DBISAM Version 4 Manual

Table Of Contents

Chapter 1 - Before You Begin
1.1 Changes From Version 3.x
1.2 New Features in Version 4.x
Chapter 2 - Using DBISAM
2.1 DBISAM Architecture
2.2 Data Types and NULL Support
2.3 Exception Handling and Errors
2.4 Configuring and Starting the Server
2.5 Server Administration
2.6 Customizing the Engine
2.7 Starting Sessions
2.8 Calling Server-Side Procedures
2.9 Opening Databases
2.10 Transactions
2.11 Backing Up and Restoring Databases
2.12 In-Memory Tables
2.13 Creating and Altering Tables
2.14 Upgrading Tables
2.15 Deleting Tables
2.16 Renaming Tables
2.17 Adding and Deleting Indexes from a Table
2.18 Emptying Tables
2.19 Copying Tables
2.20 Optimizing Tables
2.21 Verifying and Repairing Tables
2.22 Opening Tables
2.23 Closing Tables
2.24 Executing SQL Queries
2.25 Live Queries and Canned Queries
2.26 Parameterized Queries

2.27 Navigating Tables and Query Result Sets

Table of Contents

10
17
17
25
31
34
43
49
59
63
64
66
70
74
75
82
84
85
86
89
90
92
94
97
102
103
111
113
116

Preface

Table of Contents

2.28 Updating Tables and Query Result Sets

2.29 Searching and Sorting Tables and Query Result Sets

2.30 Setting Ranges on Tables

2.31 Setting Master-Detail Links on Tables

2.32 Setting Filters on Tables and Query Result Sets

2.33 Loading and Saving Streams with Tables and Query Result Sets
2.34 Importing and Exporting Tables and Query Result Sets

2.35 Cached Updates

Chapter 3 - Advanced Topics

3.1 Locking and Concurrency

3.2 Buffering and Caching

3.3 Change Detection

3.4 Index Compression

3.5 Filter Optimization

3.6 Multi-Threaded Applications

3.7 Full Text Indexing

3.8 Compression

3.9 Encryption

3.10 Recompiling the DBISAM Source Code

3.11 Replacement Memory Manager

Chapter 4 - SQL Reference

Preface

4.1 Overview

4.2 Naming Conventions

4.3 Unsupported SQL

4.4 Optimizations

4.5 Operators

4.6 Functions

4.7 SELECT Statement

4.8 INSERT Statement

4.9 UPDATE Statement

4.10 DELETE Statement

4.11 CREATE TABLE Statement
4.12 CREATE INDEX Statement
4.13 ALTER TABLE Statement
4.14 EMPTY TABLE Statement
4.15 OPTIMIZE TABLE Statement

118
126
132
134
137
140
142
146
149
149
155
157
159
161
165
168
172
173
174
176
177
177
178
188
190
200
209
237
251
253
257
261
268
270
273
274

4.16 EXPORT TABLE Statement
4.17 IMPORT TABLE Statement
4.18 VERIFY TABLE Statement
4.19 REPAIR TABLE Statement
4.20 UPGRADE TABLE Statement
4.21 DROP TABLE Statement
4.22 RENAME TABLE Statement
4.23 DROP INDEX Statement
4.24 START TRANSACTION Statement
4.25 COMMIT Statement
4.26 ROLLBACK Statement

Chapter 5 - Component Reference
5.1 EDBISAMENgineError Component
5.2 TDBISAMBaseDataSet Component
5.3 TDBISAMBIlobStream Component
5.4 TDBISAMDatabase Component
5.5 TDBISAMDataSet Component

5.6 TDBISAMDataSetUpdateObject Component

5.7 TDBISAMDBDataSet Component
5.8 TDBISAMEngine Component

5.9 TDBISAMFieldDef Component
5.10 TDBISAMFieldDefs Component
5.11 TDBISAMFunction Component

5.12 TDBISAMFunctionParam Component
5.13 TDBISAMFunctionParams Component

5.14 TDBISAMFunctions Component
5.15 TDBISAMIndexDef Component
5.16 TDBISAMIndexDefs Component
5.17 TDBISAMParam Component
5.18 TDBISAMParams Component
5.19 TDBISAMQuery Component
5.20 TDBISAMRecord Component
5.21 TDBISAMSession Component

5.22 TDBISAMSQLUpdateObject Component

5.23 TDBISAMStringList Component
5.24 TDBISAMTable Component

Table of Contents

275
277
279
280
281
282
283
284
285
286
287
289
289
305
306
312
342
372
373
381
542
559
566
572
576
582
590
600
607
641
650
699
714
835
836
840

Preface

Table of Contents

5.25 TDBISAMUpdateSQL Component

Chapter 6 - Type Reference

Preface

6.1 TAbortAction Type

6.2 TAbortErrorEvent Type

6.3 TAbortProgressEvent Type
6.4 TCachedUpdateErrorEvent Type
6.5 TCompressEvent Type

6.6 TCryptoInitEvent Type

6.7 TCryptoResetEvent Type

6.8 TCustomFunctionEvent Type
6.9 TDatabaseRight Type

6.10 TDatabaseRights Type
6.11 TDatalLossCause Type

6.12 TDatalLostEvent Type

6.13 TDecompressEvent Type
6.14 TDecryptBlockEvent Type
6.15 TEncryptBlockEvent Type
6.16 TEndTransactionTriggerEvent Type
6.17 TEngineType Type

6.18 TErrorEvent Type

6.19 TEventDayOfMonth Type
6.20 TEventDayOfWeek Type
6.21 TEventDays Type

6.22 TEventMonths Type

6.23 TEventRunType Type

6.24 TFieldCharCase Type

6.25 TFilterOptimizeLevel Type
6.26 TIndexCompression Type
6.27 TLockProtocol Type

6.28 TLogCategory Type

6.29 TLogEvent Type

6.30 TLogEventType Type

6.31 TLoginEvent Type

6.32 TLogRecord Type

6.33 TPasswordEvent Type

6.34 TProcedureProgressEvent Type

927
939
939
940
941
942
943
944
945
946
947
949
950
951
952
953
954
955
956
957
958
961
962
963
964
965
966
967
968
969
970
971
973
974
975
976

Table of Contents

6.35 TProcedureRight Type 977
6.36 TProcedureRights Type 978
6.37 TProgressEvent Type 979
6.38 TReconnectEvent Type 980
6.39 TRecordLockTriggerEvent Type 981
6.40 TSendReceiveProgressEvent Type 982
6.41 TServerConnectEvent Type 983
6.42 TServerDisconnectEvent Type 984
6.43 TServerLogCountEvent Type 985
6.44 TServerLogEvent Type 986
6.45 TServerLoginEvent Type 987
6.46 TServerLogoutEvent Type 988
6.47 TServerLogRecordEvent Type 989
6.48 TServerProcedureEvent Type 990
6.49 TServerReconnectEvent Type 991
6.50 TServerScheduledEvent Type 992
6.51 TSessionType Type 993
6.52 TSQLStatementType Type 994
6.53 TSQLTriggerEvent Type 996
6.54 TStartTransactionTriggerEvent Type 997
6.55 TSteppedProgressEvent Type 998
6.56 TTextIndexFilterEvent Type 999
6.57 TTextIndexTokenFilterEvent Type 1000
6.58 TTimeoutEvent Type 1001
6.59 TTraceEvent Type 1002
6.60 TTraceEventType Type 1003
6.61 TTraceRecord Type 1004
6.62 TTriggerEvent Type 1006
6.63 TUpdateType Type 1007
Appendix A - Differences from the BDE 1009
Appendix B - Error Codes and Messages 1021

Appendix C - System Capacities 1039

Preface

Table of Contents

This page intentionally left blank

Preface

Before You Begin

Chapter 1
Before You Begin

1.1 Changes From Version 3.x

The following items have been changed in Version 4.x from Version 3.x:

@ The physical table format has changed for version 4 and all tables in 3.x and earlier formats will
require upgrading to the current format using the TDBISAMTable UpgradeTable method or the new
UPGRADE TABLE SQL statement. Please see the Upgrading Tables topic for more information.

The major changes to the format include:

Change Description

Table Signatures Every table is now stamped with an MD5 hash that
represents the hash of a "signature" that is specified in
the EngineSignature property of the TDBISAMEngine
component. In order to access any table, stream, or
backup created with a specific engine signature other than
the default requires that the engine be using the same
signature or else access will be denied. Please see the
Customizing the Engine topic for more information.

Locale IDs The language ID and sort ID values (Word values) for a
table in 3.x and lower have been replaced with one single
locale ID (Integer value). This causes a change in the
TDBISAMTable RestructureTable method, which has been
renamed to the AlterTable method to maintain consistency
with the ALTER TABLE SQL statement (see below). Also,
the LanguagelD and SortID properties of the
TDBISAMTable component are now one LocaleID
property. Finally, the SQL LANGUAGE ID and SORT ID
keywords have been replaced with the single LOCALE
keyword in SQL statements, and some of the language
identifiers (string values) have been modified to reflect the
change to a locale instead of a language identifier.

Table Encryption The default table encryption in prior versions of DBISAM
was weak XOR encryption and, although it was fast, it was
also easily broken. The table encryption in version 4 is
Blowfish encryption that is not easily broken. All table
passwords are stored as MD5 hashes encrypted with the
same Blowfish encryption. Please see the Encryption topic
for more information.

System Fields There are two new "system" pseudo-fields in every table
called "RecordID and "RecordHash". These fields can be
indexed, filtered, etc. but do not show up in the field
definitions for the TDBISAMTable or TDBISAMQuery
components. RecordID is an integer value (4 bytes)
representing the fixed "row number" of a given record.
RecordHash is an MD5 binary value (16 bytes) that

Page 1

Before You Begin

Auto Primary Index

BLOB Compression

Maximum Field Size

FixedChar Fields

GUID Fields

Autolnc Fields

Page 2

represents the hash of a given record. If you upgrade a
table that already has a field named the same as either of
these fields, your field will be automatically renamed by
the UpgradeTable method or the UPGRADE TABLE SQL
statement to '_'+OldFieldName. In other words, an
underscore will be added to the front of the existing field
name.

In version 3.x and earlier you could have a table without a
primary index. In version 4, if you do not define a primary
index when creating or restructuring a table, DBISAM will
automatically add a primary index on the system RecordID
field mentioned above.

You may now specify compression for BLOB fields when
creating or restructuring a table. The compression is
specified as a Byte value between 0 and 9, with the
default being 0, or none, and 6 being the best selection
for size/speed. The default compression is ZLib, but can
be replaced by using the TDBISAMEngine events for
specifying a different type of compression. Please see the
Compression and Customizing the Engine topics for more
information.

The maximum size of a string or bytes field is now 512
bytes instead of 250 bytes.

String fields that are of the ftFixedChar type do not
automatically right-trim spaces from strings assigned to
them as they have in the past. String fields that are of the
type ftString still treat strings like VarChars and right-trim
the strings assigned to them. For example, assigning the
value 'Test ' to the two different field types would result in
the following:

ftString="Test'
ftFixedChar="Test '

This is useful for situations where you want to keep
trailing spaces in string fields.

GUID fields are now supported and are implemented as a
38-byte field containing a GUID in string format.

Auto-increment fields are now always editable and you
may have more than one autoinc field per record, with
each field incrementing independently. Because these
fields are editable, the SuppressAutoIncValues property
has been removed from both the TDBISAMTable and
TDBISAMQuery component and the NOAUTOINC clause
has been removed from the SQL statements. The way
autoinc fields work now is that they will auto-increment if
a value is not specified for the field before the Post
operation (field is NULL), and will leave any existing value
alone if one is already specified before the Post operation.

Descending Index Fields

Index Page Size

Before You Begin

Note

If you do not want an end user to modify any
autoinc fields directly then it is extremely important
that you mark any autoinc fields as read-only by
setting the TField ReadOnly property to True before
the user is allowed to access these fields.

You may now specify which fields are ascending or
descending in an index independently of one another. This
change also modifies the AddIndex method of the
TDBISAMTable component slightly as well as the
TDBISAMIndexDef objects used in creating and altering
the structure of tables. With SQL you can simply place an
appropriate ASC or DESC keyword after each field
specified for an index definition in a CREATE TABLE or
CREATE INDEX statement.

You may now specify the index page size when creating or
altering the structure of tables. This changes the
TDBISAMTable AlterTable method slightly as well as the
CREATE TABLE SQL statement syntax. Also, there is a new
IndexPageSize property for the TDBISAMTable
component. The minimum page size is 1024 bytes and the
maximum page size is 16 kilobytes.

Note

The index page size affects the maximum key size
that can be specified for an index, so if you try to
index very large string fields you may get an error
indicating that the index key size is invalid. Also,
regardless of page size the maximum key size for
any index is 4096 bytes. Finally, the maximum
number of fields that can be included in a given
index has been expanded from 16 to 128 fields.
However, the number of indexes per table is still
only 30 indexes and has not changed.

@ The TDBISAMTable RestructureTable method is now called the AlterTable method to be more in line

with the name of the ALTER TABLE SQL statement. Also, the TDBISAMTable OnRestructureProgress
event is now called the OnAlterProgress event.

@ The TDBISAMTable OnDataLost event will now fire when adding unique secondary or primary

indexes that cause key violations. Also, the ContinueRestructure parameter to this event is now
called the Continue parameter in order to be more in line with its new dual-purposes.

= The TDBISAMQuery OnQueryProgress event is now of the type TAbortProgressEvent to reflect the

fact that it will be used for more than just the OnQueryProgress event in the future.

@ The addition and subtraction of dates, times, and timestamps in filter and SQL expressions have

changed slightly. Please see the SQL Reference Operators topic for more information.

Page 3

Before You Begin

@ There are also new filter and SQL functions for converting milliseconds into the appropriate number
of years, days, hours, etc. Please see the New Features in Version 4.x and the SQL Reference
Functions topics for more information.

@ The index compression/de-compression code has been vastly improved so as to be much more
efficient, especially when there are a large number of duplicate keys in the index and the
compression is set to duplicate-byte or full compression.

@ The DBISAM table stream format has changed completely. It is now more similar to a binary
import/export format and can now include just a subset of fields from the original table and does
not include index information that previously caused many problems with loading streams saved
from query result sets into tables, etc.

Note

Like tables themselves, streams are signed with the current engine signature to ensure that
only the current engine signature, or the default engine signature, can access the stream.
Also, even though the table that a stream is created from is encrypted, the resultant stream
will never be encrypted and you must make sure to take extra caution if you do not want to
expose data improperly. Please see the Loading and Saving Streams with Tables and Query
Result Sets topic for more information.

@ The table locking in DBISAM has changed completely in order to streamline transaction locking,
prevent deadlocks during transactions, and improve the performance of the table and transaction
locking. Previously table locking was done at the individual table level, so if you started a transaction
on a database with 50 physical tables opened for that database, DBISAM would have to place a
transaction lock on all 50 open tables before starting the transaction. It would also have to
subsequently write lock them during a commit and then unlock everything for each table after the
transaction was committed or rolled back. Now all table locking is centralized in one hidden file
called "dbisam.Ick" (by default) and located in the physical database directory. In case anyone
mistakes this for a Paradox-style lock file, it is definitely not anything close. The lock file in DBISAM
version 4 is just an empty "container" used to perform byte offset locking at the operating system
level and the existence of the file is strictly optional - it will automatically be created by DBISAM as
needed. Likewise, if the file is left there (which it will be since DBISAM prefers not to have to
constantly recreate it when needed) it will not cause any harm, unlike with a Paradox lock file. With
this new type of locking, DBISAM only needs to place one lock call to the OS when a transaction is
started (instead of the previous scenario of 50 calls), one write lock call during a commit, and one
unlock call during a commit or rollback. It also completely eliminates deadlocks during transaction
locking since this architecture makes it impossible to get a deadlock. Please see the Locking and
Concurrency and Transactions topics for more information.

Note
The default lock file name "dbisam.Ick" can be modified to any file name desired by modifying
the TDBISAMENgine LockFileName property.

Page 4

Before You Begin

= A few TDBISAMSession properties have been modified slightly to reflect some changes in the remote
access. The RemoteType property has been removed and been replaced with the RemoteEncryption,
RemoteEncryptionPassword, and RemoteCompression properties. The RemoteEncryption property
specifies that any comms requests or responses should be encrypted using the strong crypto in the
engine, and the RemoteEncryptionPassword specifies the password to use for the encryption. This
password must match the password used by the server engine to encrypt/decrypt comms on its end.
Also, in version 4 *all* administrative access requires the use of RemoteEncryption=True. You
cannot log into the administrative port on a server without encryption turned on and the password
set to the proper password for the server that you are accessing. In addition to this, all login
information is automatically encrypted using the RemoteEncryptionPassword, so regardless of
whether RemoteEncryption is turned on or not, the password must still match that of the server or
you won't be able to log in using a non-encrypted connection either. The RemoteCompression
property allows you to dynamically change the compression for the comms at any time before,
during, or after logging into a database server. Each request and response is tagged with a specific
compression level, thus allowing unlimited flexibility in determining how much/little compression to
use. The property is specified as a Byte value between 0 and 9, with the default being 0, or none,
and 6 being the best selection for size/speed. Because of these property changes, the
TDBISAMSession GetRemoteSessionInfo method has been modified to reflect whether the session is
encrypted or not instead of the type of session (rtInternet or rtLAN previously).

= The TDBISAMSession method GetRemotelog for retrieving the server log from the server has been
removed and replaced with two different methods, one for retrieving the total number of log entries
called GetRemoteLogCount, and one for retrieving a specific log entry from the server based upon
its ordinal position in the log called GetRemoteLogRecord. This change is due to the abstraction of
the log storage in the TDBISAMENngine component when running as a server (EngineType=etServer).
Previously the log storage was a "black box" text file that was maintained by the server. Now the log
storage is abstract and is handled via the OnServerLogEvent event in the TDBISAMEngine
component. A TLogRecord record is passed to an event handler for this event and the event handler
is free to store this data in whatever way it deems appropriate. Likewise, the OnServerLogCount
event is triggered in the TDBISAMENgine component when the client session calls the
TDBISAMSession GetRemoteLogCount method and the OnServerLogRecord event is called when the
TDBISAMSession GetRemotelLogRecord method is called.

Note
By default, the server application that comes with DBISAM uses event handlers for these
events to simply write out these log records as binary records in a log file.

Please see the Customizing the Engine topic for more information.

Page 5

Before You Begin

@ The following types have been changed or removed:

Type New Type

TDBISAMPasswordEvent TPasswordEvent

TDBISAMDatabaseRight TDatabaseRight
Note

The TDatabaseRight type has also been expanded
to include new rights for backup (drBackup) and
restore (drRestore) of a database, as well as rights
for performing maintenance (drMaintain) on a
database like repairing and optimizing tables and
renaming objects in a database (drRename).

TDBISAMDatabaseRights TDatabaseRights

@ The following constants have been changed or removed:

Constant New Constant(s)

DBISAM_LOCKTIMEOUT DBISAM_READLOCK
DBISAM_READUNLOCK
DBISAM_WRITELOCK
DBISAM_WRITEUNLOCK
DBISAM_TRANSLOCK
DBISAM_TRANSUNLOCK

This was done to give the developer more control over

which condition he/she was responding to, especially
when it comes to transaction lock timeouts.

Page 6

Before You Begin

@ The RestructureFieldDefs and RestructureIndexDefs have been removed and replaced with common
TDBISAMFieldDefs and TDBISAMIndexDefs objects. These new objects allow the TDBISAMTable
CreateTable method to be changed so that it is identical to the AlterTable method (used to be called
RestructureTable), thus eliminating the need for the old way of creating a table and then
immediately altering its structure in order to add DBISAM-specific features to the table. These
objects are assignment-compatible with their TDataSet cousins TFieldDefs and TIndexDefs.

Note

There is one important change in the TDBISAMFieldDefs Add method that is different from
the standard TFieldDefs Add method. The TDBISAMFieldDefs Add method is overloaded to
allow for the direct specification of the FieldNo of the TDBISAMFieldDef being added. This is
to allow for moving fields around without losing any data with the AlterTable method. Also,
the TDBISAMFieldDefs object has an additional Insert method that allows for the insertion of
a TDBISAMFieldDef object in a specific position in the TDBISAMFieldDefs. Please see the
Creating and Altering Tables topic for more information.

@ The TDBISAMTable and TDBISAMQuery BlockReadSize property functionality has been modified so
that it behaves like the TDBISAMTable and TDBISAMQuery RemoteReadSize property, which does
not have the limitations that the BlockReadSize property used to have and can also very easily
optimize C/S access so that records are retrieved from the server in batches.

= The TDBISAMTable RecordIsLocked and TableIsLocked methods no longer attempt to make locking
calls in order to determine whether a record or table is locked, and only reflect whether the current
table cursor has a given record or table locked. If you want to edit a record you should just edit the
record and respond accordingly to any locking exceptions that occur if a table or record is already
locked.

@ The TDBISAMTable and TDBISAMQuery Locate method implementation has internally been moved
into the engine itself, which should result in some faster performance for Locate calls, especially
when accessing a database server. Also, the Locate method can now take advantage of indexes in
live query result sets (as well as canned result sets) when optimizing its searching. These changes to
Locate do not cause any code changes in your application.

@ All DBISAM error strings are now marked with the resourcestring directive and are located in a new
unit (Delphi) or header file (C++) called dbisamst.

= The TDBISAMQuery Params property is no longer the standard TParams object, but rather is now a
custom TDBISAMParams object. This also holds true for the individual TParam objects contained
within the Params property, as they are now TDBISAMParam object. This was done to fix a bug in
the parsing of parameters in SQL statements in the TParams object, as well as to enable the use of
a common set of objects for both queries, custom SQL and filter functions, and server-side
procedure calls. Also, with this change we have added the TDBISAMParam AsLargelnt property to
allow you to retrieve and assign 64-bit integer parameters.

Page 7

Before You Begin

Page 8

@ The TDBISAMQuery component now processes SQL scripts client-side so as to allow for the use of

parameters with scripts. A new OnGetParams event is fired whenever a new SQL statement is
prepared. This allows one to execute an SQL script and populate the parameters in a step-by-step
fashion. However, it does come at a price when executing large SQL scripts using a remote session.
Previously with 3.x the entire script was executed on the database server, but with version 4 each
individual SQL statement is parsed and sent to the server independently, so this can result in much
more network traffic. The work-around is to send any very large SQL scripts to the server to be
executed in the context of a server-side procedure, which will keep the processing of the script
entirely on the server but still allow for parameters in the script.

= SQL statements and filter expressions now require all constants to be enclosed in single quotes as

opposed to double-quotes. Identifiers such as table names and column names can still be (and must
be) enclosed in double quotes or brackets. This allows DBISAM's parser to distinguish properly
between identifiers and constants, which previously would confuse the parser, especially with
expressions like this:

MyColumName="MyColumnName"

where the parser didn't know whether to treat "MyColumnName" as a constant or a column value.

@ The use of the asterisk (*) as a wildcard along with the equality (=) operator in SQL statements is

no longer supported. Instead, you must use the LIKE operator and the percent (%) wildcard
character like this:

MyColumName LIKE 'Test%'

= The SQL aggregate and distinct processing, as well as the result set ordering, has been improved so

as to reduce the amount of I/0 used to perform these functions. The results should be fairly
improved over 3.x, especially with large source tables. In addition, the MIN and MAX aggregate
functions can now take advantage of indexes when SQL statements like the following are used:

SELECT max (MyField) FROM MyTable

where MyTable has an index on MyField. You can also now use the MIN and MAX aggregate
functions with string fields. Finally, the SQL SELECT statement's TOP clause can now take advantage
of indexes to optimize its performance quite a bit over 3.x.

= The MEMORY keyword has been removed from SQL statements and should be replaced with a

database specification of "Memory\". For example, in 3.x you would specify the following SQL
SELECT statement to retrieve data from an in-memory table:

SELECT * FROM MEMORY biolife

In version 4 you should use:

Before You Begin

SELECT * FROM "\Memory\biolife"

= The WITH LOCKS clause has been removed from the SELECT SQL statement. To ensure that data
does not change during the course of a SELECT statement you should wrap the statement in a
transaction.

@ The SQL and filter LIKE operator now accepts an ESCAPE clause to specify an escape character:

SELECT * FROM MyTable WHERE MyColumn LIKE '100\%%' ESCAPE '\'

In the above example the backslash serves as the escape character indicating that the character
after it, the percent sign (%), should be interpreted literally and not as a wildcard like it normally is.
The above SQL statement will find all records where MyColumn begins with '100%'.

Page 9

Before You Begin

1.2 New Features in Version 4.x

The following items are new features in version 4.x:

@ There is a new TDBISAMEngine component that encapsulates the DBISAM engine inside of a visual
component. In the component hierarchy, the TDBISAMEngine component sits at the top above the
TDBISAMSession component(s). A default Engine function is available in the dbisamtb unit (Delphi)
or dbisamtb header file (C++) that points to a global instance of the TDBISAMEngine component.
You can also drop a TDBISAMEngine component on a form or data-module to visually change its
properties. However, only one instance of the TDBISAMEngine component can exist in a given
application, and both the Engine function and any TDBISAMEngine component on a form or data
module point to the same instance of the component (singleton model). Some of the functionality
found in the TDBISAMEngine component includes:

Functionality Description

Engine Type The EngineType property can be set to either etClient or
etServer in order to have the engine behave as a local
client engine or a server engine. If acting as a server
engine, many additional properties are provided for
configuring the server:

ServerName
ServerDescription
ServerMainAddress
ServerMainPort
ServerMainThreadCacheSize
ServerAdminAddress
ServerAdminPort
ServerAdminThreadCacheSize
ServerEncryptedOnly
ServerEncryptionPassword
ServerConfigFileName
ServerConfigPassword

There are also many events provided for the server
engine:

OnServerStart
OnServerStop
OnServerLogEvent
OnServerLogCount
OnServerLogRecord
OnServerConnect
OnServerReconnect
OnServerLogin
OnServerLogout
OnServerDisconnect
OnServerScheduledEvent
OnServerProcedure

Please see the Configuring and Starting the Server topic
for more information.

Full Text Indexing There are specific events for implementing full text index

Page 10

Custom Encryption

Custom Compression

Signatures

ANSI Conversions

Before You Begin

filtering (either on a buffer basis or on a per-token basis):

OnTextIndexFilter
OnTextIndexTokenFilter

Also, there are two new methods for parsing strings into
word lists and retrieving the default text indexing
parameters:

BuildWordList
GetDefaultTextIndexParams

Note

The BuildWordList function used to be available in
the dbisamlb unit (Delphi) or dbisamlb header file
(C++) and it is still is, although different from the
one available as a method of the TDBISAMEngine
component. You should use the method of the
TDBISAMENgine component instead of the function
in the dbisamlb unit in version 4.

Please see the Full Text Indexing topic for more
information.

There are specific events for customizing the encryption in
DBISAM (8-byte block ciphers only):

OnCryptolnit
OnEncryptBlock
OnDecryptBlock
OnCryptoReset

Please see the Encryption topic for more information.

There are specific events for customizing the compression
in DBISAM:

OnCompress
OnDecompress

Please see the Compression topic for more information.

There is an EngineSignature property in the
TDBISAMENgine component that is used to create an MD5
hash that is assigned to every table, table stream, backup,
comms request and response, etc. This allows one to
"assign" tables, etc. to a specific application and prevent
any other application from accessing the tables, server,
etc. without the proper engine signature. Please see the
Customizing the Engine for more information.

All of the ANSI string conversion functions that used to be
in the dbisamlb unit are now public methods of the
TDBISAMENgine component:

Page 11

Before You Begin

Locale Functionality

Memory Usage

File Extensions

Locking

Page 12

DateToAnsiStr
TimeToAnsiStr
DateTimeToAnsiStr
AnsiStrToDate
AnsiStrToTime
AnsiStrToDateTime
BooleanToAnsiStr
AnsiStrToBoolean
FloatToAnsiStr
AnsiStrToFloat
CurrToAnsiStr
AnsiStrToCurr

There are new methods for working with the available
locales in DBISAM:

IsValidLocale
IsValidLocaleConstant
ConvertLocaleConstantToID
ConvertIDToLocaleConstant
GetLocaleNames

The amount of memory used for buffering tables can now
be controlled via the following properties:

MaxTableDataBufferSize
MaxTableDataBufferCount
MaxTableIndexBufferSize
MaxTableIndexBufferCount
MaxTableBlobBufferSize
MaxTableBlobBufferCount

Note

These properties used to be in the TDBISAMSession
component in 3.x and earlier and were only
applicable to the session for which they were
configured. The TDBISAMEngine properties above
are used for the all sessions in the application.

The file extensions to use for physical table files, table
backup files, and table upgrade backup files can be
specified via the following properties:

TableDataExtension
TableIndexExtension
TableBlobExtension
TableDataBackupExtension
TableIndexBackupExtension
TableBlobBackupExtension
TableDataUpgradeExtension
TableIndexUpgradeExtension
TableBlobUpgradeExtension

The lock wait times and retry counts for table read, write,
and transaction locks can now be modified via the

Before You Begin

following properties:

TableReadLockTimeout
TableWriteLockTimeout
TableTransLockTimeout

Triggers You can now define trigger event handlers that allow for
processing both before and after the execution of an
insert, update, or delete operation:

BeforelnsertTrigger
AfterInsertTrigger
BeforeUpdateTrigger
AfterUpdateTrigger
BeforeDeleteTrigger
AfterDeleteTrigger

Please see the Customizing the Engine topic for more
information.

Custom Functions You can now add custom functions for use with filters and
SQL statements. They can be used anywhere that a
normal, non-aggregate function would be used. All
arguments to the functions are required and there is no
facility currently for optional arguments. The Functions
property of the TDBISAMEngine component allows you to
specify the functions and their arguments, and the
OnCustomFunction event of the TDBISAMEngine
component allows you to implement the functions. Please
see the Customizing the Engine topic for more
information.

@ You can now use restricted transactions on a given database where only certain tables that you
specify are involved in the transaction. Please see the Transactions topic for more information.

@ There is a new TDBISAMEngine FilterRecordCounts property that controls how record counts are
returned for filtered datasets and live query result sets. The default value of this property is True,
which indicates that record counts under these circumstances will be returned in the same fashion
as they were in 3.x and earlier. If the FilterRecordCounts property is set to False, the RecordCount
property of the TDBISAMTable and TDBISAMQuery components will always show the total record
count of the entire dataset or active range (if a range is set) only and will not take any active filters
(or WHERE clauses with live query result sets) into account. To get the record count including any
active filters, a FilterRecordCount property has been added to the TDBISAMTable and
TDBISAMQuery components that always shows the accurate record count, regardless of the current
setting of the TDBISAMEngine FilterRecordCounts propety.

Setting the TDBISAMENgine FilterRecordCounts property to False may be desirable for some
applications since it allows for more accurate positioning of the scroll bar in a TDBGrid or similar
multi-row, data-aware components. Please see the Customizing the Engine and Setting Filters on
Tables topics for more information.

Page 13

Before You Begin

@ The TDBISAMSession component now has new remote administrative methods for
adding/updating/deleting server-side procedures and events:

GetRemoteProcedureNames
GetRemoteProcedure
AddRemoteProcedure
ModifyRemoteProcedure
DeleteRemoteProcedure
GetRemoteProcedureUserNames
GetRemoteProcedureUser
AddRemoteProcedureUser
ModifyRemoteProcedureUser
DeleteRemoteProcedureUser
GetRemoteEventNames
GetRemoteEvent
AddRemoteEvent
ModifyRemoteEvent
DeleteRemoteEvent

Please see the Server Administration topic for more information.

@ The TDBISAMSession component now has the ability to ping a database server using the
RemotePing and RemotePinglInterval properties. These properties eliminate the need for user-
constructed pinging operations using timers and are safe to use for the purpose of shortening dead
session expiration times that are configured on a database server and eliminating dangling
pessimistic locks when client workstations go down while connected.

= The TDBISAMSession component now has the capability to call a server-side procedure on a
database server using the CallRemoteProcedure method, the RemoteParams property, and the
RemoteParamByName method. Please see the Calling Server-Side Procedures topic for more
information.

@ The TDBISAMDatabase component has new backup and restore facilities available in the following
methods and events:

Backup
BackupInfo
Restore

OnBackupProgress
OnBackuplLog
OnRestoreProgress
OnRestorelLog
Please see the Backing Up and Restoring Databases topic for more information.

@ There is a new TableSize property for the TDBISAMTable component that reflects the total size (in
bytes) of the physical table on disk (or in-memory if an in-memory table).

@ The SQL SELECT statement now includes support for the EXCEPT [ALL] and INTERSECT [ALL] set
operations, in addition to the UNION [ALL] operation.

Page 14

Before You Begin

@ There are several new SQL statements available:

EMPTY TABLE
OPTIMIZE TABLE
EXPORT TABLE
IMPORT TABLE
VERIFY TABLE
REPAIR TABLE
UPGRADE TABLE
RENAME TABLE

@ There are several new filter and SQL functions:

STDDEV (aggregate, SQL-only)
CURRENT_GUID
YEARSFROMMSECS
DAYSFROMMSECS
HOURSFROMMSECS
MINSFROMMSECS
SECSFROMMSECS
MSECSFROMMSECS
LTRIM

RTRIM

REPEAT

CONCAT

MOD

ACOS

ASIN

ATAN

ATAN2

CEILING or CEIL
Cos

cot

DEGREES

EXP

FLOOR

LOG

LOG10

PI

POWER

RADIANS

RAND

SIGN

SIN

SQRT

TAN

TRUNCATE or TRUNC

Please see the SQL Reference Functions topic for more information.
@ The SQL engine can now use the numeric 1 (or anything not 0) and 0 to represent TRUE and FALSE,

respectively. This is helpful for compatibility with generic front ends, such as those used with the
ODBC driver.

Page 15

Before You Begin

Page 16

@ There is a new TDBISAMQuery OnQueryError event that can be used to trap SQL errors and decide

whether to abort an executing SQL statement or not. If an OnQueryError event handler is not
assigned, then any SQL errors will immediately surface as an EDBISAMEngineError exception in the
TDBISAMQuery component.

@ The TDBISAMQuery component now surfaces the OnAlterProgress, OnDatalLost, OnIndexProgress,

OnOptimizeProgress, OnRepairLog, OnRepairProgress, OnUpgradelLog, OnUpgradeProgress,
OnVerifyLog, and OnVerifyProgress events just like the TDBISAMTable component. The only
difference is these events are triggered when the corresponding SQL statement is executed instead

of being triggered by a method call, including situations where an SQL statement is executed within
a script.

@ There are new OnLoadFromStreamProgress and OnSaveToStreamProgress events in the

TDBISAMTable and TDBISAMQuery components for tracking the loading/saving progress of streams.

Using DBISAM

Chapter 2
Using DBISAM

2.1 DBISAM Architecture

Introduction

DBISAM is a database engine that can be compiled directly into your Delphi or C++ application, be it a
program or library, or it can be distributed as a runtime package (equivalent to a library) as part of your
application. DBISAM was written in Delphi's Object Pascal and can be used with the VCL (Windows only).

General Architecture

DBISAM itself is a lightweight engine encapsulated within the TDBISAMENngine component. When the
TDBISAMENgine EngineType property is set to etClient, the TDBISAMENngine component is acting as a local
client engine, and when the EngineType property is set to etServer, the TDBISAMEngine component is
acting as a database server.

Sessions

DBISAM is session-based, where a session is equivalent to a virtual user and is encapsulated within the
TDBISAMSession component. There can be many sessions active in a given application, such as is the case
with a multi-threaded application. In multi-threaded applications DBISAM requires a separate session for
each thread performing database access. Please see the Multi-Threaded Applications topic for more
information.

A DBISAM session can be either local or remote:

Session Type Description

Local A local session gains direct access to database tables via the
operating system API to a given storage medium, which can
literally be any such medium that is accessible from the
operating system in use. This means that a local session on
the Windows operating system could access database tables
on a Linux file server. DBISAM automatically provides for the
sharing of database tables using a local session. For example,
an application can use local sessions on a small peer-to-peer
network to provide a low-cost, multi-user solution without the
added expense of using the client-server version of DBISAM.
A local session has all of the capabilities of a remote session
except for user and database security, which are only
available from a database server. Also, with a local session a
directory is synonymous with a database, whereas with a
remote session databases are defined as part of the server
configuration and the DBISAM client does not know the actual
location of a given database.

Remote A remote session uses sockets to communicate to a database
server over a network (or on the same physical machine)
using the TCP/IP protocol. DBISAM allows a remote session to

Page 17

Using DBISAM

be entirely encrypted using strong crypto. Compression is also
available for remote sessions and can be changed whenever it
is deemed necessary in order to improve the data transfer
speed. This is especially important with low-bandwidth
connections like a dial-up Internet connection. A remote
session connects to a given database server via an IP address
or host name and one of two different ports, depending upon
whether the connection is a regular connection or an
administrative connection. Before a remote session can
perform any operation on a database server it must be logged
in with a proper user ID and password. If a remote session is
connecting to the administration port on a database server,
the user ID specified during the login must be that of an
administrator or the login will be rejected. Also, an
administrative connection must be encrypted or the database
server will reject the connection.

Note

A developer can mix as many local and remote sessions in one application as needed, thus enabling
a single application to access data from a local hard drive, a shared file server, or a database
server. Also, local and remote sessions are completely identical from a programming perspective,
offering both navigational and SQL access methods. The only changes needed to switch from local
access to remote access for a session component is the modification of the TDBISAMSession
SessionType property.

Database Server

The database server listens for regular data connections on one port and administrative connections on a
second port. All administrative connections must be encrypted or they will be rejected by the database
server. When the TDBISAMEngine Active property is set to True, the database server will start listening on
the IP addresses and ports indicated by the following properties:

ServerMainAddress
ServerMainPort
ServerAdminAddress
ServerAdminPort

If the either ServerMainAddress or ServerAdminAddress property is blank (the default), the database
server will listen on all IP addresses available for the type of connection (either regular or administrative).
The default ports are 12005 for the ServerMainPort property and 12006 for the ServerAdminPort property.
Once the server is started, you cannot change any of these properties, as well as several other properties.
Please see the Configuring and Starting the Server topic for more information.

The database server is a multi-threaded server that uses one thread per client connection, which
corresponds to a client TDBISAMSession component set to run as a remote session via the SessionType
property. DBISAM will cache threads and keep a pool of unused threads available in order to improve
connect/disconnect times. The following properties control the default thread cache size uses by the
database server:

ServerMainThreadCacheSize
ServerAdminThreadCacheSize

The default for the ServerMainThreadCacheSize property is 10 threads and the default for the

Page 18

Using DBISAM

ServerAdminThreadCacheSize property is 1. Both of these properties must be set before the engine is
started and cannot be changed when the engine is started.

"Dead" sessions in the database server are sessions that have been inactive for a connection timeout
period (configurable) due to lack of client session requests or due to a physical network interruption in
service. Such sessions retain their complete state from the time that the disconnect occurred. The sessions
remain in this state until:

@ The client session attempts another data request or pings the server, in which case the connection
will automatically be re-established transparently between the client session and the database
server.

@ The database server's dead session expiration time period (configurable) is reached and the
database server automatically removes the session.

@ The number of dead sessions on the database server reaches the maximum threshhold
(configurable), thus causing the database server to remove dead sessions in order to bring the
number back under the threshhold, oldest dead session first.

Note
The age of a dead session is determined by the last time that the session was connected to the
server.

Please see the Server Administration topic for more information on configuring these settings on the
server.

Note

You can configure the remote sessions on the client to ping the database server at regular intervals
via the TDBISAMSession RemotePing and RemotePingInterval properties. Configuring remote
sessions to ping the database server in a smaller time period than the connection timeout
configuration on the database server allows you to specify a smaller dead session expiration timeout
and prevent sessions with active locks from being left around for too long. With pinging turned on,
the only reason a session would be disconnected by the server is if the client workstation or the
physical network connection has failed.

You may have a database server (or several) accessing a given database at the same time as other local
applications such as CGI or ISAPI web server applications. This allows you to put critical server-side
processing on the server where it belongs without incurring a lot of unnecessary overhead that would be
imposed by the transport protocol of the database server. This can improve the performance of server-
based local applications significantly, especially when they reside on the same machine as the database
server and the databases being accessed are local to the server machine.

The database server allows you to configure all users, databases, server-side procedures, and scheduled
events via a remote administrative connection or directly via the TDBISAMEngine component. User security
at the database and server-side procedure level allows the configuration of read, execute, insert, update,
delete, create, alter, drop, rename, maintain, backup, and restore privileges for a specific user or users.
Additionally, you may allow or block specific IP addresses or ranges of IP addresses (using wildcards) for
access to a given database server. A maximum number of connections may be set to prevent too many
inbound connections to a given server. Because the database server does not actively establish any
communication with a client session and all communication is controlled by the client session, you do not
have issues with firewalls as long as the firewall allows for inbound access to the main port and/or
administration port on the server. Please see the Server Administration topic for more information.

Page 19

Using DBISAM

All connections, errors, and other operational messages are logged and can be retrieved at a later time by
an administrator for examination.

Databases and Directories

DBISAM uses the physical directories in the operating system'’s file system to represent databases. This is
true for both local sessions and remote sessions, however with remote sessions these directories are
abstracted through logical database names in the server configuration. This allows applications written to
use remote sessions connecting to a database server to be portable between different servers with
different directory layouts. DBISAM creates a single hidden file called "dbisam.Ick" (by default) in a
database directory that is used for locking. It is created as needed and may be deleted if not in use by
DBISAM. However, if DBISAM cannot write to this file it will treat the database as read-only. Please see
the Locking and Concurrency topic for more information.

Note
The default lock file name "dbisam.Ick" can be modified to any file name desired by modifying the
TDBISAMENgine LockFileName property.

Physical Table Layout

DBISAM tables are divided into up to 3 physical files, one for data records, one for indexes, and one for
BLOB data (if there are BLOB fields present in the table):

File Type Description

Data File Used to store a fixed-length header for table-wide definitions
such as the table description, field counts, autoinc values,
etc., the fixed-length field definitions for the table, and the
fixed-length data records themselves. The use of a fixed-
length header, field definitions, and data records allows for
easier verification and/or repair of tables in the case of
physical table corruption. Please see the Verifying and
Repairing Tables topic for more information. All data records
contain a small record header and the field data. BLOB fields
contains a link to the BLOB file where the actual variable-
length BLOB data is stored in a blocked format.

Index File Used to store a fixed-length header for index statistics, index
counts, etc., the fixed-length index definitions, and the fixed-
length index pages themselves. The index page size is
variable and can be set between 1024 bytes and 16 kilobytes
on a per-table basis. All index pages for all primary,
secondary, and full text indexes are stored in this file.

BLOB File Used to store a fixed-length header for BLOB statistics, etc.
and the fixed-length BLOB blocks themselves. The BLOB block
size is variable and can be set between 64 bytes and 64
kilobytes on a per-table basis. All BLOB blocks for all BLOB
fields are stored in this file.

The file extensions used for these physical files can be changed. Please see the Customizing the Engine
topic for more information. The default file extensions are as follows:

Page 20

Using DBISAM

File Type File Extension
Data File .dat
Index File .idx
BLOB File .blb

In addition, during certain operations such as altering a table's structure, backup files will be created for
the physical table files. The default backup file extensions are as follows:

File Type Backup File Extension
Data File .dbk
Index File .ibk
BLOB File .bbk

Finally, during the process of upgrading a table from a previous version's format to the latest format,
backup files will be created for the physical table files. The default backup file extensions for upgraded
tables are as follows:

File Type Upgrade Backup File Extension
Data File .dup
Index File .iup
BLOB File .bup

Please see the Upgrading Tables topic for more information.
Component Architecture

DBISAM includes the following components:

Component Description

TDBISAMENgine The TDBISAMEngine component encapsulates the DBISAM
engine itself. A TDBISAMEngine component is created
automatically when the application is started and can be
referenced via the global Engine function in the dbisamtb unit
(Delphi) and dbisamtb header file (C++). You can also drop a
TDBISAMEngine component on a form or data-module to
visually change its properties. However, only one instance of
the TDBISAMENgine component can exist in a given
application, and both the global Engine function and any
TDBISAMEngine component on a form or data module point
to the same instance of the component (singleton model).
The TDBISAMEngine component can be configured so that it
acts like a local or client engine (etClient) or a database
server via the EngineType property. The engine can be
started by setting the Active property to True.

TDBISAMSession The TDBISAMSession component encapsulates a session in

Page 21

Using DBISAM

TDBISAMDatabase

Page 22

DBISAM. A default TDBISAMSession component is created
automatically when the application is started and can be
referenced via the global Session function in the dbisamtb unit
(Delphi) and dbisamtb header file (C++). The
TDBISAMSession component can be configured so that it acts
like a local (stLocal) or a remote session (stRemote) via the
SessionType property. A local session is single-tier in nature,
meaning that all TDBISAMDatabase components connected to
the session reference directories in a local or network file
system via the Directory property and all TDBISAMTable or
TDBISAMQuery components access the physical tables directly
from these directories using operating system API calls. A
remote session is two-tier in nature, meaning that all access is
done through the remote session to a database server using
the DBISAM messaging protocol over a TCP/IP connection.
The database server is specified through the following
properties:

RemoteHost or RemoteAddress
RemotePort or RemoteService

In a remote session, all TDBISAMDatabase components
reference databases that are defined on the database server
via the RemoteDatabase property and all TDBISAMTable or
TDBISAMQuery components access the physical tables
through the DBISAM messaging protocol rather than directly
accessing them.

Note

You cannot activate remote sessions in an application
whose TDBISAMEngine component is configured as a
database server via the EngineType property.

A session can be started by setting the Active property to True
or by calling the Open method. The TDBISAMSession
component contains a SessionName property that is used to
give a session a name within the application. All sessions must
have a name before they can be started. The default
TDBISAMSession component is called "Default”. The
TDBISAMDatabase, TDBISAMTable, and TDBISAMQuery
components also have a SessionName property and these
properties are used to specify which session these
components belong to. Setting their SessionName property to
"Default" or blank ("") indicates that they will use the default
TDBISAMSession component. Please see the Starting Sessions
topic for more information.

The TDBISAMDatabase component encapsulates a database
in DBISAM. It is used as a container for a set of tables in a
physical directory for local sessions or as a container for a set
of tables in a database on a database server for remote
sessions. Please see the Server Administration topic for more
information on defining databases on a database server. A
database can be opened by setting the Connected property to

TDBISAMTable

TDBISAMQuery

Using DBISAM

True or by calling the Open method. A TDBISAMDatabase
component contains a DatabaseName property that is used to
give a database a name within the application. All databases
must have a name before they can be opened. The
TDBISAMTable and TDBISAMQuery components also have a
DatabaseName property and these properties are used to
specify which database these components belong to. Please
see the Opening Tables topic for more information.

The TDBISAMDatabase Directory property indicates the
physical location of the tables used by the TDBISAMTable and
TDBISAMQuery components. If a TDBISAMDatabase
component is being used with a local session (specified via
the SessionName property), then its Directory property should
be set to a valid physical path for the operating system in use.

The TDBISAMDatabase RemoteDatabase property indicates
the name of a database defined on a database server. If a
TDBISAMDatabase component is connected to a remote
session (specified via the SessionName property), then its
RemoteDatabase property should be set to a valid database
for the database server that the session is connected to.

The TDBISAMDatabase component is used for transaction
processing via the StartTransaction, Commit, and Rollback
methods. Please see the Transactions topic for more
information.

You can backup and restore databases via the Backup,
BackupInfo, Restore methods. Please see the Backing Up and
Restoring Databases topic for more information.

The TDBISAMTable component encapsulates a table cursor in
DBISAM. It is used to search and update data within the
physical table specified by the TableName property, as well as
create the table or alter its structure. A table cursor can be
opened by setting the Active property to True or by calling the
Open method. The DatabaseName property specifies the
database where the table resides. Please see the Opening
Tables topic for more information.

The TDBISAMTable component descends from the
TDBISAMDBDataSet component, which descends from the
TDBISAMDataSet component, which descends from the
common TDataSet component that is the basis for all data
access in Delphi and C++. None of these lower-level
components should be used directly and are only for internal
structuring purposes in the class hierarchy.

You can have multiple TDBISAMTable components using the
same physical table. Each TDBISAMTable component
maintains its own active index order, filter and range
conditions, current record position, record count statistics, etc.

The TDBISAMQuery component encapsulates a single SQL
statement or multiple SQL statements in DBISAM. These SQL
statements may or may not return a result set. It is used to

Page 23

Using DBISAM

Note

search and update data within the physical tables specified by
the SQL statement or statements in the SQL property. An SQL
statement or statements can be executed by setting the
Active property to True, by calling the Open method (for SQL
statements that definitely return a result set), or by calling the
ExecSQL method (for SQL statements that may or may not
return a result set). The DatabaseName property specifies the
database where the table or tables reside. Please see the
Executing SQL Queries topic for more information.

The TDBISAMQuery component descends from the
TDBISAMDBDataSet component, which descends from the
TDBISAMDataSet component, which descends from the
common TDataSet component that is the basis for all data
access in Delphi and C++. None of these lower-level
components should be used directly and are only for internal
structuring purposes in the class hierarchy.

You can have multiple TDBISAMQuery components using the
same physical table. Each TDBISAMQuery component
maintains its own result set filter and range conditions,
current record position, record count statistics, etc.

Opening a TDBISAMTable or TDBISAMQuery component will automatically cause its corresponding
TDBISAMDatabase component to open, which will also automatically cause its corresponding
TDBISAMSession component to start, which will finally cause the TDBISAMEngine to start. This
design ensures that the necessary connections for a session, database, etc. are completed before
the opening of the table or query is attempted.

Page 24

Using DBISAM

2.2 Data Types and NULL Support

Introduction

DBISAM supports the most common data types available for the Delphi and C++ development products as
well as the SQL language. Below you will find a listing of the data types with a brief description, their
Delphi and C++ equivalent TFieldType type and TField object, and their SQL data type.

Note

The TFieldType type is also used with the TDBISAMFieldDef, TDBISAMParam, and

TDBISAMFunctionParam objects.

Data Type
String

FixedChar

GUID

Bytes

Description

String fields are fixed in length and can store up to 512
characters in a single field. Trailing blank spaces are
automatically trimmed from any strings entered into string
fields. Internally, String fields are stored as a NULL-
terminated string. String fields can be indexed using normal
indexes as well as full text indexing. The equivalent Delphi
and C++ TFieldType is ftString, the TField object used for
String fields is the TStringField object, and the equivalent SQL
data type is the VARCHAR type. The SQL VARCHAR data type
is specified as:

VARCHAR(<number of characters>)

FixedChar fields are basically the same as string fields with
the exception that trailing blank spaces are not automatically
removed from any strings entered into them. The equivalent
Delphi and C++ TFieldType is also ftString, but the
TStringField object that represents a FixedChar field will have
its FixedChar property set to True. The equivalent SQL data
type is either the CHAR or CHARACTER type. The SQL CHAR
and CHARACTER data types are specified as:

CHAR(<number of characters>) or
CHARACTER(<number of characters>)

GUID fields are basically the same as string fields with the
exception that they are fixed at 38 bytes in length and are
always used to store the string representation of a GUID
value. The equivalent Delphi and C++ TFieldType is ftGuid,
the TField object used for GUID fields is the TGuidField object,
and the equivalent SQL data type is GUID.

Bytes fields are fixed in length and can store up to 512 bytes
in a single field. Bytes fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftBytes, the TField object used for Bytes fields is the
TBytesField object, and the equivalent SQL data type is
BYTES, VARBYTES, BINARY, or VARBINARY. The SQL BYTES,
VARBYTES, BINARY, OR VARBINARY data type is specified as:

Page 25

Using DBISAM

Blob

Memo

Graphic

Date

Time

TimeStamp

Boolean

Page 26

BYTES(<number of characters>)

Blob fields are variable in length and may contain up to 2
gigabytes of data. The data stored in Blob fields is not typed
or interpreted in any fashion. Blob fields are stored in a
blocked fashion internally in the physical BLOB file that is part
of a logical DBISAM table. Blob fields cannot be indexed in
any fashion. The equivalent Delphi and C++ TFieldType is
ftBlob, the TField object used for Blob fields is the TBlobField
object, and the equivalent SQL data type is either the BLOB or
LONGVARBINARY type.

Memo fields are variable in length and may contain up to 2
gigabytes of data minus a NULL terminator. The data stored
in Memo fields is always text. Memo fields are stored in a
blocked fashion internally in the physical BLOB file that is part
of a logical DBISAM table. Memo fields cannot be indexed
using normal indexes, but can be indexed using full text
indexing. The equivalent Delphi and C++ TFieldType is
ftMemo, the TField object used for Memo fields is the
TMemoField object, and the equivalent SQL data type is either
the MEMO or LONGVARCHAR type.

Graphic fields are variable in length and may contain up to 2
gigabytes of data. The data stored in Graphic fields is not
typed or interpreted in any fashion, however it is identified in
a special way to allow for Delphi and C++ to perform special
type-assignments with bitmap and other graphic objects.
Graphic fields are stored in a blocked fashion internally in the
physical BLOB file that is part of a logical DBISAM table.
Graphic fields cannot be indexed in any fashion. The
equivalent Delphi and C++ TFieldType is ftGraphic, the TField
object used for Graphic fields is the TGraphicField object, and
the equivalent SQL data type is the GRAPHIC type.

Date fields contain dates only. Internally, Date fields are
stored as a 32-bit integer representing cumulative days. Date
fields can be indexed using normal indexes only. The
equivalent Delphi and C++ TFieldType is ftDate, the TField
object used for Date fields is the TDateField object, and the
equivalent SQL data type is DATE.

Time fields contain times only. Internally, Time fields are
stored as a 32-bit integer representing cumulative
milliseconds. Time fields can be indexed using normal indexes
only. The equivalent Delphi and C++ TFieldType is ftTime,
the TField object used for Time fields is the TTimeField object,
and the equivalent SQL data type is TIME.

TimeStamp fields contain both a date and a time. Internally,
TimeStamp fields are stored as a 64-bit floating-point number
(a double) representing cumulative milliseconds. TimeStamp
fields can be indexed using normal indexes only. The
equivalent Delphi and C++ TFieldType is ftDateTime, the
TField object used for TimeStamp fields is the TDateTimeField
object, and the equivalent SQL data type is TIMESTAMP.

Boolean fields contain logical True/False values. Internally,

SmallInt

Word

Integer

Autolnc

Largelnt

Float

Currency

Using DBISAM

Boolean fields are stored as a 16-bit integer. Boolean fields
can be indexed using normal indexes only. The equivalent
Delphi and C++ TFieldType is ftBoolean, the TField object
used for Boolean fields is the TBooleanField object, and the
equivalent SQL data type is BOOLEAN, BOOL, or BIT
(compatibility syntax, BOOLEAN or BOOL is preferred).

SmallInt fields contain 16-bit, signed, integers and are stored
internally as such. SmallInt fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftSmallInt, the TField object used for SmallInt fields is the
TSmallIntField object, and the equivalent SQL data type is
SMALLINT.

Word fields contain 16-bit, unsigned, integers and are stored
internally as such. Word fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftWord, the TField object used for Word fields is the
TWordField object, and the equivalent SQL data type is
WORD.

Integer fields contain 32-bit, signed, integers and are stored
internally as such. Integer fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftInteger, the TField object used for Integer fields is the
TIntegerField object, and the equivalent SQL data type is
INTEGER or INT.

Autolnc fields contain 32-bit, signed, integers and are stored
internally as such. Autolnc fields are always editable and you
may have more than one Autolnc field per record, with each
field incrementing independently. AutoInc fields will increment
if you are appending or inserting a record and a value is not
specified for the field (field is NULL) when the Post operation
occurs, and will leave any existing value alone if one is
already specified. Autolnc fields can be indexed using normal
indexes only. The equivalent Delphi and C++ TFieldType is
ftAutoInc, the TField object used for Autolnc fields is the
TAutolncField object, and the equivalent SQL data type is
AUTOINC.

Largelnt fields contain 64-bit, signed, integers and are stored
internally as such. Largelnt fields can be indexed using
normal indexes only. The equivalent Delphi and C++
TFieldType is ftLargelnt, the TField object used for Largelnt
fields is the TLargelntField object, and the equivalent SQL
data type is LARGEINT.

