Table of Contents

ElevateDB Version 2 Manual

Table Of Contents
Chapter 1 - Local Application Tutorial 1
1.1 Creating the Tutorial Database 1
1.2 Creating the Application 9
Chapter 2 - Client-Server Application Tutorial 15
2.1 Configuring and Starting the ElevateDB Server 15
2.2 Creating the Tutorial Database 18
2.3 Creating the Application 26
Chapter 3 - DBISAM Migration 33
3.1 Introduction 33
3.2 Migrating a DBISAM Database Using the ElevateDB Manager 34
3.3 Migrating a DBISAM Database Using Code 41
3.4 Renaming the DBISAM Components 43
3.5 Updating the Source Code 45
3.6 Component Changes 46
3.7 TDBISAMEngine Component 47
3.8 TDBISAMSession Component 54
3.9 TDBISAMDatabase Component 60
3.10 TDBISAMDataSet Component 62
3.11 TDBISAMDBDataSet Component 64
3.12 TDBISAMTable Component 66
3.13 TDBISAMQuery Component 69
3.14 TDBISAMUpdateSQL Component 72
3.15 EDBISAMENgineError Object 74
3.16 SQL Changes 76
3.17 Naming Conventions 77
3.18 Types 78
3.19 Operators 80
3.20 Functions 81
3.21 Statements 82
Chapter 4 - Getting Started 93

4.1 Architecture 93

Preface

Table of Contents

4.2 Exception Handling and Errors
4.3 Multi-Threaded Applications
4.4 Recompiling the ElevateDB Source Code

Chapter 5 - Using ElevateDB

5.1 Configuring and Starting the Engine

5.2 Connecting Sessions

5.3 Creating, Altering, or Dropping Configuration Objects

5.4 Opening Databases

5.5 Creating, Altering, or Dropping Database Objects

5.6 Executing Queries

5.7 Parameterized Queries

5.8 Querying Configuration Objects

5.9 Querying Database Objects

5.10 Executing Scripts

5.11 Executing Stored Procedures

5.12 Executing Transactions

5.13 Creating and Using Stores

5.14 Publishing and Unpublishing Databases

5.15 Saving Updates To and Loading Updates From Databases
5.16 Backing Up and Restoring Databases

5.17 Opening Tables and Views

5.18 Closing Tables and Views

5.19 Navigating Tables, Views, and Query Result Sets

5.20 Inserting, Updating, and Deleting Rows

5.21 Searching and Sorting Tables, Views, and Query Result Sets
5.22 Setting Ranges on Tables

5.23 Setting Master-Detail Links on Tables

5.24 Setting Filters on Tables, Views, and Query Result Sets
5.25 Using Streams with Tables, Views and Query Result Sets
5.26 Cached Updates

Chapter 6 - Component Reference

Preface

6.1 EEDBError Component

6.2 TEDBBlobStream Component
6.3 TEDBDatabase Component
6.4 TEDBDataSet Component
6.5 TEDBDBDataSet Component

99
102
105

107
107
115
120
122
123
125
130
132
133
134
137
140
142
144
146
148
150
153
154
156
165
171
173
176
178
180

183
183
189
195
218
254

6.6 TEDBEngine Component

6.7 TEDBQuery Component

6.8 TEDBScript Component

6.9 TEDBServerProcedure Component

6.10 TEDBSession Component

6.11 TEDBStoredProc Component

6.12 TEDBTable Component

6.13 TEDBUpdateSQL Component
Chapter 7 - Type Reference

7.1 pEDBLongWord Type

7.2 plnteger Type

7.3 pPointer Type

7.4 TEDBApplyCachedUpdatesOptions Type

7.5 TEDBBytes Type

7.6 TEDBDate Type

7.7 TEDBDayTimelnterval Type

7.8 TEDBDebugNotificationEvent Type
7.9 TEDBLogCategories Type

7.10 TEDBLogMessageEvent Type
7.11 TEDBLongWord Type

7.12 TEDBProgressEvent Type

7.13 TEDBRemoteProgressEvent Type

7.14 TEDBRemoteReconnectEvent Type

7.15 TEDBRemoteTimeoutEvent Type
7.16 TEDBRemoteTraceEvent Type
7.17 TEDBServerProcedureEvent Type
7.18 TEDBServerSessionEvent Type

7.19 TEDBServerSessionLoginEvent Type

7.20 TEDBServerTraceEvent Type
7.21 TEDBSessionLoginEvent Type
7.22 TEDBSetSequenceEvent Type
7.23 TEDBStatusMessageEvent Type
7.24 TEDBStringsArray Type

7.25 TEDBTime Type

7.26 TEDBTimeStamp Type

7.27 TEDBYearMonthInterval Type

Table of Contents

263
370
402
442
449
550
571
608
621
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Preface

Table of Contents

Appendix A - Error Codes and Messages 649
Appendix B - System Capacities 657

Preface

Local Application Tutorial

Chapter 1
Local Application Tutorial

1.1 Creating the Tutorial Database

Before creating the actual tutorial application, you must first create the Tutorial database that will be used
in the application. The following steps will guide you through creating the Tutorial database using the
ElevateDB Manager.

1. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

ElevateDB-ADD

HEIE‘n.ratEDE Manager _

ﬂ' ElevateDB Version 2 5QL Manual
{.'Z_‘ Release Information

m

2 Usage Agreement

2. Make sure that the session is using the desired character set and configuration file folder
(C:\Tutorial).

a. Select the Default session from the list of available sessions.

i E”ElevatEDE Manager I:'ru:u|:Jv.=_~r’civ.=_~5,_E

Mame

Tasks A
& Default
'h.% Edit Engine Settings

& Create Mew Session

& Dizconnect All Sessions

b. In the Tasks pane, click on the Edit Session link.

Page 1

Local Application Tutorial

_B ElevateDB Manager Properties .

Tasks

>

& Connect Session
& Edit Session
Rename Seszion

& Delete Session

& Create Copy of Session

c. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Character Set

ey Select the character set to use with the session, With local sessions, the character set
=" rnust match the character set of the configuration being accessed. With remote
sessions, the character set must match the character set of the ElevateDB Server being

(71 ANSI @ Unicode

Note

If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode. The only exception to this rule is if
you are using Borland Developer Studio 2005 or lower (including Delphi 5, 6, and 7, as well as
C++Builder 5 and 6). You should use the ANSI character set with those older compilers, due to a
lack of proper Unicode support for fixed-character and memo field types.

d. On the Local page of the Edit Session dialog, make sure that the Configuration File - File Folder is set
to the desired folder.

.

Edit Session

E——r| 5= = : : :
| General | Local | Database i Customizations | Legin | Locking/Buffering | Pro

Configuration File

L. Enter the configuration file information. The configuration file can b
=! in-memaory. If located on disk, the configuration file folder can be ar

Location @ On Disk (0 In Memory

File Folder C:\Tutariall

e. Click on the OK button.

Page 2

Local Application Tutorial

3. Double-click on the Default session in the Properties window in order to connect the session.

3 ElevateDB Manager Properties

Tasks

>

& Connect Session
& Edit Session

A -
[OH Rename Seszion

& Delete Session

& Create Copy of Session

4. Click on the New button on the main toolbar.

B Eiwateﬂﬂ!’uﬂanage:
File Edit Explorer Tasks Window Help

B New [0pen
PO &% % [Ee m -

5. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

6. Press the F9 key to execute the SQL statement.

| E ElevateDB Manager Properties |_|E.| Mew.50L

CREATE DATABASE "Tutorial™
DPtic-ns ~ PATH 'C:\Tutoriali\DB"
DESCRIPTION 'Tutorial Database!

[7] Request Sensitive Result Set
[C] Request Execution Plan

Detailz

*»

Mew S0 (Madified)

7. Press the F5 key to refresh the explorer contents for the session.

8. Click on the + sign next to the Databases node in the treeview.

Page 3

Local Application Tutorial

\J ElevateDB Manager
File Edit Explorer Tasks Statement Window |

@ Mew = |,JF%_ Open @ Save ﬁl Close
| | ',;1.:' | o :g=+ |.EH

L
=3 HevateDB Manager
- & Default
EI 4y Users
|_—| 4= Roles

- o B

L @ [Tutorial
mu’:‘ﬂ Stores
Eﬁ lobs

fII
III

9. Click on the new Tutorial database that you just created.

. ElevateDB Manager
ELIEE Edit Explorer Tasks Statement Window |

@ Mew = !Jr% Open
| Q| &

E
=3 ElevateDB Manager
- @ Default
mu’:‘ﬂ Uzers
|_—| 4=y Roles
ﬁ Databases
aal
EI 1Ei| Stﬂres
Eﬁ lobs

@ Save rﬁ“ Close

Fat |l el ag
t8 8 =3 EEE

=22]

10. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

Page 4

Local Application Tutorial

B Tuteorial Properties |@ New.SQL|

Tasks

»

E) Open Database
@T Database Privileges
& Alter Database

[ﬁ Fename Database
& Drop Database

& Create Copy of Database

Q_'.J Backup Database
@ Restore Database

11. Click on the New.SQL tab to bring forward the SQL window.

12. Paste in the following CREATE TABLE SQL statement. If you are using a Unicode session (see Step 2
above), then you should use the Unicode version of the CREATE TABLE statement. If you are using an
ANSI session, then you should use the ANSI version of the CREATE TABLE statement:

ANSI

CREATE TABLE "Customer"

(

"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR (30) COLLATE "ANST CI" NOT NULL,
"Addressl" VARCHAR (40) COLLATE "ANSI CI",
"Address2" VARCHAR (40) COLLATE "ANSI CI",

"City" VARCHAR(30) COLLATE "ANSI CI",

"State" CHAR(2) COLLATE "ANSI CI",

"Zip" CHAR(10) COLLATE "ANSI CI",

"CreatedOn" TIMESTAMP DEFAULT CURRENT TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")

)

Unicode

CREATE TABLE "Customer"

(

"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR (30) COLLATE "UN17CI" NOT NULL,

"Addressl" VARCHAR (40) COLLATE "UNI CI",

"Address2" VARCHAR (40) COLLATE "UNI CI",

"City" VARCHAR (30) COLLATE "UNI CI",

"State" CHAR(2) COLLATE "UNI CI",

"Zip" CHAR(10) COLLATE "UNI CI",

"CreatedOn" TIMESTAMP DEFAULT CURRENT TIMESTAMP,

Page 5

Local Application Tutorial

CONSTRAINT "ID PrimaryKey" PRIMARY KEY ("ID")
)

13. Press the F9 key to execute the SQL statement.

| [Tutorial Properties | [E) N-ew,S-QL| B MewsqQL

CREATE TABLE "Customer™
Options & i

"ID" INTEGER GENERATED ALWAYS AS TDEF
[T] Request Sensitive Result Set "Hame™ VRRCEHRR (30) COLLATE "ANSI CI"
"hddressl"™ VARCHARR (40) COLLATE "AWST
"hddress2" VARCHRR (40) COLLATE "ANWST
"City"™ VARCHAR (30) COLLATE "AWNSI CI™,
"State™ CHRR(Z)} COLLATE "AWNSI CI",

[Request Execution Plan

Details % "Zip" CHAR(10) COLLATE "ANSI CI",
"CreatedOn® TIMESTAMP DEFAULT CURRENI

New.5QL (Modified) CONSTRAINT "ID PrimaryKey" PRIMARY KE

Statement]l

Mew. SQL

14. Press the F5 key to refresh the explorer contents for the session.

15. The table should now show up in the list of tables for the Tutorial
database.

B Ee'.tateﬂBManage:
File Edit Explorer Tasks Statement Window F

(] New ~ [Open
B Q&% Y| wium-
E'Ia HevateDB Manager

- @ Default
Tﬂﬁ“j Users
E{E Raoles
._:'E Databases
=8
Eifj Tables
Eﬁ Customner

B'{a Views

L‘+_|1E| Procedures

Eu”j Functions

@] Save ﬁ Close

16. Click on the New.SQL tab to bring forward the SQL window.

17. Paste in the following INSERT SQL statement:

INSERT INTO "Customer" VALUES
(NULL,

Page 6

Local Application Tutorial

'Elevate Software, Inc.',
'168 Christiana Street',
T

'North Tonawanda',

'NY',

'14120°',

NULL)

18. Press the F9 key to execute the SQL statement.

| | Tutorial Properties | [New.SQL | [d] Nm.SQLl_@ New.SQL
INSERT IHTC "Customer”™ VALUES

Options ~ (HOLIL,
'Elevate: Software, Inc.',
[C] Request Sensitive Result Set '18% Christiana Street’,

[0l Request Execution Plan N ———

L} N’-f! 3
1141207,
Details x NULL)|
New.SQL (Modified)
Statement

19. Click on the Customer table that you just created.

) ElevateDB Manager
File Edit Explorer Tasks Statement Window |

: @ Mew |J% Open
ENR*AR: ARG ARt =
=13 ElevateDB Manager

- @ Default
aﬁ'j Uzers
EiEI Roles
._:I_,ﬁ Databases
-4 Tutorial
Eﬁl Tables
Bl coorne
F'{ﬂ Views
E'{EI Procedures
Eﬁl Functions

m o= Ckarar

il:ﬁ':l Save ﬁ| Close

20. Press the F6 key to make the Properties window the active window, and then click on the Open Table
link in the Tasks pane.

Page 7

Local Application Tutorial

B Tutorial.Customer Properties |) Mew.SQL | B New.s5qL I E
Mame
Tasks 2
=1 Column
53 Open Table Constra
i) Indexes
@ Table Privileges = Triggers
B Alter Table
Rename Table
ﬁ Drop Takble
EE® Create Copy of Table
B Verify Table

21. You will now see the row that you just inserted.

srial Customer Properties | [@] New.SQL | [H] New.SQL | [H] New.5QL| B Tutorial.Customer
L& I Mame Addressl

|- oy
i - Elevate Software, Inc. 168 Christiana Street

earch for Row

itter Rows

Details -

WS
sing

You have now successfully created the Tutorial database.

Page 8

1.2 Creating the Application

Local Application Tutorial

The following steps will guide you through creating a basic local application using ElevateDB.

Note

It is assumed that you have already created the required database using the steps outlined in the

Creating the Tutorial Database topic.

1. Click on the File option from the main menu.

2. Click on the New option from the File menu, and click on the VCL Forms Application - C++Builder option
from the New sub-menu.

L

al B

3.

Mew

Open...

Open From Version Control..,
Beopen

AVE Ctrl+5

{[¥5]

Save As..,

Save Project As..,

0l &1 & [0

Open Project... Ctri+F11

Save All Shift+ Ctri+5

b Wm[] @ af

VCL Ferms Application - Delphi
Multi-Device Application - Delphi
Package - Delphi

VCL Form - Delphi

Multi-Device Form - Delphi
Unit - Delphi

Other...

Customize...

Select the ElevateDB group on the tool palette and click on the plus (+) sign to expand the ElevateDB
group of components.

4. Click on the TEDBEngine component on the ElevateDB group on the tool palette and then click on the
Form1 form that was created for you by Embarcadero RAD Studio. The TEDBEngine component will be
dropped on the form.

i=| ElevateDB

TEDBENngine

ﬁfa TEDESession

Unit: edbcomps

Marne: TEDBEngine

L‘Eﬂ TEDBDatabas Package: edbdesign.bpl

@d TEDBStoredProc

@lﬂ TEDEUpdateSoL

m

Page 9

Local Application Tutorial

5. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the ConfigPath
property and change its value to C:\Tutorial.

| /= object Inspector sz
'EDBEnginel TEDEEngne E
Properties | Events
Active [C|False -
BackupExtension |.EDBBkp
CatalogExtension |.EDBCat
CatalogMame EDBDatabase
ConfigExtension |[.EDBCfg
ConfigMemaory [C|False
Confighlame EDBConfig [
» |ConfigPath Citutoriall =]
EncryptionPassword elevatesoft :
EngineType etClient

6. Click on the TEDBSession component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBSession component will be dropped on the form.

|:E§ TEDEDataha Mame: TE DBSession
Unit: edbcomps

% TEDBTable Package: edbdesign.bpl

% TEDEQuery

@d TEDBEScript

% TEDBStoredProc

[%3 TEDEUpdateSqL

i

7. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial, click on the LoginUser property and change its
value to the default administrator user name Administrator, and click on the LoginPassword property
and change its value to the default Administrator user password EDBDefaulit.

Page 10

Local Application Tutorial

RemotePing [¥] True
RemotePingInterval &0
RemotePort 12010

RemoteService
RemoteSignature |edb_signature
RemoteTimeout 120

RemoteTrace [7] False

SessionDescription |
|SessionName Tuborial

SessionType stlocal

Tag 0

~

Sessionlame e
All shown

8. Click on the TEDBDatabase component on the ElevateDB group on the tool palette, and then click on
the Form1 form. The TEDBDatabase component will be dropped on the form.

=l ElevateDB
{5y

== Name TEDBDatabase
% TEDETable Unit: edbcomps
Package: edbdesign.bpl

m

% TEDBStoredProc

% TEDEUpdateSQL

9. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the Database property and select the Tutorial database that you have
already created from the drop-down list.

| /= object Inspector mjza|
'EDBDatabasel TEDRDztzbase E
Properties | Events
Connected [C|False
» DatsbaseName TutoriaiDgl
EngineVersion 2,04 Build 3
KeepConnection |[¥] True
Mame EDBDatabase1
SessionMame Tutorial

10. Click on the TEDBTable component on the ElevateDB group on the tool palette, and then click on the

Page 11

Local Application Tutorial

Form1 form. The TEDBTable component will be dropped on the form.

= ElevateDB

i % TEDBTable

5y TEDB(Name: TEDBTable
Unit: edbcomps [
@a TEDEE Package: edbdesign.bpl

m

d TEDBStoredProc

'%3 TEDBUpdatesqL

11. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the TableName property and change its value to Customer. Click on the
Active property and change its value to True. If you have followed all of the steps correctly, the Active
property should successfully change to True without error.

| /5 object Inspector nez|
'EDBTablel TEDETzhE]
Properties | Events
Active 7] False
AutoCalcFieldz [True
CopyCnappend || Falze
DatabaseMame TutorialDB
EngineVersion 2.04 Build 3
Exclusive [CFalze
FieldDefs (TFieldDefs)
Filter
Filtered [CFalze
[#|FilterOptions 0
IndexDefs {TIndexDefs)
IndexFieldMames
IndexMame
MasterFields
MasterSource
Mame EDBTable1
ReadOnly [CFalze
SessionMame Tutorial
StoreDefs [CFalze
» TableName Costomer .7

12. Select the Data Access tab on the tool palette.

13. Click on the TDataSource component on the Data Access tab on the tool palette, and then click on the
Form1 form. The TDataSource component will be dropped on the form.

Page 12

Local Application Tutorial

TDataSource

15
:EL
L

Ba

TClie pame: TDataSource
Unit: DB
TDat Package: deldbl140.bpl

TXMLTransform

T¥MLTransformPraovider

T¥MLTransformClient

14. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSet

property and change its value to EDBTablel.

[;p% {)b]ect Inspector

|DataSourcel TDataSource

Properties | Events

I

12

AutoEdit !-_u_f_!TruE

| Dataset EDBTablel
Enabled [Z]True
Mame DataSourcel

15. Select the Data Controls tab on the tool palette.

Ed

16. Click on the TDBGrid component on the Data Controls tab on the tool palette, and then click on the
Form1 form. The TDBGrid component will be dropped on the form. You can use the design-time anchors

to resize the TDBGrid component as required on the form.

=] Data Controls

| 1 ToBGrid

s

O o

TDBEdit

TOBNS Name: TDEGrid
_Unit: [DBGrids
BTe package: dcldbl40.bpl

TDEMemo

&

[gll TDEImage
% TOEListBox

#F ToBComboBox

17. Hit the F11 key to bring forward the Object Inspector.
property and change its value to DataSourcel.

m

In the Object Inspector, click on the DataSource

Page 13

Local Application Tutorial

E.E_Dbject Inspector _ﬁl E@|
\DBGrid1 TDEGHd

Properties | Events |

Align alMone -
alignwithMargins |[_| False W
[#|Anchors [akLeft,akTop]
BiDiMode bdLeftToRight
BorderStyle b=Single
Caolor] dwindow
Columns {TDBGridCalumns)
[#|Constraints {TSizeConstraints)
CH3D [True
Cursor aDefault
CustomHint
F#l|DataSource Datasourced| . [7]
DefaultDrawing I[ETrue

18. Click on the File option from the main menu.

19. Click on the Save All option from the File menu.

File| Edit Search View Refac

Mew 4 i
Open...
Open Project... Ctrl+F11

1
i &

J- Recpen r

Save Ctrl+5

Save As...

[

El
& O LPQPED

Save Project As...

Sawve All Shift+ Ctrl+5
Close)
Close All]

Use Unit... Alt+F11

Print...

[

-?E Exit

20. Save the project and the main form/unit under the desired names.

You have now successfully created a basic local application for ElevateDB.

Page 14

Client-Server Application Tutorial

Chapter 2
Client-Server Application Tutorial

2.1 Configuring and Starting the ElevateDB Server

Before creating the tutorial database and application, you must first configure and start the ElevateDB
Server.

1. Start the ElevateDB Server (edbsrvr.exe) by clicking on the ElevateDB Server link in the Start menu.

4 ElevateDB Server (Win64) |
B BewstedBsenver |
"% ElevateDB Version 2 Manual L
X ElevateDB Version 2 SQL Manual
| License Agreement

2 | Release Information

2. Make sure that the server is using the desired character set and configuration file folder (C:\Tutorial).

a. In the system tray, right-click on the ElevateDB Server icon to bring up the server menu, and click on
the Restore option on the server menu.

b. In the Tasks pane, click on the Stop Server link.

o

E% ElevateDB Server

»

Tasks

L_.'a Stop Server

c. In the Tasks pane, click on the Edit Server Options link.

Page 15

Client-Server Application Tutorial

-

\ ElevateDB Server

»

Tasks

L\s Start Server

L\.-a Edit Server Options

d. On the Server page, make sure that the Character Set is set to the desired value - either ANSI or
Unicode.

Character et

75, Select the character set to use with the server, The character set must match the
% character set of the configuration being accessed by the server.

) AMSI @ Unicode

Note
If you're not sure which character set to select and this is the first time using the ElevateDB Server,
then leave the character set at the default of Unicode.

e. On the Configuration page, make sure that the Configuration File - File Folder is set to the desired
folder for the ElevateDB Server configuration file (EDBConfig.EDBCfg).

Edit Server Options

|5ern.rer i Connections Sessi::-ns| Configuration I Database i Customi

Configuration File

", Enter the configuration file information. The configuratio
=! in-memaory. If located on disk, the configuration file folde

Location @ On Disk) In Memory

File Folder c\Tutoriall

f. Click on the OK button.

g. In the Tasks pane, click on the Start Server link.

Page 16

Client-Server Application Tutorial

-

\ ElevateDB Server

»

Tasks

L\s Start Server

L\.-a Edit Server Options

e. Click on the close button in the upper-right-hand corner of the ElevateDB Server window to close the
server window.

Created On

You have now successfully configured and started the ElevateDB Server.

Page 17

Client-Server Application Tutorial

2.2 Creating the Tutorial Database

Before creating the actual tutorial application, you must first create the Tutorial database that will be used
in the application. The following steps will guide you through creating the Tutorial database using the
ElevateDB Manager.

Note
It is assumed that you have already configured and started the ElevateDB Server using the steps
outlined in the Configuring and Starting the ElevateDB Server topic.

1. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

ElevateDB-ADD

Q_E!En..ra.tebg Manager

ﬂ' ElevateDB Version 2 5QL Manual
{:'-_‘ Releaze Information

m

2 Usage Agreement

2. Make sure that the session is using the correct session type (Remote) and desired character set.

Note

The character set for the session must match the character set being used by the ElevateDB Server
being accessed. Using a different character set will result in you not being able to connect to the
ElevateDB Server.

a. Select the Default session from the list of available sessions.

i E”ElevatEDE Manager Properties |

Mame

Tasks A
& Default
'h.% Edit Engine Settings

& Create Mew Session

& Dizconnect All Sessions

b. In the Tasks pane, click on the Edit Session link.

Page 18

Client-Server Application Tutorial

_B ElevateDB Manager Properties .

Mame

-

Tasks

>

& Connect Session
& Edit Session
Rename Seszion

& Delete Session

& Create Copy of Session

c. On the General page of the Edit Session dialog, make sure that the Session Type is set to Remote.

Session Type

@ Select the session type. A local session directly accesses the files that make up a given
database, regardless of where they are located. A remote session accesses database(s)
through an ElevateDB Server using the communications protocel in ElevateDB. If you
select a remote session type, you must fill in more information on the Remote page that
will appear in order to successfully connect to an ElevateDB Server.

) Local @ Remote

d. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Character Set

R Select the character set to use with the session. With local sessions, the character set
© raust match the character set of the configuration being accessed. With remote
sessions, the character set must match the character set of the ElevateDB Server being

===

(T ANST @ Unicode

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

e. Click on the OK button.

3. Double-click on the Default session in the Properties window in order to connect the session.

Page 19

Client-Server Application Tutorial

3 ElevateDB Manager Properties

Tasks

>

& Connect Session
& Edit Session

& -
Rename Seszion

% Delete Session

& Create Copy of Session

4. Click on the New button on the main toolbar.

B Ee'.tat: :Eﬂé'Manage:
File Edit Explorer Tasks Window Help

(G New ~ [Open
B O Yy @ E-

5. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

6. Press the F9 key to execute the SQL statement.

| |3 ElevateDB Manager Pmperti5| E New.5QL

CREATE DATABASE "Tutorial®™
Options b PATH 'C:\Tutorial\DB'

DESCRIPTION 'Tutorial Database’
[7] Request Sensitive Result Set

[C] Request Execution Plan

Detailz

*»

Mew S0 (Madified)

7. Press the F5 key to refresh the explorer contents for the session.

8. Click on the + sign next to the Databases node in the treeview.

Page 20

|3 ElevateDB Manager

File Edit Explorer Tasks Statement Window |
| 0] New - |J% Open E&ls-m B Close
2Oy ¥|[Ew |-

(3 ElevateDB Manager
=@ Default
D 4y Users
|_—| 4= Roles
=
C @l Tutorial

@u’:‘ﬂ Stores
Eﬁ lobs

L

9. Click on the new Tutorial database that you just created

]

|3 HlevateDB Manager

@ Mew = IJ% Open

REEE

| @ -
ot Tt

FLIEE Edit Explorer Tasks 5Staternent Window |

@ Save rﬁ“ Close

|3 EBlevateDB Manager
- & Default
@u’:‘ﬂ Users

|_—:| 4=y Roles
ﬁ Databases

Y
E| 1Ei| Stﬂres
Eﬁ lobs

E
B

Database link in the Tasks pane.

Client-Server Application Tutorial

10. Press the F6 key to make the Properties window the active window, and then click on the Open

Page 21

Client-Server Application Tutorial

B Tuteorial Properties |@ New.SQL|

Tasks

»

E) Open Database
@T Database Privileges
& Alter Database

[ﬁ Fename Database
& Drop Database

& Create Copy of Database

Q_'.J Backup Database
@ Restore Database

11. Click on the New.SQL tab to bring forward the SQL window.

12. Paste in the following CREATE TABLE SQL statement. If you are using a Unicode session (see Step 2
above), then you should use the Unicode version of the CREATE TABLE statement. If you are using an
ANSI session, then you should use the ANSI version of the CREATE TABLE statement:

ANSI

CREATE TABLE "Customer"

(

"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR (30) COLLATE "ANST CI" NOT NULL,
"Addressl" VARCHAR (40) COLLATE "ANSI CI",
"Address2" VARCHAR (40) COLLATE "ANSI CI",

"City" VARCHAR(30) COLLATE "ANSI CI",

"State" CHAR(2) COLLATE "ANSI CI",

"Zip" CHAR(10) COLLATE "ANSI CI",

"CreatedOn" TIMESTAMP DEFAULT CURRENT TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")

)

Unicode

CREATE TABLE "Customer"

(

"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR (30) COLLATE "UN17CI" NOT NULL,

"Addressl" VARCHAR (40) COLLATE "UNI CI",

"Address2" VARCHAR (40) COLLATE "UNI CI",

"City" VARCHAR (30) COLLATE "UNI CI",

"State" CHAR(2) COLLATE "UNI CI",

"Zip" CHAR(10) COLLATE "UNI CI",

"CreatedOn" TIMESTAMP DEFAULT CURRENT TIMESTAMP,

Page 22

Client-Server Application Tutorial

CONSTRAINT "ID PrimaryKey" PRIMARY KEY ("ID")
)

13. Press the F9 key to execute the SQL statement.

| [Tutorial Properties | [E) N-ew,S-QL| B MewsqQL

CREATE TABLE "Customer™
Options & i

"ID" INTEGER GENERATED ALWAYS AS TDEF
[T] Request Sensitive Result Set "Hame™ VRRCEHRR (30) COLLATE "ANSI CI"
"hddressl"™ VARCHARR (40) COLLATE "AWST
"hddress2" VARCHRR (40) COLLATE "ANWST
"City"™ VARCHAR (30) COLLATE "AWNSI CI™,
"State™ CHRR(Z)} COLLATE "AWNSI CI",

[Request Execution Plan

Details % "Zip" CHAR(10) COLLATE "ANSI CI",
"CreatedOn® TIMESTAMP DEFAULT CURRENI

New.5QL (Modified) CONSTRAINT "ID PrimaryKey" PRIMARY KE

Statement]l

Mew. SQL

14. Press the F5 key to refresh the explorer contents for the session.

15. The table should now show up in the list of tables for the Tutorial
database.

B Ee'.tateﬂBManage:
File Edit Explorer Tasks Statement Window F

(] New ~ [Open
B Q&% Y| wium-
E'Ia HevateDB Manager

- @ Default
Tﬂﬁ“j Users
E{E Raoles
._:'E Databases
=8
Eifj Tables
Eﬁ Customner

B'{a Views

L‘+_|1E| Procedures

Eu”j Functions

@] Save ﬁ Close

16. Click on the New.SQL tab to bring forward the SQL window.

17. Paste in the following INSERT SQL statement:

INSERT INTO "Customer" VALUES
(NULL,

Page 23

Client-Server Application Tutorial

'Elevate Software, Inc.',
'168 Christiana Street',
T

'North Tonawanda',

'NY',

'14120°',

NULL)

18. Press the F9 key to execute the SQL statement.

| | Tutorial Properties | [New.SQL | [d] Nm.SQLl_@ New.SQL
INSERT IHTC "Customer”™ VALUES

Options ~ (HOLIL,
'Elevate: Software, Inc.',
[C] Request Sensitive Result Set '18% Christiana Street’,

[0l Request Execution Plan N ———

L} N’-f! 3
1141207,
Details x NULL)|
New.SQL (Modified)
Statement

19. Click on the Customer table that you just created.

) ElevateDB Manager
File Edit Explorer Tasks Statement Window |

: @ Mew |J% Open
ENR*AR: ARG ARt =
=13 ElevateDB Manager

- @ Default
aﬁ'j Uzers
EiEI Roles
._:I_,ﬁ Databases
-4 Tutorial
Eﬁl Tables
Bl coorne
F'{ﬂ Views
E'{EI Procedures
Eﬁl Functions

m o= Ckarar

il:ﬁ':l Save ﬁ| Close

20. Press the F6 key to make the Properties window the active window, and then click on the Open Table
link in the Tasks pane.

Page 24

Tasks

5 Open Table
B Table Privileges

B8 Alter Table
Rename Table
&3 Drop Takble

EE® Create Copy of Table

B Verify Table

21. You will now see the row that you just inserted.

@ Tuterial. Custorner Properties | @ Mew. S0L | @ Mew.S0L I E

o
)

Mame

=1 Column
Constra
i) Indexes
= Triggers

Client-Server Application Tutorial

srial Customer Properties | [@] New.SQL | [H] New.SQL | [H] New.5QL| B Tutorial.Customer

; o
earch for Row

itter Rows

Details -
WS

sing

Elevate Software, Inc.

You have now successfully created the Tutorial database.

Addressl
168 Christiana Street

Page 25

Client-Server Application Tutorial

2.3 Creating the Application

The following steps will guide you through creating a basic client-server application using ElevateDB.

Note

It is assumed that you have already created the required database using the steps outlined in the
Creating the Tutorial Database topic, and have configured and started the ElevateDB Server using
the steps outlined in the Starting and Configuring the ElevateDB Server topic.

1. Click on the File option from the main menu.

2. Click on the New option from the File menu, and click on the VCL Forms Application - C++Builder option
from the New sub-menu.

Mew P |[B VCL Forms Application - Delphi
g F€ Open.. B Multi-Device Application - Delphi
I_-é'} Open Project... Ctrl+F11 i Package - Delphi
Open From Version Control.., 1| VCL Form - Delphi
R b
SR B Mubti-Device Form - Delphi
EH save Ctri=S & Unit - Delphi
s, Savedls Ij Other
e £ A S
G Save Project As..,
B Save Al Shift+ Ctrl+S Shdimae

3. Select the ElevateDB group on the tool palette and click on the plus (+) sign to expand the ElevateDB
group of components.

4. Click on the TEDBSession component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBSession component will be dropped on the form.

| ElevateDB

Etg TEDEDataha Mame: TE DBSession
Unit: edbcomps

% TEDETable Package: edbdesign.bpl

% TECBQuery

@ k.-i TEDBScript

% TEDBStoredProc

'%3 TEDEUpdatesolL

m

Page 26

Client-Server Application Tutorial

5. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial, click on the SessionType property and change its
value to stRemote, click on the LoginUser property and change its value to the default administrator user
name Administrator, and click on the LoginPassword property and change its value to the default
Administrator user password EDBDefault. Make sure that the RemoteAddress property is set to
127.0.0.1 (the default) and that the RemotePort property is set to 12010 (the default).

RemotePing {'g_f'_. True
RemotePingInterval &0
RemotePort 12010

RemoteService

RemoteSignature |edb_signature

RemoteTimeout 150

RemoteTrace [7] False

SessionDescription

» Sessoname |Tutorial |
SessionType stlocal

Tag a

Sessionflame

All shown

6. Click on the TEDBDatabase component on the ElevateDB group on the tool palette, and then click on
the Form1 form. The TEDBDatabase component will be dropped on the form.

=l ElevateDB

%ﬂ TEDBENngine

% TEDBSession

[l TEDBDAtabase

i “Mame: TEDBDatabase

% TEDETable Unit: edbcomps
Package: edbdesign.bpl

m

Ll__ﬁh d TEDBScript
@a TEDBStoredProc

l%j TEDBUpdateSQL

7. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the Database property and select the Tutorial database that you have
already created from the drop-down list.

Page 27

Client-Server Application Tutorial

| #= Object Inspector oz
\EDBDatabasel TELEDatabase]
Properties | Events
Connected [C|False
» DatsbaseName TutoriaiDgl
EngineVersion 2,04 Build 3
KeepConnection ||V True
Mame EDBDatabase1
SessionMame Tutorial

8. Click on the TEDBTable component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBTable component will be dropped on the form.

= ElevateDB

i % TECETable

51y TeDB(Name: TEDBTable
Unit edbcomps |
@a TEDBS Package: edbdesign.bpl

m

d TECBStoredProc

'%3 TEDBUpdateSqL

9. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the TableName property and change its value to Customer. Click on the
Active property and change its value to True. If you have followed all of the steps correctly, the Active
property should successfully change to True without error.

Page 28

: }é;_ﬂbj.ect Inspector

|

[EDBTable1 TEDETable

Properties | Events |

&)

Active
AutoCalcFields
CopyOnAppend
DatabaseMame
EngineVersion
Exdusive
FieldDefs

Filter

Filtered
[#|FilterCOptions
IndexDefs
IndexFieldNames
IndexMame
MasterFields
MasterSource
Mame
ReadOnly
SessionMame
StoreDefs

¥ |TableMame

[D False

ETrue

[C|False

TutorialDB
2,04 Build 3

[T False
{TFieldDefs)

[T False
1
{TIndexDefs)

EDETable1

[CIFalse

Tutorial

10. Select the Data Access tab on the tool palette.

Client-Server Application Tutorial

11. Click on the TDataSource component on the Data Access tab on the tool palette, and then click on the

Form1 form. The TDataSource component will be dropped on the form.

- Data Access

T TDataSource

TClie pame: TDataSource
Unit: DB
TDat Package: deldbl140.bpl

B

r

eE

1
[&

r

TXMLTransform
T¥MLTransformPraovider

. T¥MLTransformClient

12. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSet
property and change its value to EDBTablel.

| /E Object Inspector 053]
EDataSu-mﬂ:l TDatasource B
Properties | Events |
 |autoEdit (& True)
¥ Dataset EDBTabler 7]
Enabled ([&F] True
Mame DataSourcel

Page 29

Client-Server Application Tutorial

13. Select the Data Controls tab on the tool palette.

14. Click on the TDBGrid component on the Data Controls tab on the tool palette, and then click on the

Form1 form. The TDBGrid component will be dropped on the form. You can use the design-time anchors

to resize the TDBGrid component as required on the form.
=] Data Controls

| ’T-"_T_ TDBGrid

__1

r&] TOBN3 pjame: TDBGrid

G | Unit: DBGrids

{A] TOBTE package: deldb140.bpl

(% ToBEdt

T

@ TDEMemo
%I TDBImage
%@ TOEListBox

AE ToBComboBox

15. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSource
property and change its value to DataSourcel.

| /5 object Inspector mjez|
\DBGrid1 TDEGHd]
Properties | Events
Align . alMone -
AlignwithMarging ||| Falze
[#|Anchars [akLeft,akTop]
BiDiMode bdLeftToRight
BorderStyle baSingle
Calar] dwindow
Columns {TDBGridCaolumns)
[# |Constraints (TSizeConstraints)
CH3D [¥] True
Cursor crDefault
CustomHint
¥ |DataSource DataSourcel| ... [7]
DefaultDrawing [¥]True |

16. Click on the File option from the main menu.

17. Click on the Save All option from the File menu.

Page 30

Client-Server Application Tutorial

File | Edit Search View Refac

Mew 3 i
J L5 Open..
D ¢= Open Project... Ctrl+F11
J- Recpen r
. B Save Ctrl+5
= & SaveAs...
B . Save Project As...
(=0 SaveAll Shift+Ctrl+5
% Close)
®| L. Close All)
Y Use Unit.. Alt+F11
& ; Print.
2 | Bt

18. Save the project and the main form/unit under the desired names.

You have now successfully created a basic client-server application for ElevateDB.

Page 31

DBISAM Migration

This page intentionally left blank

Page 32

DBISAM Migration

Chapter 3
DBISAM Migration

3.1 Introduction

Migrating an existing DBISAM application to ElevateDB is a 3-step process that is outlined below:

Step 1 - Migrating a DBISAM Database Using the ElevateDB Manager or Migrating a DBISAM Database
Using Code

The first step is to migrate the existing DBISAM database (or databases) to ElevateDB format. This can be
accomplished interactively via the ElevateDB Manager or via the MIGRATE DATABASE statement.

Step 2 - Renaming the DBISAM Components

The second step is to rename any existing DBISAM components in the application to their ElevateDB
counterparts. This can be accomplished manually in the Delphi, C++Builder, Borland Developer Studio,
CodeGear RAD Studio, Embarcadero RAD Studio, or Lazarus IDE.

Step 3 - Updating the Source Code

The third step is to update the application source code so that it uses the new ElevateDB components.
This the most involved step of the migration process.

Page 33

DBISAM Migration

3.2 Migrating a DBISAM Database Using the ElevateDB Manager

The following steps will guide you through migrating a database from another format to ElevateDB format
using the ElevateDB Manager.

1. The migrator modules provided with ElevateDB are:

Module Description

edbmigrate ElevateDB migrator module

edbmigratedbisam1 DBISAM Version 1.x migrator module
edbmigratedbisam?2 DBISAM Version 2.x migrator module
edbmigratedbisam3 DBISAM Version 3.x migrator module
edbmigratedbisam4 DBISAM Version 4.x migrator module

edbmigratebde BDE (Borland Database Engine) migrator module
edbmigrateado ADO (Microsoft ActiveX Data Objects) migrator module
edbmigratendb NexusDB migrator module

edbmigrateads ADS (Advantage Database Server) migrator module

You can find these migrator modules as part of the ElevateDB Additional Software and Utilities (EDB-ADD)
installation in the \libs subdirectory under the main installation directory. There are ANSI and Unicode
versions of each of the migrator modules that will work with both ANSI or Unicode sessions, and the
ElevateDB Manager will automatically select the correct migrator modules for the session being used.

Note
You can download the ElevateDB Additional Software and Utilities (EDB-ADD) installation from the
Downloads page of the web site.

