DBISAM Version 4 Manual

Table Of Contents

Chapter 1 - Before You Begin
1.1 Changes From Version 3.x
1.2 New Features in Version 4.x
Chapter 2 - Using DBISAM
2.1 DBISAM Architecture
2.2 Data Types and NULL Support
2.3 Exception Handling and Errors
2.4 Configuring and Starting the Server
2.5 Server Administration
2.6 Customizing the Engine
2.7 Starting Sessions
2.8 Calling Server-Side Procedures
2.9 Opening Databases
2.10 Transactions
2.11 Backing Up and Restoring Databases
2.12 In-Memory Tables
2.13 Creating and Altering Tables
2.14 Upgrading Tables
2.15 Deleting Tables
2.16 Renaming Tables
2.17 Adding and Deleting Indexes from a Table
2.18 Emptying Tables
2.19 Copying Tables
2.20 Optimizing Tables
2.21 Verifying and Repairing Tables
2.22 Opening Tables
2.23 Closing Tables
2.24 Executing SQL Queries
2.25 Live Queries and Canned Queries
2.26 Parameterized Queries

2.27 Navigating Tables and Query Result Sets

Table of Contents

10
17
17
25
31
34
43
49
59
63
64
66
70
74
75
82
84
85
86
89
90
92
94
97
102
103
111
113
116

Preface

Table of Contents

2.28 Updating Tables and Query Result Sets

2.29 Searching and Sorting Tables and Query Result Sets

2.30 Setting Ranges on Tables

2.31 Setting Master-Detail Links on Tables

2.32 Setting Filters on Tables and Query Result Sets

2.33 Loading and Saving Streams with Tables and Query Result Sets
2.34 Importing and Exporting Tables and Query Result Sets

2.35 Cached Updates

Chapter 3 - Advanced Topics

3.1 Locking and Concurrency

3.2 Buffering and Caching

3.3 Change Detection

3.4 Index Compression

3.5 Filter Optimization

3.6 Multi-Threaded Applications

3.7 Full Text Indexing

3.8 Compression

3.9 Encryption

3.10 Recompiling the DBISAM Source Code

3.11 Replacement Memory Manager

Chapter 4 - SQL Reference

Preface

4.1 Overview

4.2 Naming Conventions

4.3 Unsupported SQL

4.4 Optimizations

4.5 Operators

4.6 Functions

4.7 SELECT Statement

4.8 INSERT Statement

4.9 UPDATE Statement

4.10 DELETE Statement

4.11 CREATE TABLE Statement
4.12 CREATE INDEX Statement
4.13 ALTER TABLE Statement
4.14 EMPTY TABLE Statement
4.15 OPTIMIZE TABLE Statement

118
126
132
134
137
140
142
146
149
149
155
157
159
161
165
168
172
173
174
176
177
177
178
188
190
200
209
237
251
253
257
261
268
270
273
274

4.16 EXPORT TABLE Statement
4.17 IMPORT TABLE Statement
4.18 VERIFY TABLE Statement
4.19 REPAIR TABLE Statement
4.20 UPGRADE TABLE Statement
4.21 DROP TABLE Statement
4.22 RENAME TABLE Statement
4.23 DROP INDEX Statement
4.24 START TRANSACTION Statement
4.25 COMMIT Statement
4.26 ROLLBACK Statement

Chapter 5 - Component Reference
5.1 EDBISAMENgineError Component
5.2 TDBISAMBaseDataSet Component
5.3 TDBISAMBIlobStream Component
5.4 TDBISAMDatabase Component
5.5 TDBISAMDataSet Component

5.6 TDBISAMDataSetUpdateObject Component

5.7 TDBISAMDBDataSet Component
5.8 TDBISAMEngine Component

5.9 TDBISAMFieldDef Component
5.10 TDBISAMFieldDefs Component
5.11 TDBISAMFunction Component

5.12 TDBISAMFunctionParam Component
5.13 TDBISAMFunctionParams Component

5.14 TDBISAMFunctions Component
5.15 TDBISAMIndexDef Component
5.16 TDBISAMIndexDefs Component
5.17 TDBISAMParam Component
5.18 TDBISAMParams Component
5.19 TDBISAMQuery Component
5.20 TDBISAMRecord Component
5.21 TDBISAMSession Component

5.22 TDBISAMSQLUpdateObject Component

5.23 TDBISAMStringList Component
5.24 TDBISAMTable Component

Table of Contents

275
277
279
280
281
282
283
284
285
286
287
289
289
305
306
312
342
372
373
381
542
559
566
572
576
582
590
600
607
641
650
699
714
835
836
840

Preface

Table of Contents

5.25 TDBISAMUpdateSQL Component

Chapter 6 - Type Reference

Preface

6.1 TAbortAction Type

6.2 TAbortErrorEvent Type

6.3 TAbortProgressEvent Type
6.4 TCachedUpdateErrorEvent Type
6.5 TCompressEvent Type

6.6 TCryptoInitEvent Type

6.7 TCryptoResetEvent Type

6.8 TCustomFunctionEvent Type
6.9 TDatabaseRight Type

6.10 TDatabaseRights Type
6.11 TDatalLossCause Type

6.12 TDatalLostEvent Type

6.13 TDecompressEvent Type
6.14 TDecryptBlockEvent Type
6.15 TEncryptBlockEvent Type
6.16 TEndTransactionTriggerEvent Type
6.17 TEngineType Type

6.18 TErrorEvent Type

6.19 TEventDayOfMonth Type
6.20 TEventDayOfWeek Type
6.21 TEventDays Type

6.22 TEventMonths Type

6.23 TEventRunType Type

6.24 TFieldCharCase Type

6.25 TFilterOptimizeLevel Type
6.26 TIndexCompression Type
6.27 TLockProtocol Type

6.28 TLogCategory Type

6.29 TLogEvent Type

6.30 TLogEventType Type

6.31 TLoginEvent Type

6.32 TLogRecord Type

6.33 TPasswordEvent Type

6.34 TProcedureProgressEvent Type

927
939
939
940
941
942
943
944
945
946
947
949
950
951
952
953
954
955
956
957
958
961
962
963
964
965
966
967
968
969
970
971
973
974
975
976