Float fields contain 64-bit floating-point numbers (doubles)
and are stored internally as such. Float fields can be indexed
using normal indexes only. The equivalent Delphi and C++
TFieldType is ftFloat, the TField object used for Float fields is
the TFloatField object, and the equivalent SQL data type is
FLOAT.

Currency fields are the same as Float fields except they are
identified in a special way to allow for Delphi and C++ to
format their values as monetary values when displayed as
strings. The equivalent Delphi and C++ TFieldType is

Page 27

Using DBISAM

ftCurrency, the TField object used for Currency fields is the
TCurrencyField object, and the equivalent SQL data type is
MONEY.

Note

Don't confuse the Currency field type with the Currency
data type found in Delphi and C++. The Currency field
type is essentially still a floating-point number and is
not always good for storing exact monetary values,
whereas the Currency data type is a fixed-point data
type that minimizes rounding errors in monetary
calculations. If you wish to have accurate financial
figures that use up to 4 decimal places stored in
DBISAM tables then you should use the BCD data type
described next.

BCD BCD fields contain a 34-byte TBcd type and are stored
internally as such. DBISAM always uses a maximum precision
of 20 significant digits with BCD numbers, and the maximum
scale is 4 decimal places. BCD fields can be indexed using
normal indexes only. The equivalent Delphi and C++
TFieldType is ftBCD, the TField object used for BCD fields is
the TBCDField object, and the equivalent SQL data type is
NUMERIC OR DECIMAL. The SQL NUMERIC or DECIMAL data
type is specified as:

NUMERIC(<precision>,<scale>)

NULL Support

The rules for NULL support in DBISAM are as follows:

« If a field has not been assigned a value and was not defined as having a default value in the table
structure, it is NULL.

» As soon as a field has been assigned a value it is not considered NULL anymore. String, FixedChar,
GUID, Blob, Memo, and Graphic fields are an exception this rule. When you assign a NULL value (empty
string) to a String, FixedChar, or GUID field the field will be set to NULL. When the contents of a Blob,
Memo, or Graphic field are empty, i.e. the length of the data is 0, the field will be set to NULL.

o If the Clear method of a TField object is called the field will be set to NULL.

* NULL values are treated as separate, distinct values when used as an index key. For example, let's say
that you have a primary index comprised of one Integer field. If you had a field value of 0 for this Integer
field in one record and a NULL value for this Integer field in another record, DBISAM will not report a key
violation error. This is a very important point and should be considered when designing your tables. As a
general rule of thumb, you should always provide values for fields that are part of the primary index.

* Any SQL or filter expression involving a NULL value and a non-NULL value will result in a NULL result. For
example:

100.52 * NULL = NULL

Page 28

10 + 20 + NULL = NULL

Using DBISAM

The exception to this rule is when concatenating a string value with a NULL. In this case the NULL value is

treated like an empty string. For example:

'Last Name is ' + NULL = 'Last Name is '

Note

String, FixedChar, or GUID field types in DBISAM treat empty strings as equivalent to NULL, and
vice-versa, in any filter or SQL expressions.

NULLs with SQL and Filter Operators

The following pseudo-expressions demonstrate the rules regarding NULLs (not empty strings) and the

various SQL and filter operators:

Expression

Column = NULL

Column <> NULL

Column >= NULL

Column <= NULL

Column > NULL

Column < NULL

Column BETWEEN NULL AND NULL

Column BETWEEN NULL AND <non-null
value>

Column BETWEEN <non-null value>
AND NULL

Result

Returns True if the column is NULL, False, if not
Returns True if the column is not NULL, False if it is
Returns True if the column is NULL, False if not
Returns True if the column is NULL, False if not
Returns False

Returns False

Returns True if the column is NULL, False if not

Returns False

Returns False

The rules are slightly different for String, FixedChar, and GUID expressions due to the fact that DBISAM
treats empty strings as equivalent to NULL, but also as a valid non-NULL empty string. The following
pseudo-expressions demonstrate the rules regarding empty strings and the various SQL and filter

operators:

Expression

Result

Page 29

Using DBISAM

Column ="

Column <>

Column >="

Column <="

Column > "
Column <"

Column BETWEEN " AND "

Column BETWEEN " AND <non-empty
string>

Column BETWEEN <non-empty string>
AND "

Note

Returns True if the column is NULL or equal to an empty
string, False, if not

Returns True if the column is not NULL or not equal to an
empty string, False if it is

Returns True if the column is NULL, equal to an empty string,
or greater than an empty string, False if not

Returns True if the column is NULL or equal to an empty
string, False if not

Returns True if the column is greater than an empty string
Returns False

Returns True if the column is NULL or equal to an empty
string, False if not

Returns True if the column is NULL, equal to an empty string,
or greater than an empty string, False if not

Returns False

The IN and LIKE operators use the same rules as the equivalency (=) operator. The IN operator
behaves as if there are a series of equivalency tests joined together by OR operators.

Page 30

Using DBISAM

2.3 Exception Handling and Errors

Introduction

One of the first items to address in any application, and especially a database application, is how to
anticipate and gracefully handle exceptions. This is true as well with DBISAM. Fortunately, Delphi and C++
both provide elegant exception types and handling. DBISAM uses this exception handling architecture and
also expands upon it in several important ways. In certain situations DBISAM will intercept exceptions and
trigger events in order to allow for the continuation of a process without the interruption that would occur
if the exception were allowed to propagate through the call stack.

DBISAM Exception Types

DBISAM primarily uses the EDBISAMENgineError object as its exception object for all engine errors. This
object descends from the EDatabaseError exception object defined in the common DB unit, which itself
descends from the common Exception object. This hierarchy is important since it allows you to isolate the
type of error that is occurring according to the type of exception object that has been raised, as you will
see below when we demonstrate some exception handling.

Note

DBISAM also raises certain component-level exceptions as an EDatabaseError to maintain
consistency with the way the common DB unit and TDataSet component behaves. These mainly
pertain to design-time property modifications, but a few can be raised at runtime also.

The EDBISAMEngineError object contains several important properties that can be accessed to discover
specific information on the nature of the exception. The ErrorCode property is always populated with a
value which indicates the error code for the current exception. Other properties may or may not be
populated according to the error code being raised, and a list of all of the error codes raised by the
DBISAM engine along with this information can be found in Appendix B - Error Codes and Messages.

Exception Handling

The most basic form of exception handling is to use the try..except block (Delphi) or try..catch (C++) to
locally trap for specific error conditions. The error code that is returned when an open fails due to access
problem is 11013, which is defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). The following example shows how to trap for such an exception on open and display an
appropriate error message to the user:

begin
with MyDBISAMTable do

begin
DatabaseName:='c:\testdata';
TableName:='customer';
Exclusive:=True;
ReadOnly:=False;
try

Open;
except

on E: Exception do

begin

Page 31

Using DBISAM

if (E is EDatabaseError) and (E is EDBISAMEngineError) then
begin
if (EDBISAMEngineError (E) .ErrorCode=DBISAM OSEACCES) then
ShowMessage ('Cannot open table '+TableName+
', another user has the table open already')
else
ShowMessage ('Unknown or unexpected '+
'database engine error # '+
IntToStr (EDBISAMEngineError (E) .ErrorCode)) ;
end
else
ShowMessage ('Unknown or unexpected '+
'error has occurred');
end;
end;
end;
end;

Exception Events

Besides trapping exceptions with a try..except or try..catch block, you may also use a global

TApplication.OnException event handler to trap database exceptions. However, doing so will eliminate the
ability to locally recover from the exception and possibly retry the operation or take some other course of
action. There are several events in DBISAM components that allow you to code event handlers that
remove the necessity of coding try..except or try..catch blocks while still providing for local recovery.

These events are as follows:

Event
OnEditError

OnDeleteError

OnPostError

OnQueryError

Page 32

Description

This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Edit method . The usual
cause of an error is a record lock failure if the current session
is using the pessimistic locking protocol (the default). Please
see the Updating Tables and the Locking and Concurrency
topics for more information on using this event and the
DBISAM locking protocols.

This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Delete method. The
usual cause of an error is a record lock failure (a record lock is
always obtained before a delete regardless of the locking
protocol in use for the current session). Please see the
Updating Tables and Query Result Sets and the Locking and
Concurrency topics for more information on using this event
and the DBISAM locking protocols.

This event is triggered when an error occurs during a call to
the TDBISAMTable or TDBISAMQuery Post method. The usual
cause of an error is a key violation for a unique index or the
violation of a table constraint, however it can also be
triggered by a record lock failure if the locking protocol for the
current session is set to optimistic. Please see the Updating
Tables and the Locking and Concurrency topics for more
information on using this event and the DBISAM locking
protocols.

This event is triggered when an error occurs during the

OnDatalost

Using DBISAM

preparation or execution of an SQL statement or script via the
TDBISAMQuery ExecSQL or Open methods. If this event is
assigned an event handler then it will get triggered and the
event handler will have the option of aborting the current SQL
statement or script. If this event is not assigned an event
handler then this event will not be triggered and the
exception will be raised.

This event is triggered when an error occurs during the
alteration of a table's structure via the TDBISAMTable
AlterTable or AddIndex methods, or via the execution of the
ALTER TABLE or CREATE INDEX SQL statements by the
TDBISAMQuery ExecSQL method. An error can be caused by
key violations, field deletions, field conversion problems, table
constraint failures, and any other type of problem during
these operations. The OnDataLost event allows you to react to
these errors by cancelling the current operation, continuing,
or continuing without triggering this event anymore.

The above events are all based in the TDBISAMTable or TDBISAMQuery components, and are mainly
geared toward application-level exception handling. There is a lower level of exception handling available
also in the following TDBISAMEngine events:

Event

OnlnsertError

OnUpdateError

OnDeleteError

Note

Description

This event is triggered whenever an exception occurs during
the insertion of any record in any table. The event handler for
this event can choose to retry, abort, or fail the insert
operation that raised the exception.

This event is triggered whenever an exception occurs during
the update of any record in any table. The event handler for
this event can choose to retry, abort, or fail the update
operation that raised the exception.

This event is triggered whenever an exception occurs during
the deletion of any record in any table. The event handler for
this event can choose to retry, abort, or fail the delete
operation that raised the exception.

If any exception is raised in an BeforelnsertTrigger, AfterInsertTrigger, BeforeUpdateTrigger,
AfterUpdateTrigger, BeforeDeleteTrigger, or AfterDeleteTrigger event, the exception will be
converted into an EDBISAMEngineError exception object with an error code of
DBISAM_TRIGGERERROR. The original exception's error message will be assigned to the
ErrorMessage property of the EDBISAMEngineError exception object, as well as be included as part
of the error message in the EDBISAMEngineError exception object itself.

Page 33

Using DBISAM

2.4 Configuring and Starting the Server

Introduction

There are no extra steps required in order to use the TDBISAMEngine component in DBISAM as a client
engine since the default value of the EngineType property is etClient. However, in order to use the
TDBISAMENgine component in DBISAM as a database server you will need to make some property
changes before starting the engine.

Configuration Properties

The TDBISAMENngine component has several key properties that are used to configure the database
server, which are described below in order of importance:

Property Description

EngineType In order to start the TDBISAMEngine component as a
database server, you must set this property to etServer.

EngineSignature Normally this property is left at the default value. However, if
you do choose to change this property, you must make sure
that it is set to desired value before starting the server. The
default value is "DBISAM_SIG". Please see the Customizing
the Engine topic for more information.

ServerName This property is used to identify the database server to
external clients once they have connected to the database
server. The default value is "DBSRVR".

ServerDescription This property is used in conjunction with the ServerName
property to give more information about the database server
to external clients once they have connected to the database
server. The default value is "DBISAM Database Server".

ServerMainAddress This property specifies the IP address that the database
server should bind to when listening for regular incoming data
connections. The default value is blank (""), which specifies
that the database server should bind to all available IP
addresses.

ServerMainPort This property specifies the port that the database server
should bind to when listening for regular incoming data
connections. The default value is 12005.

ServerMainThreadCacheSize This property specifies the number of threads that the
database server should actively cache for regular data
connections. When a thread is terminated on the server it will
be added to this thread cache until the number of threads
cached reaches this property value. This allows the database
server to re-use the threads from the cache instead of having
to constantly create/destroy the threads as needed, which can
improve the performance of the database server if there are
many connections and disconnections occurring. The default
value is 10.

Page 34

ServerAdminAddress

ServerAdminPort

ServerAdminThreadCacheSize

ServerEncryptedOnly

ServerEncryptionPassword

ServerConfigFileName

Using DBISAM

This property specifies the IP address that the database
server should bind to when listening for incoming
administrative connections. The default value is blank ("),
which specifies that the database server should bind to all
available IP addresses.

This property specifies the port that the database server
should bind to when listening for incoming administrative
connections. The default value is 12006.

This property specifies the number of threads that the
database server should actively cache for administrative
connections. The default value is 1.

This property specifies whether all incoming regular data
connections should be encrypted or not. If this property is set
to True, then all incoming regular data connections to the
database server that are not encrypted will be rejected with
the error code 11277, which is defined as
DBISAM_REMOTEENCRYPTREQ in the dbisamcn unit (Delphi)
or dbisamcn header file (C++). The default value is False.

Note

Administrative connections to the database server must
always encrypted and will be rejected if they are not
encrypted, regardless of the current value of this

property.

This property specifies the password to use for all encrypted
connections. If an incoming encrypted connection does not
use a password that matches this value of this property, the
database server will return the error code 11308, which is
defined as DBISAM_REMOTEINVREQUEST in the dbisamcn
unit (Delphi) or dbisamcn header file (C++), when any call to
the database server is attempted after the connection is
made. The default value is "elevatesoft".

Note

If you intend to use encrypted connections to a
database server over a public network then you should
always use a different encryption password from the
default password.

This property specifies the name of the configuration file that
the database server will use for storing all server configuration
information including users, databases, server-side
procedures, user rights, and scheduled events. This file is
compressed and encrypted, and a backup is made, with the
extension ".scb", any time a modification is made. The default
value is "dbsrvr.scf".

Page 35

Using DBISAM

Note

Any new configuration file name specified via this
property will be given the default extension of ".scf"
automatically.

ServerConfigPassword This property specifies the password to use to encrypt the
contents of the server configuration file. This ensures that if
someone does obtain physical access to the configuration file
that they will still be unable to read its contents, especially
user names and passwords, without this password.

Note
All of the properties of the TDBISAMEngine component described above can only be modified when
the Active property is False and the engine has not been started.

Starting the Server

Once you have configured the database server using the above properties, starting the server is quite
simple. All you need to do is set the Active property to True. The following shows an example of how one
might configure and start a database server using the default global Engine function in the dbisamtb unit
(Delphi) or dbisamtb header file (C++):

with Engine do
begin
ServerName:="'MyTestServer';
ServerDescription:='My Test Server';
{ Only listen on this IP address }
ServerMainAddress:='192.168.0.1";
ServerConfigFileName:="'mytest.scf';
ServerConfigPassword:="test123456";
Active:=True;
end;

Note
You can also use the TDBISAMENgine OnStartup event to configure the TDBISAMEngine component
before it is started.

Default Login Information

The default user ID and password for the database server are:

User ID: Admin (case-insensitive)
Password: DBAdmin (case-sensitive)

This user has full administrator privileges and is widely known, so it is recommended that you delete it as
a user once you have established another administrative user on the database server.

Page 36

Using DBISAM

Database Servers Provided with DBISAM

DBISAM comes with an application (GUI) database server project for Delphi called dbsrvr.dpr and a
command-line (console) database server project for Delphi called dbcmd.dpr. You can examine the source
code of these projects to see how you would go about setting up a TDBISAMEngine component as a
database server in a project. Both of these projects are also provided in compiled form with DBISAM.

Note

If you wish to run either database server, either as a normal application or a Windows service, you
must copy the desired database server executable into a directory with read/write permissions,
based upon the user account under which you wish to run the database server, and run it from that
directory. This requirement is due to the fact that the database server writes its log and
configuration files to the directory where the database server executable is located. This is a legacy
behavior that is not compatible with running the database server from the default installation
directory in the default \Program Files (x86) sub-tree.

The dbsrvr database server can be run as a normal application or as a Windows service. When running the
dbsrvr database as a normal application, the server will display an icon in the system tray that can be
right-clicked to obtain general information about the server, as well as start and stop the server. You can
find the dbsrvr database server in the \servers\dbsrvr sub-directory under the main installation directory
for the version of DBISAM that you installed.

If you wish to run the dbsrvr database server as a Windows service you must first install it as a service by
running the database server with the /install command-line switch set. For example, to install the database
server as a service using a command prompt window under Windows (2000 or higher) you would specify
the following command:

dbsrvr.exe /install

To uninstall the dbsrvr database server as a Windows service you must run the database server with the
/uninstall command-line switch set. For example, to uninstall the dbsrvr database server as a service using
a command-prompt window under Windows (2000 or higher) you would specify the following command:

dbsrvr.exe /uninstall

Note

You must run the above commands while logged in as an Administrator, or they will not succeed
and you will see an "Access Denied" error message. Also, the dbsrvr database server will not display
an icon in the system tray, nor will it display a user interface, when run as a Windows service.
Recent versions of Windows restrict services from interacting with the desktop in order to permit
them to run in non-GUI server environments.

After installing the dbsrvr database server as a Windows service, you can run the database server by
starting the service interactively via the Windows Services management console, or by using the net start
command-line command:

Page 37

Using DBISAM

net start dbsrvr

You can stop the database service interactively via the Windows Services management console, or by
using the net stop command-line command:

net stop dbsrvr

The dbcmd database server can only be run as a normal (console) application. You can find the dbcmd
database server in the \servers\dbcmd sub-directory under the main installation directory for the version

of DBISAM that you installed.

The database servers will accept commmand-line switches that affect their behavior. The following
switches are supported when starting up either database server:

Switch

/sn

/sd

/sa

/sp

/st

Page 38

Description

Server name parameter

The /sn switch specifies the user-defined server name that
will be used to identify the server to remote sessions. You
must enclose the server name in double quotes if there are
spaces in the server name. The server name is informational
only.

Server description parameter

The /sd switch specifies the user-defined server description
that will be displayed in the caption of the server's user
interface. You must enclose the server description in double
quotes if there are spaces in the server description. The
server description is informational only.

Server address parameter

The /sa switch specifies the main server IP address that the
server will bind to for accepting inbound data connections.
The IP address must be specified directly after the /sp switch
using dot notation (i.e. 192.168.0.1). The default IP address
that the server will bind to if this switch is not specified is all
IP addresses available on the machine. Using this option will
cause the server to only listen on the specified address. This
means that it will no longer listen on the local loopback
127.0.0.1 address.

Server port parameter

The /sp switch specifies the main server port that the server
will bind to for accepting inbound data connections. The port
number must be specified directly after the /sp switch. The
default main port that the server will bind to if this switch is
not specified is 12005.

Server thread cache size parameter

The /st switch specifies the main server thread cache size.

/aa

/ap

/at

/cf

/cp

Using DBISAM

The thread cache size controls how many threads the server
will cache in order to speed up connect/disconnect times. The
thread cache size must be specified directly after the /st
switch. The default main thread cache size that the server will
use if this switch is not specified is 10.

Administration address parameter

The /aa switch specifies the administration server IP address
that the server will bind to for accepting administrative
connections. The IP address must be specified directly after
the /aa switch using dot notation (i.e. 192.168.0.1). The
default administration IP address that the server will bind to if
this switch is not specified is all IP addresses available on the
machine. Using this option will cause the server to only listen
on the specified address. This means that it will no longer
listen on the local loopback 127.0.0.1 address.

Administration port parameter

The /ap switch specifies the administration server port that
the server will bind to for accepting administrative
connections. The port number must be specified directly after
the /ap switch. The default administration port that the server
will bind to if this switch is not specified is 12006.

Administration thread cache size parameter

The /at switch specifies the administration server thread
cache size. The thread cache size controls how many threads
the server will cache in order to speed up connect/disconnect
times. The thread cache size must be specified directly after
the /at switch. The default administration thread cache size
that the server will use if this switch is not specified is 1.

Configuration file name parameter

The /cf switch specifies the server configuration file name.
The configuration file is where the server stores all
configuration information including databases, users,
permissions, etc. You must enclose the configuration file
name in double quotes if there are spaces in the configuration
file name. Do not specify a file extension for the file since the
server always uses the ".scf" extension for all configuration
files. The default configuration file name that the server will
use if this switch is not specified is "dbsrvr".

Configuration file password parameter

The /cp switch specifies the server configuration file
password. The configuration file password is used to encrypt
the contents of the configuration file. You must enclose the
configuration file password in double quotes if there are
spaces in the configuration file password. The default
configuration file password that the server will use if this
switch is not specified is "elevatesoft".

Page 39

Using DBISAM

Note

Do not lose this password. If you do the server will not
be able to read the configuration information and there
is no way for Elevate Software to retrieve the
configuration information.

/en Encrypted connections only parameter

The /en switch specifies that the main server will require
encrypted connections only. By default the administration
server always requires encypted connections, but normally
encrypted connections are not required for the main server.

/ep Encrypted connnection password parameter

The /ep switch specifies the password to use for encrypting all
data between any remote sessions and the main and
administration server. This switch can be specified without the
above /en switch to change the password for encrypted
connections to the administration server only. If combined
with the above switch, this switch will change the password
for encrypted connections to both the main server and the
administration server. You must enclose the encryption
password in double quotes if there are spaces in the
encryption password. The default encryption password that
the server will use if this switch is not specified is
"elevatesoft".

Note

If this password is not set to the same value that is
used by the remote sessions connecting to either the
main or administration server, the remote sessions will
receive errors and not be able to connect to the server
at all.

/al Append to log parameter

The /al switch specifies that the server should append to any
existing server log file when the server process is started. The
default behavior is to overwrite the log every time the server
process is started.

The only difference between starting the dbsrvr database server as a normal application and starting the
dbsrvr database server as a Windows service is in the way the switches are specified. When the dbsrvr
database server is started as a normal application, you may specify the switches directly on the command-
line that you are using to start the database server. For example the following command will start the
dbsrvr database server using port 13000 for the main port and 13001 for the administration port:

dbsrvr.exe /spl3000 /apl3001

Page 40

Using DBISAM

When the dbsrvr database server is started as a Windows service, you may specify the switches via the
Startup Parameters in the properties for the service in the Services management console, or directly on
the command-line that you are using to start the dbsrvr database server with the net start command. For
example the following command will start the database server as a service with it using port 13000 for the
main port and 13001 for the administration port:

net start dbsrvr /spl3000 /apl3001

Note
In order to start the dbsrvr database server as a Windows service the database server must have
already been installed as a service using the /install command-line switch.

In addition to using command-line parameters, you may also use an .ini file to specify the parameters for
the database server. The following is a sample .ini file that can be used with either the dbsrvr or dbcmd
database servers:

; Sample DBISAM Database Server Parameters INI File

[Server Parameters]

; Default server name is the EXE name

Server Name=Test Server

; Default server description is DBISAM Database Server

; plus the Server Name

Server Description=Test Server Description

; Default server IP address is all addresses on the machine
Server Address=127.0.0.1

; Default server port is 12005

Server Port=10001

; Default server thread cache size is 10

Server Thread Cache Size=20

; Default admin IP address is all addresses on the machine
Administration Address=127.0.0.1

; Default admin port is 12006

Administration Port=10002

; Default admin thread cache size is 1

Administration Thread Cache Size=4

; Default configuration file name is dbsrvr
Configuration File=Test

; Default configuration file password is elevatesoft
Configuration Password=cannotguessme

; O=main server allows unencrypted connections (default)
; l=main server allows only encrypted

Encrypted Only=0

; Default encryption password is elevatesoft

Encryption Password=cannotguessme

; O=overwrite log file (default) l=append to log file
Append To Log=0

; SQL performance logging
; 0=no SQL performance logging (default) 1=log all statements with execution

times above the min execution time (below)
SQL Performance Tracking=0

Page 41

Using DBISAM

; Minimum execution time, in seconds, required before an SQL statement is
logged (default is 30 seconds)

Min SQL Performance Execution Time=30

; SQL performance log file name

SQL Performance File Name=

; Max SQL performance log file size (default is 128MB)

Max SQL Performance File Size=134217728

; 0=no auto-incrementing of SQL performance log file name l=auto-increment
SQL performance log file name

Auto-Increment SQL Performance File Name=0

; Max SQL performance log file autoinc (default is 64)

Max Auto-Increment SQL Performance File Name=64

Note

The .ini file that contains the database server parameters must have the same root file nhame as the
database server itself. For example, if you wanted to use the above .ini file with the dbsrvr
database server, you would need to save it to a dbsrvr.ini file in the same directory as the
dbsrvr.exe executable in order for the database server to find it and use its contents. Likewise, if
you wanted to use it with the dbcmd database server, you would need to save it to a dbcmd.ini file
in the same directory as the dbcmd.exe executable.

Multiple instances of the database server can be started on the same physical machine. The root name of
the database server executable is used to determine the name of the log and parameters (.ini) files to use
when the database server is started. Also, when running as a Windows service the dbsrvr database server
relies on the root name of the database server executable to determine the service name. What this
means is that to have multiple instances of the database server running on the same machine you must
put them in separate physical directories if running them as a normal application, or copy the database
server to different executable files with a different root name if running them as a service. For example, if
you wanted to run two instances of the database server as services, you would copy the dbsrvr.exe to two
separate executable files called dbsrvrl.exe and dbsrvr2.exe. Then you would install and run them as
follows:

First database server

dbsrvrl.exe /install

net start dbsrvrl

Second database server

dbsrvr2.exe /install

net start dbsrvr2

Page 42

Using DBISAM

2.5 Server Administration

Introduction

Administering a database server involves maintaining global connection settings as well as databases,
server-side procedures, users, and scheduled events. All of this information is stored in the configuration
file specified via the TDBISAMEngine ServerConfigFileName property. DBISAM offers the ability to
administer a database server both locally through the TDBISAMENngine component and remotely through
the TDBISAMSession component. Both types of administration are very similar except for some minor
differences.

Local Administration

Local administration of a database server involves calling methods of the TDBISAMEngine component
directly. The following methods are all for local administrative use:

Method Description

GetServerConfig This method retrieves the global database server settings for
maximum allowed connections, connection timeouts, dead
session settings, the temporary files directory, and authorized
and blocked IP addresses.

ModifyServerConfig This method modifies the global database server settings.

GetServerLogCount This method retrieves the total number of log records present
in the current log file. Calling this method triggers the
TDBISAMENgine OnServerLogCount event. If an event handler
is defined for this event, then it is called to retrieve the count
from whatever storage medium is being used for the log file.

GetServerLogRecord This method retrieves the Nth log record from the current log
file. Calling this method triggers the TDBISAMEngine
OnServerLogRecord event. If an event handler is defined for
this event, then it is called to retrieve the specified log record
from whatever storage medium is being used for the log file.

StartAdminServer This method causes the database server to begin listening for
administrative connections on the IP address and port
specified by the TDBISAMEngine ServerAdminAddress and
ServerAdminPort properties.

StopAdminServer This method causes the database server to stop listening for
administrative connections.

StartMainServer This method causes the database server to begin listening for
regular data connections on the IP address and port specified
by the TDBISAMEngine ServerMainAddress and
ServerMainPort properties. Calling this method triggers the
TDBISAMEnNgine OnServerStart event.

StopMainServer This method causes the database server to stop listening for
regular data connections. Calling this method triggers the
TDBISAMEnNgine OnServerStop event.

Page 43

Using DBISAM

GetServerUTCDateTime

GetServerUpTime

GetServerMemoryUsage

GetServerSessionCount

GetServerConnectedSessionCount

GetServerSessionInfo

DisconnectServerSession

RemoveServerSession

Page 44

This method retrieves the current date and time from the
server in UTC (Coordinated Universal Time).

This method retrieves the total up time of the database server
in seconds.

This method has been deprecated and always returns 0 as of
version 4.17 of DBISAM and the introduction of the new
memory manager used in the DBISAM database server.
Please see the Replacement Memory Manager topic for more
information.

This method retrieves the total number of sessions present on
the database server at the time of the method call.

Note
This count does not include administrative sessions,
only regular sessions.

This method retrieves the total number of sessions on the
database server that are currently connected at the time of
the method call.

Note
This count does not include administrative sessions,
only regular sessions.

This method retrieves information about the specified session
such as its unique session ID, when it was created, when it
was last connected, the user name, the IP address of the
user, and whether the connection is encrypted.

Note
This method does not return information about
administrative sessions, only regular sessions.

This method disconnects the specified session, but does not
remove the session from the database server. Once the
session is disconnected it is considered to be a dead session.

Note
This method cannot be used on administrative
sessions, only regular sessions.

This method removes the specified session completely from
the database server.

GetServerUserNames
GetServerUser
AddServerUser
ModifyServerUser
ModifyServerUserPassword

DeleteServerUser

GetServerDatabaseNames

GetServerDatabase

AddServerDatabase
ModifyServerDatabase
DeleteServerDatabase

GetServerDatabaseUserNames

GetServerDatabaseUser

AddServerDatabaseUser

ModifyServerDatabaseUser

DeleteServerDatabaseUser

GetServerProcedureNames

GetServerProcedure

Using DBISAM

Note
This method cannot be used on administrative
sessions, only regular sessions.

This method will retrieve a list of user names that are
currently defined on the database server.

This method will retrieve information about a specific user,
including the user's password, a description of the user, and
whether the user is an administrator for this server.

This method will add a new user.

This method will modify a user's information.
This method will modify only a user's password.
This method will delete a user.

This method will retrieve a list of database names that are
currently defined on the database server.

This method will retrieve information about a specific
database, including the database's description and the actual
physical path to the database tables.

Note

All database server physical path information for
databases defined on the server are interpreted relative
to the drives, directories, etc. available to the database
server.

This method will add a new database.
This method will modify a database's information.
This method will delete a database.

This method will retrieve a list of users that are assigned
rights to a specific database.

This method will retrieve the user rights of a user for a
specific database.

This method will add user rights for a specific user to a
specific database.

This method will modify the user rights of a user for a specific
database.

This method will delete the user rights of a user for a specific
database.

This method will retrieve a list of server-side procedure names
that are currently defined on the database server.

This method will retrieve information about a specific server-
side procedure, specifically the server-side procedure's
description.

Page 45

Using DBISAM

AddServerProcedure
ModifyServerProcedure
DeleteServerProcedure

GetServerProcedureUserNames

GetServerProcedureUser

AddServerProcedureUser

ModifyServerProcedureUser

DeleteServerProcedureUser

GetServerEventNames

GetServerEvent

AddServerEvent

ModifyServerEvent

DeleteServerEvent

Remote Administration

This method will add a new server-side procedure.
This method will modify a server-side procedure's information.
This method will delete a server-side procedure.

This method will retrieve a list of users that are assigned
rights to a specific server-side procedure.

This method will retrieve the user rights of a user for a
specific server-side procedure.

This method will add user rights for a specific user to a
specific server-side procedure.

This method will modify the user rights of a user for a specific
server-side procedure.

This method will delete the user rights of a user for a specific
server-side procedure.

This method will retrieve a list of scheduled event names that
are currently defined on the database server.

This method will retrieve information about a specific
scheduled event, specifically the scheduled event's description
and scheduling parameters.

This method will add a new scheduled event.
This method will modify a scheduled event's information.

This method will delete a scheduled event.

Remotely administering a database server involves connecting to the server's administration port using a
TDBISAMSession component that has the following properties set properly:

Property
SessionType
RemoteEncryption

RemoteEncryptionPassword

RemoteAddress

RemotePort

Page 46

Setting
This property must be set to stRemote.
This property must be set to True.

This property must be set to the same password as the
ServerEncryptionPassword property of the TDBISAMEngine
component that the session is connecting to.

This property must be set to the IP address of the database
server as it appears to remote machines. You may optionally
use the RemoteHost property if there is DNS information
available for the database server that you are connecting to.

This property must be set to the administrative port as it
appears to remote machines. You may optionally use the
RemoteService property if there is service information
available for the database server administrative port that you
are connecting to.

Using DBISAM

Note

There is an important distinction to make here. The IP
address and port specified for a remote session is not
always the same as the IP address and port specified in
the ServerAdminAddress and ServerAdminPort
properties of the TDBISAMEngine component that the
session is connecting to. This is because network
routers can use port forwarding and other techniques
to forward network traffic destined for a specific public
IP address and port to a private, internal LAN IP
address and port.

RemoteUser This property must be set to the name of a valid administrator
user for the database server that you are connecting to.

RemotePassword This property must be set to the proper password for the user
name specified by the RemoteUser property.

Once you have set up the TDBISAMSession properties properly for administrative access you can proceed
to call the TDBISAMSession Open method or set the TDBISAMSession Active property to True. This will
cause the remote session to attempt to connect to the database server on the administrative port.
Provided that you have set up everything properly, you will connect to the database server on the
administrative port and can then proceed to use the remote administrative methods of the
TDBISAMSession component to administer the database server.

The remote administration methods of the TDBISAMSession component are identical to the local methods
of the TDBISAMEngine component except that the TDBISAMSession methods are named *Remote*
instead of *Server*. Also, there are no StartAdminServer or StopAdminServer methods, and the
StartMainServer and StopMainServer methods are called StartRemoteServer and StopRemoteServer,
respectively. For a complete list of the remote administration methods please see the TDBISAMSession
component.

The following example shows how to set up the TDBISAMSession properties for remotely administering a
database server, connect to the database server, add a new user (not an administrator), and then add
user rights to the "AccountingDB" database for this user:

begin
with MyDBISAMSession do

begin

SessionType:=stRemote;

RemoteEncryption:=True;

{ Assume the default encryption password in use }

RemoteAddress:="'192.168.0.1";

RemotePort:=12006;

RemoteUser:='Admin';

RemotePassword:='DBAdmin';

Open;

try
AddRemoteUser ('Test', 'Test123456"', '"Test User',6 False);
AddRemoteDatabaseUser ('AccountingDB', 'Test',

[drRead,drInsert,drUpdate,drDelete]) ;

finally
Close;

end;

end;

Page 47

Using DBISAM
end;

Note
The Server Administration Utility that can be found in the additional software download (DBISAM-

ADD) on the Elevate Software web site also comes complete with source code and demonstrates
how to use all of the remote administration functionality described above.

Page 48

Using DBISAM

2.6 Customizing the Engine

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMEngine component represents the
engine in DBISAM. The following information will show how to customize the engine in an application.
Some of the customizations can be made for the engine when it is acting as a local engine or server
engine, while other customizations are only intended for the server engine. The TDBISAMEngine
EngineType property controls whether the engine is behaving as a local engine or a server engine.

Engine Signature

The TDBISAMENgine EngineSignature property controls the engine signature for the engine. The default
engine signature is "'DBISAM_SIG". The engine signature in DBISAM is used to "stamp" all tables, backup
files, and streams created by the engine so that only an engine with the same signature can open them or
access them afterwards. If an engine does attempt to access an existing table, backup file, or stream with
a different signature than that of the table, backup file, stream, an EDBISAMEngineError exception will be
raised. The error code that is returned when the access fails due to an invalid engine signature is 12036
and is defined as DBISAM_BADSIGNATURE in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Also, if the EngineType property is set to etClient, the engine signature is used to stamp all requests sent
from a remote session to a database server. If the database server is not using the same engine signature
then the requests will be treated as invalid and rejected by the database server. If the EngineType
property is set to etServer, the engine signature is used to stamp all responses sent from the database
server to any remote session. If the remote session is not using the same engine signature then the
requests will be treated as invalid and rejected by the database server. In summary, both the remote
sessions and the database server must be using the same engine signature or else communications
between the two will be impossible.

Triggers

Triggers can be implemented for a local or server engine by using the TDBISAMEngine
StartTransactionTrigger, CommitTrigger, RollbackTrigger, BeforelnsertTrigger, AfterInsertTrigger,
BeforeUpdateTrigger, AfterUpdateTrigger, BeforeDeleteTrigger, AfterDeleteTrigger, RecordLockTrigger,
and RecordUnlockTrigger events. These events are fired whenever a transaction is started, committed, or
rolled back, and whenever a record is inserted, updated, deleted, locked, or unlocked via navigational
methods or via SQL. However, these events are not triggered during any system processing such as
Creating and Altering Tables or Optimizing Tables. This allows for the freedom to change the table
metadata without having to worry about causing any errors due to constraints that may be enforced via
the triggers.

Note

These events can be called from multiple threads concurrently, so it is very important that you
observe the rules of multi-threading with DBISAM. The TDBISAMSession and TDBISAMDatabase
components are created automatically by the engine and passed as parameters to these events, so
if you create any TDBISAMTable or TDBISAMQuery components in an event handler for one or
more of these events, you need to make sure to assign the SessionName and DatabaseName
properties to that of these passed TDBISAMSession and TDBISAMDatabase components. Please see
the Multi-Threaded Applications topic for more information.

Page 49

Using DBISAM

The TDBISAMENgine triggers events can be used for audit logging, referential integrity, replication, hot
backups, etc. There really is no limit to what can be coded in an event handler attached to one or more of
these events. The following is an example of a BeforeDelete trigger that executes a query in order to
determine whether to permit the deletion or raise an exception:

procedure TMyForm.EngineBeforeDeleteTrigger (Sender: TObject;
TriggerSession: TDBISAMSession; TriggerDatabase: TDBISAMDatabase;
const TableName: String; CurrentRecord: TDBISAMRecord) ;

var
OrdersQuery: TDBISAMQuery;
begin
if (AnsiCompareText (TableName, 'customer')=0) then
begin
OrdersQuery:=TDBISAMQuery.Create (nil) ;
try
with OrdersQuery do
begin
SessionName:=TriggerDatabase.SessionName;
DatabaseName:=TriggerDatabase.DatabaseName;
RequestLive:=True;
SQL.Text:='SELECT * FROM Orders '+
'WHERE CustNo=:CustNo AND '+
'AmountPaid < ItemsTotal';
ParamByName ('CustNo') .AsFloat:=
CurrentRecord.FieldByName ('CustNo') .AsFloat;
Open;
try
if (RecordCount > 0) then
raise Exception.Create('Cannot delete this '+
'customer, there are still '+
IntToStr (RecordCount)+' active '+
'orders present for this '+
'customer') ;
finally
Close;
end;
end;
finally
OrdersQuery.Free;
end;
end;
end;

You can use the TDBISAMEngine OnlnsertError, OnUpdateError, and OnDeleteError events to trap any
errors that may occur during an insert, update, or delete, and reverse any action that may have been
initiated in a Before*Trigger event handler. For example, if you start a transaction in a
BeforeDeleteTrigger event, you should be sure to rollback the transaction in an OnDeleteError event
handler or else you will inadvertently leave an active transaction hanging around.

The TriggerSession CurrentServerUser property can be referenced from within a trigger that is being

executed when the TDBISAMENgine EngineType property is set to etServer in order to retrieve the current
user name.

Page 50

Using DBISAM

Note

If any exception is raised in any trigger event handler, the exception will be converted into an
EDBISAMENgineError exception object with an error code of DBISAM_TRIGGERERROR. The original
exception's error message will be assigned to the ErrorMessage property of the
EDBISAMENgineError exception object, as well as be included as part of the error message in the
EDBISAMENgineError exception object itself.

Custom SQL and Filter Functions

Custom SQL and filter functions can be implemented for a local or server engine by using the
TDBISAMENgine Functions property in conjunction with the OnCustomFunction event. The Functions
property is a TDBISAMFunctions object, and the easiest way to add new functions is to use the Functions
property's CreateFunction method, which will create a new TDBISAMFunction object, add it to the
Functions property, and return a reference to the new function. You can then use this function reference
to add the parameters to the function using the TDBISAMFunction Params property. The Params property
is a TDBISAMFunctionParams object, and the easiest way to add new function parameters is to use the
Params property's CreateFunctionParam method, which will create a new TDBISAMFunctionParam object,
add it to the Params property, and return a reference to the new function parameter. You can then use
this function parameter reference to specify the data type of the parameters to the custom function. All
custom function result and parameter data types use the TFieldType type. Please see the Data Types and
NULL Support topic for more information.

The following example shows how you would use the CreateFunction method to create a function called
"DaysBetween" that returns the number of days between two date parameters as an integer:

begin
{ We'll just use the default Engine global function
for this example }
with Engine do
begin
with Functions.CreateFunction (ftInteger, 'DaysBetween') .Params do
begin
CreateFunctionParam (ftDate) ;
CreateFunctionParam (ftDate) ;
end;
end;
end;

Note
Adding a custom function while the engine is active will result in the engine triggering an exception.
You should define all custom functions before activating the engine.

Once you have defined the custom function using the TDBISAMENgine Functions property, you must then
proceed to implement the function using an event handler assigned to the TDBISAMEngine
OnCustomFunction event. When DBISAM encounters a function name in a filter or SQL expression that
does not match that of a pre-defined function in DBISAM, the OnCustomFunction event is triggered with
the name of the function, the parameters to the function defined as a TDBISAMParams object, and a
parameter for returning the function result as a variant variable. Inside of the OnCustomFunction event
handler you must conditionally process each function using the name of the function passed to the event
handler. The following example implements the "DaysBetween" function that we defined previously in the

Page 51

Using DBISAM

above example:

procedure MyForm.CustomFunction (Sender: TObject;
const FunctionName: String; FunctionParams: TDBISAMParams;
var Result: Variant);
var
Stampl: TTimeStamp;
Stamp2: TTimeStamp;
begin
if (AnsiCompareText (FunctionName, 'DaysBetween')=0) then
begin
{ Notice that the function parameters are accessed
in a 0O-based manner }
Stampl:=DateTimeToTimeStamp (FunctionParams[0] .AsDateTime) ;
Stamp2:=DateTimeToTimeStamp (FunctionParams[1l] .AsDateTime) ;
Result:=Trunc ((Stamp2.Date-Stampl.Date) +
(((((Stamp2.Time-Stampl.Time) /1000)/60)/60)/24));
end;
end;

Note
The name of the parameters sent to the OnCustomFunction event handler will be:

"Param" plus an underscore (_) plus the position of the parameter (0-based)
for constants or expressions, and:
Table name plus underscore (_) plus column name plus (_) plus the position of the parameter (0-based)

for table columns. This allows you to identify which column from which table was passed to a custom
function.

Memory Buffer Customizations

The TDBISAMEngine MaxTableDataBufferCount, MaxTableDataBufferSize, MaxTableIndexBufferCount,
MaxTableIndexBufferSize, MaxTableBlobBufferCount, and MaxTableBlobBufferSize properties allow you to
control how much memory is used for buffering the data records, index pages, and BLOB blocks for each
physical table opened in a given session in the engine. The *Size properties dictate how much memory, in
bytes, to allocate. The *Count properties dictate the maximum number of data records, index pages, and
BLOB blocks that can be allocated regardless of the amount of memory available. This is to ensure that
the buffering architecture in DBISAM does not get overwhelmed by buffering too many small records, etc.

Lock File Name Customizations

The default lock file name, "dbisam.Ick", can be modified using the TDBISAMEngine LockFileName
property.

File Extension Customizations

The default file extensions for tables are detailed in the DBISAM Architecture topic. You can modify these
default extensions using the following properties:

Page 52

Using DBISAM

Extensions Properties

Tables TableDataExtension
TableIndexExtension
TableBlobExtension

Backup Files TableDataBackupExtension

TableIndexBackupExtension
TableBlobBackupExtension

Upgrade Backup Files TableDataUpgradeExtension
TableIndexUpgradeExtension
TableBlobUpgradeExtension

Temporary Files TableDataTempExtension
TableIndexTempExtension
TableBlobTempExtension
Note

The temporary file extension customizations are useful when you wish to have any temporary tables
created by DBISAM use a file extension other than .dat, .idx, or .blb. Recent issues with certain
anti-virus software has shown that it may be necessary to change the extensions of the files that
make up temporary DBISAM tables in order to prevent the anti-virus software from interfering with
DBISAM's ability to create and open temporary tables on a local drive.

Encryption Customizations

By default DBISAM uses the Blowfish block cipher encryption algorithm with 128-bit MD5 hash keys for
encryption. However, you may replace the encryption in DBISAM with another 8-byte block cipher
algorithm by defining event handlers for the TDBISAMENngine OnCryptolnit, OnEncryptBlock,
OnDecryptBlock, and OnCryptoReset events. The OnCryptolnit event is triggered whenever DBISAM needs
to initialize the internal block cipher tables using a new key. The OnEncryptBlock event is triggered
whenever DBISAM needs to encrypt a block of data, and the OnDecryptBlock event is triggered whenever
DBISAM needs to decrypt a block of data. A block of data will always be 8-bytes in length. Finally, the
OnCryptoReset event is triggered after every encryption or decryption of a buffer (data record, index page,
or BLOB block) in order to reset the cipher data so that it is ready for encrypting or decrypting a new
buffer.

Please see the Encryption topic for more information.
Compression Customizations

By default DBISAM uses the ZLIB compression algorithm for compression. However, you may replace the
compression in DBISAM with another compression algorithm by defining event handlers for the
TDBISAMENgine OnCompress and OnDecompress events. The OnCompress event is triggered whenever
DBISAM needs to compress a buffer. The OnDecompress event is triggered whenever DBISAM needs to
decompress a buffer.

Please see the Compression topic for more information.

Full Text Indexing Customizations

Page 53

Using DBISAM

The full text indexing functionality in DBISAM allows the developer to index the words in string or memo
fields for very fast word-based searches. You can define event handlers for the TDBISAMEngine
OnTextIndexFilter and OnTextIndexTokenFilter events that allow you to filter the string and memo field
data prior to being indexed by DBISAM. The OnTextIndexFilter event is triggered before DBISAM parses
any string or memo fields that are included in the full text index for the table into words using the stop
words, space characters, and include characters defined for the table. This allows you to filter the raw
data, such as stripping out control codes from HTML, RTF, or other types of document formats. On the
other hand, the OnTextIndexTokenFilter event is triggered after any string and memo fields are parsed
into words using the stop words, space characters, and include characters defined for the table. This
allows you to further filter out certain words based upon conditional rules or custom dictionaries that aren't
easily expressed using just the static stop words for the table. Please see the Full Text Indexing topic for
more information.

Note

If you add or modify the OnTextIndexFilter or OnTextIndexTokenFilter event handlers when you
have existing tables with full text indexing defined for one or more fields, you must be sure to alter
the structure of these tables and turn off the full text indexing for all fields. After you have done
this, you can then alter the structure of these tables again to turn back on the full text indexing for
the desired fields. Doing this will ensure that any existing text is properly handled with the new
event handlers and will eliminate the possibility of confusing results when searching on the fields
that are part of the full text index. Please see the Creating and Altering Tables topic for more
information.

Reserved Customizations

There are certain customizations in the engine that are only for use in fine-tuning specific issues that you
may be having with an application and should not be modified unless instructed to do so by Elevate
Software. The TDBISAMENgine TableReadLockTimeout, TableWriteLockTimeout, TableTransLockTimeout,
TableFilterIndexThreshhold properties should only be modified when instructed to by Elevate Software.

Server-Only Customizations

The following customizations are only available when the TDBISAMENgine EngineType property is set to
etServer and the engine is behaving as a database server.

Licensed Connections

You can specify that a maximum number of licensed connections be used for the database server by
modifying the TDBISAMEngine ServerLicensedConnections property. The default is 65,535 connections.
Setting this property to a lower figure will allow no more than the specified number of connections to be
configured as the maximum number of connections for the database server in addition to actually
preventing any more than the specified number of connections active on the database server at the same
time.

Notification Events

You can define event handlers for the following TDBISAMENngine events to respond to various server
conditions:

Event Description

Page 54

Using DBISAM

OnServerStart This event will be triggered whenever the server starts
listening for incoming normal data connections. The server is
started via the TDBISAMEngine StartMainServer method or
remotely via the TDBISAMSession StartRemoteServer method.

OnServerStop This event will be triggered whenever the server stops
listening for incoming noraml data connections. The server is
stopped via the TDBISAMEngine StopMainServer method or
remotely via the TDBISAMSession StopRemoteServer method.

OnServerConnect This event will be triggered whenever a normal data
connection is established.

OnServerReconnect This event will be triggered whenever a normal data
connection is re-established by an automatic reconnection by
the remote session.

OnServerLogin This event will be triggered whenever a user logs in on a
normal data connection.

OnServerLogout This event will be triggered whenever a user logs out on a
normal data connection.

OnServerDisconnect This event will be triggered whenever a normal data
connection is closed.

Logging Events

DBISAM abstracts all server logging functionality so that you may choose to log server events in any
manner that you wish. The default server project that ships with DBISAM uses these events to store the
log records in a binary file. You can define event handlers for the following TDBISAMEngine events to
customize the logging functionality:

Event Description

OnServerLogEvent This event is triggered whenever the server needs to log an
event. The log record that is passed to the event handler is
defined as a TLogRecord type.

OnServerLogCount This event is triggered whenever the server needs to get a
count of the number of log records in the current log. This
event is triggered whenever the TDBISAMEngine
GetServerLogCount method is called or the TDBISAMSession
GetRemoteLogCount method is called by a remote session.

OnServerLogRecord This event is triggered whenever the server needs to get a
specific log record from the current log. This event is
triggered whenever the TDBISAMENgine GetServerLogRecord
method is called or the TDBISAMSession
GetRemotelLogRecord method is called by a remote session.

Scheduled Events

DBISAM allows the definition of scheduled events for a database server. Scheduled events are stored in
the configuration file for the server and are implemented via the TDBISAMEngine OnServerScheduledEvent
event. Scheduled events will simply do nothing unless they are actually implemented in the database
server via an event handler assigned to this event. Scheduled events are executed in a separate thread in
the server, one thread for each currently-executing scheduled event. If you have three scheduled events

Page 55

Using DBISAM

that are scheduled for the same time, then the server will create three threads, one for each scheduled
event. Any database access within the thread must be done according to the rules for using DBISAM in a
multi-threaded application. Please see the Multi-Threaded Applications topic for more information. Also,
scheduled events are run as if they are using a local engine accessing databases and tables directly and
cannot directly use database names that are defined in the database server configuration. You must use
the methods available in the TDBISAMENngine component for retrieving database information for databases
for retrieving the information necessary to access server databases and tables in the scheduled event (see
the example below).

The following is an example of a scheduled event called "DailyBackup" that calls the TDBISAMDatabase
Backup method to backup a databse every day at a certain time:

procedure TMyForm.ServerScheduledEvent (Sender: TObject;
const EventName: String; var Completed: Boolean);
var
TempSession: TDBISAMSession;
TempDatabase: TDBISAMDatabase;
TempDescription: string;
TempPath: string;
BackupFiles: TStrings;
begin
TempDescription:="";
TempPath:="";
if (AnsiCompareText (EventName, 'DailyBackup')=0) then
begin
{ Create a new session component, remembering
the multi-threading requirements of DBISAM
for session names }
TempSession:=TDBISAMSession.Create (Self);
try
with TempSession do
begin
SessionName:='DailyBackup'+IntToStr (GetCurrentThreadID) ;
Active:=True;
end;
{ Create a new database component }
TempDatabase:=TDBISAMDatabase.Create (Self);
try
with TempDatabase do
begin
SessionName:=TempSession.SessionName;
DatabaseName:='DailyBackup';
{ Get the actual local path for the Main
database }
ServerEngine.GetServerDatabase ('Main',
TempDescription,
TempPath) ;
Directory:=TempPath;
Connected:=True;
BackupFiles:=TStringList.Create;
try
TempSession.GetTableNames (DatabaseName, BackupFiles) ;
Completed:=Backup (
IncludeTrailingBackslash (TempPath) +'backup'+
StringReplace (DateToStr (Date),'/",
'', [rfReplaceAll])+"'.bkp',
'Daily Backup for '+DateToStr (Date),6,BackupFiles);
finally

Page 56

Using DBISAM

BackupFiles.Free;
end;
Connected:=False;
end;

finally
TempDatabase.Free;

end;

finally
TempSession.Free;

end;

end

else
Completed:=True;
end;

Note

If a scheduled event is not marked as completed by this event handler, it will continue to be
executed every minute by the database server until the time range for which it was scheduled is up.
For example, if the above scheduled event was scheduled to run every day between 11:00pm and
11:30pm, the database server will attempt to execute the scheduled event until it is either
completed or the time exceeds 11:30pm. Also, if an error occurs during the scheduled event
execution, the database server will consider the scheduled event not completed. Any time the
database server encounters an error in the scheduled event or detects that the scheduled event did
not complete it will log this information in the current log.

Server Procedures

DBISAM allows the definition of server-side procedures for a database server. Server-side procedures are
stored in the configuration file for the server and are implemented via the TDBISAMEngine
OnServerProcedure event. Server-side procedures will simply do nothing unless they are actually
implemented in the database server via an event handler assigned to this event. Server-side procedures
are executed in the context of the session thread currently running for the remote session that is calling
the server-side procedure. Any database access within the server-side procedure must be done according
to the rules for using DBISAM in a multi-threaded application. Please see the Multi-Threaded Applications
topic for more information. However, unlike scheduled events (see above), server-side procedures are
passed a TDBISAMSession component for use in the procedure for retrieving parameters passed in from
the remote session and for populating the result parameters that are passed back to the remote session
after the procedure is done, as well as sending progress information back to the calling session. This
TDBISAMSession component is automatically created and assigned a unique SessionName property to
ensure that it can be safely be used in a multi-threaded manner. This session name consists of the user
name plus an underscore (_) plus the session ID. Also, server-side procedures are run as if they are using
a local engine accessing databases and tables directly and cannot directly use database names that are
defined in the database server configuration. You must use the methods available in the TDBISAMEngine
component for retrieving database information for databases for retrieving the information necessary to
access server databases and tables in the server-side procedure.

The TDBISAMSession RemoteParams property is used both to pass the parameters to the server-side
procedure and to return any results to the remote session that called the server-side procedure. The
RemoteParams property is a TDBISAMParams object. Be sure to always clear the parameters using the
RemoteParams' Clear method before leaving the server-side procedure. Otherwise, the same parameters
that were passed to the server-side procedure will be returned to the remote session as results. You can
add new results to the RemoteParams property for return to the remote session using the RemoteParams'
CreateParam method.

Page 57

Using DBISAM

The following is an example of a server-side procedure called "TextFile" that sends a text file back to the
remote session that requested it:

procedure TMyForm.ServerProcedure (Sender: TObject;
ServerSession: TDBISAMSession; const ProcedureName: String);
var
TempFileName: string;
begin
if (AnsiCompareText (ProcedureName, 'TextFile')=0) then
begin
with ServerSession do
begin
TempFileName:=RemoteParams.ParamByName ('FileName') .AsString;
{ Now clear the parameters for use in populating
the result parameters }
RemoteParams.Clear;
if FileExists (TempFileName) then
begin
{ If the file exists, use the TDBISAMParam
LoadFromFile method to load the file
data into the parameter }

with RemoteParams.CreateParam (ftMemo, 'FileContents') do
LoadFromFile (TempFileName, ftMemo) ;
end
else

{ If the file doesn't exist, just create a NULL
parameter with the correct result name }
RemoteParams.CreateParam (ftMemo, 'FileContents"') ;
end;
end;
end;

The ServerSession CurrentServerUser property can be referenced from within a trigger that is being
executed when the TDBISAMENgine EngineType property is set to etServer in order to retrieve the current
user name.

Note

If a server-side procedure raises any type of exception at all, the database server will send the
exception back to the remote session that called it as if the exception occurred in the remote
session.

To report progress information back to the calling session during the server-side procedure, use the
SendProcedureProgress method of the TDBISAMSession component passed as a parameter to the
OnServerProcedure event handler.

Page 58

Using DBISAM

2.7 Starting Sessions

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMSession component represents a
session in DBISAM. The following information will show how to start a session in an application.

Preparing a Local Session for Startup

If a TDBISAMSession component has its SessionType property set to stLocal, then it is considered a local
session as opposed to a remote session. There is nothing extra that must be done to prepare a local
session for startup.

Preparing a Remote Session for Startup

If a TDBISAMSession component has its SessionType property set to stRemote, then it is considered a
remote session as opposed to a local session. Starting a remote session will cause DBISAM to attempt a
connection to the database server specified by the RemoteAddress or RemoteHost and RemotePort or
RemoteService properties. In addition, the RemoteEncryption property indicates whether the session's
connection to the database server will be encrypted using the RemoteEncryptionPassword property. You
must set these properties properly before trying to open the remote session or an exception will be raised.