2. Start the ElevateDB Manager (edbmgr.exe).

Note
You can find the ElevateDB Manager as part of the ElevateDB Additional Software and Utilities
(EDB-ADD) installation available from the Downloads page of the web site.

ElevateDB-ADD

Lj ElevateDB Manager

'ﬂ ElevateDB Version 2 5L Manual
1‘3 Releaze Information

I:I1

2] Usage Agreement

3. Make sure that the session is using the desired character set and configuration file folder
(C:\Tutorial).

Page 34

DBISAM Migration

a. Select the Default session from the list of available sessions.

3 ElevateDB Manager Properties

Mame

& Default

Tasks

ka Edit Engine Settings
& Create Mew Session

& Dizconnect All Sessions

b. In the Tasks pane, click on the Edit Session link.

3 ElevateDB Manager Properties

Mame

Tasks

*»

& Connect 5ession
& Edit Session

£ =
Rename Seszion

% Delete Session

% Create Copy of Session

c. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Character Set

;"‘E} Select the character set to use with the seszion. With local sessions, the character set
e must match the character set of the configuration being accessed. With remote
sessions, the character set must match the character set of the ElevateDE Server being

(T ANST @ Unicode

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

d. On the Local page of the Edit Session dialog, make sure that the Configuration File - File Folder is set
to the desired folder.

Page 35

DBISAM Migration

| General | Local i Database Customizatinnsl Legin | Locking/Buffering | Pro

Configuration File

Enter the configuration file information. The configuration file can b
in-mernory. If located on disk, the configuration file folder can be ar

Location @ On Disk () In Memory

File Folder C:\Tutariall

e. Click on the OK button.

4. Double-click on the Default session in the Properties window in order to connect the session.

3 ElevateDB Manager Properties

Tasks

»

& Connect Session
& Edit Session

- -
[EH Rename Session

& Delete Session

& Create Copy of Session

5. In the Tasks pane, click on the Create Database Migrators link. This will automatically create all of
the database migrators that are shipped with the ElevateDB Manager.

Page 36

93 Default Properties

>

Tasks

& Disconnect Session
& Edit Session
Renarne Session
% Delete Session

& Create Copy of Session

ﬁ, View Logged Events
{tL View Installed Modules

@ Create Database Migrators

Note

Marmi
= Us
[=h Ra
=h Da
[St
=i el

DBISAM Migration

If the character set of the session is changed in the future (Step 3 above), just re-execute this step
in the ElevateDB Manager and the database migrators will be updated so that they use the correct

migrator modules that match the character set of the session.

6. Click on the New button on the main toolbar.

E | ElevateDB Manager
File Edit Explorer Tasks Window Help

@ Mew = IJI% Cpen
Blolalvy (@ a-

7. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

8. Press the F9 key to execute the SQL statement.

Page 37

DBISAM Migration

| 3 ElevateDB Manager Pmperti5| B New.sQL

CREATE DATABASE "Tutorial"”
Options A PATH 'C:\Tutorial\DB'
DESCRTPTION 'Tutorial Database’
[C] Request Sensitive Result Set

[l Request Execution Plap

Detailz

Eed

Mew S0 (Modified)

9. Press the F5 key to refresh the explorer contents for the session.

10. Click on the + sign next to the Databases node in the treeview.

B EIB.LatEﬂEManage:
File Edit Explorer Tasks Statement Window |

: @ Mo o |JF%_ Open Eﬂjsm B Close
@@ E[E)E

|

=-id HlevateDB Manager
=@ Default

Eﬁ Uzers

Eﬁ Roles

EHED
@@ Tutorial
Eﬁ Stores

Eﬁ lobs

R

11. Click on the new Tutorial database that you just created.

. ElevateDB Manager
File Edit Explorer Tasks Statement Window |

: @ Mew IJ% Open

Q| &

||;_[?J Save ﬁl Close

=-id HevateDB Manager
- @ Default
- Users
EE Roles

Eﬁ Databases
58
mﬁ'j Stores
EE lobs

Page 38

DBISAM Migration

12. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

B Tuteorial Properties |@ Nm.SQL|

»

Tasks

ES Open Database
@3 Database Privileges
@ Alter Database

[ﬂ'ﬂ Fename Database
& Drop Database

& Create Copy of Database

QQ Backup Database
@ Restore Database

13. Click on the Migrate Database link in the Tasks pane for the database.

[Tutorial Properties

Mame
Ch Tables

Eﬁ Close Database = Views
=) Procedures
[#® Database Privileges =1 Functions

*»

Tasks

}'__ﬁ Alter Database

Rename Database

Eﬁ Drop Database

@; Create Copy of Database

9’5 Backup Database
rﬁ Restore Databaze

@ Publish Databaze

G:q Save Database Updates
|1:]§ Load Database Updates

&8 Migrate Database &% Dependenc

Page 39

DBISAM Migration

14. Select the desired migrator from the list of migrators.

'Migrate Database

Source |

Migrator Mame

@ Select the migrator to use for the migration. The migrators shown are the
default migrators provided with ElevateDB. Other migrators may be available
for other data sources, Check theInclude Table Data check box in order to
have the table data migrated over also.

Migrator | DEISAM 4 .4
[¥] Include Table Data

15. Each migrator will have various parameters that control how the migration process executes, and
these parameters are expressed in terms that are easily understood. Usually, at a minimum, the source
database name or directory parameter will need to be set. To set the source database parameters:

a. Click on the desired parameter in the list of parameters.

b. Type in the parameter value in the parameter edit control, and click on the Set Parameter button.

Parameters

Enter the parameter values for the migrator,

Marne Type Value *
BlankMull5trings Bocolean False (=]
Databaselirectory VarChar |
EngineSignature VarChar DEISAM_SIG .

% Set Parameter Value E Clear Parameter Yalue

Value chsourcedbl

15. Click on the OK button, and the migration process will begin and progress information will be present
in the bottom status bar of the ElevateDB Manager.

You have now successfully migrated your database to ElevateDB.

Page 40

DBISAM Migration

3.3 Migrating a DBISAM Database Using Code

The following steps will guide you through migrating a database from DBISAM format to ElevateDB format
using the DBISAM migrators provided with ElevateDB.

1. Make sure that the DBISAM migrator modules (DLLs) are registered in the configuration file. The
DBISAM migrator modules provided with ElevateDB are:

Module Description

edbmigratedbisam1 DBISAM Version 1.x migrator module
edbmigratedbisam?2 DBISAM Version 2.x migrator module
edbmigratedbisam3 DBISAM Version 3.x migrator module
edbmigratedbisam4 DBISAM Version 4.x migrator module

You can find these migrator modules as part of the ElevateDB additional software (EDB-ADD) installation
in the \libs subdirectory under the main installation directory. There are ANSI and Unicode versions of
each of the migrator modules that will work with both ANSI or Unicode sessions.

Note
You can download the ElevateDB Additional Software and Utilities (EDB-ADD) installation from the
Downloads page of the web site.

In order to register the required DBISAM migrator module(s), use the CREATE MODULE statement. You
can use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to register the migrator module using the
// Execute method

Session () ->Execute ("CREATE MODULE \"DBISAM4\" "+
"PATH 'C:\Program Files\ElevateDB 2
ADD\libs\edbmigratedbisam4\unicode\win32\edbmigratedbisam4.dll' "+
"DESCRIPTION 'DBISAM 4 Migrator'");

2. Create a migrator for the desired migrator module using the CREATE MIGRATOR statement. You can
use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to create the migrator using the
// Execute method

Session () ->Execute ("CREATE MIGRATOR \"DBISAM4\" "+

"MODULE \"DBISAM4\" "+
"DESCRIPTION 'DBISAM 4 Migrator'");

Page 41

DBISAM Migration

Note

It's important that the MODULE referenced in the CREATE MIGRATOR statement matches the
module that you registered first with the CREATE MODULE statement. You'll need to execute both
statements for each migrator that you want to use with ElevateDB.

3. If necessary, create the ElevateDB database to use as the target database for the migration using the
CREATE DATABASE statement. If you have already created the database or the database already exists,
then you can skip this step. You can use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to create the database using the
// Execute method

Session () ->Execute ("CREATE DATABASE MyDatabase "+
"PATH 'c:\\mydatabase'");

4. Execute the MIGRATE DATABASE statement from the ElevateDB database that you just created, or that
already existed. You can use the TEDBDatabase Execute method to execute the statement:

// This example uses an existing TEDBDatabase
// component to migrate the database using the
// Execute method

{
MyDatabase->DatabaseName="MyDatabase";
MyDatabase->Database="MyDatabase";
MyDatabase->Execute ("MIGRATE DATABASE FROM \"DBISAM4\" "+
"USING DatabaseDirectory = 'c:\\dbisamdata'"+
"WITH DATA");

When the MIGRATE DATABASE statement is executed, the source DBISAM database directory should
migrate to the current ElevateDB database. If you would like to display status and progress information
during the migration, you can attach event handlers to the TEDBDatabase OnStatusMessage and

OnProgress events.

Page 42

DBISAM Migration

3.4 Renaming the DBISAM Components

The ElevateDB VCL component set for the Delphi, C++Builder, Borland Developer Studio, CodeGear RAD
Studio, Embarcadero RAD Studio, and Lazarus products are very similar to their DBISAM counterparts.
Therefore, it is possible to simply edit the form files in the IDE and modify the names of the components
and their published properties and events so that they will use the ElevateDB components instead.

Updating Components on a Form or Data Module

The following steps will allow you to modify the DBISAM components on a form or data module so that
they are compatible with ElevateDB:

Warning

It is possible to corrupt a form file or otherwise cause the loss of components by not properly
completing the following steps. Please be very careful when editing a form file as text and make
sure that all defined objects are structured properly.

1. With the form or data module open in the IDE, press the Alt-F12 keys. This will open the form in text
mode.

2. Modify the components and their published properties and events as required. Objects are always
structured as:

object <ObjectName>

<Property or Event Definition>
[<Property or Event Definition>]
[<Property or Event Definition>]
end

<Property or Event Definition> =

<Property or Event Name> = <Value>

Collection properties are defined as:

<Property or Event Name> = <
<ItemDefinition>
[<ItemDefinition>]
[<ItemDefinition>]

>

<ItemDefinition> =

item

<Property or Event Definition>
[<Property or Event Definition>]
[<Property or Event Definition>]
end

Page 43

DBISAM Migration

3. Press the Alt-F12 keys to return the form to design mode. If there are any properties or events still
defined that don't belong to any of the new ElevateDB components, then you will receive a warning and
be prompted to remove them from the form definition. Ideally, if you have edited the form entirely so that
all published properties and events reflect the new ElevateDB components, you will not receive any errors
or warnings.

Component Changes

Detailed information regarding the changes in the existing DBISAM components can be found in the
Component Changes topic.

Page 44

DBISAM Migration

3.5 Updating the Source Code

Updating the source code for an existing DBISAM application so that it works with ElevateDB is a 3-step
process that is outlined below:

Step 1 - Rename All Component References

The first step is to rename all component references so that they are using the new ElevateDB component
names. You can find information on the component name changes in the Component Changes topic.

Step 2 - Modify All Property, Method, and Event References

The second step is to modify all property, method, and event references so that they are using the new
ElevateDB properties, methods, and events. You can find information on the changes to the properties,
methods, and events in the Component Changes topic. In many cases you will find that ElevateDB
requires an SQL statement to be executed in place of what used to be a method call in DBISAM.

Step 3 - Modify All SQL Statements
The third and final step is to modify all existing DBISAM SQL statements so that they use the new

ElevateDB syntax. You can find information on the differences in the SQL implementations of DBISAM and
ElevateDB in the SQL Changes topic.

Page 45

DBISAM Migration

3.6 Component Changes

The following is the list of components in DBISAM and their counterpart in ElevateDB. Click on each
component name to find out the changes to the properties, methods, and events for the component.

DBISAM Component ElevateDB Component
TDBISAMEngine TEDBEnNgine
TDBISAMSession TEDBSession
TDBISAMDatabase TEDBDatabase
TDBISAMDataSet TEDBDataSet
TDBISAMDBDataSet TEDBDBDataSet
TDBISAMTable TEDBTable
TDBISAMQuery TEDBQuery
None TEDBStoredProc
TDBISAMUpdateSQL TEDBUpdateSQL
EDBISAMEnNgineError EEDBError

Page 46

DBISAM Migration

3.7 TDBISAMEngine Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

CreateTempTablesInDatabase

FilterRecordCounts

Functions

MaxTableBlobBufferCount
MaxTableBlobBufferSize
MaxTableDataBufferCount
MaxTableDataBufferSize
MaxTableIndexBufferCount
MaxTableIndexBufferSize

ServerAdminAddress
ServerAdminPort
ServerAdminThreadCacheSize

ServerConfigPassword

TableBlobBackupExtension
TableBlobTempExtension
TableBlobUpgradeExtension
TableDataBackupExtension
TableDataTempExtension
TableDataUpgradeExtension
TableIndexBackupExtension
TableIndexTempExtension
TableIndexUpgradeExtension

TableFilterIndexThreshhold

TableMaxReadLockCount

Description

This property is no longer necessary. ElevateDB always
creates temporary tables used in optimizing, repairing, or
altering tables in the same location as the tables themselves.

This property is no longer necessary. ElevateDB does not
provide logical record numbers (sequence numbers).

This property is no longer necessary. ElevateDB uses SQL to
create and drop functions, and a special Information Schema
for storing the available functions in a given database. Please
see the CREATE FUNCTION, DROP FUNCTION, and Functions
Table topics for more information.

These properties are no longer necessary. ElevateDB allows
the buffering settings to be set on a per-table basis for each
table when the table is created or altered. Please see the
CREATE TABLE, ALTER TABLE, and Tables Table topics for
more information.

These properties are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection.

This property is no longer necessary. ElevateDB uses one
encryption password per application for all encryption, and it
is represented by the EncryptionPassword property.

These properties have been removed and replaced with the
hard-coded value of ".0ld". ElevateDB simply appends the
".0ld" to the existing file when creating backup copies during
the optimization, alteration, or repair of tables.

This property is no longer required under ElevateDB and has
been removed.

This property is no longer necessary. For performance
reasons, ElevateDB does not relinquish read locks when
performing table scans in order to satisfy a query or filter
condition.

Page 47

DBISAM Migration

TableReadLockTimeout
TableTransLockTimeout
TableWriteLockTimeout

Methods

Removed

AddServerDatabase
ModifyServerDatabase
DeleteServerDatabase
GetServerDatabase
GetServerDatabaseNames

AddServerDatabaseUser
ModifyServerDatabaseUser
DeleteServerDatabaseUser
GetServerDatabaseUser
GetServerDatabaseUserNames

AddServerEvent
ModifyServerEvent
DeleteServerEvent
GetServerEvent
GetServerEventNames

AddServerProcedure
ModifyServerProcedure
DeleteServerProcedure
GetServerProcedure
GetServerProcedureNames

AddServerProcedureUser
ModifyServerProcedureUser
DeleteServerProcedureUser
GetServerProcedureUser
GetServerProcedureUserNames

AddServerUser
ModifyServerUser
DeleteServerUser
GetServerUser
GetServerUserNames
ModifyServerUserPassword

Page 48

These properties are no longer required under ElevateDB and
have been removed

Description

These methods are no longer necessary. ElevateDB uses SQL
to create and drop databases, and a special Configuration
database for storing the available databases in a given
configuration. Please see the CREATE DATABASE, DROP
DATABASE, and Databases Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on databases and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and DatabasePrivileges Table topics for
more information.

These methods are no longer necessary. ElevateDB offers
jobs, which are the same thing as scheduled events in
DBISAM. ElevateDB uses SQL to create and drop jobs, and a
special Configuration database for storing the available jobs in
a given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop procedures, and a special Information
Schema for storing the available procedures in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on procedures and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and ProcedurePrivileges Table topics for
more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users, and a special Configuration
database for storing the available users in a given
configuration. Please see the CREATE USER, ALTER USER,
DROP USER, and Users Table topics for more information.

BuildWordList
GetDefaultTextIndexParams

ConvertIDToLocaleConstant
ConvertLocaleConstantToID
GetLocaleNames
IsValidLocale
IsValidLocaleConstant

GetServerConfig
ModifyServerConfig

GetServerLogCount
GetServerLogRecord

GetServerMemoryUsage

GetServerSessionInfo

StartAdminServer
StopAdminServer
StartMainServer
StopMainServer

Events

Removed

DBISAM Migration

These methods are no longer supported. Word generation
and text filtering for text indexes is directly tied to the defined
text indexes in ElevateDB, so these methods are no longer
possible. Please see the Text Indexing topic for more
information.

These methods are no longer necessary. ElevateDB uses a
special Configuration database for storing the available
collations (locales) in a given configuration. Please see the
Collations Table topic for more information.

These methods are no longer necessary. ElevateDB stores all
server startup and operational information in the TEDBEngine
component itself, and all additional configuration information,
such as the defined databases, users, roles, and jobs, is
stored in the server configuration file. The information in the
server configuration file can be accessed via the special
Configuration database available for each configuration.
Please see the Configuration Database topic for more
information.

These methods are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

This method is no longer supported, and was deprecated in
the latest DBISAM versions.

This method is no longer supported. Use the
OnServerSessionEvent event along to track session
information as sessions are created, connected, etc.

These methods are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection. In addition, the ElevateDB server
is automatically stopped and started when the TEDBEngine
Active property is assigned a new value.

Description

Page 49

DBISAM Migration

AfterDeleteTrigger
AfterInsertTrigger
AfterUpdateTrigger
BeforeDeleteTrigger
BeforelnsertTrigger
BeforeUpdateTrigger

OnDeleteError
OnlnsertError
OnUpdateError

OnCompress
OnDecompress

OnCryptolnit
OnCryptoReset
OnDecryptBlock
OnEncryptBlock

OnCustomFunction

OnServerConnect
OnServerDisconnect
OnServerLogin
OnServerLogout
OnServerReconnect

OnServerLogCount
OnServerLogEvent
OnServerLogRecord

OnServerProcedure

OnServerScheduledEvent

OnTextIndexFilter
OnTextIndexTokenFilter

Page 50

These methods are no longer necessary. ElevateDB uses SQL
to create and drop triggers, and a special Information Schema
for storing the available triggers defined for the tables in a
given database. Please see the CREATE TRIGGER, DROP
TRIGGER, and Triggers Table topics for more information.

These events are no longer supported.

These events are no longer supported. ElevateDB does not
allow for custom compression due to the need for it to run as
managed code under .NET.

These events are no longer supported. ElevateDB does not
allow for custom encryption due to the need for it to run as
managed code under .NET.

This event is no longer necessary. ElevateDB uses SQL to
create and drop functions, and a special Information Schema
for storing the available functions in a given database. Please
see the CREATE FUNCTION, DROP FUNCTION, and Functions
Table topics for more information.

These events have been removed and replaced with the
single OnServerSessionEvent event in ElevateDB. See below
for more information on the new OnServerSessionEvent
event.

These events are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

This event is no longer necessary. ElevateDB uses SQL to
create and drop procedures, and a special Information
Schema for storing the available procedures in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

This event is no longer necessary. ElevateDB offers jobs,
which are the same thing as scheduled events in DBISAM.
ElevateDB uses SQL to create and drop jobs, and a special
Configuration database for storing the available jobs in a
given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

These events are no longer supported. Word generation and
text filtering for text indexes is directly tied to the defined text
indexes in ElevateDB, so these methods are no longer
possible. Please see the Text Indexing topic for more
information.

DBISAM Migration

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed
EngineSignature

LockFileName

ServerConfigFileName

ServerEncryptionPassword

ServerLicensedConnections

ServerMainAddress
ServerMainPort
ServerMainThreadCacheSize

TableDataExtension
TableIndexExtension
TableBlobExtension

Methods

Changed

Description
This property has been renamed to the Signature property.

This property has been split into two properties. In ElevateDB,
the ConfigName property or CatalogName property is
combined with the LockExtension property to name the lock
file for either the configuration or a given database catalog.

This property has been split into two properties. In ElevateDB,
the ConfigName property is combined with the
ConfigExtension property to name the configuration file. The
ConfigPath property is used to determine where the
configuration file is created. ElevateDB uses a configuration
file for local applications as well as the ElevateDB Server,
whereas DBISAM only used a configuration file for the
DBISAM Database Server.

This property has been renamed to the EncryptionPassword
property. ElevateDB uses the EncryptionPassword property for
all encryption in the application.

This property has been renamed to the LicensedSessions
property. ElevateDB supports session count restrictions based
upon the LicensedSessions property for both local applications
and the ElevateDB server.

These properties have been renamed with the "Main" portion
stripped out. ElevateDB uses one port for both normal
connections and administrative connections, and both types of
operations can be performed using only one connection.

These proeprties have renamed to the TableExtension
property, the TableIndexExtension property, and the
TableBlobExtension property, respectively.

Description

Page 51

DBISAM Migration

AnsiStrToBoolean
AnsiStrToCurr
AnsiStrToDate
AnsiStrToDateTime
AnsiStrToFloat
AnsiStrToTime
BooleanToAnsiStr
CurrToAnsiStr
DateToAnsiStr
DateTimeToAnsiStr
FloatToAnsiStr
TimeToAnsiStr

Events

Changed

OnServerStart
OnServerStop
OnShutdown
OnStartup

These methods have been renamed with the "Ansi" portion
replaced with "SQL". This was done to reflect that these
methods now work with both ANSI strings and Unicode (wide)
strings.

Description

These events have been replaced with the BeforeStart,
AfterStart, BeforeStop, and AfterStop events. Also, the new
events apply regardless of whether the engine component is
configured to run as a client engine or a server engine via the

EngineType property.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

BackupExtension

UpdateExtension

TablePublishExtension

CatalogName
CatalogExtension

LogExtension
LogCategories
MaxLogFileSize

Page 52

Description

This property is used to specify the extension used for
ElevateDB backup files. Please see the BACKUP DATABASE,
RESTORE DATABASE, and Backups Table topics for more
information.

This property is used to specify the extension used for
ElevateDB update files. Please see the SAVE UPDATES, LOAD
UPDATES, and Updates Table topics for more information.

This property is used to specify the extension used for the
publish files associated with published ElevateDB tables.
Please see the PUBLISH DATABASE, UNPUBLISH DATABASE,
and Tables Table topics for more information.

These two properties are combined together to specify the file
name used by ElevateDB for all database catalogs.

These properties are used in ElevateDB to control the naming
of the log file, what types of events are logged in the log file,
and the maximum log file size. ElevateDB combines the
ConfigName property with the LogExtension property to name
the log file, and the log file is always created in the path
specified by the ConfigPath property. The log file in ElevateDB
is a ciruclar log file, and the MaximumLogFileSize determines
at which file size ElevateDB starts to re-use the log file space

ServerAuthorizedAddresses
ServerBlockedAddresses
ServerDeadSessionExpiration
ServerDeadSessionInterval
ServerMaxDeadSessions
ServerSessionTimeout

ServerRunJobs
ServerJobCategory

TempTablesPath

Methods

New
GetTempTablesPath

DayTimelntervalToSQLStr
YearMonthIntervalToSQLStr
SQLStrToDayTimelnterval
SQLStrToYearMonthInterval

Events

New

None

DBISAM Migration

of the oldest log entries with the newer log entries.

These properties were added to replace the same server
configuration file settings that were available in the DBISAM
Database Server.

These properties determine whether the ElevateDB Server can
run jobs, and if so, what category of jobs it should run.

This property specifies where any temporary tables created by
the engine will be stored.

Description

This method returns the operating system-defined temporary
files path.

These four methods are used to convert SQL intervals, either
day-time intervals or year-month intervals, to and from
strings. Please see the Interval Types topic for more
information.

Description

Page 53

DBISAM Migration

3.8 TDBISAMSession Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

CurrentServerUser

PrivateDir

RemoteEncryptionPassword

RemoteParams

StrictChangeDetection

Methods

Removed

AddPassword
GetPassword
RemoveAllPasswords
RemotePassword

AddRemoteDatabase
ModifyRemoteDatabase
DeleteRemoteDatabase
GetRemoteDatabase
GetRemoteDatabaseNames

AddRemoteDatabaseUser
ModifyRemoteDatabaseUser
DeleteRemoteDatabaseUser
GetRemoteDatabaseUser

GetRemoteDatabaseUserNames

AddRemoteEvent
ModifyRemoteEvent

Page 54

Description

This property is no longer necessary. ElevateDB uses SQL for
procedures and functions.

This property is no longer necessary. ElevateDB uses one
temporary tables property setting, the TempTablesPath
property, for all sessions.

This property is no longer necessary. ElevateDB uses one
encryption password per application for all encryption, and it
is represented by the EncryptionPassword property.

This property is no longer necessary. ElevateDB uses SQL for
procedures and the TEDBStoredProc component for executing
the procedures.

This property is no longer supported. ElevateDB does not
support strict change detection.

Description

These methods are no longer supported. ElevateDB offers a
complete user security architecture that surpasses simple
password access to individual tables. Please see the User
Security topic for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop databases, and a special Configuration
database for storing the available databases in a given
configuration. Please see the CREATE DATABASE, DROP
DATABASE, and Databases Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on databases and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and DatabasePrivileges Table topics for
more information.

These methods are no longer necessary. ElevateDB offers
jobs, which are the same thing as scheduled events in

DeleteRemoteEvent
GetRemoteEvent
GetRemoteEventNames

AddRemoteProcedure
ModifyRemoteProcedure
DeleteRemoteProcedure
GetRemoteProcedure
GetRemoteProcedureNames

AddRemoteProcedureUser
ModifyRemoteProcedureUser
DeleteRemoteProcedureUser
GetRemoteProcedureUser
GetRemoteProcedureUserNames

AddRemoteUser
ModifyRemoteUser
ModifyRemoteUserPassword
DeleteRemoteUser
GetRemoteUser
GetRemoteUserNames
ModifyRemoteUserPassword

CallRemoteProcedure
RemoteParamByName
SendProcedureProgress

DisconnectRemoteSession
RemoveRemoteSession

GetRemoteAdminAddress
GetRemoteAdminPort
GetRemoteAdminThreadCacheSize
GetMainAdminAddress
GetMainAdminPort
GetMainAdminThreadCacheSize

GetRemoteConfig
ModifyRemoteConfig

DBISAM Migration

DBISAM. ElevateDB uses SQL to create and drop jobs, and a
special Configuration database for storing the available jobs in
a given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop procedures, and a special Information
Schema for storing the available functions in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on procedures and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and ProcedurePrivileges Table topics for
more information.

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users, and a special Configuration
database for storing the available users in a given
configuration. Please see the CREATE USER, ALTER USER,
DROP USER, and Users Table topics for more information.

These methods are no longer necessary. ElevateDB uses SQL
for procedures and the TEDBStoredProc component for
executing the procedures.

These methods are no longer necessary. ElevateDB uses the
DISCONNECT SERVER SESSION and REMOVE SERVER
SESSION statements to disconnect and remove server
sessions on an ElevateDB Server. You can issue these
statements via the new Execute method.

These methods are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection. In addition, the address, port, and
thread cache size parameters for an ElevateDB server are not
configurable remotely and must be configured prior to starting
an ElevateDB server.

These methods are no longer necessary. ElevateDB stores all
server startup and operational information in the TEDBEngine
component itself, and all additional configuration information,
such as the defined databases, users, roles, and jobs, is
stored in the server configuration file. The information in the
server configuration file can be accessed via the special
Configuration database available for each configuration.
Please see the Configuration Database topic for more
information.

Page 55

DBISAM Migration

GetRemoteConnectedSessionCount
GetRemoteSessionCount
GetRemoteSessionInfo

GetRemoteLogCount
GetRemoteLogRecord

GetRemoteMemoryUsage

GetRemoteUpTime
RemoveAllRemoteMemoryTables

StartRemoteServer
StopRemoteServer

Events

Removed

OnPassword

These methods are no longer necessary. ElevateDB uses SQL
to query any ElevateDB server sessions, and a special
Configuration database for storing the server sessions on a
given ElevateDB server. Please see the ServerSessions Table
topic for more information.

These methods are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

This method is no longer supported, and was deprecated in
the latest DBISAM versions.

This method is no longer supported.
This method is no longer supported.

These methods are no longer supported. The ElevateDB
server cannot be remotely stopped and started.

Description

This event is no longer supported. ElevateDB offers a
complete user security architecture that surpasses simple
password access to individual tables. Please see the User
Security topic for more information.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed

Page 56

Description

Active

CurrentRemoteUser

LockProtocol
LockRetryCount
LockWaitTime

ProgressSteps

RemoteUser
RemotePassword

Methods
Changed
GetRemoteEngineVersion
Events

Changed

OnRemoteLogin

OnRemoteTrace

OnShutdown
OnStartup

DBISAM Migration

This property has been renamed to the Connected property.

This property has been renamed to the CurrentUser property.
ElevateDB requires a user login for both local and remote
sessions.

These properties have been renamed and prefixed with
"Record" in ElevateDB in order to make clear that these
properties deal with row locking exclusively.

This property has been changed to the ProgressTimelnterval
property, which uses a time interval instead of a fixed number
of progress steps to ensure that progress updates still take
place in a reasonable span of time irrespective of the length
or scope of a given operation.

These properties have been renamed to the LoginUser and
LoginPassword properties, respectively. ElevateDB requires a
user login for both local and remote sessions.

Description

This method has been renamed to the
GetRemoteServerVersion method.

Description

This event has been renamed to the OnLogin event.
ElevateDB requires a user login for both local and remote
sessions.

This event uses a different record type for the trace record
that is passed as a parameter to the event handler.

These events have been replaced with the BeforeConnect,
AfterConnect, BeforeDisconnect, and AfterDisconnect events.
Also, the new events apply regardless of whether the session
component is configured to run as a remote session or a local
session via the SessionType property.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

Description

Page 57

DBISAM Migration

KeepTablesOpen

RecordChangeDetection

SessionDescription

SQLStmtCacheSize

FuncProcCacheSize

ExcludeFromLicensedSessions

Methods

New
CalculateCRC32ForStream

Execute

GetStoredProcNames

SaveStoreFileToStream
SaveStreamToStoreFile

FreeCachedSQLStmts

FreeCachedFuncProcs

Events

New

None

Page 58

This property has been moved from the database level to the
session level in ElevateDB. This gives the developer the ability
to control whether tables should be kept open even in SQL
procedures or functions in addition to controlling whether
tables should be kept open during normal table and query
processing.

This property was added to allow the developer to specify
whether changes to a row will issue a warning exception
when the row is updated or deleted. In DBISAM this behavior
was not configurable and any changes to a row would cause
an #8708 (DBISAM_KEYORRECDELETED) exception to be
raised.

This property allows the developer to specify a description for
the session.

This property allows the developer to specify an SQL
statement cache size all open databases in the session.

This property allows the developer to specify a
function/procedure cache size all open databases in the
session.

This property specifies whether the current session should be
included in the session license count controlled by the
TEDBENgine LicensedSessions property for local sessions, or
by the ElevateDB Server for remote sessions.

Description
This method calculates a CRC32 checksum for a stream.

This method allows you to execute an SQL statement against
the special Configuration database. This is useful for
performing configuration-level queries or operations.

This method populates a list with the names of all stored
procedures and functions defined within the specified
database.

This method loads a store file into a stream.
This method saves a stream to a store file.

This method allows you to free all cached SQL statements for
a specific open database, or for all open databases.

This method allows you to free all cached
functions/procedures for a specific open database, or for all
open databases.

Description

DBISAM Migration

Page 59

DBISAM Migration

3.9 TDBISAMDatabase Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

KeepTablesOpen

Methods

Removed

Backup
BackupInfo
Restore

Events

Removed

None

Description

This property has been moved to the session level and the
TEDBSession component.

Description

These methods are no longer necessary. ElevateDB uses SQL
for backing up and restoring databases, as well as retrieving
information about backups from disk, and a special
Configuration database for storing the available backups in a
given configuration. Please see the BACKUP DATABASE,
RESTORE DATABASE, SET BACKUPS STORE, and Backups
Table topics for more information.

Description

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed

Directory
RemoteDatabase

Methods

Changed

Page 60

Description

These properties have been replaced by the single Database
property. ElevateDB uses SQL to create and drop databases,
and a special Configuration database for storing the available
databases in a given configuration. Please see the CREATE
DATABASE, DROP DATABASE, and Databases Table topics for
more information.

Description

StartTransaction

Events

Changed

OnBackupLog
OnBackupProgress
OnRestorelLog
OnRestoreProgress

DBISAM Migration

The StartTransaction method accepts a list of tables as a
string array instead of a TStrings object, and there is one
additional parameter for specifying the transaction lock
timeout in milliseconds.

Description

These events have been replaced with the OnLogMessage,
OnProgress, and OnStatusMessage events.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

None

Methods

New

TableInTransaction

Events

New

None

Description

Description

The TableInTransaction method is used to determine if a
specific table is involved in the current transaction.

Description

Page 61

DBISAM Migration

3.10 TDBISAMDataSet Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed
AutoDisplayLabels

FilterOptimizeLevel

FilterRecordCount

KeySize

RecordHash
RecordID

Methods

Removed

ExportTable
ImportTable

Events

Removed
OnCachedUpdateError

OnLoadFromStreamProgress
OnSaveToStreamProgress

Description
This property is no longer supported.

This property is no longer supported. Eventually it will be
replaced by a FilterPlan property instead.

This property is no longer necessary. ElevateDB does not
provide logical record numbers (sequence numbers).

This property has been moved to the TEDBTable component.

These properties are no longer necessary. ElevateDB does not
use record hashes or IDs.

Description

These methods are no longer necessary. ElevateDB uses SQL
for importing and exporting tables to and from delimited text.
Please see the EXPORT TABLE and IMPORT TABLE topics for
more information.

Description

This event is not used anymore because ElevateDB uses
ERROR triggers for handling update errors. Please see the
CREATE TRIGGER topic in the ElevateDB SQL Manual for more
information.

These events are no longer supported. ElevateDB streams
should be kept fairly small since they are stored in memory.
Any stream that is large enough to require progress updates
is probably too large and should be handled differently.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed

Page 62

Description

RecNo

Methods

Changed

IsSequenced

LoadFromStream
SaveToStream

Events

Changed

None

DBISAM Migration

This property no longer returns a logical record number as it
did in DBISAM. It returns zero (0) at all times under
ElevateDB. However, you can still assign a value to the
property in order to navigate to a specific logical row in the
dataset.

Description

This method always returns False under ElevateDB. ElevateDB
does not provide logical record numbers (sequence numbers).

ElevateDB uses a completely different stream format than
DBISAM. Do not attempt to load a stream created by DBISAM
into ElevateDB, or vice-versa.

Description

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

None

Methods

New

LockCurrentRecord
UnlockCurrentRecord
UnlockAllRecords

Events

New

None

Description

Description

These methods allow you to manually lock and unlock rows in
the current cursor.

Description

Page 63

DBISAM Migration

3.11 TDBISAMDBDataSet Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed Description

None

Methods

Removed Description

None

Events

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed Description

None
Methods

Changed Description

None

Events

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

Page 64

DBISAM Migration

None

Methods

None

Events

None

Page 65

DBISAM Migration

3.12 TDBISAMTable Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

LocaleID

Description

Encrypted

Password
IndexPageSize
BlobBlockSize
LastAutoIncValue
TextIndexFields
TextIndexIncludeChars
TextIndexSpaceChars
TextIndexStopWords
UserMajorVersion
UserMinorVersion

Exists

FullTableName
LastUpdated
TableSize

VersionNum

Methods

Removed

Page 66

Description

These properties are no longer necessary. ElevateDB
maintains all database metadata in the special Information
Schema for each database. The Information schema tables
can be queried like any normal tables for information on the
structure of tables, columns, indexes, etc.

This property is no longer necessary. To determine if a table
or view exists in a database, query the special Information
Schema for the database.

These properties are no longer supported. The TEDBTable
component supports opening both tables and views.
Therefore, returning the physical characteristics of a table is
not feasible in all cases.

This property is no longer necessary.

Description

CreateTable
AlterTable
CopyTable
RenameTable
DeleteTable
AddIndex
DeleteIndex
DeleteAllIndexes

LockSemaphore
UnlockSemaphore

LockTable
UnlockTable
TableIsLocked

OptimizeTable
RepairTable
VerifyTable
UpgradeTable

Events

Removed

OnAlterProgress
OnDatalLost
OnCopyProgress
OnlIndexProgress

OnExportProgress
OnImportProgress

OnOptimizeProgress
OnRepairProgress
OnRepairLog
OnVerifyProgress
OnVerifyLog
OnUpgradeProgress
OnUpgradelog

DBISAM Migration

These methods are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops. Please
see the CREATE TABLE, ALTER TABLE, DROP TABLE, CREATE
INDEX, CREATE TEXT INDEX, and DROP INDEX topics for
more information.

These methods are no longer supported. ElevateDB does not
support semaphore locks.

These methods are no longer supported. ElevateDB does not
support table locks. Instead, it supports manual row locking
via the LockCurrentRecord, UnlockCurrentRecord, and
UnlockAllIRecords methods.

These methods are no longer necessary. ElevateDB uses SQL
for all administrative functionality. Please see the OPTIMIZE
TABLE and REPAIR TABLE topics for more information.

Description

These events are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops, and the
OnLogMessage, OnProgress, and OnStatusMessage events
provide the same functionality.

These events are no longer necessary. ElevateDB uses SQL
for importing and exporting tables, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

These events are no longer necessary. ElevateDB uses SQL
for all administrative functionality, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed

Description

Page 67

DBISAM Migration

FieldDefs

IndexDefs

TableName

Methods

Changed

None

Events

Changed

None

This property no longer uses a custom TDBISAMFieldDefs
type for the field definitions collection. In ElevateDB this
property uses the standard TFieldDefs collection type.

This property no longer uses a custom TDBISAMIndexDefs
type for the index definitions collection. In ElevateDB this
property uses the standard TIndexDefs collection type.

This property now accepts a view name in addition to a table
name. Furthermore, the drop-down combo box for this
property in the Object Inspector will contain all tables and
views defined for the database.

Description

Description

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

None

Methods

New

None

Events

New

None

Page 68

Description

Description

Description

DBISAM Migration

3.13 TDBISAMQuery Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed

TableName

Methods

Removed
SaveToTable

Events

Removed

BeforeExecute
AfterExecute

OnGetParams
OnQueryError

OnAlterProgress
OnDataLost
OnCopyProgress

OnExportProgress
OnImportProgress

OnOptimizeProgress
OnRepairProgress
OnRepairLog
OnVerifyProgress
OnVerifyLog
OnUpgradeProgress
OnUpgradelog

OnQueryProgress

OnSaveProgress

Description

This property is no longer supported.

Description

This method is no longer supported. In ElevateDB, use the AS
clause of the CREATE TABLE to create a table that is based
upon a query expression.

Description

These events are no longer supported. ElevateDB does not
support multi-statement scripts in the TEDBQuery component.

These events are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops, and the
OnLogMessage, OnProgress, and OnStatusMessage events
provide the same functionality.

These events are no longer necessary. ElevateDB uses SQL
for importing and exporting tables, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

These events are no longer necessary. ElevateDB uses SQL
for all administrative functionality, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

This event is no longer necessary. The OnProgress event
provides the same functionality.

This event is no longer supported since the SaveToTable
method is no longer supported. In ElevateDB, use the AS
clause of the CREATE TABLE to create a table that is based
upon a query expression.

Page 69

DBISAM Migration

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed
GeneratePlan

Params

RequestLive

ResultIsLive
SQL

SQLStatementType

StmtHandle

Methods

Changed

None

Events

Changed

None

Description
This property has been renamed to the RequestPlan property.

This property no longer uses a custom TDBISAMParams type
for the parameter definitions collection. In ElevateDB this
property uses the standard TParams collection type.

This property has been renamed to the RequestSensitive
property.

This property has been renamed to the Sensitive property.

This property only accepts a single SQL statement in
ElevateDB. DBISAM allow for multi-statement scripts.

This property has been renamed to the StatementType
property.

This property has been renamed to the StatementHandle
property.

Description

Description

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New

Constrained

Methods

New

Page 70

Description

This property allows you to specify that any inserts or updates
made to a sensitive result set be subject to the WHERE clause
used in the current SELECT statement.

Description

DBISAM Migration

None

Events

None

Page 71

DBISAM Migration

3.14 TDBISAMUpdateSQL Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

Properties

Removed Description

None

Methods

Removed Description

None

Events

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed Description

None
Methods

Changed Description

None

Events

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

Page 72

DBISAM Migration

None

Methods

None

Events

None

Page 73

DBISAM Migration

3.15 EDBISAMEngineError Object

Removed Properties, Methods and Events
The following are the properties, methods, and events that have been removed for the component:
Properties

Removed Description

ErrorDatabaseName These properties are no longer necessary. ElevateDB provides
ErrorEventName logging facilities that negates the need for custom logging of
ErrorFieldName the properties of an exception.