Table of Contents

6.35 TProcedureRight Type 977
6.36 TProcedureRights Type 978
6.37 TProgressEvent Type 979
6.38 TReconnectEvent Type 980
6.39 TRecordLockTriggerEvent Type 981
6.40 TSendReceiveProgressEvent Type 982
6.41 TServerConnectEvent Type 983
6.42 TServerDisconnectEvent Type 984
6.43 TServerLogCountEvent Type 985
6.44 TServerLogEvent Type 986
6.45 TServerLoginEvent Type 987
6.46 TServerLogoutEvent Type 988
6.47 TServerLogRecordEvent Type 989
6.48 TServerProcedureEvent Type 990
6.49 TServerReconnectEvent Type 991
6.50 TServerScheduledEvent Type 992
6.51 TSessionType Type 993
6.52 TSQLStatementType Type 994
6.53 TSQLTriggerEvent Type 996
6.54 TStartTransactionTriggerEvent Type 997
6.55 TSteppedProgressEvent Type 998
6.56 TTextIndexFilterEvent Type 999
6.57 TTextIndexTokenFilterEvent Type 1000
6.58 TTimeoutEvent Type 1001
6.59 TTraceEvent Type 1002
6.60 TTraceEventType Type 1003
6.61 TTraceRecord Type 1004
6.62 TTriggerEvent Type 1006
6.63 TUpdateType Type 1007
Appendix A - Differences from the BDE 1009
Appendix B - Error Codes and Messages 1021

Appendix C - System Capacities 1039

Preface

Table of Contents

This page intentionally left blank

Preface

Before You Begin

Chapter 1
Before You Begin

1.1 Changes From Version 3.x

The following items have been changed in Version 4.x from Version 3.x:

@ The physical table format has changed for version 4 and all tables in 3.x and earlier formats will
require upgrading to the current format using the TDBISAMTable UpgradeTable method or the new
UPGRADE TABLE SQL statement. Please see the Upgrading Tables topic for more information.

The major changes to the format include:

Change Description

Table Signatures Every table is now stamped with an MD5 hash that
represents the hash of a "signature" that is specified in
the EngineSignature property of the TDBISAMEngine
component. In order to access any table, stream, or
backup created with a specific engine signature other than
the default requires that the engine be using the same
signature or else access will be denied. Please see the
Customizing the Engine topic for more information.

Locale IDs The language ID and sort ID values (Word values) for a
table in 3.x and lower have been replaced with one single
locale ID (Integer value). This causes a change in the
TDBISAMTable RestructureTable method, which has been
renamed to the AlterTable method to maintain consistency
with the ALTER TABLE SQL statement (see below). Also,
the LanguagelD and SortID properties of the
TDBISAMTable component are now one LocaleID
property. Finally, the SQL LANGUAGE ID and SORT ID
keywords have been replaced with the single LOCALE
keyword in SQL statements, and some of the language
identifiers (string values) have been modified to reflect the
change to a locale instead of a language identifier.

Table Encryption The default table encryption in prior versions of DBISAM
was weak XOR encryption and, although it was fast, it was
also easily broken. The table encryption in version 4 is
Blowfish encryption that is not easily broken. All table
passwords are stored as MD5 hashes encrypted with the
same Blowfish encryption. Please see the Encryption topic
for more information.

System Fields There are two new "system" pseudo-fields in every table
called "RecordID and "RecordHash". These fields can be
indexed, filtered, etc. but do not show up in the field
definitions for the TDBISAMTable or TDBISAMQuery
components. RecordID is an integer value (4 bytes)
representing the fixed "row number" of a given record.
RecordHash is an MD5 binary value (16 bytes) that

Page 1

Before You Begin

Auto Primary Index

BLOB Compression

Maximum Field Size

FixedChar Fields

GUID Fields

Autolnc Fields

Page 2

represents the hash of a given record. If you upgrade a
table that already has a field named the same as either of
these fields, your field will be automatically renamed by
the UpgradeTable method or the UPGRADE TABLE SQL
statement to '_'+OldFieldName. In other words, an
underscore will be added to the front of the existing field
name.

In version 3.x and earlier you could have a table without a
primary index. In version 4, if you do not define a primary
index when creating or restructuring a table, DBISAM will
automatically add a primary index on the system RecordID
field mentioned above.

You may now specify compression for BLOB fields when
creating or restructuring a table. The compression is
specified as a Byte value between 0 and 9, with the
default being 0, or none, and 6 being the best selection
for size/speed. The default compression is ZLib, but can
be replaced by using the TDBISAMEngine events for
specifying a different type of compression. Please see the
Compression and Customizing the Engine topics for more
information.

The maximum size of a string or bytes field is now 512
bytes instead of 250 bytes.

String fields that are of the ftFixedChar type do not
automatically right-trim spaces from strings assigned to
them as they have in the past. String fields that are of the
type ftString still treat strings like VarChars and right-trim
the strings assigned to them. For example, assigning the
value 'Test ' to the two different field types would result in
the following:

ftString="Test'
ftFixedChar="Test '

This is useful for situations where you want to keep
trailing spaces in string fields.

GUID fields are now supported and are implemented as a
38-byte field containing a GUID in string format.

Auto-increment fields are now always editable and you
may have more than one autoinc field per record, with
each field incrementing independently. Because these
fields are editable, the SuppressAutoIncValues property
has been removed from both the TDBISAMTable and
TDBISAMQuery component and the NOAUTOINC clause
has been removed from the SQL statements. The way
autoinc fields work now is that they will auto-increment if
a value is not specified for the field before the Post
operation (field is NULL), and will leave any existing value
alone if one is already specified before the Post operation.

Descending Index Fields

Index Page Size

Before You Begin

Note

If you do not want an end user to modify any
autoinc fields directly then it is extremely important
that you mark any autoinc fields as read-only by
setting the TField ReadOnly property to True before
the user is allowed to access these fields.

You may now specify which fields are ascending or
descending in an index independently of one another. This
change also modifies the AddIndex method of the
TDBISAMTable component slightly as well as the
TDBISAMIndexDef objects used in creating and altering
the structure of tables. With SQL you can simply place an
appropriate ASC or DESC keyword after each field
specified for an index definition in a CREATE TABLE or
CREATE INDEX statement.