The RemoteAddress and RemoteHost properties are normally mutually exclusive. They can both be
specified, but the RemoteHost property will take precedence. The host hame used for the server can be
specified via the "hosts" text file available from the operating system. In Windows 98, for example, it's
located in the Windows directory and is called "hosts.sam". Renaming this file to just "hosts" and adding
an entry in it for the database server will allow you to refer to the database server by host nhame instead of
IP address. The following is an example of an entry for a database server running on a LAN:

192.168.0.1 DBISAMLANServer

This is sometimes more convenient than remembering several IP addresses for different database servers.
It also allows the IP address to change without having to modify your application.

The RemotePort and RemoteService properties are also normally mutually exclusive. They can both be
specified, but the RemoteService property will take precedence. By default the ports that DBISAM
database servers use are:

Port Usage
12005 Normal access
12006 Administrative access

These ports can be changed, however, so check with your administrator or person in charge of the
database server configuration to verify that these are the ports being used.

The service name used for the database server can be specified via the "services" text file available from
the operating system. In Windows 98, for example, it's located in the \Windows directory and is called
"services". Adding an entry in it for the database server's port will allow you to refer to the server's port by
service name instead of port number. The following is an example of an entry for both the normal server

Page 59

Using DBISAM

port and the administrative port:

DBISAMServer 12005/tcp
DBISAMAdmin 12006/tcp

This is sometimes more convenient than remembering the port numbers for different database servers. It
also allows the port number to change without having to modify your application.

The RemoteEncryption property can be set to either True or False and determines whether the session's
connection to the server will be encrypted or not. If this property is set to True, the
RemoteEncryptionPassword property is used to encrypt and decrypt all data transmitted to and from the
database server. This property must match the same encryption password that the database server is
using or else an exception will be raised when a request is attempted on the server.

Note

When connecting as an administrator to the administrative port of the database server, you must
set the RemoteEncryption property to True since administrative connections always require
encryption.

If for any reason DBISAM cannot connect to a database server an exception will be raised. The error code
that is returned when a connection fails is 11280 and is defined as DBISAM_REMOTECONNECT in the
dbisamcn unit (Delphi) or dbisamcn header file (C++). It's also possible for DBISAM to be able to connect
to the server, but the connection will be rejected due to the database server's maximum connection
setting being reached (11282 and defined as DBISAM_REMOTEMAXCONNECT), the database server not
accepting any new logins (11281 and defined as DBISAM_REMOTENOLOGIN), the database server
blocking the client workstation's IP address from accessing the server (11283 and defined as
DBISAM_REMOTEADDRESSBLOCK), or an encrypted connection being required by the database server
(11277 and defined as DBISAM_REMOTEENCRYPTREQ).

The RemoteUser and RemotePassword properties can be used to automate the login to a database server.
Every DBISAM database server uses the following default user ID and password if the database server is
being started for the first time, or if it is being started with an empty or missing configuration file:

User ID: Admin (case-insensitive)
Password: DBAdmin (case-sensitive)

Starting a Session

To start a session you must set the TDBISAMSession Active property to True or call its Open method. For a
local session (SessionType property is set to stLocal), the session will be opened immediately. As
discussed above, for a remote session (SessionType property is set to stRemote), performing this
operation will cause the session to attempt a connection to the database server specified by the
RemoteAddress or RemoteHost and RemotePort or RemoteService properties. If the RemoteUser and
RemotePassword properties are specified and are valid, then neither the OnRemoteLogin event nor the
interactive login dialog will be triggered. If these properties are not specified or are not valid, the
OnRemoteLogin event will be triggered if there is an event handler assigned to it. If an event handler is
not assigned to the OnRemoteLogin event, DBISAM will display an interactive login dialog that will prompt
for a user ID and password. All database servers require a user ID and password in order to connect and
login. DBISAM will allow for up to 3 login attempts before issuing an exception. The error code that is

Page 60

Using DBISAM

returned when a connection fails due invalid login attempts is 11287 and is defined as
DBISAM_REMOTEINVLOGIN in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Note

Any version of DBISAM for Delphi 6 or higher (including C++Builder 6 and higher) requires that you
include the DBLogDIg unit to your uses clause in order to enable the display of a default remote
login dialog. This is done to allow for DBISAM to be included in applications without linking in the
forms support, which can add a lot of unnecessary overhead and also cause unwanted references to
user interface libraries. This is not required for Delphi 5 or C++Builder 5, but these versions always
include forms support.

The OnStartup event is useful for handling the setting of any pertinent properties for the session before
the session is started. This event is called right before the session is started, so it is useful for situations
where you need to change the session properties from values that were used at design-time to values that
are valid for the environment in which the application is now running. The following is an example of using
an OnStartup event handler to set the remote connection properties for a session:

procedure TMyForm.MySessionStartup (Sender: TObject) ;
var
Registry: TRegistry;
begin
Registry:=TRegistry.Create;
try
Registry.RootKey:=HKEY LOCAL MACHINE;
if Registry.OpenKey ('SOFTWARE/My Application',False) then
begin
if Registry.ReadBool ('IsRemote') then
begin
with MySession do
begin
SessionType:=stRemote;
RemoteAddress:=Registry.ReadString ('RemoteAddress') ;
RemotePort:=Registry.ReadString ('RemotePort');
end;
end
else
MySession.SessionType:=stLocal;
end
else
ShowMessage ('Error reading connection information '+
'from the registry');
finally
Registry.Free;
end;
end;

Note
You should not call the session's Open method or toggle the Active property from within this event
handler. Doing so can cause infinite recursion.

The OnShutdown event can be used for taking specific actions after a session has been stopped. As is the

Page 61

Using DBISAM

case with the OnStartup event, the above warning regarding the Open method or Active property also

applies for the OnShutDown event.

More Session Properties

After a session is started, it can also be used to control certain global settings for all TDBISAMDatabase,
TDBISAMQuery, and TDBISAMTable components that link to the session via their SessionName properties.
The properties that represent these global settings are detailed below:

Property

ForceBufferFlush

LockProtocol

LockRetryCount

LockWaitTime

KeepConnections

PrivateDir

ProgressSteps

StrictChangeDetection

Note

Description

Controls whether the session will automatically force the
operating system to flush data to disk after every write
operation completed by DBISAM. Please see the Buffering and
Caching topic for more information.

Controls whether the session will use a pessimistic or
optimistic locking model when editing records via navigational
or SQL methods. Please see the Locking and Concurrency
topic for more information.

Controls the number of times that the engine will retry a
record or table lock before raising an exception. This property
is used in conjunction with the LockWaitTime property.

Controls the amount of time, in milliseconds, that the engine
will wait in-between lock attempts. This property is used in
conjuction with the LockRetryCount property.

Controls whether temporary TDBISAMDatabase components
are kept connected even after they are no longer needed.
This property has no effect upon a local session, but can
result in tremendous performance improvements for a remote
session, therefore it defaults to True and should be left as
such in most cases.

Controls where temporary files generated by DBISAM are
stored for a local session. This property is ignored for remote
sessions.

Controls the maximum number of progress events that any
batch operation will generate. Setting this property to 0 will
cause the suppression of all progress messages.

Controls whether DBISAM will use strict or lazy change
detection for the session. The default is False, or lazy change
detection. Please see the Change Detection topic for more
information.

You can modify all of the above session properties both before and after a session is started.
However, they do not have any effect upon a session until the session is actually started.

Page 62

Using DBISAM

2.8 Calling Server-Side Procedures

Introduction

DBISAM allows a database server to be customized via server-side procedures. Remote sessions may then
call these server-side procedures in order to isolate batch processes and other types of processing on the
database server. This helps reduce network traffic and allow for all-or-nothing processes that will complete
regardless of whether the client workstation loses its connection to the database server or goes down
unexpectedly. To see how to define the actual server-side procedure on the server, please see the
Customizing the Engine topic.

Calling the Procedure

To successfully call a server-side procedure you must be logged into the database server as a user that
has been granted rights to execute the server-side procedure that you wish to call. Please see the Server
Administration topic for more information.

Before calling the server-side procedure, you must populate the TDBISAMSession RemoteParams property
as needed for any parameters to the procedure using the TDBISAMParams CreateParam method, call the
TDBISAMSession CallRemoteProcedure method with the proper procedure name (case-insensitive), and
then examine any needed return parameters using the RemoteParams property or the TDBISAMSession
RemoteParamByName method. The following example shows how you would call a server-side procedure
named "Test_Procedure" that accepts an integer and a string:

begin
with MyRemoteSession do
begin
RemoteParams.CreateParam(ftInteger, 'ID') .AsInteger:=10;
RemoteParams.CreateParam (ftString, 'Name') .AsInteger:="'Test';
try

{ Now call the procedure }
CallRemoteProcedure ('Test Procedure');

if RemoteParams.ParamByName ('Result') .AsBoolean then
ShowMessage ('The record was added successfully')
else
ShowMessage ('The record was not added successfully');
except

ShowMessage ('There was an error calling the '+
'server-side procedure');
end;
end;
end;

Handling Exceptions in Procedures

If a server-side procedure raises any type of exception at all, the database server will send the exception
back to the remote session and raise it in the context of the CallRemoteProcedure method call. Defining a
try..except block (Delphi) or a try..catch block (C++) is the best way to handle these exceptions since you
can then respond to them accordingly based upon the server-side procedure that you are calling.

Page 63

Using DBISAM

2.9 Opening Databases

Introduction

As already discussed in the DBISAM Architecture topic, the TDBISAMDatabase component represents a
database in DBISAM. The following information will show how to open a database in an application.

Preparing a Database for Opening

Before you can open a database using the TDBISAMDatabase component, you must set a couple of
properties. The TDBISAMDatabase DatabaseName property is the name given to the database within the
application and is required for naming purposes only. For a local database the Directory property should
contain a directory name, either in UNC format or using logical drive mapping notation. For a remote
database, the RemoteDatabase property will contain the name of a logical database set up on the
database server that you are connecting to.

Note

Setting the Directory property for a local database so that it points to an invalid directory and then
opening the database will not cause an error. However, an exception will be raised if a
TDBISAMTable or TDBISAMQuery component that is linked to the TDBISAMDatabase via its
DatabaseName property tries to open a table. The error code that is returned when a table open
fails due to the directory or table files not being present is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

Opening a Database

To open a database you must set the TDBISAMDatabase Connected property to True or call its Open
method. For a local TDBISAMDatabase component whose SessionName property is linked to a local
TDBISAMSession component, the database will cause the local TDBISAMSession to be opened if it is not
already, and then the database will be opened. For a remote database whose SessionName property is
linked to a remote TDBISAMSession component, performing this operation will cause the remote session
to attempt a connection to the database server if it is not already connected. If the connection is
successful, the database will then be opened.

The BeforeConnect event is useful for handling the setting of any pertinent properties for the
TDBISAMDatabase component before it is opened. This event is triggered right before the database is
opened, so it's useful for situations where you need to change the database information from that which
was used at design-time to something that is valid for the environment in which the application is now
running. The following is an example of a BeforeConnect event handler that is used to set the properties
for a TDBISAMDatabase component before it is opened:

procedure TMyForm.MyDatabaseBeforeConnect (Sender: TObject);
var
Registry: TRegistry;

begin
Registry:=TRegistry.Create;
try
with MyDatabase do

begin
{ Make sure that the DatabaseName is set }

Page 64

Using DBISAM

DatabaseName:='MyDatabase';
{ Now set the Directory property to the value
from the registry }
Registry.RootKey:=HKEY LOCAL MACHINE;
if Registry.OpenKey ('SOFTWARE/My Application',False) then
Directory:=Registry.ReadString ('Directory')
else
ShowMessage ('Error reading database information '+
'from registry');
end;
finally
Registry.Free;
end;
end;

Note
You should not call the TDBISAMDatabase Open method or modify the Connected property from
within this event handler. Doing so can cause infinite recursion.

More Database Properties

A TDBISAMDatabase component has one other property of importance that is detailed below:

Property Description

KeepConnection Controls whether the database connection is kept active even
after it is no longer needed. This property has no effect upon
a local session, but can result in tremendous performance
improvements for a remote session, therefore it defaults to
True and should be left as such in most cases.

KeepTablesOpen Controls whether the physical tables opened with the
database connection are kept open even after they are closed
by the application. Setting this property to True can
dramatically improve the performance of large SQL scripts and
any other operations that involve constantly opening and
closing the same tables over and over.

Page 65

Using DBISAM

2.10 Transactions

Introduction

DBISAM allows for transactions in order to provide the ability to execute multi-table updates and have
them treated as an atomic unit of work. Transactions are implemented logically in the same fashion as
most other database engines, however at the physical level there are some important considerations to
take into account and these will be discussed here.

Executing a Transaction

A transaction is executed entirely by using the StartTransaction, Commit, and Rollback methods of the
TDBISAMDatabase component. A typical transaction block of code looks like this:

begin
with MyDatabase do
begin
StartTransaction;
try
{ Perform some updates to the table(s) in this database }
Commit;
except
Rollback;
end;
end;
end;

Note

It is very important that you always ensure that the transaction is rolled back if there is an
exception of any kind during the transaction. This will ensure that the locks held by the transaction
are released and other sessions can continue to update data while the exception is dealt with. Also,
if you roll back a transaction it is always a good idea to refresh any open TDBISAMTable or
TDBISAMQuery components linked to the TDBISAMDatabase component involved in the transaction
so that they reflect the current data and not any data from the transaction that was just rolled back.
Along with refreshing, you should make sure that any pending inserts or edits for the
TDBISAMTable or TDBISAMQuery components are cancelled using the Cancel method before the
transaction is rolled back to ensure that the inserts or edits are not accidentally posted using the
Post method after the transaction is rolled back (unless that is specifically what you wish to do).

Restricted Transactions

It is also possible with DBISAM to start a restricted transaction. A restricted transaction is one that
specifies only certain tables be part of the transaction. The StartTransaction method accepts an optional
list of tables that can be used to specify what tables should be involved in the transaction and,
subsequently, locked as part of the transaction (see below regarding locking). If this list of tables is nil
(the default), then the transaction will encompass the entire database.

The following example shows how to use a restricted transaction on two tables, the Customer and Orders
table:

Page 66

Using DBISAM

var
TablesList: TStrings;
begin
TablesList:=TStringlList.Create;
try
with MyDatabase do
begin
TablesList.Add ('Customer') ;
TablesList.Add ('Orders');
StartTransaction (TablesList) ;
try
{ Perform some updates to the table(s) in the transaction }
Commit;
except
Rollback;
raise;
end;
finally
TablesList.Free;
end;
end;

Flushing Data to Disk During a Commit

By default, the Commit method will cause a flush of all data to disk within the operating system, which is
egivalent to calling the FlushBuffers method of all TDBISAMTable or TDBISAMQuery components involved
in the transaction that were updated. The Commit method has an optional parameter that controls this
called ForceFlush and it defaults to True. Passing False as the ForceFlush parameter will improve the
performance of a commit operation at the expense of possible data corruption if the application is
improperly terminated after the commit takes place. This is due to the fact that the operating system may
wait several minutes before it lazily flushes any modified data to disk. Please see the Buffering and
Caching topic for more information.

Locking During a Transaction

When a transaction on the entire database is started, DBISAM acquires a special transaction write lock on
the entire database. This prevents any other sessions from adding, updating, or deleting any data from
the tables in the database while the current transaction is active. When a restricted transaction is started
on a specific set of tables, DBISAM will only acquire this special transaction write lock on the tables
specified as part of the transaction. This special transaction write lock is a very important concept since it
illustrates the importance of keeping transactions short (not more than a couple of seconds) in DBISAM.
However, this special transaction write lock does not prevent other sessions from reading data from the
tables involved in the transaction or acquiring record or table locks on the tables involved in the
transaction while the current transaction is active. This means that it is still possible for other sessions to
cause a TDBISAMTable or TDBISAMQuery Edit or Delete method call within the current transaction to fail
due to not being able to acquire the necessary record lock.

Any record locks acquired by calling the TDBISAMTable or TDBISAMQuery Edit or Delete methods during a
transaction will remain locked even after a call to the TDBISAMTable or TDBISAMQuery Post method. This
is also the case for table locks acquired via the TDBISAMTable LockTable method, which will remain locked
even after a call to the TDBISAMTable UnlockTable method has been made. These locks will be released
when the transaction is rolled back or committed, but not until that point.

Page 67

Using DBISAM

Opening and Closing Tables

If a transaction on the entire database is active and a new table is opened via the TBISAMTable or
TDBISAMQuery components, that table will automatically become part of the active transaction. Unlike a
transaction on the entire database, if a table involved in a restricted transaction is not currently open at
the time that StartTransaction is called, then an attempt will be made to open it at that time. Also, any
tables that are opened during the restricted transaction and not initially specified as part of the restricted
transaction will be excluded from the transaction. If a table involved in a transaction, either restricted or
not, is closed while the transaction is still active, the table will be kept open internally by DBISAM until the
transaction is committed or rolled back, at which point the table will then be closed. However, the
TDBISAMTable or TDBISAMQuery component that opened the table originally will indicate that the table is
closed.

SQL and Transactions

The INSERT, UPDATE, and DELETE SQL statements implicitly use a restricted transaction on the updated
tables if a transaction is not already active. The interval at which the implicit transaction is committed is
based upon the record size of the table being updated in the query and the amount of buffer space
configured for the TDBISAMENgine component via its MaxTableDataBufferCount and
MaxTableDataBufferSize properties. The COMMIT INTERVAL clause can be used within these SQL
statements to manually control the interval at which the transaction is committed, and applies both to
situations where a transaction was explicitly started by the developer and situations where the transaction
was implicitly started by DBISAM. In the case where a transaction was explicitly started by the developer,
the absence of a COMMIT INTERVAL clause in the SQL statement being executed will force DBISAM to
never commit any of the effects of the SQL statement and leaves this up to the developer to handle after
the SQL statement completes. The COMMIT INTERVAL clause can also contain the FLUSH keyword, which
indicates that any transaction commit that takes place during the execution of the SQL statement should
also force an operating system flush to disk. By default, commits that occur during the execution of SQL
statements do not force an operating system flush to disk.

In addition to implicit transactions with the INSERT, UPDATE, and DELETE SQL statements, DBISAM also
allows the use of the START TRANSACTION, COMMIT, and ROLLBACK SQL statements.

Incompatible Operations

The following operations are not compatible with transactions and will cause a transaction to commit if
encountered during a transaction.

Backing Up and Restoring Databases
Verifying and Repairing Tables

Creating and Altering Tables

Adding and Deleting Indexes from a Table
Optimizing Tables

Upgrading Tables

Deleting Tables

Renaming Tables

Emptying Tables

Copying Tables

Isolation Level

The default and only isolation level for transactions in DBISAM is serialized. This means that only the
session in which the transaction is taking place will be able to see any inserts, updates, or deletes made
during the transaction. All other sessions will see the data as it existed before the transaction began. Only

Page 68

Using DBISAM

after the transaction is committed will other sessions see the new inserts, updates, or deletes.
Data Integrity

A transaction in DBISAM is buffered, which means that all inserts, updates, or deletes that take place
during a transaction are cached in memory for the current session and are not physically applied to the
tables involved in the transaction until the transaction is committed. If the transaction is rolled back, then
the updates are discarded. With a local session this allows for a fair degree of stability in the case of a
power failure on the local workstation, however it will not prevent a problem if a power failure happens to
occur while the commit operation is taking place. Under such circumstances it's very likely that physical
and/or logical corruption of the tables involved in the transaction could take place. The only way
corruption can occur with a remote session is if the database server itself is terminated improperly during
the middle of a transaction commit. This type of occurrence is much more rare with a server than with a
workstation.

Page 69

Using DBISAM

2.11 Backing Up and Restoring Databases

Introduction

Backing up and restoring databases is accomplished through the TDBISAMDatabase Backup, BackupInfo,
and Restore methods. The properties used by the Backup, BackupInfo, and Restore methods include the
Connected,

DatabaseName, Directory, and RemoteDatabase properties. The OnBackupProgress, OnBackupLog,
OnRestoreProgress, and OnRestoreLog events can be used to track the progress of and log messages
about the backup or restore operation. Backing up a database copies all or some of the tables within the
database to a compressed or uncompressed backup file. Restoring a database copies all or some of the
tables in a compressed or uncompressed backup file into the database, overwriting any tables with the
same names that already exist in the database.

Backing Up a Database

To backup a database you must specify the DatabaseName and Directory or RemoteDatabase properties
of the TDBISAMDatabase component, set the Connected property to True, and then call the Backup
method. If you are backing up a database from a local session then you will specify the Directory property.
If you are backing up a database from a remote session then you will specify the RemoteDatabase
property. The TDBISAMDatabase component must be open when this method is called. If the
TDBISAMDatabase component is closed an exception will be raised.

Note

When the backup executes, it obtains a read lock for the entire database that prevents any sessions
from performing any writes to any of the tables in the database until the backup completes.
However, since the execution of this method is quite fast the time during which the tables cannot
be changed is usually pretty small. To ensure that the database is available as much as possible for
updating, it is recommended that you backup the tables to a file on a hard drive and then copy the
file to a CD, DVD, or other slower backup device outside of the scope of the database being locked.

The following example shows how to backup a local database using the Backup method:

The local database has the following tables:

Table Name
Customers
Orders
Items

var
TablesToBackup: TStrings;

begin
TablesToBackup:=TStringList.Create;
try
with MyDatabase do

begin

Page 70

Using DBISAM

DatabaseName:='MyDatabase';
Directory:="'d:\temp';
with TablesToBackup do
begin
Add ('Customers') ;
Add ('Orders') ;
Add('Items') ;
end;
if Backup('d:\temp\'+
StringReplace (DateToStr (Date),
'/','"", [rfReplaceAll])+"'.bkp',
'Daily Backup for '+DateToStr (Date), 6,
TablesToBackup) then
ShowMessage ('Backup was successful')
else
ShowMessage ('Backup failed');
end;
finally
TablesToBackup.Free;
end;
end;

Note

Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Tracking the Backup Progress

To take care of tracking the progress of the backup we have provided the OnBackupProgress and
OnBackupLog events within the TDBISAMDatabase component. The OnBackupProgress event will report
the progress of the backup operation and the OnBackupLog event will report any log messages regarding
the backup operation.

Retrieving Information from a Backup File

To retrieve information from a backup file you must specify the DatabaseName and Directory or
RemoteDatabase properties of the TDBISAMDatabase component, set the Connected property to True,
and then call the BackupInfo method. If you are retrieving information from a backup file from a local
session then you will specify the Directory property. If you are retrieving information from a backup file
from a remote session then you will specify the RemoteDatabase property. The TDBISAMDatabase
component must be open when this method is called. If the TDBISAMDatabase component is closed an
exception will be raised.

Note

Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Restoring a Database

Page 71

Using DBISAM

To restore tables to a database you must specify the DatabaseName and Directory or RemoteDatabase

properties of the TDBISAMDatabase component, set the Connected property to True, and then call the

Restore method. If you are restoring tables to a database from a local session then you will specify the

Directory property. If you are restoring tables to a database from a remote session then you will specify
the RemoteDatabase property.

Note

The Restore method overwrites any existing tables with names that are the same as those specified
in this parameter. You should be very careful when using this method with an existing database to
prevent loss of data.

The TDBISAMDatabase component must be open when this method is called. If the TDBISAMDatabase
component is closed an exception will be raised.

Note

When the restore executes, it obtains a write lock for the entire database that prevents any sessions
from performing any reads or writes from or to any of the tables in the database until the restore
completes. However, since the execution of this method is quite fast the time during which the
tables cannot be accessed is usually pretty small.

The following example shows how to restore a table to a local database using the Restore method:

The local database has the following tables:

Table Name
Customers
Orders
Items

var
TablesToRestore: TStrings;

begin
TablesToRestore:=TStringList.Create;
try
with MyDatabase do

begin
DatabaseName:="'MyDatabase';
Directory:='d:\temp';
with TablesToRestore do
Add ('Customers') ;
if Restore('d:\temp\'+
StringReplace (DateToStr (Date),
'/', "', [rfReplaceAll])+"'.bkp"',
TablesToRestore) then
ShowMessage ('Restore was successful')
else
ShowMessage ('Restore failed');
end;

Page 72

Using DBISAM

finally
TablesToRestore.Free;
end;
end;

Note

Remote databases can only reference backup files that are accessible from the database server on
which the database resides. You must specify the path to the backup file in a form that the
database server can use to open the file.

Tracking the Restore Progress

To take care of tracking the progress of the restore we have provided the OnRestoreProgress and
OnRestorelLog events within the TDBISAMDatabase component. The OnRestoreProgress event will report
the progress of the restore operation and the OnRestoreLog event will report any log messages regarding
the restore operation.

Page 73

Using DBISAM

2.12 In-Memory Tables

Introduction

DBISAM provides a complete and seamless in-memory table implementation within the same framework
as disk-based tables. There are only a few slight differences that should be taken into account when using
in-memory tables, and these are detailed below.

DatabaseName Property

The DatabaseName property in the TDBISAMTable and TDBISAMQuery components should always be set
to the special in-memory database name "Memory" in order to create or access any in-memory tables. All
in-memory tables reside in this same virtual database that is global to the application process. This means
that if you create an in-memory table called "mytable" using the TDBISAMTable CreateTable method and
then try to create it again elsewhere within the same application, you will receive an error indicating that
the table already exists. Because in-memory tables are global to the process, multiple sessions can access
and share the same in-memory tables.

Sharing In-Memory Tables

In-memory tables can be shared just like regular disk-based tables. They are also thread-safe and exhibit
the same locking and access behaviors.

Creating In-Memory Tables

Just like disk-based tables, in-memory tables must be created before they can be opened.

Deleting In-Memory Tables

Just like disk-based tables, in-memory tables must be deleted if they are no longer needed. If for any
reason an in-memory table is not deleted during the execution of an application, DBISAM will
automatically delete it when the application process is terminated.

Local and Remote In-Memory Tables

There are no differences between using in-memory tables with local sessions and using in-memory tables
with remote sessions other than the fact that in-memory tables created within a remote session are stored
on the database server whereas in-memory tables created within a local session are stored locally in the
application's memory space.

Page 74

Using DBISAM

2.13 Creating and Altering Tables

Introduction

Creating tables and altering the structure of existing tables is accomplished through the CreateTable and
AlterTable methods of the TDBISAMTable component. The properties used by the CreateTable and
AlterTable methods include the FieldDefs, IndexDefs, DatabaseName, TableName, and Exists properties.

Basic Steps

There are four basic steps that need to be completed when creating a table or altering the structure of an
existing table. They are as follows:

1) Define the field definitions using the FieldDefs property, which is a TDBISAMFieldDefs object.
2) Define the index definitions, if any, using the IndexDefs property, which is a TDBISAMIndexDefs object.
3) Set the database and table information using the DatabaseName and TableName properties.

4) Call the CreateTable method if creating a table or the AlterTable method if altering the structure of an
existing table.

Defining the field definitions

The FieldDefs property is used to specify which fields to define for the new or existing table. The FieldDefs
property is a list of TDBISAMFieldDef objects, each of which contains information about the fields that
make up the table. You may add new TDBISAMFieldDef objects using the Add method. There are two
different versions of the Add method. One is for use when creating a table and does not accept a FieldNo
parameter as the first parameter, and the other is for use when altering the structure of an existing table
and requires that you specify the FieldNo parameter as the first parameter. The reason for this difference
is that DBISAM uses field numbers (1-based) to distinguish between existing fields in a table and new
fields being added. It also uses field numbers in addition to the index position (0-based) of a field
definition in the FieldDefs property to determine if a field has been moved in the structure, but still exists.
The use of field numbers also allows for the renaming of existing fields in a table without losing data when
altering the structure of an existing table.

Note
You may use the FieldDefs property's Update method to automatically populate the field definitions
for the table from table itself specified by the TDBISAMTable TableName property.

The following summarizes how field numbers and the index position of field definitions are used when
creating a table or altering the structure of a table:

Value Rules

Page 75

Using DBISAM

Field Number

Index Position

Defining the index definitions

A field number is 1-based, meaning that it starts at 1 for the
first field definition in a table. A field number is automatically
assigned for all field definitions when creating a table so it
need not be specified and will be ignored if specified.

When altering the structure of an existing table, a field
number is required for each field definition. As indicated
above, using the FieldDefs property's Update method will
automatically populate the correct field numbers from an
existing table. If adding a new field, the field number should
be set to the next largest field number based upon the
existing field numbers in the FieldDefs property. For example,
if you have 5 field definitions in the FieldDefs property and
wish to add another, the new field definition should be
specified with 6 as its field number.

Note

The field definitions represented by the FieldDefs
property can have gaps in the field numbers when
altering the structure of an existing table. The is
because it is possible that a given field definition has
been deleted, which means that its field number would
not be present anywhere in the field definitions. This
type of condition is exactly what indicates to DBISAM
that the field should be removed from the table
structure.

An index position is 0-based, meaning that the first field
definition is at index position 0, the second field definition at
index position 1, etc. When creating a table or altering the
structure of an existing table, the index position represents
the desired physical position of the field definition in the table
after the table creation or alteration takes place.

When altering the structure of an existing table, you can
move field definitions around to different index positions and
leave their field numbers intact. This will indicate to DBISAM
that the field has simply moved its position in the structure of
the table. You can also use the Insert method to insert a field
definition at a specific index position. Like the Add method,
there are two versions of the Insert method, one with a
FieldNo parameter for use when altering the structure of an
existing table and one without for use when creating a table.

The IndexDefs property is used to specify which indexes to define for the new or existing table. The
IndexDefs property is a list of TDBISAMIndexDef objects, each of which contains information about the
indexes defined for the table. You may add new TDBISAMIndexDef objects using the Add method. Unlike
field definitions, DBISAM uses the index name to distinguish between different index definitions, and their
index position in the list of index definitions is irrelevant.

Page 76

Using DBISAM

Note
You may use the IndexDefs property's Update method to automatically populate the index
definitions for the table from table itself specified by the TDBISAMTable TableName property.

Please see the Index Compression topic for more information on the options for index compression in
DBISAM.

Setting the Database and Table Information

The DatabaseName and TableName properties are used to specify the name and location of the table to
create or the name of the table whose structure you wish to alter. The DatabaseName property can be set
to a value that matches the DatabaseName property of an existing TDBISAMDatabase component, or it
may directly specify the path to the new or existing table. The TableName property specifies the name of
the new or existing table.

Please see the DBISAM Architecture and Opening Tables topics for more information.
Creating the Table

After defining the field and index definitions and setting the database and table information, you can call
the CreateTable method to create the actual table. It is usually good practice to also examine the Exists
property of the TDBISAMTable component first to make sure that you don't attempt to overwrite an
existing table. If you do attempt to overwrite an existing table an EDBISAMEngineError exception will be
raised. The error code given when a table create fails due to the table already existing is 13060 and is
defined as DBISAM_TABLEEXISTS in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The CreateTable method can be called without any parameters or you may specify many different
parameters that set table-wide information for the table such as its description, locale, etc. The following
example shows how to create the local "customer" table using the CreateTable method without any
additional parameters:

begin
with MyTable do

begin

DatabaseName:='d:\temp';

TableName:='customer';

with FieldDefs do
begin
Clear;
Add ('CustNo', ftFloat, 0, True) ;
Add ('Company', ftString, 30, False);
Add ('Addrl', ftString,30,False);
Add ('Addr2', ftString,30,False);
Add ('City', ftString,15,False);
Add ('State', ftString,20,False);
Add('Zip', ftString, 10,False);
Add ('Country', ftString, 20, False);
Add ('Phone', ftString, 15, False);
Add ('FAX', ftString, 15,False);
Add ('Contact', ftString, 20, False) ;
end;

with IndexDefs do
begin

Page 77

Using DBISAM

Clear;
Add('', 'CustNo', [ixPrimary]) ;
Add ('ByCompany', 'Company', [ixCaseInsensitive],
'',icDuplicateByte);
end;
if not Exists then
CreateTable;
end;

end;

Altering the Structure of the Table

After defining the field and index definitions and setting the database and table information, you can call
the AlterTable method to alter the structure of the existing table. It is usually good practice to also
examine the Exists property of the TDBISAMTable component first to make sure that you don't attempt to
alter the structure of a non-existent table. If you do attempt to alter the structure of a non-existent table
an EDBISAMEngineError exception will be raised. The error code given when a table open fails due to the
table not being present is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi) or
dbisamcn header file (C++). Also, DBISAM requires exclusive access to the table during the process of
altering the table's structure and an EDBISAMEngineError exception will be raised if the table cannot be
opened exclusively. The error code given when a table open fails due to access problems is 11013 and is
defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The AlterTable method can be called without any parameters or you may specify many different
parameters that set table-wide information for the table such as its description, locale, etc. If you wish to
leave all of the table-wide information as it currently exists in the table, then you should pass the following
TDBISAMTable properties to the AlterTable method (in this order):

LocaleID
UserMajorVersion
UserMinorVersion
Encrypted

Password

Description
IndexPageSize
BlobBlockSize
LastAutoIncValue
TextIndexFields
TextIndexStopWords
TextIndexSpaceChars
TextIndexIncludeChars

These properties can be read from the exising table without requiring the table to be opened first.
However, in order for DBISAM to read the Password property of an encrypted DBISAM table or alter the
structure of an encrypted DBISAM table in general, the password for the encrypted table must already be
defined for the current session or else it must be provided via an event handler assigned to the
TDBISAMSession OnPassword event or by the user via the dialog that will be displayed by DBISAM if an
event handler is not assigned to this event for the current session. Please see the Opening Tables topic for
more information.

Page 78

Using DBISAM

Note

Calling the basic version of the AlterTable method without any parameters is not the same as calling
the AlterTable method with the above properties as parameters. Calling the AlterTable method with
no parameters instructs DBISAM to use the default parameters for all table-wide information.

The following example shows how to alter the local "customer" table's structure using the AlterTable
method without any additional parameters. In this example we want to add a LastSaleAmount (a BCD
field) to this table's structure in front of the LastSaleDate field and then add a secondary index on this new
LastSaleAmount field to speed up filtering in SQL queries:

Customer Table Structure Before Alteration

Field # Name DataType Size
1 CustomerID ftString 10
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30
7 LastSaleDate ftDate 0
Index Name Fields In Index Options
(none) CustomerID ixPrimary
begin
with MyTable do
begin
DatabaseName:='c:\temp';
TableName:='customer';

{ Always make sure the table is closed first }
Active:=False;
{ Update the field definitions using the
existing field definitions from the table }
FieldDefs.Update;
{ Same for the index definitions }
IndexDefs.Update;
{ Now insert the new field definition. Notice
the index position of 6 which is 0O-based and
the field number of 8 which is 1l-based and
equal to the next available field number since
there are currently 7 field definitions for this
table }
FieldDefs.Insert (6,8, 'LastSaleAmount', ftBCD, 2, False);
IndexDefs.Add('LastSaleAmount', 'LastSaleAmount', []);
{ Now alter the table's structure }
AlterTable;
end;
end;

Page 79

Using DBISAM

Customer Table Structure After Alteration

Field # Name DataType Size
1 CustomerID ftString 10

2 CustomerName ftString 30

3 ContactName ftString 30

4 Phone ftString 10

5 Fax ftString 10

6 EMail ftString 30

7 LastSaleAmount ftBCD 2

8 LastSaleDate ftDate 0
Index Name Fields In Index Options
(none) CustomerID ixPrimary
LastSaleDate LastSaleDate (none)

In addition to using the TDBISAMTable CreateTable and AlterTable methods for creating and altering the
structure of existing tables, DBISAM also allows the use of the CREATE TABLE and ALTER TABLE SQL
statements.

Backup Files

Unless the SuppressBackups parameter to the AlterTable method is set to True (default is False), DBISAM
will make backups of a table's physical files before altering the structure of a table, except when the
following four conditions exist:

1) The only alteration of the structure that has taken place has been a change in the table description or
the user-defined major or minor version numbers.

2) The only alteration of the structure that has taken place has been a change in the name of a field or its
description.

3) The only alteration of the structure that has taken place has been a change in the nhame of an index.
4) Any combination of these three conditions.
In all other cases DBISAM will make a backup of each physical file associated with the table whose

structure is being altered. Each physical file will have the same root table name but with a different
extension. These extensions are as follows:

Original Extension Backup Extension
.dat (data) .dbk
.idx (indexes) .ibk
.blb (BLOBs) .bbk

Page 80

Using DBISAM

Note

There is one exception - if the alteration of the table structure has only changed one of the primary
or secondary indexes or the full text index (by changing the full text indexing parameters), then
only the index file will be backed up. This is designed in this fashion to speed up the process of
altering a table's structure when the only change has been to the index definitions.

To restore these files in case of a mistake, simply rename them to the proper extension or copy them to
the original file names. Also, these backup files will get overwritten without warning for each structure
alteration that occurs on the table. If you need the backup files for future use it's best to copy them to a
separate directory where they will be safe.

The file extensions described above are the default extensions and can be changed. Please see the
DBISAM Architecture and Customizing the Engine topics for more information.

Tracking the Progress of the Table Structure Alteration

To take care of tracking the progress of the table structure alteration, we have provided the
TDBISAMTable and TDBISAMQuery OnAlterProgress events.

Dealing with Data Loss in the Table Structure Alteration

To take care of dealing with data loss during the alteration of a table's structure, we have provided the
TDBISAMTable and TDBISAMQuery OnDatalost events. The OnDatalost event is used to track when data
is lost due to field conversions between incompatible types, field constraint failures, field deletions, or key
violations resulting from changes in the primary index definition or unique secondary index definitions.

Page 81

Using DBISAM

2.14 Upgrading Tables

Introduction

Upgrading tables is accomplished through the UpgradeTable method of the TDBISAMTable component.
The properties used by the UpgradeTable method include the DatabaseName, TableName, and Exists
properties. Upgrading a table takes table from a previous DBISAM table format and modifies its internal
format so that it is compatible with the table format used by the version of DBISAM in use during the
upgrade. DBISAM maintains a version number in all tables that indicates to DBISAM what format the table
is in. You can use the TDBISAMTable VersionNum property to see what table format version a table is
using.

Upgrading a Table

To upgrade a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the UpgradeTable method. The table component must be closed and the Active
property must be False. It is usually good practice to also examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to upgrade a non-existent table. If
you do attempt to upgrade a non-existent table an EDBISAMEngineError exception will be raised. The
error code given when a table upgrade fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). DBISAM will attempt to
open the table exclusively before upgrading the table. If another session has the table open then an
EDBISAMENgineError exception will be raised when this method is called. The error code given when
upgrading a table fails due to the table being open by another session is 11013 and is defined as
DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to upgrade the "customer" table using the UpgradeTable method:

begin
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
UpgradeTable;

end;

end;

Note
If a table is already in the proper format for the current version of DBISAM, this method will do
nothing.

In addition to using the TDBISAMTable UpgradeTable method for upgrading tables, DBISAM also allows
the use of the UPGRADE TABLE SQL statement.

Logging Upgrade Messages

During the upgrade process, DBISAM will relay detailed log messages regarding the process start and stop
times and any information it deems pertinent. You can trap these log messages for further display or

Page 82

Using DBISAM
analysis via the TDBISAMTable and TDBISAMQuery OnUpgradelLog events.

Tracking the Upgrade Progress

To take care of tracking the progress of the upgrade we have provided the TDBISAMTable and
TDBISAMQuery OnUpgradeProgress events.

Backup Files

DBISAM will make backups of a table's physical files before upgrading the table. Each physical file will
have the same root table name but with a different extension. These extensions are as follows:

Original Extension Backup Extension
.dat (data) .dup
.idx (indexes) .iup
.blb (BLOBSs) .bup

To restore these files in case of a mistake, simply rename them to the proper extension or copy them to
the original file names. Also, these backup files will get overwritten without warning for each upgrade that
occurs on the table. If you need the backup files for future use it's best to copy them to a separate
directory where they will be safe.

The file extensions described above are the default extensions and can be changed. Please see the
DBISAM Architecture and Customizing the Engine topics for more information.

Page 83

Using DBISAM

2.15 Deleting Tables

Introduction

Deleting tables is accomplished through the DeleteTable method of the TDBISAMTable component. The
properties used by the DeleteTable method include the DatabaseName, TableName, and Exists properties.

Deleting a Table

To delete a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the DeleteTable method. The table component must be closed and the Active
property must be False. It is usually good practice to also examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to delete a non-existent table. If you
do attempt to delete a non-existent table an EDBISAMEngineError exception will be raised. The error code
given when a table delete fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to delete the "customer" table using the DeleteTable method:

begin
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
DeleteTable;

end;

end;

Note

You should be extremely careful when using this method since deleting a table will remove the table
and its contents permanently. Be sure to have a backup of your data before using this method in
order to avoid any costly mistakes.

In addition to using the TDBISAMTable DeleteTable method for deleting tables, DBISAM also allows the
use of the DROP TABLE SQL statement.

Page 84

Using DBISAM

2.16 Renaming Tables

Introduction

Renaming tables is accomplished through the RenameTable method of the TDBISAMTable component. The
properties used by the RenameTable method include the DatabaseName, TableName, and Exists
properties.

Renaming a Table

To rename a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the RenameTable method. The table component must be closed and the Active
property must be False. It is usually good practice to also examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to rename a non-existent table. If you
do attempt to rename a non-existent table an EDBISAMENgineError exception will be raised. The error
code given when a table rename fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to rename the "customer" table to the "oldcustomer" table using the
RenameTable method:

begin
with MyDBISAMTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
RenameTable ('oldcustomer') ;

end;

end;

Note

You should be extremely careful when using this method since renaming a table can break
applications and cause them to encounter errors when trying to open up a table that no longer
exists under the same name.

In addition to using the TDBISAMTable RenameTable method for renaming tables, DBISAM also allows the
use of the RENAME TABLE SQL statement.

Page 85

Using DBISAM

2.17 Adding and Deleting Indexes from a Table

Introduction

Adding and Deleting indexes is accomplished through the AddIndex, Deletelndex, and DeleteAllIndexes
methods of the TDBISAMTable component. The properties used by these methods include the
DatabaseName, TableName, and Exists properties.

Adding an Index

To add an index, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the AddIndex method. The table can be open or closed when this method is
called, however if the table is already open it must have been opened exclusively, meaning that the
Exclusive property should be set to True. If the Exclusive property is set to False, an EDBISAMEngineError
exception will be raised when this method is called. The error code given when an addition of an index
fails due to the table not being opened exclusively is 10253 and is defined as DBISAM_NEEDEXCLACCESS
in the dbisamcn unit (Delphi) or dbisamcn header file (C++). If the table is closed when this method is
called, then DBISAM will attempt to open the table exclusively before adding the index. If another session
has the table open then an EDBISAMEngineError exception will be raised when this method is called. The
error code given when an addition of an index fails due to the table being open by another session is
11013 and is defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).
It is usually good practice to also examine the Exists property of the TDBISAMTable component first to
make sure that you don't attempt to add an index to a non-existent table. If you do attempt to add an
index to a non-existent table an EDBISAMEngineError exception will be raised. The error code given when
adding an index to a table fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). If you attempt to add
an index with the name of an existing index an EDBISAMEngineError exception will be raised. The error
code given when adding an index to a table that already contains an index with the same name is 10027
and is defined as DBISAM_INDEXEXISTS in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following is an example of adding a case-insensitive index on the Company field in the "customer"
table:

begin
with MyDBISAMTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
AddIndex ('ByCompany', 'Company',
[ixCaseInsensitive],'',icDuplicateByte) ;

end;

end;

Please see the Index Compression topic for more information on the options for index compression in
DBISAM.

In addition to using the TDBISAMTable AddIndex method for adding indexes to tables, DBISAM also allows
the use of the CREATE INDEX SQL statement.

Backup Files

Page 86

Using DBISAM

DBISAM will make backups of a table's physical index file before adding an index to a table. The physical
index file will have the same root table name but a different extension. This extension is as follows:

Original Extension Backup Extension
.idx (indexes) .ibk

To restore this files in case of a mistake, simply rename them to the proper extension or copy them to the
original file name. Also, this backup file will get overwritten without warning for each index addition or
structure alteration that occurs on the table. If you need the backup file for future use it's best to copy it
to a separate directory where it will be safe.

The file extensions described above are the default extensions and can be changed. Please see the
DBISAM Architecture and Customizing the Engine topics for more information.

Tracking the Progress of the Index Addition

To take care of tracking the progress of the index addition, we have provided the TDBISAMTable and
TDBISAMQuery OnIndexProgress events.

Dealing with Data Loss in the Index Addition

To take care of dealing with data loss during the addition of an index, we have provided the
TDBISAMTable and TDBISAMQuery OnDataLost events. The OnDataLost event is used to track when data
is lost due to key violations resulting from the addition of a primary index or unique secondary index.

Deleting an Index

To delete an index, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the DeleteIndex method. The DeleteIndex method accepts one parameter, the
name of the index to delete. If you are deleting the primary index of the table you should use a blank
string (") as the index name parameter. The same rules for exclusive table access that apply to the
AddIndex method also apply to the DeleteIndex method. If you attempt to delete an index that does not
exist an EDBISAMENgineError exception will be raised. The error code given when deleting an index that
does not exist in the table is 10022 and is defined as DBISAM_INVALIDINDEXNAME in the dbisamcn unit
(Delphi) or dbisamcn header file (C++).

The following is an example of deleting an index called ByCompany from the "customer" table:

begin
with MyDBISAMTable do
begin
DatabaseName:='d:\temp';
TableName:='customer';
if Exists then
DeletelIndex ('ByCompany') ;

end;

end;

In addition to using the TDBISAMTable DeleteIndex method for deleting indexes from tables, DBISAM also
allows the use of the DROP INDEX SQL statement.

Page 87

Using DBISAM

Deleting All Indexes from a Table

To delete all indexes from a table, you must specify the DatabaseName and TableName properties of the
TDBISAMTable component and then call the DeleteAllIndexes method. The same rules for exclusive table
access that apply to the DeleteIndex method also apply to the DeleteAllIndexes method.

The following is an example of deleting all indexes from the "customer" table:

begin
with MyDBISAMTable do
begin
DatabaseName:='d:\temp';
TableName:='customer';
if Exists then
DeleteAllIndexes;

end;

end;

Page 88

Using DBISAM

2.18 Emptying Tables

Introduction

Emptying tables is accomplished through the EmptyTable method of the TDBISAMTable component. The
properties used by the EmptyTable method include the DatabaseName, TableName, and Exists properties.
Emptying a table very quickly removes all of its records while keeping the structure, including indexes,
intact.

Emptying a Table

To empty a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the EmptyTable method. The table can be open or closed when this method is
called, however if the table is already open it must have been opened exclusively, meaning that the
Exclusive property should be set to True. If the Exclusive property is set to False, an EDBISAMEngineError
exception will be raised when this method is called. The error code given when emptying a table fails due
to the table not being opened exclusively is 10253 and is defined as DBISAM_NEEDEXCLACCESS in the
dbisamcen unit (Delphi) or dbisamcn header file (C++). If the table is closed when this method is called,
then DBISAM will attempt to open the table exclusively before emptying the table. If another session has
the table open then an EDBISAMENngineError exception will be raised when this method is called. The error
code given when emptying a table fails due to the table being open by another session is 11013 and is
defined as DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++). It is usually
good practice to also examine the Exists property of the TDBISAMTable component first to make sure that
you don't attempt to empty a non-existent table. If you do attempt to empty a non-existent table an
EDBISAMENgineError exception will be raised. The error code given when emptying a table fails due to the
table not existing is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi) or
dbisamcn header file (C++).

The following example shows how to empty the "customer" table using the EmptyTable method:

begin
with MyDBISAMTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
EmptyTable;

end;

end;

Note

You should be extremely careful when using this method since emptying a table will remove the
contents of the table permanently. Be sure to have a backup of your data before using this method
in order to avoid any costly mistakes.

In addition to using the TDBISAMTable EmptyTable method for emptying tables, DBISAM also allows the
use of the EMPTY TABLE SQL statement.

Page 89

Using DBISAM

2.19 Copying Tables

Introduction

Copying tables is accomplished through the CopyTable method of the TDBISAMTable component. The
properties used by the CopyTable method include the DatabaseName, TableName, and Exists properties.
By default, copying a table copies the entire structure and specified contents of a table to a new table. The
records that are copied can be controlled by setting a range or filter on the source table being copied prior
to calling the CopyTable method. You can also specify False for the last CopyData parameter in order to
only copy the table structure and not the table contents.

Note

The CopyTable method acquires a read lock on the source table at the beginning of the copy
operation and does not release it until the copy operation is complete. This is done to make sure
that no other sessions modify the data as well as make sure that the data that is copied is logically
consistent with the original table and does not contain partial updates. Please see the Locking and
Concurrency topic for more information.

Copying a Table

To copy a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the CopyTable method. The table can be open or closed when this method is
called, and the table does not need to be opened exclusively (Exclusive property=True). If the table is
closed when this method is called, then the DBISAM engine will attempt to open the table before copying
it. It is usually good practice to also examine the Exists property of the TDBISAMTable component first to
make sure that you don't attempt to copy a non-existent table. If you do attempt to copy a non-existent
table an EDBISAMEngineError exception will be raised. The error code given when copying a table fails
due to the table not existing is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi)
or dbisamcn header file (C++).

The following example shows how to copy the "customer" table to the "newcust" table in the same
database directory using the CopyTable method:

begin
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
CopyTable ('d:\temp', 'newcust') ;

end;

end;

Page 90

Using DBISAM

Note

When copying tables in a local session, you must specify the first database name parameter to the
CopyTable method as a local database directory. When copying tables in a remote session, you
must specify the first database name parameter to the CopyTable method as a database defined on
the database server. You cannot copy tables on a database server to local tables or vice-versa.
Please see the DBISAM Architecture topic for more information.

The CopyTable operation can also be performed on a table that is already open and has a range or filter
set. This is useful for limiting the copied records to a certain criteria. Please see the Setting Ranges on
Tables and Setting Filters on Tables and Query Result Sets topics for more information.

Tracking the Copy Progress

To take care of tracking the progress of the copy we have provided the TDBISAMTable OnCopyProgress
event.

Page 91

Using DBISAM

2.20 Optimizing Tables

Introduction

Optimizing tables is accomplished through the OptimizeTable method of the TDBISAMTable component.
The properties used by the OptimizeTable method include the DatabaseName, TableName, and Exists
properties. Optimizing a table will physically re-order a table's records based upon a specific index in order
to improve read-ahead performance and will also physically remove any empty space from a table. By
default the index used for the re-ordering of the table records is the primary index.

Optimizing a Table

To optimize a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the OptimizeTable method. The table component must be closed and the Active
property must be False. It is usually good practice to also examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to upgrade a non-existent table. If
you do attempt to upgrade a non-existent table an EDBISAMEngineError exception will be raised. The
error code given when a table upgrade fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). DBISAM will attempt to
open the table exclusively before optimizing the table. If another session has the table open then an
EDBISAMENgineError exception will be raised when this method is called. The error code given when
optimizing a table fails due to the table being open by another session is 11013 and is defined as
DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to optimize the "customer" table using the OptimizeTable method:

begin
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
OptimizeTable;

end;

end;

In addition to using the TDBISAMTable OptimizeTable method for optimizing tables, DBISAM also allows
the use of the OPTIMIZE TABLE SQL statement.

Tracking the Optimize Progress

To take care of tracking the progress of the optimization we have provided the TDBISAMTable and
TDBISAMQuery OnOptimizeProgress events.

Backup Files

By default, DBISAM will make backups of a table's physical files before optimizing the table. You can turn
this off via the second parameter to the OptimizeTable method. Each physical file will have the same root
table name but with a different extension. These extensions are as follows:

Page 92

Using DBISAM

Original Extension Backup Extension
.dat (data) .dbk
.idx (indexes) .ibk
.blb (BLOBs) .bbk

To restore these files in case of a mistake, simply rename them to the proper extension or copy them to
the original file names. Also, these backup files will get overwritten without warning for each optimization

that occurs on the table. If you need the backup files for future use it's best to copy them to a separate
directory where they will be safe.

The file extensions described above are the default extensions and can be changed. Please see the
DBISAM Architecture and Customizing the Engine topics for more information.

Page 93

Using DBISAM

2.21 Verifying and Repairing Tables

Introduction

Verifying and repairing tables is accomplished through the VerifyTable and RepairTable methods of the
TDBISAMTable component. The properties used by the VerifyTable and RepairTable methods include the
DatabaseName, TableName, and Exists properties. Verifying a table will check the table for any corruption
and indicate whether the table is valid or whether it is corrupted. Repairing a table will perform the actual
repair of a table, which is primarily making sure that the table is structurally sound, and indicate whether
the table was valid or whether it was corrupted.

Verifying a Table

To verify a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the VerifyTable method. The VerifyTable method returns True if the table is valid
and False if the table is corrupted. The table component must be closed and the Active property must be
False. It is usually good practice to also examine the Exists property of the TDBISAMTable component first
to make sure that you don't attempt to verify a non-existent table. If you do attempt to verify a non-
existent table an EDBISAMENgineError exception will be raised. The error code given when a table
verification fails due to the table not existing is 11010 and is defined as DBISAM_OSENOENT in the
dbisamcen unit (Delphi) or dbisamcn header file (C++). DBISAM will attempt to open the table exclusively
before verifying the table. If another session has the table open then an EDBISAMENngineError exception
will be raised when this method is called. The error code given when verifying a table fails due to the table
being open by another session is 11013 and is defined as DBISAM_OSEACCES in the dbisamcn unit
(Delphi) or dbisamcn header file (C++).

The following example shows how to verify the "customer" table using the VerifyTable method:

begin
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
begin
if VerifyTable then
ShowMessage ('Table is valid')
else
ShowMessage ('Table is corrupted');
end;
end;
end;

In addition to using the TDBISAMTable VerifyTable method for verifying tables, DBISAM also allows the
use of the VERIFY TABLE SQL statement.

Logging Verification Messages

During the verification process, DBISAM will relay detailed log messages regarding the process start and
stop times and any information it deems pertinent. You can trap these log messages for further display or
analysis via the TDBISAMTable and TDBISAMQuery OnVerifyLog events.

Page 94

Using DBISAM

Tracking the Verification Progress

To take care of tracking the progress of the verification we have provided the TDBISAMTable and
TDBISAMQuery OnVerifyProgress events.

Repairing a Table

To repair a table, you must specify the DatabaseName and TableName properties of the TDBISAMTable
component and then call the RepairTable method. The RepairTable method returns True if the table was
valid and False if the table was corrupted and needed to be repaired. The table component must be closed
and the Active property must be False. It is usually good practice to also examine the Exists property of
the TDBISAMTable component first to make sure that you don't attempt to repair a non-existent table. If
you do attempt to repair a non-existent table an EDBISAMEngineError exception will be raised. The error
code given when a table verification fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). DBISAM will attempt to
open the table exclusively before repairing the table. If another session has the table open then an
EDBISAMENgineError exception will be raised when this method is called. The error code given when
repairing a table fails due to the table being open by another session is 11013 and is defined as
DBISAM_OSEACCES in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The following example shows how to repair the "customer" table using the RepairTable method:

begin
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:='customer';
if Exists then
begin
if RepairTable then
ShowMessage ('Table was valid')
else
ShowMessage ('Table was corrupted, check the log '+
'messages for repair status');
end;
end;
end;

In addition to using the TDBISAMTable RepairTable method for repairing tables, DBISAM also allows the
use of the REPAIR TABLE SQL statement.

Logging Repair Messages

During the repair process, DBISAM will relay detailed log messages regarding the process start and stop
times and any information it deems pertinent. You can trap these log messages for further display or
analysis via the TDBISAMTable and TDBISAMQuery OnRepairLog events.

Tracking the Repair Progress

To take care of tracking the progress of the repair we have provided the TDBISAMTable and
TDBISAMQuery OnRepairProgress events.