ErrorindexName

ErrorProcedureName

ErrorRemoteName

ErrorTableName

ErrorUserName

OSErrorCode

SocketErrorCode

Methods

Removed Description

None

Events

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

Properties

Changed Description
ErrorMessage This property has been renamed to the ErrorMsg property.

Methods

Changed Description

None

Events

Page 74

DBISAM Migration

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

Properties

New Description

None
Methods

New Description

None
Events

New Description

None

Page 75

DBISAM Migration

3.16 SQL Changes

The following is the list of the areas that describe the DBISAM SQL implementation. Click on each area to
find out the changes to the SQL implementation.

Naming Conventions
Types

Operators

Functions
Statements

Page 76

3.17 Naming Conventions

Removed Features

DBISAM Migration

The following are the features that have been removed:

Removed
Brackets []

Feature Changes

Description

The use of brackets [] for identifiers is no longer supported.
Use double-quotes "" instead to specify an identifier in an SQL
statement.

The following are the changes to the features:

Changed

Path Names

New Features

The following are the new features:

New

Line Feeds in String Constants

Description

Path names are no longer supported for databases in
ElevateDB. Use the database name with a period separator in
order to specify a table from a specific database. Please see
the Identifiers topic for more information.

Description

ElevateDB allows for carriage returns (character 13) and line
feeds (character 10) in string constants.

Page 77

DBISAM Migration

3.18 Types

Removed Types

The following are the types that have been removed:

Removed
AUTOINC

MONEY

GRAPHIC

WORD

Type Changes

The following are the changes to the types:

Changed
CHAR

VARCHAR

BYTES or BINARY
VARBYTES or VARBINARY

LONGVARBINARY

MEMO
LONGVARCHAR

BIT

LARGEINT
FLOAT

Page 78

Description

This type is no longer supported. Use the INTEGER type
instead to store integer values, and use the GENERATED
clause in a column definition to dictate that a column should
be generated as an IDENTITY column. Please see the CREATE
TABLE topic for more information.

This type is no longer supported. Use the FLOAT type instead
to store double-precision floating-point values. Please see the
Approximate Numeric Types topic for more information.

This type is no longer supported. Use the BLOB type instead
to store graphics or any other large binary objects. Please see
the Binary Types topic for more information.

This type is no longer supported. Use the INTEGER type
instead to store word values. Please see the Exact Numeric
Types topic for more information.

Description

The CHAR (or CHARACTER) type now uses a fixed-length
representation according to the SQL standard. Any strings
that are shorter than the defined length of the column are
padded with blanks.

The alternate CHARACTER VARYING syntax is now
acceptable. Also, VARCHAR columns no longer right-trim any
spaces from strings that are stored in them. The string values
are stored as-is.

These types have been renamed to BYTE and VARBYTE (or
BYTE VARYING), respectively.

This type has been renamed to BINARY LARGE OBJECT. The
shorthand BLOB type notation is still retained also.

These types have been renamed to CLOB and CHARACTER
LARGE OBIJECT, respectively.

This shorthand notation for the BOOLEAN type is no longer
permitted.

This type has been renamed to BIGINT.
The alternate DOUBLE PRECISION syntax is now acceptable.

DATE
TIME
TIMESTAMP

New Types

The following are the new types:

New
INTERVAL

DBISAM Migration

Date, time, and timestamp literals must now be preceded with
the DATE, TIME, and TIMESTAMP keywords, respectively.

Description

ElevateDB now supports all day-time and year-month interval
types. Please see the Interval Types topic for more
information.

Page 79

DBISAM Migration

3.19 Operators

Removed Operators

The following are the operators that have been removed:

Removed

None

Operator Changes

Description

The following are the changes to the operators:

Changed
NULL Values

Case-Insensitive
Comparisons

Date, Time, and
Timestamp Values

New Operators

The following are the new operators:

New

CONTAINS
DOES NOT CONTAIN

Page 80

Description

NULL constants can no longer be compared using the =, <>,
>=, <=, >, <, BETWEEN, or IN operators. You must use the
IS NULL and IS NOT NULL operators instead. Furthermore,
none of the operators will result in a TRUE value if either side
of the operator contains a NULL value. Please see the NULLs
topic for more information.

DBISAM supported using the UPPER() or LOWER() function
around a column reference and a string constant involved in a
binary operator in order to force a case-insensitive
comparison, and to allow the query optimizer to use a case-
insensitive index to optimize the operation. This is no longer
necessary in ElevateDB. Instead, you can simply use the
COLLATE clause after the column reference to force the
column to use a case-insensitive collation. Please see the
Internationalization and Optimizer topics for more
information.

Subracting date, time, and timestamp values now results in
an interval type, depending upon the type of the values being
subtracted. Please see the Interval Types topic for more
information.

Description

These operators are used to implement a text search using a
text index. If no text index exists on the column being
searched, then these operators will always result in a FALSE
value.

3.20 Functions

Removed Functions

DBISAM Migration

The following are the functions that have been removed:

Removed
MOD

LASTAUTOINC
IDENT_CURRENT

TEXTOCCURS

YEARSFROMMSECS
DAYSFROMMSECS
HOURSFROMMSECS
MINSFROMMSECS
SECSFROMMSECS
MSECSFROMMSECS

Function Changes

Description

This function is no longer necessary. You may use the MOD
operator instead with ElevateDB.

These functions are no longer necessary. ElevateDB
procedures and functions can retrieve the assigned IDENTITY
value for a column using the FETCH statement on a cursor.

This function is no longer supported.

These functions are no longer necessary. ElevateDB supports
the standard SQL date and time interval types. Please see the
Interval Types topic for more information.

The following are the changes to the functions:

Changed
SUBSTRING
TEXTSEARCH

New Functions

The following are the new functions:

New

None

Description
The alternate SUBSTR syntax is now acceptable.

This function has been changed to the CONTAINS and DOES
NOT CONTAIN operators.

Description

Page 81

DBISAM Migration

3.21 Statements

Removed Statements

The following are the statements that have been removed:

Removed
EMPTY TABLE

VERIFY TABLE

UPGRADE TABLE

START TRANSACTION
COMMIT
ROLLBACK

Statement Changes

Description

This statement is no longer supported. ElevateDB requires
that you use the DELETE statement to remove all rows from a
table.

This statement is no longer supported. ElevateDB currently
only offers repair facilities by using the REPAIR TABLE
statement.

This statement is no longer necessary.

These statements are now considered part of the ElevateDB
SQL/PSM support and are only allowed in jobs, procedures,
functions, and triggers. Outside of SQL/PSM, use the
TEDBDatabase StartTransaction, Commit, and Rollback

The following are the changes to the statements:

Changed
SELECT

Page 82

Description

ElevateDB supports single-row query expressions as values in
the list of selected columns.

The INTO clause is no longer supported. ElevateDB uses the
standard SQL CREATE TABLE AS clause to create a table using
a query expression.

The EXCLUSIVE clause is no longer necessary.

With ElevateDB you can use the actual table name or the
table correlation name in column references anywhere in the
SELECT statement.

ElevateDB supports single-row query expressions as values in
the JOIN clauses.

ElevateDB does not optimize join expressions in the WHERE
clause, otherwise known as SQL-89 style joins. You must use
the JOIN clause in order to have ElevateDB optimize the joins.

ElevateDB supports correlated sub-queries in the WHERE
clause.

ElevateDB supports single-row query expressions as values in
the WHERE clause.

INSERT

UPDATE

DELETE

DBISAM Migration

The GROUP BY, HAVING, and ORDER BY clauses in ElevateDB
support any type of expression, and may refer to columns that
aren't in the SELECT list.

The GROUP BY and ORDER BY clauses no longer support
ordinal values as a way to specify a SELECT column position
in the list of SELECT column expressions. You must specify
the actual column reference or expression.

The NOCASE clause is no longer necessary in the ORDER BY
clause. ElevateDB uses the COLLATE clause to specify the
collation for an ORDER BY expression. Please see the
Internationalization topic for more information.

The TOP clause is no longer supported. ElevateDB will
introduce standard WINDOW clause support for selecting
ranges of rows in a later release.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The ENCRYPTED WITH clause is no longer supported.

The EXCLUSIVE clause is no longer necessary.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
INSERT statements.

The EXCLUSIVE clause is no longer necessary.

The FROM clause is no longer supported. ElevateDB can use
correlated sub-queries in the UPDATE values and/or WHERE
clause.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
UPDATE statements.

The NOJOINOPTIMIZE clause is no longer supported.

The JOINOPTIMIZECOSTS clause is no longer supported.

The EXCLUSIVE clause is no longer necessary.

The FROM clause is no longer supported. ElevateDB can use
correlated sub-queries in the WHERE clause.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
DELETE statements.

The NOJOINOPTIMIZE clause is no longer supported.

The JOINOPTIMIZECOSTS clause is no longer supported.

Page 83

DBISAM Migration

CREATE TABLE

Page 84

The IF NOT EXISTS clause is no longer supported. ElevateDB
uses catalog queries to determine if a table exists. Please see
the System Information topic for more information.

The column definition NULLABLE clause is no longer
supported. To make a column nullable in ElevateDB, don't
include the NOT NULL clause.

The column definition DEFAULT clause accepts any basic
expression in ElevateDB.

A column definition may now include a GENERATED clause to
specify that the column is a generated column. Generated
columns can be generated as sequence numbers or
expressions.

The column definition MIN and MAX clauses are no longer
necessary. ElevateDB supports column constraints via the
CHECK clause.

ElevateDB allows for specifying primary key, unique key, and
foreign key constraints in a column definition.

The CHARCASE clause is no longer supported.

The COMPRESS clause has been renamed to COMPRESSION
and moved so that it is next to the data type definition.

The NOCASE clause is no longer necessary in a primary key,
unique key, or foreign key (new) constraint definition.
ElevateDB uses the collation defined for the column in the
column definition for determining the collation of these types
of constraints. Please see the Internationalization topic for
more information.

The DESC and ASC clauses are no longer supported in a
primary key, unique key, or foreign key (new) constraint
definition. Use the CREATE INDEX statement in ElevateDB to
create an index with custom column sorting.

The COMPRESS clause is no longer supported in a primary
key, unique key, or foreign key (new) constraint definition.
ElevateDB performs automatic index compression as
necessary.

The TEXT INDEX, STOP WORDS, SPACE CHARS, and
INCLUDE CHARS clauses are no longer necessary. Use the
CREATE TEXT INDEX statement in ElevateDB to create a new
text index.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The WITH clause of the ENCRYPTED clause is no longer
necessary. ElevateDB uses one encryption password per

CREATE INDEX

ALTER TABLE

DBISAM Migration

application for all encryption, and it is represented by the
EncryptionPassword property. Also, the ENCRYPTED clause
now resides after the VERSION clause (see next item).

The USER MAJOR VERSION and USER MINOR VERSION
clauses have been combined into one VERSION clause that
accepts a NUMERIC value with a scale of 2. Also, the
VERSION clause now resides after the DESCRIPTION clause.

The LAST AUTOINC clause is no longer necessary. The seed
and increment values for IDENTITY columns can be specified
in the column definitions.

The IF NOT EXISTS clause is no longer supported. ElevateDB
uses catalog queries to determine if an index exists. Please
see the System Information topic for more information.

The UNIQUE clause is no longer supported. ElevateDB
requires that unique keys constraints be defined using a
constraint definition in a CREATE TABLE or ALTER TABLE
statement.

The NOCASE clause is no longer necessary in an index
definition. ElevateDB uses the collation defined for the column
in the column definition for determining the default collation
for the indexed columns, and also allows for the COLLATE
clause to be used in the index definition in order to override
the default column collation. Please see the
Internationalization topic for more information.

The COMPRESS clause is no longer supported in an index
definition. ElevateDB performs automatic index compression
as necessary.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The IF EXISTS and IF NOT EXISTS clauses are no longer
supported for column definitions. ElevateDB uses catalog
queries to determine if a table column exists. Please see the
System Information topic for more information.

The REDEFINE clause is no longer supported for column
definitions. In order to redefine a column using the same
column name, use the ALTER AS clause (see next). In order
to rename a column, use the RENAME clause.

The ALTER clause is new for column definitions. This clause
allows you to alter the DEFAULT expression, drop the default
expression, change the DESCRIPTION of the column, move
the column to a new position in the table using the MOVE TO
clause, or alter the entire column definition using the AS
clause.

The column definition AT clause has been moved to the end
of the column definition.

Page 85

DBISAM Migration

Page 86

The column definition NULLABLE clause is no longer
supported. To make a column nullable in ElevateDB, don't
include the NOT NULL clause.

The column definition DEFAULT clause accepts any basic
expression in ElevateDB.

A column definition may now include a GENERATED clause to
specify that the column is a generated column. Generated
columns can be generated as sequence numbers or
expressions.

The column definition MIN and MAX clauses are no longer
necessary. ElevateDB supports column constraints via the
CHECK clause.

ElevateDB allows for specifying primary key, unique key, and
foreign key constraints in a column definition.

The CHARCASE clause is no longer supported.

The COMPRESS clause has been renamed to COMPRESSION
and moved so that it is next to the data type definition.

The REDEFINE clause is no longer supported for constraint
definitions. Use the RENAME clause to rename a constraint.

The NOCASE clause is no longer necessary in a primary key,
unique key, or foreign key (new) constraint definition.
ElevateDB uses the collation defined for the column in the
column definition for determining the collation of these types
of constraints. Please see the Internationalization topic for
more information.

The DESC and ASC clauses are no longer supported in a
primary key, unique key, or foreign key (new) constraint
definition. Use the CREATE INDEX statement in ElevateDB to
create an index with custom column sorting.

The COMPRESS clause is no longer supported in a primary
key, unique key, or foreign key (new) constraint definition.
ElevateDB performs automatic index compression as
necessary.

The TEXT INDEX, STOP WORDS, SPACE CHARS, and
INCLUDE CHARS clauses are no longer necessary. Use the
CREATE TEXT INDEX statement in ElevateDB to create a new
text index.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The WITH clause of the ENCRYPTED clause is no longer
necessary. ElevateDB uses one encryption password per

DROP TABLE

DROP INDEX

IMPORT TABLE

DBISAM Migration

application for all encryption, and it is represented by the
EncryptionPassword property. Also, the ENCRYPTED clause
now resides after the VERSION clause (see next item).

The USER MAJOR VERSION and USER MINOR VERSION
clauses have been combined into one VERSION clause that
accepts a NUMERIC value with a scale of 2. Also, the
VERSION clause now resides after the DESCRIPTION clause.

The LAST AUTOINC clause is no longer necessary. The seed
and increment values for IDENTITY columns can be specified
in the column definitions.

The NOBACKUP clause has been renamed to the NO BACKUP
FILES clause.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if an index exists. Please see the
System Information topic for more information.

The PRIMARY clause is no longer supported. ElevateDB does
not allow a primary key to be dropped using the DROP INDEX
statement. Instead, you must use the ALTER TABLE
statement to add or drop constraints for a table.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The COLUMNS clause has been renamed and the COLUMN
portion has been dropped, retaining only the columns list in
parentheses. Also, the clause has been moved so that it is
right after the import file name.

The DELIMITER clause has been renamed to DELIMITER
CHAR.

The QUOTE CHAR clause has been added to allow you to
specify the quote character to be used for string values.

The DATE clause has been renamed to the DATE FORMAT
clause.

The TIME clause has been renamed to the TIME FORMAT
clause.

The DECIMAL clause has been renamed to the DECIMAL
CHAR clause.

The BOOLEAN clause has been added to allow you to specify
the literals used for True and False, respectively.

The WITH HEADERS clause has been renamed to the USE

Page 87

DBISAM Migration

EXPORT TABLE

OPTIMIZE TABLE

REPAIR TABLE

Page 88

HEADERS clause and has been moved to right after the
BOOLEAN clause.

The MAX ROWS clause has been added to allow you to specify
the maximum number of rows that should be imported from
the file.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The COLUMNS clause has been renamed and the COLUMN
portion has been dropped, retaining only the columns list in
parentheses. Also, the clause has been moved so that it is
right after the export file name.

The DELIMITER clause has been renamed to DELIMITER
CHAR.

The QUOTE CHAR clause has been added to allow you to
specify the quote character to be used for string values.

The DATE clause has been renamed to the DATE FORMAT
clause.

The TIME clause has been renamed to the TIME FORMAT
clause.

The DECIMAL clause has been renamed to the DECIMAL
CHAR clause.

The BOOLEAN clause has been added to allow you to specify
the literals used for True and False, respectively.

The WITH HEADERS clause has been renamed to the
INCLUDE HEADERS clause and has been moved to right after
the BOOLEAN clause.

The MAX ROWS clause has been added to allow you to specify
the maximum number of rows that should be exported to the
file.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The ON clause has been renamed to the USING INDEX clause.

The NOBACKUP clause has been renamed to the NO BACKUP
FILES clause.

The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The FORCEINDEXREBUILD clause is no longer supported.

New Statements

The following are the new statements:

New

CREATE DATABASE
ALTER DATABASE
DROP DATABASE
RENAME DATABASE
CREATE STORE
ALTER STORE
DROP STORE
RENAME STORE
CREATE USER
ALTER USER

DROP USER
RENAME USER
CREATE ROLE
ALTER ROLE

DROP ROLE
RENAME ROLE
GRANT PRIVILEGES

REVOKE PRIVILEGES

GRANT ROLES
REVOKE ROLES
CREATE JOB
ALTER JOB

DROP JOB
RENAME JOB
CREATE MODULE
ALTER MODULE
DROP MODULE
RENAME MODULE

CREATE TEXT FILTER

ALTER TEXT FILTER

DBISAM Migration

Description

Creates a new database.
Alters an existing database.
Drops an existing database.
Renames an existing database.
Creates a new file store.
Alters an existing file store.
Drops an existing file store.
Renames an existing file store.
Creates a new user.

Alters an existing user.

Drops an existing user.
Renames an existing user.
Creates a new role.

Alters an existing role.

Drops an existing role.
Renames an existing role.

Grants privileges to an existing user or role on a specified
object.

Revokes privileges for an existing user or role from an existing
object.

Grants roles to an existing user.
Revokes roles from an existing user.
Creates a new job.

Alters an existing job.

Drops an existing job.

Renames an existing job.

Creates (registers) a new external module.
Alters an existing external module.
Drops an existing external module.
Renames an existing external module.
Creates a new text filter.

Alters an existing text filter.

Page 89

DBISAM Migration

DROP TEXT FILTER Drops an existing text filter.

RENAME TEXT FILTER Renames an existing text filter.

CREATE WORD GENERATOR Creates a new word generator.
ALTER WORD GENERATOR Alters an existing word generator.
DROP WORD GENERATOR Drops an existing word generator.
RENAME WORD GENERATOR Renames an existing word generator.

CREATE MIGRATOR
ALTER MIGRATOR
DROP MIGRATOR
RENAME MIGRATOR
CREATE TRIGGER
ALTER TRIGGER
DROP TRIGGER
RENAME TRIGGER
CREATE TEXT INDEX
ALTER INDEX
CREATE VIEW

ALTER VIEW

DROP VIEW

RENAME VIEW
CREATE FUNCTION
ALTER FUNCTION
DROP FUNCTION
RENAME FUNCTION
CREATE PROCEDURE
ALTER PROCEDURE
DROP PROCEDURE
RENAME PROCEDURE
SET BACKUPS STORE
BACKUP DATABASE
RESTORE DATABASE
PUBLISH DATABASE
UNPUBLISH DATABASE
SET UPDATES STORE
SAVE UPDATES

Page 90

Creates a new database migrator.

Alters an existing database migrator.
Drops an existing database migrator.
Renames an existing database migrator.
Creates a new trigger on an existing table.
Alters an existing trigger.

Drops an existing trigger from a table.
Renames an existing trigger on a table.
Creates a new text index on an existing table.
Alters an existing index.

Creates a new view.

Alters an existing view.

Drops an existing view.

Renames an existing view.

Creates a new function.

Alters an existing function.

Drops an existing function.

Renames an existing function.

Creates a new procedure.

Alters an existing procedure.

Drops an existing procedure.

Renames an existing procedure.

Sets the current backups store for ElevateDB.
Backs up an existing database.

Restores a database from a backup.
Publishes an existing database.
Unpublishes a database.

Sets the current updates store for ElevateDB.

Saves all logged updates to published tables in an existing

database.

LOAD UPDATES

COPY FILE

RENAME FILE

DELETE FILE

SET FILES STORE
DISCONNECT SERVER SESSION
REMOVE SERVER SESSION

DBISAM Migration

Loads logged updates from an update file into an existing
database.

Copies a file in a store to a new file name, and optionally,
store.

Renames a file in a store to a new file name.

Deletes a file in a store.

Sets the current files store for ElevateDB.
Disconnects a server session on an ElevateDB Server.

Removes a server session from an ElevateDB Server.

Page 91

Getting Started

This page intentionally left blank

Page 92

Getting Started

Chapter 4
Getting Started

4.1 Architecture

ElevateDB is a database engine that can be compiled directly into your Embarcadero Delphi, Embarcadero
C++, or Lazarus application, be it a program or library, or it can be distributed as a runtime package
(equivalent to a library) as part of your application. ElevateDB is available for Delphi 5 and later, as well as
Lazarus 0.924 and later. ElevateDB was written in Delphi's Object Pascal language and can be used with
the Delphi VCL (Win32, Win64, Mac0S32, Mac0S64, and Linux64) or Lazarus LCL (Win32, Win64, and
Linux64) runtime libraries.

The following image illustrates the general architecture of ElevateDB:

Page 93

Getting Started

3 TEDBENgine (EngineType=etClient)
- ConfigPath Property (Local Sessions Only)
- TempTablesPath Property (Local Sessions Only)

—% Local Session (SessionType=stLocal)

- LocalConfigPath Property and Other Local Session Cverrides
when LeelocalSessionEngineSettings Property Set ko Trus

@ Cperating Syskem File IO API

—_— % Local Drive ———
— @ Metwark Drive ———

Remote Session
| (SessionType=stRemote)

i TCP/IP Connection
I— E:] ElevateDB Server ——

- Configuration Path
- Temporary Tables Path

E‘] Configuration (EDBConfig.EDBCfg)

- Lkers, Roles, Databases, Jobs,
Logging, and External Modules

TEDBDatabase = E&a Database

TEDBTable Ej Path
TEDBStoredProc

TEDBEQuery

TEDBScript > (@ Catalog (EDBDatabase EDBCat)

- Tables, Constraints, Triggers. Indexes,
| Views, Procedures, and Functions

%Tahles (*.EDBTbI, *.EDBIdx, *.EDBBIb, *.EDBPbI)
- Rows, indexes, BLOBs, and published updates

The various components that make up this architecture are detailed next.

Page 94

Getting Started

Component Architecture
ElevateDB uses a component architecture that includes the following components:
84 TEDBEngine

The TEDBEnNgine component encapsulates the ElevateDB engine itself. A TEDBEngine component is
created automatically when the application is started and can be referenced via the global Engine function
in the edbcomps unit. You can also drop a TEDBEngine component on a form or data-module to change its
properties at design-time. However, only one instance of the TEDBEngine component can exist in a given
application, and both the global Engine function and any TEDBEngine component on a form or data
module point to the same instance of the component (singleton model). The TEDBEngine component can
be configured so that it acts like a local or client engine (etClient) or a server engine (etServer) via the
EngineType property. The engine can be started by setting the Active property to True.

Note
Once the engine has been started, most of the properties that configure the engine cannot be
modified.

By default, ElevateDB allows you to configure all local sessions via the TEDBEngine component and its
ConfigMemory, ConfigPath, ConfigName, and TempTablesPath properties, as well as several other
properties that can customize the local session access for a particular application. However, you can also
set the UselLocalSessionEngineSettings property to True in order to tell ElevateDB to use the Local*
versions of these same properties from the TEDBSession component to override the engine configuration.
This is useful for applications that require access to multiple configuration files for multiple local sessions,
such as the ElevateDB Manager that is provided with ElevateDB. Please see the Configuring and Starting
the Engine topic for more information on the various engine properties that can be modified when
configuring local sessions via the TEDBEngine component.

Q“L_;i TEDBSession

The TEDBSession component encapsulates a session in ElevateDB. A default TEDBSession component is
created automatically when the application is started and can be referenced via the global Session function
in the edbcomps unit. The TEDBSession component can be configured so that it acts like a local (stLocal)
or a remote session (stRemote) via the SessionType property. A local session is single-tier in nature,
meaning that all TEDBDatabase components connected to the session reference databases in a local or
network file system and all TEDBTable, TEDBQuery, or TEDBStoredProc components access the physical
tables directly from these directories using operating system calls. A remote session is two-tier in nature,
meaning that all access is done through the remote session to an ElevateDB Server using a messaging
protocol over a TCP/IP connection. A remote session is configured using the following properties:

RemoteHost or RemoteAddress
RemotePort or RemoteService

In a remote session, all TEDBDatabase components reference databases that are defined on the

ElevateDB Server and all TEDBTable or TEDBQuery components access the physical tables through the
messaging protocol rather than directly through the operating system.

Page 95

Getting Started

Note
You cannot connect remote sessions in an application whose TEDBEngine component is configured
as a server via the EngineType property.

As mentioned above, a local session is usually configured via the TEDBEngine component. However, if the
UseLocalSessionEngineSettings property is set to True, then the Local* versions of the TEDBEngine
configuration properties that are found in the TEDBSession component will be used to override the
TEDBERgine configuration settings.

A session can be connected by setting the Connected property to True or by calling the Open method. The
TEDBSession component contains a SessionName property that is used to give a session a name and a
SessionDescription property that is used to assign a description to the session. All session components
must have a name before they can be connected. The default TEDBSession component is called "Default".
The TEDBDatabase, TEDBTable, TEDBQuery, and TEDBStoredProc components also have a SessionName
property and these properties are used to specify which session these components belong to. Setting their
SessionName property to "Default”" or blank ("") indicates that they will use the default TEDBSession
component. Please see the Connecting Sessions topic for more information.

ii-la TEDBDatabase

The TEDBDatabase component encapsulates a database in ElevateDB, and is used as an container for all
access to a specific database. A database can be opened by setting the Connected property to True or by
calling the Open method. A TEDBDatabase component contains a DatabaseName property that is used to
give a database a name within the application. All database components must have a name before they
can be opened. The TEDBTable, TEDBQuery, and TEDBStoredProc components also have a
DatabaseName property and these properties are used to specify which database these components
belong to. Please see the Opening Tables and Views topic for more information.

The TEDBDatabase Database property specifies the name of a database that you would like to connect to.

The TEDBDatabase component is used for transaction processing via the StartTransaction, Commit, and
Rollback methods. Please see the Transactions topic for more information.

You can execute dynamic SQL on a specific database by using the Execute method. Please see the
Executing Queries topic for more information.

% TEDBTable

The TEDBTable component encapsulates a cursor on a table or view in ElevateDB. It is used to
search,insert, update, or delete rows within the table or view specified by the TableName property. A table
or view cursor can be opened by setting the Active property to True or by calling the Open method. The
DatabaseName property specifies the name of the database component that references the database
where the table or view resides. Please see the Opening Tables and Views topic for more information.

Because the TEDBTable component represents a table or view cursor, you can have multiple TEDBTable

components referencing the same table or view. Each TEDBTable component maintains its own active
order, filter and range conditions, current row position, row count statistics, etc.

Page 96

Getting Started

Note

The TEDBTable component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in VCL or CLX applications. None of these lower-level components should
be used directly and are only for internal structuring purposes in the class hierarchy.

H'y TEDBQuery

The TEDBQuery component encapsulates a single SQL statement in ElevateDB. This SQL statement may or
may not return a result set, but if it does return a result set, then the TEDBQuery component will act as a
cursor on the result set in the same way that the TEDBTable component acts as a cursor on a table or
view. The SQL statement to execute is specified in the SQL property, and the statement can be executed
by setting the Active property to True, by calling the Open method (for SQL statements that definitely
return a result set), or by calling the ExecSQL method (for SQL statements that may or may not return a
result set). The DatabaseName property specifies the name of the database component that references
the database to be used when executing the SQL statement. Please see the Executing Queries topic for
more information.

Note

The TEDBQuery component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD Studio,
and Lazarus. None of these lower-level components should be used directly and are only for internal
structuring purposes in the class hierarchy.

[#yrEDBSCript

The TEDBScript component encapsulates a single SQL script in ElevateDB. This script may or may not
return a result set, but if it does return a result set, then the TEDBScript component will act as a cursor on
the result set in the same way that the TEDBTable component acts as a cursor on a table or view. The
script to execute is specified in the SQL property, and the script can be executed by setting the Active
property to True, by calling the Open method (for scripts that definitely return a result set), or by calling
the ExecScript method (for scripts that may or may not return a result set). The DatabaseName property
specifies the name of the database component that references the database to be used when executing
the script. Please see the Executing Scripts topic for more information.

Note

The TEDBScript component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD Studio,
and Lazarus. None of these lower-level components should be used directly and are only for internal
structuring purposes in the class hierarchy.

The TEDBStoredProc component encapsulates a single stored procedure in ElevateDB. This stored
procedure may or may not return a result set, but if it does return a result set, then the TEDBStoredProc
component will act as a cursor on the result set in the same way that the TEDBTable component acts as a

Page 97

Getting Started

cursor on a table or view. The stored procedure to execute is specified in the StoredProcName property,
and the stored procedure can be executed by setting the Active property to True, by calling the Open
method (for stored procedures that definitely return a result set), or by calling the ExecProc method (for
stored procedures that may or may not return a result set). The DatabaseName property specifies the
name of the database component that references the database to be used when executing the stored
procedure. Please see the Executing Stored Procedures topic for more information.

Note

The TEDBStoredProc component descends from the TEDBDBDataSet component, which descends
from the TEDBDataSet component, which descends from the common TDataSet component that is
the basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD
Studio, and Lazarus. None of these lower-level components should be used directly and are only for
internal structuring purposes in the class hierarchy.

Opening a TEDBTable, TEDBQuery, TEDBScript, or TEDBStoredProc component will automatically cause its
corresponding TEDBDatabase component to open, which will also automatically cause its corresponding
TEDBSession component to connect, which will finally cause the TEDBENgine to start. This design ensures
that the necessary connections for a session, database, etc. are completed before the opening of the
table, query, or stored procedure is attempted.

Page 98

Getting Started

4.2 Exception Handling and Errors

One of the first items to address in any application, and especially a database application, is how to
anticipate and gracefully handle exceptions. This is true as well with ElevateDB.

ElevateDB Exception Types

ElevateDB uses the EEDBError object as its exception object for all errors. This object descends from the
EDatabaseError exception object defined in the common DB unit, which itself descends from the common
Exception object. This hierarchy is important since it allows you to isolate the type of error that is
occurring according to the type of exception object that has been raised, as you will see below when we
demonstrate some exception handling.

Note

ElevateDB also raises certain component-level exceptions as an EDatabaseError to maintain
consistency with the way the common DB unit and TDataSet component behaves. These mainly
pertain to design-time property modifications, but a few can be raised at runtime also.

The EEDBError object contains several important properties that can be accessed to discover specific
information on the nature of the exception. The ErrorCode property is always populated with a value which
indicates the error code for the current exception. Other properties may or may not be populated
according to the error code being raised, and a list of all of the error codes raised by the ElevateDB engine
along with this information can be found in Appendix A - Error Codes and Messages.

Exception Handling

The most basic form of exception handling is to use the try..except block (Delphi and Lazarus) or try..catch
(C++) to locally trap for specific error conditions. The error code that is returned when an open fails due
to an exclusive lock problem is 300, which is defined as EDB_ERROR_LOCK in the edberror unit. The
following example shows how to trap for such an exception on open and display an appropriate error
message to the user:

{
MyEDBTable->DatabaseName="Tutorial";

MyEDBTable->TableName="customer";
MyEDBTable->Exclusive=true;
MyEDBTable->ReadOnly=False;
try
{
MyEDBTable->Open () ;
}
catch (const Exception &E)
{
if (dynamic cast<EDatabaseError*>(E) &
dynamic_ cast<EEDBError*>(E))
{
if (dynamic cast<EEDBErroré&> (*E)->ErrorCode==
EDB_ERROR_LOCK)

{
ShowMessage ("Cannot open table "+TableName+

Page 99

Getting Started

", another user has the table open already");

}

else
{
ShowMessage ("Unknown or unexpected "+
"database engine error # +IntToStr (
dynamic cast<EEDBErroré&>(*E)->ErrorCode)) ;

}

else

{

ShowMessage ("Unknown or unexpected "+
"error has occurred");

}

Exception Events

Besides trapping exceptions with a try..except or try..catch block, you may also use a global
TApplication::OnException event handler to trap database exceptions. However, doing so will eliminate the
ability to locally recover from the exception and possibly retry the operation or take some other course of
action. There are several events in ElevateDB components that allow you to code event handlers that
remove the necessity of coding try..except or try..catch blocks while still providing for local recovery.
These events are as follows:

Event Description

OnEditError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Edit method
. The usual cause of an error is a row lock failure if the
current session is using the pessimistic row locking protocol
(the default). Please see the Inserting, Updating, and Deleting
Rows topic for more information on using this event, and the
Locking and Concurrency topic for more information on the
ElevateDB row locking protocols.

OnDeleteError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Delete
method. The usual cause of an error is a row lock failure (a
row lock is always obtained before a delete regardless of the
locking protocol in use for the current session). Please see the
Inserting, Updating, and Deleting Rows topic for more
information on using this event, and the Locking and
Concurrency topic for more information on the ElevateDB row
locking protocols.

OnPostError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Post
method. The usual cause of an error is a constraint violation,
however it can also be triggered by a row lock failure if the
locking protocol for the current session is set to optimistic.
Please see the Inserting, Updating, and Deleting Rows topic
for more information on using this event, and the Locking and
Concurrency topic for more information on the ElevateDB row

Page 100

Getting Started

locking protocols.

Page 101

Getting Started

4.3 Multi-Threaded Applications

ElevateDB is internally structured to be thread-safe and usable within a multi-threaded application
provided that you follow the rules that are outlined below.

Unique Sessions

ElevateDB requires that you use a unique TEDBSession component for every thread that must perform any
database access at all. Each of these TEDBSession components must also be assigned a SessionName
property value that is unique among all TEDBSession components in the application. Doing this allows
ElevateDB to treat each thread as a separate and distinct session and will isolate transactions and other
internal structures accordingly. You may use the AutoSessionName property of the TEDBSession
component to allow ElevateDB to automatically name each session so that is unique or you may use code
similar to the following:

int LastSessionValue;
TRTLCriticalSection SessionNameSection;

// Assume that the following code is being executed
// within a thread

bool fastcall UpdateAccounts();
{
bool TempResult=false;
TEDBSession *LocalSession=GetNewSession;
try
{
TEDBDatabase *LocalDatabase=new TEDBDatabase (NULL) ;
try
{
// Be sure to assign the same session name
// as the TEDBSession component
LocalDatabase->SessionName=LocalSession->SessionName;
LocalDatabase->DatabaseName="AccountsDB";
LocalDatabase->Database="Accounting";
LocalDatabase->Connected=true;
TEDBQuery *LocalQuery=new TEDBQuery (NULL) ;
try
{
// Be sure to assign the same session and
// database name as the TEDBDatabase
// component
LocalQuery->SessionName=LocalSession->SessionName;
LocalQuery->DatabaseName=LocalDatabase->DatabaseName;
LocalQuery->SQL->Clear () ;
LocalQuery->SQL->Add ("UPDATE accounts SET PastDue=True");
LocalQuery->SQL->Add ("WHERE DueDate < CURRENT DATE")) ;
LocalQuery->Prepare;
try
{
// Start the transaction and execute the query
LocalDatabase->StartTransaction () ;
try
{

Page 102

Getting Started

LocalQuery->ExecSQL () ;
LocalDatabase->Commit () ;
TempResult=true;
catch
{
LocalDatabase->Rollback() ;
}
__finally
{
LocalQuery->UnPrepare () ;
}
}
__finally
{
delete LocalQuery;
}
}
__finally
{
delete LocalDatabase;
}
}
__finally
{
delete LocalSession;
}
return TempResult;
end;

TEDBSession* fastcall GetNewSession();
{
TEDBSession *TempResult=NULL;
EnterCriticalSection (SessionNameSection) ;
try
{

LastSessionValue= (LastSessionValue+1l) ;
TEDBSession *TempResult=new TEDBSession (NULL) ;
TempResult->SessionName="AccountSession"+
IntToStr (LastSessionValue) ;
}
__finally
{

LeaveCriticalSection (SessionNameSection) ;

}

return TempResult;

{ initialization in application }
LastSessionValue=0;
InitializeCriticalSection (SessionNameSection) ;
{ finalization in application }
DeleteCriticalSection (SessionNameSection) ;

The AutoSessionName property is, by default, set to False so you must specifically turn it on if you want
this functionality. You may also use the thread ID of the currently thread to uniquely name a session since
the thread ID is guaranteed to be unique within the context of a process.

Unique Databases

Page 103

Getting Started

Another requirement is that all TEDBDatabase components must also be unique and have values assigned
to their SessionName properties that refer to the unique SessionName property of the TEDBSession
component defined in the manner discussed above.

Unique Tables, Queries, and Stored Procedures

The final requirement is that all TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components
must also be unique and have values assigned to their SessionName properties that refer to the unique
SessionName property of the TEDBSession component defined in the manner discussed above. Also, if a
TEDBTable or TEDBQuery component refers to a TEDBDatabase component's DatabaseName property via
its own DatabaseName property, then the TEDBDatabase referred to must be defined in the manner
discussed above.

ISAPI Applications

ISAPI applications created using the WebBroker components or a similar technology are implicitly multi-
threaded. Because of this, you should ensure that your ISAPI application is thread-safe according to these
rules for multi-threading when using ElevateDB. Also, if you have simply dropped a TEDBSession
component on the WebModule of a WebBroker ISAPI application, you must set its AutoSessionName
property to True before dropping any other ElevateDB components on the form so that ElevateDB will
automatically give the TEDBSession component a unique SessionName property and propogate this name
to all of the other ElevateDB components.

Further Considerations

There are some other things to keep in mind when writing a multi-threaded database application with
ElevateDB, especially if the activity will be heavy and there will be many threads actively running. Be
prepared to handle any errors in a manner that allows the thread to terminate gracefully and properly free
any TEDBSssion, TEDBDatabase, TEDBTable, TEDBQuery, and TEDBStoredProc components that it has
created. Otherwise you may run into a situation where memory is being consumed at an alarming rate.
Finally, writing multi-threaded applications, especially with database access, is not a task for the beginning
developer so please be sure that you are well-versed in using threads and how they work before jumping
into writing a multi-threaded application with ElevateDB.

Page 104

Getting Started

4.4 Recompiling the ElevateDB Source Code

In some cases you may want to change the ElevateDB source code and recompile it to incorporate these
changes into your application. However, you must first have purchased the ElevateDB client and/or server
source code in order to make changes to the source code.

Setting Search Paths

The first thing that you must do is make sure that any search paths, either global to ElevateDB such as the
Library Search Path or local to your project, are pointing to the directory or path where the ElevateDB
source code was installed. By default this directory or path is:

\<base directory>\<product>\<compiler> <n>\code\source

The <product> component of the path can be one of the following values:

Value Description

ElevateDB <type> STD-SRC This indicates the standard version of ElevateDB with source
code

ElevateDB <type> CS-SRC This indicates the client-server version of ElevateDB with

source code

The <type> component of the product name will be either VCL or DAC.

The <compiler> <n> component of the path indicates the development environment in use and the
version number of the development environment. For example, for Delphi 6 this component would look
like this:

Delphi 6

Setting Compiler Switches

The second thing that must be done is to make sure that the compiler switches that you are using are set
properly for ElevateDB. The build system used to compile ElevateDB here at Elevate Software uses the
dcc32.exe and dcc64.exe command-line compilers provided with Delphi, C++Builder, Borland Developer
Studio, CodeGear RAD Studio, and Embarcadero RAD studio to compile ElevateDB. The following switches
are set during compilation and any other switches are assumed to be at their default state for the
compiler:

$D- Debug information off
SL- Local symbols off

Page 105

Getting Started

Note
These same switches are used to compile all ElevateDB utilities and the ElevateDB Server project

also.