You may now specify the index page size when creating or
altering the structure of tables. This changes the
TDBISAMTable AlterTable method slightly as well as the
CREATE TABLE SQL statement syntax. Also, there is a new
IndexPageSize property for the TDBISAMTable
component. The minimum page size is 1024 bytes and the
maximum page size is 16 kilobytes.

Note

The index page size affects the maximum key size
that can be specified for an index, so if you try to
index very large string fields you may get an error
indicating that the index key size is invalid. Also,
regardless of page size the maximum key size for
any index is 4096 bytes. Finally, the maximum
number of fields that can be included in a given
index has been expanded from 16 to 128 fields.
However, the number of indexes per table is still
only 30 indexes and has not changed.

@ The TDBISAMTable RestructureTable method is now called the AlterTable method to be more in line

with the name of the ALTER TABLE SQL statement. Also, the TDBISAMTable OnRestructureProgress
event is now called the OnAlterProgress event.

@ The TDBISAMTable OnDataLost event will now fire when adding unique secondary or primary

indexes that cause key violations. Also, the ContinueRestructure parameter to this event is now
called the Continue parameter in order to be more in line with its new dual-purposes.

= The TDBISAMQuery OnQueryProgress event is now of the type TAbortProgressEvent to reflect the

fact that it will be used for more than just the OnQueryProgress event in the future.

@ The addition and subtraction of dates, times, and timestamps in filter and SQL expressions have

changed slightly. Please see the SQL Reference Operators topic for more information.

Page 3

Before You Begin

@ There are also new filter and SQL functions for converting milliseconds into the appropriate number
of years, days, hours, etc. Please see the New Features in Version 4.x and the SQL Reference
Functions topics for more information.

@ The index compression/de-compression code has been vastly improved so as to be much more
efficient, especially when there are a large number of duplicate keys in the index and the
compression is set to duplicate-byte or full compression.

@ The DBISAM table stream format has changed completely. It is now more similar to a binary
import/export format and can now include just a subset of fields from the original table and does
not include index information that previously caused many problems with loading streams saved
from query result sets into tables, etc.

Note

Like tables themselves, streams are signed with the current engine signature to ensure that
only the current engine signature, or the default engine signature, can access the stream.
Also, even though the table that a stream is created from is encrypted, the resultant stream
will never be encrypted and you must make sure to take extra caution if you do not want to
expose data improperly. Please see the Loading and Saving Streams with Tables and Query
Result Sets topic for more information.

@ The table locking in DBISAM has changed completely in order to streamline transaction locking,
prevent deadlocks during transactions, and improve the performance of the table and transaction
locking. Previously table locking was done at the individual table level, so if you started a transaction
on a database with 50 physical tables opened for that database, DBISAM would have to place a
transaction lock on all 50 open tables before starting the transaction. It would also have to
subsequently write lock them during a commit and then unlock everything for each table after the
transaction was committed or rolled back. Now all table locking is centralized in one hidden file
called "dbisam.Ick" (by default) and located in the physical database directory. In case anyone
mistakes this for a Paradox-style lock file, it is definitely not anything close. The lock file in DBISAM
version 4 is just an empty "container" used to perform byte offset locking at the operating system
level and the existence of the file is strictly optional - it will automatically be created by DBISAM as
needed. Likewise, if the file is left there (which it will be since DBISAM prefers not to have to
constantly recreate it when needed) it will not cause any harm, unlike with a Paradox lock file. With
this new type of locking, DBISAM only needs to place one lock call to the OS when a transaction is
started (instead of the previous scenario of 50 calls), one write lock call during a commit, and one
unlock call during a commit or rollback. It also completely eliminates deadlocks during transaction
locking since this architecture makes it impossible to get a deadlock. Please see the Locking and
Concurrency and Transactions topics for more information.

Note
The default lock file name "dbisam.Ick" can be modified to any file name desired by modifying
the TDBISAMENgine LockFileName property.

Page 4

Before You Begin

= A few TDBISAMSession properties have been modified slightly to reflect some changes in the remote
access. The RemoteType property has been removed and been replaced with the RemoteEncryption,
RemoteEncryptionPassword, and RemoteCompression properties. The RemoteEncryption property
specifies that any comms requests or responses should be encrypted using the strong crypto in the
engine, and the RemoteEncryptionPassword specifies the password to use for the encryption. This
password must match the password used by the server engine to encrypt/decrypt comms on its end.
Also, in version 4 *all* administrative access requires the use of RemoteEncryption=True. You
cannot log into the administrative port on a server without encryption turned on and the password
set to the proper password for the server that you are accessing. In addition to this, all login
information is automatically encrypted using the RemoteEncryptionPassword, so regardless of
whether RemoteEncryption is turned on or not, the password must still match that of the server or
you won't be able to log in using a non-encrypted connection either. The RemoteCompression
property allows you to dynamically change the compression for the comms at any time before,
during, or after logging into a database server. Each request and response is tagged with a specific
compression level, thus allowing unlimited flexibility in determining how much/little compression to
use. The property is specified as a Byte value between 0 and 9, with the default being 0, or none,
and 6 being the best selection for size/speed. Because of these property changes, the
TDBISAMSession GetRemoteSessionInfo method has been modified to reflect whether the session is
encrypted or not instead of the type of session (rtInternet or rtLAN previously).

= The TDBISAMSession method GetRemotelog for retrieving the server log from the server has been
removed and replaced with two different methods, one for retrieving the total number of log entries
called GetRemoteLogCount, and one for retrieving a specific log entry from the server based upon
its ordinal position in the log called GetRemoteLogRecord. This change is due to the abstraction of
the log storage in the TDBISAMENngine component when running as a server (EngineType=etServer).
Previously the log storage was a "black box" text file that was maintained by the server. Now the log
storage is abstract and is handled via the OnServerLogEvent event in the TDBISAMEngine
component. A TLogRecord record is passed to an event handler for this event and the event handler
is free to store this data in whatever way it deems appropriate. Likewise, the OnServerLogCount
event is triggered in the TDBISAMENgine component when the client session calls the
TDBISAMSession GetRemoteLogCount method and the OnServerLogRecord event is called when the
TDBISAMSession GetRemotelLogRecord method is called.

Note
By default, the server application that comes with DBISAM uses event handlers for these
events to simply write out these log records as binary records in a log file.

Please see the Customizing the Engine topic for more information.