Page 95

Using DBISAM

Page 96

Using DBISAM

2.22 Opening Tables

Introduction

Opening tables can be accomplished through the Open method of the TDBISAMTable component, or by
setting the Active property to True. Before opening a table, however, you must first specify the location of
the table and the table name itself. The location of the table is specified in the DatabaseName property of
the TDBISAMTable component, and the table name is specified in the TableName property.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TDBISAMTable component to the
DatabaseName property of an existing TDBISAMDatabase component within the application. In this case
the database location will come from either the Directory property or the RemoteDatabase property
depending upon whether the TDBISAMDatabase has its SessionName property set to a local or remote
session. Please see the Starting Sessions and Opening Databases topics for more information. The
following example shows how to use the DatabaseName property to point to an existing
TDBISAMDatabase component for the database location:

begin
with MyDatabase do
begin
DatabaseName:='AccountingDB';
Directory:="'c:\acctdata';
Connected:=True;
end;
with MyTable do
begin
DatabaseName:='AccountingDB';
TableName:="'ledger';
Active:=True;
end;
end;

Note

The above example does not assign a value to the SessionName property of either the
TDBISAMDatabase or TDBISAMTable component because leaving this property blank for both
components means that they will use the default session that is automatically created by DBISAM
when the engine is initialized. This session is, by default, a local, not remote, session named
"Default" or "". Please see the Starting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TDBISAMDatabase component to
dynamically set the Directory or RemoteDatabase property before the TDBISAMDatabase component
attempts to connect to the database. This is especially important when you have the Connected property
for the TDBISAMDatabase component set to True at design-time during application development and wish
to change the Directory or RemoteDatabase property before the connection is attempted when the
application is run.

Page 97

Using DBISAM

2) The second method is to enter the name of a local directory, if the TDBISAMTable component's
SessionName property is set to a local session, or remote database, if the TDBISAMTable component's
SessionName property is set to a remote session, directly into the DatabaseName property. In this case a
temporary database component will be automatically created, if needed, for the database specified and
automatically destroyed when no longer needed. The following example shows how to use the
DatabaseName property to point directly to the desired database location without referring to a
TDBISAMDatabase component:

begin
with MySession do
begin
SessionName:='Remote';
SessionType:=stRemote;
RemoteAddress:="'192.168.0.2";
Active:=True;
end;
with MyTable do
begin
SessionName:='Remote';
DatabaseName:='AccountingDB';
TableName:="'ledger';
Active:=True;
end;
end;

Note

The above example uses a remote session called "Remote" to connect to a database server at the
IP address "192.168.0.2". Using a remote session in this fashion is not specific to this method. We
could have easily used the same technique with the TDBISAMDatabase component and its
SessionName and RemoteDatabase properties to connect the database in the first example to a
remote session instead of the default local session created by the engine. Also, database names are
defined on a database server using the remote administration facilities in DBISAM. Please see the
Server Administration topic for more information.

Exclusive and ReadOnly Open Modes

In the above two examples we have left the Exclusive and ReadOnly properties of the TDBISAMTable
component at their default value of False. However, you can use these two properties to control how the
table is opened and how that open affects the ability of other sessions and users to open the same table.

When the Exclusive property is set to True, the table specified in the TableName property will be opened
exclusively when the Open method is called or the Active property is set to True. This means that neither
the current session nor any other session or user may open this table again without causing an
EDBISAMENgineError exception. It also means that the table open will fail if anyone else has the table
opened either shared (Exclusive=False) or exclusively (Exclusive=True). The error code given when a
table open fails due to access problems is 11013 and is defined as DBISAM_OSEACCES in the dbisamcn
unit (Delphi) or dbisamcn header file (C++). The following example shows how to trap for such an
exception using a try..except block (Delphi) or try..catch block (C++) and display an appropriate error
message to the user:

begin

Page 98

with MySession do

begin

SessionName:='Remote';
SessionType:=stRemote;
RemoteAddress:="'192.168.0.2";
Active:=True;

end;

with MyDatabase do

begin

SessionName:='Remote';
DatabaseName:='AccountingData';
RemoteDatabase:="'AccountingDB';
Connected:=True;

end;

with MyTable do

end;

Note

Regardless of whether you are trying to open a table exclusively, you can still receive this exception

begin

SessionName:='Remote';

{ We're using a database component for the database
location, so we use the same value as the DatabaseName
property for the TDBISAMDatabase component above, not
the same value as the RemoteDatabase property, which
is the name of the database as defined on the DBISAM
database server }

DatabaseName:='AccountingData';

TableName:="'ledger';

Exclusive:=True;

ReadOnly:=False;

try

Open;
except
on E: Exception do
begin
if (E is EDatabaseError) and
(E is EDBISAMEngineError) then
begin
if (EDBISAMEngineError (E) .ErrorCode=
DBISAM OSEACCES) then
ShowMessage ('Cannot open table '+TableName+
', another user has the table '+
'open already')
else
ShowMessage ('Unknown or unexpected database '+
'engine error # '+
IntToStr (EDBISAMEngineError (E) .ErrorCode)) ;

end
else
ShowMessage ('Unknown or unexpected error has occurred');
end;
end;
end;

if another user or application has opened the table exclusively.

Using DBISAM

Page 99

Using DBISAM

When the ReadOnly property is set to True, the table specified in the TableName property will be opened
read-only when the Open method is called or the Active property is set to True. This means that the
TDBISAMTable component will not be able to modify the contents of the table until the table is closed and
re-opened with write access (ReadOnly=False). If any of the physical files that make up the table are
marked read-only at the operating system level (such as is the case with CD-ROMs) then DBISAM
automatically detects this condition and sets the ReadOnly property to True. DBISAM is also able to do
extensive read buffering on any table that is marked read-only at the operating system level, so if your
application is only requiring read-only access then it would provide a big performance boost to mark the
tables as read-only at the operating system level. Finally, if security permissions for any of the physical
files that make up the table prevent DBISAM from opening the table with write access, then DBISAM will
also automatically detect this condition and set the ReadOnly property to True.

Table Locale Support

It is possible that a table was created using a specific LocalelD that is not available or installed in the
operating system currently in use. In such a case this will cause an EDBISAMENgineError exception to be
raised when the table is opened. The error code given when a table open fails due to locale support
problems is 15878 and is defined as DBISAM_CANNOTLOADLDDRY in the dbisamcn unit (Delphi) or
dbisamcn header file (C++). The table cannot be opened until the locale support is installed or the table
locale is altered using an operating system with the proper local support.

Opening In-Memory Tables

Opening in-memory tables is the same as opening disk-based tables except for one slight difference. In-
memory tables, regardless of whether they are used in a local or remote session, use a special "Memory"
database name instead of a normal database name. This special database is always present and the
current session always has all rights to the database.

Note

Because in-memory tables in DBISAM act like regular disk-based tables, you must first create the
table using the TDBISAMTable CreateTable method and delete the table using the TDBISAMTable
DeleteTable method to get rid of the table. Also, all sharing and locking restrictions also apply to in-
memory tables just as they do with disk-based tables. Please see the In-Memory Tables topic for
more information.

Opening Encrypted Tables

When a table is marked as encrypted and given a password, its contents are then encrypted using this
password and any subsequent attempts to open the table only succeed if this password (in this order):

1) Is present in the in-memory list of passwords for the current TDBISAMSession component. You can use
the AddPassword, RemovePassword, and RemoveAllPasswords methods to add and remove passwords for
the current session.

2) Is provided on-demand through the OnPassword event of the current session.

3) Is provided on-demand through a visual password dialog that will be displayed if the OnPassword event
is not assigned an event handler.

Page 100

Using DBISAM

Note

When opening a table inside of a TDBISAMEngine scheduled event (OnServerScheduledEvent
event) or server procedure (OnServerProcedure event) a visual password dialog will not be
displayed and you must either use the TDBISAMSession AddPassword method for adding passwords
before trying to open the table or use the OnPassword event to provide passwords for tables as
needed or any attempts to open encrypted tables will fail. Also, any version of DBISAM for Delphi 6
or higher (including C++Builder 6 and higher) requires that you include the DBPWDIg unit to your
uses clause in order to enable the display of a default password dialog. This is done to allow for
DBISAM to be included in applications without linking in the forms support, which can add a lot of
unnecessary overhead and also cause unwanted references to user interface libraries. This is not
required for Delphi 5 or C++Builder 5, but these versions always include forms support.

The TDBISAMTable Encrypted property will indicate whether a given table is encrypted with a password.
This property does not require that the table be open before accessing it. DBISAM will automatically
attempt to open the table, read the encrypted status, and return the value of this property. The Password
property will indicate the password for the table in the same manner provided that the table can be
opened automatically with the correct password for the current session, as indicated above.

Please see the Creating and Altering Tables topics for more information on creating encrypted tables.

Page 101

Using DBISAM

2.23 Closing Tables

Introduction

Closing tables can be accomplished through the Close method of the TDBISAMTable component, or by
setting the Active property to False.

The following example shows how to use the Close method to close a table:

begin
MyTable.Close;
end;

Note

Once a table is closed you cannot perform any operations on the table until the table is opened
again. The exception to this would be if you are trying to perform an operation that requires the
table to be closed, such as repairing or optimizing a table.

Page 102

Using DBISAM

2.24 Executing SQL Queries

Introduction

Executing SQL queries is accomplished through the ExecSQL and Open methods of the TDBISAMQuery
component, or by setting the Active property to True. Before executing a query you must first specify the
location of the table(s) referenced in the query. The location of the table(s) is specified in the
DatabaseName property of the TDBISAMQuery component. The actual SQL for the query is specified in the
SQL property. Please see the Overview topic in the SQL Reference for more information. You may select
whether you want a live or canned query via the RequestLive property. Please see the Live Queries and
Canned Queries topic for more information.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TDBISAMQuery component to the
DatabaseName property of an existing TDBISAMDatabase component within the application. In this case
the database location will come from either the Directory property or the RemoteDatabase property
depending upon whether the TDBISAMDatabase has its SessionName property set to a local or remote
session. Please see the Starting Sessions and Opening Databases topics for more information. The
following example shows how to use the DatabaseName property to point to an existing
TDBISAMDatabase component for the database location:

begin
with MyDatabase do
begin
DatabaseName:='AccountingDB';
Directory:='c:\acctdata';
Connected:=True;
end;
with MyQuery do
begin
DatabaseName:='AccountingDB';
SQL.Clear;
SQL.Add ('SELECT * FROM ledger');
Active:=True;
end;
end;

Note

The above example does not assign a value to the SessionName property of either the
TDBISAMDatabase or TDBISAMQuery component because leaving this property blank for both
components means that they will use the default session that is automatically created by DBISAM
when the engine is initialized. This session is, by default, a local, not remote, session named
"Default" or "". Please see the Starting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TDBISAMDatabase component to
dynamically set the Directory or RemoteDatabase property before the TDBISAMDatabase component

Page 103

Using DBISAM

attempts to connect to the database. This is especially important when you have the Connected property
for the TDBISAMDatabase component set to True at design-time during application development and wish
to change the Directory or RemoteDatabase property before the connection is attempted when the
application is run.

2) The second method is to enter the name of a local directory, if the TDBISAMQuery component's
SessionName property is set to a local session, or remote database, if the TDBISAMQuery component's
SessionName property is set to a remote session, directly into the DatabaseName property. In this case a
temporary database component will be automatically created, if needed, for the database specified and
automatically destroyed when no longer needed. The following example shows how to use the
DatabaseName property to point directly to the desired database location without referring to a
TDBISAMDatabase component:

begin
with MySession do
begin
SessionName:='Remote';
SessionType:=stRemote;
RemoteAddress:="'192.168.0.2";
Active:=True;
end;
with MyQuery do
begin
SessionName:='Remote';
DatabaseName:='AccountingDB';
SQL.Clear;
SQL.Add ('SELECT * FROM ledger');
Active:=True;
end;
end;

Note

The above example uses a remote session called "Remote" to connect to a database server at the
IP address "192.168.0.2". Using a remote session in this fashion is not specific to this method. We
could have easily used the same technique with the TDBISAMDatabase component and its
SessionName and RemoteDatabase properties to connect the database in the first example to a
remote session instead of the default local session created by the engine. Also, database names are
defined on a database server using the remote administration facilities in DBISAM. Please see the
Server Administration topic for more information.

Setting the SQL Property

The SQL statement or statements are specified via the SQL property of the TDBISAMQuery component.
The SQL property is a TStrings object. You may enter one SQL statement or multiple SQL statements by
using the Add method of the SQL property to specify the SQL statements line-by-line. You can also assign
the entire SQL to the Text property of the SQL property. If specifying multiple SQL statements, be sure to
separate each SQL statement with a semicolon (;). Multiple SQL statements in one execution is referred to
as a script. There is no limit to the number of SQL statements that can be specified in the SQL property
aside from memory constraints.

Whenever the SQL property is modified, any event handler assigned to the TDBISAMQuery OnSQLChanged
property will be executed.

Page 104

Using DBISAM

When dynamically building SQL statements that contain literal string constants, you can use the
TDBISAMENgine QuotedSQLStr method to properly format and escape any embedded single quotes or
non-printable characters in the string. For example, suppose you have a TMemo component that contains
the following string:

This is a
test

The string contains an embedded carriage-return and line feed, so it cannot be specified directly without
causing an error in the SQL statement.

To build an SQL INSERT statement that inserts the above string into a memo field, you should use the
following code:

MyDBISAMQuery.SQL.Text:="INSERT INTO MyTable '+
' (MyMemoField) VALUES ('+
Engine.QuotedSQLStr (MyMemo.Lines.Text)+")"';

Note

If re-using the same TDBISAMQuery component for multiple query executions, please be sure to
call the SQL property's Clear method to clear the SQL from the previous query before calling the
Add method to add more SQL statement lines.

Preparing the Query

By default DBISAM will automatically prepare a query before it is executed. However, you may also
manually prepare a query using the TDBISAMQuery Prepare method. Once a query has been prepared,
the Prepared property will be True. Preparing a query parses the SQL, opens all referenced tables, and
prepares all internal structures for the execution of the query. You should only need to manually prepare a
query when executing a parameterized query. Please see the Parameterized Queries topic for more
information.

Executing the Query

To execute the query you should call the TDBISAMQuery ExecSQL or Open methods, or you should set the
Active property to True. Setting the Active property to True is the same as calling the Open method. The
difference between using the ExecSQL and Open methods is as follows:

Method Usage

Page 105

Using DBISAM

ExecSQL Use this method when the SQL statement or statements
specified in the SQL property may or may not return a result
set. The ExecSQL method can handle both situations.

Open Use this method only when you know that the SQL statement
or statements specified in the SQL property will return a result
set. Using the Open method with an SQL statement that does
not return a result set will result in an EDatabaseError
exception being raised with an error message "Error creating
table handle".

Note
The SQL SELECT statement is the only statement that returns a result set. All other types of SQL
statements do not.

The following example shows how to use the ExecSQL method to execute an UPDATE SQL statement:

begin
with MyDatabase do
begin
DatabaseName:='AccountingDB';
Directory:="'c:\acctdata';
Connected:=True;
end;
with MyQuery do
begin
DatabaseName:='AccountingDB';
SQL.Clear;
SQL.Add ('UPDATE ledger SET AccountNo=100");
SQL.Add ("WHERE AccountNo=300") ;
ExecSQL;
end;
end;

Retrieving Query Information

You can retrieve information about a query both after the query has been prepared and after the query
has been executed. The following properties can be interrogated after a query has been prepared or
executed:

Property Description

Page 106

SQLStatementType

TableName

Using DBISAM

Indicates the type of SQL statement currently ready for
execution. If the TDBISAMQuery SQL property contains
multiple SQL statements (a script), then this property
represents the type of the current SQL statement about to be
executed. You can assign an event handler to the
TDBISAMQuery BeforeExecute event to interrogate the
SQLStatementType property before each SQL statement is
executed in the script.

Indicates the target table of the SQL statement currently
ready for execution. If the TDBISAMQuery SQL property
contains multiple SQL statements (a script), then this property
represents the target table of the current SQL statement
about to be executed. You can assign an event handler to the
TDBISAMQuery BeforeExecute event to interrogate the
TableName property before each SQL statement is executed
in the script.

The following properties can only be interrogated after a query has been executed:

Property

Plan

RowsAffected

ExecutionTime

Description

Contains information about how the current query was
executed, including any optimizations performed by DBISAM.
This information is very useful in determining how to optimize
a query further or to simply figure out what DBISAM is doing
behind the scenes. If there is more than one SQL statement
specified in the TDBISAMQuery SQL property (a script) then
this property indicates the query plan for the last SQL
statement executed. You can assign an event handler to the
TDBISAMQuery AfterExecute event to interrogate the Plan
property after each SQL statement is executed in the script.
The Plan property is cleared before each new SQL statement
is executed.

Note
Query plans are only generated for SQL SELECT,
INSERT, UPDATE, or DELETE statements.

Indicates the number of rows affected by the current query. If
there is more than one SQL statement specified in the
TDBISAMQuery SQL property (a script) then this property
indicates the cumulative number of rows affected for all SQL
statements executed so far. You can assign an event handler
to the TDBISAMQuery BeforeExecute and/or AfterExecute
events to interrogate the RowsAffected property before
and/or after each SQL statement is executed in the script.

Indicates the amount of execution time in seconds consumed
by the current query. If there is more than one SQL statement
specified in the TDBISAMQuery SQL property (a script) then
this property indicates the cumulative execution time for all
SQL statements executed so far. You can assign an event
handler to the TDBISAMQuery BeforeExecute and/or

Page 107

Using DBISAM

AfterExecute events to interrogate the ExecutionTime
property before and/or after each SQL statement is executed
in the script.

The following example shows how to use the ExecSQL method to execute an UPDATE SQL statement and
report the number of rows affected as well as how long it took to execute the statement:

begin
with MyDatabase do
begin
DatabaseName:='AccountingDB';
Directory:="'c:\acctdata';
Connected:=True;
end;
with MyQuery do
begin
DatabaseName:='AccountingDB';
SQL.Clear;
SQL.Add ('UPDATE ledger SET AccountNo=100");
SQL.Add ("WHERE AccountNo=300") ;
ExecSQL;
ShowMessage (IntToStr (RowsAffected) +
' rows updated in '+
FloatToStr (ExecutionTime)+' seconds');
end;
end;

Trapping for Errors

To take care of trapping for errors during the preparation or execution of queries we have provided the
OnQueryError event. Whenever an exception is encountered by DBISAM during the preparation or
execution of a query, the exception is passed to the event handler assigned to this event. If there is no
event handler assigned to this event, DBISAM will go ahead and raise the exception. You may set the
Action parameter of this event to aaAbort in your event handler to indicate to DBISAM that you want to
abort the preparation or execution of the entire query, not just the current SQL statement being prepared
or executed. You may set the Action parameter of this event to aaContinue to indicate to DBISAM that you
want to skip the current SQL statement and continue on with the next SQL statement, if present. This is
especially useful for scripts because it gives you the ability to continue on with a script even though one or
more of the SQL statements in the script may have encountered an error. Finally, you may set the Action
parameter of this event to aaRetry to indicate to DBISAM that you want to retry the current SQL
statement. This is especially useful in situations where the application encounters a record lock error
during an SQL UPDATE or DELETE statement.

Note

If you use the START TRANSACTION statement within an SQL script, and the script encounters an
error in one of the subsequent SQL statements before reaching a COMMIT or ROLLBACK statement,
the transaction will be implicitly rolled back if:

1) An OnQueryError event handler is not assigned to the TDBISAMQuery component being used

OR

Page 108

Using DBISAM

2) The OnQueryError event handler sets the Action parameter to aaAbort, indicating that the script should
immediately terminate.

Tracking the Progress of a Query

To take care of tracking the progress of a query execution we have provided the TDBISAMQuery
OnQueryrogress event. You may set the Abort parameter of this event to True in your event handler to
indicate to DBISAM that you wish to abort the execution of the current SQL statement.

Note

The percentage of progress reported via the OnQueryProgress event is restarted for every SQL
statement specified in the TDBISAMQuery SQL property, so setting the Abort parameter to True will
only abort the current SQL statement and not the entire script. Also, the OnQueryProgress event will
not be triggered for a live query result. Please see the Live Queries and Canned Queries topic for
more information.

SQL-Specific Events

There are certain events that will be triggered when specific SQL statements are executed using the
TDBISAMQuery component. These are as follows:

SQL Statement Events

SELECT OnQueryProgress

INSERT None

UPDATE None

DELETE None

CREATE TABLE None

ALTER TABLE OnAlterProgress
OnDatalost

EMPTY TABLE None

OPTIMIZE TABLE OnOptimizeProgress

EXPORT TABLE OnExportProgress

IMPORT TABLE OnImportProgress

VERIFY TABLE OnVerifyProgress
OnVerifyLog

REPAIR TABLE OnRepairProgress
OnRepairLog

UPGRADE TABLE OnUpgradeProgress
OnUpgradelog

DROP TABLE None

RENAME TABLE None

Page 109

Using DBISAM

CREATE INDEX

DROP INDEX

START TRANSACTION
COMMIT

ROLLBACK

Page 110

OnIndexProgress
OnDatalLost

None
None
None

None

Using DBISAM

2.25 Live Queries and Canned Queries

Introduction

DBISAM generates two types of query result sets depending upon the makeup of a given SELECT SQL
statement:

Type Description

Live The result set is editable and all changes are reflected in the
source table.

Canned The result set is editable but changes are not reflected in the
source table(s).

The following rules determine whether a query result set will be live or canned. Please see the Executing
SQL Queries for more information on executing queries.

Single-table queries

Queries that retrieve data from a single table will generate a live result set provided that:

1) The TDBISAMQuery RequestLive property is set to True.

2) There is no DISTINCT keyword in the SELECT SQL statement.

3) Everything in the SELECT clause is a simple column reference or a calculated column, and no
aggregation or calculated BLOB columns are allowed. Calculated columns remain read-only in the live
result set.

4) There is no GROUP BY clause.

5) There is no ORDER BY clause, or there is an ORDER BY clause that minimally matches an existing index
in the source table in terms of fields (from left to right) and case-sensitivity.

6) There is no TOP N clause.

7) There are no sub-queries in the WHERE clause.

Multi-table queries

All queries that join two or more tables or union two or more SELECT statements will automatically
produce a canned result set.

Calculated Columns

For live query result sets with calculated fields, additional internal information identifies a result column as
both read-only and calculated. Every update of any column in a given row causes recalculation of any
dependent calculated columns in that same row.

Identifying a Live Result Set

Page 111

Using DBISAM

You may use the TDBISAMQuery ResultlsLive property to determine if the result set of a given SELECT
SQL statement is live or canned after the query has been executed:

begin

with MyQuery do

begin
SQL.Clear;
SQL.Add ('SELECT * FROM customer INNER JOIN') ;
SQL.Add ('INNER JOIN orders ON customer.ID=orders.CustID');
SQL.Add ('WHERE customer.ID=1000");
Open;
{ In this case the result set will be canned due
to the join condition }
if ResultIsLive then
ShowMessage ('The result set is live')
else
ShowMessage ('The result set is canned');
end;

end;

Temporary Files

If a SELECT SQL statement is generating a canned result set, a temporary table will be created in the
directory specified by the TDBISAMSession PrivateDir property for local sessions. If the query is being
executed within a remote session, the location of the temporary table for the canned result set will be
determined by the database server's configuration setting for the location of temporary tables, which can
be modified remotely via the TDBISAMSession ModifyRemoteConfig method or locally on the server via the
TDBISAMENgine ModifyServerConfig method. The TDBISAMQuery SessionName property determines what
session is being used for the execution of the SQL statement. Please see the DBISAM Architecture topic for
more information.

Page 112

Using DBISAM

2.26 Parameterized Queries

Introduction

Parameters allow the same SQL statement to be used with different data values, and are placeholders for
those data values. At runtime, the application prepares the query with the parameters and fills the
parameter with a value before the query is executed. When the query is executed, the data values passed
into the parameters are substituted for the parameter placeholder and the SQL statement is applied.

Specifying Parameters in SQL

Parameter markers can be used in SQL SELECT, INSERT, UPDATE, and DELETE statements in place of
constants. Parameters are identified by a preceding colon (:). For example:

SELECT Last Name, First Name
FROM Customer
WHERE (Last Name=:LName) AND (First Name=:FName)

Parameters are used to pass data values to be used in WHERE clause comparisons and as update values in
updating SQL statements such as UPDATE or INSERT. Parameters cannot be used to pass values for
database, table, column, or index names. The following example uses the TotalParam parameter to pass
the data value that needs to be assigned to the ItemsTotal column for the row with the OrderNo column
equal to 1014:

UPDATE Orders
SET ItemsTotal = :TotalParam
WHERE (OrderNo = 1014)

Populating Parameters with the TDBISAMQuery Component

You can use the TDBISAMQuery Params property to populate the parameters in an SQL statement with
data values. You may use two different methods of populating parameters using the Params property:

@ By referencing each parameter by its index position in the available list of parameters
@ By referencing each parameter by name using the ParamByName method

The following is an example of using the index positions of the parameters to populate the data values for
an INSERT SQL statement:

begin
with MyQuery do
begin
SQL.Clear;
SQL.Add ("INSERT INTO Country (Name, Capital, Population)');
SQL.Add ('VALUES (:Name, :Capital, :Population)');

Params[0] .AsString := 'Lichtenstein';
Params[1l] .AsString := 'Vaduz';
Params[2] .AsInteger := 420000;

Page 113

Using DBISAM

ExecSQL;
end;
end;

The next block of code is an example of using the TDBISAMQuery ParamByName method in order to
populate the data values for a SELECT SQL statement:

begin
with MyQuery do
begin
SQL.Clear;
SQL.Add ('SELECT *'");
SQL.Add ('FROM Orders') ;

SQL.Add ('WHERE CustID = :CustID');
ParamByName ('CustID') .AsFloat:=1221;
Open;

end;

end;

Parameters and Multiple SQL Statements

If you have specified multiple SQL statements, or a script, in the SQL property and wish to execute these
multiple SQL statements with different parameters, you can assign an event handler to the TDBISAMQuery
OnGetParams event. The OnGetParams event is fired once before the execution of each SQL statement
specified in the SQL property. In the event handler you would specify the parameters in the same way as
you would for a single SQL statement described above. You can also use the SQLStatementType property
to find out the type of SQL statement currently being executed and the Text property to examine the
current SQL statement being executed.

Preparing Parameterized Queries

It is usually recommended that you manually prepare parameterized queries that you intend to execute
many times with different parameter values. This can result in significant performance improvements since
the process of preparing a query can be time-consuming. The following is an example of inserting 3
records with different values using a manually-prepared, parameterized query:

begin
with MyQuery do

begin
SQL.Clear;
SQL.Add ('INSERT INTO Customer (CustNo, Company');
SQL.Add ('VALUES (:CustNo, :Company)');
{ Manually prepare the query }
Prepare;
ParamByName ('CustNo') .AsInteger:=1000;
ParamByName ('Company') .AsString:="'Chocolates, Inc.';
ExecSQL;
ParamByName ('CustNo') .AsInteger:=2000;
ParamByName ('Company') .AsString:="'Flowers, Inc.';
ExecSQL;
ParamByName ('CustNo') .AsInteger:=3000;
ParamByName ('Company') .AsString:="'Candies, Inc.';

Page 114

Using DBISAM

ExecSQL;
end;
end;

Note

Manually preparing a script with multiple SQL statements does not result in any performance benefit
since DBISAM still only prepares the first SQL statement in the script and must prepare each
subsequent SQL statement before it is executed.

Page 115

Using DBISAM

2.27 Navigating Tables and Query Result Sets

Introduction

Navigation of tables and query result sets is accomplished through several methods of the TDBISAMTable
and TDBISAMQuery components. The basic navigational methods include the First, Next, Prior, Last, and
MoveBy methods. The Bof and Eof properties indicate whether the record pointer is at the beginning or at
the end of the table or query result set, respectively. These methods and properties are used together to
navigate a table or query result set.

Moving to the First or Last Record

The First method moves to the first record in the table or query result set based upon the current index
order. The Last method moves to the last record in the table or query result set based upon the current
index order. The following example shows how to move to the first and last records in a table:

begin
with MyTable do

begin
First;
{ do something to the first record }
Last;
{ do something to the last record }
end;

end;

Skipping Records

The Next method moves to the next record in the table or query result set based upon the current index
order. If the current record pointer is at the last record in the table or query result set, then calling the
Next method will set the Eof property to True and the record pointer will stay on the last record. The Prior
method moves to the previous record in the table or query result set based upon the current index order.
If the current record pointer is at the first record in the table or query result set, then calling the Prior
method will set the Bof property to True and the record pointer will stay on the first record. The following
example shows how to use the First and Next methods along with the Eof property to loop through an
entire table:

begin
with MyTable do
begin
First;
while not Eof do
Next;

end;

end;

The following example shows how to use the Last and Prior methods along with the Bof property to loop
backwards through an entire table:

Page 116

Using DBISAM

begin
with MyTable do
begin
Last;
while not Bof do
Prior;

end;

end;

Skipping Multiple Records

The MoveBy method accepts a positive or negative integer that represents the number of records to move
by within the table or query result set. A positive integer indicates that the movement will be forward
while a negative integer indicates that the movement will be backward. The return value of the MoveBy
method is the number of records actually visited during the execution of the MoveBy method. If the record
pointer hits the beginning of file or hits the end of file then the return value of the MoveBy method will be
less than the desired number of records. The following example shows how to use the MoveBy method to
loop through an entire table 10 records at a time:

begin
with MyTable do
begin
First;
while not Eof do
MoveBy (10) ;

end;

end;

Page 117

Using DBISAM

2.28 Updating Tables and Query Result Sets

Introduction

Updating of tables and query result sets is accomplished through several methods of the TDBISAMTable
and TDBISAMQuery components. The basic update methods include the Append, Insert, Edit, Delete,
FieldByName, Post, and Cancel methods. The State property indicates whether the current table or query
result set is in Append/Insert mode (dsInsert), Edit mode (dsEdit), or Browse mode (dsBrowse). These
methods and properties are used together in order to update a table or query result set. Depending upon
your needs, you may require additional methods to update BLOB fields within a given table or query result
set, and information on how to use these methods are discussed at the end of this topic.

Note

For the rest of this topic, a table or query result set will be referred to as a dataset to reduce the
amount of references to both. Also, it is important to note here that a query result set can be either
"live" or "canned", which affects whether an update to a query result set appears in the actual table
being queried or whether it is limited to the result set. Please see the Live Queries and Canned
Queries topic for more information.

Adding a New Record

The Append and Insert methods allow you to begin the process of adding a record to the dataset. The
only difference between these two methods is the Insert method will insert a blank record buffer at the
current position in the dataset, and the Append method will add a blank record buffer at the end of the
dataset. This record buffer does not exist in the physical datset until the record buffer is posted to the
actual dataset using the Post method. If the Cancel method is called, then the record buffer and any
updates to it will be discarded. Also, once the record buffer is posted using the Post method it will be
positioned in the dataset according to the active index order, not according to where it was positioned due
to the Insert or Append methods.

The FieldByName method can be used to reference a specific field for updating and accepts one
parameter, the name of the field to reference. This method returns a TField object if the field name exists
or an error if the field name does not exists. This TField object can be used to update the data for that
field in the record buffer via properties such as

AsString, Aslnteger, etc.

The following example shows how to use the Append method to add a record to a table with the following
structure:

Field # Name DataType Size
1 CustomerID ftString 10

2 CustomerName ftString 30

3 ContactName ftString 30

4 Phone ftString 10

5 Fax ftString 10

6 EMail ftString 30

7 LastSaleDate ftDate 0

8 Notes ftMemo 0

Page 118

Using DBISAM

Index Name Fields In Index Options
(none) CustomerID ixPrimary
begin
with MyDBISAMDataSet do
begin
Append; { State property will now reflect dsInsert }

FieldByName ('CustomerID') .AsString:="'100";

FieldByName ('CustomerName') .AsString:='The Hardware Store';
FieldByName ('ContactName') .AsString:="Bob Smith';
(
(

FieldByName ('Phone') .AsString:='5551212";

FieldByName ('Fax') .AsString:='5551616";

FieldByName ('Email') .AsString:="bobs@thehardwarestore.com';
Post; { State property will now return to dsBrowse }

end;

end;

If the record that is being posted violates a min/max or required constraint for the dataset then an
EDBISAMENgineError exception will be raised with the appropriate error code. This will also occur if the
record being posted will cause a key violation in either the primary index or a secondary index defined as
unique. The error codes for a min/max constraint exception are 9730 (min) and 9731 (max) and are
defined as DBISAM_MINVALERR and DBISAM_MAXVALERR in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). The error code for a required constraint exception is 9732 and is defined as
DBISAM_REQDERR in the dbisamcn unit (Delphi) or dbisamcn header file (C++). The error code for a key
violation exception is 9729 and is defined as DBISAM_KEYVIOL in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). Please see the Exception Handling and Errors and Appendix B - Error Codes and
Messages topics for general information on exception handling in DBISAM.

You may use the OnPostError event to trap for any of these error conditions and display a message to the
user. You can also use a try..except block to do the same, and the approach is very similar. The following
shows how to use an OnPostError event handler to trap for a key violation error:

procedure TMyForm.MyTablePostError (DataSet: TDataSet;
E: EDatabaseError; var Action: TDataAction);

begin
Action:=daAbort;
if (E is EDBISAMEngineError) then

begin
if (EDBISAMEngineError (E) .ErrorCode=DBISAM KEYVIOL) then
ShowMessage ('A record with the same key value(s) '+
'already exists, please change the '+
'record to make the value(s) unique '+
'and re-post the record')
else
ShowMessage (E.Message) ;
end
else

ShowMessage (E.Message) ;
end;

Page 119

Using DBISAM

Note

You will notice that the OnPostError event handler uses the more general EDatabaseError exception
object for it's exception (E) parameter. Because of this, you must always first determine whether
the exception object being passed is actually an EDBISAMENngineError before casting the exception
object and trying to access specific properties such as the ErrorCode property. The
EDBISAMENgineError object descends from the EDatabaseError object.

The following shows how to use a try..except block to trap for a key violation error:

begin
try
with MyDBISAMDataSet do
begin
Append; { State property will now reflect dsInsert }
FieldByName ('CustomerID') .AsString:="'100";
FieldByName ('CustomerName') .AsString:='The Hardware Store';
FieldByName ('ContactName') .AsString:='Bob Smith';
FieldByName ('Phone') .AsString:="'5551212";
FieldByName ('Fax') .AsString:='5551616";
FieldByName ('Email') .AsString:='bobs@thehardwarestore.com';
Post; { State property will now return to dsBrowse }
end;
except
on E: Exception do
begin
if (E is EDBISAMEngineError) then
begin
if (EDBISAMEngineError (E).ErrorCode=DBISAM KEYVIOL) then
ShowMessage ('A record with the same key value(s) '+
'already exists, please change the '+
'record to make the value(s) unique '+
'and re-post the record')
else
ShowMessage (E.Message) ;
end
else
ShowMessage (E.Message) ;
end;
end;
end;

Editing an Existing Record

The Edit method allows you to begin the process of editing an existing record in the dataset. DBISAM
offers the choice of a pessimistic or optimistic locking protocol, which is configurable via the LockProtocol
property for the TDBISAMSession assigned to the current dataset (see the SessionName property for more
information on setting the session for a dataset). With the pessimistic locking protocol a record lock is
obtained when the Edit method is called. As long as the record is being edited DBISAM will hold a record
lock on that record, and will not release this lock until either the Post or Cancel methods is called. With the
optimistic locking protocol a record lock is not obtained until the Post method is called, and never obtained
if the Cancel method is called. This means that another user or session is capable of editing the record and
posting the changes to the record before the Post method is called, thus potentially causing an
EDBISAMENgineError exception to be triggered with the error code 8708, which indicates that the record

Page 120

Using DBISAM

has been changed since the Edit method was called and cannot be overwritten. In such a case you must
discard the edited record by calling the Cancel method and begin again with a fresh copy of the record
using the Edit method.

Note

Any updates to the record are done via a record buffer and do not actually exist in the actual
dataset until the record is posted using the Post method. If the Cancel method is called, then any
updates to the record will be discarded. Also, once the record is posted using the Post method it will
be positioned in the dataset according to the active index order based upon any changes made to
the record. What this means is that if any field that is part of the current active index is changed,
then it is possible for the record to re-position itself in a completely different place in the dataset
after the Post method is called.

The following example shows how to use the Edit method to update a record in a dataset:

begin
with MyDBISAMDataSet do
begin
Edit; { State property will now reflect dsEdit }

{ Set LastSaleDate field to today's date }
FieldByName ('LastSaleDate') .AsDateTime:=Date;
Post; { State property will now return to dsBrowse }
end;

end;

If the record that you are attempting to edit (or post, if using the optimistic locking protocol) is already
locked by another user or session, then an EDBISAMEngineError exception will be triggered with the
appropriate error code. The error code for a record lock error is 10258 and is defined as
DBISAM_RECLOCKFAILED in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

It is also possible that the record that you are attempting to edit (or post) has been changed or deleted by
another user or session since it was last cached by DBISAM. If this is the case then a DBISAM exception
will be triggered with the error code 8708 which is defined as DBISAM_KEYORRECDELETED in the
dbisamcn unit (Delphi) or dbisamcn header file (C++).

You may use the OnEditError (or OnPostError, depending upon the locking protocol) event to trap for
these error conditions and display a message to the user. You can also use a try..except block to do the
same, and the approach is very similar. The following shows how to use an OnEditError event handler to
trap for several errors:

procedure TMyForm.MyTableEditError (DataSet: TDataSet;
E: EDatabaseError; var Action: TDataAction);
begin
Action:=daAbort;
if (E is EDBISAMEngineError) then
begin
if (EDBISAMEngineError(E).ErrorCodeZDBISAMiRECLOCKFAILED) then
begin
if MessageDlg('The record you are trying to edit '+
'is currently locked, do you want to '+
'try to edit this record again?',

Page 121

Using DBISAM

mtWarning, [mbYes,mbNo], 0)=mrYes then
Action:=daRetry;
end
else if (EDBISAMEngineError(E).ErrorCode:DBISAM_KEYORRECDELETED) then
begin
MessageDlg ('The record you are trying to edit '+
'has been modified since it was last '+
'retrieved, the record will now be '+
'refreshed',mtWarning, [mbOk],0) ;
DataSet.Refresh;
Action:=daRetry;
end
else
MessageDlg (E.Message,mtError, [mbOK], 0) ;
end
else
MessageDlg (E.Message,mtError, [mbOK], 0) ;
end;

The following shows how to use a try..except block to trap for several errors:

begin
while True do
begin
try
with MyDBISAMDataSet do
begin
Edit; { State property will now reflect dsEdit }

{ Set LastSaleDate field to today's date }
FieldByName ('LastSaleDate') .AsDateTime:=Date;
Post; { State property will now return to dsBrowse }
end;
Break; { Break out of retry loop }
except
on E: Exception do
begin
if (E is EDBISAMEngineError) then
begin
if (EDBISAMEngineError (E) .ErrorCode=
DBISAM RECLOCKFAILED) then
begin
if MessageDlg('The record you are trying '+
'to edit is currently locked, '+
'do you want to try to edit '+
'this record again?,mtWarning,
[mbYes, mbNo],0)=mrYes then
Continue;
end
else if (EDBISAMEngineError (E).ErrorCode=
DBISAMiKEYORRECDELETED) then
begin
MessageDlg ('The record you are trying '+
'to edit has been modified '+
'since it was last retrieved, '+
'the record will now be '+
'refreshed',mtWarning, [mbOk],0) ;
MyTable.Refresh;

Page 122

Using DBISAM

Continue;
end
else
begin
MessageDlg (E.Message, mtError, [mbOK],0) ;
Break;
end;
end
else
begin
MessageDlg (E.Message,mtError, [mbOK],0) ;
Break;
end;
end;
end;
end;
end;

Deleting an Existing Record

The Delete method allows you to delete an existing record in a dataset. Unlike the Append, Insert, and
Edit methods, the Delete method is a one-step process and does not require a call to the Post method to
complete its operation. A record lock is obtained when the Delete method is called and is released as soon
as the method completes. After the record is deleted the current position in the dataset will be the next
closest record based upon the active index order.

The following example shows how to use the Delete method to delete a record in a dataset:

begin
with MyDBISAMDataSet do
Delete;
end;

If the record that you are attempting to delete is already locked by another user or session, then an
EDBISAMENgineError exception will be triggered with the appropriate error code. The error code for a
record lock error is 10258 and is defined as DBISAM_RECLOCKFAILED in the dbisamcn unit (Delphi) or
dbisamcn header file (C++).

It is also possible that the record that you are attempting to delete has been changed or deleted by
another user since it was last cached by DBISAM. If this is the case then an EDBISAMEngineError
exception will be triggered with the error code 8708 which is defined as DBISAM_KEYORRECDELETED in
the dbisamcn unit (Delphi) or dbisamcn header file (C++).

You may use the OnDeleteError event to trap for these error conditions and display a message to the user.
You can also use a try..except block to do the same, and the approach is very similar. The code for an
handling Delete errors is the same as that of an Edit, so please refer to the above code samples for
handling Edit errors.

Cancelling an Insert/Append or Edit Operation

You may cancel an existing Insert/Append or Edit operation by calling the Cancel method. Doing this will
discard any updates to an existing record if you are editing, or will completely discard a new record if you
are inserting or appending. The following example shows how to cancel an edit operation on an existing

Page 123

Using DBISAM

record:
begin
with MyDBISAMDataSet do

begin
Edit; { State property will now reflect dsEdit }
{ Set LastSaleDate field to today's date }
FieldByName ('LastSaleDate') .AsDateTime:=Date;
Cancel; { State property will now return to dsBrowse }
end;

end;

Additional Events

There are several additional events that can be used to hook into the updating process for a dataset. They
include the Beforelnsert, AfterInsert, OnNewRecord, BeforeEdit, AfterEdit, BeforeDelete, AfterDelete,
BeforePost, AfterPost, BeforeCancel, and AfterCancel events. All of these events are fairly self-explanatory,
however the OnNewRecord is special in that it can be used to assign values to fields in a newly-inserted or
appended record without having the dataset mark the record as modified. If a record has not been
modified in any manner, then the dataset will not perform an implicit Post operation when navigating off
of the record. Instead, the Cancel method will be called and the record discarded.

Updating BLOB Fields

Most of the time you can simply use the general TField AsString and AsVariant properties to update a
BLOB field in the same fashion as you would any other field. Both of these properties allow very large
strings or binary data to be stored in a BLOB field. However, in certain cases you may want to take
advantage of additional methods and functionality that are available through the TBlobField object that
descends from TField or the TDBISAMBIlobStream object that provides a stream interface to a BLOB field.
The most interesting methods of the TBlobField object are the LoadFromFile, LoadFromStream,
SaveToFile, and SaveToStream methods. These methods allow you to very easily load and save the data
to and from BLOB fields.

Note
You must make sure that the dataset's State property is either dsInsert or dsEdit before using the
LoadFromFile or LoadFromStream methods.

The following is an example of using the LoadFromFile method of the TBlobField object to load the
contents of a text file into a memo field:

begin
with MyDBISAMDataSet do

begin
Edit; { State property will now reflect dsEdit }
{ Load a text file from disk }
TBlobField (FieldByName ('Notes')) .LoadFromFile ('c:\temp\test.txt");
Post; { State property will now return to dsBrowse }
end;

end;

Page 124

Using DBISAM

Note

You'll notice that we must cast the result of the FieldByName method, which returns a TField object
reference, to a TBlobField type in order to allow us to call the LoadFromFile method. This is okay
since a memo field is a TMemoField object, which descends directly from TBlobField, which itself
descends directly from TField.

In addition to these very useful methods, you can also directly manipulate a BLOB field like any other
stream by using the TDBISAMBIlobStream object. The following is an example of using a
TDBISAMBIlobStream component along with the TDBISAMTable or TDBISAMQuery SaveToStream method
for storing DBISAM tables themselves in the BLOB field of another table:

var
MyBlobStream: TDBISAMBlobStream;
begin
{ First create the BLOB stream - be sure to make sure that
we put the table into dsEdit or dsInsert mode first since
we're writing to the BLOB stream }
MyFirstDBISAMDataSet.Append;
try
MyBlobStream:=TDBISAMBlobStream.Create (TBlobField (
MyFirstDBISAMDataSet.FieldByName ('TableStream')),bmWrite) ;
try
{ Now save the table to the BLOB stream }
MySecondDBISAMDataSet.SaveToStream (MyBlobStream) ;
finally
{ Be sure to free the BLOB stream *before* the Post }
MyBlobStream.Free;
end;
MyFirstDBISAMDataSet.Post;
except
{ Cancel on an exception }
MyFirstDBISAMDataSet.Cancel;
end;
end;

Note

For proper results when updating a BLOB field using a TDBISAMBIlobStream object, you must create
the TDBISAMBIobStream object after calling the Append/Insert or Edit methods for the dataset
containing the BLOB field. Also, you must free the TDBISAMBlobStream object before calling the
Post method to post the changes to the dataset. Finally, be sure to use the proper open mode when
creating a TDBISAMBIobStream object for updating (either bmReadWrite or bmWrite).

Page 125

Using DBISAM

2.29 Searching and Sorting Tables and Query Result Sets

Introduction

Searching and sorting tables and query result sets is accomplished through several methods of the
TDBISAMTable and TDBISAMQuery components. The basic searching methods for tables (not query result
sets) include the FindKey, FindNearest, SetKey, Editkey, GotoKey, and GotoNearest methods. The
KeyFieldCount property is used with the SetKey and EditKey methods to control searching using the
GotoKey and GotoNearest methods. The extended searching methods that do not necessarily rely upon an
index and can be used with both tables and query result sets include the Locate, FindFirst, FindLast,
FindNext, and FindPrior methods. The basic sorting methods for tables include the IndexName and
IndexFieldNames properties.

Changing the Sort Order

You may use the IndexName and IndexFieldNames properties to set the current index order, and in effect,
sort the current table based upon the index definition for the selected index order.

The IndexName property is used to set the name of the current index. For primary indexes, this property
should always be set to blank (""). For secondary indexes, this property should be set to the name of the
secondary index that you wish to use as the current index order. The following example shows how you
would set the current index order for a table to a secondary index called "CustomerName":

begin
with MyTable do
begin
IndexName:="'CustomerName';
{ do something }
end;
end;

Note

Changing the index order can cause the current record pointer to move to a different position in the
table (but not necessarily move off of the current record unless the record has been changed or
deleted by another session). Call the First method after setting the IndexName property if you want
to have the record pointer set to the beginning of the table based upon the next index order.
Changing the index order will also remove any ranges that are active. Since the record numbers in
DBISAM are based upon the index order the record number may also change.

If you attempt to set the IndexName property to a non-existent index an EDBISAMENngineError exception
will be raised with the appropriate error code. The error code given for an invalid index name is 10022 and
is defined as DBISAM_INVALIDINDEXNAME in the dbisamcn unit (Delphi) or dbisamcn header file (C++).

The IndexFieldNames property is used to set the current index order by specifying the field names of the
desired index instead of the index name. Multiple field names should be separated with a semicolon. Using
the IndexFieldNames property is desirable in cases where you are trying to set the current index order
based upon a known set of fields and do not have any knowledge of the index names available. The
IndexFieldNames property will attempt to match the given number of fields with the same number of
beginning fields in any of the available primary or secondary indexes. The following example shows how

Page 126

Using DBISAM

you would set the current index order to a secondary index called "CustomerName" that consists of the
CustomerName field and the CustomerNo field:

begin
with MyTable do
begin
IndexFieldNames:='CustomerName; CustomerNo';
{ do something }
end;
end;

Note

Setting the IndexFieldNames will not work on indexes that are marked as descending or case-
insensitive, so you must use the IndexName property instead. Also, if DBISAM cannot find any
indexes that match the desired field names an EDatabaseError exception will be raised instead of an
EDBISAMENgineError exception. If you are using this method of setting the current index order you
should also be prepared to trap for this exception and deal with it appropriately.

Searching Using an Index

The FindKey method accepts an array of search values to use in order to perform an exact search for a
given record using the active index. The return value of the FindKey method indicates whether the search
was successful. If the search was successful then the record pointer is moved to the desired record,
whereas if the search was not successful then the record pointer stays at its current position. The search
values must correspond to the fields that make up the active index or the search will not work properly.
However, FindKey does not require that you fill in all of the field values for all of the fields in the active
index, rather only that you fill in the field values from left to right. The following example shows how to
perform a search on the primary index comprised of the CustomerNo field:

begin
with MyTable do
begin
{ Set to the primary index }
IndexName:="";
{ Search for customer 100 }
if FindKey ([100]) then
{ Record was found, now do something }
else
ShowMessage ('Record was not found');
end;
end;

The FindNearest method accepts an array of search values to use in order to perform a near search for a
given record using the active index. If the search was successful then the record pointer is moved to the
desired record, whereas if the search was not successful then the record pointer is moved to the next
record that most closely matches the current search values. If there are no records that are greater than
the search values then the record pointer will be positioned at the end of the table. The search values
must correspond to the fields that make up the active index or the search will not work properly. However,
FindNearest does not require that you fill in all of the field values for all of the fields in the active index,
rather only that you fill in the field values from left to right. The following example shows how to perform

Page 127

Using DBISAM

a near search on the primary index comprised of the CustomerNo field:

begin
with MyTable do

begin
{ Set to the primary index }
IndexName:="";
{ Search for customer 100 or closest }
FindNearest ([100]);
end;

end;

The SetKey and EditKey methods are used in conjunction with the GotoKey and GotoNearest methods to
perform searching using field assignments instead of an array of field values. The SetKey method begins
the search process by putting the TDBISAMTable component into the dsSetKey state and clearing all field
values. You can examine the state of the table using the State property. The application must then assign
values to the desired fields and call the GotoKey or GotoNearest method to perform the actual search. The
GotoNearest method may be used if you wish to perform a near search instead of an exact search. The
Editkey method extends or continues the current search process by putting the TDBISAMTable component
into the dsSetKey state but not clearing any field values. This allows you to change only one field without
being forced to re-enter all field values needed for the search. The KeyFieldCount property controls how
many fields, based upon the current index, are to be used in the actual search. By default the
KeyFieldCount property is set to the number of fields for the active index. The following example shows
how to perform an exact search using the SetKey and GotoKey methods and KeyFieldCount property. The
active index is a secondary index called "CustomerName" comprised of the CustomerName field and the
CustomerNo field:

begin
with MyTable do
begin
{ Set to the CustomerName secondary index }
IndexName:='CustomerName';
{ Search for the customer with the
name 'The Hardware Store' }
SetKey;
FieldByName ('CustomerName') .AsString:='The Hardware Store';
{ This causes the search to only look at the first field
in the current index when searching }
KeyFieldCount:=1;
if GotoKey then
{ Record was found, now do something }
else
ShowMessage ('Record was not found');
end;
end;
Note

In the previous example we executed a partial-field search. What this means is that we did not
include all of the fields in the active index. DBISAM does not require that you use all of the fields in
the active index for searching.

Page 128

Using DBISAM

The following example shows how to perform a near search using the SetKey and GotoNearest methods,
and KeyFieldCount property. The active index is a secondary index called "CustomerName" comprised of
the CustomerName field and the CustomerNo field:

begin
with MyTable do
begin
{ Set to the CustomerName secondary index }
IndexName:="'CustomerName';
{ Search for the customer with the
name 'The Hardware Store' }
SetKey;
FieldByName ('CustomerName') .AsString:='The Hardware Store';
{ This causes the search to only look at the first field
in the current index when searching }
KeyFieldCount:=1;
GotoNearest;
end;
end;

Searching Without a Specific Index Order Set

The Locate method is used to locate a record independent of the active index order or of any indexes at
all. This is why it can be used with query result sets in addition to tables. The Locate method will attempt
to use the active index for searching, but if the current search fields do not match the active index then
the Locate method will attempt to use another available index. Indexes are selected based upon the
options passed to the Locate method in conjunction with the field names that you wish to search upon.
The index fields are checked from left to right, and if a primary or secondary index is found that matches
the search fields from left to right and satisfies the options desired for the search it will be used to perform
the search. Finally, if no indexes can be found that can be used for the search, a filter will be used to
execute the search instead. This is usually a sub-optimal solution and can take a bit of time since the filter
will be completely un-optimized and will be forced to scan every record for the desired field values.

The Locate method accepts a list of field names as its first argument. Multiple field names should be
separated with a semicolon. These are the fields you wish to search on. The second argument to the
Locate method is an array of field values that should correspond to the field names passed in the first
argument. The third and final argument is a set of options for the Locate method. These options control
how the search is performed and how indexes are selected in order to perform the search. The return
value of the Locate method indicates whether the current search was successful. If the search was
successful then the record pointer is moved to the desired record, whereas if the search was not
successful then the record pointer stays at its current position.

The following example shows how to use the Locate method to find a record where the CustomerName
field is equal to "The Hardware Store":

begin
with MyTable do
begin
{ Search for the customer with the
name "The Hardware Store" }

if Locate ('CustomerName', ['The Hardware Store'],[]) then
{ Record was found, now do something }

else
ShowMessage ('Record was not found'):;

Page 129

Using DBISAM

end;
end;

The following example shows how to use the Locate method to find a record where the CustomerName
field is equal to "The Hardware Store", but this time the search will be case-insensitive:

begin
with MyTable do
begin
{ Search for the customer with the
name "The Hardware Store" }
if Locate ('CustomerName', ['The Hardware Store'],
[loCaselInsensitive]) then
{ Record was found, now do something }
else
ShowMessage ('Record was not found'):;
end;
end;

The FindFirst, FindLast, FindNext, and FindPrior methods all rely on the Filter and FilterOptions properties
to do their work. These methods are the most flexible for searching and can be used with both tables and
query result sets, but there are some important caveats. To get acceptable performance from these
methods you must make sure that the filter expression being used for the Filter property is optimized or at
least partially-optimized. If the filter expression is un-optimized it will take a significantly greater amount
of time to complete every call to any of the FindFirst, FindLast, FindNext, or FindPrior methods unless the
table or query result set being searched only has a small humber of records. Please see the Filter
Optimization topic for more information. Also, because the Filter property is being used for these methods,
you cannot use a different filter expression in combination with these methods. However, you can set the
Filtered property to True and show only the filtered records if you so desire. Finally, the FilterOptions
property controls how the filtering is performed during the searching, so you should make sure that these
options are set properly. The following example shows how to use the Filter property and FindFirst and
FindNext methods to find matching records and navigate through them in a table:

begin
with MyTable do
begin
{ Search for the first customer with the
name "The Hardware Store" }
Filter:='CustomerName="'+QuotedStr ('The Hardware Store');
{ We want the search to be case-insensitive }

FilterOptions:=[foCaselInsensitive];
if FindFirst then
begin

{ Record was found, now search through
the rest of the matching records }
while FindNext do
{ Do something here }
end
else
ShowMessage ('Record was not found');
end;
end;

Page 130

Using DBISAM

Page 131

Using DBISAM

2.30 Setting Ranges on Tables

Introduction

Setting ranges on tables is accomplished through several methods of the TDBISAMTable component. The
basic range methods include the SetRange, SetRangeStart, SetRangeEnd, EditRangeStart, EditRangeEnd,
and ApplyRange methods. The KeyFieldCount property is used with the SetRangeStart, SetRangeEnd,
EditRangeStart and EditRangeEnd methods to control searching using the ApplyRange method. All range
operations are dependent upon the active index order set using the IndexName or IndexFieldNames
properties. Ranges may be combined with expression filters set using the Filter and Filtered propertes
and/or callback filters set using the OnFilterRecord event to further filter the records in the table.