A Word of Caution

Making changes to the ElevateDB source code is not an easy task. A mistake in such changes could result
in the loss of critical data and Elevate Software cannot be held responsible for any losses incurred from
such changes. Occasionally our support staff may send a fix to a customer that owns the source code in
order to facilitate a quicker turnaround on a bug report, but it is the responsibility of the customer to
weigh the risks of implementing such a change with the possible problems that such a change could bring
about. Elevate Software tries very hard to also assist any customers that do want to make changes to the
ElevateDB source code for custom purposes and will always make an attempt to guide the customer to a
solution that fits their needs and is reliable in operation. In general, however, it is usually recommended
that you use the generic configuration facilities provided with ElevateDB as opposed to making direct
changes to the source code. Please see the Configuring and Starting the Engine topic for more
information.

Page 106

Using ElevateDB

Chapter 5
Using ElevateDB

5.1 Configuring and Starting the Engine

Configuring the Engine

As already discussed in the Architecture topic, the TEDBEngine component represents the engine in
ElevateDB. The following information will show how to configure the engine for use as a client engine in
an application or as an server engine. The TEDBEngine EngineType property controls whether the engine
is behaving as a local engine or a server engine.

Note
The TEDBENngine component must be inactive (Active=False) when modifying any of the
configuration properties.

Character Set

The TEDBENgine CharacterSet property specifies which character set, ANSI or Unicode, to use for reading
and writing the configuration file and all databases and tables. This property defaults to a value that
matches the default string type used by the current compiler. For example, with Delphi XE the default
string type is a Unicode string, so this property will default to csUnicode when used with Delphi XE. This
setting can be overridden on a per-session basis by modifying the TEDBSession CharacterSet property.

Configuration Path

The TEDBENgine ConfigMemory and ConfigPath properties specify where the engine should look for the
configuration file to use for the application, if running as a client engine, or the server, if running as a
server engine. The configuration file is used to store the information in the Configuration database in
ElevateDB. If the ConfigMemory property is set to True, then the configuration file will be "virtual" and
stored in the process memory. If the ConfigMemory property is False and the path specified for the
ConfigPath property does not exist, then an error will be raised when the engine is started (Active=True).
If the path exists, but the configuration file does not exist in the path, then the ElevateDB engine will
create the configuration file as necessary.

Note

It is very important that you do not have more than one instance of the ElevateDB engine using
different configuration files (including mixing virtual and non-virtual configuration files) and
accessing the same database(s). Doing so will cause locking errors. All instances of the ElevateDB
engine must use the same type of configuration file (virtual or disk-based) and, if disk-based, the
same configuration file if they will be accessing the same database(s).

Temporary Tables Path

The TEDBENgine TempTablesPath property controls where ElevateDB creates any temporary tables that

Page 107

Using ElevateDB

are required for storing query result sets. By default, the TempTablesPath property is set to the user-
specific temporary tables path for the operating system.

Engine Signature

The TEDBENgine Signature property controls the engine signature for the engine. The default engine
signature is "edb_signature". The engine signature in ElevateDB is used to "stamp" all configuration files,
catalog files, table files, backup files, update files, and streams created by the engine so that only an
engine with the same signature can open them or access them afterwards. If an engine does attempt to
access an existing table, backup file, update file, or stream with a different signature than that of the
table, backup file, update file, or stream, an EEDBError exception will be raised. The error that is raised
when the access fails due to an invalid engine signature is 100 (EDB_ERROR_VALIDATE).

Also, if the EngineType property is set to etClient, the engine signature is used to stamp all requests sent
from a remote session to an ElevateDB Server. If the ElevateDB Server is not using the same engine
signature, then the requests will be treated as invalid and rejected by the ElevateDB Server. If the
EngineType property is set to etServer, the engine signature is used to stamp all responses sent from the
ElevateDB Server to any remote session. If the remote session is not using the same engine signature
then the requests will be treated as invalid and rejected by the ElevateDB Server. In summary, both the
remote sessions and the ElevateDB Server must be using the same engine signature or else
communications between the two will be impossible.

Note

It is important to note that ElevateDB can always open any file that is stamped with the default
signature, as well as communicate with any ElevateDB Server using the default signature, even if
the engine signature has been changed to use a custom signature. Therefore, it is important that
one make sure that the engine signature is changed *before* any files are created that one wants
to be stamped with the custom engine signature.

Encryption Password

You can use the EncryptionPassword property to modify the encryption password used by ElevateDB for all
file encryption purposes. ElevateDB uses this password for all configuration, database catalog (for
encrypted catalogs), and table files (for encrypted tables) encryption. The default encryption password is
'elevatesoft'.

ElevateDB uses the Blowfish block cipher encryption algorithm with 128-bit MD5 hash keys for encryption.
Please see the Encryption topic for more information.

Licensed Sessions

You can specify that a certain maximum number of concurrent licensed sessions be allowed by modifying
the TEDBENgine LicensedSessions property. The default value for this property is 4096 sessions. Setting
this property to a lower figure will allow no more than the specified number of sessions to concurrently
access the same configuration.

Buffered File I/O

You can specify whether to enable buffered file I/O in ElevateDB by modifying the TEDBEngine
BufferedFileIO property. The default value for this property is False. If you enable buffered file I/0, you
can use the BufferedFileIOSettings and BufferedFileIOFlushInterval properties to control how the buffered
file I/O behaves.

Page 108

Using ElevateDB

The following is an example of how the buffered file I/O could be configured:

Engine.BufferedFileIO:=True;
with Engine.BufferedFileIOSettings do
begin
{ Lock files don't use buffering }
Add ('"*EDBConfig.EDBLck",1,1,0,False');
Add ('"*EDBDatabase.EDBLck",1,1,0,False'");
{ Configuration and catalog files:
64KB block size
4MB buffer size
O-second flush age (always write any dirty buffers during flush checks)
Always force flush to disk call in OS }
Add ('"*EDBDatabase.EDBCfg", 64,4,0,True');
Add ('"*EDBDatabase.EDBCat",64,4,0,True');
{ Smaller database table files:
64KB block size
32MB buffer size
120-second flush age
Don't force flush to disk call in OS }
Add ('"*Customer.EDBTb1", 64,32,120,False"');
Add ('"*Customer.EDBIdx", 64,32,120,False"');
Add ('"*Customer.EDBB1b", 64,32,120,False"');
{ Larger database table files:
64KB block size
128MB-256MB buffer sizes
120-second flush age
Don't force flush to disk call in OS }
Add ('"*Orders.EDBTb1l",64,128,120,False");
Add ('"*Orders.EDBIdx",64,256,120,False");
Add ('"*Orders.EDBB1b",64,256,120,False’
end;

) i
) ;

’

Please see the Buffering and Caching topic in the SQL manual for more information on buffered file I/O in
ElevateDB.

File Names and Extensions
The following file customziations can be made for the engine:

File Description

Configuration File The ConfigName property determines the root name (without
extension) used by the engine for the configuration file. The
extension used for the configuration file is determined by the
ConfigExtension property. The location of the configuration
file is determined by the ConfigPath property.

Configuration Lock File The ConfigName property determines the root name (without
extension) used by the engine for the configuration lock file.
The extension used for the configuration lock file is
determined by the LockExtension property. The location of the
configuration lock file is determined by the ConfigPath
property, and the configuration lock file is hidden, by default.

Page 109

Using ElevateDB

Configuration Log File

Catalog File

Catalog Lock File

Backup File

Update File

Table Files

Page 110

The ConfigName property determines the root name (without
extension) used by the engine for the configuration log file.
The extension used for the configuration log file is determined
by the LogExtension property. The location of the
configuration log file is determined by the ConfigPath
property. The maximum size of the log file can be controlled
via the MaxLogFileSize property. Log entries are added to the
log in a circular fashion, meaning that once the maximum log
file size ia reached, ElevateDB will start re-using the oldest log
entries for new log entries. The default value is 1048576
bytes. Which types of logged events are recorded in the log
can be controlled by the LogCategories property. By default,
all categories of events are logged (Information, Warning, or
Error).

Warning

It is very important that all applications accessing the
same configuration file use the same maximum log file
size for the configuration log file. Using different values
can result in log entries being prematurely overwritten
or appearing "out-of-order" when viewing the log
entries via the LogEvents Table.

The CatalogName property determines the root name
(without extension) used by the engine for all database
catalog files. The extension used for the catalog files is
determined by the CatalogExtension property. The location of
the catalog file is determined by the path designated for the
applicable database when the database was created. Please
see the Creating, Altering, or Dropping Configuration Objects
topic for more information.

The CatalogName property determines the root name
(without extension) used by the engine for the database
catalog lock files. The extension used for a catalog lock file is
determined by the LockExtension property. The location of a
catalog lock file is determined by the path designated for the
applicable database when the database was created, and a
catalog lock file is hidden, by default. Please see the Creating,
Altering, or Dropping Configuration Objects topic for more
information.

The BackupExtension property determines the extension used
for all backup files created by ElevateDB. Please see the
Backing Up and Restoring Databases topic for more
information.

The UpdateExtension property determines the extension used
for all update files created by ElevateDB. Please see the
Saving Updates To and Loading Updates From Databases
topic for more information.

The TableExtension determines the extension used for all
table files used by ElevateDB, the TableIndexExtension

determines the extension used for all table index files, the
TableBlobExtension determines the extension used for all

Server Configuration

Using ElevateDB

table BLOB files, and the TablePublishExtension determines
the extension used for all table publish files. Every table in an
ElevateDB database has at least a table file and a table index
file. If the table contains BLOB columns, then it will also have
a table BLOB file. If the table is published, then it will also
have a table publish file. The location of the table files is
determined by the path designated for the applicable
database when the database was created. Please see the
Creating, Altering, or Dropping Configuration Objects topic for
more information.

There are no extra steps required in order to use the TEDBEngine component in ElevateDB as a client
engine since the default value of the EngineType property is etClient. However, in order to use the
TEDBENgine component in ElevateDB as an ElevateDB Server you will need to make some property

changes before starting the engine.

The TEDBENgine component has several key properties that are used to configure the ElevateDB Server,
which are described below in order of importance:

Property
EngineType

ServerName

ServerDescription

ServerAddress

ServerPort

ServerThreadCacheSize

ServerEncryptionPassword

Description

In order to start the TEDBEngine component as an ElevateDB
Server, you must set this property to etServer.

This property is used to identify the ElevateDB Server to
external clients once they have connected to the ElevateDB
Server. The default value is "EDBSrvr".

This property is used in conjunction with the ServerName
property to give more information about the ElevateDB Server
to external clients once they have connected to the ElevateDB
Server. The default value is "ElevateDB Server".

This property specifies the IP address that the ElevateDB
Server should bind to when listening for incoming connections
from remote sessions. The default value is blank (""), which
specifies that the ElevateDB Server should bind to all available
IP addresses.

This property specifies the port that the ElevateDB Server
should bind to when listening for incoming connections from
remote sessions. The default value is 12010.

This property specifies the number of threads that the
ElevateDB Server should actively cache for connections. When
a thread is terminated in the server it will be added to this
thread cache until the number of threads cached reaches this
property value. This allows the ElevateDB Server to re-use the
threads from the cache instead of having to constantly
create/destroy the threads as needed, which can improve the
performance of the ElevateDB Server if there are many
connections and disconnections occurring. The default value is
10.

This property specifies the encryption password used by the
ElevateDB Server for encrypting all communications with

Page 111

Using ElevateDB

ServerEncryptedOnly

ServerSessionTimeout

ServerDeadSessionInterval

ServerDeadSessionExpiration

Page 112

remote sessions. The default encryption password is
'elevatesoft'.

ElevateDB uses the Blowfish block cipher encryption algorithm
with 128-bit MD5 hash keys for encryption. Please see the
Encryption topic for more information.

This property specifies whether all incoming connections from
remote sessions should be encrypted or not. If this property is
set to True, then all incoming connections to the ElevateDB
Server that are not encrypted will be rejected with the error
code 1105 (EDB_ERROR_ENCRYPTREQ). The default value is
False.

Note

If you intend to use encrypted connections to an
ElevateDB Server over a public network then you
should always use a different
ServerEncryptionPassword from the default password.

This property specifies how long the server engine should wait
for a request from a connected remote session before it
disconnects the session. This is done to keep the number of
concurrent connections at a minimum. Once a session has
been disconnected by the server engine, the session is then
considered to be "dead" until either the remote session
reconnects to the session in the server, or the server removes
the session according to the parameters specified by the
ServerDeadSessionInterval,ServerDeadSessionExpiration, or
ServerMaxDeadSessions properties (see below). A remote
session may enable pinging via the TEDBSession RemotePing
property in order to prevent the server engine from
disconnecting the remote session due to the
ServerSessionTimeout property.

The default value for this property is 180 seconds, or 3
minutes.

This property controls how often the server engine will poll
the disconnected sessions to see if any need to be removed
according to the ServerDeadSessionExpiration, or
ServerMaxDeadSessions properties (see below). The default
value is 30 seconds.

This property controls how long a session can exist in the
server in a disconnected, or "dead", state before the server
engine removes the session. This is done to prevent a
situation where "dead" sessions accumulate from client
applications whose network connections were permanently
interrupted.

ServerMaxDeadSessions

ServerAuthorizedAddresses

ServerBlockedAddresses

ServerRunJobs

ServerJobCategory

OnServerSessionEvent

ServerTrace

Using ElevateDB

Note

If all of the remote sessions accessing the server are
using pinging via the TEDBSession RemotePing
property, then you should set this property to the
minimum value of 10 seconds so that sessions are
removed as soon as they stop pinging the server.

The default value for this property is 300 seconds, or 5
minutes.

This property controls how many "dead" sessions can
accumulate in the server before the server engine begins to
remove them immediately, irrespective of the
ServerDeadSessionExpiration property above. If the
ServerMaxDeadSessions property is exceeded, then the server
engine removes the "dead" sessions in oldest-to-youngest
order until the number of "dead" sessions is at or under the
ServerMaxDeadSessions property setting. The default value
for this property is 64.

This property controls which IP addresses are authorized to
access the server. This is commonly referred to as a "white
list". There is no limit to the number of addresses that can be
specified, and the IP address entries may contain the asterisk
(*) wildcard character to represent any portion of an address.

This property controls which IP addresses are not allowed to
access the server. This is commonly referred to as a "black
list". There is no limit to the number of addresses that can be
specified, and the IP address entries may contain the asterisk
(*) wildcard character to represent any portion of an address.

This property controls whether the server engine is allowed to
schedule and run jobs that are defined in the Configuration
database. If this property is set to True (the default), then the
ServerJobCategory property below determines which category
of jobs that the server will schedule and run.

This property controls which job category the server will
schedule and run if the ServerRunJobs property is set to True.
This property can contain any value, and the default value is
blank ("), which indicates that the server engine can run all
job categories. A job category is assigned to each job when it
is created via the CREATE JOB DDL statement.

Attach an event handler for this event in order to take certain
actions when a remote session connects, reconnects, logs in,
logs out, or disconnects from the server.

This property controls whether the server will trigger the
OnServerTrace event for every request and response to/from
the server.

Page 113

Using ElevateDB

Warning

Do not enable this property in production without being
aware of the consequences. Enabling this property can
result in a significant amount of overhead, depending
upon how the OnServerTrace event is handled. In the
ElevateDB Server project that is provided with
ElevateDB (see below), enabling this property will
generate a large number of trace files that can easily
consume large amounts of disk space on a busy server.

ElevateDB comes with a default GUI ElevateDB Server project for Delphi called edbsrvr.dpr (Windows
only). You can examine the source code of these projects to see how you would go about setting up a
TEDBENgine component as an ElevateDB Server in a project. Both of these projects are also provided in
compiled form with ElevateDB. You can find these servers in the \servers\edbsrvr subdirectories under the
main ElevateDB installation directory, and you can find the source code to these servers in the \source
subdirectory under each server's directory.

Starting the Engine

Once you have configured the engine using the above information, starting the engine is quite simple. All
you need to do is set the Active property to True. The following shows an example of how one might
configure and start an ElevateDB Server using the default global Engine function in the edbcomps unit
(Delphi and Lazarus) or edbcomps header file (C++):

Engine () ->ConfigPath:="\\MyApplication";
Engine () ->ServerName="MyTestServer";

Engine () ->ServerDescription="My Test Server";
// Only listen on this IP address

Engine () ->ServerAddress="192.168.0.1";
Engine () ->Active=true;

Note

You can use the TEDBENngine BeforeStart event to configure the TEDBEngine component before it is
started. Likewise, you can use the AfterStart, BeforeStop, and AfterStop events to respond to the
engine being started or stopped.

Page 114

Using ElevateDB

5.2 Connecting Sessions

As already discussed in the Architecture topic, the TEDBSession component represents a session in
ElevateDB. The following information will show how to connect a session in an application.

Preparing a Local Session for Connection

If a TEDBSession component has its SessionType property set to stLocal, then it is considered a local
session as opposed to a remote session. A local session must have values assigned to the LoginUser and
LoginPassword properties if you do not wish to have ElevateDB display a login dialog when the session is
connected.

The default Administrator user and password for an ElevateDB configuration is:

User: Administrator (case-insensitive)
Password: EDBDefault (case-sensitive)

Preparing a Remote Session for Connection

If a TEDBSession component has its SessionType property set to stRemote, then it is considered a remote
session as opposed to a local session. In addition to the Login* properties detailed above that are required
for a local or remote session, there are some additional properties for remote sessions that must be
specified.

Connecting a remote session will cause ElevateDB to attempt a connection to the ElevateDB Server
specified by the RemoteAddress or RemoteHost and RemotePort or RemoteService properties, and the
RemoteConnectionTimeout property will indicate how long the remote session will wait for a successful
connection attempt. In addition, the RemoteSignature property indicates the signature that the session's
connection to the ElevateDB Server will be signed with, and the RemoteEncryption property indicates
whether the session's connection to the ElevateDB Server will be encrypted using the
RemoteEncryptionPassword property. You must set these properties properly before trying to connect the
remote session or an exception will be raised.

Note

Even if a session is not encrypted by setting the RemoteEncryption property to True, any login
information is encrypted using the RemoteEncryptionPassword property during session login, so the
RemoteEncryptionPassword must always match the corresponding server encryption password for
session communciations or logins to the ElevateDB Server will fail. Please see the Configuring and
Starting the Engine topic for more information on how to configure the server encryption passowrd
used with session communications.

The RemoteAddress and RemoteHost properties are normally mutually exclusive. They can both be
specified, but the RemoteHost property will take precedence. The host hame used for the server can be
specified via the "hosts" text file available from the operating system. In Windows, for example, it is
located in the Windows\System32\Drivers\Etc directory. Adding an entry in this file for the ElevateDB
Server will allow you to refer to the ElevateDB Server by host name instead of IP address. The following is
an example of an entry for an ElevateDB Server running on a LAN:

Page 115

Using ElevateDB

192.168.0.1 ElevateDBServer

This is sometimes more convenient than remembering several IP addresses for different ElevateDB
Servers. It also allows the IP address to change without having to modify your application.

The RemotePort and RemoteService properties are also normally mutually exclusive. They can both be
specified, but the RemoteService property will take precedence. By default the port that ElevateDB Servers
use is 12010. This port can be changed, however, so check with your administrator or person in charge of
the ElevateDB Server configuration to verify that this is the port being used.

The service name used for the ElevateDB Server can be specified via the "services" text file available from
the operating system. In Windows, for example, it's located in the \Windows\System32\Drivers\Etc
directory. Adding an entry to this file for the ElevateDB Server's port will allow you to refer to the server's
port by service name instead of port number. The following is an example of an entry for the server:

ElevateDBServer 12010/tcp

This is sometimes more convenient than remembering the port numbers for different ElevateDB Servers. It
also allows the port number to change without having to modify your application.

The RemoteEncryption property can be set to either True or False and determines whether the session's
connection to the server will be encrypted or not. If this property is set to True, the
RemoteEncryptionPassword property is used to encrypt and decrypt all data transmitted to and from the
ElevateDB Server. This property must match the same encryption password that the ElevateDB Server is
using for communications with remote sessions (TEDBEngine ServerEncryptionPassword property) or else
an exception will be raised when a request is attempted on the server.

If for any reason the remote session cannot connect to an ElevateDB Server, an exception will be raised.
The error that is raised when a connection fails is 1100 (EDB_ERROR_CLIENTCONN). It's also possible for
ElevateDB to be able to connect to the server, but the connection will be rejected due to the ElevateDB
Server blocking the client workstation's IP address from accessing the server (1104 and defined as
EDB_ERROR_ADDRBLOCK), or an encrypted connection being required by the ElevateDB Server (1105 and
defined as EDB_ERROR_ENCRYPTREQ).

Connecting a Session

To connect a session you must set the TEDBSession Active property to True or call its Open method. For a
local session (SessionType property is set to stLocal), the session will be opened immediately. As
discussed above, for a remote session (SessionType property is set to stRemote), performing this
operation will cause the session to attempt a connection to the ElevateDB Server specified by the
RemoteAddress or RemoteHost and RemotePort or RemoteService properties. The connection attempt will
wait the number of seconds specified by theRemoteConnectionTimeout property.

For both local and remote sessions, if the LoginUser and LoginPassword properties are specified and are
valid, then neither the OnLogin event nor the interactive login dialog will be triggered. If these properties
are not specified or are not valid, the OnLogin event will be triggered if there is an event handler assigned
to it. If an event handler is not assigned to the OnLogin event, ElevateDB will display an interactive login
dialog that will prompt for a user ID and password. All ElevateDB configurations require a user ID and
password in order to connect and login. ElevateDB will allow for up to 3 login attempts before issuing an
exception. The error that is raised when a connection fails due to invalid login attempts is 501
(EDB_ERROR_LOGIN).

Page 116

Using ElevateDB

Note
Any version of ElevateDB for Delphi 6 or higher (including C++Builder 6 and higher) requires that

you include the DBLogDIg unit in your uses clause in order to enable the display of a default login
dialog. This is done to allow for ElevateDB to be included in applications without linking in the
Forms unit, which can add a lot of unnecessary overhead and also cause unwanted references to
user interface libraries. This is not required for Delphi 5 or C++Builder 5 since these versions always

included the Forms unit.

The BeforeConnect event is useful for handling the setting of any properties for the session before the
session is connected. This event is called right before the session is connected, so it is useful for situations
where you need to change the session properties from values that were used at design-time to values that
are valid for the environment in which the application is now running. The following is an example of using
an BeforeConnect event handler to set the remote connection properties for a session:

void _ fastcall TMyForm::MySessionBeforeConnect (TObject *Sender)
{

TRegistry *Registry = new TRegistry;

try

{
Registry->RootKey=HKEY LOCAL MACHINE;

if (Registry->OpenKey ("SOFTWARE/My Application", false)
{
if (Registry->ReadBool ("IsRemote"))
{
MySession->SessionType=stRemote;
MySession->RemoteAddress=Registry->ReadString ("RemoteAddress") ;
MySession->RemotePort=Registry->ReadString ("RemotePort") ;
}
else
{
MySession->SessionType=stLocal;
}
}
else

{

ShowMessage ("Error reading connection information "+
"from the registry");

}
_ finally

{
delete Registry;

}

Note
You should not call the session's Open method or toggle the Active property from within this event

handler. Doing so can cause infinite recursion.

The AfterDisconnect event can be used for taking specific actions after a session has been disconnected.
As is the case with the BeforeConnect event, the above warning regarding the Open method or Active

Page 117

Using ElevateDB

property also applies for the AfterDisconnect event.

More Session Properties

A session can also be configured to control several global settings for all TEDBDatabase, TEDBTable,
TEDBQuery, TEDBStoredProc, and TEDBScript components that link to the session via their SessionName
properties. The properties that represent these global settings are detailed below:

Property

ForceBufferFlush

RecordLockProtocol

RecordLockRetryCount

RecordLockWaitTime

RecordChangeDetection

KeepConnections

KeepTablesOpen

SQLStmtCacheSize

Page 118

Description

Controls whether the session will automatically force the
operating system to flush data to disk after every write
operation completed by ElevateDB. Please see the Buffering
and Caching topic for more information. The default value is
False.

Controls whether the session will use a pessimistic or
optimistic locking model when editing rows via navigational or
SQL methods. Please see the Locking and Concurrency topic
for more information. The default value is IpPessimistic.

Controls the number of times that the engine will retry a row
lock before raising an exception. This property is used in
conjunction with the RecordLockWaitTime property. The
default value is 15 retries.

Controls the amount of time, in milliseconds, that the engine
will wait in-between row lock attempts. This property is used
in conjuction with the RecordLockRetryCount property. The
default value is 100 milliseconds.

Controls whether the session will detect changes to a row
during editing or deletion and issue an error if the row has
changed since it was last cached. Please see the Change
Detection topic for more information. The default value is
False.

Controls whether temporary TEDBDatabase components are
kept connected even after they are no longer needed. This
property has no obvious effect upon a local session, but can
result in tremendous performance improvements for a remote
session, therefore it defaults to True and should be left as
such in most cases.

Controls whether the physical tables opened within the
session are kept open even after they are no longer being
used by the application. Setting this property to True can
dramatically improve the performance of SQL statements and
any other operations that involve constantly opening and
closing the same tables over and over.

Controls how many SQL statements can be cached in memory
for each open database in the session. Caching SQL
statements improves the performance of ElevateDB by
avoiding very expensive preparation/un-preparation cycles.
The default value is 0, which means that SQL statements will
not be cached for the session. If a session needs to free any
cached SQL statements, it can do so at any time by calling the
TEDBSession FreeCachedSQLStmts method.

FuncProcCacheSize

ProgressTimelnterval

ExcludeFromLicensedSessions

Note

Using ElevateDB

Controls how many functions/procedures can be cached in
memory for each open database in the session. Caching
functions/procedures improves the performance of ElevateDB
by avoiding very expensive preparation/un-preparation cycles.
The default value is 0, which means that functions/procedures
will not be cached for the session. If a session needs to free
any cached functions/procedures, it can do so at any time by
calling the TEDBSession FreeCachedFuncProcs method.

Controls the amount of time, in milliseconds, that must elapse
between progress updates before ElevateDB will generate a
progress event. The default value is 1000 milliseconds, or 1
second.

Specifies whether the current session should be included in
the session license count controlled by the TEDBEngine
LicensedSessions property for local sessions, or by the
ElevateDB Server for remote sessions. This is useful for
situations where you have a utility session that you want to
exclude from your own licensing restrictions, such as when a
session is used in a thread for performance reasons.

Note

This property does not cause the session to be
excluded from the ElevateDB licensed session count
and only affects the user-defined licensed session
count.

You cannot modify any of the above properties unless the session is disconnected. Attempting to
modify these properties while the session is connected will result in an exception being raised.

Page 119

Using ElevateDB

5.3 Creating, Altering, or Dropping Configuration Objects

Configuration objects are objects that are stored in the ElevateDB configuration file, which is represented
by the special system-created Configuration database. Creating, altering, or dropping configuration objects
can be accomplished by using the TEDBSession Execute method to execute the desired DDL (Data
Definition Language) statement against the Configuration database. This method is always set to execute
any passed SQL statement from the context of the Configuration database, which makes it ideal for use in
creating, altering, or dropping configuration objects such as databases, users, roles, and jobs with a
minimal amount of work.

The following example shows how to create a database called "Test" using the CREATE DATABASE DDL
statement:

// This example uses a session component that
// has already been created and connected
// called MySession

MySession->Execute ("CREATE DATABASE \"Test\" PATH 'C:\\Test'+
"DESCRIPTION 'Test Database'");

Configuration Object DDL Statements

The following DDL statements can be used to manipulate the various configuration objects available in the
Configuration database:

o CREATE USER

e ALTER USER

* DROP USER

* RENAME USER

o CREATE ROLE

e ALTER ROLE

* DROP ROLE

* RENAME ROLE

* GRANT ROLES

* REVOKE ROLES

e GRANT PRIVILEGES
* REVOKE PRIVILEGES
o CREATE DATABASE
» ALTER DATABASE

* DROP DATABASE

* RENAME DATABASE
o CREATE JOB

* ALTER JOB

* DROP JOB

* RENAME JOB

» CREATE MODULE

e ALTER MODULE

* DROP MODULE

* RENAME MODULE

* CREATE MIGRATOR
e ALTER MIGRATOR
e DROP MIGRATOR

Page 120

Using ElevateDB

e RENAME MIGRATOR

o CREATE TEXT FILTER

e ALTER TEXT FILTER

e DROP TEXT FILTER

e RENAME TEXT FILTER

» CREATE WORD GENERATOR
* ALTER WORD GENERATOR

e DROP WORD GENERATOR

* RENAME WORD GENERATOR
o DISCONNECT SERVER SESSION
* REMOVE SERVER SESSION

Please see the User Security topic for more information on the required privileges to execute the above
DDL statements.

Note
Keep in mind that Linux has a case-sensitive file system when specifying path names in any SQL.

Page 121

Using ElevateDB

5.4 Opening Databases

As already discussed in the ElevateDB Architecture topic, the TEDBDatabase component represents a
database in ElevateDB. The following information will show how to open a database in an application.

Preparing a Database for Opening

Before you can open a database using the TEDBDatabase component, you must set a couple of properties.
The TEDBDatabase DatabaseName property is the name given to the database within the application and
is required for naming purposes only. The Database property should contain the name of an existing
database that has already been created using a CREATE DATABASE DDL statement.

Opening a Database

To open a database you must set the TEDBDatabase Connected property to True or call its Open method.
For a local TEDBDatabase component whose SessionName property is linked to a local TEDBSession
component, the database will cause the local TEDBSession to be opened if it is not already, and then the
database will be opened. For a remote database whose SessionName property is linked to a remote
TEDBSession component, performing this operation will cause the remote session to attempt a connection
to the ElevateDB Server if it is not already connected. If the connection is successful, the database will
then be opened.

The BeforeConnect event is useful for handling the setting of any pertinent properties for the
TEDBDatabase component before it is opened. This event is triggered right before the database is opened,
so it's useful for situations where you need to change the database information from that which was used
at design-time to something that is valid for the environment in which the application is now running.

Note
You should not call the TEDBDatabase Open method or modify the Connected property from within
the BeforeConnect event handler. Doing so can cause infinite recursion.

More Database Properties

A TEDBDatabase component has one other property of importance that is detailed below:

Property Description

KeepConnection Controls whether the database connection is kept active even
after it is no longer needed. This property has no effect upon
a local session, but can result in tremendous performance
improvements for a remote session, therefore it defaults to
True and should be left as such in most cases.

Page 122

Using ElevateDB

5.5 Creating, Altering, or Dropping Database Objects

Database objects are objects that are stored in an ElevateDB database catalog, which is represented by
the special system-created Information schema in every ElevateDB database. Creating, altering, or
dropping database objects can be accomplished by using the TEDBDatabase Execute method to execute
the desired DDL statement against the target database. This method is always set to execute any passed
SQL statement from the context of the target database, which makes it ideal for use in creating, altering,
or dropping database objects such as tables, indexes, triggers, views, functions, and procedures with a

minimal amount of work.

The following example shows how to create a table called "Customer" using the CREATE TABLE DDL (Data
Definition Language) statement:

// This example uses a database component that
// has already been created and opened

// called MyDatabase

MyDatabase->Execute ("CREATE TABLE \"Customer\" "+

n (|l+
"\"ID\" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH

0, INCREMENT BY 1), "+

"\"Name\" VARCHAR(30) COLLATE \"ANSI CT\", "+
"\"Address1\" VARCHAR (40) COLLATE \"ANSI CT\", "+
"\"Address2\" VARCHAR (40) COLLATE \"ANSI CT\", "+
"\"City\" VARCHAR(30) COLLATE \"ANSI CT\", "+
"\"State\" CHAR(2) COLLATE \"ANSI CI\", "+

"\"Zip\" CHAR(10) COLLATE \"ANST CT\", "+
"\"CreatedOn\" TIMESTAMP DEFAULT CURRENT_TIMESTAMP, "+
"CONSTRAINT \"IDiPrimaryKey\" PRIMARY KEY (\"ID\"), "+
"CONSTRAINT \"ID7CheCk\" CHECK (ID IS NOT NULL), "+
"CONSTRAINT \"Name Check\" CHECK (Name IS NOT NULL)"+
")

Database Object DDL Statements

The following DDL statements can be used to manipulate the various database objects available in a

database catalog:

o CREATE TABLE
e ALTER TABLE
* DROP TABLE
* RENAME TABLE
o CREATE INDEX

o CREATE TEXT INDEX

» ALTER INDEX

* DROP INDEX

* RENAME INDEX

» CREATE TRIGGER
* ALTER TRIGGER

e DROP TRIGGER

* RENAME TRIGGER
o CREATE VIEW

e ALTER VIEW

Page 123

Using ElevateDB

e DROP VIEW

e RENAME VIEW

» CREATE FUNCTION

* ALTER FUNCTION

* DROP FUNCTION

* RENAME FUNCTION

o CREATE PROCEDURE
» ALTER PROCEDURE

* DROP PROCEDURE

* RENAME PROCEDURE

Please see the User Security topic for more information on the required privileges to execute the above
DDL statements.

Note
Keep in mind that Linux has a case-sensitive file system when specifying path names in any SQL.

Page 124

Using ElevateDB

5.6 Executing Queries

Executing SQL queries is accomplished through the ExecSQL and Open methods of the TEDBQuery
component, or by setting the Active property to True. Before executing a query you must first specify the
source database for the query. The source database is specified via the DatabaseName property of the
TEDBQuery component. The actual SQL for the query is specified in the SQL property. You may select
whether you want a sensitive or insensitive query result cursor set via the RequestSensitive property.
Please see the Result Set Cursor Sensitivity topic for more information.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TEDBQuery component to the
DatabaseName property of an existing TEDBDatabase component within the application. In this case the
actual source database being used will come from the Database property. The following example shows
how to use the DatabaseName property to point to an existing TEDBDatabase component for the source
database:

MyDatabase->DatabaseName="AccountingDB";
MyDatabase->Database="Accounting";
MyDatabase->Connected=true;
MyQuery->DatabaseName="AccountingDB";
MyQuery->SQL->Clear () ;

MyQuery->SQL->Add ("SELECT * FROM ledger");
MyQuery->Active=true;

Note

The above example does not assign a value to the SessionName property of either the
TEDBDatabase or TEDBQuery component because leaving this property blank for both components
means that they will use the default session that is automatically created by ElevateDB when the

engine is initialized. This session is, by default, a local, not remote, session nhamed "Default" or "".
Please see the Connecting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TEDBDatabase component to dynamically
set the Database property before the TEDBDatabase component attempts to connect to the database. This
is especially important when you have the Connected property for the TEDBDatabase component set to
True at design-time during application development and wish to change the Database property before the
connection is attempted when the application is run.

2) The second method is to enter the name of an existing database directly into the DatabaseName
property. In this case a temporary database component will be automatically created, if needed, for the
database specified and automatically destroyed when no longer needed. The following example shows
how to use the DatabaseName property to point directly to the desired database without referring to a
TEDBDatabase component:

Page 125

Using ElevateDB

MySession->SessionName="Remote";
MySession->SessionType=stRemote;
MySession->RemoteAddress="192.168.0.2";
MySession->Active=true;
MyQuery->SessionName="Remote";
MyQuery->DatabaseName="Accounting";
MyQuery->SQL->Clear () ;

MyQuery->SQL->Add ("SELECT * FROM ledger");
MyQuery->Active=true;

Setting the SQL Property

The SQL statement is specified via the SQL property of the TEDBQuery component. The SQL property is a
TEDBStrings object. You may enter an SQL statement by using the Add method of the SQL property to
specify the SQL statement line-by-line. You can also assign the entire SQL to the Text property of the SQL

property.

When dynamically building SQL statements that contain literal string constants, you can use the
TEDBENgine QuotedSQLStr method to properly format and escape any embedded single quotes in the
string. For example, suppose you have a TEdit component that contains the following string:

Pete's Garage

The string contains an embedded single quote, so it cannot be specified directly without causing an error
in the SQL statement.

To build an SQL INSERT statement that inserts the above string into a VARCHAR column, you should use
the following code:

MyEDBQuery->SQL->Text="INSERT INTO MyTable "+
" (MyVarCharColumn) VALUES ("+
Engine () ->QuotedSQLStr (MyEdit.Text)+")";

Note

If re-using the same TEDBQuery component for multiple query executions, please be sure to call
the SQL property's Clear method to clear the SQL from the previous query before calling the Add
method to add more SQL statement lines.

Preparing the Query

By default ElevateDB will automatically prepare a query before it is executed. However, you may also
manually prepare a query using the TEDBQuery Prepare method. Once a query has been prepared, the
Prepared property will be True. Preparing a query parses the SQL, opens all referenced tables, and
prepares all internal structures for the execution of the query. You should only need to manually prepare a
query when executing a parameterized query. Please see the Parameterized Queries topic for more
information.

Page 126

Using ElevateDB

Executing the Query

To execute the query you should call the TEDBQuery ExecSQL or Open methods, or you should set the
Active property to True. Setting the Active property to True is the same as calling the Open method. The
difference between using the ExecSQL and Open methods is as follows:

Method Usage

ExecSQL Use this method when the SQL statement specified in the SQL
property may or may not return a result set. The ExecSQL
method can handle both situations.

Open Use this method only when you know that the SQL statement
specified in the SQL property will return a result set. Using the
Open method with an SQL statement that does not return a
result set will result in an EDatabaseError exception being
raised with an error message "Error creating table handle".

Note
The SQL SELECT statement is the only statement that returns a result set. All other types of SQL
statements do not.

The following example shows how to use the ExecSQL method to execute an UPDATE statement:

MyDatabase->DatabaseName="AccountingDB";
MyDatabase->Database="Accounting";
MyDatabase->Connected=true;
MyQuery->DatabaseName="AccountingDB";
MyQuery->SQL->Clear () ;

MyQuery->SQL->Add ("UPDATE ledger SET AccountNo=100");
MyQuery->SQL->Add ("WHERE AccountNo=300") ;
MyQuery->ExecSQL () ;

Query Execution Plans

If you wish to retrieve a query execution plan for the current execution via the Plan property, then set the
RequestPlan property to True before executing the query.

Sensitive Result Set Cursors

If you wish to have a sensitive result set generated from the executed query, then set the
RequestSensitive property to True before executing the query. This only requests a sensitive result set
cursor, and the query may still generate an insensitive result set cursor based upon the query being
executed. Please see the Result Set Cursor Sensitivity topic for more information.

Retrieving Query Information

Page 127

Using ElevateDB

You can retrieve information about a query both after the query has been prepared and after the query
has been executed. The following properties can be interrogated after a query has been prepared or
executed:

Property Description
SQLStatementType Indicates the type of SQL statement currently ready for
execution.

The following properties can only be interrogated after a query has been executed:

Property Description

Plan Contains information about how the current query was
executed, including any optimizations performed by
ElevateDB. This information is very useful in determining how
to optimize a query further or to simply figure out what
ElevateDB is doing behind the scenes. The Plan property is
automatically cleared before each execution of an SQL
statement.

Note
Query plans are only generated for SQL SELECT,
INSERT, UPDATE, or DELETE statements.

RowsAffected Indicates the number of rows affected by the current query.

ExecutionTime Indicates the amount of execution time in seconds consumed
by the current query.

ExecutionResult Indicates the Boolean result of the current SQL execution.

Sensitive Indicates the whether the result set cursor for the query is

sensitive or insensitive. Please see the Result Set Cursor
Sensitivity topic for more information.

The following example shows how to use the ExecSQL method to execute an UPDATE SQL statement and
report the number of rows affected as well as how long it took to execute the statement:

MyDatabase->DatabaseName="AccountingDB";
MyDatabase->Database="Accounting";
MyDatabase->Connected=true;
MyQuery->DatabaseName="AccountingDB";
MyQuery->SQL->Clear () ;
MyQuery->SQL->Add ("UPDATE ledger SET AccountNo=100");
MyQuery->SQL->Add ("WHERE AccountNo=300") ;
MyQuery->ExecSQL () ;
ShowMessage (IntToStr (MyQuery->RowsAffected) +

" rows updated in "+
FloatToStr (MyQuery->ExecutionTime)+" seconds");

Page 128

Using ElevateDB

Tracking the Progress of a Query

To take care of tracking the progress of the query execution, we have provided the TEDBQuery
OnProgress event. You may set the Continue parameter of this event to False in your event handler to
indicate to ElevateDB that you wish to abort the execution of the current SQL statement.

Page 129

Using ElevateDB

5.7 Parameterized Queries

Parameters allow the same SQL statement to be used with different data values, and are placeholders for
those data values. At runtime, the application prepares the query with the parameters and fills the
parameter with a value before the query is executed. When the query is executed, the data values
assigned to the parameters are substituted for the parameter placeholder and the SQL statement is
executed.