Page 5

Before You Begin

@ The following types have been changed or removed:

Type New Type

TDBISAMPasswordEvent TPasswordEvent

TDBISAMDatabaseRight TDatabaseRight
Note

The TDatabaseRight type has also been expanded
to include new rights for backup (drBackup) and
restore (drRestore) of a database, as well as rights
for performing maintenance (drMaintain) on a
database like repairing and optimizing tables and
renaming objects in a database (drRename).

TDBISAMDatabaseRights TDatabaseRights

@ The following constants have been changed or removed:

Constant New Constant(s)

DBISAM_LOCKTIMEOUT DBISAM_READLOCK
DBISAM_READUNLOCK
DBISAM_WRITELOCK
DBISAM_WRITEUNLOCK
DBISAM_TRANSLOCK
DBISAM_TRANSUNLOCK

This was done to give the developer more control over

which condition he/she was responding to, especially
when it comes to transaction lock timeouts.

Page 6

Before You Begin

@ The RestructureFieldDefs and RestructureIndexDefs have been removed and replaced with common
TDBISAMFieldDefs and TDBISAMIndexDefs objects. These new objects allow the TDBISAMTable
CreateTable method to be changed so that it is identical to the AlterTable method (used to be called
RestructureTable), thus eliminating the need for the old way of creating a table and then
immediately altering its structure in order to add DBISAM-specific features to the table. These
objects are assignment-compatible with their TDataSet cousins TFieldDefs and TIndexDefs.

Note

There is one important change in the TDBISAMFieldDefs Add method that is different from
the standard TFieldDefs Add method. The TDBISAMFieldDefs Add method is overloaded to
allow for the direct specification of the FieldNo of the TDBISAMFieldDef being added. This is
to allow for moving fields around without losing any data with the AlterTable method. Also,
the TDBISAMFieldDefs object has an additional Insert method that allows for the insertion of
a TDBISAMFieldDef object in a specific position in the TDBISAMFieldDefs. Please see the
Creating and Altering Tables topic for more information.

@ The TDBISAMTable and TDBISAMQuery BlockReadSize property functionality has been modified so
that it behaves like the TDBISAMTable and TDBISAMQuery RemoteReadSize property, which does
not have the limitations that the BlockReadSize property used to have and can also very easily
optimize C/S access so that records are retrieved from the server in batches.

= The TDBISAMTable RecordIsLocked and TableIsLocked methods no longer attempt to make locking
calls in order to determine whether a record or table is locked, and only reflect whether the current
table cursor has a given record or table locked. If you want to edit a record you should just edit the
record and respond accordingly to any locking exceptions that occur if a table or record is already
locked.

@ The TDBISAMTable and TDBISAMQuery Locate method implementation has internally been moved
into the engine itself, which should result in some faster performance for Locate calls, especially
when accessing a database server. Also, the Locate method can now take advantage of indexes in
live query result sets (as well as canned result sets) when optimizing its searching. These changes to
Locate do not cause any code changes in your application.

@ All DBISAM error strings are now marked with the resourcestring directive and are located in a new
unit (Delphi) or header file (C++) called dbisamst.

= The TDBISAMQuery Params property is no longer the standard TParams object, but rather is now a
custom TDBISAMParams object. This also holds true for the individual TParam objects contained
within the Params property, as they are now TDBISAMParam object. This was done to fix a bug in
the parsing of parameters in SQL statements in the TParams object, as well as to enable the use of
a common set of objects for both queries, custom SQL and filter functions, and server-side
procedure calls. Also, with this change we have added the TDBISAMParam AsLargelnt property to
allow you to retrieve and assign 64-bit integer parameters.

Page 7

Before You Begin

Page 8

@ The TDBISAMQuery component now processes SQL scripts client-side so as to allow for the use of

parameters with scripts. A new OnGetParams event is fired whenever a new SQL statement is
prepared. This allows one to execute an SQL script and populate the parameters in a step-by-step
fashion. However, it does come at a price when executing large SQL scripts using a remote session.
Previously with 3.x the entire script was executed on the database server, but with version 4 each
individual SQL statement is parsed and sent to the server independently, so this can result in much
more network traffic. The work-around is to send any very large SQL scripts to the server to be
executed in the context of a server-side procedure, which will keep the processing of the script
entirely on the server but still allow for parameters in the script.

= SQL statements and filter expressions now require all constants to be enclosed in single quotes as

opposed to double-quotes. Identifiers such as table names and column names can still be (and must
be) enclosed in double quotes or brackets. This allows DBISAM's parser to distinguish properly
between identifiers and constants, which previously would confuse the parser, especially with
expressions like this:

MyColumName="MyColumnName"

where the parser didn't know whether to treat "MyColumnName" as a constant or a column value.

@ The use of the asterisk (*) as a wildcard along with the equality (=) operator in SQL statements is

no longer supported. Instead, you must use the LIKE operator and the percent (%) wildcard
character like this:

MyColumName LIKE 'Test%'

= The SQL aggregate and distinct processing, as well as the result set ordering, has been improved so

as to reduce the amount of I/0 used to perform these functions. The results should be fairly
improved over 3.x, especially with large source tables. In addition, the MIN and MAX aggregate
functions can now take advantage of indexes when SQL statements like the following are used:

SELECT max (MyField) FROM MyTable

where MyTable has an index on MyField. You can also now use the MIN and MAX aggregate
functions with string fields. Finally, the SQL SELECT statement's TOP clause can now take advantage
of indexes to optimize its performance quite a bit over 3.x.

= The MEMORY keyword has been removed from SQL statements and should be replaced with a

database specification of "Memory\". For example, in 3.x you would specify the following SQL
SELECT statement to retrieve data from an in-memory table:

SELECT * FROM MEMORY biolife

In version 4 you should use:

Before You Begin

SELECT * FROM "\Memory\biolife"

= The WITH LOCKS clause has been removed from the SELECT SQL statement. To ensure that data
does not change during the course of a SELECT statement you should wrap the statement in a
transaction.

@ The SQL and filter LIKE operator now accepts an ESCAPE clause to specify an escape character:

SELECT * FROM MyTable WHERE MyColumn LIKE '100\%%' ESCAPE '\'

In the above example the backslash serves as the escape character indicating that the character
after it, the percent sign (%), should be interpreted literally and not as a wildcard like it normally is.
The above SQL statement will find all records where MyColumn begins with '100%'.