Setting a Range

The SetRange method accepts two arrays of values to use in order to set a range on a given table. If the
current record pointer does not fall into the range values specified, then the current record pointer will be
moved to the nearest record that falls within the range. These value arrays must contain the field values in
the same order as the field names in the active index or the range will not return the desired results.
However, SetRange does not require that you fill in all of the field values for all of the fields in the active
index, rather only that you fill in the field values from left to right. The following example shows how to
perform a range on the primary index comprised of the CustomerNo field:

begin
with MyTable do

begin
{ Set to the primary index }
IndexName:="";
{ Set a range from customer 100 to customer 300 }
SetRange ([100], [3007) ;
end;

end;

The SetRangeStart, SetRangeEnd, EditRangeStart, and EditRangeEnd methods are used in conjunction
with the ApplyRange method to perform a range using field assignments instead of arrays of field values.
The SetRangeStart method begins the range process by putting the TDBISAMTable component into the
dsSetKey state and clearing all field values. You can examine the state of the table using the State
property. The application must then assign values to the desired fields for the start of the range and then
proceed to call SetRangeEnd to assign values to the desired fields for the end of the range. After this is
done the application can call the ApplyRange method to perform the actual range operation. The
EditRangeStart and EditRangeEnd methods extend or continue the current range process by putting the
TDBISAMTable component into the dsSetKey state but not clearing any field values. You can examine the
state of the table using the State property. This allows you to change only one field without being forced
to re-enter all field values needed for the beginning or ending values of the range. The KeyFieldCount
property controls how many fields, based upon the active index, are to be used in the actual range and
can be set independently for both the starting and ending field values of the range. By default the
KeyFieldCount property is set to the number of fields in the active index. The following example shows
how to perform a range using the SetRangeStart, SetRangeEnd, and ApplyRange methods and
KeyFieldCount property. The active index is a secondary index called "CustomerName" that consists of the
CustomerName field and the CustomerNo field:

Page 132

begin

Using DBISAM

with MyTable do

end;

Note

begin
{ Set to the CustomerName secondary index }
IndexName:='CustomerName';

{ Set a range to find all customers with
a name beginning with 'A' }
SetRangeStart;
FieldByName ('CustomerName') .AsString:="'A";
{ This causes the range to only look at
the first field in the current index }
KeyFieldCount:=1;
SetRangeEnd;
{ Note the padding of the ending range
values with lowercase z's
to the length of the CustomerName
field, which is 20 characters }
FieldByName ('CustomerName') .AsString:="'Azzzzzz2222222222222";
{ This causes the range to only look at
the first field in the current index }
KeyFieldCount:=1;
ApplyRange;
end;

In the previous example we executed a partial-field range. What this means is that we did not
include all of the fields in the active index in the range. DBISAM does not require that you use all of
the fields in the active index for the range.

Page 133

Using DBISAM

2.31 Setting Master-Detail Links on Tables

Introduction

A master-detail link is a property-based linkage between a master TDataSource component and a detail
TDBISAMTable component. Once a master-detail link is established, any changes to the master
TDataSource component will cause the detail TDBISAMTable component to automatically reflect the
change and show only the detail records that match the current master record based upon the link criteria.
Master-detail links use ranges for their functionality, and therefore are dependent upon the active index in
the detail table. Like ranges, master-detail links may be combined with expression filters set using the
Filter and Filtered propertes and/or callback filters set using the OnFilterRecord event to further filter the
records in the detail table.

Defining the Link Properties

Setting master-detail links on tables is accomplished through four properties in the detail TDBISAMTable
component. These properties are the MasterSource, MasterFields, IndexName, and IndexFieldNames
properties.

The first step in setting a master-detail link is to assign the MasterSource property. The MasterSource
property refers to a TDataSource component. This makes master-detail links very flexible, because the
TDataSource component can provide data from any TDataSet-descendant component such as a
TDBISAMTable or TDBISAMQuery component as well as many other non-DBISAM dataset components.

Note
For the link to be valid, the TDataSource DataSet property must refer to a valid TDataSet-
descendant component.

The next step is to assign the IndexName property, or IndexFieldNames property, so that the active index,
and the fields that make up that index, will match the fields that you wish to use for the link. The only
difference between specifying the IndexName property versus the IndexFieldNames property is that the
IndexName property expects the name of an index, whereas the IndexFieldNames only expects the names
of fields in the table that match the fields found in an index in the table from left-to-right. The
IndexFieldNames property also does not require that all of the fields in an existing index be specified in
order to match with that existing index, only enough to be able to select the index so that it will satisfy the
needs of the master-detail link.

Finally, the MasterFields property must be assigned a value. This property requires a field or list of fields
separated by semicolons from the master data source that match the fields in the active index for the
detail table.

To illustrate all of this we'll use an example. Let's suppose that we have two tables with the following
structure and we wish to link them via a master-detail link:

Customer Table

Field # Name DataType Size
CustomerID ftString 10
2 CustomerName ftString 30

Page 134

3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30
Note

Indexes in this case are not important since this will be the master table

Orders Table

Field # Name DataType Size

1 CustomerID ftString 10

2 OrderNumber ftString 10

3 OrderDate ftDate 0

4 OrderAmount ftBCD 2

Index Name Fields In Index Options
(none) CustomerID; OrderNumber ixPrimary

Using DBISAM

We would use the following example code to establish a master-detail link between the two tables. In this
example it is assumed that a TDataSource component called CustomerSource exists and points to a

TDBISAMTable component for the "customer" table:

begin
with OrdersTable do
begin
{ Select the primary index, which contains the
CustomerID and OrderNumber fields }
IndexName:="";
{ Assign the MasterSource property }
MasterSource:=CustomerSource;
{ Set the MasterFields property to point to the
CustomerID field from the Customer table }
MasterFields:="'CustomerID';
end;
end;

Now any time the current record in the CustomerSource data source changes in any way, the OrdersTable
will automatically reflect that change and only show records that match the master record's CustomerID

field. Below is the same example, but changed to use the IndexFieldNames property instead:

begin
with OrdersTable do
begin
{ Select the primary index, which contains the
CustomerID and OrderNumber fields }

Page 135

Using DBISAM

IndexFieldNames:='CustomerID';
{ Assign the MasterSource property }
MasterSource:=CustomerSource;
{ Set the MasterFields property to point to the
CustomerID field from the Customer table }

MasterFields:='CustomerID';
end;

end;

Note

Because a master-detail link uses data-event notification in the TDataSource component for
maintaining the link, if the TDataSet component referred to by the TDataSource component's
DataSet property calls its DisableControls method, it will not only disable the updating of any data-
aware controls that refer to it, but it will also disable any master-detail links that refer to it also.
This is the way the TDataSet and TDataSource components have been designed, so this is an
expected behavior that you should keep in mind when designing your application.

Page 136

Using DBISAM

2.32 Setting Filters on Tables and Query Result Sets

Introduction

Setting filters on tables and query result sets is accomplished through several properties of the
TDBISAMTable and TDBISAMQuery components. These properties include the Filter, FilterOptions,
Filtered, and FilterOptimizeLevel properties. The OnFilterRecord event is used to assign a callback filter
event handler that can be used to filter records using Delphi or C++ code. All filter operations are
completely independent of any active index order.

Setting an Expression Filter

The Filter, FilterOptions, Filtered, and FilterOptimizeLevel properties are used to set an expression filter.
The steps to set an expression filter include setting the filter expression using the Filter property,
specifying any filter options using the FilterOptions property, and then making the expression filter active
by setting the Filtered property to True. You can turn off or disable an expression filter by setting the
Filtered property to False. If the current record pointer does not fall into the conditions specified by an
expression filter, then the current record pointer will be moved to the nearest record that falls within the
filtered set of records. Expression filters may be combined with ranges, master-detail links, and/or callback
filters to further filter the records in the table or query result set.

DBISAM's expression filters use the same naming conventions, operators, and functions as its SQL
implementation. The only differences are as follows:

Difference Description

Correlation Names You cannot use table or column correlation names in filter
expressions.

Aggregate functions You cannot use any aggregate functions like SUM(), COUNT(),
AVG(), etc. in filter expressions.

Please see the Naming Conventions, Operators, and Functions topics in the SQL Reference for more
information.

Note

Unlike with SQL, you may also use use the asterisk (*) character to specify a partial-length match
for string field comparisons in a filter expression. However, this only works when the
foNoPartialCompare element is not included in the FilterOptions property.

The following example shows how to set an expression filter where the LastSaleDate field is between
January 1, 1998 and December 31, 1998 and the TotalSales field is greater than 10,000 dollars:

begin
with MyTable do
begin
{ Set the filter expression }
Filter:='(LastSaleDate >= '4+QuotedStr('1998-01-01")+") '+
'and (LastSaleDate <= '"+QuotedStr ('1998-12-31")+'") '+

'and (TotalSales > 10000)';

Page 137

Using DBISAM

FilterOptions:=[];
Filtered:=True;
end;

end;

DBISAM attempts to optimize all expression filters. This means that DBISAM will try to use existing indexes
to speed up the filter operation. The FilterOptimizeLevel property indicates what level of optimization was,
or will be, achieved for the expression filter and can be examined after the Filtered property is set to True
to execute the filter. The following example displays a message dialog indicating the level of optimization
achieved for the expression filter:

begin
with MyTable do
begin
{ Set the filter expression, in this case for
a partial-match, case-insensitive filter }
Filter:='CustomerName = '+QuotedStr ('A*"');
FilterOptions:=[foCaselnsensitive];
Filtered:=True;
case FilterOptimizeLevel of
foNone: ShowMessage ('The filter is completely unoptimized');
foPartial: ShowMessage ('The filter is partially optimized');
foFull: ShowMessage ('The filter is completely optimized');
end;
end;
end;

Note

The foCaselnsensitive filter option can affect the optimization level returned by the
FilterOptimizeLevel, so you should make sure to set any filter options before examining the
FilterOptimizeLevel property so as to avoid any confusion.

Please see the Filter Optimization topic for more information.
Setting a Callback Filter

The OnFilterRecord event and the Filtered property are used together to set a callback filter. The steps to
set a callback filter include assigning an event handler to the OnFilterRecord event and then making the
callback filter active by setting the Filtered property to True. You can turn off or disable a callback filter by
setting the Filtered property to False. If the current record pointer does not fall into the conditions
specified within the callback filter, then the current record pointer will be moved to the nearest record that
falls within the filtered set of records.

The following example shows how to write a callback filter event handler where the CustomerName field
contains the word "Hardware" (case-sensitive):

procedure TMyForm.TableFilterRecord(DataSet: TDataSet;
var Accept: Boolean);

begin
Accept:=False;

Page 138

Using DBISAM

if Pos('Hardware',
DataSet.FieldByName ('CustomerName') .AsString) > 0) then
Accept:=True;
end;

Note

Callback filters implemented via the OnFilterRecord event are always completely un-optimized. In
order to satisfy the filter requirements, DBISAM must always read every record to determine if the
record falls into the desired set of records. You should only use OnFilterRecord on small sets of
data, or large sets of data that have been reduced to a small number of records by an existing
range and/or expression filter.

Page 139

Using DBISAM

2.33 Loading and Saving Streams with Tables and Query Result Sets

Introduction

Loading and saving tables and query result sets to and from streams is accomplished through the
LoadFromStream and SaveToStream methods of the TDBISAMTable and TDBISAMQuery components. The
properties used by the LoadFromStream and SaveToStream methods include the DatabaseName,
TableName, and Exists properties. A stream is any TStream-descendant object such as TFileStream,
TMemoryStream, or even the DBISAM TDBISAMBIobStream object used for reading and writing to BLOB
fields. Loading a stream copies the entire contents of a stream to an existing table or query result set.
When loading a stream, the contents of the stream must have been created using the SaveToStream
method or else an EDBISAMENgineError exception will be raised. The error code given when a load from a
stream fails because of an invalid stream is 11312 and is defined as DBISAM_LOADSTREAMERROR in the
dbisamcn unit (Delphi) or dbisamcn header file (C++). Saving to a stream copies the contents of a table
or query result set to the stream, overwriting the entire contents of the stream. The records that are
copied can be controlled by setting a range or filter on the source table or query result set prior to calling
the SaveToStream method. Please see the Setting Ranges on Tables and Setting Filters on Tables and
Query Result Sets topics for more information.

Loading Data from a Stream

To load data from a stream into an existing table, you must specify the DatabaseName and TableName
properties of the TDBISAMTable component and then call the LoadFromStream method. When using a
TDBISAMTable component, the table can be open or closed when this method is called, and the table does
not need to be opened exclusively. If the table is closed when this method is called, then DBISAM will
attempt to open the table before loading the data into it. It is usually good practice to examine the Exists
property of the TDBISAMTable component first to make sure that you don't attempt to load data into a
non-existent table. If you do attempt to load data into a non-existent table an EDBISAMEngineError
exception will be raised. The error code given when a load from a stream fails due to the table not existing
is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file
(C++). To load data from a stream into a query result set, the TDBISAMQuery SQL property must be
populated with a SELECT SQL statement and the Active property must be True.

The following example shows how to load data from a memory stream (assumed to already be created)
into a table using the LoadFromStream method:

begin
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
LoadFromStream (MyMemoryStream) ;

end;

end;

Page 140

Using DBISAM

Note

Tables or query result sets in remote sessions can load streams from a local stream. However, since
the stream contents are sent as one buffer to the database server as part of the request, it is
recommended that you do not load particularly large streams since you will run the risk of
exceeding the available memory on the local workstation or database server.

Tracking the Load Progress

To take care of tracking the progress of the load we have provided the TDBISAMTable and TDBISAMQuery
OnLoadFromStreamProgress events.

Saving Data to a Stream

To save the data from a table to a stream, you must specify the DatabaseName and TableName properties
of the TDBISAMTable component and then call the SaveToStream method. When using a TDBISAMTable
component, the table can be open or closed when this method is called, and the table does not need to be
opened exclusively. If the table is closed when this method is called, then DBISAM will attempt to open
the table before saving the data. It is usually good practice to examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to save data from a non-existent
table. If you do attempt to save data from a non-existent table an EDBISAMEngineError exception will be
raised. The error code given when a save fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). To save data to a
stream from a query result set, the TDBISAMQuery SQL property must be populated with a SELECT SQL
statement and the Active property must be True.

The following example shows how to save the data from a table to a memory stream (assumed to already
be created) using the SaveToStream method of the TDBISAMTable component:

begin
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:='customer';
if Exists then
SaveToStream (MyMemoryStream) ;

end;

end;

Tracking the Save Progress

To take care of tracking the progress of the save we have provided the TDBISAMTable and
TDBISAMQuery OnSaveToStreamProgress events.

Page 141

Using DBISAM

2.34 Importing and Exporting Tables and Query Result Sets

Introduction

Importing and exporting tables and query result sets to and from delimited text files is accomplished
through the ImportTable and ExportTable methods of the TDBISAMTable and TDBISAMQuery components.
The properties used by the ImportTable and ExportTable methods include the DatabaseName,
TableName, and Exists properties. Importing a table copies the entire contents of a delimited text file to
an existing table or query result set. Exporting a table copies the contents of a table or query result set to
a new delimited text file. The records that are copied can be controlled by setting a range or filter on the
source table or query result set prior to calling the ExportTable method. Please see the Setting Ranges on
Tables and Setting Filters on Tables and Query Result Sets topics for more information.

Importing Data

To import a delimited text file into an existing table, you must specify the DatabaseName and TableName
properties of the TDBISAMTable component and then call the ImportTable method. When using a
TDBISAMTable component, the table can be open or closed when this method is called, and the table does
not need to be opened exclusively. If the table is closed when this method is called, then DBISAM will
attempt to open the table before importing the data into it. It is usually good practice to examine the
Exists property of the TDBISAMTable component first to make sure that you don't attempt to import data
into a non-existent table. If you do attempt to import data into a non-existent table an
EDBISAMENgineError exception will be raised. The error code given when an import fails due to the table
not existing is 11010 and is defined as DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn
header file (C++). To import a delimited text file into a query result set, the TDBISAMQuery SQL property
must be populated with a SELECT SQL statement and the Active property must be True.

The following example shows how to import a delimited text file into a table using the ImportTable
method:

Incoming text file has following layout:

Field # Name DataType
1 CustomerName ftString
2 ContactName ftString
3 Phone ftString
4 Fax ftString
5 EMail ftString

Table has following structure:

Field # Name DataType Size
1 CustomerID ftAutolInc 0

2 CustomerName ftString 30

3 ContactName ftString 30

4 Phone ftString 10

5 Fax ftString 10

6 EMail ftString 30

7 LastSaleDate ftDate 0
Index Name Fields In Index Options

Page 142

Using DBISAM

(none) CustomerID ixPrimary

{ In this example we'll use a comma as a delimiter }

var
IncomingFields: TStrings;

begin
IncomingFields:=TStringList.Create;
try
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
begin
with IncomingFields do
begin
Add ('CustomerName') ;
Add ('ContactName') ;
Add ('Phone') ;
Add ('Fax");
Add('Email') ;
end;
{ Date, time, and number formatting left
to defaults for this example }
ImportTable ('d:\incoming\customer.txt',
', ', False, IncomingFields) ;
end;
end;
finally
IncomingFields.Free;
end;
end;
Note

Tables or query result sets in remote sessions can only import delimited text files that are accessible
from the database server on which the tables or query result sets reside. You must specify the path
to the incoming text file in a form that the database server can use to open the file.

In addition to using the TDBISAMTable and TDBISAMQuery ImportTable methods for importing delimited
text files, DBISAM also allows the use of the IMPORT TABLE SQL statement.

Tracking the Import Progress

To take care of tracking the progress of the import we have provided the TDBISAMTable and
TDBISAMQuery OnImportProgress events.

Exporting Data

To export a table to a delimited text file, you must specify the DatabaseName and TableName properties
of the TDBISAMTable component and then call the ExportTable method. When using a TDBISAMTable

Page 143

Using DBISAM

component, the table can be open or closed when this method is called, and the table does not need to be
opened exclusively. If the table is closed when this method is called, then DBISAM will attempt to open
the table before exporting the data. It is usually good practice to examine the Exists property of the
TDBISAMTable component first to make sure that you don't attempt to export data from a non-existent
table. If you do attempt to export data from a non-existent table an EDBISAMENgineError exception will be
raised. The error code given when an export fails due to the table not existing is 11010 and is defined as
DBISAM_OSENOENT in the dbisamcn unit (Delphi) or dbisamcn header file (C++). To export data to a
delimited text file from a query result set, the TDBISAMQuery SQL property must be populated with a
SELECT SQL statement and the Active property must be True.

The following example shows how to export a table to a delimited text file using the ExportTable method
of the TDBISAMTable component:

Outgoing text file should have the following layout:

Field # Name DataType
1 CustomerName ftString
2 ContactName ftString
3 Phone ftString
4 Fax ftString
5 EMail ftString

Table has following structure:

Field # Name DataType Size
1 CustomerID ftAutoInc 0

2 CustomerName ftString 30

3 ContactName ftString 30

4 Phone ftString 10

5 Fax ftString 10

6 EMail ftString 30

7 LastSaleDate ftDate 0
Index Name Fields In Index Options
(none) CustomerID ixPrimary

{ In this example we'll use a comma as a delimiter
and only export records that have a non-blank email address }

var
OutgoingFields: TStrings;
begin
OutgoingFields:=TStringList.Create;
try
with MyTable do
begin
DatabaseName:='d:\temp';
TableName:="'customer';
if Exists then
begin
Open;
try

Page 144

Using DBISAM

Filter:='EMail IS NOT NULL';
Filtered:=True;
with OutgoingFields do

begin

Add ('CustomerName') ;
Add ('ContactName') ;
Add ('Phone') ;

Add ('Fax"') ;

Add ('Email'") ;

end;

{ Date, time, and number formatting left
to defaults for this example }
ExportTable ('d:\outgoing\customer.txt"',
', ', False,OutgoingFields) ;
finally
Close;
end;
end;
end;
finally
OutgoingFields.Free;
end;
end;

Note

Tables or query result sets in remote sessions can only export data to delimited text files that are
accessible from the database server on which the source tables or query result sets reside. You
must specify the path to the text file in a form that the database server can use to create the file.

In addition to using the TDBISAMTable and TDBISAMQuery ExportTable methods for exporting data to
delimited text files, DBISAM also allows the use of the EXPORT TABLE SQL statement.

Tracking the Export Progress

To take care of tracking the progress of the export we have provided the TDBISAMTable and
TDBISAMQuery OnExportProgress events.

Page 145

Using DBISAM

2.35 Cached Updates

Introduction

Using cached updates for table and query result sets is accomplished through the BeginCachedUpdates,
and ApplyCachedUpdates, and CancelCachedUpdates methods of the TDBISAMTable and TDBISAMQuery
components. The properties used by these methods include the CachingUpdates property. Using cached
updates permits an application to copy all existing records in a given table or query result set to a
temporary table that is then used for any inserts, updates, or deletes. Once all updates are complete, the
application may then call the ApplyCachedUpdates method to apply all updates to the source table or
query result set, or the CancelCachedUpdates method to cancel all updates and revert the table or query
result set to its original state prior to the cached updates. The records that are included in the cached
updates can be controlled by setting a range or filter on the source table or query result set prior to calling
the BeginCachedUpdates method. Please see the Setting Ranges on Tables and Setting Filters on Tables
and Query Result Sets topics for more information.

Note

Do not use cached updates on very tables or query result sets with large number of records in the
active set according to any active ranges and/or filters. Doing so can result in some serious
performance problems as the entire set of records will need to be copied when cached updates are
begun.

Beginning Cached Updates

To begin cached updates, you must call the BeginCachedUpdates method. When using either a
TDBISAMTable or TDBISAMQuery component, the table or query result set must be opened (Active
property is set to True) or an exception will be raised.

Applying Cached Updates

To apply any cached updates to the source table or query result set, you must call the
ApplyCachedUpdates method. This method will apply any updates that were made to the temporary table
used for the cached updates to the source table or query result set. Only records that were inserted,
updated, or deleted are processed, so the result is the same as calling the CancelCachedUpdates method
if no records were inserted, updated, or deleted while cached updates were enabled. You can examine the
CachingUpdates property to determine whether cached udpdates are in effect before trying to apply any
cached updates.

It is strongly recommend that you always wrap the ApplyCachedUpdates method with a
TDBISAMDatabase StartTransaction and Commit and Rollback block of code. This will allow the application
of the cached updates to behave as an atomic unit of work and will avoid any possible problems of partial
updates due to errors during the application of the updates.

The following example shows how to propery apply cached updates using a transaction around the
ApplyCachedUpdates method:

var
TablesList: TStrings;
begin

Page 146

Using DBISAM

TablesList:=TStringlList.Create;
try
with MyTable do
begin
TablesList.Add (TableName) ;
Database.StartTransaction (TablesList) ;
try
ApplyCachedUpdates;
Database.Commit;
except
Database.Rollback;
raise;
end;
finally
TablesList.Free;
end;
end;

Note

Notice that a restricted transaction is used in this example. It is wise to do this if only updating one
table because it helps increase multi-user concurrency. Please see the Transactions topic for more
information.

Reconciling Errors

Cached updates are handled in an optimistic manner, which means that DBISAM does not hold any locks
on the records that are held in the cache while the cached updates are in effect. Subsequently, it is
possible that another session has changed some or all of the records that were cached and updated or
deleted in the cache. When the cached updates are then applied using the ApplyCachedUpdates method,
an error message will be raised and it is possible that only a portion of the cached updates will be applied
to the source table or query result set. To avoid this, you can assign an event handler to the
OnCachedUpdateError event. This will cause DBISAM to instead call this event handler when an error
occurs during the application of the cached updates, giving the user an opportunity to correct any errors
and retry any update that is causing an error.

Note

No matter what happens with respect to errors, the ApplyCachedUpdates method always results in
cached updates being turned off and the source table or query result being returned to its normal
state.

The following is an example of an OnCachedUpdateError event handler that retries the current record
application if a record lock error is causing the problem:

procedure TMyForm.MyTableCachedUpdateError (Sender: TObject;
CurrentRecord: TDBISAMRecord; E: Exception;
UpdateType: TUpdateType; var Action: TUpdateAction);
begin
Action:=uaFail;
if (E is EDBISAMEngineError) then
begin

Page 147

Using DBISAM

if (EDBISAMEngineError(E).ErrorCodeZDBISAMiRECLOCKFAILED) then
Action:=uaRetry;
end;
end;

Of course, there are many responses that can be made in this event handler depending upon the actual
error code and any input that the user may be able to provide. The TDBISAMRecord object passed in
contains both the current values and the old values of the record being applied, which allows you to
prompt the user for an answer to a possible issue with a key violation, locking issue, or a record being
modified by another user since it was last cached. In some cases, like duplicate key violations, it is
possible to modify the current values so that the record can still be inserted, updated, or deleted.

Filters, Ranges, and Master-Detail Links

Most of the operations that can be performed on a TDBISAMTable or TDBISAMQuery component behave
the same regardless of whether cached updates are active or not. This includes the following operations:

Navigating Tables and Query Result Sets
Searching and Sorting Tables and Query Result Sets
Updating Tables and Query Result Sets

However, certain states of the table or query result set are not carried over to the cached updates
temporary table. These include:

Filters
Ranges
Master-Detail Links

All of these states are reset for the cached updates temporary table. You may apply new filters, ranges,
and/or master-detail links on the cached updates temporary table if you wish, but they will not apply to
the base table nor will they affect the base table's state with respect to filters, ranges, or master-detail
links. After the cached updates are applied or cancelled, all of these states are set back to what they were
prior to the cached updates being active.

Refreshing During Cached Updates

If you call the TDBISAMTable or TDBISAMQuery Refresh method while cached updates are active, then
the current contents of the cached updates temporary table will be discarded and replaced with the latest
data from the base table. Cached updates will remain in effect after the Refresh is complete.

Page 148

Advanced Topics

Chapter 3
Advanced Topics

3.1 Locking and Concurrency

Introduction

DBISAM manages most locking and concurrency issues without requiring any action on the part of the
developer. The following information details the steps that DBISAM takes internally in order to maximize
concurrency while still resolving conflicts for shared resources using locking.

How DBISAM Performs Locking

All locks in DBISAM are performed using calls to the operating system. If using a local session accessing
DBISAM tables on a network file server, these calls are then routed by the operating system to the file
server's operating system, which could be Windows, Linux, etc. The benefit of this approach is that
dangling locks left from an improper shutdown can be cleaned up by the operating system rather quickly.

DBISAM takes advantage of the fact that both Windows and the Linux operating systems allow an
application to lock portions of a file beyond the actual size of the file. This process is known as virtual byte
offset locking. DBISAM restricts the size of any physical data, index, or BLOB file that is part of a table to
128,000,000,000 bytes by default, or a little under 128 gigabytes. DBISAM does this so it can reserve the
space available between the 128 gigabyte mark and the 128,000,000,000 byte mark for record and
semaphore locks in the table. For table locks DBISAM uses a special hidden file called "dbisam.Ick" (by
default) that it automatically creates in the database directory where the tables are stored. This file is only
used for keeping a list of the tables in the database and for placing virtual byte offset locks for table read,
write, and transaction locks. Using this one file for table locks allows DBISAM to perform transaction
locking without encountering deadlocks, which was an issue in past versions of DBISAM. The default lock
file name "dbisam.Ick" can be modified to any file name desired by modifying the TDBISAMEngine
LockFileName property.

Note

If the lock file does not exist and cannot be created due to issues with security permissions, then
the database will be treated as read-only and you will not be able to modify any tables in the
database.

Record Locking Protocols

DBISAM offers two types of record locking protocols, pessimistic (default) and optimistic locking. The
record locking protocol is configurable via the TDBISAMSession LockProtocol property.

Locking Model Description

Page 149

Advanced Topics

Pessimistic The pessimistic record locking model specifies that a record
should be locked when the record is retrieved for editing,
which is during a call to the TDBISAMTable or TDBISAMQuery
Edit method or during the record retrieval in an UPDATE SQL
statement.

Optimistic The optimistic locking model specifies that a record should be
locked when any record modifications are posted to the table,
which is during a call to the TDBISAMTable or TDBISAMQuery
Post method or during the record modification in an UPDATE
SQL statement. Using an optimistic record locking model for
remote sessions removes the possibility that dangling record
locks will be left on the database server if the application is
terminated unexpectedly.

The two record locking protocols can safely and reliably be used among multiple sessions on the same set
of tables, although it is not recommended due to the potential for confusion for the developer and user of
the application.

User or Developer-Controlled Locks

There are three types of user or developer-controlled locks in DBISAM:
Record Locks
Table Locks
Semaphore Locks

Record locks are initiated by the user or developer when a record is appended, edited, or deleted. Table
locks and semaphore locks, on the other hand, must be specifically set by the developer.

Record Locks

Record locks are used to enforce DBISAM's pessimistic or optimistic record locking protocols and prevent
the same or multiple sessions from editing or posting modifications to the same record at the same time.
Record locks block other record or table lock attempts, but do not block any reads of the locked records.
The following details what happens in the various scenarios that use record locks:

Action Description

Page 150

Appending

Editing

Deleting

Advanced Topics

When adding a record using the Append or Insert method of
the TDBISAMTable or TDBISAMQuery component, no record
locks are acquired until the record is posted using the Post
method of the TDBISAMTable or TDBISAMQuery component.
During the posting of a new record, a record lock is implicity
acquired by DBISAM on the next available physical record.
This record lock will fail only if the entire table is already
locked by the same session or a different session. If the
record lock fails, then an EDBISAMEngineError exception will
be raised. The error code that is given when a record lock
fails is 10258 and is defined as DBISAM_RECLOCKFAILED in
the dbisamcn unit (Delphi) or dbisamcn header file (C++).

When editing a record using the Edit method of the
TDBISAMTable or TDBISAMQuery component, a record lock is
implicity acquired by DBISAM if the record locking protocol for
the session is set to pessimistic (see above). This record lock
will fail if the record or entire table is already locked by the
same session or a different session. If the record lock fails,
then an EDBISAMENgineError exception will be raised. The
error code that is given when a record lock fails is 10258 and
is defined as DBISAM_RECLOCKFAILED in the dbisamcn unit
(Delphi) or dbisamcn header file (C++). If the locking
protocol for the session is set to optmistic then the Edit
method will not attempt to implicitly acquire a record lock, but
will instead wait until the Post method is called to implicitly
acquire the record lock. This means that another session is
capable of editing the record and posting the changes to the
record before the Post method is called. If this occurs, then
an EDBISAMEngineError exception will be raised. The error
code that is given when a call to the Post method fails
because the record has been altered is 8708 and is defined as
DBISAM_KEYORRECDELETED in the dbisamcn unit (Delphi) or
dbisamcn header file (C++). In such a case you must discard
the edited record by calling the Cancel method, call the
Refresh method to refresh the record, and begin again with a
fresh copy of the record using the Edit method.

When deleting a record using the Delete method of the
TDBISAMTable or TDBISAMQuery component, a record lock is
implicity acquired by DBISAM. This record lock will fail if the
record or entire table is already locked by the same session or
a different session. If the record lock fails, then an
EDBISAMENgineError exception will be raised. The error code
that is given when a record lock fails is 10258 and is defined
as DBISAM_RECLOCKFAILED in the dbisamcn unit (Delphi) or
dbisamcn header file (C++). If another session edits the
record and posts the changes to the record before the Delete
method is called, an EDBISAMEngineError exception will be
raised. The error code that is given when a call to the Delete
method fails because the record has been altered is 8708 and
is defined as DBISAM_KEYORRECDELETED in the dbisamcn
unit (Delphi) or dbisamcn header file (C++). In such a case
you must call the Refresh method to refresh the record and
begin again with a fresh copy of the record using the Delete
method.

Page 151

Advanced Topics

Table Locks

Table locks are used to allow the developer to prevent any other sessions from adding, editing, or deleting
any records or placing any record or table locks on a given table. Table locks block other record or table
lock attempts, but do not block any reads of the locked table. A table lock is equivalent to locking all of the
records in a table, including any records that may be added in the future. Table locks are always
pessimistic and are not affected by the record locking protocol in use for record locks.

The TDBISAMTable LockTable method is used to acquire a table lock. If the table lock fails, then an
EDBISAMENgineError exception will be raised. The error code that is given when a table lock fails is 10241
and is defined as DBISAM_LOCKED in the dbisamcn unit (Delphi) or dbisamcn header file (C++). The
TDBISAMTable UnlockTable method is used to remove a table lock. The following is an example of using
the LockTable and UnlockTable methods of the TDBISAMTable component:

begin
with MyTable do
begin
LockTable;
try
{ Perform some updates to the table }
finally
UnlockTable;
end;
end;
end;

Locking all of the records in a table using the LockTable method is useful for ensuring that no other users
or processes make changes to a given table while a batch process is executing.

Semaphore Locks

Semaphore locks are used to provide access serialization in specific user-defined application functionality
such as batch updates or system configuration updates and are not required in the normal operation of
DBISAM. Semaphore locks can be placed in what are simply referred to as slots, and these slots are
numbered from 1 to 1024. Semaphore locks only block other semaphore lock attempts for the same slot.

Note
Semaphore locks are table-based, with a different set of semaphore slots per table.

The TDBISAMTable LockSemaphore method is used to place a semaphore lock. If the semaphore lock
fails, then the result of the LockSemaphore method will be False. The TDBISAMTable UnlockSemaphore
method is used to remove a semaphore lock. The following is an example of using the LockSemaphore
and UnlockSemaphore methods of the TDBISAMTable component:

begin
with MyTable do
begin
if LockSemaphore(l) then
begin

Page 152

Advanced Topics

try
{ Perform a batch process }
finally
UnlockSemaphore (1) ;
end;
end;
end;
end;

Lock Retry Count and Wait Time

The number of record and table lock retries and the amount of time between each retry can be controlled
using the TDBISAMSession LockRetryCount and LockWaitTime properties. In a busy multi-user application
it may be necessary to increase these values in order to relieve lock contention and provide for smoother
concurrency between multiple users. However, in most cases the default values should work just fine.

Internal Locks Used by the Engine

There are three types of internal locks in DBISAM:

Table Read Locks
Table Write Locks
Database Transaction Locks

Table tead locks are used by DBISAM to allow reads by multiple sessions while blocking any table write
locks. Table read locks do not block other table read lock attempts. Table write locks, on the other hand,
are used to serialize writes to a given table and therefore block any table read lock attempts or table write
lock attempts.

Table Read Locks

Table read locks allow DBISAM to accurately treat reads on internal table structures such as the indexes or
BLOB fields as atomic, or a single unit of work. Table read locks ensure that no other session writes to the
table by blocking any table write locks. Table read locks are the most widely-used locks in DBISAM and are
the cornerstone of correct multi-user operation. They especially play a large role in change detection.
Please see the Change Detection topic for more information.

Table read locks are also acquired during table scans for un-optimized filter or query conditions. You can
control the maximum number of table read locks acquired during a table scan via the TDBISAMENgine
TableMaxReadLockCount property. Please see the Filter Optimization topic for more information on how
filter conditions are optimized, and the SQL Optimizations topic for more information on optimizing SQL
query conditions.

Table Write Locks

Table write locks allow DBISAM to accurately treat writes on internal table structures such as the indexes
or BLOB fields as atomic, or a single unit of work. Table write locks ensure that no other session reads
from or writes to the table by blocking any table read lock or write locks.

Database Transaction Locks

Database transaction locks allow DBISAM to treat multi-table updates within a transaction as atomic, or a
single unit of work. Database transaction locks ensure that no other session writes to the database by

Page 153

Advanced Topics

blocking any table write locks while the transaction is in effect. Table read locks are allowed, however, and
other sessions can read the data from tables and acquire record and table locks. During the commit of a
transaction, the database transaction lock is escalated so that table read locks are also blocked while the

transaction is written to the database.

Page 154

Advanced Topics

3.2 Buffering and Caching

Introduction

DBISAM uses caching and buffering algorithms internally to ensure that data is cached for as long as
possible and is accessible in the fastest possible manner when needed to perform an operation. The
following information details these internal processes.

Buffer Replacement Policy

Any buffer maintained within DBISAM is replaced using a LRU, or least-recently-used, algorithm. For
example, if the cache is full when reading a record, DBISAM will discard the least-recently-used record
buffer in order to make room for the new record buffer. The "age" of a given buffer is determined by the
access patterns at the time. Every time a buffer is accessed it is moved so it is the first buffer in the list of
available buffers. This would make it the "youngest" buffer present in the list of available buffers, and all
other buffers would be moved down the list. As a particular buffer moves down the list it becomes "older"
and will be more likely to be removed and discarded from the list of available buffers.

Read Ahead Buffering

DBISAM performs intelligent read-ahead when reading records and BLOB blocks. For read-ahead on
records, this intelligence is gathered from information in the active index for a given table and allows
DBISAM to determine how records physically align with one another on disk. Performing read-ahead in this
manner can reduce the number of I/O calls that DBISAM has to make to the operating system and can
significantly speed up sequential read operations such as those found in SQL queries and other bulk
operations.

Block Writes

When DBISAM writes data to disk it aligns the data according to its physical placement on disk and
attempts to write all of the needed data in the fewest number of I/0O calls that is possible. This reduces the
number of I/0 calls and can make commit operations for transactions extremely quick, especially for bulk
appends of records within a transaction.

OS Buffering

In addition to the buffering provided by DBISAM, additional buffering may be provided by the operating
system in use. When DBISAM writes data using operating system calls, there is no guarantee that the data
will be immediately written to disk. On the contrary, it may be several seconds or minutes until the
operating system lazily flushes the data to disk. This has implications in terms of data corruption if the
workstation is improperly shut down after updates have taken place in DBISAM. You can get around this
by using the TDBISAMSession ForceBufferFlush property or by using the TDBISAMTable or TDBISAMQuery
FlushBuffers method. The most desirable way to ensure that data is flushed to disk at the operating
system level is the FlushBuffers method since the ForceBufferFlush property is very disk-intensive and may
cause write performance to drop below an acceptable level. The FlushBuffers method, on the other hand,
can be used in critical places in an application to ensure that data is flushed to disk in a timely fashion
without necessarily sacrificing performance.

Modifying the Amount of Buffering

DBISAM enables you to modify the amount of memory used for buffering each table's record, index, and

Page 155

Advanced Topics

BLOB field data. Please see the Customizing the Engine topic for more information.

Page 156

Advanced Topics

3.3 Change Detection

Introduction

DBISAM automatically uses the proper change detection when dealing with updates to tables. However,
there are two different types of change detection policies that can be used when dealing with reading data
from tables:

Strict Change Detection
Lazy Change Detection

The choice of which policy to use is up to the developer and his/her needs and can be controlled via the
TDBISAMSession StrictChangeDetection property. Also, any time DBISAM checks for changes in a given
table it acquires a read lock on the table so as to ensure that no other changes occur while DBISAM
performs the actual checks. Please see the Locking and Concurrency topic for more information.

Strict Change Detection

Strict change detection uses a "brute-force" method of determining whether the data has been changed
by session during the process of reading data from a table. What this means is that every operation that
requires reading of data from a table such as moving between records, filtering, setting ranges, searching,
etc. will cause DBISAM to check for changes before the operation is executed. If DBISAM finds that the
data in the table has changed, it will dump the contents of its local cache and refresh it using the latest
data from the table. This can have some very significant performance implications, especially when the
table resides on a network file server, so you should use this policy only when it is absolutely necessary
that the data being read is always up-to-date at the time of the operation. It also tends to completely
defeat the local caching done by DBISAM if there are a lot of updates taking place concurrently on the
same tables. Please see the Buffering and Caching topic for more information.

Note

Strict change detection does not guarantee that the data you currently see is the latest data, only
that the next time you perform a read operation you will see the latest data. DBISAM does not
perform polling or background operations to constantly check for changes, only when it is instructed
to perform a read operation.

Lazy Change Detection

Lazy change detection is the default change detection policy and is the most desirable in terms of
efficiency and performance. Lazy change detection works by only checking for changes by other sessions
when DBISAM cannot find the desired data locally in its cache and must physically read the data from the
table. If changes are found, DBISAM will dump its cache and retry the read operation that it was in the
process of executing when it found that it needed more data from the table. Because of the fact that
DBISAM can cache a fairly large amount of data for each table open within a session, this policy tends to
be very efficient and will provide the best performance overall. However, it does leave the job of
refreshing data up to the developer so please take this into account when developing an application using
this change detection policy.

Page 157

Advanced Topics

Note

The amount of memory used for buffering tables can affect how often DBISAM detects changes
within tables using lazy change detection, and DBISAM allows you to change these settings. Please
see the Customizing the Engine topic for more information.

Updates and Change Detection

DBISAM always uses a strict change detection policy when performing updates. This means that anytime
you append, edit, or delete a record DBISAM will automatically make sure that it's local cache contains the
most up-to-date data before performing the actual update operation. In addition to this, DBISAM also
performs a record buffer comparison when editing or deleting records to make sure that the record that is
now present in it's cache is consistent with the record that was intended to be edited or deleted before the
operation was initiated (i.e. it's what the user sees). If the record is not the same due to a change or
deletion by another user or session, DBISAM will trigger the error DBISAM_KEYORRECDELETED indicating
that the record has been changed or deleted by another user and the operation will be aborted. This
record buffer comparison also includes the comparison of BLOB "signatures" in the record buffer so it is
safe when determining if BLOB fields have changed also.

Page 158

Advanced Topics

3.4 Index Compression

Introduction

DBISAM provides different ways of specifying how indexes should be compressed when creating or
altering the structure of tables, as well as adding new indexes to a table. Please see the Creating and
Altering Tables and Adding and Deleting Indexes from a Table topics for more information. The following
information details the different types of index compression and how they should be used.

Types of Compression
The four different types of index compression available are:

Type Description

No Compression In most cases it is not very useful to specify no compression
at all since almost every type of index can benefit from some
type of compression. The exception to this would be primary
or unique secondary indexes that are comprised of only one
SmallInt, Word, or very short (< 4 characters) String type of
field.

Duplicate-Byte Compression Duplicate-byte compression works by comparing a given index
key to its prior index key on the same index page and
removing any duplicate bytes (working from the beginning of
the index key to the end).

Trailing-Byte Compression Trailing-byte compression works by removing any trailing
blank or null bytes from a given index key (working from the
end of the index key to the beginning).

Full Compression Full compression works by combining both duplicate-byte
compression with trailing-byte compression at the same time.

Compression Recommendations

If you are using only non-String fields in an index key and the index is not unique (or primary), then the
highest compression level you should specify is duplicate-byte compression. You should not use trailing-
byte compression in such a case at all since it will most likely provide very little benefit for most scalar
data types (Integer, SmallInt, Word, Boolean, etc.).

If you're using a String field at the end of an index key and the index is not unique (or primary), then you
should specify full compression, since this will not only remove duplicate bytes from the beginning of the
index key it will also remove any trailing blanks or nulls from the end of the index key. This is especially
true with indexes with large index key sizes. However - if the String field at the end of the index key is
always filled entirely (such as may be the case with an ID field or something similar) then you should only
use duplicate-byte compression for the index. Trailing-byte compression is most effective with large String
fields that have a high likelihood of not being filled to capacity very often, such as is the case with an
address or company name field.

If you're using only a String field in an index and the index is unique (or primary), you should verify
whether the index will be smaller with just the trailing-byte compression specified. The amount of possible
compression for the full compression option in this case is limited with unique indexes because there will
be a smaller likelihood of duplicate bytes at the beginning of the index keys. It really is a factor of the data

Page 159

Advanced Topics

values in the table, so you have to experiment a little.

If you're using only a non-String field in an index and the index is unique (or primary), you should verify
whether the index will be smaller with no compression specified. The amount of possible compression for
the duplicate-byte compression option in this case is limited with unique indexes because there will be a
smaller likelihood of duplicate bytes at the beginning of the index keys. This is also a factor of the data
values in the table, so again you have to experiment a little.

Page 160

Advanced Topics

3.5 Filter Optimization

Introduction

DBISAM's filter optimizations rely on the use of available indexes and bitmaps in order to facilitate the
quick retrieval and manipulation of sets of records that satisy all, or a portion of, a set of filter constraints.

Setting the Filter Expression

When an expression filter is set on a table in DBISAM using the TDBISAMTable or TDBISAMQuery Filter
property, the following steps take place:

1) The filter expression is parsed and a set of token objects is created for each token in the expression.

2) The set of token objects is then examined for proper syntax and any errors in the filter expression are
reported at this time.

3) The set of token objects is then examined again in order to determine the optimization level and make
it available to the developer for examination via the TDBISAMTable or TDBISAMQuery FilterOptimizeLevel
property. This process looks at the available indexes for each filter condition and uses this information to
determine how optimized the filter expression is.

4) Once the filter is activated via the TDBISAMTable or TDBISAMQuery Filtered property, the optimization
and filtering processes are performed.

How DBISAM Selects Indexes for Optimization

The first step in the optimization process is determining which indexes are available that can be used to
speed up the filtering process. The rules for this index selection are as follows:

1) DBISAM only uses the first field of any given index for optimization. This means that if you have an
index containing the fields LastName and FirstName, then DBISAM can only use this index for optimizing
any filter conditions that refer to the LastName field.

2) DBISAM can use both ascending and descending indexes for optimization.

3) DBISAM will only use case-sensitive indexes for optimizing any filter conditions on string fields unless
the foCaselnsensitive option is used with the TDBISAMTable or TDBISAMQuery FilterOptions property. You
may also use the UPPER() or LOWER() functions on a column name to force DBISAM to use a case-
insensitive index for optimizing the filter condition. Filter conditions on non-string fields such as integer or
boolean fields can always use any index that contains the same field, regardless of the index's case-
insensitivity setting.

4) DBISAM can mix and match the optimization of filter conditions so that it is possible to have one
condition be optimized and the other not. This is known as a partially-optimized filter.

How DBISAM Builds the Filter Results

Once an index is selected for optimizing a given condition of the filter expression, a range is set on the
index in order to limit the index keys to those that match the current filter condition being optimized. The
index keys that satisfy the filter condition are then scanned, and during the scan a bitmap is built in
physical record number order. A bit is turned on if the physical record satisfies the condition, and a bit is

Page 161

Advanced Topics

turned off if it doesn't. This method of using bitmaps works well because it can represent sets of data with
minimal memory consumption. Also, DBISAM is able to quickly determine how many records are in the set
(how many bits are turned on), and it can easily AND, OR, and NOT bitmaps together to fulfill boolean
logic between multiple filter conditions. Finally, because the bitmap is in physical record order, accessing
the records using a bitmap is very direct since DBISAM uses fixed-length records with directly-addressable
offsets in the physical table format.

Further Optimizations Provided by DBISAM

In addition to just using indexes to speed up the filtering process, DBISAM also provides a few other
optimizations that can greatly increase a given filter's performance. When building a bitmap for a given
optimized condition, DBISAM can take advantage of statistics that are kept in DBISAM indexes. These
statistics accurately reflect the current make-up of the various values present in the index.

DBISAM looks at the optimization of the filter conditions, and when multiple conditions are joined by an

AND operator, DBISAM ensures that the most optimized filter condition is executed first. For example,
consider a table of 25,000 records with the following structure:

Customer table

Field Data Type Index

ID Integer Primary Index

Name String[30]

State String[2] Secondary, case-sensitive,

non-unique, ascending, index
TotalOrders BCD[2]

And consider the following filter:

(TotalOrders > 10000) and (State='CA'")

As you can see, the TotalOrders condition cannot be optimized since no indexes exist that would allow for
optimization, whereas the State condition can be optimized. If only 200 records in the table have a State
field that contains 'CA’, then processing the filter in the order indicated by the expression would be very
inefficient, since the following steps would take place:

1) All 25,000 physical records would be read and evaluated to build a bitmap for the (TotalOrders >
10000) condition.

2) The resultant bitmap from the previous step would be ANDed together with a bitmap built using the
optimized index scan for the State condition.

DBISAM uses a much better approach because it knows that:
1) The TotalOrders condition is not optimized
2) The State condition is optimized

3) Both conditions are joined using the AND operator

Page 162

Advanced Topics

it is able to reverse the filter conditions in the WHERE clause and execute the index scan for the 200
records that satisfy the State condition first, and then proceed to only read the 200 records from disk in
order to evaluate the TotalOrders condition. DBISAM has just saved a tremendous amount of I/O by
simply reversing the filter conditions.

Note

This optimization only works with filter conditions that are joined by the AND operator. If the above
two conditions were joined using the OR operator, then DBISAM would simply read all 25,000
records and evaluate the entire filter expression for each record.

In the case of a completely un-optimized filter, DBISAM's read-ahead buffering can help tremendously in
reducing network traffic and providing the most efficient reads with the least amount of I/O calls to the
operating system. DBISAM will read up to 32 kilobytes of contiguous records on disk in the course of
processing an un-optimized filter.

DBISAM can also optimize for the UPPER() and LOWER() functions by using any case-insensitive indexes in
the table to optimize the filter condition. Take the following table for example:

Customer table

Field Data Type Index

ID Integer Primary Index

Name String[30]

State String[2] Secondary, case-insensitive,

non-unique, ascending, index
And consider the following filter:
(UPPER (State)="CA'")
In this filter, DBISAM will be able to select and use the case-insensitive index on the State field, and this is

caused by the presence of the UPPER() function around the field name.

Optimization Levels

DBISAM determines the level of optimization for a filter using the following rules:

Optimized Condition = Fully-Optimized filter
Un-Optimized Condition = Un-Optimized filter

Optimized Condition AND Optimized Condition = Fully-
Optimized filter

Optimized Condition AND Un-Optimized Condition = Partially-
Optimized filter

Un-Optimized Condition AND Optimized Condition = Partially-

Page 163

Advanced Topics

Optimized filter

Un-Optimized Condition AND Un-Optimized Condition = Un-
Optimized filter

Optimized Condition OR Optimized Condition = Fully-
Optimized filter

Optimized Condition OR Un-Optimized Condition = Un-
Optimized filter

Un-Optimized Condition OR Optimized Condition = Un-
Optimized filter

Un-Optimized Condition OR Un-Optimized Condition = Un-
Optimized filter

Note

The unary NOT operator causes any expression to become partially optimized. This is due to the
fact that DBISAM must scan for, and remove, deleted records from the current records bitmap once
it has taken the bitmap and performed the NOT operation on the bits.

DBISAM Limitations

DBISAM does not optimize multiple filter conditions joined by an AND operator) by mapping them to a
compound index that may be available. To illustrate this point, consider a table with the following
structure:

Employee

Field Data Type Index

LastName String[30] Primary Index (both fields are part of the
FirstName String[20] Primary Index primary index)

And consider the following filter:

(LastName='Smith') and (FirstName='John')

Logically you would assume that DBISAM can use the one primary index in order to optimize the entire
filter. Unfortunately this is not the case, and instead DBISAM will only use the primary index for optimizing
the LastName condition and resort to reading records in order to evaluate the FirstName condition.

Page 164

Advanced Topics

3.6 Multi-Threaded Applications

Introduction

DBISAM is internally structured to be thread-safe and usable within a multi-threaded application provided
that you follow the rules that are outlined below.

Unique Sessions

DBISAM requires that you use a unique TDBISAMSession component for every thread that must perform
any database access at all. Each of these TDBISAMSession components must also contain a SessionName
property that is unique among all TDBISAMSession components in the application. Doing this allows
DBISAM to treat each thread as a separate and distinct "user" and will isolate transactions and other
internal structures accordingly. You may use the AutoSessionName property of the TDBISAMSession
component to allow DBISAM to automatically name each session so that is unique or you may use code
similar to the following:

var
LastSessionValue: Integer;
SessionNameSection: TRTLCriticalSection;

{ Assume that the following code is being executed
within a thread }

function UpdateAccounts: Boolean;
var
LocalSession: TDBISAMSession;
LocalDatabase: TDBISAMDatabase;
LocalQuery: TDBISAMQuery;
begin
Result:=False;
LocalSession:=GetNewSession;

try
LocalDatabase:=TDBISAMDatabase.Create (nil) ;
try
with LocalDatabase do
begin

{ Be sure to assign the same session name
as the TDBISAMSession component }
SessionName:=LocalSession.SessionName;
DatabaseName:="'Accounts';
Directory:='g:\accountdb';
Connected:=True;
end;
LocalQuery:=TDBISAMQuery.Create(nil) ;
try
with LocalQuery do
begin
{ Be sure to assign the same session and
database name as the TDBISAMDatabase
component }
SessionName:=LocalSession.SessionName;
DatabaseName:=LocalDatabase.DatabaseName;
SQL.Clear;

Page 165

Advanced Topics

SQL.Add ('UPDATE accounts SET PastDue=True');
SQL.Add ('WHERE DueDate < CURRENTiDATE'));
Prepare;
try
{ Start the transaction and execute the query }
LocalDatabase.StartTransaction;
try
ExecSQL;
LocalDatabase.Commit;
Result:=True;
except
LocalDatabase.Rollback;
end;
finally
UnPrepare;
end;
end;
finally
LocalQuery.Free;
end;
finally
LocalDatabase.Free;
end;
finally
LocalSession.Free;
end;
end;

function GetNewSession: TDBISAMSession;
begin
EnterCriticalSection (SessionNameSection) ;
try
LastSessionValue:=LastSessionValue+l;
Result:=TDBISAMSession.Create(nil) ;
with Result do
SessionName:='AccountSession'+IntToStr (LastSessionValue) ;
finally
LeaveCriticalSection (SessionNameSection) ;
end;
end;

{ initialization in application }
LastSessionValue:=0;
InitializeCriticalSection (SessionNameSection);
{ finalization in application }
DeleteCriticalSection (SessionNameSection) ;

The AutoSessionName property is, by default, set to False so you must specifically turn it on if you want
this functionality. You may also use the thread ID of the currently thread to uniquely name a session since
the thread ID is guaranteed to be unique within the context of a process.

Unique Databases

Another requirement is that all TDBISAMDatabase components must also be unique and have their
SessionName properties referring to the unique SessionName property of the TDBISAMSession component
defined in the manner discussed above.

Page 166

Advanced Topics

Unique Tables and Queries

The final requirement is that all TDBISAMTable and TDBISAMQuery components must also be unique and
have their SessionName properties referring to the unique SessionName property of the TDBISAMSession
component defined in the manner discussed above. Also, if a TDBISAMTable or TDBISAMQuery
component refers to a TDBISAMDatabase component's DatabaseName property via its own
DatabaseName property, then the TDBISAMDatabase referred to must be defined in the manner discussed
above.

ISAPI Applications

ISAPI applications created using the Borland WebBroker components or a similar technology are implicitly
multi-threaded. Because of this, you should ensure that your ISAPI application is thread-safe according to
these rules for multi-threading when using DBISAM. Also, if you have simply dropped a TDBISAMSession
component on the WebModule of a WebBroker ISAPI application, you must set its AutoSessionName
property to True before dropping any other DBISAM components on the form so that DBISAM will
automatically give the TDBISAMSession component a unique SessionName property and propogate this
name to all of the other DBISAM components.

Further Considerations

There are some other things to keep in mind when writing a multi-threaded database application with
DBISAM, especially if the activity will be heavy and there will be many threads actively running. Be
prepared to handle any errors in a manner that allows the thread to terminate gracefully and properly free
any TDBISAMSssion, TDBISAMDatabase, TDBISAMTable, or TDBISAMQuery components that it has
created. Otherwise you may run into a situation where memory is being consumed at an alarming rate.
Finally, writing multi-threaded applications, especially with database access, is not a task for the beginning
developer so please be sure that you are well-versed in using threads and how they work before jumping
into writing a multi-threaded application with DBISAM.

Page 167

Advanced Topics

3.7 Full Text Indexing

Introduction

DBISAM provides the ability to index string and memo fields so that they may be quickly searched for a

given word or words. This is known as full text indexing since it results in the indexing of every word in

every column that is specified as part of the full text index for the table. This whole process is controlled
by full text indexing parameters that are defined as part of the table structure when creating or altering
the structure of tables, as well as events in the TDBISAMEngine component for customizing the full text
indexing. Please see the Customizing the Engine for more information.

Note

Full text indexing and searching is always case-insensitive in DBISAM. This means that words are
always compared without regard for case, however the include and space character full text
indexing parameters are compared on an exact character basis when parsing the text to be indexed
or searched.

Text Indexing Parameters
The three parameters that control the full text indexing behavior for a given table are:

Parameter Description

Stop Words List The stop words list is a list of words that are to be excluded
from the full text index. These words are usually very
common words and excluding them from the full text index
can result in tremendous space savings for the physical index.
The default stop words for a table are as follows:

A

AN
AND
BE
FOR
HOwW
IN

IS

IT

OF
ON
OR
THAT
THE
THIS
TO
WAS
WHAT
WHEN
WHICH
WHY
WILL

Page 168

Advanced Topics

The stop words list is always case-insensitive, as is the full
text indexing in general.