Specifying Parameters in SQL

Parameter markers can be used in SQL SELECT, INSERT, UPDATE, and DELETE statements in place of
constants. Parameters are identified by a preceding colon (:). For example:

SELECT Last Name, First Name
FROM Customer
WHERE (Last Name=:LName) AND (First Name=:FName)

Parameters are used to pass data values to be used in WHERE clause comparisons and as update values in
updating SQL statements such as UPDATE or INSERT. Parameters cannot be used to pass values for
Identifiers. The following example uses the TotalParam parameter to pass the data value that needs to be
assigned to the ItemsTotal column for the row with the OrderNo column equal to 1014:

UPDATE Orders
SET ItemsTotal = :TotalParam
WHERE (OrderNo = 1014)

Populating Parameters with the TEDBQuery Component

You can use the TEDBQuery Params property to populate the parameters in an SQL statement with data
values. You may use two different methods of populating parameters using the Params property:

* By referencing each parameter by its index position in the available list of parameters
* By reference each parameter by name using the ParamByName method

The following is an example of using the index positions of the parameters to populate the data values for
an INSERT SQL statement:

MyQuery->SQL->Clear () ;
MyQuery->SQL->Add ("INSERT INTO Country (Name, Capital, Population)");
MyQuery->SQL->Add ("VALUES (:Name, :Capital, :Population)");
MyQuery->Params [0] ->AsString="Lichtenstein";
MyQuery->Params[1]->AsString="Vaduz";
MyQuery->Params[2] ->AsInteger=420000;

)

MyQuery->ExecSQL (

’

Page 130

Using ElevateDB

The next block of code is an example of using the TEDBQuery ParamByName method in order to populate
the data values for a SELECT SQL statement:

MyQuery->SQL->Clear () ;
MyQuery->SQL->Add ("SELECT *");
MyQuery->SQL->Add ("FROM Orders")
MyQuery->SQL->Add ("WHERE CustID :CustID");
MyQuery->ParamByName ("CustID")->AsFloat=1221;
MyQuery->Open () ;

end;

I~.

Preparing Parameterized Queries

It is usually recommended that you manually prepare parameterized queries that you intend to execute
many times with different parameter values. This can result in significant performance improvements since
the process of preparing a query can be time-consuming. The following is an example of inserting 3 rows
with different values using a manually-prepared, parameterized query:

MyQuery->SQL->Clear () ;

MyQuery->SQL.Add ("INSERT INTO Customer (CustNo, Company");
MyQuery->SQL.Add ("VALUES (:CustNo, :Company)");

// Manually prepare the query

MyQuery->Prepare () ;
MyQuery->ParamByName ("CustNo") ->AsInteger=1000;
MyQuery->ParamByName ("Company") ->AsString="Chocolates, Inc.";
MyQuery->ExecSQL () ;
MyQuery->ParamByName ("CustNo") ->AsInteger=2000;
MyQuery->ParamByName ("Company") ->AsString="Flowers, Inc.";
MyQuery->ExecSQL () ;
MyQuery->ParamByName ("CustNo") ->AsInteger=3000;
MyQuery->ParamByName ("Company") ->AsString="Candies, Inc.";
MyQuery->ExecSQL () ;

Page 131

Using ElevateDB

5.8 Querying Configuration Objects

Configuration objects are objects that are stored in the ElevateDB configuration file, which is represented
by the special system-created Configuration database. Querying configuration objects can be accomplished
by using the TEDBQuery component to execute queries against the Configuration database. This allows
you to determine which configuration objects exist in the configuration along with specific information
about the configuration objects.

The following example shows how to use a TEDBQuery component containing a SELECT statement to
query the Databases Table in the Configuration database in order to see if the "Sales" database exists:

// This example uses a query component that
// has already been created and opened
// called MyQuery

MyQuery->DatabaseName="Configuration";
MyQuery->SQL="SELECT * FROM Databases "+
"WHERE Name="+Engine->QuotedSQLStr ("Sales");
MyQuery->Open () ;
if (RecordCount==1)
{
ShowMessage ("The Sales database exists");

}

else

{

ShowMessage ("The Sales database does not exist");

i

You can also use the TEDBSession Execute method as a quicker method to determine if a configuration
object or objects exist. The Execute method returns the number of rows affected or returned by a
particular SQL statement, so you can use the return value of an indication of whether any rows exist for
the SELECT statement on the Configuration database:

// This example uses a session component that
// has already been created and opened
// called MySession

if (MySession->Execute ("SELECT * FROM Databases "+
"WHERE Name="+Engine->QuotedSQLStr ("Sales"))==1)
{
ShowMessage ("The Sales database exists");

}

else

{

ShowMessage ("The Sales database does not exist");
}i

Page 132

Using ElevateDB

5.9 Querying Database Objects

Database objects are objects that are stored in an ElevateDB database catalog, which is represented by
the special system-created Information schema in every ElevateDB database. Querying database objects
can be accomplished by using the TEDBQuery component to execute queries against the Information
Schema for a given database. This allows you to determine which database objects exist in the database
along with specific information about the database objects.

The following example shows how to use a TEDBQuery component containing a SELECT statement to
query the Tables Table in the Information Schema in order to see if the "Customer" table exists:

// This example uses a query component that
// has already been created and opened
// called MyQuery

MyQuery->DatabaseName="SalesDB";
MyQuery->SQL="SELECT * FROM Information.Tables "+
"WHERE Name="+Engine->QuotedSQLStr ("Customer") ;
MyQuery->Open () ;
if (RecordCount==1)
{
ShowMessage ("The Customer table exists");

}

else

{

ShowMessage ("The Customer table does not exist");

i

You can also use the TEDBDatabase Execute method as a quicker method to determine if a database
object or objects exist. The Execute method returns the number of rows affected or returned by a
particular SQL statement, so you can use the return value of an indication of whether any rows exist for
the SELECT statement on the Information schema:

// This example uses a database component that
// has already been created and opened
// called MyDatabase

if (MyDatabase->Execute ("SELECT * FROM Information.Tables "+
"WHERE Name="+Engine->QuotedSQLStr ("Customer"))==1)
{

ShowMessage ("The Customer table exists");

}

else

{

ShowMessage ("The Customer table does not exist");
}i

Page 133

Using ElevateDB

5.10 Executing Scripts

Executing scripts is accomplished through the ExecScript and Open methods of the TEDBScript
component, or by setting the Active property to True. Before executing a script you must first specify the
source database for the script. The source database is specified via the DatabaseName property of the
TEDBScript component. The actual script is specified in the SQL property.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TEDBScript component to the
DatabaseName property of an existing TEDBDatabase component within the application. In this case the
actual source database being used will come from the Database property. The following example shows
how to use the DatabaseName property to point to an existing TEDBDatabase component for the source
database:

MyDatabase->DatabaseName="AccountingDB";
MyDatabase->Database="Accounting";

MyDatabase->Connected=true;
MyScript->DatabaseName="AccountingDB";
MyScript->SQL->LoadFromFile ("c:\\scripts\\GetLedgerEntries.sql") ;
MyScript->Active=true;

Note

The above example does not assign a value to the SessionName property of either the
TEDBDatabase or TEDBScript component because leaving this property blank for both components
means that they will use the default session that is automatically created by ElevateDB when the

engine is initialized. This session is, by default, a local, not remote, session named "Default" or "".
Please see the Connecting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TEDBDatabase component to dynamically
set the Database property before the TEDBDatabase component attempts to connect to the database. This
is especially important when you have the Connected property for the TEDBDatabase component set to
True at design-time during application development and wish to change the Database property before the
connection is attempted when the application is run.

2) The second method is to enter the name of an existing database directly into the DatabaseName
property. In this case a temporary database component will be automatically created, if needed, for the
database specified and automatically destroyed when no longer needed. The following example shows
how to use the DatabaseName property to point directly to the desired database without referring to a
TEDBDatabase component:

MySession->SessionName="Remote";
MySession->SessionType=stRemote;
MySession->RemoteAddress="192.168.0.2";

Page 134

Using ElevateDB

MySession->Active=true;
MyScript->SessionName="Remote";
MyScript->DatabaseName="Accounting";
MyScript->SQL->Clear () ;
MyScript->SQL->Add ("SCRIPT ()");
MyScript->SQL->Add ("BEGIN") ;

(
MyScript->SQL->Add (" EXECUTE IMMEDIATE 'BACKUP DATABASE Test ");
MyScript->SQL->Add (" AS TestBackup TO STORE \"Backups\" ");
MyScript->SQL->Add (" INCLUDE CATALOG';");

MyScript->SQL->Add ("END") ;
MyScript->ExecScript () ;

Setting the SQL Property

The script is specified via the SQL property of the TEDBScript component. You can use the ConvertSQL
method to convert a script that consists of a series of SQL statements (INSERT, UPDATE, DELETE, or
SELECT) separated by semicolons (;) into a proper ElevateDB script that can be executed by the
TEDBScript component.

Preparing the script

By default ElevateDB will automatically prepare a script before it is executed. However, you may also
manually prepare a script using the TEDBScript Prepare method. Once a script has been prepared, the
Prepared property will be True. Preparing a script compiles the script, opens all referenced tables, and
prepares all internal structures for the execution of the script. You should only need to manually prepare a
script when executing a script that requires parameters.

Executing the Script

To execute the script you should call the TEDBScript ExecScript or Open methods, or you should set the
Active property to True. Setting the Active property to True is the same as calling the Open method. The
difference between using the ExecScript and Open methods is as follows:

Method Usage

ExecScript Use this method when the script specified in the SQL property
may or may not return a result set. The ExecScript method
can handle both situations.

Open Use this method only when you know that the script specified
in the SQL property will return a result set. Using the Open
method with a script that does not return a result set will
result in an EDatabaseError exception being raised with an
error message "Error creating table handle".

The following example shows how to use the ExecScript method to execute a script:

MyDatabase->DatabaseName="AccountingDB";
MyDatabase->Database="Accounting";
MyDatabase->Connected=true;
MyScript->DatabaseName="AccountingDB";

Page 135

Using ElevateDB

MyScript->SQL->LoadFromFile ("UpdateLedgerEntries.SQL") ;
MyScript->Prepare () ;

MyScript->ParamByName ("AccountNo") .AsString="00100";
MyScript->ExecScript () ;

Tracking the Progress of a Script

To take care of tracking the progress of the script execution, we have provided the TEDBScript OnProgress
event. This event will only be fired if the script contains manual progress update calls specifically included
by the script creator.

Page 136

Using ElevateDB

5.11 Executing Stored Procedures

Executing stored procedures is accomplished through the ExecProc and Open methods of the
TEDBStoredProc component, or by setting the Active property to True. Before executing a stored
procedure you must first specify the source database for the procedure. The source database is specified
via the DatabaseName property of the TEDBStoredProc component. The actual procedure name is
specified in the StoredProcName property.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TEDBStoredProc component to the
DatabaseName property of an existing TEDBDatabase component within the application. In this case the
actual source database being used will come from the Database property. The following example shows
how to use the DatabaseName property to point to an existing TEDBDatabase component for the source
database:

MyDatabase->DatabaseName="AccountingDB";
MyDatabase->Database="Accounting";
MyDatabase->Connected=true;
MyStoredProc->DatabaseName="AccountingDB";
MyStoredProc->StoredProcName="GetLedgerEntries";
MyStoredProc->Active=true;

Note

The above example does not assign a value to the SessionName property of either the
TEDBDatabase or TEDBStoredProc component because leaving this property blank for both
components means that they will use the default session that is automatically created by ElevateDB
when the engine is initialized. This session is, by default, a local, not remote, session named
"Default" or "". Please see the Connecting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TEDBDatabase component to dynamically
set the Database property before the TEDBDatabase component attempts to connect to the database. This
is especially important when you have the Connected property for the TEDBDatabase component set to
True at design-time during application development and wish to change the Database property before the
connection is attempted when the application is run.

2) The second method is to enter the name of an existing database directly into the DatabaseName
property. In this case a temporary database component will be automatically created, if needed, for the
database specified and automatically destroyed when no longer needed. The following example shows
how to use the DatabaseName property to point directly to the desired database without referring to a
TEDBDatabase component:

MySession->SessionName="Remote";
MySession->SessionType=stRemote;

Page 137

Using ElevateDB

MySession->RemoteAddress="192.168.0.2";
MySession->Active=true;
MyStoredProc->SessionName="Remote";
MyStoredProc->DatabaseName="Accounting";
MyStoredProc->StoredProcName="GetLedgerEntries";
MyStoredProc->Active=true;

Setting the StoredProcName Property
The procedure is specified via the StoredProcName property of the TEDBStoredProc component.
Preparing the Stored Procedure

By default ElevateDB will automatically prepare a procedure before it is executed. However, you may also
manually prepare a procedure using the TEDBStoredProc Prepare method. Once a procedure has been
prepared, the Prepared property will be True. Preparing a procedure compiles the procedure, opens all
referenced tables, and prepares all internal structures for the execution of the procedure. You should only
need to manually prepare a procedure when executing a procedure that requires parameters.

Executing the Procedure

To execute the procedure you should call the TEDBStoredProc ExecProc or Open methods, or you should
set the Active property to True. Setting the Active property to True is the same as calling the Open
method. The difference between using the ExecProc and Open methods is as follows:

Method Usage

ExecProc Use this method when the procedure specified in the
StoredProcName property may or may not return a result set.
The ExecProc method can handle both situations.

Open Use this method only when you know that the procedure
specified in the StoredProcName property will return a result
set. Using the Open method with a procedure that does not
return a result set will result in an EDatabaseError exception
being raised with an error message "Error creating table
handle".

The following example shows how to use the ExecProc method to execute a procedure:

MyDatabase->DatabaseName="AccountingDB";
MyDatabase->Database="Accounting"”;
MyDatabase->Connected=true;
MyStoredProc->DatabaseName="AccountingDB";
MyStoredProc->StoredProcName="UpdateLedgerEntries";
MyStoredProc->Prepare () ;
MyStoredProc->ParamByName ("AccountNo") .AsString="00100";
MyStoredProc->ExecProc () ;

Page 138

Using ElevateDB

Tracking the Progress of a Procedure

To take care of tracking the progress of the procedure execution, we have provided the TEDBStoredProc
OnProgress event. This event will only be fired if the procedure contains manual progress update calls
specifically included by the procedure creator.

Page 139

Using ElevateDB

5.12 Executing Transactions

A transaction is executed entirely by using the StartTransaction, Commit, and Rollback methods of the
TEDBDatabase component. A typical transaction block of code looks like this:

MyDatabase->StartTransaction (EmptyEDBStringsArray) ;
try
{

// Perform some updates to the table(s) in this database
MyDatabase->Commit () ;
}

catch

{
MyDatabase->Rollback () ;
throw;

}

The EmptyEDBStringsArray variable is defined in the edbtype unit (Delphi or Lazarus) or edbtype header
file (C++) in ElevateDB.

Note

It is very important that you always ensure that the transaction is rolled back if there is an
exception of any kind during the transaction. This will ensure that the locks held by the transaction
are released and other sessions can continue to update data while the exception is dealt with. Also,
if you roll back a transaction it is always a good idea to refresh any open TEDBTable or TEDBQuery
components linked to the TEDBDatabase component involved in the transaction so that they reflect
the current data and not any data from the transaction that was just rolled back. Along with
refreshing, you should make sure that any pending inserts or edits for the TEDBTable or TEDBQuery
components are cancelled using the Cancel method before the transaction is rolled back to ensure
that the inserts or edits are not accidentally posted using the Post method after the transaction is
rolled back (unless that is specifically what you wish to do).

Restricted Transactions

It is also possible with ElevateDB to start a restricted transaction. A restricted transaction is one that
specifies only certain tables be part of the transaction. The StartTransaction method accepts an optional
array of tables that can be used to specify what tables should be involved in the transaction and,
subsequently, locked as part of the transaction (see below regarding locking). If this list of tables is nil
(the default), then the transaction will encompass the entire database.

The following example shows how to use a restricted transaction on two tables, the Customer and Orders
table:

TEDBStringsArray Tables;
Tables.Length = 2;
Tables[1l]="Customer";

Page 140

Using ElevateDB

Tables[2]="Orders";
MyDatabase->StartTransaction (Tables) ;
try

{
// Perform some updates to the table(s) in this database
MyDatabase->Commit () ;

}
catch

{
MyDatabase->Rollback () ;

throw;
}

For more information on transactions in ElevateDB, please see the Transactions topic.

Page 141

Using ElevateDB

5.13 Creating and Using Stores

A store is simply a named storage area that holds files and includes user security privileges so that you
can prevent any accidental destruction or viewing of sensitive files. Creating, altering, and dropping stores,
and working with the files contained within them, is accomplished by using the TEDBSession Execute
method to execute the CREATE STORE, ALTER STORE, DROP STORE, RENAME STORE,SET FILES STORE,
COPY FILE, RENAME FILE, and DELETE FILE statements. You can also attach event handlers to the
TEDBSession OnStatusMessage and OnProgress events in order to track any status messages and progress
during a file copy operation.

Types of Stores
Stores can be created as either local or remote, and they are defined as follows:

Type Description

Local A local store simply points to a local path that is accessible
from the current process.

Remote A remote store is a "virtual" store that is defined locally but
actually points to another store on a remote ElevateDB
Server. This abstraction of remote stores make the stores very
useful because you can transfer files between different
machines by simply copying a file from a local store to a
remote store, and vice-versa.

Creating a Store

To create a store, you can use the CREATE STORE statement. If, at a later time, you wish to change the
store from a local store to a remote store, or vice-versa, you can do so by using the ALTER STORE
statement.

Adding Files to a Store

Adding files to a local store can be done via the operating system itself by copying or moving files into the
local path used by the local store. However, many times the files will be created using statements such as
the BACKUP DATABASE, SAVE UPDATES, or EXPORT TABLE statements. These statements require a local
store as the location where the files generated by these operations will be created.

You can also use the COPY FILE, RENAME FILE, and DELETE FILE statements to manipulate files in a given
local or remote store. This makes stores very useful because they use the existing ElevateDB remote
communications facilities and don't require any extension configuration of the operating system to set up
virtual private networks (VPNs) or other elaborate setups.

For example, here's an example of using the COPY FILE statement to copy a backup file from a local store
to a remote store.

MySession->Execute ("COPY FILE \"MyBackup.EDBkp\" IN STORE \"LocalStore\"
"+
"TO \"MyBackup.EDBBkp\" IN STORE \"RemoteStore\"");

Page 142

Using ElevateDB

Tracking the Copy File Progress

To take care of tracking the progress of copying files we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the file copy operation and the OnStatusMessage event will report any status messages
regarding the file copy operation.

Retrieving Information About Files

To retrieve information about the files in a specific store, you can use the SET FILES STORE statement to
specify the store where the files are located, and then use a SELECT statement to query the Files Table in
the Configuration Database. The Files table contains information about all of the files in the store specified
by the SET BACKUPS STORE statement, with one row per file. Please see the Executing SQL Statements
for more information on executing a query.

Page 143

Using ElevateDB

5.14 Publishing and Unpublishing Databases

Publishing and unpublishing databases is accomplished by using the TEDBSession Execute method to
execute the PUBLISH DATABASE and UNPUBLISH DATABASE statements. You can also attach event

handlers to the TEDBSession OnStatusMessage event in order to track any status messages during a
publish or unpublish operation.

Publishing a database causes ElevateDB to mark all tables that are included in the publishing as published
and begin to log all insert, update, or delete operations on the published tables. ElevateDB then will
continue to log all such operations until a SAVE UPDATES statement is executed for the published tables,
at which time an update file will be created that contains these logged updates, and then remove the
logged updates from the log associated with each published table.

The logging of the updates for a published table works as follows for each type of operation:

Operation Description

Inserts All modified columns are logged.

Updates The primary key columns for the pre-update version of the
row are logged, and all new modified columns are logged
also.

Deletes The primary key columns for the pre-delete version of the row
are logged.

Unpublishing a database causes ElevateDB to mark all tables that are included in the unpublishing as
unpublished, and to drop all logged updates for the table, making a backup of the logged updates in the
process. The unpublish process effectively undoes the publishing process.

Publishing a Database

When the publish executes, it has to obtain an exclusive lock on all tables that are being published in the
specified database. This is due to the fact that publishing a table alters its metadata in the database
catalog.

The following example shows how to publish a database called "MyDatabase" using the PUBLISH
DATABASE statement and the TEDBSession Execute method:

MySession->Execute ("PUBLISH DATABASE \"MyDatabase\"");

You can also, optionally, use the TABLES clause of the PUBLISH DATABASE statement to specify a subset
of tables in the DATABASE to publish.

Tracking the Publish Progress

To take care of tracking the status of the publishing we have provided the OnStatusMessage event within
the TEDBSession component. The OnStatusMessage event will report any status messages regarding the
publishing operation.

Page 144

Using ElevateDB

Unpublishing a Database

When the unpublish executes, it has to obtain an exclusive lock on all tables that are being unpublished in
the specified database. This is due to the fact that unpublishing a table alters its metadata in the database
catalog.

The following example shows how to unpublish a database called "MyDatabase" using the UNPUBLISH
DATABASE statement and the TEDBSession Execute method:

MySession->Execute ("UNPUBLISH DATABASE \"MyDatabase\"");

You can also, optionally, use the TABLES clause of the UNPUBLISH DATABASE statement to specify a
subset of tables in the DATABASE to unpublish.

Retrieving Publishing Information

To retrieve information about which tables are published, an when they were published, you can use a
SELECT statement to query the Tables Table in the Information schema in the published database. The
Tables table contains information about all of the tables in the published database, with one row per table.
Please see the Executing SQL Statements for more information on executing a query.

Page 145

Using ElevateDB

5.15 Saving Updates To and Loading Updates From Databases

Saving updates to databases and loading updates from databases is accomplished by using the
TEDBSession Execute method to execute the SAVE UPDATES, SET UPDATES STORE, and LOAD UPDATES
statements. You can also attach event handlers to the TEDBSession OnStatusMessage and OnProgress
events in order to track any status messages and progress during a save or load operation.

Saving the updates to a database copies the updates to all or some of the tables within the database to a
compressed or uncompressed update file in a local store. Loading the updates from a database applies the
updates from all or some of the tables in a compressed or uncompressed update file in a local store into
the database.

In order to save the updates for a given table or tables in a database, the database table(s) must be
published first using the PUBLISH DATABASE statement. Please see the Publishing and Unpublishing
Databases topic for more information.

Saving the Updates for a Database

When the updates are saved, a read lock is obtained for all tables whose updates are being saved that
prevents any sessions from performing any writes to any of the involved tables in the database until the
save completes. However, since the saving of the updates is quite fast, the time during which the tables
cannot be changed is usually pretty small. To ensure that the database is available as much as possible for
updating, it is recommended that you save the database updates to a file in a local store on a fast hard
drive and then copy the file to a store that references a CD, DVD, or other slower device outside of the
scope of the database being locked instead of creating the update file directly in the store on the slower
device.

The following example shows how to save the updates for a database called "MyDatabase" using the SAVE
UPDATES statement and the TEDBSession Execute method:

MySession->Execute ("SAVE UPDATES FOR DATABASE \"MyDatabase\" "+
"AS \"MyDatabase-Updates-"+
Engine () -—>DateToSQLStr (Date ())+"\" "+
"TO STORE \"Updates\"");

Note
You cannot specify a remote store as the location for the update file. It must be a local store.
Please see the Creating and Using Stores for more information on stores.

Tracking the Progress of the Saving
To take care of tracking the progress of the saving we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the

progress of the saving operation and the OnStatusMessage event will report any status messages
regarding the saving operation.

Retrieving Information from an Update File

Page 146

Using ElevateDB

To retrieve information about the update files in a specific store, you can use the SET UPDATES STORE
statement to specify the store where the update files are located, and then use a SELECT statement to
query the Updates Table in the Configuration Database. The Updates table contains information about all
of the update files in the store specified by the SET UPDATES STORE statement, with one row per update
file. Please see the Executing SQL Statements for more information on executing a query.

Loading the Updates for a Database

When the updates are loaded, a write lock is obtained for all of the tables specified for the load that
prevents any sessions from performing any reads or writes to any of the specified tables until the load
completes. However, since the execution of a load is quite fast, the time during which the tables cannot be
accessed is usually pretty small.

Note

Update files from the same source database should always be loaded in their creation order. For
example, if you have 3 update files that have come from two different copies of the database, then
the 2 update files from one of the source databases should be loaded in their creation order. The
other update file doesn't matter because updates from different source databases can be loaded in
any order. You can find out the creation order by querying the Updates table in the Configuration
database, as described above in the Retrieving Information from an Update File section.

The following example shows how to load the updates for a database called "MyDatabase" using the LOAD
UPDATES statement and the TEDBSession Execute method:

MySession->Execute ("LOAD UPDATES FOR DATABASE \"MyDatabase\" "+
"FROM \"MyDatabase-Updates-"+
Engine () ->DateToSQLStr (Date ()) +"\" "+
"IN STORE \"Updates\"");

Note
You cannot specify a remote store as the location for the update file. It must be a local store.
Please see the Creating and Using Stores for more information on stores.

Tracking the Progress of the Loading

To take care of tracking the progress of the loading we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the load operation and the OnStatusMessage event will report any status messages regarding
the load operation.

Page 147

Using ElevateDB

5.16 Backing Up and Restoring Databases

Backing up and restoring databases is accomplished by using the TEDBSession Execute method to execute
the BACKUP DATABASE, SET BACKUPS STORE, and RESTORE DATABASE statements. You can also attach
event handlers to the TEDBSession OnStatusMessage and OnProgress events in order to track any status
messages and progress during a backup or restore operation.

Backing up a database copies all or some of the tables within the database, along with (optionally) the
database catalog, to a compressed or uncompressed backup file in a local store. Restoring a database
copies all or some of the tables in a compressed or uncompressed backup file in a local store into the
database, overwriting any tables with the same names that already exist in the database. You can also
choose to restore the database catalog during a restore operation, if the database catalog was backed up
originally with the tables.

Backing Up a Database

When the backup executes, it obtains a read lock for the entire database that prevents any sessions from
performing any writes to any of the tables in the database until the backup completes. However, since the
execution of a backup is quite fast, the time during which the tables cannot be changed is usually pretty
small. To ensure that the database is available as much as possible for updating, it is recommended that
you backup the database to a file in a local store on a fast hard drive and then copy the file to a store that
references a CD, DVD, or other slower backup device outside of the scope of the database being locked
instead of creating the backup file directly in the store on the slower backup device.

The following example shows how to backup a database called "MyDatabase" using the BACKUP
DATABASE statement and the TEDBSession Execute method:

MySession->Execute ("BACKUP DATABASE \"MyDatabase\" "+
"AS \"MyDatabase-Backup-"+
Engine () ->DateToSQLStr (Date ())+"\" "+
"TO STORE \"Backups\" "+
"INCLUDE CATALOG") ;

Note
You cannot specify a remote store as the location for the backup file. It must be a local store.
Please see the Creating and Using Stores for more information on stores.

Tracking the Backup Progress

To take care of tracking the progress of the backup we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the backup operation and the OnStatusMessage event will report any status messages
regarding the backup operation.

Retrieving Information from a Backup File

Page 148

Using ElevateDB

To retrieve information about the backup files in a specific store, you can use the SET BACKUPS STORE
statement to specify the store where the backup files are located, and then use a SELECT statement to
query the Backups Table in the Configuration Database. The Backups table contains information about all
of the backup files in the store specified by the SET BACKUPS STORE statement, with one row per backup
file. Please see the Executing SQL Statements for more information on executing a query.

Restoring a Database

When the restore executes, it obtains an exclusive lock for the entire database that prevents any sessions
from opening the database until the restore completes. However, since the execution of a restore is quite
fast, the time during which the database cannot be accessed is usually pretty small.

Note
The Restore method overwrites any existing database catalogs and tables. You should be very
careful when restoring to an existing database to prevent loss of data.

The following example shows how to restore a database called "MyDatabase" using the RESTORE
DATABASE statement and the TEDBSession Execute method:

MySession->Execute ("RESTORE DATABASE \"MyDatabase\" "+
"FROM \"MyDatabase-Backup-"+
Engine () ->DateToSQLStr (Date ())+"\" "+
"IN STORE \"Backups\" "+
"INCLUDE CATALOG") ;

Note
You cannot specify a remote store as the location for the backup file. It must be a local store.
Please see the Creating and Using Stores for more information on stores.

Tracking the Restore Progress

To take care of tracking the progress of the restore we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the restore operation and the OnStatusMessage event will report any status messages
regarding the restore operation.

Page 149

Using ElevateDB

5.17 Opening Tables and Views

Opening tables and views can be accomplished through the Open method of the TEDBTable component,
or by setting the Active property to True. Before opening a table or view, however, you must first specify
the source database of the table or view and the table or view name. The source database of the table or
view is specified in the DatabaseName property of the TEDBTable component, and the table or view name
is specified in the TableName property.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TEDBTable component to the
DatabaseName property of an existing TEDBDatabase component within the application. In this case the
actual source database being used will come from the Database property. The following example shows
how to use the DatabaseName property to point to an existing TEDBDatabase component for the source
database:

MyDatabase->DatabaseName="AccountingDB";
MyDatabase->Database="Accounting";
MyDatabase->Connected=true;
MyTable->DatabaseName="AccountingDB";
MyTable->TableName="1ledger";
MyTable->Active=true;

Note

The above example does not assign a value to the SessionName property of either the
TEDBDatabase or TEDBTable component because leaving this property blank for both components
means that they will use the default session that is automatically created by ElevateDB when the
engine is initialized. This session is, by default, a local, not remote, session nhamed "Default" or "".
Please see the Starting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TEDBDatabase component to dynamically
set the Directory or RemoteDatabase property before the TEDBDatabase component attempts to connect
to the database. This is especially important when you have the Connected property for the TEDBDatabase
component set to True at design-time during application development and wish to change the Directory or
RemoteDatabase property before the connection is attempted when the application is run.

2) The second method is to enter the name of an existing database directly into the DatabaseName
property. In this case a temporary database component will be automatically created, if needed, for the
database specified and automatically destroyed when no longer needed. The following example shows
how to use the DatabaseName property to point directly to the desired database without referring to a
TEDBDatabase component:

MySession->SessionName="Remote";
MySession->SessionType=stRemote;

Page 150

Using ElevateDB

MySession->RemoteAddress="192.168.0.2";
MySession->Active=true;
MyTable->SessionName="Remote";
MyTable->DatabaseName="Accounting";
MyTable->TableName="1ledger";
MyTable->Active=true;

Exclusive and ReadOnly Open Modes

In the above two examples we have left the Exclusive and ReadOnly properties of the TEDBTable
component at their default value of False. However, you can use these two properties to control how the
table or view is opened and how that open affects the ability of other sessions and users to open the same
table or view.

When the Exclusive property is set to True, the table or view specified in the TableName property will be
opened exclusively when the Open method is called or the Active property is set to True. This means that
neither the current session nor any other session or user may open this table or view again without
causing an EEDBError exception. It also means that the table or view open will fail if anyone else has the
table or view opened either shared (Exclusive=False) or exclusively (Exclusive=True). The error code
raised when a table open fails due to access problems is 300 (EDB_ERROR_LOCK). The following example
shows how to trap for such an exception using a try..except block (Delphi and Lazarus) or try..catch block
(C++) and display an appropriate error message to the user:

{
MySession->SessionName="Remote";
MySession->SessionType=stRemote;
MySession->RemoteAddress="192.168.0.2";
MySession->Active=true;
MyDatabase->SessionName="Remote";
MyDatabase->DatabaseName="AccountingData";
MyDatabase->Database="Accounting";
MyDatabase->Connected=True;
MyTable->SessionName="Remote";
// We're using a database component for the source
// database, so we use the same value as the DatabaseName
// property for the TEDBDatabase component above, not
// the same value as the RemoteDatabase property, which
// is the name of the actual database
MyTable->DatabaseName="AccountingData";
MyTable->TableName="1ledger";
MyTable->Exclusive=true;
MyTable->ReadOnly=False;
try
{
MyTable->Open () ;
}
catch (const Exception &E)
{
if (dynamic cast<EDatabaseError*>(E) &
dynamic cast<EEDBError*>(E))
{
if (dynamic cast<EEDBErroré&>(*E)->ErrorCode==EDB ERROR LOCK)
{
ShowMessage ("Cannot open table "+MyTable->TableName+t

Page 151

Using ElevateDB

, another user has the table open already");

}

else
{
ShowMessage ("Unknown or unexpected "+
"database engine error # +IntToStr (
dynamic cast<EEDBErroré&>(*E)->ErrorCode)) ;

}

else

{

ShowMessage ("Unknown or unexpected "+
"error has occurred");

}

Note
Regardless of whether you are trying to open a table or view exclusively, you can still receive this
exception if another user or application has opened the table or view exclusively.

When the ReadOnly property is set to True, the table or view specified in the TableName property will be
opened read-only when the Open method is called or the Active property is set to True. This means that
the TEDBTable component will not be able to modify the contents of the table or view until the table is
closed and re-opened with write access (ReadOnly=False). If any of the physical files that make up a table
are marked read-only at the operating system level (such as is the case with CD-ROMs) then ElevateDB
automatically detects this condition and sets the ReadOnly property to True. ElevateDB is also able to do
extensive read buffering on any table that is marked read-only at the operating system level, so if your
application is only requiring read-only access then it would provide a big performance boost to mark the
tables as read-only at the operating system level. Finally, if security permissions for any of the physical
files that make up the table prevent ElevateDB from opening the table with write access, then ElevateDB
will also automatically detect this condition and set the ReadOnly property to True.

Updateable Views

Views behave just like tables in most cases. However, views can only be updated if they are actually
flagged as updateable by ElevateDB when they are created. You can find out if a view is updateable by
querying the Views Table in the Information Schema for the current database. For a view to be flagged as
updateable, it must adhere to the requirements of a query that can generate a sensitive result set cursor.
Please see the Result Set Cursor Sensitivity topic for more information. If a view is not updateable, then it
will always have its ReadOnly property set to True when it is opened.

Page 152

Using ElevateDB

5.18 Closing Tables and Views

Closing tables and views can be accomplished through the Close method of the TEDBTable component, or
by setting the Active property to False.

The following example shows how to use the Close method to close a table:

MyTable->Close () ;

Note
Once a table or view is closed you cannot perform any operations on the table or view until the

table or view is opened again.

Page 153

Using ElevateDB

5.19 Navigating Tables, Views, and Query Result Sets

Navigation of tables, views, and query result sets is accomplished through several methods of the
TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components. The basic navigational methods
include the First, Next, Prior, Last, and MoveBy methods. The Bof and Eof properties indicate whether the
row pointer is at the beginning or at the end of the table, view, or query result set, respectively. These
methods and properties are used together to navigate a table, view, or query result set.

Moving to the First or Last Row

The First method moves to the first row in the table, view, or query result set based upon the current
index order. The Last method moves to the last row in the table, view, or query result set based upon the
current index order. The following example shows how to move to the first and last rows in a table:

MyTable->First () ;

// do something to the first row
MyTable->Last () ;

// do something to the last row

Skipping Rows

The Next method moves to the next row in the table, view, or query result set based upon the current
index order. If the current row pointer is at the last row in the table, view, or query result set, then calling
the Next method will set the Eof property to True and the row pointer will stay on the last row. The Prior
method moves to the previous row in the table, view, or query result set based upon the current index
order. If the current row pointer is at the first row in the table, view, or query result set, then calling the
Prior method will set the Bof property to True and the row pointer will stay on the first row. The following
example shows how to use the First and Next methods along with the Eof property to loop through an
entire table:

MyTable->First () ;
while (!MyTable->Eof)
{
MyTable->Next () ;

}

The following example shows how to use the Last and Prior methods along with the Bof property to loop
backwards through an entire table:

MyTable->Last () ;

while (!MyTable->Bof)
{
MyTable->Prior () ;
}

Page 154

Using ElevateDB

Skipping Multiple Rows

The MoveBy method accepts a positive or negative integer that represents the number of rows to move by
within the table, view, or query result set. A positive integer indicates that the movement will be forward
while a negative integer indicates that the movement will be backward. The return value of the MoveBy
method is the number of rows actually visited during the execution of the MoveBy method. If the row
pointer hits the beginning of file or hits the end of file then the return value of the MoveBy method will be

less than the desired number of rows. The following example shows how to use the MoveBy method to
loop through an entire table 10 rows at a time:

MyTable->First () ;

while (!MyTable->Eof)
{
MyTable->MoveBy (10) ;
}

Page 155

Using ElevateDB

5.20 Inserting, Updating, and Deleting Rows

Updating of tables, views, and query result sets is accomplished through several methods of the
TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components. The basic update methods include
the Append, Insert, Edit, Delete, FieldByName, Post, and Cancel methods. The State property indicates
whether the current table, view, or query result set is in Append/Insert mode (dsInsert), Edit mode
(dsEdit), or Browse mode (dsBrowse). These methods and properties are used together in order to update
a table, view, or query result set. Depending upon your needs, you may require additional methods to
update BLOB columns within a given table, view, or query result set, and information on how to use these
methods are discussed at the end of this topic.

Note

For the rest of this topic, a table, view, or query result set will be referred to as a dataset to reduce
the amount of references to both. Also, it is important to note here that a query result set can be
either sensitive or insensitive, which affects whether an update to a query result set is permitted or
not. Please see the Result Set Cursor Sensitivity topic for more information. Likewise, a view may or
may not be updateable depending upon the view definition. Please see the Opening Tables and
Views topic for more information on updateable views.

Adding a New Row

The Append and Insert methods allow you to begin the process of adding a row to the dataset. The only
difference between these two methods is the Insert method will insert a blank row buffer at the current
position in the dataset, and the Append method will add a blank row buffer at the end of the dataset. This
row buffer does not exist in the physical datset until the row buffer is posted to the actual dataset using
the Post method. If the Cancel method is called, then the row buffer and any updates to it will be
discarded. Also, once the row buffer is posted using the Post method it will be positioned in the dataset
according to the active index order, not according to where it was positioned due to the Insert or Append
methods.

The FieldByName method can be used to reference a specific column for updating and accepts one
parameter, the name of the column to reference. This method returns a TField object if the column name
exists or an error if the column name does not exists. This TField object can be used to update the data
for that column in the row buffer via properties such as AsString, Aslnteger, etc.

The following example shows how to use the Append method to add a row to a table with the following
structure:

Column # Name DataType Size
1 CustomerID ftString 10

2 CustomerName ftString 30

3 ContactName ftString 30

4 Phone ftString 10

5 Fax ftString 10

6 EMail ftString 30

7 LastSaleDate ftDate 0

8 Notes ftMemo 0
Index Name Columns In Index Options

Page 156

Using ElevateDB

Primary Key CustomerID ixPrimary

{
MyEDBDataSet->Append(); // State property will now reflect dsInsert
MyEDBDataSet->FieldByName ("CustomerID")->AsString="100";
MyEDBDataSet->FieldByName ("CustomerName")->AsString="The Hardware Store";

MyEDBDataSet->FieldByName ("Phone") ->AsString="5551212";

MyEDBDataSet->FieldByName ("Fax")->AsString="5551616";

MyEDBDataSet->FieldByName ("Email") ->AsString=
"bobs@thehardwarestore.com";

(
(
MyEDBDataSet->FieldByName ("ContactName") ->AsString="Bob Smith";
(
(

MyEDBDataSet->Post (); // State property will now return to dsBrowse

If the row that is being posted violates a table constraint for the dataset then an EEDBError exception will
be raised with the error code 1004 (EDB_ERROR_CONSTRAINT). Please see the Exception Handling and
Errors and Appendix A - Error Codes and Messages topics for general information on exception handling in
ElevateDB.

You may use the OnPostError event to trap for any of these error conditions and display a message to the
user. You can also use a try..except block to do the same, and the approach is very similar. The following
shows how to use an OnPostError event handler to trap for a constraint error:

void _ fastcall TMyForm::MyTablePostError (TDataSet *DataSet,
EDatabaseError *E, TDataAction &Action)

Action=daAbort;
if (dynamic cast<EEDBError*>(E))
{
if (dynamic cast<EEDBError&> (*E)->ErrorCode==EDB_ERROR CONSTRAINT)
{
ShowMessage ("This row violates a table or column constraint ("+
E->Message+")") ;
}
else
{
ShowMessage (E->Message) ;
}
}
else
{
ShowMessage (E->Message) ;
}

Page 157

Using ElevateDB

Note

You will notice that the OnPostError event handler uses the more general EDatabaseError exception
object for it's exception (E) parameter. Because of this, you must always first determine whether
the exception object being passed is actually an EEDBError before casting the exception object and
trying to access specific properties such as the ErrorCode property. The EEDBError object descends
from the EDatabaseError object.