Page 9

Before You Begin

1.2 New Features in Version 4.x

The following items are new features in version 4.x:

@ There is a new TDBISAMEngine component that encapsulates the DBISAM engine inside of a visual
component. In the component hierarchy, the TDBISAMEngine component sits at the top above the
TDBISAMSession component(s). A default Engine function is available in the dbisamtb unit (Delphi)
or dbisamtb header file (C++) that points to a global instance of the TDBISAMEngine component.
You can also drop a TDBISAMEngine component on a form or data-module to visually change its
properties. However, only one instance of the TDBISAMEngine component can exist in a given
application, and both the Engine function and any TDBISAMEngine component on a form or data
module point to the same instance of the component (singleton model). Some of the functionality
found in the TDBISAMEngine component includes:

Functionality Description

Engine Type The EngineType property can be set to either etClient or
etServer in order to have the engine behave as a local
client engine or a server engine. If acting as a server
engine, many additional properties are provided for
configuring the server:

ServerName
ServerDescription
ServerMainAddress
ServerMainPort
ServerMainThreadCacheSize
ServerAdminAddress
ServerAdminPort
ServerAdminThreadCacheSize
ServerEncryptedOnly
ServerEncryptionPassword
ServerConfigFileName
ServerConfigPassword

There are also many events provided for the server
engine:

OnServerStart
OnServerStop
OnServerLogEvent
OnServerLogCount
OnServerLogRecord
OnServerConnect
OnServerReconnect
OnServerLogin
OnServerLogout
OnServerDisconnect
OnServerScheduledEvent
OnServerProcedure

Please see the Configuring and Starting the Server topic
for more information.

Full Text Indexing There are specific events for implementing full text index

Page 10

Custom Encryption

Custom Compression

Signatures

ANSI Conversions

Before You Begin

filtering (either on a buffer basis or on a per-token basis):

OnTextIndexFilter
OnTextIndexTokenFilter

Also, there are two new methods for parsing strings into
word lists and retrieving the default text indexing
parameters:

BuildWordList
GetDefaultTextIndexParams

Note

The BuildWordList function used to be available in
the dbisamlb unit (Delphi) or dbisamlb header file
(C++) and it is still is, although different from the
one available as a method of the TDBISAMEngine
component. You should use the method of the
TDBISAMENgine component instead of the function
in the dbisamlb unit in version 4.

Please see the Full Text Indexing topic for more
information.

There are specific events for customizing the encryption in
DBISAM (8-byte block ciphers only):

OnCryptolnit
OnEncryptBlock
OnDecryptBlock
OnCryptoReset

Please see the Encryption topic for more information.

There are specific events for customizing the compression
in DBISAM:

OnCompress
OnDecompress

Please see the Compression topic for more information.

There is an EngineSignature property in the
TDBISAMENgine component that is used to create an MD5
hash that is assigned to every table, table stream, backup,
comms request and response, etc. This allows one to
"assign" tables, etc. to a specific application and prevent
any other application from accessing the tables, server,
etc. without the proper engine signature. Please see the
Customizing the Engine for more information.

All of the ANSI string conversion functions that used to be
in the dbisamlb unit are now public methods of the
TDBISAMENgine component:

Page 11

Before You Begin

Locale Functionality

Memory Usage

File Extensions

Locking

Page 12

DateToAnsiStr
TimeToAnsiStr
DateTimeToAnsiStr
AnsiStrToDate
AnsiStrToTime
AnsiStrToDateTime
BooleanToAnsiStr
AnsiStrToBoolean
FloatToAnsiStr
AnsiStrToFloat
CurrToAnsiStr
AnsiStrToCurr

There are new methods for working with the available
locales in DBISAM:

IsValidLocale
IsValidLocaleConstant
ConvertLocaleConstantToID
ConvertIDToLocaleConstant
GetLocaleNames

The amount of memory used for buffering tables can now
be controlled via the following properties:

MaxTableDataBufferSize
MaxTableDataBufferCount
MaxTableIndexBufferSize
MaxTableIndexBufferCount
MaxTableBlobBufferSize
MaxTableBlobBufferCount

Note

These properties used to be in the TDBISAMSession
component in 3.x and earlier and were only
applicable to the session for which they were
configured. The TDBISAMEngine properties above
are used for the all sessions in the application.

The file extensions to use for physical table files, table
backup files, and table upgrade backup files can be
specified via the following properties:

TableDataExtension
TableIndexExtension
TableBlobExtension
TableDataBackupExtension
TableIndexBackupExtension
TableBlobBackupExtension
TableDataUpgradeExtension
TableIndexUpgradeExtension
TableBlobUpgradeExtension

The lock wait times and retry counts for table read, write,
and transaction locks can now be modified via the

Before You Begin

following properties:

TableReadLockTimeout
TableWriteLockTimeout
TableTransLockTimeout

Triggers You can now define trigger event handlers that allow for
processing both before and after the execution of an
insert, update, or delete operation:

BeforelnsertTrigger
AfterInsertTrigger
BeforeUpdateTrigger
AfterUpdateTrigger
BeforeDeleteTrigger
AfterDeleteTrigger

Please see the Customizing the Engine topic for more
information.

Custom Functions You can now add custom functions for use with filters and
SQL statements. They can be used anywhere that a
normal, non-aggregate function would be used. All
arguments to the functions are required and there is no
facility currently for optional arguments. The Functions
property of the TDBISAMEngine component allows you to
specify the functions and their arguments, and the
OnCustomFunction event of the TDBISAMEngine
component allows you to implement the functions. Please
see the Customizing the Engine topic for more
information.

@ You can now use restricted transactions on a given database where only certain tables that you
specify are involved in the transaction. Please see the Transactions topic for more information.

@ There is a new TDBISAMEngine FilterRecordCounts property that controls how record counts are
returned for filtered datasets and live query result sets. The default value of this property is True,
which indicates that record counts under these circumstances will be returned in the same fashion
as they were in 3.x and earlier. If the FilterRecordCounts property is set to False, the RecordCount
property of the TDBISAMTable and TDBISAMQuery components will always show the total record
count of the entire dataset or active range (if a range is set) only and will not take any active filters
(or WHERE clauses with live query result sets) into account. To get the record count including any
active filters, a FilterRecordCount property has been added to the TDBISAMTable and
TDBISAMQuery components that always shows the accurate record count, regardless of the current
setting of the TDBISAMEngine FilterRecordCounts propety.