Space Characters The space characters specify which characters in the ANSI
character set are to be used for word separator characters.
These characters usually consist of any character below the
ordinal value of 33 and other separators such as backslashes
(\)and commas (,). The default space characters for a table
are as follows:

Characters 1 through 32
*+,-5<=>\

Include Characters The include characters specify which characters in the ANSI
character set are to be included in the words that are finally
used for the full text index. These characters usually consist of
all alphanumeric characters as well as all high character
values in the ANSI character set that are used by non-English
languages for accented characters and other diacritically-
marked characters. The default include characters for a table
are as follows:

0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijkimnopgrstuvwxyz

€ f .. T Yo SKELZ ™ 0—"™

$0e7Y i¢FrY!§" ©3«—~® °+23

.....

,,,,,,

€é&4iiliano66oo-+eulllyp

Note
You must alter the structure of a table in order to change any of these parameters.

Performing a Text Search

DBISAM includes the filter and SQL TEXTSEARCH function in order to take advantage of the full text index
and also as a general-purpose, brute-force, word search function when searching on string or memo
columns that are not part of the full text index. The TEXTSEARCH function accepts a list of words in a
search string constant and a column name as its two parameters. The following is an example of using the
TEXTSEARCH function in an expression filter:

begin
with MyTable do
begin
Filter:='TEXTSEARCH ('+QuotedStr ('DATABASE QUERY SPEED')+
' IN TextBody) ';

Filtered:=True;
end;

end;

Page 169

Advanced Topics

In the above example, if the TextBody column is included as part of the indexed fields that make up the
full text index then the filter will execute very quickly. If the column is not part of the full text index, then
the filter will be forced to resort to a brute-force scan of the TextBody column for every record in the
table. To further explain how the text searching works, let's break down the previous process (assuming
an optimized text search):

1) DBISAM parses the search string constant "DATABASE QUERY SPEED" into three words (DATABASE,
QUERY, and SPEED) using the space characters and include characters specified for the table, which by
default would allow for the space character () as the word separator in this case. If there happened to be
a backslash in the search string such as "DATABASE C:\TEMP" then the search string would be parsed into
three words "DATABASE C TEMP". This is because the default full text indexing space characters include
the colon (:) and the backslash (\).

2) DBISAM takes the list of words created from the text indexing parameters and performs a case-
insensitive search of the stop words for the table to see if any of the words exist in the stop words. If one
or more does, then they are ignored when performing the actual search.

3) Finally, DBISAM searches the full text index and builds a bitmap for each word indicating which records
satisfy the search for that particular word. These bitmaps are ANDed together and the resultant bitmap is
used for filtering the records in the table. This process is very similar to a what happends with a normal
optimized filter expression or SQL WHERE clause.

Note

DBISAM only executes an AND search for the multiple words in the search string. If you want to
execute an OR search for multiple words you should split up the operation into multiple
TEXTSEARCH calls as the following example illustrates:

begin
with MyTable do
begin
Filter:='TEXTSEARCH ('+QuotedStr ('DATABASE'") +
' IN TextBody) OR '+
'"TEXTSEARCH (' +QuotedStr ('QUERY') +
' IN TextBody) OR '+
'TEXTSEARCH ('+QuotedStr ('SPEED'") +
' IN TextBody) ';
Filtered:=True;
end;
end;

This will give the desired results of returning all records where either DATABASE, QUERY, or SPEED are
found in the TextBody column.

You can also specify partial-word searches using the asterisk as a trailing wildcard character. The following
is an example of using the TEXTSEARCH function in an expression filter with a partial-word search string:

begin
with MyTable do
begin
Filter:='TEXTSEARCH ('+QuotedStr ('DATA*") +
' IN TextBody) ';

Page 170

Advanced Topics

Filtered:=True;
end;
end;

Note
You can mix and match partial words and whole words in the same search string.

If you wish to find out what words were searched on in @ TEXTSEARCH function or just want to test
various text indexing parameters, you can do so using the TDBISAMEngine BuildWordList method.

Retrieving the Number of Occurrences

DBISAM includes the filter and SQL TEXTOCCURS function in order to calculate the number of times a
specific list of words in a given search string occurs in a string or memo column. This function is always a
brute-force function and should not be used for the bulk of the filtering or searching but rather for ranking
purposes or something similar after the search has been completed using the TEXTSEARCH function. The
TEXTOCCURS function accepts a list of words in a search string constant and a column name as its two
parameters. The following is an example of using the TEXTOCCURS function in an SQL SELECT statement:

SELECT GroupNo, No, TEXTOCCURS ('DATABASE QUERY SPEED' IN TextBody) AS
NumOccurs

FROM article

WHERE TEXTSEARCH ('DATABASE QUERY SPEED' IN TextBody)

ORDER BY 3 DESC

As you can see, the TEXTOCCURS function is being used to provide ranking of the results by the number
of times the search words occur in the TextBody column after the bulk of the search was already handled
by the optimized TEXTSEARCH function.

Page 171

Advanced Topics

3.8 Compression

Introduction

DBISAM uses the standard ZLib compression algorithm for compressing data such as BLOB fields and
remote session requests and responses to and from a database server. The ZLib compression is contained
within the zlibpas and zlibcomp units (Delphi) or zlibpas and zlibcomp header files (C++).

Copyright and Credits

The ZLib implementation in DBISAM was contributed by David Martin. The following are the citations and
copyrights for both the code that was contributed as well as for the ZLib algorithm itself.

© Copyright 1995-98 Jean-loup Gailly & Mark Adler
© Copyright 1998-00 Jacques Nomssi Nzali
© Copyright 2000-2001 David O. Martin

These units build upon a pascal port of the ZLib compression routines by Jean-loup Gailly and Mark Adler.
The original pascal port was performed by Jacques Nomssi Nzali as contained in PasZLib which is based on
ZLib 1.1.2. There are some errors in that port which have been fixed in this version. Although most of the
code in this unit is derivative, there are some important changes (bug fixes). Nevertheless, this code is
released as freeware with the same permissions as granted by the preceding authors (Gailly, Adler, Nzali).

Replacing the Default Compression

You can replace the default compression implementation in DBISAM by using the events provided in the
TDBISAMENgine component. Please see the Customizing the Engine topic for more information.

Note

If you replace the default compression, keep in mind that you must make sure to not mix and
match different compression implementations with various applications or servers that access the
same databases and tables. Doing so can cause some serious problems and the potential for losing
data since one application or server will not be able to read or write data that was compressed
using a different compression implementation.

Page 172

Advanced Topics

3.9 Encryption

Introduction

DBISAM uses the Blowfish symmetric block cipher encryption algorithm along with the RSA Data Security,
Inc. MD5 message-digest algorithm for encrypting tables and remote session requests and responses to
and from a database server. Both of these algorithms are contained within the dbisamcr unit (Delphi) or
dbisamcr header file (C++).

Copyright and Credits

Both the Blowfish and MD5 implementations in DBISAM were written by us. The following are the citations
and copyrights for the Blowfish and MD5 algorithms.

Blowfish Algorithm © Copyright 1993 Bruce Schneier
MD5 Algorithm © Copyright 1991-1992, RSA Data Security, Inc.

DBISAM uses the MD5 message-digest algorithm to generate 128-bit MD5 hashes from plain-text
passwords. These hashes are then used with the Blowfish 8-byte symmetric block cipher algorithm to
encrypt the actual data.

Replacing the Default Encryption

You can replace the default block cipher encryption implementation in DBISAM by using the events
provided in the TDBISAMEngine component. Please see the Customizing the Engine topic for more
information. You can only replace the default encryption implementation with another 8-byte block cipher
implementation.

Note

If you replace the default encryption, keep in mind that you must make sure to not mix and match
different encryption implementations with various applications or servers that access the same
databases and tables. Doing so can cause some serious problems and the potential for losing data
since one application or server will not be able to read or write data that was encrypted using a
different encryption implementation.

Page 173

Advanced Topics

3.10 Recompiling the DBISAM Source Code

Introduction

In some cases you may want to change the DBISAM source code and recompile it to incorporate these
changes into your application. However, you must first have purchased a version of DBISAM that includes
source code to the engine in order to make changes to the source code.

Setting Search Paths

The first thing that you must do is make sure that any search paths, either global to DBISAM such as the
Library Search Path or local to your project, are pointing to the directory or path where the DBISAM source
code was installed. By default this directory or path is:

\<base directory>\<product>\<compiler> <n>\code\source

The <product> component of the path can be one of the following values:

Value Description

DBISAM <type> Standard with Source This indicates the standard version of DBISAM with source
code

DBISAM <type> Client-Server with This indicates the client-server version of DBISAM with source

Source code

The <type> component of the product name will be either VCL or ODBC.

The <compiler> <n> component of the path indicates the development environment in use and the
version number of the development environment. For example, for Delphi 6 this component would look
like this:

Delphi 6

Setting Compiler Switches

The second thing that must be done is to make sure that the compiler switches that you are using are set
properly for DBISAM. The build system used to compile DBISAM here at Elevate Software uses the
dcc32.exe, dcc64.exe, and dcc command-line compilers provided with Delphi and C++ to compile
DBISAM. The following switches are set during compilation and any other switches are assumed to be at
their default state for the compiler:

$D- Debug information off
SL- Local symbols off

Page 174

Advanced Topics

Note
These same switches are used to compile all DBISAM utilities and the DBISAM server project also.

A Word of Caution

Making changes to the DBISAM source code is not an easy task. A mistake in such changes could result in
the loss of critical data and Elevate Software cannot be held responsible for any losses incurred from such
changes. Occasionally our support staff may send a fix to a customer that owns the source code in order
to facilitate a quicker turnaround on a bug report, but it is the responsibility of the customer to weigh the
risks of implementing such a change with the possible problems that such a change could bring about.
Elevate Software tries very hard to also assist any customers that do want to make changes to the
DBISAM source code for custom purposes and will always make an attempt to guide the customer to a
solution that fits their needs and is reliable in operation. In general, however, it is usually recommended
that you use the generic customization facilities provided with DBISAM as opposed to making direct
changes to the source code. Please see the Customizing the Engine topic for more information.

Page 175

Advanced Topics

3.11 Replacement Memory Manager

Introduction

DBISAM uses a replacement memory manager for Delphi called FastMM with both the GUI and command-
line database servers that ship with all DBISAM products. The FastMM memory manager is designed to be
extremely efficient at allocating and de-allocating many small blocks of memory of similar sizes, which is
primarily what DBISAM does during most operations. The memory manager is also designed to overcome
issues with the default Delphi memory manager that cause it to perform very poorly with multi-threaded
applications that run on servers with multiple processors due to its use of a single critical section for all
access to the memory pool. This design becomes a major performance bottleneck in such situations.

You can download the FastMM memory manager from SourceForge here:

FastMM
Including the Memory Manager in an Application

In any cases that you wish to include the FastMM replacement memory manager in an application, there
are only a couple of steps involved:

1) Open the Delphi project .dpr file.

2) Include the FastMM4 unit that is shipped with FastMM as the first unit in the project's USES clause.

Note
It is extremely important that the FastMM4 unit is the very first unit in the USES clause.

The following is an partial excerpt of the dbsrvr.dpr project file that is shipped with DBISAM for the GUI
database server. It illustrates how to include the FastMM4 unit in the project's USES clause:

program dbsrvr;

uses
{$I dbisamvr.inc}
{SIFDEF MSWINDOWS}
FastMM4,

{SENDIF}

SysUtils,
Compatibility Issues

The FastMM replacement memory manager is for use only with Delphi and is not intended for use with
C++.

Page 176

Chapter 4
SQL Reference

4.1 Overview

Introduction

SQL Reference

DBISAM does not support the complete ANSI SQL-92 specification. Rather, it supports a subset of the
specification that includes the most widely used SQL statements for data manipulation and definition, in
some cases with DBISAM extensions, as well as some SQL statements that are specific to DBISAM:

SQL Statement
SELECT

INSERT

UPDATE

DELETE

CREATE TABLE
ALTER TABLE
EMPTY TABLE
OPTIMIZE TABLE
EXPORT TABLE
IMPORT TABLE
VERIFY TABLE
REPAIR TABLE
UPGRADE TABLE
DROP TABLE
RENAME TABLE
CREATE INDEX
DROP INDEX

START TRANSACTION

COMMIT
ROLLBACK

Standard

SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions
DBISAM-specific
DBISAM-specific
DBISAM-specific
DBISAM-specific
DBISAM-specific
DBISAM-specific
DBISAM-specific

SQL-92 with DBISAM Extensions
DBISAM-specific

SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions
SQL-92 with DBISAM Extensions

Page 177

SQL Reference

4.2 Naming Conventions

Introduction

DBISAM requires that certain naming conventions be adhered to when executing SQL. The following rules
and naming conventions apply to all supported SQL statements in DBISAM.

Table Names

ANSI-standard SQL specifies that each table name must be a single word comprised of alphanumeric
characters and the underscore symbol (_). However, DBISAM's SQL is enhanced to support multi-word
table names by enclosing them in double quotes ("") or square brackets ([1):

SELECT *
FROM "Customer Data"

DBISAM's SQL also supports full file and path specifications in table references for SQL statements being
executed within a local session. Table references with path or filename extensions must be enclosed in
double quotes ("") or square brackets ([]). For example:

SELECT *
FROM "c:\sample\parts"

or

SELECT *
FROM "parts.dat"

Note
It is not recommended that you specifiy the .dat file nhame extension in SQL statements for two
reasons:

1) First of all, it is possible for the developer to change the default table file extensions for data, index,
and BLOB files from the defaults of ".dat", ".idx", and ".blb" to anything that is desired. Please see the
DBISAM Architecture topic for more information.

2) Using file paths and extensions at all in SQL statements makes the SQL less portable to other database
engines or servers.

DBISAM's SQL also supports database name specifications in table references for SQL statements being

executed within a remote session. Table references with database must be enclosed in double quotes ("")
or square brackets ([]). For example:

Page 178

SQL Reference

SELECT *
FROM "\Sample Datal\parts"

Note

The database name used with remote sessions is not a directory name like it is with local sessions.
Instead, it must be a logical database name that matches that of a database defined on the
database server that you are accessing with the SQL statement.

To use an in-memory table in an SQL statement within both local and remote sessions, just prefix the
table name with the special "Memory" database name:

SELECT *
FROM "\Memory\parts"

Please see the In-Memory Tables topic for more information.
Column Names

ANSI-standard SQL specifies that each column name be a single word comprised of alphanumeric
characters and the underscore symbol (_). However, DBISAM's SQL is enhanced to support multi-word
column names. Also, DBISAM's SQL supports multi-word column names and column names that duplicate
SQL keywords as long as those column names are enclosed in double quotes ("") or square brackets ([])
or prefaced with an SQL table name or table correlation name. For example, the following column name
consists of two words:

SELECT E."Emp Id"
FROM employee E

In the next example, the column name is the same as the SQL keyword DATE:

SELECT weblog. [date]
FROM weblog

String Constants

ANSI-standard SQL specifies that string constants be enclosed in single quotes ("), and DBISAM's SQL
follows this convention. For example, the following string constant is used in an SQL SELECT WHERE
clause:

SELECT *
FROM customer
WHERE Company='ABC Widgets'

Page 179

SQL Reference

Note

String constants can contain any character in the ANSI character set except for the non-printable
characters below character 32 (space). For example, if you wish to embed a carriage-return and line
feed in a string constant, you would need to use the following syntax:

UPDATE customer SET Notes='ABC Widgets'+
#13+#10+"'Located in New York City'

The pound sign can be used with the ordinal value of any ANSI character in order to represent that single

character as a constant.

To streamline the above, you can use the TDBISAMEngine QuotedSQLStr method to properly format and
escape any embedded single quotes or non-printable characters in a string constant. Please see the
Executing SQL Queries topic for more information.

Date, Time, TimeStamp, and Number Constants

DBISAM's SQL uses ANSI/ISO date and number formatting for all date, time, timestamp (date/time), and
number constants, which is consistent with ANSI-standard SQL except for missing support for date and
time interval constants, which are not supported in DBISAM's SQL currently. The formats are as follows:

Constant

Dates

Times

Timestamps (date/time)

Numbers

Format

The date format is yyyy-mm-dd where yyyy is the year (4
digits required), mm is the month (leading zero optional), and
the day (leading zero optional).

The time format is hh:mm:ss.zzz am/pm where hh is the hour
(leading zero optional), mm is the minutes (leading zero
optional), ss is the seconds (leading zero optional), zzz is the
milliseconds (leading zero optional), and the am/pm
designation for times using the 12-hour clock. The seconds
and milliseconds are optional when specifying a time, as is the
am/pm designation. If the am/pm designation is omitted, the
time is expected to be in 24-hour clock format.

The timestamp format is a combination of the date format
and the time format with a space in-between the two formats.

All numbers are expected to use the period (.) as the decimal
separator and no monetary symbols must be used. DBISAM's
SQL does not support scientific notation in number constants
currently.

All date, time, and timestamp constants must be enclosed in single quotes (") when specified in an SQL

statement. For example:

SELECT *
FROM orders

WHERE (saledate <=

Page 180

'1998-01-23")

SQL Reference

Boolean Constants

The boolean constants TRUE and FALSE can be used for specifying a True or False value. These constants
are case-insensitive (True=TRUE). For example:

SELECT *
FROM transfers
WHERE (paid = TRUE) AND NOT (incomplete = FALSE)

Table Correlation Names

Compliant with ANSI-standard SQL, table correlation names can be used in DBISAM's SQL to explicitly
associate a column with the table from which it is derived. This is especially useful when multiple columns
of the same name appear in the same query, typically in multi-table queries. A table correlation name is
defined by following the table reference in the SQL statement with a unique identifier. This identifier, or
table correlation name, can then be used to prefix a column name. The base table name is the default
implicit correlation name, irrespective of whether the table name is enclosed in double quotes ("") or
square brackets ([]). The base table name is defined as the table name for the DBISAM table not including
the full path or any file extensions. For example, the base table name for the physical table
"c:\temp\customer.dat" is "customer" as show in this example:

SELECT *

FROM "c:\temp\customer.dat"

LEFT OUTER JOIN "c:\temp\orders.dat"
ON (customer.custno = orders.custno)

You may also use the physical file name for the table as a table correlation name, although it's not
required nor recommended:

SELECT *

FROM "customer.dat"

LEFT OUTER JOIN "orders.dat"

ON ("customer.dat".custno = "orders.dat".custno)

And finally, you may use a distinctive token as a correlation name (and prefix all column references with
the same correlation name):

SELECT *

FROM "customer" C

LEFT OUTER JOIN "orders" O
ON (C.custno = O.custno)

Column Correlation Names

You can use the AS keyword to assign a correlation name to a column or column expression within a

Page 181

SQL Reference

DBISAM SQL SELECT statement, which is compliant with ANSI-standard SQL. Column correlation names
can be enclosed in double quotes (") and can contain embedded spaces. The following example shows
how to use the AS keyword to assign a column correlation name:

SELECT

customer.company AS "Company Name",

orders.orderno AS "Order #",

sum (items.qgty) AS "Total Qty"

FROM customer LEFT OUTER JOIN orders ON customer.custno=orders.custno
LEFT OUTER JOIN items ON orders.orderno=items.orderno

WHERE customer.company LIKE '$Diver%'

GROUP BY 1,2

ORDER BY 1

You may also optionally exclude the AS keyword and simply specify the column correlation name directly
after the column, as shown here:

SELECT

customer.company "Company Name",

orders.orderno "Order #",

sum(items.gty) "Total Qty"

FROM customer LEFT OUTER JOIN orders ON customer.custno=orders.custno
LEFT OUTER JOIN items ON orders.orderno=items.orderno

WHERE customer.company LIKE '$Diver%'

GROUP BY 1,2

ORDER BY 1

Embedded Comments

Per ANSI-standard SQL, comments, or remarks, can be embedded in SQL statements to add clarity or
explanation. Text is designated as a comment and not treated as SQL by enclosing it within the beginning
/* and ending */ comment symbols. The symbols and comments need not be on the same line:

/*
This is a comment
=/
SELECT SUBSTRING (company FROM 1 FOR 4) AS abbrev
FROM customer

Comments can also be embedded within an SQL statement. This is useful when debugging an SQL
statement, such as removing one clause for testing.

SELECT company

FROM customer

/* WHERE (state = 'TX') */
ORDER BY company

Reserved Words

Page 182

SQL Reference

Below is an alphabetical list of words reserved by DBISAM's SQL. Avoid using these reserved words for the
names of metadata objects (tables, columns, and indexes). An exception occurs when reserved words are
used as names for metadata objects. If a metadata object must have a reserved word as it name, prevent
the error by enclosing the name in double-quotes ("") or square brackets ([]) or by prefixing the reference
with the table name (in the case of a column name).

ABS

ACOS

ADD

ALL
ALLTRIM
ALTER
AND

AS

ASC
ASCENDING
ASIN

AT

ATAN
ATANZ2
AUTOINC
AVG
BETWEEN
BINARY
BIT

BLOB
BLOCK
BOOL
BOOLEAN
BOTH

BY

BYTES
CAST

CEIL
CEILING
CHAR
CHARACTER
CHARCASE
CHARS
COALESCE
COLUMN
COLUMNS
COMMIT
COMPRESS
CONCAT
CONSTRAINT
COs

COT

COUNT
CREATE
CURRENT DATE
CURRENT GUID
CURRENT TIME
CURRENT TIMESTAMP
DAY
DAYOFWEEK
DAYOFYEAR

Page 183

SQL Reference

DAYSFROMMSECS
DECIMAL
DEFAULT
DEGREES
DELETE
DELIMITER
DESC
DESCENDING
DESCRIPTION
DISTINCT
DROP
DUPBYTE
ELSE

EMPTY
ENCRYPTED
ESCAPE
EXCEPT
EXISTS

EXP

EXPORT
EXTRACT
FALSE

FLOAT

FLOOR

FLUSH

FOR
FORCEINDEXREBUILD
FROM

FULL
GRAPHIC
GROUP

GUID

HAVING
HEADERS
HOUR
HOURSFROMMSECS
IDENT CURRENT
IDENTITY

IF

IFNULL
IMPORT

IN

INCLUDE
INDEX

INNER
INSERT

INT

INTEGER
INTERSECT
INTERVAL
INTO

IS

JOIN

KEY
LARGEINT
LAST
LASTAUTOINC
LCASE
LEADING
LEFT

Page 184

LENGTH

LIKE

LOCALE

LOG

LOG10
LONGVARBINARY
LONGVARCHAR
LOWER

LTRIM
MAJOR

MAX

MAXIMUM
MEMO

MIN

MINIMUM
MINOR
MINSFROMMSECS
MINUTE

MOD

MONEY

MONTH
MSECOND
MSECSFROMMSECS
NOBACKUP
NOCASE
NOCHANGE
NOJOINOPTIMIZE
NONE

NOT

NULL
NUMERIC
OCCURS

ON

OPTIMIZE

OR

ORDER

OUTER

PAGE

PI

POS
POSITION
POWER
PRIMARY
RADIANS
RAND

RANGE
REDEFINE
RENAME
REPAIR
REPEAT
REPLACE
RIGHT
ROLLBACK
ROUND

RTRIM
RUNSUM
SECOND
SECSFROMMSECS
SELECT

SET

SQL Reference

Page 185

SQL Reference

SIGN

SIN

SIZE
SMALLINT
SPACE
SQORT
START
STDDEV
STOP
SUBSTRING
SUM

TABLE

TAN

TEXT
TEXTOCCURS
TEXTSEARCH
THEN

TIME
TIMESTAMP
TO

TOP
TRAILBYTE
TRAILING
TRANSACTION
TRIM

TRUE
TRUNC
TRUNCATE
UCASE
UNION
UNIQUE
UPDATE
UPGRADE
UPPER
USER
VALUES
VARBINARY
VARBYTES
VARCHAR
VERIFY
VERSION
WEEK
WHERE
WITH
WORD
WORDS
WORK
YEAR
YEARSFROMMSECS

The following are operators used in DBISAM's SQL. Avoid using these characters in the hames of metadata
objects:

Page 186

SQL Reference

Page 187

SQL Reference

4.3 Unsupported SQL

The following ANSI-standard SQL-92 language elements are not used in DBISAM's SQL:

ALLOCATE CURSOR (Command)
ALLOCATE DESCRIPTOR (Command)
ALTER DOMAIN (Command)

CHECK (Constraint)

CLOSE (Command)

CONNECT (Command)

CONVERT (Function)
CORRESPONDING BY (Expression)
CREATE ASSERTION (Command)
CREATE CHARACTER SET (Command)
CREATE COLLATION (Command)
CREATE DOMAIN (Command)

CREATE SCHEMA (Command)

CREATE TRANSLATION (Command)
CREATE VIEW (Command)

CROSS JOIN (Relational operator)
DEALLOCATE DESCRIPTOR (Command)
DEALLOCATE PREPARE (Command)
DECLARE CURSOR (Command)
DECLARE LOCAL TEMPORARY TABLE (Command)
DESCRIBE (Command)

DISCONNECT (Command)

DROP ASSERTION (Command)

DROP CHARACTER SET (Command)
DROP COLLATION (Command)

DROP DOMAIN (Command)

DROP SCHEMA (Command)

DROP TRANSLATION (Command)
DROP VIEW (Command)

EXECUTE (Command)

EXECUTE IMMEDIATE (Command)
EXISTS (Predicate)

FETCH (Command)

FOREIGN KEY (Constraint)

GET DESCRIPTOR (Command)

GET DIAGNOSTICS (Command)
GRANT (Command)

MATCH (Predicate)

NATURAL (Relational operator)
NULLIF (Expression)

OPEN (Command)

OVERLAPS (Predicate)

PREPARE (Command)

REFERENCES (Constraint)

REVOKE (Command)

SET CATALOG (Command)

SET CONNECTION (Command)

SET CONSTRAINTS MODE (Command)
SET DESCRIPTOR (Command)

SET NAMES (Command)

SET SCHEMA (Command)

SET SESSION AUTHORIZATION (Command)

Page 188

SQL Reference

SET TIME ZONE (Command)

SET TRANSACTION (Command)
TRANSLATE (Function)

USING (Relational operator)

Page 189

SQL Reference

4.4 Optimizations

Introduction

DBISAM uses available indexes when optimizing SQL queries so that they execute in the least amount of
time possible. In addition, joins are re-arranged to allow for the least number of joins as possible since
joins tend to be fairly expensive in DBISAM.

Index Selection

DBISAM will use an available index to optimize any expression in the WHERE clause of an SQL SELECT,
UPDATE, or DELETE statement. It will also use an available index to optimize any join expressions
between multiple tables. This index selection is based on the following rules:

1) DBISAM only uses the first field of any given index for optimization. This means that if you have an
index containing the fields LastName and FirstName, then DBISAM can only use the this index for
optimizing any conditions that refer to the LastName field.

2) DBISAM can use both ascending and descending indexes for optimization.

3) DBISAM will only use case-sensitive indexes for optimizing any conditions on string fields unless the
condition contains the UPPER() or LOWER() SQL function. In such a case DBISAM will only look for and
use case-insensitive indexes for optimizing the condition. Conditions on non-string fields such as integer or
boolean fields can always use any index that contains the same field, regardless of the index's case-
insensitivity setting.

4) DBISAM can mix and match the optimization of conditions so that it is possible to have one condition be
optimized and the other not. This is known as a partially-optimized query.

How DBISAM Builds the Query Results

Once an index is selected for optimizing a given condition of the WHERE clause, a range is set on the
index in order to limit the index keys to those that match the current condition being optimized. The index
keys that satisfy the condition are then scanned, and during the scan a bitmap is built in physical record
number order. A bit is turned on if the physical record satisfies the condition, and a bit is turned off if it
doesn't. This method of using bitmaps works well because it can represent sets of data with minimal
memory consumption. Also, DBISAM is able to quickly determine how many records are in the set (how
many bits are turned on), and it can easily AND, OR, and NOT bitmaps together to fulfill boolean logic
between multiple conditions. Finally, because the bitmap is in physical record order, accessing the records
using a bitmap is very direct since DBISAM uses fixed-length records with directly-addressable offsets in
the physical table format.

When optimizing SQL SELECT queries that contain both join conditions and WHERE conditions, DBISAM
always processes the non-join conditions first if the conditions do not affect the target table, which is the
table on the right side of a LEFT OUTER JOIN or the table on the left side of a RIGHT OUTER JOIN. This
can speed up join operations tremendously since the join conditions will only take into account the records
existing in the source table(s) based upon the WHERE conditions. For example, consider the following

query:

SELECT
OrderHdr.Cust 1D,
OrderHdr.Order Num,

Page 190

SQL Reference

OrderDet.Model Num,

OrderDet.Cust TItem

FROM OrderHdr, OrderDet

WHERE OrderHdr.Order Num=OrderDet.Order Num AND
OrderHdr.Cust ID='C901'

ORDER BY 1,2,3

In this example, the WHERE condition:

OrderHdr.Cust ID='C901"'

will be evaluated first before the join condition:

OrderHdr.Order Num=OrderDet.Order Num

so that the joins only need to process a small number of records in the OrderHdr table.

When optimizing SQL SELECT queries that contain INNER JOINs that also contain selection conditions
(conditions in an INNER JOIN clause that do not specify an actual join), the selection conditions are always
processed at the same time as the join, even if they affect the target table, which is the table on the right
side of the join. This can speed up join operations tremendously since the join conditions will only take
into account the records existing in the source table(s) based upon the selection conditions. For example,
consider the following query:

SELECT

OrderHdr.Cust 1D,

OrderHdr.Order Num,

OrderDet.Model Num,

OrderDet.Cust TItem

FROM OrderHdr INNER JOIN OrderDet ON

OrderHdr.Order Num=OrderDet.Order Num AND OrderHdr.Cust ID='C901'
ORDER BY 1,2,3

In this example, the selection condition:

OrderHdr.Cust ID='C901'

will be evaluated first before the join condition:

OrderHdr.Order Num=OrderDet.Order Num

so that the joins only need to process a small number of records in the OrderHdr table.

Page 191

SQL Reference

Note

If an SQL SELECT query can return a live result set, then the WHERE clause conditions are applied
to the source table via an optimized filter and the table is opened. If an SQL SELECT query contains
joins or other items that cause DBISAM to only return a canned result set, then all of the records
from the source tables that satisfy the WHERE clause conditions and join conditions are copied to a
temporary table on disk and that table is opened as the query result set. This process can be time-
consuming when a large number of records are returned by the query, so it is recommended that
you try to make your queries as selective as possible.

How Joins are Processed

Join conditions in SQL SELECT, UPDATE, or DELETE statements are processed in DBISAM using a
technique known as nested-loop joins. This means that DBISAM recursively processes the source tables in
a master-detail, master-detail, etc. arrangement with a driving table and a destination table (which then
becomes the driving table for any subsequent join conditions). When using this technique, it is very
important that the table with the smallest record count (after any non-join conditions from the WHERE
clause have been applied) is specified as the first driving table in the processing of the joins. DBISAM's
SQL optimizer will automatically optimize the join ordering so that the table with the smallest record count
is placed as the first driving table as long as the joins are INNER JOINS or SQL-89 joins in the WHERE
clause. LEFT OUTER JOINs and RIGHT OUTER JOINs cannot be re-ordered in such a fashion and must be
left alone.

The following is an example that illustrates the nested-loop joins in DBISAM:

SELECT c.Company,
0.0rderNo,

e.LastName,

p.Description,

v.VendorName

FROM Customer c, Orders o, Items i, Vendors v, Parts p, Employee e
WHERE c.CustNo=o.CustNo AND
0.0rderNo=i.OrderNo AND
i.PartNo=p.PartNo AND
p.VendorNo=v.VendorNo AND
o.EmpNo=e.EmpNo

ORDER BY e.LastName

In this example, DBISAM would process the joins in this order:

1) Customer table joined to Orders table on the CustNo column

2) Orders table joined to Items table on the OrderNo column and Orders table joined to Employee table on
EmpNo column (this is also known as a multi-way, or star, join)

3) Items table joined to Parts table on the PartNo column

4) Parts table joined to Vendors table on the VendorNo column

In this case the Customer table is the smallest table in terms of record count, so making it the driving
table in this case is a good choice. Also, you'll notice that in the case of the multi-way, or star, join

between the Orders table and both the Items and Employee table, DBISAM will move the join order of the
Employee table up in order to keep the join ordering as close to the order of the source tables in the

Page 192

SQL Reference

FROM clause as possible.

Note

You can use the NOJOINOPTIMIZE keyword at the end of the SQL SELECT, UPDATE, or DELETE
statement in order to tell DBISAM not to reorder the joins. Also, SQL UPDATE and DELETE
statements cannot have their driver table reordered due to the fact that the driver table is the table
being updated by these statements.

Query Plans

You can use the TDBISAMQuery GeneratePlan property to indicate that you want DBISAM to generate a
query plan for the current SQL statement or script when it is executed. The resulting query plan will be
stored in the TDBISAMQuery Plan property. Examining this query plan can tell you exactly what the SQL
optimizer is doing when executing a given SQL statement or script. For example, the query mentioned
above would generate the following query plan:

SELECT c.Company,
o.0OrderNo,

e.LastName,

p.Description,

v.VendorName

FROM Customer c, Orders o, Items i, Vendors v, Parts p, Employee e
WHERE c.CustNo=o.CustNo AND
0.0rderNo=i.OrderNo AND
i.PartNo=p.PartNo AND
p.VendorNo=v.VendorNo AND
o.EmpNo=e.EmpNo

ORDER BY e.LastName

Result Set Generation

Result set will be canned

Result set will consist of one or more rows

Result set will be ordered by the following column(s) using a case-sensitive
temporary index:

LastName ASC

Join Ordering

The driver table is the Customer table (c)

The Customer table (c) is joined to the Orders table (o) with the INNER JOIN
expression:

Page 193

SQL Reference

c.CustNo = o.CustNo

The Orders table (o) is joined to the Items table (i) with the INNER JOIN
expression:

0.0rderNo = i.OrderNo

The Orders table (o) is joined to the Employee table (e) with the INNER JOIN
expression:

o.EmpNo = e.EmpNo

The Items table (i) is joined to the Parts table (p) with the INNER JOIN
expression:

i.PartNo = p.PartNo

The Parts table (p) is joined to the Vendors table (v) with the INNER JOIN
expression:

p.VendorNo = v.VendorNo

Optimized Join Ordering

The driver table is the Vendors table (v)

The Vendors table (v) is joined to the Parts table (p) with the INNER JOIN
expression:

v.VendorNo = p.VendorNo

The Parts table (p) is joined to the Items table (i) with the INNER JOIN
expression:

p.PartNo = i.PartNo

The Items table (i) is joined to the Orders table (o) with the INNER JOIN
expression:

i.0rderNo = o.0rderNo

The Orders table (o) is joined to the Customer table (c) with the INNER JOIN
expression:

o0.CustNo = c.CustNo

The Orders table (o) is joined to the Employee table (e) with the INNER JOIN
expression:

o.EmpNo = e.EmpNo

Join Execution

Costs ARE NOT being taken into account when executing this join
Use the JOINOPTIMIZECOSTS clause at the end of the SQL statement to force the

optimizer to consider costs when optimizing this join

Page 194

SQL Reference

The expression:
v.VendorNo = p.VendorNo
is OPTIMIZED

The expression:
p.PartNo = i.PartNo
is OPTIMIZED

The expression:
i.0rderNo = o.0OrderNo
is OPTIMIZED

The expression:
o0.CustNo = c.CustNo
is OPTIMIZED

The expression:
o.EmpNo = e.EmpNo

is
OPTIMIZED

You'll notice that the joins have been re-ordered to be in the most optimal order. You'll also notice that the
query plan mentions that the JOINOPTIMIZECOSTS clause is not being used. Use a JOINOPTIMIZECOSTS
clause to force the query optimizer to use I/O cost projections to determine the most efficient way to
process the conditions in a join expression. If you have a join expression with multiple conditions in it,
then using this clause may help improve the performance of the join expression, especially if it is already
executing very slowly.

Further Optimizations Provided by DBISAM

In addition to just using indexes to speed up the querying process, DBISAM also provides a few other
optimizations that can greatly increase a given query's performance. When building a bitmap for a given
optimized condition, DBISAM can take advantage of statistics that are kept in DBISAM indexes. These
statistics accurately reflect the current make-up of the various values present in the index, and DBISAM
uses this information to optimize the actual scan of the index.

DBISAM looks at the optimization of the query conditions, and when multiple conditions are joined by an
AND operator, DBISAM ensures that the most optimized query condition is executed first. For example,
consider a table of 25,000 records with the following structure:

Customer table

Page 195

SQL Reference

Field Data Type Index

ID Integer Primary Index

Name String[30]

State String[2] Secondary, case-sensitive,

non-unique, ascending, index
TotalOrders BCD[2]

And consider the following SQL SELECT query:

SELECT *
FROM customer
WHERE (TotalOrders > 10000) and (State='CA')

As you can see, the TotalOrders condition cannot be optimized since no indexes exist that would allow for
optimization, whereas the State condition can be optimized. If only 200 records in the table have a State
field that contains 'CA', then processing the query in the order indicated by the expression would be very
inefficient, since the following steps would take place:

1) All 25,000 physical records would be read and evaluated to build a bitmap for the (TotalOrders >
10000) condition.

2) The resultant bitmap from the previous step would be ANDed together with a bitmap built using the
optimized index scan for the State condition.

DBISAM uses a much better approach because it knows that:
1) The TotalOrders condition is not optimized

2) The State condition is optimized

3) Both conditions are joined using the AND operator

it is able to reverse the query conditions in the WHERE clause and execute the index scan for the 200
records that satisfy the State condition first, and then proceed to only read the 200 records from disk in
order to evaluate the TotalOrders condition. DBISAM has just saved a tremendous amount of I/O by
simply reversing the query conditions.

Note

This optimization only works with query conditions that are joined by the AND operator. If the
above two conditions were joined using the OR operator, then DBISAM would simply read all 25,000
records and evaluate the entire WHERE expression for each record.

In the case of a completely un-optimized query, DBISAM's read-ahead buffering can help tremendously in
reducing network traffic and providing the most efficient reads with the least amount of I/O calls to the
operating system. DBISAM will read up to 32 kilobytes of contiguous records on disk in the course of
processing an un-optimized query.

DBISAM can also optimize for the UPPER() and LOWER() SQL functions by using any case-insensitive
indexes in the source tables to optimize the query condition. Take the following table for example:

Page 196

SQL Reference

Customer table

Field Data Type Index

ID Integer Primary Index

Name String[30]

State String[2] Secondary, case-insensitive,

non-unique, ascending, index

And consider the following SQL SELECT query:

SELECT *
FROM customer
WHERE (UPPER (State)="'CA"'")

In this query, DBISAM will be able to select and use the case-insensitive index on the State field, and this
is caused by the presence of the UPPER() function around the field name. This can also be used to
optimize joins. For example, here are two tables that use case-insensitive indexes for optimizing joins:

Customer table

Field Data Type Index

ID String[10] Primary, case-insensitive
index

Name String[30]

State String[2]

Orders table

Field Data Type Index

OrderNum String[20] Primary, case-insensitive
index

CustID String[10] Secondary, case-insensitive
index

TotalAmount BCD[2]

And consider the following SQL SELECT query:

SELECT *
FROM Customer, Orders
WHERE (UPPER (Customer.ID)=UPPER (Orders.CustID))

In this query, the join condition will be optimized due to the presence of the UPPER() function around the
Orders.CustID field. The UPPER() function around the Customer.ID field is simply to ensure that the join is

Page 197

SQL Reference

made on upper-case customer ID values only.
Optimization Levels

DBISAM determines the level of optimization for a WHERE or JOIN clause using the following rules:

Optimized Condition = Fully-Optimized WHERE or JOIN clause
Un-Optimized Condition = Un-Optimized WHERE or JOIN clause

Optimized Condition AND Optimized Condition = Fully-
Optimized WHERE or JOIN clause

Optimized Condition AND Un-Optimized Condition = Partially-
Optimized WHERE or JOIN clause

Un-Optimized Condition AND Optimized Condition = Partially-
Optimized WHERE or JOIN clause

Un-Optimized Condition AND Un-Optimized Condition = Un-
Optimized WHERE or JOIN clause

Optimized Condition OR Optimized Condition = Fully-
Optimized WHERE or JOIN clause

Optimized Condition OR Un-Optimized Condition = Un-
Optimized WHERE or JOIN clause

Un-Optimized Condition OR Optimized Condition = Un-
Optimized WHERE or JOIN clause

Un-Optimized Condition OR Un-Optimized Condition = Un-
Optimized WHERE or JOIN clause

Note

The unary NOT operator causes any expression to become partially optimized. This is due to the
fact that DBISAM must scan for, and remove, deleted records from the current records bitmap once
it has taken the bitmap and performed the NOT operation on the bits.

DBISAM Limitations

DBISAM does not optimize multiple query conditions joined by an AND operator) by mapping them to a
compound index that may be available. To illustrate this point, consider a table with the following
structure:

Employee

Field Data Type Index

LastName String[30] Primary Index (both fields are part of the
FirstName String[20] Primary Index primary index)

Page 198

SQL Reference

And consider the following query:

SELECT *
FROM Employee
WHERE (LastName='Smith') and (FirstName='John')

Logically you would assume that DBISAM can use the one primary index in order to optimize the entire
WHERE clause. Unfortunately this is not the case, and instead DBISAM will only use the primary index for
optimizing the LastName condition and resort to reading records in order to evaluate the FirstName
condition.

Page 199

SQL Reference

4.5 Operators

Introduction

DBISAM allows comparison operators, extended comparison operators, arithmetic operators, string
operators, date, time, and timestamp operators, and logical operators in SQL statements. These operators
are detailed below.

Comparison Operators

Use comparison operators to perform comparisons on data in SELECT, INSERT, UPDATE, or DELETE
queries. DBISAM's SQL supports the following comparison operators:

Operator Description
< Determines if a value is less than another value.
> Determines if a value is greater than another value.

= Determines if a value is equal to another value.

<> Determines if a value is not equal to another value.

>= Determines if a value is greater than or equal to another
value.

<= Determines if a value is less than or equal to another value.

Use comparison operators to compare two like values. Values compared can be: column values, literals, or
calculations. The result of the comparison is a boolean value that is used in contexts like a WHERE clause
to determine on a row-by-row basis whether a row meets the filtering criteria. The following example uses
the >= comparison operator to show only the orders where the ItemsTotal column is greater than or
equal to 1000:

SELECT *
FROM Orders
WHERE (ItemsTotal >= 1000)

Comparisons must be between two values of the same or a compatible data type. The result of a
comparison operation can be modified by a logical operator, such as NOT. The following example uses the
>= comparison operator and the logical NOT operator to show only the orders where the ItemsTotal
column is not greater than or equal to 1000:

SELECT *
FROM Orders
WHERE NOT (ItemsTotal >= 1000)

Page 200

SQL Reference

Note

Comparison operators can only be used in a WHERE or HAVING clause, or in the ON clause of a join
- they cannot be used in the SELECT clause. The only exception to this would be within the first
argument to the IF() function, which allows comparison expressions for performing IF...ELSE
boolean logic.

Extended Comparison Operators

Use extended comparison operators to perform comparisons on data in SELECT, INSERT, UPDATE, or
DELETE queries. DBISAM supports the following extended comparison operators:

Operator Description

[NOT] BETWEEN Compares a value to a range formed by two values.
[NOT] IN Determines whether a value exists in a list of values.
[NOT] LIKE Compares, in part or in whole, one value with another.
IS [NOT] NULL Compares a value with an empty, or NULL, value.

BETWEEN Extended Comparison Operator

The BETWEEN extended comparison operator determines whether a value falls inside a range. The syntax
is as follows:

valuel [NOT] BETWEEN value2 AND value3

Use the BETWEEN extended comparison operator to compare a value to a value range. If the value is
greater than or equal to the low end of the range and less than or equal to the high end of the range,
BETWEEN returns a TRUE value. If the value is less than the low end value or greater than the high end
value, BETWEEN returns a FALSE value. For example, the expression below returns a FALSE value because
10 is not between 1 and 5:

10 BETWEEN 1 AND 5

Use NOT to return the converse of a BETWEEN comparison. For example, the expression below returns a
TRUE value:

10 NOT BETWEEN 1 AND 5

BETWEEN can be used with all non-BLOB data types, but all values compared must be of the same or a
compatible data type. The left-side and right-side values used in a BETWEEN comparison may be columns,
literals, or calculated values. The following example returns all orders where the SaleDate column is
between January 1, 1998 and December 31, 1998:

Page 201

SQL Reference

SELECT SaleDate
FROM Orders
WHERE (SaleDate BETWEEN '1998-01-01' AND '1998-12-31")

BETWEEN is useful when filtering to retrieve rows with contiguous values that fall within the specified
range. For filtering to retrieve rows with noncontiguous values, use the IN extended comparison operator.

IN Extended Comparison Operator

The IN extended comparison operator indicates whether a value exists in a set of values. The syntax is as
follows:

value [NOT] IN (value set)

Use the IN extended comparison operator to filter a table based on the existence of a column value in a
specified set of comparison values. The set of comparison values can be a comma-separated list of column
names, literals, or calculated values. The following example returns all customers where the State column
is either 'CA' or 'HI":

SELECT c.Company, c.State
FROM Customer c
WHERE (c.State IN ('CA', 'HI'"))

The value to compare with the values set can be any or a combination of a column value, a literal value,
or a calculated value. Use NOT to return the converse of an IN comparison. IN can be used with all non-
BLOB data types, but all values compared must be of the same or a compatible data type.

IN is useful when filtering to retrieve rows with noncontiguous values. For filtering to retrieve rows with
contiguous values that fall within a specified range, use the BETWEEN extended comparison operator.

LIKE Extended Comparison Operator

The LIKE extended comparison operator indicates the similarity of one value as compared to another. The
syntax is as follows:

value [NOT] LIKE [substitution char] comparison value
[substitution char] ESCAPE escape char

Use the LIKE extended comparison operator to filter a table based on the similarity of a column value to a
comparison value. Use of substitution characters allows the comparison to be based on the whole column
value or just a portion. The following example returns all customers where the Company column is equal
to 'Adventure Undersea':

SELECT *
FROM Customer
WHERE (Company LIKE 'Adventure Undersea')

Page 202

SQL Reference

The wildcard substitution character (%) may be used in the comparison to represent an unknown number
of characters. LIKE returns a TRUE when the portion of the column value matches that portion of the
comparison value not corresponding to the position of the wildcard character. The wildcard character can
appear at the beginning, middle, or end of the comparison value (or multiple combinations of these
positions). The following example retrieves rows where the column value begins with 'A" and is followed by
any number of any characters. Matching values could include 'Action Club' and 'Adventure Undersea', but
not 'Blue Sports':

SELECT *
FROM Customer
WHERE (Company LIKE 'A%'")

The single-character substitution character (_) may be used in the comparison to represent a single
character. LIKE returns a TRUE when the portion of the column value matches that portion of the
comparison value not corresponding to the position of the single-character substitution character. The
single-character substitution character can appear at the beginning, middle, or end of the comparison
value (or multiple combinations of these positions). Use one single-character substitution character for
each character to be wild in the filter pattern. The following example retrieves rows where the column
value begins with 'b' ends with 'n', with one character of any value between. Matching values could include
'bin' and 'ban’, but not 'barn':

SELECT Words
FROM Dictionary
WHERE (Words LIKE 'b n')

The ESCAPE keyword can be used after the comparison to represent an escape character in the
comparison value. When an escape character is found in the comparison value, DBISAM will treat the next
character after the escape character as a literal and not a wildcard character. This allows for the use of the
special wildcard characters as literal search characters in the comparison value. For example, the following
example retrieves rows where the column value contains the string constant '10%":

SELECT ID, Description
FROM Items
WHERE (Description LIKE '%10\%%') ESCAPE '\'

Use NOT to return the converse of a LIKE comparison. LIKE can be used only with string or compatible
data types such as memo columns. The comparison performed by the LIKE extended comparison operator
is always case-sensitive.

IS NULL Extended Comparison Operator

The IS NULL extended comparison operator indicates whether a column contains a NULL value. The syntax
is as follows:

column reference IS [NOT] NULL

Page 203

SQL Reference

Use the IS NULL extended comparison operator to filter a table based on the specified column containing a
NULL (empty) value. The following example returns all customers where the InvoiceDate column is null:

SELECT *
FROM Customer
WHERE (InvoiceDate IS NULL)

Use NOT to return the converse of a IS NULL comparison.

Note
For a numeric column, a zero value is not the same as a NULL value.

Value Operators

Use value operators to return specific values based upon other expressions in SELECT, INSERT, UPDATE,
or DELETE queries. DBISAM supports the following value operators:

Operator Description

CASE Evaluates a series of boolean expressions and returns the
matching result value.

CASE Value Operator

The CASE value operator can be used in with two different syntaxes, one being the normal syntax while
the other being a shorthand syntax. The normal syntax is used to evaluate a series of boolean expressions
and return the matching result value for the first boolean expression that returns True, and is as follows:

CASE

WHEN boolean expression THEN value
[WHEN boolean expression THEN value]
[ELSE] wvalue

END

The following is an example of the normal CASE syntax. It translate a credit card type into a more verbose
description:

SELECT CardType,
CASE

WHEN Upper (CardType
WHEN Upper (CardType
WHEN Upper (CardType
WHEN Upper (CardType
END AS CardDesc,
SUM (SalesAmount) AS TotalSales
FROM Transactions

GROUP BY CardType

='A' THEN 'American Express'
='M' THEN 'Mastercard'

='V' THEN 'Visa'

='D' THEN 'Diners Club'

Page 204

SQL Reference

ORDER BY TotalSales DESC

The shorthand syntax is as follows:

CASE expression

WHEN expression THEN value
[WHEN expression THEN value]
[ELSE] wvalue

END

The primary difference between the shorthand syntax and the normal syntax is the inclusion of the
expression directly after the CASE operator itself. It is used as the comparison value for every WHEN
expression. All WHEN expressions must be type-compatible with this expression and can be any type,
unlike the normal syntax which requires boolean expressions. The rest of the shorthand syntax is the same
as the normal syntax.

The following is the above credit card type example using the shorthand syntax:

SELECT CardType,

CASE Upper (CardType)

WHEN 'A' THEN 'American Express'
WHEN 'M' THEN 'Mastercard'
WHEN 'V' THEN 'Visa'

WHEN 'D' THEN 'Diners Club'
END AS CardDesc,

SUM (SalesAmount) AS TotalSales
FROM Transactions

GROUP BY CardType

ORDER BY TotalSales DESC

Arithmetic Operators

Use arithmetic operators to perform arithmetic calculations on data in SELECT, INSERT, UPDATE, or
DELETE queries. DBISAM's SQL supports the following arithmetic operators:

Operator Description

+ Add two numeric values together numeric value.

- Subtract one numeric value from another numeric value.

* Multiply one numeric value by another numeric value.

/ Divide one numeric value by another numeric value.

MOD Returns the modulus of the two integer arguments as an
integer

Calculations can be performed wherever non-aggregated data values are allowed, such as in a SELECT or
WHERE clause. In following example, a column value is multiplied by a numeric literal:

Page 205

SQL Reference

SELECT (itemstotal * 0.0825) AS Tax
FROM orders

Arithmetic calculations are performed in the normal order of precedence: multiplication, division, modulus,
addition, and then subtraction. To cause a calculation to be performed out of the normal order of
precedence, use parentheses around the operation to be performed first. In the next example, the
addition is performed before the multiplication:

SELECT (n.numbers * (n.multiple + 1)) AS Result
FROM numbertable n
Arithmetic operators operate only on numeric values.

String Operators

Use string operators to perform string concatenation on character data in SELECT, INSERT, UPDATE, or
DELETE queries. DBISAM's SQL supports the following string operators:
Operator Description

+ Concatenate two string values together.

[Concatenate two string values together.

String operations can be performed wherever non-aggregated data values are allowed, such as in a
SELECT or WHERE clause. In following example, a column value concatenated with a second column value
to provide a new calculated column in the query result set:

SELECT (LastName + ', ' 4+ FirstName) AS FullName
FROM Employee

String operators operate only on string values or memo columns.

Date, Time, and Timestamp Operators

Use date, time, and timestamp operators to perform date, time, and timestamp calculations in SELECT,
INSERT, UPDATE, or DELETE queries. DBISAM's SQL supports the following date, time, and timestamp
operators:

Operator Description
+ Adding days or milliseconds to date, time, or timestamp
values.

- Subtracting days or milliseconds from date, time, or
timestamp values, or subtracting two date, time, or
timestamp values to get the difference in days or millseconds.

The rules for adding or subtracting dates, times, and timestamps in conjunction with integers are as
follows:

Page 206

SQL Reference

Adding an integer to a date is equivalent to adding days to the date

Adding an integer to a time is equivalent to adding milliseconds to the time (be careful of wraparound
since a time value is equal to the number of milliseconds elapsed since the beginning of the current day)

Adding an integer to a timestamp is equivalent to adding milliseconds to the time portion of the timestamp
(any milliseconds beyond the number of milliseconds in a day will result in an increment of the day value
in the timestamp by 1)

Subtracting an integer from a date is equivalent to subtracting days from the date

Subtracting an integer from a time is equivalent to subtracting milliseconds from the time (be careful of
going below 0, which will be ignored)

Subtracting an integer from a timestamp is equivalent to subtracting milliseconds from the time portion of
the timestamp (any milliseconds less than 0 for the time portion will result in a decrement of the day value
in the timestamp by 1)

Subtracting a date value from another date value will result in the number of days between the two dates
(be sure to use the ABS() function to ensure a positive value if the second value is larger than the first)

Subtracting a time value from another time value will result in the number of milliseconds between the two
times (be sure to use the ABS() function to ensure a positive value if the second value is larger than the
first)

Subtracting a date value from a timestamp value will result in the number of milliseconds between the
timestamp and the date (be sure to use the ABS() function to ensure a positive value if the second value is
larger than the first)

Subtracting a timestamp value from a timestamp value will result in the number of milliseconds between
the timestamp and the other timestamp (be sure to use the ABS() function to ensure a positive value if the
second value is larger than the first)

The following example shows how you would add 30 days to a date to get an invoice due date for an
invoice in a SELECT SQL statement:

SELECT InvoiceDate, (InvoiceDate + 30) AS DueDate, BalanceDue
FROM Invoices
WHERE InvoiceDate BETWEEN '1999-01-01' AND '1999-01-31"

Date, time, and timestamp operators operate only on date, time, or timestamp values in conjuction with
integer values.

Logical Operators

Use logical operators to perform Boolean logic between different predicates (conditions) in an SQL WHERE
clause. DBISAM's SQL supports the following logical operators:

Operator Description

Page 207

SQL Reference

NOT NOT a boolean value.
AND AND two boolean values together.
OR OR two boolean values together.

This allows the source table(s) to be filtered based on multiple conditions. Logical operators compare the
boolean result of two predicate comparisons, each producing a boolean result. If OR is used, either of the
two predicate comparisons can result on a TRUE value for the whole expression to evaluate to TRUE. If
AND is used, both predicate comparisons must evaluate to TRUE for the whole expression to be TRUE; if
either is FALSE, the whole is FALSE. In the following example, if only one of the two predicate
comparisons is TRUE, the row will be included in the query result set:

SELECT *
FROM Reservations
WHERE ((ReservationDate < '1998-01-31') OR (Paid = TRUE))

Logical operator comparisons are performed in the order of AND and then OR. To perform a comparison
out of the normal order of precedence, use parentheses around the comparison to be performed first. The
SELECT statement below retrieves all rows where the Shape column is 'Round' and the Color 'Blue':

SELECT Shape, Color
FROM Objects
WHERE (Color = 'Red' OR Shape = 'Round') AND Color = 'Blue'

Without the parentheses, the default order of precedence is used and the logic changes. The next
example, a variation on the above statement, would return rows where the Shape is 'Round' and the Color
is 'Blue', but would also return rows where the Color is 'Red’, regardless of the Shape:

SELECT Shape, Color
FROM Objects
WHERE Color = 'Red' OR Shape = 'Round' AND Color = 'Blue'

Use the NOT operator to negate the boolean result of a comparison. In the following example, only those
rows where the Paid column contains a FALSE value are retrieved:

SELECT *
FROM reservations
WHERE (NOT (Paid = TRUE))

Page 208

4.6 Functions

Introduction

SQL Reference

DBISAM's SQL provides string functions, numeric functions, boolean functions, aggregate functions (used
in conjunction with an SQL SELECT GROUP BY clause), autoinc functions, full text indexing functions, and

data conversion functions.