The following shows how to use a try..except block to trap for a constraint error:

try
{
MyEDBDataSet->Append(); // State property will now reflect dsInsert
MyEDBDataSet->FieldByName ("CustomerID")->AsString="100";
MyEDBDataSet->FieldByName ("CustomerName")->AsString=
"The Hardware Store";
MyEDBDataSet->FieldByName ("ContactName")->AsString="Bob Smith";
MyEDBDataSet->FieldByName ("Phone")->AsString="5551212";
MyEDBDataSet->FieldByName ("Fax")->AsString="5551616";
MyEDBDataSet->FieldByName ("Email") ->AsString=
"bobs@thehardwarestore.com";
MyEDBDataSet->Post(); // State property will now return to dsBrowse
}
catch (const Exception &E)
{
if (dynamic cast<EEDBError*>(E))
{
if (dynamic cast<EEDBErroré&>(*E)->ErrorCode==EDB_ERROR CONSTRAINT)
{
ShowMessage ("This row violates a table or column constraint ("+
E->Messaget")");
}
else
{
ShowMessage (E->Message) ;
}
}
else
{
ShowMessage (E->Message) ;

}

Editing an Existing Row

The Edit method allows you to begin the process of editing an existing row in the dataset. ElevateDB
offers the choice of a pessimistic or optimistic locking protocol, which is configurable via the
RecordLockProtocol property for the TEDBSession assigned to the current dataset (see the SessionName
property for more information on setting the session for a dataset). With the pessimistic locking protocol a
row lock is obtained when the Edit method is called. As long as the row is being edited ElevateDB will hold
a row lock on that row, and will not release this lock until either the Post or Cancel methods is called. With

Page 158

Using ElevateDB

the optimistic locking protocol a row lock is not obtained until the Post method is called, and never
obtained if the Cancel method is called. This means that another user or session is capable of editing the
row and posting the changes to the row before the Post method is called, thus potentially causing an
EEDBError exception to be raised with the error code 1007 (EDB_ERROR_ROWDELETED), or even error
code 1008 (EDB_ERROR_ROWMODIFIED) if row change detection is turned on for the current session via
the TEDBSession RecordChangeDetection property. In such cases you must discard the edited row by
calling the Cancel method and begin again with a fresh copy of the row using the Edit method.

Note

Any updates to the row are done via a row buffer and do not actually exist in the actual dataset
until the row is posted using the Post method. If the Cancel method is called, then any updates to
the row will be discarded. Also, once the row is posted using the Post method it will be positioned in
the dataset according to the active index order based upon any changes made to the row. What this
means is that if any column that is part of the current active index is changed, then it is possible for
the row to re-position itself in a completely different place in the dataset after the Post method is
called.

The following example shows how to use the Edit method to update a row in a dataset:

MyEDBDataSet->Edit (); // State property will now reflect dsEdit

// Set LastSaleDate column to today's date

MyEDBDataSet->FieldByName ("LastSaleDate")->AsDateTime=Date;
MyEDBDataSet->Post (); // State property will now return to dsBrowse

If the row that you are attempting to edit (or post, if using the optimistic locking protocol) is already
locked by another session, then an EEDBError exception will be raised with the error code 1005
(EDB_ERROR_LOCKROW).

It is also possible that the row that you are attempting to edit (or post) has been deleted by another
session since it was last cached by ElevateDB. If this is the case then a ElevateDB exception will be raised
with the error code 1007 (EDB_ERROR_ROWDELETED). If row change detection is enabled, then it is also
possible that the row that you are attempting to edit (or post) has been changed by another session since
it was last cached by ElevateDB. If this is the case then a ElevateDB exception will be raised with the error
code 1008 (EDB_ERROR_ROWMODIFIED).

You may use the OnEditError (or OnPostError, depending upon the locking protocol) event to trap for
these error conditions and display a message to the user. You can also use a try..except block to do the
same, and the approach is very similar. The following shows how to use an OnEditError event handler to
trap for several errors:

void _ fastcall TMyForm::MyTableEditError (TDataSet *DataSet,
EDatabaseError *E, TDataAction &Action)
{
Action=daAbort;
if (dynamic cast<EEDBError*>(E))
{
if (dynamic_cast<EEDBError&> (*E)->ErrorCode==EDB_ERROR LOCKROW)

{
if (MessageDlg("The row you are trying to edit "+

Page 159

Using ElevateDB

"is currently locked, do you want to "+
"try to edit this row again?",
mtWarning, TMsgDlgButtons () <<mbYes<<mbNo, 0) ==mrYes)
{
Action=daRetry;
}
}
else if (dynamic cast<EEDBError&> (*E) ->ErrorCode==EDB ERROR ROWDELETED)
{
MessageDlg ("The row you are trying to edit "+
"has been deleted since it was last "+
"retrieved",mtError, TMsgDlgButtons () <<mbOk, 0) ;
DataSet->Refresh;
}

else if
(dynamic_ cast<EEDBErroré&> (*E) ->ErrorCode==EDB_ERROR ROWMODIFIED)
{
MessageDlg ("The row you are trying to edit "+
"has been modified since it was last "+
"retrieved, the row will now be "+
"refreshed",mtWarning, TMsgDlgButtons () <<mbOk, 0) ;
DataSet->Refresh;
Action=daRetry;
}
else
{
MessageDlg (E.Message, mtError, TMsgDlgButtons () <<mbOk, 0) ;
}
}
else
{
MessageDlg (E.Message, mtError, TMsgDlgButtons () <<mbOk, 0) ;

}

The following shows how to use a try..except block to trap for several errors:

while (true)
{
try
{
MyEDBDataSet->Edit (); // State property will now reflect dsEdit
// Set LastSaleDate column to today's date
MyEDBDataSet->FieldByName ("LastSaleDate")->AsDateTime=Date;
MyEDBDataSet->Post () ;
// State property will now return to dsBrowse
break; // Break out of retry loop
}
catch (const Exception &E)
{
if (dynamic cast<EEDBError*>(E))
{
if (dynamic cast<EEDBErroré&>(*E)->ErrorCode==EDB ERROR LOCKROW)
{
if (MessageDlg ("The row you are trying to edit "+
"is currently locked, do you want to "+

Page 160

Using ElevateDB

"try to edit this row again?",
mtWarning, TMsgDlgButtons () <<mbYes<<mbNo,
0)==mrYes)
{
continue;
}
}

else if
(dynamicicast<EEDBError&>(*E)—>ErrorCode==EDBiERRORiROWDELETED)

{
MessageDlg ("The row you are trying to edit "+
"has been deleted since it was last "+
"retrieved",mtError, TMsgDlgButtons () <<mbOk, 0) ;
MyTable->Refresh () ;
break;
}

else if
(dynamic_ cast<EEDBErroré&> (*E)->ErrorCode==EDB_ERROR ROWMODIFIED)

{

MessageDlg ("The row you are trying to edit "+
"has been modified since it was last "+
"retrieved, the row will now be "+
"refreshed",mtWarning, TMsgDlgButtons () <<mbOk, 0) ;

MyTable->Refresh () ;

continue;

}

else

{
MessageDlg (E.Message, mtError, TMsgDlgButtons () <<mbOk, 0) ;

break;
}
}

else

{
MessageDlg (E.Message, mtError, TMsgDlgButtons () <<mbOk, 0) ;

break;

}

Deleting an Existing Row

The Delete method allows you to delete an existing row in a dataset. Unlike the Append, Insert, and Edit
methods, the Delete method is a one-step process and does not require a call to the Post method to
complete its operation. A row lock is obtained when the Delete method is called and is released as soon as
the method completes. After the row is deleted the current position in the dataset will be the next closest

row based upon the active index order.

The following example shows how to use the Delete method to delete a row in a dataset:

MyEDBDataSet->Delete() ;

Page 161

Using ElevateDB

If the row that you are attempting to delete is already locked by another user or session, then an
EEDBETrror exception will be raised with the error code 1005 (EDB_ERROR_LOCKROW).

It is also possible that the row that you are attempting to delete has been deleted by another session
since it was last cached by ElevateDB. If this is the case then a ElevateDB exception will be raised with the
error code 1007 (EDB_ERROR_ROWDELETED). If row change detection is enabled, then it is also possible
that the row that you are attempting to delete has been changed by another session since it was last
cached by ElevateDB. If this is the case then a ElevateDB exception will be raised with the error code 1008
(EDB_ERROR_ROWMODIFIED).

You may use the OnDeleteError event to trap for these error conditions and display a message to the user.
You can also use a try..except block to do the same, and the approach is very similar. The code for an
handling Delete errors is the same as that of an Edit, so please refer to the above code samples for
handling Edit errors.

Cancelling an Insert/Append or Edit Operation

You may cancel an existing Insert/Append or Edit operation by calling the Cancel method. Doing this will
discard any updates to an existing row if you are editing, or will completely discard a new row if you are
inserting or appending. The following example shows how to cancel an edit operation on an existing row:

MyEDBDataSet->Edit (); // State property will now reflect dsEdit

// Set LastSaleDate column to today's date

MyEDBDataSet->FieldByName ("LastSaleDate")->AsDateTime=Date;
MyEDBDataSet->Cancel (); // State property will now return to dsBrowse

Additional Events

There are several additional events that can be used to hook into the updating process for a dataset. They
include the Beforelnsert, AfterInsert, OnNewRow, BeforeEdit, AfterEdit, BeforeDelete, AfterDelete,
BeforePost, AfterPost, BeforeCancel, and AfterCancel events. All of these events are fairly self-explanatory,
however the OnNewRow is special in that it can be used to assign values to columns in a newly-inserted or
appended row without having the dataset mark the row as modified. If a row has not been modified in
any manner, then the dataset will not perform an implicit Post operation when navigating off of the row.
Instead, the Cancel method will be called and the row discarded.

Updating BLOB and CLOB Columns

Most of the time you can simply use the general TField AsString and AsVariant properties to update a
BLOB or CLOB column in the same fashion as you would any other column. Both of these properties allow
very large strings or binary data to be stored in a BLOB or CLOB column. However, in certain cases you
may want to take advantage of additional methods and functionality that are available through the
TBlobField object that descends from TField or the TEDBBlobStream object that provides a stream
interface to a BLOB or CLOB column. The most interesting methods of the TBlobField object are the
LoadFromFile, LoadFromStream, SaveToFile, and SaveToStream methods. These methods allow you to
very easily load and save the data to and from BLOB and CLOB columns.

Page 162

Using ElevateDB

Note
You must make sure that the dataset's State property is either dsInsert or dsEdit before using the
LoadFromFile or LoadFromStream methods.

The following is an example of using the LoadFromFile method of the TBlobField object to load the
contents of a text file into a CLOB column:

MyEDBDataSet->Edit (); // State property will now reflect dsEdit

// Load a text file from disk

dynamic cast<TBlobField&> (*MyEDBDataSet->FieldByName ("Notes")->
LoadFromFile ("c:\\temp\\test.txt");

MyEDBDataSet->Post (); // State property will now return to dsBrowse

Note

You'll notice that we must cast the result of the FieldByName method, which returns a TField object
reference, to a TBlobField type in order to allow us to call the LoadFromFile method. This is okay
since a CLOB column uses a TMemoField object, which descends directly from TBlobField, which
itself descends directly from TField.

In addition to these very useful methods, you can also directly manipulate a BLOB or CLOB column like
any other stream by using the TEDBBIlobStream object. The following is an example of using a
TEDBBIlobStream component along with the TEDBTable or TEDBQuery SaveToStream method for storing
ElevateDB tables themselves in the BLOB column of another table:

TEDBBlobStream *BlobStream;

// First create the BLOB stream - be sure to make sure that
// we put the table into dsEdit or dsInsert mode first since
// we're writing to the BLOB stream
FirstEDBDataSet->Append () ;
try
{
BlobStream=new TEDBBlobStream((TBlobField *)
FirstEDBDataSet->FieldByName ("TableStream") ,bmWrite) ;
try
{
// Now save the table to the BLOB stream
SecondEDBDataSet->SaveToStream (BlobStream) ;
}
__finally
{
// Be sure to free the BLOB stream *before* the Post
delete BlobStream;
}
FirstEDBDataSet->Post () ;
}

catch

Page 163

Using ElevateDB

{

// Cancel on an exception
FirstEDBDataSet->Cancel () ;

}

Note
For proper results when updating a BLOB or CLOB column using a TEDBBlobStream object, you

must create the TEDBBIlobStream object after calling the Append/Insert or Edit methods for the
dataset containing the BLOB or CLOB column. Also, you must free the TEDBBIlobStream object
before calling the Post method to post the changes to the dataset. Finally, be sure to use the proper
open mode when creating a TEDBBIlobStream object for updating (either bmReadWrite or bmWrite).

Page 164

Using ElevateDB

5.21 Searching and Sorting Tables, Views, and Query Result Sets

Searching and sorting tables, views, and query result sets is accomplished through several methods of the
TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components. The basic searching methods for
tables (not views or query result sets) include the FindKey, FindNearest, SetKey, Editkey, GotoKey, and
GotoNearest methods. The KeyColumnCount property is used with the SetKey and Editkey methods to
control searching using the GotoKey and GotoNearest methods. The extended searching methods that do
not necessarily rely upon an index and can be used with both tables and query result sets include the
Locate, FindFirst, FindLast, FindNext, and FindPrior methods. The basic sorting methods for tables include
the IndexName and IndexFieldNames properties.

Changing the Sort Order

You may use the TEDBTable IndexName and IndexFieldNames properties to set the current index order,
and in effect, sort the current table based upon the index definition for the selected index order.

The IndexName property is used to set the name of the current index. This property should be set to the
name of the index that you wish to use as the current index order. Setting the IndexName property to
blank (") will cause the index order to reset to the default order for the table, which is usually the order
defined by the primary key of the table, or the natural insertion order of the table if the table does not
have a primary key defined. The following example shows how you would set the current index order for a
table to an index called "CustomerName":

MyTable->IndexName="CustomerName";
// do something

Note

Changing the index order can cause the current row pointer to move to a different position in the
table (but not necessarily move off of the current row unless the row has been changed or deleted
by another session). Call the First method after setting the IndexName property if you want to have
the row pointer set to the beginning of the table based upon the next index order. Changing the
index order will also remove any ranges that are active.

If you attempt to set the IndexName property to a non-existent index an EEDBError exception will be
raised with the error code 401 (EDB_ERROR_NOTFOUND).

The IndexFieldNames property is used to set the current index order by specifying the column names of
the desired index instead of the index name. Multiple column names should be separated with a
semicolon. Using the IndexFieldNames property is desirable in cases where you are trying to set the
current index order based upon a known set of columns and do not have any knowledge of the index
names available. The IndexFieldNames property will attempt to match the given number of columns with
the same number of beginning columns, in left-to-right order, in any of the available indexes for the table.
The following example shows how you would set the current index order to an index called
"CustomerName" that consists of the CustomerName column and the CustomerNo column:

Page 165

Using ElevateDB

MyTable->IndexFieldNames="CustomerName; CustomerNo";
// do something

Note

Setting the IndexFieldNames will not work on indexes that contain descending columns or contain
columns using case-insensitive collations, so you must use the IndexName property instead. Please
see the Internationalization topic for information on collations and index columns.

If ElevateDB cannot find any indexes that match the desired column names an EDatabaseError exception
will be raised instead of an EEDBError exception. If you are using this method of setting the current index
order you should also be prepared to trap for this exception and deal with it appropriately.

Searching Using an Index

The TEDBTable FindKey method accepts an array of search values to use in order to perform an exact
search for a given row using the active index. The return value of the FindKey method indicates whether
the search was successful. If the search was successful then the row pointer is moved to the desired row,
whereas if the search was not successful then the row pointer stays at its current position. The search
values must correspond to the columns that make up the active index or the search will not work properly.
However, FindKey does not require that you fill in all of the column values for all of the columns in the
active index, rather only that you fill in the column values from left to right. The following example shows
how to perform a search on the index used to enforce the primary key and comprised of the CustomerNo
column:

// Set to the natural order, which in this case
// 1s the primary key
MyTable->IndexName="";
// Search for customer 100
// With C++Builder, the column values must be passed
// as either a TVarRec (for single values) or an
// ARRAYOFCONST
TVarRec SearchValue=(100) ;
if (MyTable->FindKey (&SearchValue))
{

// Row was found, now do something

}

else

{

ShowMessage ("Row was not found"):;

}

The FindNearest method accepts an array of search values to use in order to perform a near search for a
given row using the active index. If the search was successful then the row pointer is moved to the
desired row, whereas if the search was not successful then the row pointer is moved to the next row that
most closely matches the current search values. If there are no rows that are greater than the search
values then the row pointer will be positioned at the end of the table. The search values must correspond
to the columns that make up the active index or the search will not work properly. However, FindNearest
does not require that you fill in all of the column values for all of the columns in the active index, rather

Page 166

Using ElevateDB

only that you fill in the column values from left to right. The following example shows how to perform a
near search on the index used to enforce the primary key and comprised of the CustomerNo column:

// Set to the natural order, which in this case

// 1is the primary key

MyTable->IndexName="";

// Search for customer 100 or nearest

// With C++Builder, the column values must be passed
// as either a TVarRec (for single values) or an

// ARRAYOFCONST

TVarRec SearchValue=(100);

MyTable->FindNearest (&SearchValue) ;

The SetKey and EditkKey methods are used in conjunction with the GotoKey and GotoNearest methods to
perform searching using column assignments instead of an array of column values. The Setkey method
begins the search process by putting the TEDBTable component into the dsSetKey state and clearing all
column values. You can examine the state of the table using the State property. The application must then
assign values to the desired columns and call the GotoKey or GotoNearest method to perform the actual
search. The GotoNearest method may be used if you wish to perform a near search instead of an exact
search. The Editkey method extends or continues the current search process by putting the TEDBTable
component into the dsSetKey state but not clearing any column values. This allows you to change only one
column without being forced to re-enter all column values needed for the search. The KeyColumnCount
property controls how many columns, based upon the current index, are to be used in the actual search.
By default the KeyColumnCount property is set to the number of columns for the active index. The
following example shows how to perform an exact search using the SetKey and GotoKey methods and
KeyColumnCount property. The active index is an index called "CustomerName" comprised of the
CustomerName column and the CustomerNo column:

// Set to the CustomerName index
MyTable->IndexName="CustomerName";
// Search for the customer with the
// name "The Hardware Store"
MyTable->SetKey () ;
MyTable->ColumnByName ("CustomerName")->AsString="The Hardware Store";
// This causes the search to only look at the first column
// in the current index when searching
MyTable->KeyColumnCount=1;
if (MyTable->GotoKey ())

{

// Row was found, now do something

}
else

{

ShowMessage ("Row was not found") ;

}

Page 167

Using ElevateDB

Note

In the previous example we executed a partial-column search. What this means is that we did not
include all of the columns in the active index. ElevateDB does not require that you use all of the
columns in the active index for searching.

The following example shows how to perform a near search using the SetKey and GotoNearest methods,
and KeyColumnCount property. The active index is an index called "CustomerName" comprised of the
CustomerName column and the CustomerNo column:

// Set to the CustomerName index

MyTable->IndexName="CustomerName";

// Search for the customer with the

// name "The Hardware Store"

MyTable->SetKey () ;

MyTable->ColumnByName ("CustomerName")->AsString="The Hardware Store";
// This causes the search to only look at the first column

// in the current index when searching

MyTable->KeyColumnCount=1;

MyTable->GotoNearest () ;

Searching Without a Specific Index Order Set

The Locate method of the TEDBTable, TEDBQuery, and TEDBStoredProc components is used to locate a
row independent of the active index order or of any indexes at all. This is why it can be used with query
result sets in addition to tables. The Locate method will attempt to use the active index for searching, but
if the current search columns do not match the active index then the Locate method will attempt to use
another available index. Indexes are selected based upon the options passed to the Locate method in
conjunction with the column names that you wish to search upon. The index columns are checked from
left to right, and if an index is found that matches the search columns from left to right and satisfies the
options desired for the search it will be used to perform the search. Finally, if no indexes can be found that
can be used for the search, a table scan will be used to execute the search instead. This is usually a sub-
optimal solution and can take a bit of time since the table scan will read every row in the table in order to
examine the desired column values. The Locate method uses the following criteria when determining
whether to use an index or not for the search:

1) ElevateDB matches the index columns to the search columns in left-to-right order.

2) ElevateDB can use an index for the search irrespective of the ascending or descending status of a given
column in the index.

3) ElevateDB can only use an index for the search if the first column(s) in the index in left-to-right order
match(es) both the column(s) being searched upon and the setting of the loCaselnsensitive flag in the
Locate options. If the loCaselnsensitive flag is not specified, then the index column in the index (being
examined for possible use in the search) must be assigned a case-sensitive collation. If the
loCaselnsensitive flag is specified, then the index column in the index must be assigned a case-insensitive
collation.

For example, suppose that you have a Customer table with a State column that was defined with the

ANSI_CI (ANSI collation, case-insensitive). An index was created on the State column using the following
CREATE INDEX statement:

Page 168

CREATE INDEX State ON Customer (State)

Using ElevateDB

To execute an optimized search for any rows where the State column contains 'FL', one would use the

following code:

Variant SearchValues([1];
SearchValues[0]=Variant ("FL") ;

// Search for the customer with the
// state "FL"

if (MyTable->Locate ("State",VarArrayOf (SearchValues, 2),
TLocateOptions () << loCaselnsensitive))

{
// Row was found, now do something
}
else
{

ShowMessage ("Row was not found"):;

}

However, suppose that the State column was defined with simply the ANSI collation (case-sensitive) and

the index was created using the following CREATE INDEX statement:

CREATE INDEX State ON Customer
(State)

In order to allow ElevateDB to use this index to optimize any searches on the State column, you must now

not include the loCaselnsensitive flag:

Variant SearchvValues[1];
SearchValues[0]=Variant ("FL") ;
// Search for the customer with the
// state "FL"
if (MyTable->Locate ("State",VarArrayOf (SearchValues,?2),
TLocateOptions()))
{
// Row was found, now do something
}
else
{
ShowMessage ("Row was not found") ;

}

Please see the Internationalization topic for more information on collations.

Page 169

Using ElevateDB

The FindFirst, FindLast, FindNext, and FindPrior methods all rely on the Filter and FilterOptions properties
to do their work. These methods are the most flexible for searching and can be used with both tables and
query result sets, but there are some important caveats. To get acceptable performance from these
methods you must make sure that the filter expression being used for the Filter property is optimized or at
least partially-optimized. If the filter expression is un-optimized it will take a significantly greater amount
of time to complete every call to any of the FindFirst, FindLast, FindNext, or FindPrior methods unless the
table or query result set being searched only has a small number of rows. Please see the Setting Filters on
Tables and Query Result Sets topic for more information. Also, because the Filter property is being used
for these methods, you cannot use a different filter expression in combination with these methods.
However, you can set the Filtered property to True and show only the filtered rows if you so desire.
Finally, the FilterOptions property controls how the filtering is performed during the searching, so you
should make sure that these options are set properly. The following example shows how to use the Filter
property and FindFirst and FindNext methods to find matching rows and navigate through them in a table:

// Search for the first customer with the
// name "The Hardware Store"
MyTable->Filter="CustomerName="+QuotedStr ("The Hardware Store");
// We want the search to be case-insensitive
TFilterOptions FilterOptions;
FilterOptions—->Clear () ;
FilterOptions << foCaseInsensitive;
MyTable->FilterOptions=FilterOptions;
if (MyTable->FindFirst())
{
// Row was found, now search through
// the rest of the matching rows
while (FindNext ())
{
// Do something here
}
}
else
{
ShowMessage ("Row was not found");

}

Page 170

Using ElevateDB

5.22 Setting Ranges on Tables

Setting ranges on tables is accomplished through several methods of the TEDBTable component. The
basic range methods include the SetRange, SetRangeStart, SetRangeEnd, EditRangeStart, EditRangeEnd,
and ApplyRange methods. The KeyColumnCount property is used with the SetRangeStart, SetRangeEnd,
EditRangeStart and EditRangeEnd methods to control searching using the ApplyRange method. All range
operations are dependent upon the active index order set using the IndexName or IndexFieldNames
properties. Ranges may be combined with expression filters set using the Filter and Filtered propertes
and/or code-based filters set using the OnFilterRow event to further filter the rows in the table.

Setting a Range

The SetRange method accepts two arrays of values to use in order to set a range on a given table. If the
current row pointer does not fall into the range values specified, then the current row pointer will be
moved to the nearest row that falls within the range. These value arrays must contain the column values
in the same order as the column names in the active index or the range will not return the desired results.
However, SetRange does not require that you fill in all of the column values for all of the columns in the
active index, rather only that you fill in the column values from left to right. The following example shows
how to perform a range on the index used to enforce the primary key and comprised of the CustomerNo
column:

// Set to the natural order, which in this case

// 1s the primary key

MyTable->IndexName="";

// Set a range from customer 100 to customer 300

MyTable->SetRange (ARRAYOFCONST ((100)),
ARRAYOFCONST ((300))) ;

The SetRangeStart, SetRangeEnd, EditRangeStart, and EditRangeEnd methods are used in conjunction
with the ApplyRange method to perform a range using column assignments instead of arrays of column
values. The SetRangeStart method begins the range process by putting the TEDBTable component into
the dsSetKey state and clearing all column values. You can examine the state of the table using the State
property. The application must then assign values to the desired columns for the start of the range and
then proceed to call SetRangeEnd to assign values to the desired columns for the end of the range. After
this is done the application can call the ApplyRange method to perform the actual range operation. The
EditRangeStart and EditRangeEnd methods extend or continue the current range process by putting the
TEDBTable component into the dsSetKey state but not clearing any column values. You can examine the
state of the table using the State property. This allows you to change only one column without being
forced to re-enter all column values needed for the beginning or ending values of the range. The
KeyColumnCount property controls how many columns, based upon the active index, are to be used in the
actual range and can be set independently for both the starting and ending column values of the range. By
default the KeyColumnCount property is set to the number of columns in the active index. The following
example shows how to perform a range using the SetRangeStart, SetRangeEnd, and ApplyRange methods
and KeyColumnCount property. The active index is an index called "CustomerName" that consists of the
CustomerName column and the CustomerNo column:

// Set to the CustomerName index
MyTable->IndexName="CustomerName;

Page 171

Using ElevateDB

// Set a range to find all customers with
// a name beginning with 'A'
MyTable->SetRangeStart () ;
MyTable->ColumnByName ("CustomerName")->AsString="A";
// This causes the range to only look at
// the first column in the current index
MyTable->KeyColumnCount=1;
MyTable->SetRangeEnd() ;
// Note the padding of the ending range
// values with lowercase z's
// to the length of the CustomerName
// column, which is 20 characters
MyTable->ColumnByName ("CustomerName") ->
AsString="Az2z22222222222222222";
// This causes the range to only look at
// the first column in the current index
MyTable->KeyColumnCount=1;
MyTable->ApplyRange () ;

Note

In the previous example we executed a partial-column range. What this means is that we did not
include all of the columns in the active index in the range. ElevateDB does not require that you use
all of the columns in the active index for the range.

Page 172

Using ElevateDB

5.23 Setting Master-Detail Links on Tables

A master-detail link is a property-based linkage between a master TDataSource component and a detail
TEDBTable component. Once a master-detail link is established, any changes to the master TDataSource
component will cause the detail TEDBTable component to automatically reflect the change and show only
the detail rows that match the current master row based upon the link criteria. Master-detail links use
ranges for their functionality, and therefore are dependent upon the active index in the detail table. Like
ranges, master-detail links may be combined with expression filters set using the Filter and Filtered
propertes and/or code-based filters set using the OnFilterRow event to further filter the rows in the detail
table.

Defining the Link Properties

Setting master-detail links on tables is accomplished through four properties in the detail TEDBTable
component. These properties are the MasterSource, MasterColumns, IndexName, and IndexFieldNames
properties.

The first step in setting a master-detail link is to assign the MasterSource property. The MasterSource
property refers to a TDataSource component. This makes master-detail links very flexible, because the
TDataSource component can provide data from any TDataSet-descendant component such as a
TEDBTable or TEDBQuery component as well as many other non-ElevateDB dataset components.

Note
For the link to be valid, the TDataSource DataSet property must refer to a valid TDataSet-
descendant component.

The next step is to assign the IndexName property, or IndexFieldNames property, so that the active index,
and the columns that make up that index, will match the columns that you wish to use for the link. The
only difference between specifying the IndexName property versus the IndexFieldNames property is that
the IndexName property expects the name of an index, whereas the IndexFieldNames only expects the
names of columns in the table that match the columns found in an index in the table from left-to-right.
The IndexFieldNames property also does not require that all of the columns in an existing index be
specified in order to match with that existing index, only enough to be able to select the index so that it
will satisfy the needs of the master-detail link.

Finally, the MasterColumns property must be assigned a value. This property requires a column or list of
columns separated by semicolons from the master data source that match the columns in the active index
for the detail table.

To illustrate all of this we'll use an example. Let's suppose that we have two tables with the following
structure and we wish to link them via a master-detail link:

Customer Table

Column # Name DataType Size
1 CustomerID ftString 10
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10

Page 173

Using ElevateDB

6 EMail ftString 30

Note
Indexes in this case are not important since this will be the master table

Orders Table

Column # Name DataType Size

1 CustomerID ftString 10

2 OrderNumber ftString 10

3 OrderDate ftDate 0

4 OrderAmount ftBCD 2

Index Name Columns In Index Options
Primary Key CustomerID; OrderNumber ixPrimary

We would use the following example code to establish a master-detail link between the two tables. In this
example it is assumed that a TDataSource component called CustomerSource exists and points to a

TEDBTable component for the "customer" table:

// Set to the natural order, which in this case
// is the primary key

OrdersTable->IndexName="";

// Assign the MasterSource property
OrdersTable->MasterSource=CustomerSource;

// Set the MasterColumns property to point to the
// CustomerID column from the Customer table
OrdersTable->MasterColumns="CustomerID";

Now any time the current row in the CustomerSource data source changes in any way, the OrdersTable
will automatically reflect that change and only show rows that match the master row's CustomerID

column. Below is the same example, but changed to use the IndexFieldNames property instead:

// Set to the CustomerID column
OrdersTable->IndexFieldNames="CustomerID";

// Assign the MasterSource property
OrdersTable->MasterSource=CustomerSource;

// Set the MasterColumns property to point to the
// CustomerID column from the Customer table
OrdersTable->MasterColumns="CustomerID";

Page 174

Using ElevateDB

Note

Because a master-detail link uses data-event notification in the TDataSource component for
maintaining the link, if the TDataSet component referred to by the TDataSource component's
DataSet property calls its DisableControls method, it will not only disable the updating of any data-
aware controls that refer to it, but it will also disable any master-detail links that refer to it also.
This is the way the TDataSet and TDataSource components have been designed, so this is an
expected behavior that you should keep in mind when designing your application.

Page 175

Using ElevateDB

5.24 Setting Filters on Tables, Views, and Query Result Sets

Setting filters on tables, views, and query result sets is accomplished through several properties of the
TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components. These properties include the
Filter, FilterOptions, and Filtered properties. The OnFilterRow event is used to assign a code-based filter
event handler that can be used to filter rows using Delphi, C++Builder, or Lazarus code. All filter
operations are completely independent of any active index order.

Setting an Expression Filter

The Filter, FilterOptions, Filtered, and FilterOptimizeLevel properties are used to set an expression filter.
The steps to set an expression filter include setting the filter expression using the Filter property,
specifying any filter options using the FilterOptions property, and then making the expression filter active
by setting the Filtered property to True. You can turn off or disable an expression filter by setting the
Filtered property to False. If the current row pointer does not fall into the conditions specified by an
expression filter, then the current row pointer will be moved to the nearest row that falls within the filtered
set of rows. Expression filters may be combined with ranges, master-detail links, and/or code-based filters
to further filter the rows in the table or query result set.

ElevateDB's expression filters use the same naming conventions, operators, and functions as its SQL
implementation of WHERE conditions. The only differences are as follows:

Difference Description

Correlation Names You cannot use table or column correlation names in filter
expressions.

Query expressions You cannot use query expressions in filter expressions.

Wildcards You can additionally use the asterisk (*) wildcard character

with the equality operator (=) or inequality operator (<>) in
order to perform partial-length comparisons. However, this
only works when the foNoPartialCompare element is not
included in the FilterOptions property.

Please see the Identifiers, Types and Operators, Numeric Functions, String Functions, Date/Time
Functions, Interval Functions, and Conversion Functions topics for more information.

The following example shows how to set an expression filter where the LastSaleDate column is between
January 1, 1998 and December 31, 1998 and the TotalSales column is greater than 10,000 dollars:

// Set the filter expression
MyTable->Filter=" (LastSaleDate >= DATE

"+Engine->QuotedSQLStr ("1998-01-01")+") "+
"and (LastSaleDate <= DATE
"+Engine->QuotedSQLStr ("1998-12-31")+") "+

"and (TotalSales > 10000)"';
TFilterOptions FilterOptions;
FilterOptions->Clear () ;
MyTable->FilterOptions=FilterOptions;
MyTable->Filtered=true;

Page 176

Using ElevateDB

ElevateDB attempts to optimize all expression filters, and the filter optimization process is the same as that
used for optimizing SQL WHERE conditions. Please see the Optimizer topic for more information.

Setting a Code-Based Filter

The OnFilterRow event and the Filtered property are used together to set a code-based filter. The steps to
set a code-based filter include assigning an event handler to the OnFilterRow event and then making the
code-based filter active by setting the Filtered property to True. You can turn off or disable a code-based
filter by setting the Filtered property to False. If the current row pointer does not fall into the conditions
specified within the code-based filter, then the current row pointer will be moved to the nearest row that
falls within the filtered set of rows.

The following example shows how to write a code-based filter event handler where the CustomerName
column contains the word "Hardware" (case-sensitive):

void _ fastcall TMyForm: :TableFilterRow (TDataSet *DataSet,
bool &Accept)
{
Accept=false;
if (Pos ("Hardware",
DataSet->ColumnByName ("CustomerName") ->AsString) > 0))
{
Accept=true;
}

Code-based filters implemented via an OnFilterRow event handler are always completely un-optimized.
However, ElevateDB only incrementally calls the OnFilterRow event handler for the row or rows necessary
for any data-aware controls or for positioning on a desired row (if data-aware controls are not being

used). For example, if you positioned a table with an active code-based filter on a new row using the
Locate method, then ElevateDB will call the OnFilterRow event handler for the current row and any
subsequent rows using the active index order until it has found a row that satisfies the event handler
(Accept=True). ElevateDB then stops and does not attempt to filter any further rows. The OnFilterRow
event handler can, therefore, be used to filter large numbers of rows incrementally without a large amount
of overhead.

Page 177

Using ElevateDB

5.25 Using Streams with Tables, Views and Query Result Sets

Loading and saving tables, views, and query result sets to and from streams is accomplished through the
LoadFromStream and SaveToStream methods of the TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components. A stream is any TStream-descendant object such as TFileStream,
TMemoryStream, or even the ElevateDB TEDBBlobStream object used for reading and writing to BLOB
columns. Loading a stream copies the entire contents of a stream to an existing table, view, or query
result set. When loading a stream, the contents of the stream must have been created using the
SaveToStream method or else an EEDBError exception will be raised. The error code given when a load
from a stream fails because of an invalid stream is 1003 (EDB_ERROR_STREAM). Saving to a stream
copies the contents of a table, view, or query result set to the stream, overwriting the entire contents of
the stream. The rows that are copied can be controlled by setting a range or filter on the source table or
query result set prior to calling the SaveToStream method. Please see the Setting Ranges on Tables and
Setting Filters on Tables and Query Result Sets topics for more information.

Loading Data from a Stream

To load data from a stream into an existing table, view, or query result set, you must open the
TEDBTable, TEDBQuery, or TEDBStoredProc component and then call the LoadFromStream method.

The following example shows how to load data from a memory stream (assumed to already be created)
into a table using the LoadFromStream method:

MyTable->DatabaseName="SalesDB";
MyTable->TableName="customer";
MyTable->Open () ;

MyTable->LoadFromStream (MyMemoryStream) ;

Note

Tables, views, or query result sets in remote sessions can load data from a local (client-side)
stream. However, since the stream contents are sent as one buffer to the ElevateDB Server as part
of the load request, it is recommended that you do not load particularly large streams since you will
run the risk of exceeding the available memory on the local workstation or ElevateDB Server.

Saving Data to a Stream

To save the data from a table, view, or query result set to a stream, you must open the TEDBTable,
TEDBQuery, or TEDBStoredProc component and then call the SaveToStream method.

The following example shows how to save the data from a table to a memory stream (assumed to already
be created) using the SaveToStream method of the TEDBTable component:

MyTable->DatabaseName="SalesDB";
MyTable->TableName="customer";
MyTable->Open () ;

Page 178

Using ElevateDB

MyTable->SaveToStream (MyMemoryStream) ;

Note

When the SaveToStream method is called, the existing position of the stream pointer in the
destination stream is not moved, and the size of the destination stream is not changed except in the
case where the size must be expanded to accomodate the new stream data being saved from the
table, view, or query result set. Therefore, if you wish to overwrite any existing data in the
destination stream during the SaveToStream method call, you should use the following code on the
stream before calling the SaveToStream method:

MyStream->Size=0;
MyStream->Position=0;

The reason for this behavior is that it allows the developer the possibility of combining multiple streams
from multiple tables, views, or query result sets into one stream.

Page 179

Using ElevateDB

5.26 Cached Updates

Using cached updates with tables, views, and query result sets is accomplished through the
BeginCachedUpdates, and ApplyCachedUpdates, and CancelCachedUpdates methods of the TEDBTable,
TEDBQuery, TEDBScript, and TEDBStoredProc components. In addition, the CachingUpdates property can
be used to find out when cached updates are in effect for a dataset.

Using cached updates permits an application to copy all existing rows in a given table, view, or query
result set to a temporary table that is then used for any inserts, updates, or deletes. Once all updates are
complete, the application may then call the ApplyCachedUpdates method to apply all updates to the
source table or query result set, or the CancelCachedUpdates method to cancel all updates and revert the
table or query result set to its original state prior to the cached updates. The rows that are included in the
cached updates can be controlled by setting a range or filter on the source table or query result set prior
to calling the BeginCachedUpdates method. Please see the Setting Ranges on Tables and Setting Filters on
Tables,Views, and Query Result Sets topics for more information.

Warning

Do not use cached updates on very large tables or query result sets with large number of rows in
the active set according to any active ranges and/or filters. Doing so can result in some serious
performance problems as the entire set of rows will need to be copied when cached updates are
begun.

Beginning Cached Updates

To begin cached updates, you must call the BeginCachedUpdates method. When using either a
TEDBTable, TEDBQuery, TEDBStoredProc, or TEDBScript component, the table, view, or query result set
must be opened (Active property is set to True) or an exception will be raised.

Note

Cached updates require that a primary key be defined for the underlying table that is being updated
or else an EEDBError exception will be raised. The error code given when a BeginCachedUpdates
call fails due to a missing primary key is 1307 (EDB_ERROR_CACHEUPDATES).

Applying Cached Updates

To apply any cached updates to the source table, view, or query result set, you must call the
ApplyCachedUpdates method. This method will apply any updates that were made to the temporary table
used for the cached updates to the source table, view, or query result set. Only rows that were inserted,
updated, or deleted are processed, so the result is the same as calling the CancelCachedUpdates method
if no rows were inserted, updated, or deleted while cached updates were enabled. You can examine the
CachingUpdates property to determine whether cached udpdates are in effect before trying to apply any
cached updates.

A transaction is not required around the ApplyCachedUpdates method call in order to make it atomic. The
ApplyCachedUpdates method is always executed as an atomic unit of work.

Reconciling Errors

Page 180

Using ElevateDB

Cached updates are handled in an optimistic manner, which means that ElevateDB does not hold any locks
on the rows that are held in the cache while the cached updates are in effect. Subsequently, it is possible
that another session has changed some or all of the rows that were cached and updated or deleted in the
cache. When the cached updates are then applied using the ApplyCachedUpdates method, an error
message will be raised and it is possible that only a portion of the cached updates will be applied to the
source table, view, or query result set. To avoid this, you can define an ERROR trigger on the underlying
table being updated. For more information on ERROR triggers, please see the CREATE TRIGGER topic in
the ElevateDB SQL Manual.

Note

Calling the LOADINGUPDATES function during an ERROR trigger will return TRUE during the
execution of the ApplyCachedUpdates call. This is because the cached updates functionality uses
the ElevateDB replication manager for their implementation.

