TableName>.blb for BLOBS, is
128,000,000,000 bytes for each file.

Size Of Table Descriptions The maximum size of a table description is 100 bytes.

Appendix C - System Capacities

Page 1039

Size Of Table Names The maximum size of a table name is 60 bytes.

Size of BLOB Blocks The minimum BLOB block size is 64 bytes and the
maximum BLOB block size is 64 kilobytes.

Size of BLOB Fields The maximum length of a BLOB field is 2 gigabytes.

Size of In-Memory Tables The maximum length of an in-memory table is only
limited by the available memory constraints of the
operating system or hardware.

Size of Index Keys The maximum size of an index key is 4096 bytes. The
index key length is not an exact sum of the length of the
fields present in the index key. The proper way to
calculate the index key length is as follows:

For primary indexes the calculation is:

((Sum of field sizes) + Number of Fields in Index Key

For secondary indexes the calculation is:

((Sum of field sizes) + Number of Fields in Index Key +
4

The extra bytes for the number of fields are the NULL
flags used to order the index keys properly based upon
whether they are NULL or not.

The additional four bytes for secondary indexes is used
to store a unique record ID which is essential for proper
bookmark support.

Note
The length of string fields in index keys includes
the null terminator character. For example, if a
string field has a length of 15 then its length in an
index key would be 16.

Size of Index Pages The minimum index page size is 1024 bytes and the
maximum index page size is 16 kilobytes.

Size of Records The maximum record size is 65280 bytes.

Size of String Fields The maximum length of a string field is 512 bytes. This
figure does not include a NULL terminator character. The
NULL terminator character is handled internally.

Appendix C - System Capacities

Page 1040