String Functions

Use string functions to manipulate string values in SELECT, INSERT, UPDATE, or DELETE queries.
DBISAM's SQL supports the following string functions:

Function
LOWER or LCASE
UPPER or UCASE
LENGTH
SUBSTRING
LEFT

RIGHT

TRIM

LTRIM
RTRIM
POS or POSITION

OCCURS

REPLACE

REPEAT
CONCAT

LOWER or LCASE Function

Description

Forces a string to lowercase.

Forces a string to uppercase.
Returns the length of a string value.
Extracts a portion of a string value.

Extracts a certain number of characters from the left side of a
string value.

Extracts a certain number of characters from the right side of
a string value.

Removes repetitions of a specified character from the left,
right, or both sides of a string.

Removes any leading space characters from a string.
Removes any trailing space characters from a string.

Finds the position of one string value within another string
value.

Finds the number of times one string value is present within
another string value.

Replaces all occurrences of one string value with a new string
value within another string value.

Repeats a string value a specified number of times.

Concatenates two string values together.

The LOWER or LCASE function converts all characters in a string value to lowercase. The syntax is as

follows:

LOWER (column_ reference or string constant)

LCASE (column_reference or string constant)

Page 209

SQL Reference

In the following example, the values in the NAME column appear all in lowercase:

SELECT LOWER (Name)
FROM Country

The LOWER or LCASE function can be used in WHERE clause string comparisons to cause a case-
insensitive comparison. Apply LOWER or LCASE to the values on both sides of the comparison operator (if
one of the comparison values is a literal, simply enter it all in lower case).

SELECT *
FROM Names
WHERE LOWER (Lastname) = 'smith'

LOWER or LCASE can only be used with string or memo columns or constants.

UPPER or UCASE Function

The UPPER or UCASE function converts all characters in a string value to uppercase. The syntax is as
follows:

UPPER (column reference or string constant)
UCASE (column_ reference or string constant)

Use UPPER or UCASE to convert all of the characters in a table column or character literal to uppercase. In
the following example, the values in the NAME column are treated as all in uppercase. Because the same
conversion is applied to both the filter column and comparison value in the WHERE clause, the filtering is
effectively case-insensitive:

SELECT Name, Capital, Continent
FROM Country
WHERE UPPER (Name) LIKE UPPER('PES')

UPPER can only be used with string or memo columns or constants.

LENGTH Function

The LENGTH function returns the length of a string value as an integer value. The syntax is as follows:

LENGTH (column reference or string constant)

In the following example, the length of the values in the Notes column are returned as part of the SELECT
statement:

Page 210

SQL Reference

SELECT Notes, LENGTH (Notes) AS "Num Chars"
FROM Biolife

LENGTH can only be used with string or memo columns or constants.

SUBSTRING Function

The SUBSTRING function extracts a substring from a string. The syntax is as follows:

SUBSTRING (column reference or string constant
FROM start index [FOR length])

SUBSTRING (column reference or string constant,
start index[,length])

The second FROM parameter is the character position at which the extracted substring starts within the
original string. The index for the FROM parameter is based on the first character in the source value being
1.

The FOR parameter is optional, and specifies the length of the extracted substring. If the FOR parameter
is omitted, the substring goes from the position specified by the FROM parameter to the end of the string.

In the following example, the SUBSTRING function is applied to the literal string '"ABCDE' and returns the
value 'BCD":

SELECT SUBSTRING ('ABCDE' FROM 2 FOR 3) AS Sub
FROM Country

In the following example, only the second and subsequent characters of the NAME column are retrieved:

SELECT SUBSTRING (Name FROM 2)
FROM Country

SUBSTRING can only be used with string or memo columns or constants.

LEFT Function

The LEFT function extracts a certain number of characters from the left side of a string. The syntax is as
follows:

LEFT (column_reference or string constant FOR length)
LEFT (column_reference or string constant, length)

The FOR parameter specifies the length of the extracted substring.

Page 211

SQL Reference

In the following example, the LEFT function is applied to the literal string 'ABCDE' and returns the value
'ABC":

SELECT LEFT ('ABCDE' FOR 3) AS Sub
FROM Country

LEFT can only be used with string or memo columns or constants.

RIGHT Function

The RIGHT function extracts a certain number of characters from the right side of a string. The syntax is
as follows:

RIGHT (column reference or string constant FOR length)
RIGHT (column reference or string constant, length)

The FOR parameter specifies the length of the extracted substring.
In the following example, the RIGHT function is applied to the literal string 'ABCDE' and returns the value
'DE":

SELECT RIGHT ('ABCDE' FOR 2) AS Sub
FROM Country

RIGHT can only be used with string or memo columns or constants.
TRIM Function

The TRIM function removes the trailing or leading character, or both, from a string. The syntax is as
follows:

TRIM ([LEADING|TRAILING|BOTH] trimmed char
FROM column reference or string constant)
TRIM([LEADING|TRAILING|BOTH] trimmed_char,
column reference or string constant)

The first parameter indicates the position of the character to be deleted, and has one of the following
values:

Keyword Description

LEADING Deletes the character at the left end of the string.
TRAILING Deletes the character at the right end of the string.
BOTH Deletes the character at both ends of the string.

Page 212

SQL Reference

The trimmed character parameter specifies the character to be deleted. Case-sensitivity is applied for this
parameter. To make TRIM case-insensitive, use the UPPER or UCASE function on the column reference or
string constant.

The FROM parameter specifies the column or constant from which to delete the character. The column
reference for the FROM parameter can be a string column or a string constant.

The following are examples of using the TRIM function:

TRIM(LEADING ' ' FROM ' ABC ') will return 'ABC '
TRIM(TRAILING ' ' FROM ' ABC ') will return ' ABC'
TRIM(BOTH ' ' FROM ' ABC ') will return 'ABC'

(

TRIM (BOTH 'g' FROM 'ABC') will return 'BC'

TRIM can only be used with string or memo columns or constants.

LTRIM Function

The LTRIM function removes any leading spaces from a string. The syntax is as follows:

LTRIM(column reference or string constant)

The first and only parameter specifies the column or constant from which to delete the leading spaces, if
any are present. The following is an example of using the LTRIM function:

LTRIM (' ABC') will return 'ABC'

LTRIM can only be used with string or memo columns or constants.

RTRIM Function

The RTRIM function removes any trailing spaces from a string. The syntax is as follows:

RTRIM (column reference or string constant)

The first and only parameter specifies the column or constant from which to delete the trailing spaces, if
any are present. The following is an example of using the RTRIM function:

RTRIM('ABC ') will return 'ABC'

RTRIM can only be used with string or memo columns or constants.

POS or POSITION Function

Page 213

SQL Reference

The POS or POSITION function returns the position of one string within another string. The syntax is as
follows:

POS (string constant IN column reference or string constant)
POSITION (string constant IN column reference or string constant)
POS (string constant,column reference or string constant)
POSITION (string constant,column reference or string constant)

If the search string is not present, then 0 will be returned.

In the following example, the POS function is used to select all rows where the literal string 'ABC' exists in
the Name column:

SELECT *
FROM Country
WHERE POS ('ABC' IN Name) > 0

POS or POSITION can only be used with string or memo columns or constants.
OCCURS Function

The OCCURS function returns the number of occurrences of one string within another string. The syntax is
as follows:

OCCURS (string constant

IN column reference or string constant)
OCCURS (string constant,

column reference or string constant)

If the search string is not present, then 0 will be returned.

In the following example, the OCCURS function is used to select all rows where the literal string 'ABC'
occurs at least once in the Name column:

SELECT *
FROM Country
WHERE OCCURS ('ABC' IN Name) > 0

OCCURS can only be used with string or memo columns or constants.
REPLACE Function

The REPLACE function replaces all occurrences of a given string with a new string within another string.
The syntax is as follows:

Page 214

SQL Reference

REPLACE (string constant WITH new string constant
IN column reference or string constant)

REPLACE (string constant,new string constant,
column reference or string constant)

If the search string is not present, then the result will be the original table column or string constant.
In the following example, the REPLACE function is used to replace all occurrences of 'Mexico' with 'South

America':

UPDATE biolife
SET notes=REPLACE ('Mexico' WITH 'South America' IN notes)

REPLACE can only be used with string or memo columns or constants.

REPEAT Function

The REPEAT function repeats a given string a specified number of times and returns the concatenated
result. The syntax is as follows:

REPEAT (column reference or string constant
FOR number of occurrences)

REPEAT (column_reference or string constant,
number of occurrences)

In the following example, the REPEAT function is used to replicate the dash (-) character 60 times to use
as a separator in a multi-line string:

UPDATE biolife

SET notes='Notes'+#13+#10+

REPEAT ('-' FOR 60)+#13+#10+#13+#10+
'These are the notes'

REPEAT can only be used with string or memo columns or constants.

CONCAT Function

The CONCAT function concatenates two strings together and returns the concatenated result. The syntax
is as follows:

CONCAT (column_ reference or string constant
WITH column reference or string constant)
CONCAT (column_reference or string constant,
column reference or string constant)

In the following example, the CONCAT function is used to concatenate two strings together:

Page 215

SQL Reference

UPDATE biolife

SET notes=CONCAT (Notes WITH #13+#10+#13+#10+'End of Notes')

CONCAT can only be used with string or memo columns or constants.

Numeric Functions

Use numeric functions to manipulate numeric values in SELECT, INSERT, UPDATE, or DELETE queries.
DBISAM's SQL supports the following numeric functions:

Function
ABS
ACOS

ASIN

ATAN

ATAN2

CEIL or CEILING
COos

coTt

DEGREES

EXP

FLOOR

LOG

LOG10

MOD

PI

POWER

RADIANS
RAND
ROUND
SIGN

SIN

Page 216

Description
Converts a number to its absolute value (non-negative).

Returns the arccosine of a number as an angle expressed in
radians.

Returns the arcsine of a number as an angle expressed in
radians.

Returns the arctangent of a number as an angle expressed in
radians.

Returns the arctangent of x and y coordinates as an angle
expressed in radians.

Returns the lowest integer greater than or equal to a number.
Returns the cosine of an angle.

Returns the cotangent of an angle.

Converts a number representing radians into degrees.
Returns the exponential value of a number.

Returns the highest integer less than or equal to a number.
Returns the natural logarithm of a number.

Returns the base 10 logarithm of a number.

Returns the modulus of two integers as an integer.

Returns the ratio of a circle's circumference to its diameter -
approximated as 3.1415926535897932385.

Returns the value of a base number raised to the specified
power.

Converts a number representing degrees into radians.
Returns a random number.
Rounds a number to a specified number of decimal places.

Returns -1 if a number is less than 0, 0 if a number is 0, or 1
if @ number is greater than 0.

Returns the sine of an angle.

SQL Reference

SQRT Returns the square root of a number.
TAN Returns the tangent of an angle.
TRUNC or TRUNCATE Truncates a numeric argument to the specified number of

decimal places

ABS Function

The ABS function converts a numeric value to its absolute, or non-negative value:

ABS (column reference or numeric constant)

ABS can only be used with numeric columns or constants.

ACOS Function

The ACOS function returns the arccosine of a number as an angle expressed in radians:

ACOS (column reference or numeric constant)

ACOS can only be used with numeric columns or constants.

ASIN Function

The ASIN function returns the arcsine of a number as an angle expressed in radians:

ASIN(column reference or numeric constant)

ASIN can only be used with numeric columns or constants.
ATAN Function

The ATAN function returns the arctangent of a number as an angle expressed in radians:

ATAN (column reference or numeric constant)

ATAN can only be used with numeric columns or constants.

ATAN2 Function

The ATAN2 function returns the arctangent of x and y coordinates as an angle expressed in radians:

Page 217

SQL Reference

ATANZ (column reference or numeric constant,
column reference or numeric constant)

ATAN2 can only be used with humeric columns or constants.

CEIL or CEILING Function

The CEIL or CEILING function returns the lowest integer greater than or equal to a number:

CEIL(column reference or numeric constant)
CEILING (column reference or numeric constant)

CEIL or CEILING can only be used with numeric columns or constants.

COS Function

The COS function returns the cosine of an angle:

COS (column_reference or numeric constant)

COS can only be used with humeric columns or constants.

COT Function

The COT function returns the cotangent of an angle:

COT (column reference or numeric constant)

COT can only be used with numeric columns or constants.

DEGREES Function

The DEGREES function converts a number representing radians into degrees:

DEGREES (column reference or numeric constant)

DEGREES can only be used with numeric columns or constants.

EXP Function

The EXP function returns the exponential value of a number:

Page 218

SQL Reference

EXP (column reference or numeric constant)

EXP can only be used with numeric columns or constants.
FLOOR Function

The FLOOR function returns the highest integer less than or equal to a number:

FLOOR (column reference or numeric constant)

FLOOR can only be used with numeric columns or constants.

LOG Function

The LOG function returns the natural logarithm of a number:

LOG (column reference or numeric constant)

LOG can only be used with numeric columns or constants.
LOG10 Function

The LOG10 function returns the base 10 logarithm of a number:

LOG10 (column reference or numeric constant)

LOG10 can only be used with numeric columns or constants.

MOD Function

The MOD function returns the modulus of two integers. The modulus is the remainder that is present
when dividing the first integer by the second integer:

MOD (column reference or integer constant,
column reference or integer constant)

MOD can only be used with integer columns or constants.

PI Function

The PI function returns the ratio of a circle's circumference to its diameter - approximated as
3.1415926535897932385:

Page 219

SQL Reference

PI()

POWER Function

The POWER function returns value of a base number raised to the specified power:

POWER (column reference or numeric constant
TO column reference or numeric constant)
POWER (column reference or numeric constant,
column reference or numeric constant)

POWER can only be used with numeric columns or constants.
RADIANS Function

The RADIANS function converts a number representing degrees into radians:

RADIANS (column reference or numeric constant)

RADIANS can only be used with numeric columns or constants.
RAND Function

The RAND function returns a random number:

RAND ([RANGE range of random values])

The range value is optional used to limit the random numbers returned to between 0 and the range value
specified. If the range is not specified then any number within the full range of numeric values may be
returned.

ROUND Function

The ROUND function rounds a numeric value to a specified nhumber of decimal places:

ROUND (column reference or numeric constant
[TO number of decimal places])
ROUND (column reference or numeric constant
[, number of decimal places])

The number of decimal places is optional, and if not specified the value returned will be rounded to 0
decimal places.

ROUND can only be used with numeric columns or constants.

Page 220

SQL Reference

Note

The ROUND function performs "normal" rounding where the number is rounded up if the fractional
portion beyond the number of decimal places being rounded to is greater than or equal to 5 and
down if the fractional portion is less than 5. Also, if using the ROUND function with floating-point
values, it is possible to encounter rounding errors due to the nature of floating-point values and
their inability to accurately express certain numbers. If you want to eliminate this possibility you
should use the CAST function to convert the floating-point column or constant to a BCD value
(DECIMAL or NUMERIC data type in SQL). This will allow for the rounding to occur as desired since
BCD values can accurately represent these numbers without errors.

SIGN Function

The SIGN function returns -1 if a number is less than 0, 0 if a number is 0, or 1 if @ number is greater than
0:

SIGN (column reference or numeric constant)

SIGN can only be used with numeric columns or constants.
SIN Function

The SIN function returns the sine of an angle:

SIN (column reference or numeric constant)

SIN can only be used with numeric columns or constants.
SQRT Function

The SQRT function returns the square root of a number:

SQRT (column reference or numeric constant)

SQRT can only be used with numeric columns or constants.

TAN Function

The TAN function returns the tangent of an angle:

TAN (column reference or numeric constant)

Page 221

SQL Reference

TAN can only be used with numeric columns or constants.

TRUNC or TRUNCATE Function

The TRUNC or TRUNCATE function truncates a numeric value to a specified number of decimal places:

TRUNC (column reference or numeric constant
[TO number of decimal places])
TRUNCATE (column reference or numeric constant
[TO number of decimal places])
TRUNC (column_reference or numeric constant
[, number of decimal places])
TRUNCATE (column reference or numeric constant
[, number of decimal places])

The number of decimal places is optional, and if not specified the value returned will be truncated to 0
decimal places.

TRUNC or TRUNCATE can only be used with numeric columns or constants.

Note

If using the TRUNC or TRUNCATE function with floating-point values, it is possible to encounter
truncation errors due to the nature of floating-point values and their inability to accurately express
certain numbers. If you want to eliminate this possibility you should use the CAST function to
convert the floating-point column or constant to a BCD value (DECIMAL or NUMERIC data type in
SQL). This will allow for the truncation to occur as desired since BCD values can accurately
represent these numbers without errors.

Boolean Functions

Use boolean functions to manipulate any values in SELECT, INSERT, UPDATE, or DELETE queries.
DBISAM's SQL supports the following boolean functions:

Function Description
IF Performs IF..ELSE type of inline expression handling.
IFNULL Performs IF..ELSE type of inline expression handling
specifically for NULL values.
NULLIF Returns a NULL if two values are equivalent.
COALESCE Returns the first non-NULL value from a list of expressions.
IF Function

The IF function performs inline IF..ELSE boolean expression handling:

IF (boolean expression THEN result expression
ELSE result expression)

Page 222

SQL Reference

IF (boolean expression, result expression,
result expression)

Both result expressions must be of the same resultant data type. Use the CAST function to ensure that
both expressions are of the same data type.

In the following example, if the Category column contains the value 'WRASSE', then the column value
returned will be the Common_Name column, otherwise it will be the Species Name column:

SELECT IF (Upper (Category)="'WRASSE'
THEN Common Name

ELSE "Species Name") AS Name

FROM Biolife

The IF function can be used in WHERE clause comparisons to cause a conditional comparison:

SELECT *
FROM Employee
WHERE IF (LastName='Young' THEN PhoneExt='233' ELSE PhoneExt='22")

IFNULL Function

The IFNULL function performs inline IF..ELSE boolean expression handling specifically on NULL values:

IFNULL (expression THEN result expression
ELSE result expression)

IFNULL (expression, result expression,
result expression)

Both result expressions must be of the same resultant data type. Use the CAST function to ensure that
both expressions are of the same data type.

In the following example, if the Category column contains a NULL value, then the column value returned
will be the Common_Name column, otherwise it will be the Species Name column:

SELECT IFNULL(Category THEN Common Name
ELSE "Species Name") AS Name
FROM Biolife

The IFNULL function can be used in WHERE clause comparisons to cause a conditional comparison:

SELECT *
FROM Employee
WHERE IFNULL (Salary THEN 10000 ELSE Salary) > 8000

Page 223

SQL Reference

NULLIF Function

The NULLIF function returns a NULL if the two values passed as parameters are equal:

NULLIF (expression,expression)

Both expressions must be of the same data type. Use the CAST function to ensure that both expressions
are of the same data type.

In the following example, if the EmpNo column contains the value 14, then the value returned will be
NULL, otherwise it will be the EmpNo column value:

SELECT NULLIF (EmpNo,14) AS EmpNo
FROM Orders

The NULLIF function can be used in WHERE clause comparisons to cause a conditional comparison:

SELECT *
FROM Employee
WHERE NULLIF (Salary,10000) > 8000

COALESCE Function

The COALESCE function returns the first non-NULL value from a list of expressions:

COALESCE (expression [, expression [, expression]])

All expressions must be of the same resultant data type. Use the CAST function to ensure that all
expressions are of the same data type.

In the following example, if the Category column contains a NULL value, then the column value returned
will be the Common_Name column. If the Common_name column contains a NULL, then the literal string
'No Name' will be returned:

SELECT COALESCE (Category,Common Name, 'No Name') AS Name
FROM Biolife

Aggregate Functions

Use aggregate functions to perform aggregate calculations on values in SELECT queries containing a
GROUP BY clause. DBISAM's SQL supports the following aggregate functions:

Page 224

SQL Reference

Function Description

AVG Averages all numeric values in a column.

COUNT Counts the total number of rows or the number of rows where
the specified column is not NULL.

MAX Determines the maximum value in a column.

MIN Determines the minimum value in a column.

STDDEV Calculates the standard deviation of all numeric values in a
column.

SUM Totals all numeric values in a column.

RUNSUM Totals all numeric values in a column in a running total.

LIST Concatenates all string values in a column using a delimeter

AVG Function

The AVG function returns the average of the values in a specified column or expression. The syntax is as
follows:

AVG (column reference or expression)

Use AVG to calculate the average value for a numeric column. As an aggregate function, AVG performs its
calculation aggregating values in the same column(s) across all rows in a dataset. The dataset may be the
entire table, a filtered dataset, or a logical group produced by a GROUP BY clause. Column values of zero
are included in the averaging, so values of 1, 2, 3, 0, 0, and 0 result in an average of 1. NULL column
values are not counted in the calculation. The following is an example of using the AVG function to
calculate the average order amount for all orders:

SELECT AVG (ItemsTotal)
FROM Orders

AVG returns the average of values in a column or the average of a calculation using a column performed
for each row (a calculated field). The following example shows how to use the AVG function to calculate
an average order amount and tax amount for all orders:

SELECT AVG (ItemsTotal) AS AverageTotal,
AVG (ItemsTotal * 0.0825) AS AverageTax
FROM Orders

When used with a GROUP BY clause, AVG calculates one value for each group. This value is the
aggregation of the specified column for all rows in each group. The following example aggregates the
average value for the ItemsTotal column in the Orders table, producing a subtotal for each company in the
Customer table:

Page 225

SQL Reference

SELECT c."Company",
AVG(o."ItemsTotal") AS Average,

MAX (o."ItemsTotal") AS Biggest,

MIN (o."ItemsTotal") AS Smallest

FROM "Customer.dat" c, "Orders.dat" o
WHERE (c."CustNo" = o."CustNo")

GROUP BY c."Company"

ORDER BY c."Company"

AVG operates only on numeric values.

COUNT Function

The COUNT function returns the number of rows that satisfy a query’s search condition or the nhumber of
rows where the specified column is not NULL. The syntax is as follows:

COUNT (* | column reference or expression)

Use COUNT to count the number of rows retrieved by a SELECT statement. The SELECT statement may be
a single-table or multi-table query. The value returned by COUNT reflects a reduced row count produced
by a filtered dataset. The following example returns the total number of rows in the Averaging source
table with a non-NULL Amount column:

SELECT COUNT (Amount)
FROM Averaging

The following example returns the total number of rows in the filtered Orders source table irrespective of
any NULL column values:

SELECT COUNT (*)
FROM Orders
WHERE (Orders.ItemsTotal > 5000)

MAX Function

The MAX function returns the largest value in the specified column. The syntax is as follows:

MAX (column reference or expression)

Use MAX to calculate the largest value for a string, numeric, date, time, or timestamp column. As an
aggregate function, MAX performs its calculation aggregating values in the same column(s) across all rows
in a dataset. The dataset may be the entire table, a filtered dataset, or a logical group produced by a
GROUP BY clause. Column values of zero are included in the aggregation. NULL column values are not
counted in the calculation. If the number of qualifying rows is zero, MAX returns a NULL value. The
following is an example of using the MAX function to calculate the largest order amount for all orders:

Page 226

SQL Reference

SELECT MAX (ItemsTotal)
FROM Orders

MAX returns the largest value in a column or a calculation using a column performed for each row (a
calculated field). The following example shows how to use the MAX function to calculate the largest order
amount and tax amount for all orders:

SELECT MAX (ItemsTotal) AS HighestTotal,
MAX (ItemsTotal * 0.0825) AS HighestTax
FROM Orders

When used with a GROUP BY clause, MAX returns one calculation value for each group. This value is the
aggregation of the specified column for all rows in each group. The following example aggregates the
largest value for the ItemsTotal column in the Orders table, producing a subtotal for each company in the
Customer table:

SELECT c."Company",
AVG(o."ItemsTotal") AS Average,

MAX (o."ItemsTotal") AS Biggest,

MIN (o."ItemsTotal") AS Smallest

FROM "Customer.dat" c, "Orders.dat" o
WHERE (c."CustNo" = o."CustNo")

GROUP BY c."Company"

ORDER BY c."Company"

MAX can be used with all string, numeric, date, time, and timestamp columns. The return value is of the
same type as the column.

MIN Function

The MIN function returns the smallest value in the specified column. The syntax is as follows:

MIN (column reference or expression)

Use MIN to calculate the smallest value for a string, numeric, date, time, or timestamp column. As an
aggregate function, MAX performs its calculation aggregating values in the same column(s) across all rows
in a dataset. The dataset may be the entire table, a filtered dataset, or a logical group produced by a
GROUP BY clause. Column values of zero are included in the aggregation. NULL column values are not
counted in the calculation. If the number of qualifying rows is zero, MAX returns a NULL value. The
following is an example of using the MAX function to calculate the smallest order amount for all orders:

SELECT MIN (ItemsTotal)
FROM Orders

Page 227

SQL Reference

MIN returns the smallest value in a column or a calculation using a column performed for each row (a
calculated field). The following example shows how to use the MIN function to calculate the smallest order
amount and tax amount for all orders:

SELECT MIN(ItemsTotal) AS LowestTotal,
MIN (ItemsTotal * 0.0825) AS LowestTax
FROM Orders

When used with a GROUP BY clause, MIN returns one calculation value for each group. This value is the
aggregation of the specified column for all rows in each group. The following example aggregates the
smallest value for the ItemsTotal column in the Orders table, producing a subtotal for each company in the
Customer table:

SELECT c."Company",

AVG (o."ItemsTotal") AS Average,

MAX (o."ItemsTotal") AS Biggest,

MIN (o."ItemsTotal") AS Smallest

FROM "Customer.dat" c, "Orders.dat" o
WHERE (c."CustNo" = o."CustNo")

GROUP BY c."Company"

ORDER BY c."Company"

MIN can be used with all string, numeric, date, time, and timestamp columns. The return value is of the
same type as the column.

STDDEV Function

The STDDEV function returns the standard deviation of the values in a specified column or expression. The
syntax is as follows:

STDDEV (column reference or expression)

Use STDDEV to calculate the standard deviation value for a numeric column. As an aggregate function,
STDDEV performs its calculation aggregating values in the same column(s) across all rows in a dataset.
The dataset may be the entire table, a filtered dataset, or a logical group produced by a GROUP BY clause.
NULL column values are not counted in the calculation. The following is an example of using the STDDEV
function to calculate the standard deviation for a set of test scores:

SELECT STDDEV (TestScore)
FROM Scores

When used with a GROUP BY clause, STDDEV calculates one value for each group. This value is the
aggregation of the specified column for all rows in each group.

STDDEV operates only on humeric values.

SUM Function

Page 228

SQL Reference

The SUM function calculates the sum of values for a column. The syntax is as follows:

SUM (column reference or expression)

Use SUM to sum all the values in the specified column. As an aggregate function, SUM performs its
calculation aggregating values in the same column(s) across all rows in a dataset. The dataset may be the
entire table, a filtered dataset, or a logical group produced by a GROUP BY clause. Column values of zero
are included in the aggregation. NULL column values are not counted in the calculation. If the number of
qualifying rows is zero, SUM returns a NULL value. The following is an example of using the SUM function
to calculate the total order amount for all orders:

SELECT SUM(ItemsTotal)
FROM Orders

SUM returns the total sum of a column or a calculation using a column performed for each row (a
calculated field). The following example shows how to use the SUM function to calculate the total order
amount and tax amount for all orders:

SELECT SUM(ItemsTotal) AS Total,
SUM (ItemsTotal * 0.0825) AS TotalTax
FROM orders

When used with a GROUP BY clause, SUM returns one calculation value for each group. This value is the
aggregation of the specified column for all rows in each group. The following example aggregates the total
value for the ItemsTotal column in the Orders table, producing a subtotal for each company in the
Customer table:

SELECT c."Company",
SUM(o."ItemsTotal") AS SubTotal

FROM "Customer.dat" c, "Orders.dat" o
WHERE (c."CustNo" = o."CustNo")

GROUP BY c."Company"

ORDER BY c."Company"

SUM operates only on numeric values.

RUNSUM Function

The RUNSUM function calculates the sum of values for a column in a running total. The syntax is as
follows:

RUNSUM (column_reference or expression)

Page 229

SQL Reference

Use RUNSUM to sum all the values in the specified column in a continuous running total. The RUNSUM
function is identical to the SUM function except for the fact that it does not reset itself when sub-totalling.

Note
The running total is only calculated according to the implicit order of the GROUP BY fields and is not
affected by an ORDER BY statement.

LIST Function

The LIST function calculates the concatenation of string values for a column, using a delimiter to separate
each value. The syntax is as follows:

LIST (column reference or expression[,delimiter])

Use LIST to concatenate all the string values in the specified column into a single string value, using a
delimiter to separate one value from the next. If the delimiter is not specified, then the default delimiter is
the comma (,).

AutoInc Functions

Use autoinc functions to return the last autoinc value from a given table in INSERT, UPDATE, or DELETE
queries. DBISAM's SQL supports the following autoinc functions:

Function Description
LASTAUTOINC Returns the last autoinc value from a specified table.
IDENT_CURRENT Same as LASTAUTOINC, with a different name.

LASTAUTOINC Function

The LASTAUTOINC function returns the last autoinc value from a specified table. The syntax is as follows:

LASTAUTOINC (table name constant)

The LASTAUTOINC function will return the last autoinc value from the specified table relative to the start
of the SQL statement currently referencing the LASTAUTOINC function. Because of this, it is possible for
LASTAUTOINC to not return the most recent last autoinc value for the specified table. It is usually
recommended that you only use this function within the scope of a transaction in order to guarantee that
you have retrieved the correct last autoinc value from the table. The following example illustrates how this
would be accomplished using an SQL script and a master-detail insert:

START TRANSACTION;
INSERT INTO customer (company) VALUES ('Test'):;

INSERT INTO orders (custno,empno) VALUES (LASTAUTOINC ('customer'),100);

Page 230

SQL Reference

INSERT INTO orders (custno,empno) VALUES (LASTAUTOINC ('customer'),200);

COMMIT FLUSH;

Full Text Indexing Functions

Use full text indexing functions to search for specific words in a given column in SELECT, INSERT,
UPDATE, or DELETE queries. The word search is controlled by the text indexing parameters for the table in
which the column resides. DBISAM's SQL supports the following word search functions:

Function Description

TEXTSEARCH Performs an optimized text word search on a field, if the field
is part of the full text index for the table, or a brute-force text
word search if not.

TEXTOCCURS Counts the number of times a list of words appears in a field
based upon the full text indexing parameters for the table.

TEXTSEARCH Function

The TEXTSEARCH function searches a column for a given set of words in a search string constant. The
syntax is as follows:

TEXTSEARCH (search string constant
IN column reference)

TEXTSEARCH (search string constant,
column reference)

The optimization of the TEXTSEARCH function is controlled by whether the column being searched is part
of the full text index for the table in which the column resides. If the column is not part of the full text
index then the search will resort to a brute-force scan of the contents of the column in every record that
satisifies any prior conditions in the WHERE clause. Also, the parsing of the list of words in the search
string constant is controlled by the text indexing parameters for the table in which the column being
searched resides. Please see the Full Text Indexing topic for more information.

In the following example, the words 'DATABASE QUERY SPEED' are searched for in the TextBody column:

SELECT GroupNo, No
FROM article
WHERE TEXTSEARCH ('DATABASE QUERY SPEED' IN TextBody)

TEXTSEARCH returns a boolean value indicating whether the list of words exists in the column for a given
record. TEXTSEARCH can only be used with string or memo columns.

TEXTOCCURS Function

The TEXTOCCURS function searches a column for a given set of words in a search string constant and
returns the number of times the words occur in the column. The syntax is as follows:

Page 231

SQL Reference

TEXTOCCURS (search string constant
IN column reference)

TEXTOCCURS (search string constant,
column reference)

TEXTOCCURS is always a brute-force operation and accesses the actual column contents to perform its
functionality, unlike the TEXTSEARCH function which can be optimized by adding the column being
searched to the full text index for the table. Also, the parsing of the list of words in the search string
constant is controlled by the text indexing parameters for the table in which the column being searched
resides. Please see the Full Text Indexing topic for more information.

In the following example, the number of occurrences of the words 'DATABASE QUERY SPEED' in the
TextBody column are used to order the results of a TEXTSEARCH query in order to provide ranking for the
text search:

SELECT GroupNo, No,

TEXTOCCURS ('DATABASE QUERY SPEED' IN TextBody) AS NumOccurs
FROM article

WHERE TEXTSEARCH ('DATABASE QUERY SPEED' IN TextBody)

ORDER BY 3 DESC

TEXTOCCURS returns an integer value indicating the total number of times the list of words occurs in the
column for a given record. TEXTOCCURS can only be used with string or memo columns.

Data Conversion Functions

Use data conversion functions to convert values from one type to another in SELECT, INSERT, UPDATE, or
DELETE queries. DBISAM's SQL supports the following data conversion functions:

Function Description

EXTRACT Extracts the year, month, week, day of week, or day value of
a date or the hours, minutes, or seconds value of a time.

CAST Converts a given data value from one data type to another.

YEARSFROMMSECS Takes milliseconds and returns the number of years.

DAYSFROMMSECS Takes milliseconds and returns the number of days (as a
remainder of the above years, not as an absolute).

HOURSFROMMSECS Takes milliseconds and returns the number of hours (as a
remainder of the above years and days, not as an absolute).

MINSFROMMSECS Takes milliseconds and returns the number of minutes (as a
remainder of the above years, days, and hours, not as an
absolute).

SECSFROMMSECS Takes milliseconds and returns the number of seconds (as a

remainder of the above years, days, hours, and minutes, not
as an absolute).

Page 232

SQL Reference

MSECSFROMMSECS Takes milliseconds and returns the number of milliseconds (as
a remainder of the above years, days, hours, minutes, and
seconds, not as an absolute).

EXTRACT Function

The EXTRACT function returns a specific value from a date, time, or timestamp value. The syntax is as
follows:

EXTRACT (extract value

FROM column reference or expression)
EXTRACT (extract value,

column reference or expression)

Use EXTRACT to return the year, month, week, day of week, day, hours, minutes, seconds, or milliseconds
from a date, time, or timestamp column. EXTRACT returns the value for the specified element as an
integer.

The extract_value parameter may contain any one of the specifiers:

YEAR
MONTH
WEEK
DAYOFWEEK
DAYOFYEAR
DAY

HOUR
MINUTE
SECOND
MSECOND

The specifiers YEAR, MONTH, WEEK, DAYOFWEEK, DAYOFYEAR, and DAY can only be used with date and
timestamp columns. The following example shows how to use the EXTRACT function to display the various
elements of the SaleDate column:

SELECT SaleDate,

EXTRACT (YEAR FROM SaleDate) AS YearNo,

EXTRACT (MONTH FROM SaleDate) AS MonthNo,
EXTRACT (WEEK FROM SaleDate) AS WeekNo,

EXTRACT (DAYOFWEEK FROM SaleDate) AS WeekDayNo,
EXTRACT (DAYOFYEAR FROM SaleDate) AS YearDayNo,
EXTRACT (DAY FROM SaleDate) AS DayNo

FROM Orders

The following example uses a DOB column (containing birthdates) to filter those rows where the date is in
the month of May. The month field from the DOB column is retrieved using the EXTRACT function and
compared to 5, May being the fifth month:

Page 233

SQL Reference

SELECT DOB, LastName, FirstName
FROM People
WHERE (EXTRACT (MONTH FROM DOB) = 5)

Note

The WEEK and DAYOFWEEK parameters will return the week number and the day of the week
according to ANSI/ISO standards. This means that the first week of the year (week 1) is the first
week that contains the first Thursday in January and January 4th and the first day of the week (day
1) is Monday. Also, while ANSI-standard SQL provides the EXTRACT function specifiers
TIMEZONE_HOUR and TIMEZONE_MINUTE, these specifiers are not supported in DBISAM's SQL.

EXTRACT operates only on date, time, and timestamp values.

CAST Function

The CAST function converts a specified value to the specified data type. The syntax is as follows:

CAST (column_ reference AS data type)
CAST (column_ reference,data type)

Use CAST to convert the value in the specified column to the data type specified. CAST can also be applied
to literal and calculated values. CAST can be used in the columns list of a SELECT statement, in the
predicate for a WHERE clause, or to modify the update atom of an UPDATE statement.

The data type parameter may be any valid SQL data type that is a valid as a destination type for the
source data being converted. Please see the Data Types and NULL Support topic for more information.

The statement below converts a timestamp column value to a date column value:

SELECT CAST (SaleDate AS DATE)
FROM ORDERS

Converting a column value with CAST allows use of other functions or predicates on an otherwise
incompatible data type, such as using the SUBSTRING function on a date column:

SELECT SaleDate,
SUBSTRING (CAST (CAST (SaleDate AS DATE) AS CHAR(10)) FROM 1 FOR 1)
FROM Orders

Note
All conversions of dates or timestamps to strings are done using the 24-hour clock (military time).

YEARSFROMMSECS Function

Page 234

SQL Reference

The YEARSFROMMSECS function takes milliseconds and returns the number of years. The syntax is as
follows:

YEARSFROMMSECS (column_ reference or expression)

Use YEARSFROMMSECS to return the number of years present in a milliseconds value as an integer value.

DAYSFROMMSECS Function

The DAYSFROMMSECS function takes milliseconds and returns the number of days as a remainder of the
number of years present in the milliseconds. The syntax is as follows:

DAYSFROMMSECS (column_ reference or expression)

Use DAYSFROMMSECS to return the number of days present in a milliseconds value as an integer value.
The number of days is represented as the remainder of days once the number of years is removed from
the milliseconds value using the YEARSFROMMSECS function.

HOURSFROMMSECS Function

The HOURSFROMMSECS function takes milliseconds and returns the number of hours as a remainder of
the number of years and days present in the milliseconds. The syntax is as follows:

HOURSFROMMSECS (column_reference or expression)

Use HOURSFROMMSECS to return the number of hours present in a milliseconds value as an integer value.
The number of hours is represented as the remainder of hours once the number of years and days is
removed from the milliseconds value using the YEARSFROMMSECS and DAYSFROMMSECS functions.

MINSFROMMSECS Function

The MINSFROMMSECS function takes milliseconds and returns the number of minutes as a remainder of
the number of years, days, and hours present in the milliseconds. The syntax is as follows:

MINSFROMMSECS (column reference or expression)

Use MINSFROMMSECS to return the number of minutes present in a milliseconds value as an integer
value. The number of minutes is represented as the remainder of minutes once the number of years, days,
and hours is removed from the milliseconds value using the YEARSFROMMSECS, DAYSFROMMSECS, and
HOURSFROMMSECS functions.

SECSFROMMSECS Function

The SECSFROMMSECS function takes milliseconds and returns the number of seconds as a remainder of

Page 235

SQL Reference

the number of years, days, hours, and minutes present in the milliseconds. The syntax is as follows:

SECSFROMMSECS (column reference or expression)

Use SECSFROMMSECS to return the number of seconds present in a milliseconds value as an integer
value. The number of seconds is represented as the remainder of seconds once the number of years,
days, hours, and minutes is removed from the milliseconds value using the YEARSFROMMSECS,
DAYSFROMMSECS, HOURSFROMMSECS, and MINSFROMMSECS functions.

MSECSFROMMSECS Function

The MSECSFROMMSECS function takes milliseconds and returns the number of milliseconds as a remainder
of the number of years, days, hours, minutes, and seconds present in the milliseconds. The syntax is as
follows:

MSECSFROMMSECS (column_reference or expression)

Use MSECSFROMMSECS to return the number of milliseconds present in a milliseconds value as an integer
value. The number of milliseconds is represented as the remainder of milliseconds once the number of
years, days, hours, minutes, and seconds is removed from the milliseconds value using the
YEARSFROMMSECS, DAYSFROMMSECS, HOURSFROMMSECS, MINSFROMMSECS, and SECSFROMMSECS
functions.

Page 236

SQL Reference

4.7 SELECT Statement

Introduction

The SQL SELECT statement is used to retrieve data from tables. You can use the SELECT statement to:

@ Retrieve a single row, or part of a row, from a table, referred to as a singleton select.
@ Retrieve multiple rows, or parts of rows, from a table.
@ Retrieve related rows, or parts of rows, from a join of two or more tables.

Syntax

SELECT [DISTINCT | ALL] * | column
[AS correlation_name | correlation_name], [column...]

[INTO destination table]

FROM table reference

[AS correlation name | correlation name] [EXCLUSIVE]
[[[[INNER | [LEFT | RIGHT] OUTER JOIN] table reference
[AS correlation name | correlation name] [EXCLUSIVE]

ON join condition]

[WHERE predicates]

[GROUP BY group list]

[HAVING predicates]

[[UNION | EXCEPT| INTERSECT] [ALL] [SELECT...]]
[ORDER BY order list [NOCASE]]

[TOP number of rows]

[LOCALE locale name | LOCALE CODE locale code]
[ENCRYPTED WITH password]

[NOJOINOPTIMIZE]

[JOINOPTIMIZECOSTS]
[NOWHEREJOINS]

The SELECT clause defines the list of items returned by the SELECT statement. The SELECT clause uses a
comma-separated list composed of: table columns, literal values, and column or literal values modified by
functions. You cannot use parameters in this list of items. Use an asterisk to retrieve values from all
columns. Columns in the column list for the SELECT clause may come from more than one table, but can
only come from those tables listed in the FROM clause. The FROM clause identifies the table(s) from which
data is retrieved.

The following example retrieves data for two columns in all rows of a table:

Page 237

SQL Reference

SELECT CustNo, Company
FROM Orders

You can use the AS keyword to specify a column correlation name, or alternately you can simply just
specify the column correlation name after the selected column. The following example uses both methods
to give each selected column a more descriptive name in the query result set:

SELECT Customer.CustNo AS "Customer #",

Customer.Company AS "Company Name",

Orders.OrderNo "Order #",

SUM (Items.Qty) "Total Qty"

FROM Customer LEFT OUTER JOIN Orders ON Customer.Custno=Orders.Custno
LEFT OUTER JOIN Items ON Orders.OrderNo=Items.OrderNo

WHERE Customer.Company LIKE '$%Diver$%'

GROUP BY 1,2

ORDER BY 1

Use DISTINCT to limit the retrieved data to only distinct rows. The distinctness of rows is based on the
combination of all of the columns in the SELECT clause columns list. DISTINCT can only be used with
simple column types like string and integer; it cannot be used with complex column types like blob.

INTO Clause

The INTO clause specifies a table into which the query results are generated. The syntax is as follows:

INTO destination table

Use an INTO clause to specify the table where the query results will be stored when the query has
completed execution. The following example shows how to generate all of the orders in the month of
January as a table on disk named "Results":

SELECT *
INTO "Results"
FROM "Orders"

If you do not specify a drive and directory in the destination table name, for local sessions, or a database
name in the destination table name, for remote sessions, then the destination table will be created in the
current active database for the query being executed.

The following examples show the different options for the INTO clause and their resultant destination
table names.

This example produces a destination table in the current database called "Results":

SELECT *
INTO "Results"
FROM "Orders"

Page 238

SQL Reference

This example produces a destination table called "Results" in the specified local database directory (valid

for local sessions only):

SELECT *
INTO "c:\MyData\Results"
FROM "Orders"

This example produces a destination table called "Results" in the specified database (valid for remote
sessions only):

SELECT *
INTO "\MyRemoteDB\Results"
FROM "Orders"

This example produces an in-memory destination table called "Results":

SELECT *
INTO "\Memory\Results"
FROM "Orders"

There are some important caveats when using the INTO clause:

@ The INTO clause creates the resultant table from scratch, so if a table with the same name in the
same location already exists, it will be overwritten. This also means that any indexes defined for the
table will be removed or modified, even if the result set columns match those of the existing table.

@ You must make sure that you close the query before trying to access the destination table with
another table component. If you do not an exception will be raised.

@ You must make sure to delete the table after you are done if you don't wish to leave it on disk or in-

memory for further use.

@ Remote sessions can only produce tables that are accessible from the database server and cannot
automatically create a local table from a query on the database server by specifying a local path for
the INTO clause. The path for the INTO clause must be accessible from the database server in order

for the query to be successfully executed.

@ The destination table cannot be passed to the INTO clause via a parameter.

FROM Clause
The FROM clause specifies the tables from which a SELECT statement retrieves data. The syntax is as
follows:

FROM table reference [AS] [correlation_name]

[, table reference...]

Page 239

SQL Reference

Use a FROM clause to specify the table or tables from which a SELECT statement retrieves data. The value
for a FROM clause is a comma-separated list of table names. Specified table names must follow DBISAM's
SQL naming conventions for tables. Please see the Naming Conventions topic for more information. The
following SELECT statement below retrieves data from a single table:

SELECT *
FROM "Customer"

The following SELECT statement below retrieves data from a single in-memory table:

SELECT *
FROM "\Memory\Customer"

You can use the AS keyword to specify a table correlation name, or alternately you can simply just specify
the table correlation name after the source table name. The following example uses both methods to give
each source table a shorter name to be used in qualifying source columns in the query:

SELECT c.CustNo AS "Customer #",

c.Company AS "Company Name",

0.0rderNo "Order #",

SUM(i.Qty) "Total Qty"

FROM Customer AS c¢ LEFT OUTER JOIN Orders AS o ON c.Custno=o.Custno
LEFT OUTER JOIN Items i ON o.0OrderNo=i.OrderNo

WHERE c.Company LIKE '$%Diver$'

GROUP BRY 1,2

ORDER BY 1

Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

Note
Be careful when using the EXCLUSIVE keyword with a table that is specified more than once in the
same query, as is the case with recursive relationships between a table and itself.

See the section below entitled JOIN clauses for more information on retrieving data from multiple tables in
a single SELECT query.

The table reference cannot be passed to a FROM clause via a parameter.
JOIN Clauses

There are three types of JOIN clauses that can be used in the FROM clause to perform relational joins
between source tables. The implicit join condition is always Cartesian for source tables without an explicit
JOIN clause.

Join Type Description

Page 240

SQL Reference

Cartesian Joins two tables, matching each row of one table with each
row from the other.

INNER Joins two tables, filtering out non-matching rows.

OUTER Joins two tables, retaining non-matching rows.

Cartesan Join

A Cartesian join connects two tables in a non-relational manner. The syntax is as follows:

FROM table reference, table reference [,table reference...]

Use a Cartesian join to connect the column of two tables into one result set, but without correlation
between the rows from the tables. Cartesian joins match each row of the source table with each row of
the joining table. No column comparisons are used, just simple association. If the source table has 10
rows and the joining table has 10, the result set will contain 100 rows as each row from the source table is
joined with each row from the joined table.

INNER JOIN Clause

An INNER join connects two tables based on column values common between the two, excluding non-
matches. The syntax is as follows:

FROM table reference
[INNER] JOIN table reference ON predicate
[[INNER] JOIN table reference ON predicate...]

Use an INNER JOIN to connect two tables, a source and joining table, that have values from one or more
columns in common. One or more columns from each table are compared in the ON clause for equal
values. For rows in the source table that have a match in the joining table, the data for the source table
rows and matching joining table rows are included in the result set. Rows in the source table without
matches in the joining table are excluded from the joined result set. In the following example the
Customer and Orders tables are joined based on values in the CustNo column, which each table contains:

SELECT *
FROM Customer c INNER JOIN Orders o ON (c.CustNo=o.CustNo)

More than one table may be joined with an INNER JOIN. One use of the INNER JOIN operator and
corresponding ON clause is required for each each set of two tables joined. One columns comparison
predicate in an ON clause is required for each column compared to join each two tables. The following
example joins the Customer table to Orders, and then Orders to Items. In this case, the joining table
Orders acts as a source table for the joining table Items:

SELECT *
FROM Customer c JOIN Orders o ON (c.CustNo = o.CustNo)
JOIN Items i1 ON (o0.0OrderNo = i.0OrderNo)

Page 241

SQL Reference

Tables may also be joined using a concatenation of multiple column values to produce a single value for
the join comparison predicate. In the following example the ID1 and ID2 columns in the Joining table are
concatenated and compared with the values in the single column ID in Source:

SELECT *
FROM Source s INNER JOIN Joining j ON (s.ID = j.ID1 || j.ID2)

OUTER JOIN Clause

The OUTER JOIN clause connects two tables based on column values common between the two, including
non-matches. The syntax is as follows:

FROM table reference LEFT | RIGHT [OUTER]
JOIN table reference ON predicate
[LEFT | RIGHT [OUTER] JOIN table reference ON predicate...]

Use an OUTER JOIN to connect two tables, a source and joining table, that have one or more columns in
common. One or more columns from each table are compared in the ON clause for equal values. The
primary difference between inner and outer joins is that, in outer joins rows from the source table that do
not have a match in the joining table are not excluded from the result set. Columns from the joining table
for rows in the source table without matches have NULL values.

In the following example the Customer and Orders tables are joined based on values in the CustNo
column, which each table contains. For rows from Customer that do not have a matching value between
Customer.CustNo and Orders.CustNo, the columns from Orders contain NULL values:

SELECT *
FROM Customer c¢ LEFT OUTER JOIN Orders o ON (c.CustNo = o.CustNo)

The LEFT modifier causes all rows from the table on the left of the OUTER JOIN operator to be included in
the result set, with or without matches in the table to the right. If there is no matching row from the table
on the right, its columns contain NULL values. The RIGHT modifier causes all rows from the table on the
right of the OUTER JOIN operator to be included in the result set, with or without matches. If there is no
matching row from the table on the left, its columns contain NULL values.

More than one table may be joined with an OUTER JOIN. One use of the OUTER JOIN operator and
corresponding ON clause is required for each each set of two tables joined. One column comparison
predicate in an ON clause is required for each column compared to join each two tables. The following
example joins the Customer table to the Orders table, and then Orders to Items. In this case, the joining
table Orders acts as a source table for the joining table Items:

SELECT *
FROM Customer c¢ LEFT OUTER JOIN Orders o ON (c.CustNo = o.CustNo)
LEFT OUTER JOIN Items i ON (o.0OrderNo = i.0rderNo)

Tables may also be joined using expressions to produce a single value for the join comparison predicate.

Page 242

SQL Reference

In the following example the ID1 and ID2 columns in Joining are separately compared with two values
produced by the SUBSTRING function using the single column ID in Source:

SELECT *

FROM Source s RIGHT OUTER JOIN Joining j

ON (SUBSTRING(s.ID FROM 1 FOR 2) = j.ID1) AND
(SUBSTRING (s.ID FROM 3 FOR 1) = j.ID2)

WHERE Clause

The WHERE clause specifies filtering conditions for the SELECT statement. The syntax is as follows:

WHERE predicates

Use a WHERE clause to limit the effect of a SELECT statement to a subset of rows in the table, and the
clause is optional.

The value for a WHERE clause is one or more logical expressions, or predicates, that evaluate to true or
false for each row in the table. Only those rows where the predicates evaluate to TRUE are retrieved by
the SELECT statement. For example, the SELECT statement below retrieves all rows where the State
column contains a value of 'CA":

SELECT Company, State
FROM Customer
WHERE State='CA'

A column used in the WHERE clause of a statement is not required to also appear in the SELECT clause of
that statement. In the preceding statement, the State column could be used in the WHERE clause even if
it was not also in the SELECT clause.

Multiple predicates must be separated by one of the logical operators OR or AND. Each predicate can be
negated with the NOT operator. Parentheses can be used to isolate logical comparisons and groups of
comparisons to produce different row evaluation criteria. For example, the SELECT statement below
retrieves all rows where the State column contains a value of 'CA' or a value of 'HI":

SELECT Company, State
FROM Customer
WHERE (State='CA') OR (State='HI')

Subqueries are supported in the WHERE clause. A subquery works like a search condition to restrict the
number of rows returned by the outer, or "parent" query. Such subqueries must be valid SELECT
statements. SELECT subqueries cannot be correlated in DBISAM's SQL, i.e. they cannot refer to columns in
the outer (or "parent") statement. In the following statement, the subquery is said to be un-correlated:

SELECT *
FROM "Clients" C

Page 243

SQL Reference

WHERE C.Acct Nbr IN
(SELECT H.Acct Nbr
FROM "Holdings" H
WHERE H.Pur Date BETWEEN '1994-01-01' AND '1994-12-31")

Note
Column correlation names cannot be used in filter comparisons in the WHERE clause. Use the actual
column name instead.

A WHERE clause filters data prior to the aggregation of a GROUP BY clause. For filtering based on
aggregated values, use a HAVING clause.

Columns devoid of data contain NULL values. To filter using such column values, use the IS NULL
predicate.

GROUP BY Clause

The GROUP BY clause combines rows with column values in common into single rows for the SELECT
statement. The syntax is as follows:

GROUP BY column reference [, column reference...]

Use a GROUP BY clause to cause an aggregation process to be repeated once for each group of similar
rows. Similarity between rows is determined by the distinct values (or combination of values) in the
columns specified in the GROUP BY. For instance, a query with a SUM function produces a result set with a
single row with the total of all the values for the column used in the SUM function. But when a GROUP BY
clause is added, the SUM function performs its summing action once for each group of rows. In statements
that support a GROUP BY clause, the use of a GROUP BY clause is optional. A GROUP BY clause becomes
necessary when both aggregated and non-aggregated columns are included in the same SELECT
statement.

In the statement below, the SUM function produces one subtotal of the ItemsTotal column for each
distinct value in the CustNo column (i.e., one subtotal for each different customer):

SELECT CustNo, SUM(ItemsTotal)
FROM Orders
GROUP BY CustNo

The value for the GROUP BY clause is a comma-separated list of columns. Each column in this list must
meet the following criteria:

@ Be in one of the tables specified in the FROM clause of the query.

@ Also be in the SELECT clause of the query.

@ Cannot have an aggregate function applied to it (in the SELECT clause).
= Cannot be a BLOB column.

When a GROUP BY clause is used, all table columns in the SELECT clause of the query must meet at least
one of the following criteria, or it cannot be included in the SELECT clause:

Page 244

SQL Reference

= Be in the GROUP BY clause of the query.
= Be the subject of an aggregate function.

Literal values in the SELECT clause are not subject to the preceding criteria and are not required to be in
the GROUP BY clause in addition to the SELECT clause.

The distinctness of rows is based on the columns in the column list specified. All rows with the same
values in these columns are combined into a single row (or logical group). Columns that are the subject of
an aggregate function have their values across all rows in the group combined. All columns not the subject
of an aggregate function retain their value and serve to distinctly identify the group. For example, in the
SELECT statement below, the values in the Sales column are aggregated (totalled) into groups based on
distinct values in the Company column. This produces total sales for each company:

SELECT C.Company, SUM(O.ItemsTotal) AS TotalSales
FROM Customer C, Orders O

WHERE C.CustNo=0.CustNo

GROUP BY C.Company

ORDER BY C.Company

A column may be referenced in a GROUP BY clause by a column correlation name, instead of actual
column names. The statement below forms groups using the first column, Company, represented by the
column correlation name Co:

SELECT C.Company Co, SUM(O.ItemsTotal) AS TotalSales
FROM Customer C, Orders O

WHERE C.CustNo=0.CustNo

GROUP BY Co

ORDER BY 1

HAVING Clause

The HAVING clause specifies filtering conditions for a SELECT statement. The syntax is as follows:

HAVING predicates

Use a HAVING clause to limit the rows retrieved by a SELECT statement to a subset of rows where
aggregated column values meet the specified criteria. A HAVING clause can only be used in a SELECT
statement when:

@ The statement also has a GROUP BY clause.
@ One or more columns are the subjects of aggregate functions.

The value for a HAVING clause is one or more logical expressions, or predicates, that evaluate to true or
false for each aggregate row retrieved from the table. Only those rows where the predicates evaluate to
true are retrieved by a SELECT statement. For example, the SELECT statement below retrieves all rows
where the total sales for individual companies exceed $1,000:

SELECT Company, SUM(sales) AS TotalSales

Page 245

SQL Reference

FROM Sales1998

GROUP BY Company

HAVING (SUM(sales) >= 1000)
ORDER BY Company

Multiple predicates must be separated by one of the logical operators OR or AND. Each predicate can be
negated with the NOT operator. Parentheses can be used to isolate logical comparisons and groups of
comparisons to produce different row evaluation criteria.