Filters, Ranges, and Master-Detail Links

Most of the operations that can be performed on a TEDBTable, TEDBQuery, TEDBScript, or
TEDBStoredProc component behave the same regardless of whether cached updates are active or not.
This includes the following operations:

Navigating Tables, Views, and Query Result Sets
Searching and Sorting Tables, Views, and Query Result Sets
Inserting, Updating, and Deleting Rows

However, certain states of the table, view, or query result set are not carried over to the cached updates
temporary table. These include:

Filters
Ranges
Master-Detail Links

All of these states are reset for the cached updates temporary table. You may apply new filters, ranges,
and/or master-detail links on the cached updates temporary table if you wish, but they will not apply to
the base table nor will they affect the base table's state with respect to filters, ranges, or master-detail
links. After the cached updates are applied or cancelled, all of these states are set back to what they were
prior to the cached updates being active.

Refreshing During Cached Updates

If you call the TEDBTable, TEDBQuery, TEDBStoredProc, or TEDBScript Refresh method while cached
updates are active, then the current contents of the cached updates temporary table will be discarded and
replaced with the latest data from the base table. Cached updates will remain in effect after the Refresh is
complete.

Page 181

Component Reference

This page intentionally left blank

Page 182

Component Reference

Chapter 6
Component Reference

6.1 EEDBError Component

Header File: edbcomps
Inherits From Db

An EEDBETrror exception object is raised whenever an ElevateDB error occurs. You will find a list of all of
the ElevateDB error codes in the Appendix A - Error Codes and Messages topic. For general information on
exception handling in ElevateDB please see the Exception Handling and Errors topic.

Properties Methods Events
ErrorCode EEDBError
ErrorColumn

ErrorLine

ErrorMsg

Page 183

Component Reference

EEDBError.ErrorCode Property

__property int ErrorCode

Indicates the native ElevateDB error code being raised in the current exception.

Note
This property is always set for every exception.

Page 184

Component Reference

EEDBError.ErrorColumn Property

__property int ErrorColumn

Indicates the column of text in that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 185

Component Reference

EEDBError.ErrorLine Property

__property int ErrorLine

Indicates the line of text in that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Page 186

Component Reference

EEDBError.ErrorMsg Property

__property System::UnicodeString ErrorMsg

Indicates the error message that gives further information on the exception.

Note
This property is always set for every exception.

Page 187

Component Reference

EEDBError.EEDBError Method

__fastcall virtual EEDBError (System::Sysutils::Exception* E)

inline fastcall EEDBError (const System::UnicodeString Msg,
System::TVarRec const *Args, const int Args High)
Data::Db: :EDatabaseError (Msg, Args, Args_High) { }

inline fastcall EEDBError (NativeUInt Ident)
Data: :Db: :EDatabaseError (Ident) { }

inline _ fastcall EEDBError (System::PResStringRec ResStringRec)
Data: :Db: :EDatabaseError (ResStringRec) { }

inline fastcall EEDBError (NativeUInt Ident, System::TVarRec
const *Args, const int Args High)
Data::Db: :EDatabaseError (Ident, Args, Args_High) { }

inline _ fastcall EEDBError (System::PResStringRec ResStringRec,
System: :TVarRec const *Args, const int Args High)
Data::Db::EDatabaseError (ResStringRec, Args, Args High) { }

inline fastcall EEDBError (const System::UnicodeString Msg, int
AHelpContext) : Data::Db::EDatabaseError (Msg, AHelpContext) { }

inline fastcall EEDBError (const System::UnicodeString Msg,
System: :TVarRec const *Args, const int Args High, int
AHelpContext) : Data::Db::EDatabaseError (Msg, Args, Args High,
AHelpContext) { 1}

inline fastcall EEDBError (NativeUInt Ident, int AHelpContext)
Data::Db: :EDatabaseError (Ident, AHelpContext) { }

inline _ fastcall EEDBError (System::PResStringRec ResStringRec,
int AHelpContext) : Data::Db::EDatabaseError (ResStringRec,
AHelpContext) { 1}

inline fastcall EEDBError (System::PResStringRec ResStringRec,
System: :TVarRec const *Args, const int Args High, int
AHelpContext) : Data::Db::EDatabaseError (ResStringRec, Args,
Args High, AHelpContext) { }

inline fastcall EEDBError (NativeUInt Ident, System::TVarRec
const *Args, const int Args High, int AHelpContext)

Data::Db::EDatabaseError (Ident, Args, Args High, AHelpContext) ({
}

Call the constructor to create an instance of the EEDBError exception class.

Page 188

Component Reference

6.2 TEDBBlobStream Component

Header File: edbcomps
Inherits From Classes

Use the TEDBBlobStream object to access or modify the contents of a BLOB or CLOB column in a dataset
using a stream interface. A BLOB column is represented by the TBlobField object, and a CLOB column is
represented by a TMemoField object. TBlobField and TMemoField objects use streams to implement many
of their data access properties and methods via the standard CreateBlobStream method that is
implemented by the ElevateDB dataset components.

To use a TEDBBIlobStream object, create an instance of TEDBBlobStream, use the methods of the
TEDBBIlobStream object to read or write the data, and then free the object. Do not use the same instance
of a TEDBBIlobStream object to access data from more than one row. Instead, create a new
TEDBBIlobStream object every time you need to read or write to a BLOB or CLOB column for a row.

Note

For proper results when updating a BLOB or CLOB column using a TEDBBlobStream object, you
must create the TEDBBIlobStream object after calling the Append/Insert or Edit method for the
dataset containing the BLOB or CLOB column. Also, you must free the TEDBBIlobStream object
before calling the Post method to post the changes to the dataset. Finally, be sure to use the proper
open mode when creating a TEDBBIlobStream object for updating (either bmReadWrite or bmWrite).

Properties Methods Events
Read
Seek
TEDBBIlobStream
Truncate

Write

Page 189

Component Reference

TEDBBlobStream.Read Method

virtual int _ fastcall Read(void *Buffer, int Count)

Read transfers up to Count bytes from the BLOB or CLOB column into Buffer, starting in the current
position, and then advances the current position by the number of bytes actually transferred. Read returns
the number of bytes actually transferred (which may be less than the number requested in Count). Buffer
must have at least Count bytes allocated to hold the data that was read from the column.

All the other reading methods of a TEDBBlobStream object (ReadBuffer, ReadComponent) call Read to do
their actual reading.

Note

Do not call Read when the TEDBBIlobStream object was created in bmWrite mode. Also, please
remember that if you are using a stream on a CLOB column using a Unicode version of ElevateDB,
then the number of characters in the CLOB column will not be equal to the number of bytes in the
stream like it is with an ANSI version of ElevateDB.

Page 190

Component Reference

TEDBBlobStream.Seek Method

virtual int fastcall Seek(int Offset, System::Word Origin)

virtual int64 fastcall Seek(const __ int64 Offset,
System: :Classes: :TSeekOrigin Origin)

Use Seek to move the current position within the BLOB or CLOB column by the indicated offset. Seek
allows an application to read from or write to a particular location within the BLOB or CLOB column.

The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the
following values:

Origin Description

soFromBeginning Offset is from the beginning of the BLOB or CLOB column.
Seek moves to the position Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the BLOB or CLOB
column. Seek moves to Position + Offset.

soFromEnd Offset is from the end of the BLOB or CLOB column. Offset
must be <= 0 to indicate a number of bytes before the end of
the BLOB or CLOB.

Seek returns the new value of the Position property, the new current position in the BLOB or CLOB
column.

Note

Please remember that if you are using a stream on a CLOB column using a Unicode version of
ElevateDB, then the number of characters in the CLOB column will not be equal to the number of
bytes in the stream like it is with an ANSI version of ElevateDB.

Page 191

Component Reference

TEDBBlobStream.TEDBBlobStream Method

___fastcall TEDBBlobStream(Data::Db::TBlobField* Field,
Data: :Db: :TBlobStreamMode Mode)

Call the constructor to create an instance of the TEDBBlobStream class.

Page 192

Component Reference

TEDBBlobStream.Truncate Method

void _ fastcall Truncate(void);

Use Truncate to limit the size of the BLOB or CLOB column. Calling Truncate when the current position is 0
will clear the contents of the BLOB or CLOB column.

Note

Do not call Truncate when the TEDBBlobStream was created in bmRead mode. Please remember
that if you are using a stream on a CLOB column using a Unicode version of ElevateDB, then the
number of characters in the CLOB column will not be equal to the number of bytes in the stream
like it is with an ANSI version of ElevateDB.

Page 193

Component Reference

TEDBBlobStream.Write Method

virtual int _ fastcall Write(const void *Buffer, int Count)

Use Write to write Count bytes to the BLOB or CLOB column, starting at the current position.

All the other data-writing methods of a TEDBBIlobStream object (WriteBuffer, WriteComponent) call Write
to do their actual writing.

Note

Do not call Write when the TEDBBlobStream object was created in bmRead mode. Also, please
remember that if you are using a stream on a CLOB column using a Unicode version of ElevateDB,
then the number of characters in the CLOB column will not be equal to the number of bytes in the
stream like it is with an ANSI version of ElevateDB.

Page 194

Component Reference

6.3 TEDBDatabase Component

Header File: edbcomps
Inherits From Db

Use the TEDBDatabase component to manage a database within an application. You may have multiple
TEDBDatabase components referring to the same database and they will share the same transaction
status, etc.

Note

Explicit declaration of a TEDBDatabase component for each database connection in an application is
optional if the application does not need to explicitly control that database. If a TEDBDatabase
component is not explicitly declared and instantiated for a database, a temporary TEDBDatabase
component with a default set of properties is created for it at runtime.

Properties Methods Events
Database CloseDataSets OnLogMessage
DatabaseName Commit OnProgress
DataSets Execute OnStatusMessage
EngineVersion ExecuteScript

Handle Rollback

InTransaction StartTransaction

KeepConnection TableInTransaction

Session TEDBDatabase

SessionName ValidateName

Temporary

Page 195

Component Reference

TEDBDatabase.Database Property

__property System::UnicodeString Database

Use the Database property to specify the actual ElevateDB database that will be accessed by this
TEDBDatabase component.

Note
Attempting to set this property when the Connected property of the TEDBDatabase component is
True will result in an exception being raised.

Page 196

Component Reference

TEDBDatabase.DatabaseName Property

__property System::UnicodeString DatabaseName

Use the DatabaseName property to specify the name of the database to associate with this TEDBDatabase
component. The database name is arbitrary and is used only for identification of the database when
connecting TEDBTable, TEDBQuery, and TEDBStoredProc components. It is best to think of the
DatabaseName as an alias to the actual database, which is represented by the Database property. The
DatabaseName property must begin with an alpha character.

Note
Attempting to set this property when the Connected property of the TEDBDatabase component is
True will result in an exception being raised.

Page 197

Component Reference

TEDBDatabase.DataSets Property

__property TEDBDBDataSet* DataSets[int Index]

The DataSets property provides an indexed array of all active datasets for a TEDBDatabase component. An
active dataset is one that is currently open.

Note
A "dataset" is a TEDBTable, TEDBQuery, or TEDBStoredProc component, all of which descend from
the TEDBDBDataSet component.

Page 198

Component Reference

TEDBDatabase.EngineVersion Property

__property System::UnicodeString EngineVersion

Indicates the current version of ElevateDB being used. This property is read-only.

Page 199

Component Reference

TEDBDatabase.Handle Property

__property Edbdbmgr: :TEDBDatabaseManager* Handle

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Page 200

Component Reference

TEDBDatabase.InTransaction Property

__property bool InTransaction

Use the InTransaction property at run-time to determine if a transaction is currently in progress. The
InTransaction property is True if a transaction is in progress and False if a transaction is not in progress.

The value of the InTransaction property cannot be changed directly. Calling the TEDBDatabase
StartTransaction sets the InTransaction property to True. Calling the TEDBDatabase Commit or Rollback

methods sets the InTransaction property to False.

Note

If the current TEDBDatabase component refers to the same database as another TEDBDatabase
component, then calling StartTransaction on one component will also cause the other component's
InTransaction property to return True. This is because ElevateDB never allocates more than one

internal handle for a given database.

Page 201

Component Reference

TEDBDatabase.KeepConnection Property

__property bool KeepConnection

Use the KeepConnection property to specify whether an application remains connected to a database even
if no datasets are open. When the KeepConnection property is True (the default) the connection is
maintained. When the KeepConnection property is False a connection is dropped when there are no open
datasets. Dropping a connection releases system resources allocated to the connection, but if a dataset is
later opened that uses the database, the connection must be reestablished and initialized.

Note

The KeepConnection property setting for temporary TEDBDatabase components created
automatically as needed is determined by the KeepConnections property of the TEDBSession
component that the TEDBDatabase component is linked to via its SessionName property.

Page 202

Component Reference

TEDBDatabase.Session Property

__property TEDBSession* Session

Use the Session property to determine the TEDBSession component that the TEDBDatabase component is
linked to. By default, a TEDBDatabase component is linked with the default TEDBSession component that
is automatically created for all applications and can be referenced via the global Session function in the
edbcomps unit. To assign a TEDBDatabase component to a different session, specify the name of a
different TEDBSession component in the SessionName property.

Page 203

Component Reference

TEDBDatabase.SessionName Property

__property System::UnicodeString SessionName

Use the SessionName property to specify the session with which the TEDBDatabase component is linked.
If the SessionName property is blank, a TEDBDatabase component is automatically linked with the default
TEDBSession component that can be referenced via the global Session function in the edbcomps unit. To
link a TEDBDatabase component with a different session in an application, the SessionName property must
match the SessionName property of an existing TEDBSession component.

Page 204

Component Reference

TEDBDatabase.Temporary Property

__property bool Temporary

The Temporary property indicates whether a TEDBDatabase component is temporary and created by
ElevateDB as needed, or persistent and explicitly created, managed, and freed within the application. A
temporary TEDBDatabase component is created when a dataset is opened and the dataset is not already
linked with an existing TEDBDatabase component via its DatabaseName property. If Temporary remains
True, then a temporary TEDBDatabase component is freed when the dataset is closed. An application can
prevent the destruction of a temporary TEDBDatabase component by setting Temporary to False while the

dataset is active, but the application is then responsible for closing the TEDBDatabase component when it
is no longer needed.

Note

A "dataset" is a TEDBTable, TEDBQuery, or TEDBStoredProc component, all of which descend from
the TEDBDBDataSet component.

Page 205

Component Reference

TEDBDatabase.CloseDataSets Method

void _ fastcall CloseDataSets (void)

Call the CloseDataSets method to close all active datasets without disconnecting from the database.
Ordinarily, when an application calls the Close method, all datasets are closed, and the connection to the
database is dropped. Calling CloseDataSets instead of Close ensures that an application can close all active
datasets without having to reconnect to the database at a later time.

Page 206

Component Reference

TEDBDatabase.Commit Method

virtual void _ fastcall Commit (bool ForceFlush = true)

Call the Commit method to permanently store to the database all row updates, insertions, and deletions
that have occurred within the current transaction and then end the transaction. The current transaction is
the last transaction started by calling the StartTransaction method. The optional ForceFlush parameter
allows you to specifically indicate whether the commit should also perform an operating system flush of
the committed data. The default value is True.

Note
Before calling the Commit method, an application may check the status of the InTransaction
property. If an application calls Commit and there is no current transaction, an exception is raised.

Page 207

Component Reference

TEDBDatabase.Execute Method

int fastcall Execute (const System::UnicodeString SQL,
Data::Db::TParams* Params = (Data::Db::TParams*) (0x0),
TEDBQuery* Query = (TEDBQuery*) (0x0))

Call the Execute method to execute an SQL statement directly. The number of rows affected is returned as
the result of this method. The SQL statement may also be parameterized.

Note
You may pass in a TEDBQuery component that has already been created for use with this method.

However, in such a case you should be aware that several properties of the TEDBQuery component
will be overwritten by this method in order to execute the SQL.

Page 208

Component Reference

TEDBDatabase.ExecuteScript Method

void _ fastcall ExecuteScript (const System::UnicodeString SQL,
Data::Db::TParams* Params = (Data::Db::TParams*) (0x0),
TEDBScript* Script = (TEDBScript*) (0x0))

Call the ExecuteScript method to execute an SQL script directly. The SQL script may also be
parameterized.

Note
You may pass in a TEDBScript component that has already been created for use with this method.

However, in such a case you should be aware that several properties of the TEDBScript component
will be overwritten by this method in order to execute the script.

Page 209

Component Reference

TEDBDatabase.Rollback Method

virtual void _ fastcall Rollback (void)

Call the Rollback method to cancel all row updates, insertions, and deletions for the current transaction
and to end the transaction. The current transaction is the last transaction started by calling the Rollback
method.

Note

Before calling the Rollback method, an application may check the status of the InTransaction
property. If an application calls the Rollback method and there is no current transaction, an
exception is raised.

Page 210

Component Reference

TEDBDatabase.StartTransaction Method

virtual void _ fastcall StartTransaction(const
Edbtype: :TEDBStringsArray Tables, int Timeout = Oxffffffff)

virtual void _ fastcall StartTransaction (System: :TVarRec const
*Tables, const int Tables High, int Timeout = Oxffffffff)

Call the StartTransaction method to begin a new transaction. Before calling the StartTransaction method,
an application should check the status of the InTransaction property. If the InTransaction property is True,
indicating that a transaction is already in progress, a subsequent call to StartTransaction without first
calling the Commit or Rollback methods to end the current transaction will raise an exception.

The Tables parameter allows you to specify a list of table nhames that should be included in the
transaction. This is called a restricted transaction, since it usually involves only a subset of the tables in
the database. If the Tables parameter is nil or has a length of 0, then the transaction will encompass the
entire database. To make things easier in cases where an empty array is required, we have included the
following pre-declared empty array in the edbtype unit:

EmptyEDBStringsArray

Just pass this variable name to the StartTransaction method whenever you wish to start a transaction on
the entire database.

After the StartTransaction method is called, any row updates, insertions, and deletions that take place on
tables that are part of the active transaction are buffered by ElevateDB until an application calls the
Commit method to save the changes or the Rollback method is to cancel them.

The Timeout parameter indicates how long a transaction will wait, in milliseconds, to acquire the
necessary lock(s) to start the transaction. The default value is -1, which will cause the transaction to wait
up to several minutes before issuing a lock failure exception.

Note
The transaction isolation level in ElevateDB is always serialized, meaning that ElevateDB will only
allow one session at a time to have an active transaction on the same table or tables.

Page 211

Component Reference

TEDBDatabase.TableInTransaction Method

bool fastcall TableInTransaction(const System::UnicodeString
TableName)

Use the TableInTransaction method to determine if a particular table is involved in the current transaction.

Page 212

Component Reference

TEDBDatabase.TEDBDatabase Method

__fastcall virtual TEDBDatabase (System::Classes::TComponent*
AQOwner)

Call the constructor to create an instance of the TEDBDatabase component.

Page 213

Component Reference

TEDBDatabase.ValidateName Method

void fastcall ValidateName (const System::UnicodeString Name)

Call the ValidateName method to prevent duplicate access to a TEDBDatabase component from within a
single TEDBSession component. The Name parameter contains the DatabaseName of the TEDBDatabase
component to test. If the TEDBDatabase component is already open, the ValidateName method raises an
exception. If the TEDBDatabase component is not open, the procedure returns, and the application
continues processing.

Note
Most applications should not need to call this method directly. It is called automatically each time a
TEDBDatabase component is opened.

Page 214

Component Reference

TEDBDatabase.OnLogMessage Event

__property TEDBLogMessageEvent OnLogMessage

The OnLogMessage event is fired when an SQL statement is executed via the Execute method and that
statement generates log messages. Assign an event handler to the OnLogMessage event to save or display
these log messages within your application. The following SQL statements will generate log messages:

ALTER TABLE
VERIFY TABLE
REPAIR TABLE
OPTIMIZE TABLE

Page 215

Component Reference

TEDBDatabase.OnProgress Event

__property TEDBProgressEvent OnProgress

The OnProgress event is fired when an SQL statement is executed via the Execute method and that
statement generates progress. Assign an event handler to the OnProgress event to display the progress in
your application and to, optionally, abort the execution of the SQL statement by setting the Continue
parameter to False. The following SQL statements will generate progress:

SELECT

INSERT

UPDATE

DELETE

ALTER TABLE
VERIFY TABLE
REPAIR TABLE
OPTIMIZE TABLE
IMPORT TABLE
EXPORT TABLE
MIGRATE DATABASE
BACKUP DATABASE
RESTORE DATABASE
SAVE UPDATES
LOAD UPDATES
COPY FILE

RENAME FILE
DELETE FILE

Page 216

Component Reference

TEDBDatabase.OnStatusMessage Event

__property TEDBStatusMessageEvent OnStatusMessage

The OnStatusMessage event is fired when an SQL statement is executed via the Execute method and that
statement generates status messages. Assign an event handler to the OnStatusMessage event to display
these messages in your application. All SQL statements will generate status messages.

Page 217

Component Reference

6.4 TEDBDataSet Component

Header File: edbcomps
Inherits From Db

The TEDBDataSet component is a dataset component that defines ElevateDB-specific functionality for a
dataset. Applications never use TEDBDataSet components directly. Instead they use the descendants of
TEDBDataSet, the TEDBTable, TEDBQuery, and TEDBStoredProc components, which inherit its database-
related properties and methods.

Properties Methods Events
AutoDisplayLabels ApplyCachedUpdates OnUpdateRecord
CachedUpdatesModified BeginCachedUpdates

CachingUpdates BookmarkValid

CopyOnAppend CancelCachedUpdates

FilterExecutionTime CompareBookmarks

Handle CreateBlobStream

ReadOnly Export

RecordUpdateCounter FlushBuffers

RemoteReadSize GetCollationForField

UpdateObject GetCurrentRecord

GetDayTimelntervalTypeForField
GetFieldData
GetYearMonthIntervalTypeForField
Import

IsSequenced

LoadFromStream

Locate

LockCurrentRecord

Lookup

RecordIsLocked

SaveToStream

TEDBDataSet

UnlockAllRecords

UnlockCurrentRecord

Page 218

Component Reference

TEDBDataSet.AutoDisplayLabels Property

__property bool AutoDisplayLabels

Use the AutoDisplayLabels property to specify whether the descriptions for each column in the dataset
should be automatically populated as the DisplayLabel property of each TField component defined for this
TEDBDataSet component. Since the TDBGrid component uses the DisplayLabel property of a TField
component automatically, this property is very useful when data will be displayed in a TDBGrid

component.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and

TEDBStoredProc components.

Page 219

Component Reference

TEDBDataSet.CachedUpdatesModified Property

___property bool CachedUpdatesModified

Page 220

Component Reference

TEDBDataSet.CachingUpdates Property

__property bool CachingUpdates

Use the CachingUpdates property to determine whether updates are being cached.

Page 221

Component Reference

TEDBDataSet.CopyOnAppend Property

__property bool CopyOnAppend

Use the CopyOnAppend property to control whether the current or last row's contents should be copied
automatically to any newly inserted or appended rows.

Note

Using the Append method will cause the last row to be copied, not the current row. If you wish to
copy the current row's contents then you should use the Insert method. Also, this property is only
used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc
components.

Page 222

Component Reference

TEDBDataSet.FilterExecutionTime Property

__property double FilterExecutionTime

Use the FilterExecutionTime property to determine how long the current expression filter, specified via the
Filter property, took to execute in seconds.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 223

Component Reference

TEDBDataSet.Handle Property

__property Edbcursor::TEDBCursor* Handle

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Page 224

Component Reference

TEDBDataSet.ReadOnly Property

__property bool ReadOnly

Use the ReadOnly property to prevent any updates to the dataset. The default value is False, meaning
users can insert, update, and delete rows in the dataset. When the ReadOnly property is True, the
dataset's CanModify property is False.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 225

Component Reference

TEDBDataSet.RecordUpdateCounter Property

__property int RecordUpdateCounter

Use the RecordUpdateCounter property to retrieve the update counter for the current row. ElevateDB
tracks changes to rows using an update counter for each row, and any time a row is updated, the update
counter will be incremented by 1.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 226

Component Reference

TEDBDataSet.RemoteReadSize Property

__property int RemoteReadSize

Use the RemoteReadSize property to specify how many rows should be read at once whenever a remote
session needs to read rows from an ElevateDB Server. This property is most useful when performing a
sequential navigation of a large remote table, view, or query result set on an ElevateDB Server. You
should be careful to not set this property to too high of a value since doing so can result in excessive
memory consumption and network traffic. This is especially true when the access to a remote table, view,
or query result set is mostly random and not sequential.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and

TEDBStoredProc components.

Page 227

Component Reference

TEDBDataSet.UpdateObject Property

___property TEDBDataSetUpdateObject* UpdateObject

Use the UpdateObject property to specify a TEDBUpdateSQL component that will be used to apply any
updates from a TClientDataSet component via the IProvider support in ElevateDB.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 228

Component Reference

TEDBDataSet.ApplyCachedUpdates Method

void fastcall ApplyCachedUpdates (TEDBApplyCachedUpdatesOptions
Options = TEDBApplyCachedUpdatesOptions ())

Use the ApplyCachedUpdates method to begin the process of applying any inserts, updates, or deletes
that were cached to the source table, view, or query result set.

Page 229

Component Reference

TEDBDataSet.BeginCachedUpdates Method

void _ fastcall BeginCachedUpdates (void)

Use the BeginCachedUpdates method to copy all rows to a temporary table that will be used for caching
all inserts, updates, and deletes until the cached updates are applied using the ApplyCachedUpdates
method or cancelled using the CancelCachedUpdates method.

Page 230

Component Reference

TEDBDataSet.BookmarkValid Method

virtual bool fastcall
BookmarkValid (System: :DynamicArray<System: :Byte> Bookmark)

Use the BookmarkValid method to determine if a specifed bookmark is currently assigned a valid
bookmark value. Bookmark specifies the bookmark to test. BookmarkValid returns True if a bookmark is
valid. Otherwise, it returns False.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 231

Component Reference

TEDBDataSet.CancelCachedUpdates Method

void _ fastcall CancelCachedUpdates (void)

Use the CancelCachedUpdates method to discard any cached updates and return the source table, view, or
query result set to its original state.

Page 232

Component Reference

TEDBDataSet.CompareBookmarks Method

virtual int fastcall
CompareBookmarks (System: :DynamicArray<System: :Byte> Bookmarkl,
System: :DynamicArray<System: :Byte> Bookmark2)

Use the CompareBookmarks method to determine if two bookmarks are identical or not. Bookmarkl and
Bookmark?2 are the bookmarks to compare. If the bookmarks differ, CompareBookmarks returns 1. If the
Bookmarks are identical, or both bookmarks are nil, CompareBookmarks returns 0.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 233

Component Reference

TEDBDataSet.CreateBlobStream Method

virtual System::Classes::TStream* fastcall
CreateBlobStream(Data: :Db: :TField* Field,
Data: :Db: :TBlobStreamMode Mode)

Use the CreateBlobStream method to create a BLOB stream for reading data from or writing data to a

BLOB or CLOB column. The Field parameter must specify a TBlobField or TMemoField object from the

Fields property. The Mode parameter specifies whether the stream will be used for reading, writing, or
updating the contents of the column.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 234

TEDBDataSet.Export Method

virtual void _ fastcall Export (const System::UnicodeString

ExportFile, const System::UnicodeString StoreName, const
Edbtype: :TEDBStringsArray ColumnsToExport =

(Edbtype: :TEDBStringsArray) (0x0), TEDBFileFormat Format =
(TEDBFileFormat) (0x0), TEDBFileEncoding Encoding =
(TEDBFileEncoding) (0x0), System::WideChar DelimiterChar =
(System: :WideChar) (0x2c), System::WideChar QuoteChar =
(System: :WideChar) (0x22), const System::UnicodeString
DateFormatStr = L"yyyy-mm-dd", const System::UnicodeString
TimeFormatStr = L"hh:mm:ss.zzz", const System::UnicodeString
AMStr = L"AM", const System::UnicodeString PMStr = L"PM",
System: :WideChar DecimalChar = (System::WideChar) (0x2e), const
System: :UnicodeString TrueStr = L"TRUE", const

System: :UnicodeString FalseStr = L"FALSE", bool IncludeHeaders
false, int MaxRows = Oxffffffff)

Use this method to export the rows in a dataset to a delimited or XML file.

Note

Component Reference

This method is defined as a way to provide for the exporting of result sets, and is simply a method
version of the SQL EXPORT TABLE statement in ElevateDB. Please consult the ElevateDB SQL
Manual for more information on the various export options available in the EXPORT TABLE
statement.

Page 235

Component Reference

TEDBDataSet.FlushBuffers Method

void _ fastcall FlushBuffers(void)

Use the FlushBuffers method to flush data to disk. If the table, view, or query result set being updated is
opened exclusively, then the FlushBuffers method flushes all cached writes in ElevateDB to disk and
proceeds to instruct the operating system to flush all cached writes to disk also. If the table, view, or
query result set is opened shared, then FlushBuffers only instructs the operating system to flush all cached
writes to disk since shared datasets in ElevateDB do not cache any writes.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and

TEDBStoredProc components.

Page 236

Component Reference

TEDBDataSet.GetCollationForField Method

System: :UnicodeString _ fastcall GetCollationForField (const
System: :UnicodeString FieldName)

Use the GetCollationForField method to retrieve the collation name for a given CHAR/VARCHAR/CLOB
column.

Page 237

Component Reference

TEDBDataSet.GetCurrentRecord Method

virtual bool _ fastcall GetCurrentRecord(System::PByte Buffer)

This method is only used internally by ElevateDB and should be ignored by application developers.

Page 238

Component Reference

TEDBDataSet.GetDayTimelntervalTypeForField Method

TEDBDayTimelIntervalType _ fastcall
GetDayTimeIntervalTypeForField(const System::UnicodeString
FieldName)

Use the GetDayTimelntervalTypeForField method to retrieve the interval type for a given DAY-TIME
INTERVAL column. This is useful when trying to format interval values properly for display in data-aware
controls.

Page 239

Component Reference

TEDBDataSet.GetFieldData Method

virtual bool fastcall GetFieldData(Data::Db::TField* Field,
System: :DynamicArray<System: :Byte> &Buffer)

virtual bool fastcall GetFieldData(int FieldNo,
System: :DynamicArray<System: :Byte> &Buffer)

virtual bool fastcall GetFieldData(Data::Db::TField* Field,
void * Buffer)

virtual bool fastcall GetFieldData(int FieldNo, void * Buffer)

This method is only used internally by ElevateDB and should be ignored by application developers.

Page 240

Component Reference

TEDBDataSet.GetYearMonthlIntervalTypeForField Method

TEDBYearMonthIntervalType fastcall
GetYearMonthIntervalTypeForField (const System::UnicodeString
FieldName)

Use the GetYearMonthIntervalTypeForField method to retrieve the interval type for a given YEAR-MONTH
INTERVAL column. This is useful when trying to format interval values properly for display in data-aware
controls.

Page 241

Component Reference
TEDBDataSet.Import Method

virtual void _ fastcall Import (const System::UnicodeString
ImportFile, const System::UnicodeString StoreName, const
Edbtype: :TEDBStringsArray ColumnsToImport =
(Edbtype: :TEDBStringsArray) (0x0), TEDBFileFormat Format =
(TEDBFileFormat) (0x0), TEDBFileEncoding Encoding =
(TEDBFileEncoding) (0x0), System::WideChar DelimiterChar =
(System: :WideChar) (0x2c), System::WideChar QuoteChar =
(System: :WideChar) (0x22), const System::UnicodeString
DateFormatStr = L"yyyy-mm-dd", const System::UnicodeString
TimeFormatStr = L"hh:mm:ss.zzz", const System::UnicodeString
AMStr = L"AM", const System::UnicodeString PMStr = L"PM",
System: :WideChar DecimalChar = (System::WideChar) (0x2e), const
System: :UnicodeString TrueStr = L"TRUE", const
System: :UnicodeString FalseStr = L"FALSE", bool UseHeaders =
false, int MaxRows = Oxffffffff)

Use this method to import rows into a dataset from a delimited or XML file.

Note

This method is defined as a way to provide for the importing of result sets, and is simply a method
version of the SQL IMPORT TABLE statement in ElevateDB. Please consult the ElevateDB SQL
Manual for more information on the various import options available in the IMPORT TABLE

statement.

Page 242

Component Reference

TEDBDataSet.IsSequenced Method

virtual bool _ fastcall IsSequenced(void)

This method always returns False in ElevateDB since it does not support logical row numbers.

Page 243

Component Reference

TEDBDataSet.LoadFromStream Method

void _ fastcall LoadFromStream(System::Classes::TStream*
SourceStream)

Call the LoadFromStream method to load the contents of a table, view, or query result set from a stream
containing data previously created using the SaveToStream method. The table, view, or query result set
must first be opened or generated by calling the Open, ExecSQL, or ExecProc methods.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 244

Component Reference

TEDBDataSet.Locate Method

virtual bool fastcall Locate(const System::UnicodeString
KeyFields, const System::Variant &KeyValues,
Data::Db::TLocateOptions Options)

Use the Locate method to search for a specified row and, if found, make that row the current row.
KeyFields is a string containing a semicolon-delimited list of column names on which to search. KeyValues
is a variant that specifies the values to match in the key columns. If KeyFields lists a sngle column,
KeyValues specifies the value for that column in the desired row. To specify multiple search values, pass a
variant array as KeyValues, or construct a variant array on the fly using the VarArrayOf routine. Options is
a set that optionally specifies additional search latitude when searching on string columns. If Options
contains the loCaselnsensitive setting, then Locate ignores case when comparing CHAR/VARCHAR column
values. If Options contains the loPartialKey setting, then Locate allows partial-string matching on
CHAR/VARCHAR columns. If Options is an empty set, or if KeyFields does not include any CHAR/VARCHAR
columns, Options is ignored.

Locate returns True if it finds a matching row, and makes that row the current row. Otherwise Locate
returns False, and the current row does not change. Locate uses the fastest possible method to locate
matching rows. If the search columns in KeyFields are indexed and the index is compatible with the
specified search options, Locate uses the index. Otherwise Locate uses a brute-force row scan for the
search.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 245

Component Reference

TEDBDataSet.LockCurrentRecord Method

void _ fastcall LockCurrentRecord(void)

Use the LockCurrentRecord method to manually lock the current row. Row locks established via this
method are persistent and are maintained across any Edit or Delete calls. You must manually unlock any
rows locked using this method via the UnlockCurrentRecord or UnlockAllRecords methods.

Note
Any row locks established using this method are automatically unlocked when the current dataset is

closed.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and

TEDBStoredProc components.

Page 246

Component Reference

TEDBDataSet.Lookup Method

virtual System::Variant _ fastcall Lookup (const
System: :UnicodeString KeyFields, const System::Variant
&KeyValues, const System::UnicodeString ResultFields)

Use the Lookup method to retrieve values for specified columns from a row that matches search criteria.
KeyFields is a string containing a semicolon-delimited list of column names on which to search. KeyValues
is a variant array containing the values to match in the key columns. To specify multiple search values,
pass KeyValues as a variant array as an argument, or construct a variant array on the fly using the
VarArrayOf routine. ResultFields is a string containing a semicolon-delimited list of column names whose
values should be returned from the matching row.

Lookup returns a variant array containing the values from the columns specified in ResultFields. Lookup
uses the fastest possible method to locate matching rows. If the search columns in KeyFields are indexed,
Lookup uses the index. Otherwise Lookup uses a brute-force row scan for the search.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 247

Component Reference

TEDBDataSet.RecordIsLocked Method

bool fastcall RecordIsLocked(void)

Use this method to determine if the current row has been locked by the LockCurrentRecord method. This
method only includes manually-locked rows and will not indicate if a row is locked via the Edit method
when the current session's RecordLockProtocol is set to IpPessimistic. Such row locks are considered
implicit.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 248

Component Reference

TEDBDataSet.SaveToStream Method

void _ fastcall SaveToStream(System::Classes::TStream*
DestStream)

Call the SaveToStream method to save the contents of a table, view, or query result set to a stream. You
can then use LoadFromStream method to load the data from the stream using another TEDBTable,
TEDBQuery, or TEDBStoredProc component.The table, view, or query result set must first be opened or
generated by calling the Open, ExecSQL, or ExecProc methods. This method will respect any active filters
on the query result set when copying the data to the stream.

Note

Do not use this method with very large tables, views, or query result sets. It is recommended that
you do not use it with tables, views, or query result sets over a few megs in size. Also, this method
is only used in the context of the descendant TEDBTable, TEDBQuery, and TEDBStoredProc
components.

Page 249

Component Reference

TEDBDataSet.TEDBDataSet Method

___fastcall virtual TEDBDataSet (System::Classes::TComponent*
AQOwner)

Call the constructor to create an instance of the TEDBDataSet component.

Note
This constructor is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript,
and TEDBStoredProc components.

Page 250

Component Reference

TEDBDataSet.UnlockAllIRecords Method

void _ fastcall UnlockAllRecords (void)

Use this method to unlock all rows that have been manually locked using the LockCurrentRecord method.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 251

Component Reference

TEDBDataSet.UnlockCurrentRecord Method

void _ fastcall UnlockCurrentRecord(void)

Use this method to unlock the current row. If the current row was not previously manually locked using
the LockCurrentRecord method, then this method does nothing. You can use the RecordIsLocked method
to determine if the current row is manually locked.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 252

Component Reference

TEDBDataSet.OnUpdateRecord Event

__property Data::Db::TUpdateRecordEvent OnUpdateRecord

The OnUpdateRecord event is fired when the IProvider support in ElevateDB is attempting to apply an
update from a TClientDataSet component. Write an event handler for this event to intercept an update

before it is applied automatically by ElevateDB. This will allow you to provide custom processing for
situations where the standard update processing is not sufficient.

Note

This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 253

Component Reference

6.5 TEDBDBDataSet Component

Header File: edbcomps
Inherits From TEDBDataSet

The TEDBDBDataSet component is a dataset component that defines database-related connectivity
properties and methods for an ElevateDB dataset. Applications never use TEDBDBDataSet components
directly. Instead they use the descendants of TEDBDBDataSet, the TEDBTable, TEDBQuery, and
TEDBStoredProc components, which inherit its database-related properties and methods.

Properties Methods Events
Database CloseDatabase

DatabaseName OpenDatabase

DBHandle TEDBDBDataSet

DBSession

SessionName

Page 254

Component Reference

TEDBDBDataSet.Database Property

__property TEDBDatabase* Database

Use the Database property to access the properties, events, and methods of the TEDBDatabase
component linked to this TEDBDBDataSet component. The Database property is read-only and is
automatically set when the database specified by the DatabaseName property is opened.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Page 255

Component Reference

TEDBDBDataSet.DatabaseName Property

__property System::UnicodeString DatabaseName

Use the DatabaseName property to specify the name of the TEDBDatabase component to link to this
TEDBDBDataSet component. The DatabaseName property should match the DatabaseName property of an
existing TEDBDatabase component or should specify a valid database name.

Note

Attempting to set the DatabaseName property when the TEDBDBDataSet component is open
(Active=True) will raise an exception. Also, this property is only used in the context of the
descendant TEDBTable, TEDBQuery, and TEDBStoredProc components.

Page 256

Component Reference

TEDBDBDataSet.DBHandle Property

___property Edbdbmgr: :TEDBDatabaseManager* DBHandle

The DBHandle property is for internal use only and is not useful to the application developer using
ElevateDB.

Page 257

Component Reference

TEDBDBDataSet.DBSession Property

__property TEDBSession* DBSession

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Page 258

Component Reference

TEDBDBDataSet.SessionName Property

__property System::UnicodeString SessionName

Use the SessionName property to specify the TEDBSession component to link to this TEDBDBDataSet
component. If the SessionName property is blank, the TEDBDBDataSet component is automatically linked
to the default TEDBSession component, which can be referenced via the global Session function in the
edbcomps unit. To link the TEDBDBDataset component with a different TEDBSession component, the
SessionName property must match the SessionName property of an existing TEDBSession component.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and

TEDBStoredProc components.

Page 259

Component Reference

TEDBDBDataSet.CloseDatabase Method

void __fastcall CloseDatabase (TEDBDatabase* Database)

The CloseDatabase method is just a local version of the TEDBSession CloseDatabase method for the
TEDBSession that the TEDBDBDataSet is linked to via its SessionName property.

Page 260

Component Reference

TEDBDBDataSet.OpenDatabase Method

TEDBDatabase* fastcall OpenDatabase (void)

The OpenDatabase method is just a local version of the TEDBSession OpenDatabase method for the
TEDBSession that the TEDBDBDataSet is linked to via its SessionName property.

Page 261

Component Reference

TEDBDBDataSet.TEDBDBDataSet Method

inline fastcall virtual
TEDBDBDataSet (System: :Classes: :TComponent* AOwner)
TEDBDataSet (AOwner) { }

Call the constructor to create an instance of the TEDBDBDataSet component.