Setting the TDBISAMENgine FilterRecordCounts property to False may be desirable for some
applications since it allows for more accurate positioning of the scroll bar in a TDBGrid or similar
multi-row, data-aware components. Please see the Customizing the Engine and Setting Filters on
Tables topics for more information.

Page 13

Before You Begin

@ The TDBISAMSession component now has new remote administrative methods for
adding/updating/deleting server-side procedures and events:

GetRemoteProcedureNames
GetRemoteProcedure
AddRemoteProcedure
ModifyRemoteProcedure
DeleteRemoteProcedure
GetRemoteProcedureUserNames
GetRemoteProcedureUser
AddRemoteProcedureUser
ModifyRemoteProcedureUser
DeleteRemoteProcedureUser
GetRemoteEventNames
GetRemoteEvent
AddRemoteEvent
ModifyRemoteEvent
DeleteRemoteEvent

Please see the Server Administration topic for more information.

@ The TDBISAMSession component now has the ability to ping a database server using the
RemotePing and RemotePinglInterval properties. These properties eliminate the need for user-
constructed pinging operations using timers and are safe to use for the purpose of shortening dead
session expiration times that are configured on a database server and eliminating dangling
pessimistic locks when client workstations go down while connected.

= The TDBISAMSession component now has the capability to call a server-side procedure on a
database server using the CallRemoteProcedure method, the RemoteParams property, and the
RemoteParamByName method. Please see the Calling Server-Side Procedures topic for more
information.

@ The TDBISAMDatabase component has new backup and restore facilities available in the following
methods and events:

Backup
BackupInfo
Restore

OnBackupProgress
OnBackuplLog
OnRestoreProgress
OnRestorelLog
Please see the Backing Up and Restoring Databases topic for more information.

@ There is a new TableSize property for the TDBISAMTable component that reflects the total size (in
bytes) of the physical table on disk (or in-memory if an in-memory table).

@ The SQL SELECT statement now includes support for the EXCEPT [ALL] and INTERSECT [ALL] set
operations, in addition to the UNION [ALL] operation.

Page 14

Before You Begin

@ There are several new SQL statements available:

EMPTY TABLE
OPTIMIZE TABLE
EXPORT TABLE
IMPORT TABLE
VERIFY TABLE
REPAIR TABLE
UPGRADE TABLE
RENAME TABLE

@ There are several new filter and SQL functions:

STDDEV (aggregate, SQL-only)
CURRENT_GUID
YEARSFROMMSECS
DAYSFROMMSECS
HOURSFROMMSECS
MINSFROMMSECS
SECSFROMMSECS
MSECSFROMMSECS
LTRIM

RTRIM

REPEAT

CONCAT

MOD

ACOS

ASIN

ATAN

ATAN2

CEILING or CEIL
Cos

cot

DEGREES

EXP

FLOOR

LOG

LOG10

PI

POWER

RADIANS

RAND

SIGN

SIN

SQRT

TAN

TRUNCATE or TRUNC

Please see the SQL Reference Functions topic for more information.
@ The SQL engine can now use the numeric 1 (or anything not 0) and 0 to represent TRUE and FALSE,

respectively. This is helpful for compatibility with generic front ends, such as those used with the
ODBC driver.

Page 15

Before You Begin

Page 16

@ There is a new TDBISAMQuery OnQueryError event that can be used to trap SQL errors and decide

whether to abort an executing SQL statement or not. If an OnQueryError event handler is not
assigned, then any SQL errors will immediately surface as an EDBISAMEngineError exception in the
TDBISAMQuery component.

@ The TDBISAMQuery component now surfaces the OnAlterProgress, OnDatalLost, OnIndexProgress,

OnOptimizeProgress, OnRepairLog, OnRepairProgress, OnUpgradelLog, OnUpgradeProgress,
OnVerifyLog, and OnVerifyProgress events just like the TDBISAMTable component. The only
difference is these events are triggered when the corresponding SQL statement is executed instead

of being triggered by a method call, including situations where an SQL statement is executed within
a script.

@ There are new OnLoadFromStreamProgress and OnSaveToStreamProgress events in the

TDBISAMTable and TDBISAMQuery components for tracking the loading/saving progress of streams.

Using DBISAM

Chapter 2
Using DBISAM

2.1 DBISAM Architecture

Introduction

DBISAM is a database engine that can be compiled directly into your Delphi or C++ application, be it a
program or library, or it can be distributed as a runtime package (equivalent to a library) as part of your
application. DBISAM was written in Delphi's Object Pascal and can be used with the VCL (Windows only).

General Architecture

DBISAM itself is a lightweight engine encapsulated within the TDBISAMENngine component. When the
TDBISAMENgine EngineType property is set to etClient, the TDBISAMENngine component is acting as a local
client engine, and when the EngineType property is set to etServer, the TDBISAMEngine component is
acting as a database server.

Sessions

DBISAM is session-based, where a session is equivalent to a virtual user and is encapsulated within the
TDBISAMSession component. There can be many sessions active in a given application, such as is the case
with a multi-threaded application. In multi-threaded applications DBISAM requires a separate session for
each thread performing database access. Please see the Multi-Threaded Applications topic for more
information.

A DBISAM session can be either local or remote:

Session Type Description

Local A local session gains direct access to database tables via the
operating system API to a given storage medium, which can
literally be any such medium that is accessible from the
operating system in use. This means that a local session on
the Windows operating system could access database tables
on a Linux file server. DBISAM automatically provides for the
sharing of database tables using a local session. For example,
an application can use local sessions on a small peer-to-peer
network to provide a low-cost, multi-user solution without the
added expense of using the client-server version of DBISAM.
A local session has all of the capabilities of a remote session
except for user and database security, which are only
available from a database server. Also, with a local session a
directory is synonymous with a database, whereas with a
remote session databases are defined as part of the server
configuration and the DBISAM client does not know the actual
location of a given database.