A SELECT statement can include both a WHERE clause and a HAVING clause. The WHERE clause filters the
data to be aggregated, using columns not the subject of aggregate functions. The HAVING clause then
further filters the data after the aggregation, using columns that are the subject of aggregate functions.
The SELECT query below performs the same operation as that above, but data limited to those rows
where the State column is 'CA":

SELECT Company, SUM(sales) AS TotalSales
FROM Sales1998

WHERE (State = 'CA')

GROUP BY Company

HAVING (TOTALSALES >= 1000)

ORDER BY Company

A HAVING clause filters data after the aggregation of a GROUP BY clause. For filtering based on row
values prior to aggregation, use a WHERE clause.

UNION, EXCEPT, or INTERSECT Clause

The UNION clause concatenates the rows of one query result set to the end of another query result set
and returns the resultant rows. The EXCEPT clause returns all of the rows from one query result set that
are not present in another query result set. The INTERSECT clause returns all of the rows from one query
result set that are also present in another query result set. The syntax is as follows:

[[UNION | EXCEPT| INTERSECT] [ALL] [SELECT...]]

The SELECT statement for the source and destination query result sets must include the same number of
columns for them to be UNION/EXCEPT/INTERSECT-compatible. The source table structures themselve
need not be the same as long as those columns included in the SELECT statements are:

SELECT CustNo, Company

FROM Customers

EXCEPT

SELECT 0OldCustNo, OldCompany
FROM Old Customers

The data types for all columns retrieved by the UNION/EXCEPT/INTERSECT across the multiple query
result sets must be identical. If there is a data type difference between two query result sets for a given
column, an error will occur. The following query shows how to handle such a case to avoid an error:

Page 246

SQL Reference

SELECT S.ID, CAST(S.DateiField AS TIMESTAMP)
FROM Source S

UNION ALL

SELECT J.ID, J.Timestamp_Field

FROM Joiner J

Matching names is not mandatory for result set columns retrieved by the UNION/EXCEPT/INTERSECT
across the multiple query result sets. Column name differences between the multiple query result sets are
automatically handled. If a column in two query result sets has a different name, the column in the
UNION/EXCEPT/INTERSECTed result set will use the column name from the first SELECT statement.

By default, non-distinct rows are aggregated into single rows in a UNION/EXCEPT/INTERSECT join. Use
ALL to retain non-distinct rows.

Note

When using the EXCEPT or INTERSECT clauses with the ALL keyword, the resultant rows will reflect
the total counts of duplicate matching rows in both query result sets. For example, if using EXCEPT
ALL with a query result set that has two 'A' rows and a query result set that has 1 'A’ row, the result
set will contain 1 'A’ row (1 matching out of the 2). The same is true with INTERSECT. If using
INTERSECT ALL with a query result set that has three 'A' rows and a query result set that has 2 'A'
rows, the result set will contain 2 'A' rows (2 matching out of the 3).

To join two query result sets with UNION/EXCEPT/INTERSECT where one query does not have a column
included by another, a compatible literal or expression may be used instead in the SELECT statement
missing the column. For example, if there is no column in the Joining table corresponding to the Name
column in Source an expression is used to provide a value for a pseudo Joining.Name column. Assuming
Source.Name is of type CHAR(10), the CAST function is used to convert an empty character string to
CHAR(10):

SELECT S.ID, S.Name

FROM Source S

INTERSECT

SELECT J.ID, CAST('' AS CHAR(10))
FROM Joiner J

If using an ORDER BY or TOP clause, these clauses must be specified after the last SELECT statement
being joined with a UNION/EXCEPT/INTERSECT clause. The WHERE, GROUP BY, HAVING, LOCALE,
ENCRYPTED, NOJOINOPTIMIZE, JOINOPTIMIZECOSTS, and NOWHEREJOINS clauses can be specified for
all or some of the individual SELECT statements being joined with a UNION/EXCEPT/INTERSECT clause.
The INTO clause can only be specified for the first SELECT statement in the list of unioned SELECT
statements. The following example shows how you could join two SELECT statements with a UNION clause
and order the final joined result set:

SELECT CustNo, Company
FROM Customers

UNION

SELECT OldCustNo, Company
FROM Old Customers

ORDER BY CustNo

Page 247

SQL Reference

When referring to actual column names in the ORDER BY clause you must use the column name of the
first SELECT statement being joined with the UNION/EXCEPT/INTERSECT clause.

ORDER BY Clause

The ORDER BY clause sorts the rows retrieved by a SELECT statement. The syntax is as follows:

ORDER BY column reference [ASC|DESC]
[, column reference...[ASC|DESC]] [NOCASE]

Use an ORDER BY clause to sort the rows retrieved by a SELECT statement based on the values from one
or more columns. In SELECT statements, use of this clause is optional.

The value for the ORDER BY clause is a comma-separated list of column names. The columns in this list
must also be in the SELECT clause of the query statement. Columns in the ORDER BY list can be from one
or multiple tables. If the columns used for an ORDER BY clause come from multiple tables, the tables must
all be those that are part of a join. They cannot be a table included in the statement only through a
SELECT subquery.

BLOB columns cannot be used in the ORDER BY clause.

A column may be specified in an ORDER BY clause using a number representing the relative position of
the column in the SELECT of the statement. Column correlation names can also be used in an ORDER BY
clause columns list. Calculations cannot be used directly in an ORDER BY clause. Instead, assign a column
correlation name to the calculation and use that name in the ORDER BY clause.

Use ASC (or ASCENDING) to force the sort to be in ascending order (smallest to largest), or DESC (or
DESCENDING) for a descending sort order (largest to smallest). When not specified, ASC is the implied
default.

Use NOCASE to force the sort to be case-insensitive. This is also useful for allowing a live result set when
an index is available that matches the ORDER BY clause but is marked as case-insensitive. When not
specified, case-sensitive is the implied default.

The statement below sorts the result set ascending by the year extracted from the LastInvoiceDate
column, then descending by the State column, and then ascending by the uppercase conversion of the
Company column:

SELECT EXTRACT (YEAR FROM LastInvoiceDate) AS YY,
State,

UPPER (Company)

FROM Customer

ORDER BY YY DESC, State ASC, 3

TOP Clause

The TOP clause cause the query to only return the top N number of rows, respecting any GROUP BY,
HAVING, or ORDER BY clauses. The syntax is as follows:

Page 248

SQL Reference

TOP number of rows

Use a TOP clause to only extract a certain number of rows in a SELECT statement, based upon any GROUP
BY, HAVING, or ORDER BY clauses. The rows that are selected start at the logical top of the result set and
proceed to the total number of rows matching the TOP clause. In SELECT statements, use of the clause is

optional.

LOCALE Clause

Use a LOCALE clause to set the locale of a result set created by a canned query (not live). The syntax is:

LOCALE locale name | LOCALE CODE locale code

If this clause is not used, the default locale of any canned result set is based upon the locale of the first
table in the FROM clause of the SELECT statement. A list of locales and their IDs can be retrieved via the
TDBISAMENgine GetLocaleNames method.

ENCRYPTED WITH Clause

The ENCRYPTED WITH clause causes a SELECT statement that returns a canned result set to encrypt the
temporary table on disk used for the result set with the specified password. The syntax is as follows:

ENCRYPTED WITH password

Use an ENCRYPTED WITH clause to force the temporary table created by a SELECT statement that returns
a canned result set to be encrypted with the specified password. This clause can also be used to encrypt
the contents of a table created by a SELECT statement that uses the INTO clause.

NOJOINOPTIMIZE Clause

The NOJOINOPTIMIZE clause causes all join re-ordering to be turned off for a SELECT statement. The
syntax is as follows:

NOJOINOPTIMIZE

Use a NOJOINOPTIMIZE clause to force the query optimizer to stop re-ordering joins for a SELECT
statement. In certain rare cases the query optimizer might not have enough information to know that re-
ordering the joins will result in worse performance than if the joins were left in their original order, so in
such cases you can include this clause to force the query optimizer to not perform the join re-ordering.

JOINOPTIMIZECOSTS Clause

The JOINOPTIMIZECOSTS clause causes the optimizer to take into account I/O costs when optimizing join
expressions. The syntax is as follows:

Page 249

SQL Reference

JOINOPTIMIZECOSTS

Use a JOINOPTIMIZECOSTS clause to force the query optimizer to use I/O cost projections to determine
the most efficient way to process the conditions in a join expression. If you have a join expression with
multiple conditions in it, then using this clause may help improve the performance of the join expression,
especially if it is already executing very slowly.

NOWHEREJOINS Clause

The NOWHEREJOINS clause causes the optimizer to treat any join expressions in the WHERE clause (SQL-
89-style joins) as normal, un-optimized expressions instead of inner joins. The syntax is as follows:

NOWHEREJOINS

Use a NOWHEREJOINS clause to force the query optimizer to treat any joins in the WHERE clause as
normal, un-optimized expressions instead of inner joins. This is very useful when you need the conditions
for filtering the results, but do not want to treat them as inner joins because they exhibit a low cardinality
(there are lot of matching values). Join conditions with a low cardinality can be slow because they cause a
lot of overhead in processing the sets of rows in the DBISAM engine.

Page 250

SQL Reference

4.8 INSERT Statement

Introduction
The SQL INSERT statement is used to add one or more new rows of data in a table.

Syntax

INSERT INTO table reference
[AS correlation name | correlation name] [EXCLUSIVE]

[(columns list)]
VALUES (update values) | SELECT statement

[COMMIT [INTERVAL commit interval] [FLUSH]]

Use the INSERT statement to add new rows of data to a single table. Use a table reference in the INTO
clause to specify the table to receive the incoming data. Use the EXCLUSIVE keyword to specify that the
table should be opened exclusively.

The columns list is a comma-separated list, enclosed in parentheses, of columns in the table and is
optional. The VALUES clause is a comma-separated list of update values, enclosed in parentheses. Unless
the source of new rows is a SELECT subquery, the VALUES clause is required and the number of update
values in the VALUES clause must match the number of columns in the columns list exactly.

If no columns list is specified, incoming update values are stored in fields as they are defined sequentially
in the table structure. Update values are applied to columns in the order the update values are listed in
the VALUES clause. The number of update values must match the number of columns in the table exactly.
The following example inserts a single row into the Holdings table:

INSERT INTO Holdings
VALUES (4094095, "INPR',5000,10.500,'1998-01-02")

If an explicit columns list is stated, incoming update values (in the order they appear in the VALUES
clause) are stored in the listed columns (in the order they appear in the columns list). NULL values are
stored in any columns that are not in a columns list. When a columns list is explicitly described, there must
be exactly the same number of update values in the VALUES clause as there are columns in the list.

The following example inserts a single row into the Customer table, adding data for only two of the
columns in the table:

INSERT INTO "Customer" (CustNo, Company)
VALUES (9842, 'Elevate Software, Inc.')

To add rows to one table that are retrieved from another table, omit the VALUES keyword and use a

Page 251

SQL Reference

subquery as the source for the new rows:

INSERT INTO "Customer" (CustNo, Company)
SELECT CustNo, Company
FROM "OldCustomer"

The INSERT statement only supports SELECT subqueries in the VALUES clause. References to tables other
than the one to which rows are added or columns in such tables are only possible in SELECT subqueries.

The INSERT statement can use a single SELECT statement as the source for the new rows, but not
multiple statements joined with UNION.

COMMIT Clause

The COMMIT clause is used to control how often DBISAM will commit a transaction while the INSERT
statement is executing and/or whether the commit operation performs an operating system flush to disk.
The INSERT statement implicitly uses a transaction if one is not already active. The default interval at
which the implicit transaction is committed is based upon the record size of the table being updated in the
query and the amount of buffer space available in DBISAM. The COMMIT INTERVAL clause is used to
manually control the interval at which the transaction is committed based upon the number of rows
inserted, and applies in both situations where a transaction was explicitly started by the application and
where the transaction was implicitly started by DBISAM. In the case where a transaction was explicitly
started by the application, the absence of a COMMIT INTERVAL clause in the SQL statement being
executed will force DBISAM to never commit any of the effects of the SQL statement and leaves this up to
the application to handle after the SQL statement completes. The syntax is as follows:

COMMIT [INTERVAL nnnn] [FLUSH]

The INTERVAL keyword is optional, allowing the application to use the default commit interval but still
specify the FLUSH keyword to indicate that it wishes to have the transaction commits flushed to disk at the
operating system level. Please see the Transactions and Buffering and Caching topics for more
information.

Please see the Updating Tables and Query Result Sets topic for more information on adding records to a
table.

Page 252

SQL Reference

4.9 UPDATE Statement

Introduction
The SQL UPDATE statement is used to modify one or more existing rows in a table.

Syntax

UPDATE table reference
[AS correlation name | correlation name] [EXCLUSIVE]

SET column ref = update value
[, column ref = update value...]

[FROM table reference

[AS correlation name | correlation name] [EXCLUSIVE]
[[INNER | [LEFT | RIGHT] OUTER JOIN] tableireference
[AS correlation name | correlation name] [EXCLUSIVE] ON join condition]

[WHERE predicates]
[COMMIT [INTERVAL commit interval] [FLUSH]]
[NOJOINOPTIMIZE]

[JOINOPTIMIZECOSTS]
[NOWHEREJOINS]

Use the UPDATE statement to modify one or more column values in one or more existing rows in a single
table per statement. Use a table reference in the UPDATE clause to specify the table to receive the data
changes. Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

SET Clause

The SET clause is a comma-separated list of update expressions for the UPDATE statement. The syntax is
as follows:

SET column ref = update value
[, column ref = update value...]

Each expression comprises the name of a column, the assignment operator (=), and the update value for
that column. The update values in any one update expression may be literal values or calculated values.

FROM and JOIN Clauses

You may use an optional FROM clause with additional JOIN clauses to specify multiple tables from which
an UPDATE statement retrieves data for the purpose of updating the target table. The value for a FROM
clause is a comma-separated list of table names, with the first table exactly matching the table name
specified after the UPDATE clause. Specified table names must follow DBISAM's SQL naming conventions

Page 253

SQL Reference

for tables. Please see the Naming Conventions topic for more information. The following UPDATE
statement below updates data in one table based upon a LEFT OUTER JOIN condition to another table:

UPDATE orders SET ShipToContact=Customer.Contact
FROM orders LEFT OUTER JOIN customer
ON customer.custno=orders.custno

Note
The orders table must be specified twice - once after the UPDATE clause and again as the first table
in the FROM clause.

You can use the AS keyword to specify a table correlation name, or alternately you can simply just specify
the table correlation name after the source table name. The following example uses the second method to
give each source table a shorter name to be used in qualifying source columns in the query:

UPDATE orders o SET ShipToContact=c.Contact
FROM orders o LEFT OUTER JOIN customer c
ON c.custno=o.custno

Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

Note
Be careful when using the EXCLUSIVE keyword with a table that is specified more than once in the
same query, as is the case with recursive relationships between a table and itself.

The table reference cannot be passed to a FROM clause via a parameter. Please see the SELECT
Statement topic for more information.

WHERE Clause

The WHERE clause specifies filtering conditions for the UPDATE statement. The syntax is as follows:

WHERE predicates

Use a WHERE clause to limit the effect of a UPDATE statement to a subset of rows in the table, and the
clause is optional.

The value for a WHERE clause is one or more logical expressions, or predicates, that evaluate to TRUE or
FALSE for each row in the table. Only those rows where the predicates evaluate to TRUE are modified by

an UPDATE statement. For example, the UPDATE statement below modifies all rows where the State
column contains a value of 'CA":

UPDATE SalesInfo

Page 254

SQL Reference

SET TaxRate=0.0825
WHERE (State='CA')

Subqueries are supported in the WHERE clause. A subquery works like a search condition to restrict the
number of rows updated by the outer, or "parent" query. Such subqueries must be valid SELECT
statements. SELECT subqueries cannot be correlated in DBISAM's SQL, i.e. they cannot refer to columns in
the outer (or "parent") statement.

Column correlation names cannot be used in filter comparisons in the WHERE clause. Use the actual
column name.

Columns devoid of data contain NULL values. To filter using such column values, use the IS NULL
predicate.

The UPDATE statement may reference any table that is specified in the UPDATE, FROM, or JOIN clauses in
the WHERE clause.

COMMIT Clause

The COMMIT clause is used to control how often DBISAM will commit a transaction while the UPDATE
statement is executing and/or whether the commit operation performs an operating system flush to disk.
The UPDATE statement implicitly uses a transaction if one is not already active. The default interval at
which the implicit transaction is committed is based upon the record size of the table being updated in the
query and the amount of buffer space available in DBISAM. The COMMIT INTERVAL clause is used to
manually control the interval at which the transaction is committed based upon the number of rows
updated, and applies in both situations where a transaction was explicitly started by the application and
where the transaction was implicitly started by DBISAM. In the case where a transaction was explicitly
started by the application, the absence of a COMMIT INTERVAL clause in the SQL statement being
executed will force DBISAM to never commit any of the effects of the SQL statement and leaves this up to
the application to handle after the SQL statement completes. The syntax is as follows:

COMMIT [INTERVAL nnnn] [FLUSH]

The INTERVAL keyword is optional, allowing the application to use the default commit interval but still
specify the FLUSH keyword to indicate that it wishes to have the transaction commits flushed to disk at the
operating system level. Please see the Transactions and Buffering and Caching topics for more
information.

NOJOINOPTIMIZE Clause

The NOJOINOPTIMIZE clause causes all join re-ordering to be turned off for a SELECT statement. The
syntax is as follows:

NOJOINOPTIMIZE

Use a NOJOINOPTIMIZE clause to force the query optimizer to stop re-ordering joins for a SELECT
statement. In certain rare cases the query optimizer might not have enough information to know that re-
ordering the joins will result in worse performance than if the joins were left in their original order, so in
such cases you can include this clause to force the query optimizer to not perform the join re-ordering.

Page 255

SQL Reference

JOINOPTIMIZECOSTS Clause

The JOINOPTIMIZECOSTS clause causes the optimizer to take into account I/O costs when optimizing join
expressions. The syntax is as follows:

JOINOPTIMIZECOSTS

Use a JOINOPTIMIZECOSTS clause to force the query optimizer to use I/O cost projections to determine
the most efficient way to process the conditions in a join expression. If you have a join expression with
multiple conditions in it, then using this clause may help improve the performance of the join expression,
especially if it is already executing very slowly.

Please see the Updating Tables and Query Result Sets topic for more information on updating records in a
table.

NOWHEREJOINS Clause

The NOWHEREJOINS clause causes the optimizer to treat any join expressions in the WHERE clause (SQL-
89-style joins) as normal, un-optimized expressions instead of inner joins. The syntax is as follows:

NOWHEREJOINS

Use a NOWHEREJOINS clause to force the query optimizer to treat any joins in the WHERE clause as
normal, un-optimized expressions instead of inner joins. This is very useful when you need the conditions
for filtering the results, but do not want to treat them as inner joins because they exhibit a low cardinality
(there are lot of matching values). Join conditions with a low cardinality can be slow because they cause a
lot of overhead in processing the sets of rows in the DBISAM engine.

Page 256

SQL Reference

4.10 DELETE Statement

Introduction
The SQL DELETE statement is used to delete one or more rows from a table.

Syntax

DELETE FROM table reference

[AS correlation name | correlation name] [EXCLUSIVE]
[[INNER | [LEFT | RIGHT] OUTER JOIN] table reference
[AS correlation name | correlation name] [EXCLUSIVE] ON join condition]

[WHERE predicates]
[COMMIT [INTERVAL commit interval] FLUSH]
[NOJOINOPTIMIZE]

[JOINOPTIMIZECOSTS]
[NOWHEREJOINS]

Use DELETE to delete one or more rows from one existing table per statement.
FROM Clause

The FROM clause specifies the table to use for the DELETE statement. The syntax is as follows:

FROM table reference
[AS correlation name | correlation name] [EXCLUSIVE]

Specified table names must follow DBISAM's SQL naming conventions for tables. Please see the Naming
Conventions topic for more information.

Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

Note
Be careful when using the EXCLUSIVE keyword with a table that is specified more than once in the
same query, as is the case with recursive relationships between a table and itself.

JOIN Clauses

You may use optional JOIN clauses to specify multiple tables from which a DELETE statement retrieves
data for the purpose of deleting records in the target table. The following DELETE statement below deletes
data in one table based upon an INNER JOIN condition to another table:

Page 257

SQL Reference

DELETE FROM orders
INNER JOIN customer ON customer.custno=orders.custno
WHERE customer.country='Bermuda'

You can use the AS keyword to specify a table correlation name, or alternately you can simply just specify
the table correlation name after the source table name. The following example uses the second method to
give each source table a shorter name to be used in qualifying source columns in the query:

DELETE FROM orders o
INNER JOIN customer c ON c.custno=o.custno
WHERE c.country='Bermuda'

Please see the SELECT Statement topic for more information.

WHERE Clause

The WHERE clause specifies filtering conditions for the DELETE statement. The syntax is as follows:

WHERE predicates

Use a WHERE clause to limit the effect of a DELETE statement to a subset of rows in the table, and the
clause is optional.

The value for a WHERE clause is one or more logical expressions, or predicates, that evaluate to TRUE or
FALSE for each row in the table. Only those rows where the predicates evaluate to TRUE are deleted by a
DELETE statement. For example, the DELETE statement below deletes all rows where the State column
contains a value of 'CA":

DELETE FROM SalesInfo
WHERE (State='CA')

Multiple predicates must be separated by one of the logical operators OR or AND. Each predicate can be
negated with the NOT operator. Parentheses can be used to isolate logical comparisons and groups of
comparisons to produce different row evaluation criteria.

Subqueries are supported in the WHERE clause. A subquery works like a search condition to restrict the
number of rows deleted by the outer, or "parent" query. Such subqueries must be valid SELECT
statements. SELECT subqueries cannot be correlated in DBISAM's SQL, i.e. they cannot refer to columns in
the outer (or "parent") statement.

Column correlation names cannot be used in filter comparisons in the WHERE clause. Use the actual
column name.

Columns devoid of data contain NULL values. To filter using such column values, use the IS NULL
predicate.

The DELETE statement may reference any table that is specified in the FROM, or JOIN clauses in the
WHERE clause.

Page 258

SQL Reference

COMMIT Clause

The COMMIT clause is used to control how often DBISAM will commit a transaction while the DELETE
statement is executing and/or whether the commit operation performs an operating system flush to disk.
The DELETE statement implicitly uses a transaction if one is not already active. The default interval at
which the implicit transaction is committed is based upon the record size of the table being updated in the
query and the amount of buffer space available in DBISAM. The COMMIT INTERVAL clause is used to
manually control the interval at which the transaction is committed based upon the number of rows
deleted, and applies in both situations where a transaction was explicitly started by the application and
where the transaction was implicitly started by DBISAM. In the case where a transaction was explicitly
started by the application, the absence of a COMMIT INTERVAL clause in the SQL statement being
executed will force DBISAM to never commit any of the effects of the SQL statement and leaves this up to
the application to handle after the SQL statement completes. The syntax is as follows:

COMMIT [INTERVAL nnnn] [FLUSH]

The INTERVAL keyword is optional, allowing the application to use the default commit interval but still
specify the FLUSH keyword to indicate that it wishes to have the transaction commits flushed to disk at the
operating system level. Please see the Transactions and Buffering and Caching topics for more
information.

NOJOINOPTIMIZE Clause

The NOJOINOPTIMIZE clause causes all join re-ordering to be turned off for a SELECT statement. The
syntax is as follows:

NOJOINOPTIMIZE

Use a NOJOINOPTIMIZE clause to force the query optimizer to stop re-ordering joins for a SELECT
statement. In certain rare cases the query optimizer might not have enough information to know that re-
ordering the joins will result in worse performance than if the joins were left in their original order, so in
such cases you can include this clause to force the query optimizer to not perform the join re-ordering.

JOINOPTIMIZECOSTS Clause

The JOINOPTIMIZECOSTS clause causes the optimizer to take into account I/O costs when optimizing join
expressions. The syntax is as follows:

JOINOPTIMIZECOSTS

Use a JOINOPTIMIZECOSTS clause to force the query optimizer to use I/O cost projections to determine
the most efficient way to process the conditions in a join expression. If you have a join expression with
multiple conditions in it, then using this clause may help improve the performance of the join expression,
especially if it is already executing very slowly.

Please see the Updating Tables and Query Result Sets topic for more information on deleting records in a
table.

Page 259

SQL Reference

NOWHEREJOINS Clause

The NOWHEREJOINS clause causes the optimizer to treat any join expressions in the WHERE clause (SQL-
89-style joins) as normal, un-optimized expressions instead of inner joins. The syntax is as follows:

NOWHEREJOINS

Use a NOWHEREJOINS clause to force the query optimizer to treat any joins in the WHERE clause as
normal, un-optimized expressions instead of inner joins. This is very useful when you need the conditions
for filtering the results, but do not want to treat them as inner joins because they exhibit a low cardinality
(there are lot of matching values). Join conditions with a low cardinality can be slow because they cause a
lot of overhead in processing the sets of rows in the DBISAM engine.

Page 260

SQL Reference

4.11 CREATE TABLE Statement

Introduction

The SQL CREATE TABLE statement is used to create a table.

Syntax

CREATE TABLE [IF NOT EXISTS] table reference

column name data type [dimensions]
[DESCRIPTION column description]
[NULLABLE] [NOT NULL]

[DEFAULT default value]

[MIN | MINIMUM minimum value]

[MAX | MAXIMUM maximum value]
[CHARCASE UPPER | LOWER | NOCHANGE]
[COMPRESS 0..9]

[, column name...]

[, [CONSTRAINT constraint_name}

[UNIQUE] [NOCASE]

PRIMARY KEY (columniname [[ASC |ASCENDING] | [DESC | DESCENDING]]
[, column name...])

[COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]
[NOKEYSTATS]

[TEXT INDEX (column name, [column name])]
[STOP WORDS space-separated list of words]
[SPACE CHARS list of characters]

[INCLUDE CHARS list of characters]
[DESCRIPTION table description]

[INDEX PAGE SIZE index page size]
[BLOB BLOCK SIZE BLOB_block_size]

[LOCALE locale name | LOCALE CODE locale code]
[ENCRYPTED WITH password]

[USER MAJOR VERSION user-defined major version]
[USER MINOR VERSION user—defined_minor_version]

[LAST AUTOINC last autoinc value]
)

Use the CREATE TABLE statement to create a table, define its columns, and define a primary key
constraint.

The specified table name must follow DBISAM's SQL naming conventions for tables. Please see the

Page 261

SQL Reference

Naming Conventions topic for more information.

Column Definitions

The syntax for defining a column is as follows:

column name data type [dimensions]

[DESCRIPTION column description]

[NULLABLE] [NOT NULL]

[DEFAULT default value]

[MIN or MINIMUM minimum value] [MAX or MAXIMUM maximum value]
[CHARCASE UPPER | LOWER | NOCHANGE]

[COMPRESS 0..9]

Column definitions consist of a comma-separated list of combinations of column name, data type and (if
applicable) dimensions, and optionally their description, allowance of NULL values, default value, minimum
and maximum values, character-casing, and compression level (for BLOB columns). The list of column
definitions must be enclosed in parentheses. The number and type of dimensions that must be specified
varies with column type. Please see the Data Types and NULL Support topic for more information.

DESCRIPTION Clause

The DESCRIPTION clause specifies the description for the column. The syntax is as follows:

DESCRIPTION column description

The description must be enclosed in single or double quotes and can be any value up to 50 characters in
length.

NULLABLE and NOT NULL Clauses

The NULLABLE clause specifies that the column is not required and can be NULL. The NOT NULL clause
specifies that the column is required and cannot be NULL. The syntax is as follows:

NULLABLE

NOT NULL

DEFAULT Clause

The DEFAULT clause specifies the default value for the column. The syntax is as follows:

DEFAULT default value

Page 262

SQL Reference

The default value must be a value that matches the data type of the column being defined. Also, the value
must be expressed in ANSI/ISO format if it is a date, time, timestamp, or number. Please see the Naming
Conventions topic for more information.

MINIMUM Clause

The MINIMUM clause specifies the minimum value for the column. The syntax is as follows:

MIN | MINIMUM minimum value

The minimum value must be a value that matches the data type of the column being defined. Also, the
value must be expressed in ANSI/ISO format if it is a date, time, timestamp, or number. Please see the
Naming Conventions topic for more information.

MAXIMUM Clause

The MAXIMUM clause specifies the maximum value for the column. The syntax is as follows:

MAX | MAXIMUM maximum value

The maximum value must be a value that matches the data type of the column being defined. Also, the
value must be expressed in ANSI/ISO format if it is a date, time, timestamp, or number. Please see the
Naming Conventions topic for more information.

CHARCASE Clause

The CHARCASE clause specifies the character-casing for the column. The syntax is as follows:

CHARCASE UPPER | LOWER | NOCHANGE

If the UPPER keyword is used, then all data values in this column will be upper-cased. If the LOWER
keyword is used, then all data values in this column will be lower-cased. If the NOCHANGE keyword is
used, then all data values for this column will be left in their original form. This clause only applies to
string columns and is ignored for all others.

The following statement creates a table with columns that include descriptions and default values:

CREATE TABLE employee

(
Last Name CHAR(20) DESCRIPTION 'Last Name',
First Name CHAR(15) DESCRIPTION 'First Name',
HireiDate DATE DESCRIPTION 'Hire Date' DEFAULT CURRENT DATE
Salary NUMERIC(10,2) DESCRIPTION 'Salary' DEFAULT 0.00,
Dept No SMALLINT DESCRIPTION 'Dept #',
PRIMARY KEY (Last_Name, First_Name)

Page 263

SQL Reference

Primary Index Definition

Use the PRIMARY KEY (or CONSTRAINT) clause to create a primary index for the new table. The syntax is
as follows:

[, [CONSTRAINT constraint name]

[UNIQUE] [NOCASE]

PRIMARY KEY (Columniname [[ASC |ASCENDING] | [DESC | DESCENDING]]
[, column name...])

[COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]

[NOKEYSTATS]

The columns that make up the primary index must be specified. The UNIQUE flag is completely optional
and is ignored since primary indexes are always unique. The alternate CONSTRAINT syntax is also
completely optional and ignored.

A primary index definition can optionally specify that the index is case-insensitive and the compression
used for the index.

NOCASE Clause

The NOCASE clause specifies the that the primary index should be sorted in case-insensitive order as
opposed to the default of case-sensitive order. The syntax is as follows:

NOCASE

Columns Clause

The columns clause specifies a comma-separated list of columns that make up the primary index, and
optionally whether the columns should be sorted in ascending (default) or descending order. The syntax is
as follows:

PRIMARY KEY (columniname [[ASC |ASCENDING] | [DESC | DESCENDING]]
[, column name...])

The column names specified here must conform to the column naming conventions for DBISAM's SQL and
must have been defined earlier in the CREATE TABLE statement. Please see the Naming Conventions topic
for more information.

COMPRESS Clause

The COMPRESS clause specifies the type of index key compression to use for the primary index. The
syntax is as follows:

COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE

Page 264

SQL Reference

The DUPBYTE keyword specifies that duplicate-byte index key compression will be used, the TRAILBYTE
keyword specifies that trailing-byte index key compression will be used, and the FULL keyword specifies
that both duplicate-byte and trailing-byte index key compression will be used. The default index key
compression is NONE. Please see the Index Compression topic for more information.

NOKEYSTATS Clause

The NOKEYSTATS clause specifies that the index being defined should not contain any statistics.. The
syntax is as follows:

NOKEYSTATS

Under most circumstances you should not specify this clause. Not using the index statistics is only useful
for very large tables where insert/update/delete performance is very important, and where it is acceptable
to not have logical record numbers or statistics for optimizing filters and queries.

The following statement creates a table with a primary index on the Last_Name and First_Name columns
that is case-insensitive and uses full index key compression:

CREATE TABLE employee

(
Last Name CHAR(20) DESCRIPTION 'Last Name',
First Name CHAR(15) DESCRIPTION 'First Name',
HireiDate DATE DESCRIPTION 'Hire Date' DEFAULT CURRENT DATE
Salary NUMERIC(10,2) DESCRIPTION 'Salary' DEFAULT 0.00,
Dept No SMALLINT DESCRIPTION 'Dept #',
NOCASE PRIMARY KEY (LastiName, FirstiName) COMPRESS FULL

Note
Primary indexes are the only form of constraint that can be defined with CREATE TABLE.

Full Text Indexes Definitions

Use the TEXT INDEX, STOP WORDS, SPACE CHARS, and INCLUDE CHARS clauses (in that order) to create
a full text indexes for the new table. The syntax is as follows:

TEXT INDEX (column name, [column name])
STOP WORDS space-separated list of words
SPACE CHARS list of characters

INCLUDE CHARS 1list of characters

The TEXT INDEX clause is required and consists of a comma-separated list of columns that should be full
text indexed. The column names specified here must conform to the column naming conventions for
DBISAM's SQL and must have been defined earlier in the CREATE TABLE statement. Please see the

Page 265

SQL Reference

Naming Conventions topic for more information.

The STOP WORDS clause is optional and consists of a space-separated list of words as a string that specify
the stop words used for the full text indexes.

The SPACE CHARS and INCLUDE CHARS clauses are optional and consist of a set of characters as a string
that specify the space and include characters used for the full text indexes.

For more information on how these clauses work, please see the Full Text Indexing topic.
Table Description

Use the DESCRIPTION clause to specify a description for the table. The syntax is as follows:

DESCRIPTION table description

The description is optional and should be specified as a string.
Table Index Page Size

Use the INDEX PAGE SIZE clause to specify the index page size for the table. The syntax is as follows:

INDEX PAGE SIZE index page size

The index page size is optional and should be specified as an integer. Please see Appendix C - System
Capacities for more information on the minimum and maximum index page sizes.

Table BLOB Block Size

Use the BLOB BLOCK SIZE clause to specify the BLOB block size for the table. The syntax is as follows:

BLOB BLOCK SIZE BLOB block size

The BLOB block size is optional and should be specified as an integer. Please see Appendix C - System
Capacities for more information on the minimum and maximum BLOB block sizes.

Table Locale

Use the LOCALE clause to specify the locale for the table. The syntax is as follows:

LOCALE locale name | LOCALE CODE locale code

un

The locale is optional and should be specified as an identifier enclosed in double quotes (") or square
brackets ([]), if specifying a locale constant, or as an integer value, if specifying a locale ID. A list of locale
constants and their IDs can be retrieved via the TDBISAMEngine GetLocaleNames method. If this clause is

Page 266

SQL Reference
not specified, then the default "ANSI Standard" locale (ID 0) will be used for the table.
Table Encryption

Use the ENCRYPTED WITH clause to specify whether the table should be encrypted with a password. The
syntax is as follows:

ENCRYPTED WITH password

Table encryption is optional and the password for this clause should be specified as a string constant
enclosed in single quotes ("). Please see the Encryption topic for more information.

User-Defined Versions

Use the USER MAJOR VERSION and USER MINOR VERSION clauses to specify user-defined version
numbers for the table. The syntax is as follows:

USER MAJOR VERSION user-defined major version
[USER MINOR VERSION user-defined minor version]

User-defined versions are optional and the versions should be specified as integers.

Last Autoinc Value

Use the LAST AUTOINC clause to specify the last autoinc value for the table. The syntax is as follows:

LAST AUTOINC last autoinc value

The last autoinc value is optional and should be specified as an integer. If this clause is not specified, the
default last autoinc value is 0.

Please see the Creating and Altering Tables topic for more information on creating tables.

Page 267

SQL Reference

4.12 CREATE INDEX Statement

Introduction

The SQL CREATE INDEX statement is used to create a secondary index for a table.

Syntax

CREATE [UNIQUE] [NOCASE]
INDEX [IF NOT EXISTS] index name

ON table reference
column_name [ASC or ASCENDING | DESC or DESCENDING]
, column name...])

COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]

(
[
[
[NOKEYSTATS]

Use the CREATE INDEX statement to create a secondary index for an existing table. If index names
contain embedded spaces they must be enclosed in double quotes ("") or square brackets ([]). Secondary
indexes may be based on multiple columns.

UNIQUE Clause

Use the UNIQUE clause to create an index that raises an error if rows with duplicate column values are
inserted. By default, indexes are not unique. The syntax is as follows:

UNIQUE

NOCASE Clause

The NOCASE clause specifies the that the secondary index should be sorted in case-insensitive order as
opposed to the default of case-sensitive order. The syntax is as follows:

NOCASE

Columns Clause

The columns clause specifies a comma-separated list of columns that make up the secondary index, and
optionally whether the columns should be sorted in ascending (default) or descending order. The syntax is
as follows:

(column name [[ASC |ASCENDING] | [DESC | DESCENDING]]
[, column name...])

Page 268

SQL Reference

The column names specified here must conform to the column naming conventions for DBISAM's SQL and
must have been defined earlier in the CREATE TABLE statement. Please see the Naming Conventions topic
for more information.

COMPRESS Clause

The COMPRESS clause specifies the type of index key compression to use for the secondary index. The
syntax is as follows:

COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE

The DUPBYTE keyword specifies that duplicate-byte index key compression will be used, the TRAILBYTE
keyword specifies that trailing-byte index key compression will be used, and the FULL keyword specifies
that both duplicate-byte and trailing-byte index key compression will be used. The default index key
compression is NONE. Please see the Index Compression topic for more information.

NOKEYSTATS Clause

The NOKEYSTATS clause specifies that the index being defined should not contain any statistics.. The
syntax is as follows:

NOKEYSTATS

Under most circumstances you should not specify this clause. Not using the index statistics is only useful
for very large tables where insert/update/delete performance is very important, and where it is acceptable
to not have logical record numbers or statistics for optimizing filters and queries.

The following statement creates a multi-column secondary index that sorts in ascending order for the
CustNo column and descending order for the SaleDate column:

CREATE INDEX CustDate
ON Orders (CustNo, SaleDate DESC) COMPRESS DUPBYTE

The following statement creates a unique, case-insensitive secondary index:

CREATE UNIQUE NOCASE INDEX "Last Name"
ON Employee (Last Name) COMPRESS FULL

Please see the Adding and Deleting Indexes from a Table topic for more information on creating indexes.

Page 269

SQL Reference

4.13 ALTER TABLE Statement

Introduction

The SQL ALTER TABLE statement is used to restructure a table.

Syntax

ALTER TABLE [IF EXISTS] table reference

[[ADD [COLUMN] [IF NOT EXISTS]
column name data type [dimensions]
[AT column position]

[DESCRIPTION column description]
[NULLABLE] [NOT NULL]

[DEFAULT default value]

[MIN or MINIMUM minimum value]

[MAX or MAXIMUM maximum value]
[CHARCASE UPPER | LOWER | NOCHANGE]
[COMPRESS 0..9]]

[REDEFINE [COLUMN] [IF EXISTS]

column name [new column name] data type [dimensions]
[AT column position]

[DESCRIPTION column description]

[NULLABLE] [NOT NULL]

[DEFAULT default value]

[MIN or MINIMUM minimum value]

[MAX or MAXIMUM maximum value]

[CHARCASE UPPER | LOWER | NOCHANGE]

[COMPRESS 0..9]]

[DROP [COLUMN] [IF EXISTS] column name]]

[, ADD [COLUMN] column name
REDEFINE [COLUMN] column name
DROP [COLUMN] column name...]

[, ADD [CONSTRAINT constraint name]
[UNIQUE] [NOCASE] PRIMARY KEY

(column name [ASC or ASCENDING | DESC or DESCENDING]
[, column name...])

[COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]
[NOKEYSTATS]

, REDEFINE [CONSTRAINT constraintiname]

UNIQUE] [NOCASE] PRIMARY KEY

column name [ASC or ASCENDING | DESC or DESCENDING]
, column name...])

COMPRESS DUPBYTE | TRAILBYTE | FULL | NONE]]

[
[
(
[
[
[NOKEYSTATS]

Page 270

SQL Reference

[, DROP [CONSTRAINT constraint name] PRIMARY KEY]

[TEXT INDEX (column name, [column name])]
[STOP WORDS space-separated list of words]
[SPACE CHARS list of characters]

[INCLUDE CHARS list of characters]

[DESCRIPTION table description]

[INDEX PAGE SIZE index page size]
[BLOB BLOCK SIZE BLOB block size]

[LOCALE locale name | LOCALE CODE locale code]
[ENCRYPTED WITH password]

[USER MAJOR VERSION user-defined major version]
[USER MINOR VERSION user-defined minor version]

[LAST AUTOINC last autoinc value]

[NOBACKUP]

Use the ALTER TABLE statement to alter the structure of an existing table. It is possible to delete one
column and add another in the same ALTER TABLE statement as well as redefine an existing column
without having to first drop the column and then re-add the same column name. This is what is sometimes
required with other database engines and can result in loss of data. DBISAM's REDEFINE keyword removes
this problem. In addition, the IF EXISTS and IF NOT EXISTS clauses can be used with the ADD, REDEFINE,
and DROP keywords to allow for action on columns only if they do or do not exist.

The DROP keyword requires only the name of the column to be deleted. The ADD keyword requires the
same combination of column name, data type and possibly dimensions, and extended column definition
information as the CREATE TABLE statement when defining new columns.

The statement below deletes the column FullName and adds the column LastName, but only if the
LastName column doesn't already exist:

ALTER TABLE Names
DROP FullName,
ADD IF NOT EXISTS LastName CHAR(25)

It is possible to delete and add a column of the same name in the same ALTER TABLE statement, however
any data in the column is lost in the process. An easier way is to use the extended syntax provided by
DBISAM's SQL with the REDEFINE keyword:

ALTER TABLE Names
REDEFINE LastName CHAR (30)

Page 271

SQL Reference

Note
In order to remove the full text index completely, you would specify no columns in the TEXT INDEX

clause like this:

ALTER TABLE Customer
TEXT INDEX ()

NOBACKUP Clause

The NOBACKUP clause specifies that no backup files should be created during the process of altering the
table's structure.

Please see the CREATE TABLE statement for more information on all other clauses used in the ALTER
TABLE statement. Their usage is the same as with the CREATE TABLE statement.

Please see the Creating and Altering Tables topic for more information on altering the structure of tables.

Page 272

SQL Reference

4.14 EMPTY TABLE Statement

Introduction

The SQL EMPTY TABLE statement is used to empty a table of all data.

Syntax

EMPTY TABLE [IF EXISTS] table reference

Use the EMPTY TABLE statement to remove all data from an existing table. The statement below empties
a table:

EMPTY TABLE Employee

Please see the Emptying Tables topic for more information on emptying tables.

Page 273

SQL Reference

4.15 OPTIMIZE TABLE Statement

Introduction
The SQL OPTIMIZE TABLE statement is used to optimize a table.

Syntax

OPTIMIZE TABLE [IF EXISTS] table reference
[ON index name]

[NOBACKUP]

Use the OPTIMIZE TABLE statement to remove all free space from a table and organize the data more
efficiently.

ON Clause

The ON clause is optional and specifies the name of an index in the table to use for organizing the physical
data records. It is usually recommended that you do not specify this clause, which will result in the table
being organized using the primary index.

NOBACKUP Clause

The NOBACKUP clause specifies that no backup files should be created during the process of optimizing
the table.

The statement below optimizes a table and suppresses any backup files:

OPTIMIZE TABLE Employee NOBACKUP

Please see the Optimizing Tables topic for more information on optimizing tables.

Page 274

SQL Reference

4.16 EXPORT TABLE Statement

Introduction

The SQL EXPORT TABLE statement is used to export a table to a delimited text file.

Syntax

EXPORT TABLE [IF EXISTS] table reference [EXCLUSIVE]
TO text file name

[DELIMITER delimiter character]

[WITH HEADERS]

[COLUMNS (column name [, column name])]

[DATE date format]

[TIME time format]
[DECIMAL decimal separator]

Use the EXPORT TABLE statement to export a table to a delimited text file specified by the TO clause. The
file name must be enclosed in double quotes ("") or square brackets ([]) if it contains a drive, path, or file
extension. Use the EXCLUSIVE keyword to specify that the table should be opened exclusively.

DELIMITER Clause

The DELIMITER clause is optional and specifies the delimiter character to use in the exported text file. The
DELIMITER character should be specified as a single character constant enclosed in single quotes (") or
specified using the pound (#) sign and the ASCII character value. The default delimiter character is the
comma (,).

WITH HEADERS Clause

The WITH HEADERS clause is optional and specifies that the exported text file should contain column
headers for all columns as the first row.

COLUMNS Clause

The columns clause is optional and specifies a comma-separated list of columns that should be exported to
the text file. The column names specified here must conform to the column naming conventions for
DBISAM's SQL and must exist in the table being exported. Please see the Naming Conventions topic for
more information.

DATE, TIME, and DECIMAL Clauses

The DATE, TIME, and DECIMAL clauses are optional and specify the formats and decimal separator that
should be used when exporting dates, times, timestamps, and numbers. The DATE and TIME formats

Page 275

SQL Reference

should be specified as string constants enclosed in single quotes (") and the DECIMAL separator should be
specified as a single character constant enclosed in single quotes (") or specified using the pound (#) sign
and the ASCII character value. The default date format is 'yyyy-mm-dd', the default time format is
'hh:mm:ss.zzz ampm', and the default decimal separator is '.".

The statement below exports three fields from the Employee table into a file called 'employee.txt':
EXPORT TABLE Employee
TO "c:\mydata\employee.txt"

WITH HEADERS
COLUMNS (ID, FirstName, LastName)

Please see the Importing and Exporting Tables and Query Result Sets topic for more information on
exporting tables.

Page 276

SQL Reference

4.17 IMPORT TABLE Statement

Introduction

The SQL IMPORT TABLE statement is used to import data from delimited text file into a table.

Syntax

IMPORT TABLE [IF EXISTS] table reference
FROM text file name

[DELIMITER delimiter character]

[WITH HEADERS]

[COLUMNS (column name [, column name])]
[DATE date format]

[TIME time format]
[DECIMAL decimal separator]

Use the IMPORT TABLE statement to import data into a table from a delimited text file specified by the
FROM clause. The file name must be enclosed in double quotes ("") or square brackets ([]) if it contains a
drive, path, or file extension. Use the EXCLUSIVE keyword to specify that the table should be opened
exclusively.

DELIMITER Clause

The DELIMITER clause is optional and specifies the delimiter character used in the imported text file to
separate data from different columns. The DELIMITER character should be specified as a single character
constant enclosed in single quotes (") or specified using the pound (#) sign and the ASCII character value.
The default delimiter character is the comma ().

WITH HEADERS Clause

The WITH HEADERS clause is optional and specifies that the imported text file contains column headers
for all columns as the first row. In such a case DBISAM will not import this row as a record but will instead
ignore it.

COLUMNS Clause

The columns clause is optional and specifies a comma-separated list of columns that the imported text file
contains. If the imported text file contains column data in a different order than that of the table, or only a
subset of column data, then it is very important that this clause be used. Also, the column names specified
here must conform to the column naming conventions for DBISAM's SQL and must exist in the table being
exported. Please see the Naming Conventions topic for more information.

DATE, TIME, and DECIMAL Clauses

Page 277

SQL Reference

The DATE, TIME, and DECIMAL clauses are optional and specify the formats and decimal separator that
should be used when importing dates, times, timestamps, and numbers from the text file. The DATE and
TIME formats should be specified as string constants enclosed in single quotes (") and the DECIMAL
separator should be specified as a single character constant enclosed in single quotes (") or specified
using the pound (#) sign and the ASCII character value. The default date format is 'yyyy-mm-dd', the
default time format is 'hh:mm:ss.zzz ampm', and the default decimal separator is '.".

The statement below imports three fields from a file called 'employee.txt' into the Employee table:
IMPORT TABLE Employee
FROM "c:\mydata\employee.txt"

WITH HEADERS
COLUMNS (ID, FirstName, LastName)

Please see the Importing and Exporting Tables and Query Result Sets topic for more information on
importing tables.

Page 278

SQL Reference

4.18 VERIFY TABLE Statement

Introduction

The SQL VERIFY TABLE statement is used to verify a table and make sure that there is no corruption in
the table.

Syntax

VERIFY TABLE [IF EXISTS] table reference

Use the VERIFY TABLE statement to verify the physical structure of a table to make sure that it is not
corrupted. The statement below verifies a table:

VERIFY TABLE Employee

You can use the REPAIR TABLE SQL statement to repair a table that is determined to be corrupted via the
VERIFY TABLE statement.

Please see the Verifying and Repairing Tables topic for more information on verifying tables.

Page 279

SQL Reference

4.19 REPAIR TABLE Statement

Introduction

The SQL REPAIR TABLE statement is used to repair a table that is corrupted or suspected of being
corrupted.

Syntax

REPAIR TABLE [IF EXISTS] table reference

FORCEINDEXREBUILD

Use the REPAIR TABLE statement to repair the physical structure of a table that is corrupted or suspected
of being corrupted.

FORCEINDEXREBUILD Clause

Use the FORCEINDEXREBUILD clause to force the indexes in the table to be rebuilt regardless of whether
they are determined to be corrupted or not. Sometimes there is corruption in indexes that DBISAM cannot
detect in the table verification or repair process, and this clause will resolve such an issue.

The statement below repairs a table:

REPAIR TABLE Employee

You can use the VERIFY TABLE SQL statement to verify a table and determine if it is corrupted.

Please see the Verifying and Repairing Tables topic for more information on repairing tables.

Page 280

SQL Reference

4.20 UPGRADE TABLE Statement

Introduction

The SQL UPGRADE TABLE statement is used to upgrade a table from a previous DBISAM table format to
the current table format.

Syntax

UPGRADE TABLE [IF EXISTS] table reference

Use the UPGRADE TABLE statement to upgrade a table to the current DBISAM table format. The
statement below upgrades a table:

UPGRADE TABLE Employee

Please see the Upgrading Tables topic for more information on upgrading tables.

Page 281

SQL Reference

4.21 DROP TABLE Statement

Introduction

The SQL DROP TABLE statement is used to delete a table.

Syntax

DROP TABLE [IF EXISTS] table reference

Use the DROP TABLE statement to delete an existing table. The statement below drops a table:

DROP TABLE Employee

Please see the Deleting Tables topic for more information on deleting tables.

Page 282

SQL Reference

4.22 RENAME TABLE Statement

Introduction

The SQL RENAME TABLE statement is used to rename a table.

Syntax

RENAME TABLE [IF EXISTS] table reference
TO table reference

Use the RENAME TABLE statement to rename a table. The statement below renames a table:

RENAME TABLE Employee
TO Employees

Please see the Renaming Tables topic for more information on renaming tables.

Page 283

SQL Reference

4.23 DROP INDEX Statement

Introduction

The SQL DROP INDEX statement is used to delete a primary or secondary index from a table.

Syntax

DROP INDEX [IF EXISTS]
tableireference.indexiname | PRIMARY

Use the DROP INDEX statement to delete a primary or secondary index. To delete a secondary index,
identify the index using the table name and index name separated by an identifier connector symbol (.):

DROP INDEX Employee."Last Name"

To delete a primary index, identify the index with the keyword PRIMARY:

DROP INDEX Orders.PRIMARY

Please see the Adding and Deleting Indexes from a Table topic for more information on deleting indexes.

Page 284

SQL Reference

4.24 START TRANSACTION Statement

Introduction

The SQL START TRANSACTION statement is used to start a transaction on the current database.

Syntax

START TRANSACTION
[WITH <comma-separated list of tables>]

Use the START TRANSACTION statement to start a transaction. The WITH clause allows to to start a
restricted transaction on a specified set of tables. It accepts a comma-delimited list of table names to
include in the restricted transaction.

Please see the Transactions topic for more information on transactions.

Page 285

SQL Reference

4.25 COMMIT Statement

Introduction

The SQL COMMIT statement is used to commit an active transaction on the current database.

Syntax

COMMIT [WORK] [FLUSH]

Use the COMMIT statement to commit an active transaction. You may optionally include the WORK
keyword for compatibility with the SQL standard.

FLUSH Clause

Use the FLUSH clause to indicate that the commit operation should also instruct the operating system to
flush all committed data to disk.

Please see the Transactions topic for more information on transactions.

Page 286

SQL Reference

4.26 ROLLBACK Statement

Introduction

The SQL ROLLBACK statement is used to rollback an active transaction on the current database.

Syntax

ROLLBACK [WORK]

Use the ROLLBACK statement to rollback an active transaction. You may optionally include the WORK
keyword for compatibility with the SQL standard.

Please see the Transactions topic for more information on transactions.

Page 287

Component Reference

This page intentionally left blank

Page 288

Chapter 5

Component Reference

Component Reference

5.1 EDBISAMEngineError Component

Unit: dbisamtb

Inherits From EDatabaseError

An EDBISAMEngineError exception object is raised whenever a DBISAM error occurs. You will find a list of
all DBISAM error codes along with instructions on how to change the default error messages in Appendix B
- Error Codes and Messages in this manual. For just general information on exception handling in DBISAM
please see the Exception Handling and Errors topic in this manual.

Properties
ErrorCode
ErrorColumn
ErrorDatabaseName
ErrorEventName
ErrorFieldName
ErrorIndexName
ErrorLine
ErrorMessage
ErrorProcedureName
ErrorRemoteName
ErrorTableName
ErrorUserName
OSErrorCode

SocketErrorCode

Methods Events

Create

Page 289

Component Reference

EDBISAMENgineError.ErrorCode Property

property ErrorCode: Word

Indicates the native DBISAM error code being raised in the current exception.

Note
This property is always set for every exception.

Page 290

Component Reference

EDBISAMENgineError.ErrorColumn Property

property ErrorColumn: Integer

Indicates the column of text in that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 291

Component Reference

EDBISAMEnNgineError.ErrorDatabaseName Property

property ErrorDatabaseName: AnsiString

Indicates the database name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 292

Component Reference

EDBISAMENgineError.ErrorEventName Property

property ErrorEventName: AnsiString

Indicates the scheduled event name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 293

Component Reference

EDBISAMENgineError.ErrorFieldName Property

property ErrorFieldName: AnsiString

Indicates the field or column name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 294

Component Reference

EDBISAMENgineError.ErrorIndexName Property

property ErrorIndexName: AnsiString

Indicates the index name that the current exception applies to. This property will be set to 'Primary" if the
exception refers to the primary index of a table.

Note
This property may or may not be set depending upon the exception being raised.

Page 295

Component Reference

EDBISAMENgineError.ErrorLine Property

property ErrorLine: Integer

Indicates the line of text in that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 296

Component Reference

EDBISAMEngineError.ErrorMessage Property

property ErrorMessage: AnsiString

Indicates the extended error message that gives further information on the exception.

Note
This property may or may not be set depending upon the exception being raised.

Page 297

Component Reference

EDBISAMENgineError.ErrorProcedureName Property

property ErrorProcedureName: AnsiString

Indicates the server-side procedure name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 298

Component Reference

EDBISAMENgineError.ErrorRemoteName Property

property ErrorRemoteName: AnsiString

Indicates the database server host name or IP address that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 299

Component Reference

EDBISAMENgineError.ErrorTableName Property

property ErrorTableName: AnsiString

Indicates the table name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 300

Component Reference

EDBISAMENgineError.ErrorUserName Property

property ErrorUserName: AnsiString

Indicates the user name that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 301

Component Reference

EDBISAMENgineError.OSErrorCode Property

property OSErrorCode: Integer

Indicates the last operating system-specific error code logged by the operating system. This property is
always set, although it may not always contain a non-0 value. This property can be useful for debugging
unusual error conditions coming from the operating system.

Page 302

Component Reference

EDBISAMENgineError.SocketErrorCode Property

property SocketErrorCode: Integer

Indicates the last operating system-specific TCP/IP socket error code logged by the operating system. This
property is always set, although it may not always contain a non-0 value. This property can be useful for
debugging unusual error conditions coming from the operating system's TCP/IP socket subsystem.

Page 303

Component Reference

EDBISAMENgineError.Create Method

constructor Create (ErrorCode: Word)

Creates an instance of EDBISAMEngineError using a specified DBISAM engine error code. The constructor
calls the constructor method inherited from Exception (using an empty string) to construct an initialized
instance of EDBISAMEngineError.

Page 304

Component Reference

5.2 TDBISAMBaseDataSet Component

Unit: dbisamtb

Inherits From TDataSet

The TDBISAMBaseDataSet component is a dataset component that provides a base component for any
DBISAM dataset. Applications never use TDBISAMBaseDataSet components directly. Instead they use the

descendants of TDBISAMBaseDataSet, the TD