Remote A remote session uses sockets to communicate to a database
server over a network (or on the same physical machine)
using the TCP/IP protocol. DBISAM allows a remote session to

Page 17

Using DBISAM

be entirely encrypted using strong crypto. Compression is also
available for remote sessions and can be changed whenever it
is deemed necessary in order to improve the data transfer
speed. This is especially important with low-bandwidth
connections like a dial-up Internet connection. A remote
session connects to a given database server via an IP address
or host name and one of two different ports, depending upon
whether the connection is a regular connection or an
administrative connection. Before a remote session can
perform any operation on a database server it must be logged
in with a proper user ID and password. If a remote session is
connecting to the administration port on a database server,
the user ID specified during the login must be that of an
administrator or the login will be rejected. Also, an
administrative connection must be encrypted or the database
server will reject the connection.

Note

A developer can mix as many local and remote sessions in one application as needed, thus enabling
a single application to access data from a local hard drive, a shared file server, or a database
server. Also, local and remote sessions are completely identical from a programming perspective,
offering both navigational and SQL access methods. The only changes needed to switch from local
access to remote access for a session component is the modification of the TDBISAMSession
SessionType property.

Database Server

The database server listens for regular data connections on one port and administrative connections on a
second port. All administrative connections must be encrypted or they will be rejected by the database
server. When the TDBISAMEngine Active property is set to True, the database server will start listening on
the IP addresses and ports indicated by the following properties:

ServerMainAddress
ServerMainPort
ServerAdminAddress
ServerAdminPort

If the either ServerMainAddress or ServerAdminAddress property is blank (the default), the database
server will listen on all IP addresses available for the type of connection (either regular or administrative).
The default ports are 12005 for the ServerMainPort property and 12006 for the ServerAdminPort property.
Once the server is started, you cannot change any of these properties, as well as several other properties.
Please see the Configuring and Starting the Server topic for more information.

The database server is a multi-threaded server that uses one thread per client connection, which
corresponds to a client TDBISAMSession component set to run as a remote session via the SessionType
property. DBISAM will cache threads and keep a pool of unused threads available in order to improve
connect/disconnect times. The following properties control the default thread cache size uses by the
database server:

ServerMainThreadCacheSize
ServerAdminThreadCacheSize

The default for the ServerMainThreadCacheSize property is 10 threads and the default for the

Page 18

Using DBISAM

ServerAdminThreadCacheSize property is 1. Both of these properties must be set before the engine is
started and cannot be changed when the engine is started.

"Dead" sessions in the database server are sessions that have been inactive for a connection timeout
period (configurable) due to lack of client session requests or due to a physical network interruption in
service. Such sessions retain their complete state from the time that the disconnect occurred. The sessions
remain in this state until:

@ The client session attempts another data request or pings the server, in which case the connection
will automatically be re-established transparently between the client session and the database
server.

@ The database server's dead session expiration time period (configurable) is reached and the
database server automatically removes the session.

@ The number of dead sessions on the database server reaches the maximum threshhold
(configurable), thus causing the database server to remove dead sessions in order to bring the
number back under the threshhold, oldest dead session first.

Note
The age of a dead session is determined by the last time that the session was connected to the
server.

Please see the Server Administration topic for more information on configuring these settings on the
server.

Note

You can configure the remote sessions on the client to ping the database server at regular intervals
via the TDBISAMSession RemotePing and RemotePingInterval properties. Configuring remote
sessions to ping the database server in a smaller time period than the connection timeout
configuration on the database server allows you to specify a smaller dead session expiration timeout
and prevent sessions with active locks from being left around for too long. With pinging turned on,
the only reason a session would be disconnected by the server is if the client workstation or the
physical network connection has failed.

You may have a database server (or several) accessing a given database at the same time as other local
applications such as CGI or ISAPI web server applications. This allows you to put critical server-side
processing on the server where it belongs without incurring a lot of unnecessary overhead that would be
imposed by the transport protocol of the database server. This can improve the performance of server-
based local applications significantly, especially when they reside on the same machine as the database
server and the databases being accessed are local to the server machine.

The database server allows you to configure all users, databases, server-side procedures, and scheduled
events via a remote administrative connection or directly via the TDBISAMEngine component. User security
at the database and server-side procedure level allows the configuration of read, execute, insert, update,
delete, create, alter, drop, rename, maintain, backup, and restore privileges for a specific user or users.
Additionally, you may allow or block specific IP addresses or ranges of IP addresses (using wildcards) for
access to a given database server. A maximum number of connections may be set to prevent too many
inbound connections to a given server. Because the database server does not actively establish any
communication with a client session and all communication is controlled by the client session, you do not
have issues with firewalls as long as the firewall allows for inbound access to the main port and/or
administration port on the server. Please see the Server Administration topic for more information.

Page 19

Using DBISAM

All connections, errors, and other operational messages are logged and can be retrieved at a later time by
an administrator for examination.

Databases and Directories

DBISAM uses the physical directories in the operating system'’s file system to represent databases. This is
true for both local sessions and remote sessions, however with remote sessions these directories are
abstracted through logical database names in the server configuration. This allows applications written to
use remote sessions connecting to a database server to be portable between different servers with
different directory layouts. DBISAM creates a single hidden file called "dbisam.Ick" (by default) in a
database directory that is used for locking. It is created as needed and may be deleted if not in use by
DBISAM. However, if DBISAM cannot write to this file it will treat the database as read-only. Please see
the Locking and Concurrency topic for more information.

Note
The default lock file name "dbisam.Ick" can be modified to any file name desired by modifying the
TDBISAMENgine LockFileName property.

Physical Table Layout

DBISAM tables are divided into up to 3 physical files, one for data records, one for indexes, and one for
BLOB data (if there are BLOB fields present in the table):

File Type Description

Data File Used to store a fixed-length header for table-wide definitions
such as the table description, field counts, autoinc values,
etc., the fixed-length field definitions for the table, and the
fixed-length data records themselves. The use of a fixed-
length header, field definitions, and data records allows for
easier verification and/or repair of tables in the case of
physical table corruption. Please see the Verifying and
Repairing Tables topic for more information. All data records
contain a small record header and the field data. BLOB fields
contains a link to the BLOB file where the actual variable-
length BLOB data is stored in a blocked format.

Index File Used to store a fixed-length header for index statistics, index
counts, etc., the fixed-length index definitions, and the fixed-
length index pages themselves. The index page size is
variable and can be set between 1024 bytes and 16 kilobytes
on a per-table basis. All index pages for all primary,
secondary, and full text indexes are stored in this file.

BLOB File Used to store a fixed-length header for BLOB statistics, etc.
and the fixed-length BLOB blocks themselves. The BLOB block
size is variable and can be set between 64 bytes and 64
kilobytes on a per-table basis. All BLOB blocks for all BLOB
fields are stored in this file.

The file extensions used for these physical files can be changed. Please see the Customizing the Engine
topic for more information. The default file extensions are as follows:

Page 20

Using DBISAM

File Type File Extension
Data File .dat
Index File .idx
BLOB File .blb

In addition, during certain operations such as altering a table's structure, backup files will be created for
the physical table files. The default backup file extensions are as follows:

File Type Backup File Extension
Data File .dbk
Index File .ibk
BLOB File .bbk

Finally, during the process of upgrading a table from a previous version's format to the latest format,
backup files will be created for the physical table files. The default backup file extensions for upgraded
tables are as follows:

File Type Upgrade Backup File Extension
Data File .dup
Index File .iup
BLOB File .bup

Please see the Upgrading Tables topic for more information.
Component Architecture

DBISAM includes the following components:

Component Description

TDBISAMENgine The TDBISAMEngine component encapsulates the DBISAM
engine itself. A TDBISAMEngine component is created
automatically when the application is started and can be
referenced via the global Engine function in the dbisamtb unit
(Delphi) and dbisamtb header file (C++). You can also drop a
TDBISAMEngine component on a form or data-module to
visually change its properties. However, only one instance of
the TDBISAMENgine component can exist in a given
application, and both the global Engine function and any
TDBISAMEngine component on a form or data module point
to the same instance of the component (singleton model).
The TDBISAMEngine component can be configured so that it
acts like a local or client engine (etClient) or a database
server via the EngineType property. The engine can be
started by setting the Active property to True.

TDBISAMSession The TDBISAMSession component encapsulates a session in

Page 21

Using DBISAM

TDBISAMDatabase

Page 22

DBISAM. A default TDBISAMSession component is created
automatically when the application is started and can be
referenced via the global Session function in the dbisamtb unit
(Delphi) and dbisamtb header file (C++). The
TDBISAMSession component can be configured so that it acts
like a local (stLocal) or a remote session (stRemote) via the
SessionType property. A local session is single-tier in nature,
meaning that all TDBISAMDatabase components connected to
the session reference directories in a local or network file
system via the Directory property and all TDBISAMTable or
TDBISAMQuery components access the physical tables directly
from these directories using operating system API calls. A
remote session is two-tier in nature, meaning that all access is
done through the remote session to a database server using
the DBISAM messaging protocol over a TCP/IP connection.
The database server is specified through the following
properties:

RemoteHost or RemoteAddress
RemotePort or RemoteService

In a remote session, all TDBISAMDatabase components
reference databases that are defined on the database server
via the RemoteDatabase property and all TDBISAMTable or
TDBISAMQuery components access the physical tables
through the DBISAM messaging protocol rather than directly
accessing them.

Note

You cannot activate remote sessions in an application
whose TDBISAMEngine component is configured as a
database server via the EngineType property.

A session can be started by setting the Active property to True
or by calling the Open method. The TDBISAMSession
component contains a SessionName property that is used to
give a session a name within the application. All sessions must
have a name before they can be started. The default
TDBISAMSession component is called "Default”. The
TDBISAMDatabase, TDBISAMTable, and TDBISAMQuery
components also have a SessionName property and these
properties are used to specify which session these
components belong to. Setting their SessionName property to
"Default" or blank ("") indicates that they will use the default
TDBISAMSession component. Please see the Starting Sessions
topic for more information.

The TDBISAMDatabase component encapsulates a database
in DBISAM. It is used as a container for a set of tables in a
physical directory for local sessions or as a container for a set
of tables in a database on a database server for remote
sessions. Please see the Server Administration topic for more
information on defining databases on a database server. A
database can be opened by setting the Connected property to

TDBISAMTable

TDBISAMQuery

Using DBISAM

True or by calling the Open method. A TDBISAMDatabase
component contains a DatabaseName property that is used to
give a database a name within the application. All databases
must have a name before they can be opened. The
TDBISAMTable and TDBISAMQuery components also have a
DatabaseName property and these properties are used to
specify which database these components belong to. Please
see the Opening Tables topic for more information.

The TDBISAMDatabase Directory property indicates the
physical location of the tables used by the TDBISAMTable and
TDBISAMQuery components. If a TDBISAMDatabase
component is being used with a local session (specified via
the SessionName property), then its Directory property should
be set to a valid physical path for the operating system in use.

The TDBISAMDatabase RemoteDatabase property indicates
the name of a database defined on a database server. If a
TDBISAMDatabase component is connected to a remote
session (specified via the SessionName property), then its
RemoteDatabase property should be set to a valid database
for the database server that the session is connected to.

The TDBISAMDatabase component is used for transaction
processing via the StartTransaction, Commit, and Rollback
methods. Please see the Transactions topic for more
information.

You can backup and restore databases via the Backup,
BackupInfo, Restore methods. Please see the Backing Up and
Restoring Databases topic for more information.

The TDBISAMTable component encapsulates a table cursor in
DBISAM. It is used to search and update data within the
physical table specified by the TableName property, as well as
create the table or alter its structure. A table cursor can be
opened by setting the Active property to True or by calling the
Open method. The DatabaseName property specifies the
database where the table resides. Please see the Opening
Tables topic for more information.

The TDBISAMTable component descends from the
TDBISAMDBDataSet component, which descends from the
TDBISAMDataSet component, which descends from the
common TDataSet component that is the basis for all data
access in Delphi and C++. None of these lower-level
components should be used directly and are only for internal
structuring purposes in the class hierarchy.

You can have multiple TDBISAMTable components using the
same physical table. Each TDBISAMTable component
maintains its own active index order, filter and range
conditions, current record position, record count statistics, etc.

The TDBISAMQuery component encapsulates a single SQL
statement or multiple SQL statements in DBISAM. These SQL
statements may or may not return a result set. It is used to

Page 23

Using DBISAM

Note

search and update data within the physical tables specified by
the SQL statement or statements in the SQL property. An SQL
statement or statements can be executed by setting the
Active pro