Note
This constructor is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript,
and TEDBStoredProc components.

Page 262

6.6 TEDBEngine Component

Header File: edbcomps

Inherits From Classes

Component Reference

Use the TEDBEngine component to manage the ElevateDB engine from within an application. The
ElevateDB engine can behave as either a client engine or as an ElevateDB Server.

A default TEDBEngine component is created automatically when the application is started and can be
referenced via the global Engine function in the edbcomps unit.

Properties

Active

BackupExtension
BufferedFileIO
BufferedFileIOFlushInterval
BufferedFileIOSettings
CacheModules
CatalogExtension
CatalogName
CharacterSet
ConfigExtension
ConfigMemory
ConfigName

ConfigPath
EncryptionPassword
EngineType
EngineVersion

Handle
LicensedSessions
LockExtension
LogCategories
LogExtension
MaxLogFileSize
ServerAddress
ServerAuthorizedAddresses
ServerBlockedAddresses

ServerDeadSessionExpiration

Methods
AddDayTimeToDateTime
AddDayTimeToTime
AddYearMonthToDate
AddYearMonthToDateTime
BinaryToSQLStr
BooleanToSQLStr
Close
CurrToSQLStr
DateTimeToSQLStr
DateToSQLStr
DayTimelntervalToSQLStr
DisconnectServerSession
FindSession
FloatToSQLStr
GetServerConnectedSessionCount
GetServerSessionCount
GetServerUpTime
GetServerUTCDateTime
GetSessionNames
GetTempTablesPath
Open
OpenSession
QuotedSQLStr
RemoveServerSession
SQLStrToBinary
SQLStrToBoolean

Events
AfterStart
AfterStop
BeforeStart
BeforeStop
OnServerProcedure
OnServerSessionEvent
OnServerSessionLogin

OnServerTrace

Page 263

Component Reference

ServerDeadSessionInterval
ServerDescription
ServerEncryptedOnly
ServerEncryptionPassword
ServerJobCategory
ServerJobRetries
ServerMaxDeadSessions
ServerName

ServerPort

ServerRunJobs
ServerSessionTimeout
ServerThreadCacheSize
ServerTrace

SessionCount

SessionList

Sessions
ShowDatabaseCatalogInfo
ShowUserPasswords
Signature

StoreActive
TableBlobExtension
TableExtension
TableIndexExtension
TablePublishExtension
TempTablesPath

UpdateExtension

UseLocalSessionEngineSettings

Page 264

SQLStrToCurr

SQLStrToDate

SQLStrToDateTime
SQLStrToDayTimelnterval
SQLStrToFloat

SQLStrToTime
SQLStrToYearMonthInterval
SubtractDateFromDateAsDayTime
SubtractDateFromDateAsYearMonth
SubtractDateTimeFromDateTimeAsDayTime
SubtractDayTimeFromDateTime
SubtractDayTimeFromTime
SubtractTimeFromTimeAsDayTime
SubtractYearMonthFromDate
SubtractYearMonthFromDateTime
TEDBENgine

TimeToSQLStr
YearMonthIntervalToSQLStr

Component Reference

TEDBEnNgine.Active Property

___property bool Active

Use the Active property to specify whether or not the engine is active. Setting Active to True starts the
engine.

If the EngineType property is set to etClient, then ElevateDB will attempt to start the engine as client
engine.

If the EngineType property is set to etServer, then ElevateDB will attempt to start the engine as an
ElevateDB Server.

The BeforeStart event will be triggered before the engine is started, and the AfterStart event will be
triggered after the engine has been successfully started.

Setting Active to False closes any open datasets, disconnects active database connections, and stops all
active sessions.

Page 265

Component Reference

TEDBEngine.BackupExtension Property

__property System::UnicodeString BackupExtension

Use the BackupExtension property to specify the extension to be used for ElevateDB backup files. Please
see the Backing Up and Restoring Databases for more information on backup files. The default value is
".EDBBkp".

Note
The Active property must be False in order to assign a value to this property.

Page 266

Component Reference

TEDBEnNgine.BufferedFileIO Property

__property bool BufferedFileIO

Use the BufferedFileIO property to specify whether buffered file I/O buffering will be enabled. The default
value is False. If buffered file I/O is enabled, you can use the BufferedFileIOSettings and
BufferedFileIOFlushInterval properties to configure how the buffered file I/O behaves.

Page 267

Component Reference

TEDBEnNgine.BufferedFileIOFlushInterval Property

__property int BufferedFileIOFlushInterval

When the BufferedFileIO property is True, specifies how often ElevateDB will check buffered files to see if
there are any dirty buffers that need to be written. The default value is 60 seconds.

Page 268

Component Reference

TEDBEnNgine.BufferedFileIOSettings Property

__property System::Classes::TStrings* BufferedFileIOSettings

Specifies the buffered file I/O settings for various file specifications. Each setting is specified on a separate
line of the string list and is a comma-delimited list of values that make up the buffer settings.

Setting

File Specification

Block Size

Buffer Size

Flush Age

Flush to Disk

Note

Description

The file specification is a file name mask and can contain
wildcards (*). The file specification mask can include paths, or
one can use a wildcard to match on all paths. There is no
default value for this setting and you must specify a file mask.
The file specification should be enclosed in double-quotes (")
in order to allow the proper parsing of file specifications
containing spaces and other special characters.

This setting controls the size, in KB, of file blocks that will be
used for buffering any file that matches the file specification
mask. The default value is 4KB.

This setting controls the maximum amount of memory, in MB,
that will be used for buffering any file that matches the file
specification mask. The default value is 8MB.

This setting controls how long, in seconds, a dirty file block
buffer will stay in the buffer pool before ElevateDB
automatically writes the dirty buffer to the file that matches
the file specification mask. This setting helps to alleviate
issues with dirty buffers not being written to the file on a
regular basis because the buffer size is configured too large
for the current file size. The default value is 120 seconds.

This setting controls whether any writes to any file that
matches the file specification mask will be followed by a disk
flush call to the operating system. The default value is False.

These settings are evaluated by ElevateDB from back-to-front, so you should specify the settings
from general file specifications to very specific file specifications in the string list.

Page 269

Component Reference

TEDBEngine.CacheModules Property

__property bool CacheModules

Use the CacheModules property to specify whether external modules will be loaded once into memory and
cached there until the current session is closed. Setting this property to True can result in significant
performance improvements. This is especially true for configurations with many different external
modules. The default value is False.

Note
Setting this property to True will prevent you from replacing any of the external modules on disk
while the session is active.

Page 270

Component Reference

TEDBEnNgine.CatalogExtension Property

__property System::UnicodeString CatalogExtension

Use the CatalogExtension property to specify the extension to be used for ElevateDB database catalogs.
This property is used in conjunction with the CatalogName property to form the full name of a database
catalog. The default value is ".EDBCat".

Note
The Active property must be False in order to assign a value to this property.

Page 271

Component Reference

TEDBENgine.CatalogName Property

__property System::UnicodeString CatalogName

Use the CatalogName property to specify the name to be used for ElevateDB database catalogs. This
property is used in conjunction with the CatalogExtension property to form the full name of a database
catalog. The default value is "EDBDatabase".

Note
The Active property must be False in order to assign a value to this property.

Page 272

Component Reference

TEDBENgine.CharacterSet Property

__property TEDBCharacterSet CharacterSet

Use the CharacterSet property to specify the character set to use with the engine and, subsequently, all
local and remote sessions used with the engine.

Note

The default value for this property will always be determined by the default string type of the
compiler being used. For example, with Delphi XE the default string type is a Unicode string, so this
property will default to csUnicode when used with Delphi XE.

Page 273

Component Reference

TEDBEnNgine.ConfigExtension Property

__property System::UnicodeString ConfigExtension

Use the ConfigExtension property to specify the extension to be used for ElevateDB configuration files.
This property is used in conjunction with the ConfigName property to form the full name of a configuration
file. The default value is ".EDBCfg".

Note
The Active property must be False in order to assign a value to this property.

Page 274

Component Reference

TEDBENgine.ConfigMemory Property

__property bool ConfigMemory

Use the ConfigMemory property to specify that the configuration file will be "virtual" for ElevateDB, and
reside only in the process's memory. The configuration file is used to store the contents of the system-
created Configuration Database.

Warning

All applications accessing the same databases must use the same configuration file. Failure to do so
will result in locking errors. This means that if one application is accessing a database with a virtual
configuration file, then all applications accessing the same database must all be using virtual
configuration files. Also, when using virtual configurations, you will have to recreate all necessary
database, user/role, job, and store definitions every time the application is started, although the
default users and roles will always be created for you. Finally, the Active property must be False in
order to assign a value to this property.

Page 275

Component Reference

TEDBENgine.ConfigName Property

___property System::UnicodeString ConfigName

Use the ConfigName property to specify the name to be used for ElevateDB configuration files. This
property is used in conjunction with the ConfigExtension property to form the full name of a configuration
file. The default value is "EDBConfig".

Note
The Active property must be False in order to assign a value to this property.

Page 276

Component Reference

TEDBENgine.ConfigPath Property

___property System::UnicodeString ConfigPath

Use the ConfigPath property to specify the path to the configuration file to use for ElevateDB. The
configuration file is used to store the contents of the system-created Configuration Database.

Warning

All applications accessing the same databases must use the same configuration file. Failure to do so
will result in locking errors. Also, it is recommended that you do not use relative path names for this
property. Complete UNC path names are the most reliable since they do not rely on local drive
mappings. Finally, the Active property must be False in order to assign a value to this property.

Page 277

Component Reference

TEDBENgine.EncryptionPassword Property

__property System::UnicodeString EncryptionPassword

Use the EncryptionPassword property to specify the encryption password used by ElevateDB for all
encryption purposes. ElevateDB uses this password for all configuration, database catalog (for encrypted
catalogs), and table files (for encrypted tables) encryption. The default value is 'elevatesoft'.

Note
The Active property must be False in order to assign a value to this property.

Page 278

Component Reference

TEDBENgine.EngineType Property

__property TEDBEngineType EngineType

Use the EngineType property to specify whether the engine should behave as a local, client engine (the
default) or as an ElevateDB Server engine. ElevateDB only allows one instance of the TEDBEngine
component per application, which means that an application can only behave as a local, client application,
or as an ElevateDB Server application, but not both.

Note
The Active property must be False in order to assign a value to this property.

Page 279

Component Reference

TEDBENgine.EngineVersion Property

__property System::UnicodeString EngineVersion

Indicates the current version of ElevateDB being used. This property is read-only.

Page 280

Component Reference

TEDBEngine.Handle Property

__property Edbenginemgr::TEDBEngineManager* Handle

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Page 281

Component Reference

TEDBEnNgine.LicensedSessions Property

__property int LicensedSessions

Use the LicensedSessions property to specify the maximum number of licensed sessions allowed to access
the configuration file specified by the ConfigPath, ConfigName, and ConfigExtension properties.

Note
The Active property must be False in order to assign a value to this property.

Page 282

Component Reference

TEDBENgine.LockExtension Property

__property System::UnicodeString LockExtension

Use the LockExtension property to specify the extension to be used for ElevateDB configuration lock files
and database catalog lock files. This property is used in conjunction with the ConfigName and
CatalogName properties to form the full name of configuration lock files and database catalog lock files.

The default value is ".EDBLck".

Note
The Active property must be False in order to assign a value to this property.

Page 283

Component Reference

TEDBENgine.LogCategories Property

__property TEDBLogCategories LogCategories

Use the LogCategories property to specify which type of events should be logged by the engine to the
configuration log file specified by the ConfigName and LogExtension properties. The configuration log file
is stored in the path specified by the ConfigPath property. The default value is all categories - errors,

warnings, and information.

Note
The Active property must be False in order to assign a value to this property.

Page 284

Component Reference

TEDBENgine.LogExtension Property

__property System::UnicodeString LogExtension

Use the LogExtension property to specify the extension to be used for ElevateDB configuration log files.
This property is used in conjunction with the ConfigName properties to form the full name of configuration
log files. The configuration log file is stored in the path specified by the ConfigPath property. The default

value is ".EDBLog".

Note
The Active property must be False in order to assign a value to this property.

Page 285

Component Reference

TEDBEngine.MaxLogFileSize Property

__property int MaxLogFileSize

Use the MaxLogFileSize property to specify the maximum file size to be used for the configuration log file
specified by the ConfigName and LogExtension properties. The configuration log file is stored in the path
specified by the ConfigPath property.

Note
The Active property must be False in order to assign a value to this property.

Page 286

Component Reference

TEDBENgine.ServerAddress Property

__property System::UnicodeString ServerAddress

Use the ServerAddress property to specify the IP address that the ElevateDB Server should listen on for
connections when the EngineType property is set to etServer. A blank value (the default) indicates that
the ElevateDB Server should listen on all available IP addresses defined in the operating system for the

machine.

Note
The Active property must be False in order to assign a value to this property.

Page 287

Component Reference

TEDBENgine.ServerAuthorizedAddresses Property

___property System::Classes::TStrings* ServerAuthorizedAddresses

Use the ServerAuthorizedAddresses property to specify which IP addresses are authorized to access the
ElevateDB Server when the EngineType property is set to etServer. This is commonly referred to as a
"white list". There is no limit to the number of addresses that can be specified, and the IP address entries
may contain the asterisk (*) wildcard character to represent any portion of an address.

Note
The Active property must be False in order to assign a value to this property.

Page 288

Component Reference

TEDBENgine.ServerBlockedAddresses Property

__property System::Classes::TStrings* ServerBlockedAddresses

Use the ServerBlockedAddresses property to specify which IP addresses are not allowed to access the
ElevateDB Server when the EngineType property is set to etServer. This is commonly referred to as a
"black list". There is no limit to the number of addresses that can be specified, and the IP address entries
may contain the asterisk (*) wildcard character to represent any portion of an address.

Note
The Active property must be False in order to assign a value to this property.

Page 289

Component Reference

TEDBENgine.ServerDeadSessionExpiration Property

__property int ServerDeadSessionExpiration

Use the ServerDeadSessionExpiration property to specify how long a session can exist in the ElevateDB
Server in a disconnected, or "dead", state before the server removes the session. This is done to prevent a
situation where "dead" sessions accumulate from client applications whose network connections were
permanently interrupted. This property only applies when the EngineType property is set to etServer. The
default value is 300 seconds, or 5 minutes.

Note
The Active property must be False in order to assign a value to this property.

Page 290

Component Reference

TEDBENgine.ServerDeadSessionInterval Property

__property int ServerDeadSessionInterval

Use the ServerDeadSessionlInterval to specify how often the ElevateDB Server will poll the disconnected
sessions to see if any need to be removed according to the ServerDeadSessionExpiration, or
ServerMaxDeadSessions properties. This property only applies when the EngineType property is set to
etServer. The default value is 30 seconds.

Note
The Active property must be False in order to assign a value to this property.

Page 291

Component Reference

TEDBENgine.ServerDescription Property

__property System::UnicodeString ServerDescription

Use the ServerDescription property to specify the description of the ElevateDB Server when the
EngineType property is set to etServer. The default value is "ElevateDB Server". This description is used to
describe the ElevateDB Server when a remote session asks for the description using the TEDBSession

GetRemoteServerDescription method.

Note
The Active property must be False in order to assign a value to this property.

Page 292

Component Reference

TEDBENgine.ServerEncryptedOnly Property

__property bool ServerEncryptedOnly

Use the ServerEncryptedOnly property to specify that the ElevateDB Server should only accept encrypted
connections when the EngineType property is set to etServer. The default value is False.

Note
The Active property must be False in order to assign a value to this property.

Page 293

Component Reference

TEDBEnNgine.ServerEncryptionPassword Property

__property System::UnicodeString ServerEncryptionPassword

Use the ServerEncryptionPassword property to specify the encryption password the ElevateDB Server will
use for all communications with remote sessions. The default value is 'elevatesoft'. This property only
applies when the EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Page 294

Component Reference

TEDBENgine.ServerJobCategory Property

___property System::UnicodeString ServerJobCategory

Use the ServerJobCategory property to specify which job category the ElevateDB Server will schedule and
run if the ServerRunJobs property is set to True. This property can contain any value, and the default
value is blank ("), which indicates that the server engine can run all job categories. This property only

applies when the EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Page 295

Component Reference

TEDBENgine.ServerJobRetries Property

__property int ServerJobRetries

Use the ServerJobRetries property to specify how many times the ElevateDB Server will attempt to execute
a given job before disabling the job. The default value is 10. This property only applies when the
EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Page 296

Component Reference

TEDBENgine.ServerMaxDeadSessions Property

__property int ServerMaxDeadSessions

Use the ServerMaxDeadSessions property to specify how many "dead" sessions can accumulate in the
ElevateDB Server before the server begins to remove them immediately, irrespective of the
ServerDeadSessionExpiration property. If the ServerMaxDeadSessions property is exceeded, then the
server engine removes the "dead" sessions in oldest-to-youngest order until the number of "dead"
sessions is at or under the ServerMaxDeadSessions property setting. The default value for this property is
64. This property only applies when the EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Page 297

Component Reference

TEDBENgine.ServerName Property

__property System::UnicodeString ServerName

Use the ServerName property to specify the name of the ElevateDB Server when the EngineType property
is set to etServer. The default value is "EDBSrvr". This name is used when a remote session asks for it
using the TEDBSession GetRemoteServerName method.

Note
The Active property must be False in order to assign a value to this property.

Page 298

Component Reference

TEDBEnNgine.ServerPort Property

__property int ServerPort

Use the ServerPort property to specify the port that the ElevateDB Sserver should listen on for connections
when the EngineType property is set to etServer. The default value is 12010.

Note
The Active property must be False in order to assign a value to this property.

Page 299

Component Reference

TEDBENgine.ServerRunJobs Property

__property bool ServerRunJobs

Use the ServerRunJobs property to specify whether the ElevateDB Server is allowed to schedule and run
jobs that are defined in the Configuration database. If this property is set to True (the default), then the
ServerJobCategory property determines which category of jobs that the server will schedule and run. This
property only applies when the EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Page 300

Component Reference

TEDBENgine.ServerSessionTimeout Property

__property int ServerSessionTimeout

Use the ServerSessionTimeout property to specify how long the ElevateDB Server should wait for a request
from a connected remote session before it disconnects the session. This is done to keep the number of
concurrent connections at a minimum. Once a session has been disconnected by the server, the session is
then considered to be "dead" until either the remote session reconnects to the session in the server, or the
server removes the session according to the parameters specified by the
ServerDeadSessionInterval,ServerDeadSessionExpiration, or ServerMaxDeadSessions properties. The
default value is 180 seconds, or 3 minutes. This property only applies when the EngineType property is set
to etServer.

Note
The Active property must be False in order to assign a value to this property.

Page 301

Component Reference

TEDBENgine.ServerThreadCacheSize Property

__property int ServerThreadCacheSize

Use the ServerThreadCacheSize property to specify the total number of threads that should be cached by
the ElevateDB Server for connections when the EngineType property is set to etServer. The default value
is 10. Caching threads helps improve connection times by eliminating the need to constantly create and
destroy threads as remote sessions connect to and disconnect from the server.

Note
The Active property must be False in order to assign a value to this property.

Page 302

Component Reference

TEDBENgine.ServerTrace Property

__property bool ServerTrace

Use the ServerTrace property to specify that the ElevateDB Server should trigger the OnServerTrace event
for every request/reply to/from the ElevateDB Server when the EngineType property is set to etServer.
The default value is False. Server-side tracing is useful for diagnosing issues with performance/locking that
are hard to diagnose from the client side.

Warning

Do not enable this property in production without being aware of the consequences. Enabling this
property can result in a significant amount of overhead, depending upon how the OnServerTrace
event is handled. In the ElevateDB Server project that is provided with ElevateDB (see below),
enabling this property will generate a large number of trace files that can easily consume large
amounts of disk space on a busy server.

Note
The Active property must be False in order to assign a value to this property.

Page 303

Component Reference

TEDBENgine.SessionCount Property

__property int SessionCount

Use the SessionCount property to determine how many sessions are currently created in the engine.

Note
This property only applies when the EngineType property is set to etClient.

Page 304

Component Reference

TEDBENgine.SessionList Property

__property TEDBSession* SessionList[const System::UnicodeString SessionName]

Use the SessionList property to access a given TEDBSession component by name. The name of a session is
specified via the TEDBSession SessionName property.

Note
This property only applies when the EngineType property is set to etClient.

Page 305

Component Reference

TEDBENgine.Sessions Property

__property TEDBSession* Sessions[int Index]

Use the Sessions property to access a given TEDBSession component by index. The Index parameter must
be in the range of zero to the current value of the SessionCount property minus one.

Note
This property only applies when the EngineType property is set to etClient.

Page 306

Component Reference

TEDBEngine.ShowDatabaseCatalogInfo Property

__property bool ShowDatabaseCatalogInfo

This property allows you to specify whether database catalog character set and version information should
appear in the Databases system information table.

Note

Setting this property to False can significantly improve the performance of the loading of the
Databases system information table when there are a lot of databases in a configuration. This is
because ElevateDB has to open the database catalog for each database in order to read the
character set and version number.

The default value of this property is True.

Page 307

Component Reference

TEDBEnNgine.ShowUserPasswords Property

__property bool ShowUserPasswords

This property allows you to specify whether user passwords should appear in the Users system information
table.

Note
Even with this propery enabled, only Administrators can see other users' passwords. Normal users
that aren't assigned the Administrators role can only see their own user information.

The default value of this property is True.

Page 308

Component Reference

TEDBEnNgine.Signature Property

__property System::UnicodeString Signature

Use the Signature property to specify the signature to be used by the engine when accessing or creating
configuration files, database catalogs, tables, backup files, or streams as well as any communications
between a remote session and an ElevateDB Server. The default value of the Signature property is
"edb_signature" and should not be changed unless you are sure of the consequences. Using a custom
value for the Signature property will prevent any other application that uses ElevateDB from accessing any
configuration files, database catalogs, tables, backup files, or streams created with the custom signature,
as well as accessing an ElevateDB Server using the custom signature.

Note
The Active property must be False in order to assign a value to this property.

Page 309

Component Reference

TEDBEnNgine.StoreActive Property

__property bool StoreActive

Use the StoreActive property to determine if the ElevateDB engine should store the current value of its
Active property, and subsequently, the Active/Connected property values of all other ElevateDB
components such as the TEDBDatabase, TEDBTable, TEDBQuery, and TEDBStoredProc components, in the
owner form or data module. The default value for this property is True.

Setting this property to False will ensure that you never run into the situation where the TEDBEngine
component's Active property is automatically set to True (its design-time state) when the owning
form/data module is created at runtime. This is a common problem when a developer is working with the
ElevateDB components at design-time, and then compiles the application with one or more of the
ElevateDB components' Active/Connected property set to True. The end result is usually many ElevateDB
runtime errors caused by the fact that the ElevateDB engine has not been configured for the target

machine and operating system, but rather is still configured for the developer's machine and operating
system.

Page 310

Component Reference

TEDBEnNgine.TableBlobExtension Property

__property System::UnicodeString TableBlobExtension

Use the TableBlobExtension to specify the file extension used by the engine for the physical BLOB file that
makes up part of an ElevateDB table. The default value is ".EDBBIb". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
The Active property must be False in order to assign a value to this property.

Page 311

Component Reference

TEDBENgine.TableExtension Property

__property System::UnicodeString TableExtension

Use the TableDataExtension to specify the file extension used by the engine for the physical table file that
makes up part of an ElevateDB table. The default value is ".EDBTbI". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
The Active property must be False in order to assign a value to this property.

Page 312

Component Reference

TEDBEngine.TableIndexExtension Property

__property System::UnicodeString TableIndexExtension

Use the TableIndexExtension to specify the file extension used by the engine for the physical index file
that makes up part of an ElevateDB table. The default value is ".EDBIdx". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
The Active property must be False in order to assign a value to this property.

Page 313

Component Reference

TEDBENgine.TablePublishExtension Property

__property System::UnicodeString TablePublishExtension

Use the TablePublishExtension to specify the file extension used by the engine for the physical publish file
that makes up part of an ElevateDB table. The default value is ".EDBPbI". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
The Active property must be False in order to assign a value to this property.

Page 314

Component Reference

TEDBEngine.TempTablesPath Property

__property System::UnicodeString TempTablesPath

Use the TempTablesPath property to specify where ElevateDB creates any temporary tables that are
required for storing query result sets. By default, the TempTablesPath property is set to the user-specific
temporary tables path for the operating system.

Note
The Active property must be False in order to assign a value to this property.

Page 315

Component Reference

TEDBENgine.UpdateExtension Property

__property System::UnicodeString UpdateExtension

Use the UpdateExtension property to specify the extension to be used for ElevateDB update files. Please
see the Backing Up and Restoring Databases for more information on backup files. The default value is
".EDBUpd".

Note
The Active property must be False in order to assign a value to this property.

Page 316

Component Reference

TEDBENgine.UselLocalSessionEngineSettings Property

__property bool UseLocalSessionEngineSettings

Use the UselLocalSessionEngineSettings property to indicate that you wish to have any TEDBSession
component use its own Local* versions of the following TEDBEngine properties:

Signature
EncryptionPassword
ConfigPath
ConfigMemory
ConfigName
ConfigExtension
LockExtension
LogExtension
MaxLogFileSize
LogCategories
CatalogName
CatalogExtension
BackupExtension
TableExtension
TableIndexExtension
TableBlobExtension
TempTablesPath

The TEDBSession Local* property values will then override the above properties in the TEDBEngine
component. This is useful for applications like the ElevateDB Manager that need to provide the ability to
have multiple local sessions that use different engine settings. The default value for this property is False.

Note

Although the TEDBSession Local* versions of the above properties will override the corresponding
TEDBENgine properties, they are initially set to the same value as the corresponding TEDBEngine
properties when the TEDBSession component is first created.

Page 317

Component Reference

TEDBEngine.AddDayTimeToDateTime Method

System::TDateTime fastcall
AddDayTimeToDateTime (System::TDateTime Value, int64
DayTimeInterval, TEDBDayTimeIntervalType DayTimelIntervalType)

Call the AddDayTimeToDateTime method to add a day-time interval to a date-time value and return the
new date-time value.

Note

In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimelntervalToSQLStr method to
convert a day-time interval into a readable string.

Page 318

Component Reference

TEDBEngine.AddDayTimeToTime Method

System: :TDateTime fastcall AddDayTimeToTime (System::TDateTime
Value, _ int64 DayTimelInterval, TEDBDayTimeIntervalType
DayTimeIntervalType)

Call the AddDayTimeToTime method to add a day-time interval to a time value and return the new time
value.

Note

In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimelntervalToSQLStr method to
convert a day-time interval into a readable string.

Page 319

Component Reference

TEDBEngine.AddYearMonthToDate Method

System::TDateTime fastcall
AddYearMonthToDate (System: :TDateTime Value, int
YearMonthInterval, TEDBYearMonthIntervalType
YearMonthIntervalType)

Call the AddYearMonthToDate method to add a year-month interval to a date value and return the new
date value.

Note

In ElevateDB, year-month intervals are Integer values that represent the number of days that have
elapsed between two calendar days. Use the TEDBENngine YearMonthIntervalToSQLStr method to
convert a year-month interval into a readable string.

Page 320

Component Reference

TEDBEngine.AddYearMonthToDateTime Method

System::TDateTime fastcall
AddYearMonthToDateTime (System: : TDateTime Value, int
YearMonthInterval, TEDBYearMonthIntervalType
YearMonthIntervalType)

Call the AddYearMonthToDateTime method to add a year-month interval to a date-time value and return
the new date-time value.

Note

In ElevateDB, year-month intervals are Integer values that represent the number of days that have
elapsed between two calendar days. Use the TEDBENngine YearMonthIntervalToSQLStr method to
convert a year-month interval into a readable string.

Page 321

Component Reference

TEDBENgine.BinaryToSQLStr Method

System: :UnicodeString _ fastcall
BinaryToSQLStr (Edbtype: : TEDBBytes Value)

Call the BinaryToSQLStr method to convert a TEDBBytes (byte array) value to an SQL 2003 standard

binary constant string. All SQL and filter expressions in ElevateDB require standard binary constants, which
are represented by the binary value in hexadecimal format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 322

Component Reference

TEDBEnNgine.BooleanToSQLStr Method

System: :UnicodeString __fastcall BooleanToSQLStr (bool Value)

Call the BooleanToSQLStr method to convert a Boolean value to an SQL 2003 standard boolean constant

string. All SQL and filter expressions in ElevateDB require standard boolean constants, which are TRUE and
FALSE (case-insensitive).

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 323

Component Reference

TEDBENgine.Close Method

void _ fastcall Close(void)

Call the Close method to stop the engine. Calling this method will change the Active property from True to
False if the engine has been started, or it will do nothing if the Active property is already False.

Page 324

Component Reference

TEDBENgine.CurrToSQLStr Method

System: :UnicodeString _ fastcall CurrToSQLStr (System::Currency
Value, int Scale = 0x0)

Call the CurrToSQLStr method to convert a Currency value to an SQL 2003 standard decimal constant
string. All SQL and filter expressions in ElevateDB require standard decimal constants which use the period
(.) as the decimal separator. Use the Scale parameter to specify the number of decimal places to use for
the output string, or 0 to specify that the number of decimal places in the output string will depend upon
the Currency value being converted.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 325

Component Reference

TEDBEngine.DateTimeToSQLStr Method

System: :UnicodeString _ fastcall

DateTimeToSQLStr (System: :TDateTime Value, bool MilitaryTime =
true)

Call the DateTimeToSQLStr method to convert a TDateTime value to an SQL 2003 standard timestamp
constant string. All SQL and filter expressions in ElevateDB require standard timestamp constants which
use the 'yyyy-mm-dd hh:mm:ss.zzz am/pm’ format. Use the MilitaryTime parameter to indicate whether
the time should be returned in 24-hour format instead of 12-hour format with an am/pm indicator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 326

Component Reference

TEDBEngine.DateToSQLStr Method

System: :UnicodeString fastcall DateToSQLStr (System::TDateTime
Value)

Call the DateToSQLStr method to convert a TDateTime value to an SQL 2003 standard date constant

string. All SQL and filter expressions in ElevateDB require standard date constants which use the 'yyyy-
mm-dd' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 327

Component Reference

TEDBEngine.DayTimelntervalToSQLStr Method

System: :UnicodeString _ fastcall DayTimeIntervalToSQLStr(inté64
Value, TEDBDayTimeIntervalType DayTimelIntervalType)

Call the DayTimelntervalToSQLStr method to convert a TEDBDayTimelnterval (Int64) value to an SQL
2003 standard day-time interval constant string. All SQL and filter expressions in ElevateDB require
standard day-time interval constants which use the general 'dd hh:mm:ss.zzz am/pm' format. Use the
DayTimelntervalType parameter to indicate how the day-time interval should be formatted.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 328

Component Reference

TEDBENgine.DisconnectServerSession Method

bool fastcall DisconnectServerSession (int SessionID)

Call the DisconnectServerSession method to disconnect a specific session on the ElevateDB Server.
Disconnecting a session only terminates its connection, it does not remove the session completely from the
server nor does it release any resources for the session other than the thread used for the connection and
the connection itself at the operating system level. Use the SessionID parameter to specify the session ID
to disconnect. You can log the session ID for a particular session by defining an event handler for the
OnServerSessionEvent event and passing the session ID to this method.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Page 329

Component Reference

TEDBENgine.FindSession Method

TEDBSession* fastcall FindSession(const System::UnicodeString
SessionName)

Use the FindSession method to search the list of TEDBSession components for a specified session hame.
SessionName specifies the session to search for.

FindSession compares the SessionName parameter to the SessionName property for each TEDBSession
component in the available list of sessions in the engine. If a match is found, FindSession returns a
reference to the applicable TEDBSession component. If an application passes an empty string in the
SessionName parameter, FindSession returns the default global TEDBSession, Session. If a match is not
found, FindSession returns nil.

Note
This method only applies when the EngineType property is set to etClient.

Page 330

Component Reference

TEDBENgine.FloatToSQLStr Method

System: :UnicodeString __fastcall FloatToSQLStr (double Value)

Call the FloatToSQLStr method to convert a Double value to an SQL 2003 standard float constant string.

All SQL and filter expressions in ElevateDB require standard float constants which use the period (.) as the
decimal separator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 331

Component Reference

TEDBENgine.GetServerConnectedSessionCount Method

int fastcall GetServerConnectedSessionCount (void)

Call the GetServerConnectedSessionCount method to retrieve the total number of connected sessions on
the ElevateDB Server. Sessions that are present on the server, but not connected, are not reported in this
figure. To get a total count of the number of sessions on the server use the GetServerSessionCount
method instead.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Page 332

Component Reference

TEDBENgine.GetServerSessionCount Method

int fastcall GetServerSessionCount (void)

Call the GetServerSessionCount method to retrieve the total number of sessions on the ElevateDB Server.
To get a total count of just the number of connected sessions on the server use the
GetServerConnectedSessionCount method instead.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Page 333

Component Reference

TEDBENgine.GetServerUpTime Method

__int64 fastcall GetServerUpTime (void)

Call the GetServerUpTime method to retrieve the number of seconds that the ElevateDB Server has been
active and accepting new connections.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Page 334

Component Reference

TEDBENgine.GetServerUTCDateTime Method

System::TDateTime fastcall GetServerUTCDateTime (void)

Call the GetServerUTCDateTime method to retrieve the universal coordinate date and time from the
ElevateDB Server. This is especially useful if you wish to get the date and time in a standard format that
doesn't need to take into account the local server time offset.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Page 335

Component Reference

TEDBENgine.GetSessionNames Method

void _ fastcall GetSessionNames (System::Classes::TStrings* List)

Call the GetSessionNames method to populate a string list with the names of all available TEDBSession
components. The List parameter is a string list object, created and maintained by the application, into
which to store session names. The names returned by GetSessionNames correspond to the SessionName
properties of all available TEDBSession components.

Note
This method only applies when the EngineType property is set to etClient.

Page 336

Component Reference

TEDBENgine.GetTempTablesPath Method

System: :UnicodeString fastcall GetTempTablesPath (void)

Call the GetTempTablesPath method to return a string with the location of the operating system's default
temporary files path for the current user.

Page 337

Component Reference

TEDBEnNgine.Open Method

void _ fastcall Open (void)

Call the Open method to start the engine. Calling this method will change the Active property from False
to True if the engine has not been started, or it will do nothing if the Active property is already True.

Page 338

Component Reference

TEDBENgine.OpenSession Method

TEDBSession* fastcall OpenSession(const System::UnicodeString
SessionName)

Call the OpenSession method to make an existing TEDBSession component active, or to create a new
TEDBSession component and make it active. SessionName specifies the name of the session to open.

OpenSession calls the TEDBENngine FindSession method to see if the TEDBSession component specified in
the SessionName parameter already exists. If it finds a match via the SessionName property of an existing
TEDBSession component, it starts that session if necessary, and makes the session active. If OpenSession
does not find an existing TEDBSession component with that name, it creates a new TEDBSession
component using the name specified in the SessionName parameter, starts the session, and makes it
active.

In either case, OpenSession returns the TEDBSession component.

Note
This method only applies when the EngineType property is set to etClient.

Page 339

Component Reference

TEDBENgine.QuotedSQLStr Method

System: :UnicodeString _ fastcall QuotedSQLStr (const
System: :UnicodeString Value)

Call the QuotedSQLStr method to format a string constant so that it can properly used as a literal constant
in an SQL statement. This method converts escapes all single quotes and converts all characters less than
#32 (space) into the #<ASCII value> syntax.

Page 340

Component Reference

TEDBEngine.RemoveServerSession Method

bool fastcall RemoveServerSession (int SessionID)

Call the RemoveServerSession method to completely remove a specific session on the ElevateDB Server.
Removing a session not only terminates its connection (if connected), but it also removes the session
completely and releases any resources for the session including the thread used for the connection and
the connection itself at the operating system level. Use the SessionID parameter to specify the session ID
to remove. You can log the session ID for a particular session by defining an event handler for the
OnServerSessionEvent event and passing the session ID to this method.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Page 341

Component Reference

TEDBENgine.SQLStrToBinary Method

Edbtype: :TEDBBytes fastcall SQLStrToBinary (const
System: :UnicodeString Value)

Call the SQLStrToBinary method to convert a string that contains an SQL 2003 standard binary constant to
an actual TEDBBytes (byte array) value. All SQL and filter expressions in ElevateDB require standard
binary constants, which are represented by the binary value in hexadecimal format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 342

Component Reference

TEDBENgine.SQLStrToBoolean Method

bool fastcall SQLStrToBoolean(const System::UnicodeString
Value)

Call the SQLStrToBoolean method to convert a string that contains an SQL 2003 standard boolean

constant to an actual Boolean value. All SQL and filter expressions in ElevateDB require standard boolean
constants, which are TRUE and FALSE (case-insensitive).

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 343

Component Reference

TEDBENgine.SQLStrToCurr Method

System: :Currency _ fastcall SQLStrToCurr (const
System: :UnicodeString Value)

Call the SQLStrToCurr method to convert a string that contains an SQL 2003 standard decimal constant to

an actual Currency value. All SQL and filter expressions in ElevateDB require standard decimal constants
which use the period (.) as the decimal separator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 344

Component Reference

TEDBENgine.SQLStrToDate Method

System: :TDateTime __fastcall SQLStrToDate (const
System: :UnicodeString Value)

Call the SQLStrToDate method to convert a string that contains an SQL 2003 standard date constant to an
actual TDateTime value. All SQL and filter expressions in ElevateDB require standard date constants which
use the 'yyyy-mm-dd' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 345

Component Reference

TEDBENgine.SQLStrToDateTime Method

System::TDateTime fastcall SQLStrToDateTime (const
System: :UnicodeString Value)

Call the SQLStrToDateTime method to convert a string that contains an SQL 2003 standard timestamp
constant to an actual TDateTime value.All SQL and filter expressions in ElevateDB require standard
timestamp constants which use the 'yyyy-mm-dd hh:mm:ss.zzz am/pm’ format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 346

Component Reference

TEDBENgine.SQLStrToDayTimelInterval Method

__int64 fastcall SQLStrToDayTimelInterval (const
System: :UnicodeString Value, TEDBDayTimeIntervalType
DayTimeIntervalType)

Call the SQLStrToDayTimelnterval method to convert a string that contains an SQL 2003 standard day-
time interval constant to an actual TEDBDayTimelnterval (Int64) value. All SQL and filter expressions in
ElevateDB require standard day-time interval constants which use the 'dd hh:mm:ss.zzz am/pm' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 347

Component Reference

TEDBENgine.SQLStrToFloat Method

double fastcall SQLStrToFloat (const System::UnicodeString
Value)

Call the SQLStrToFloat method to convert a string that contains an SQL 2003 standard float constant to an

actual Double value. All SQL and filter expressions in ElevateDB require standard float constants which use
the period (.) as the decimal separator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 348

Component Reference

TEDBENgine.SQLStrToTime Method

System::TDateTime __ fastcall SQLStrToTime (const
System: :UnicodeString Value)

Call the SQLStrToTime method to convert a string that contains an SQL 2003 standard time constant to an
actual TDateTime value. All SQL and filter expressions in ElevateDB require standard time constants which
use the 'hh:mm:ss.zzz am/pm' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 349

Component Reference

TEDBENgine.SQLStrToYearMonthInterval Method

int __fastcall SQLStrToYearMonthInterval (const

System: :UnicodeString Value, TEDBYearMonthIntervalType
YearMonthIntervalType)

Call the SQLStrToYearMonthInterval method to convert a string that contains an SQL 2003 standard year-
month interval constant to an actual TEDBYearMonthInterval (Integer) value. All SQL and filter expressions
in ElevateDB require standard year-month interval constants which use the 'yyyy-mm' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Page 350

Component Reference

TEDBENgine.SubtractDateFromDateAsDayTime Method

__int64 fastcall
SubtractDateFromDateAsDayTime (System: :TDateTime FirstValue,
System: :TDateTime SecondValue, TEDBDayTimeIntervalType
DayTimeIntervalType)

Call the SubtractDateFromDateAsDayTime method to subtract a date value from another date value,
returning the result as a day-time interval.

Note

In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimelntervalToSQLStr method to
convert a day-time interval into a readable string.

Page 351

Component Reference

TEDBENgine.SubtractDateFromDateAsYearMonth Method

int __fastcall SubtractDateFromDateAsYearMonth (System: :TDateTime
FirstValue, System::TDateTime SecondValue,
TEDBYearMonthIntervalType YearMonthIntervalType)

Call the SubtractDateFromDateAsYearMonth method to subtract a date value from another date value,
returning the result as a year-month interval.

Note

In ElevateDB, year-month intervals are Integer values that represent the number of days that have
elapsed between two calendar days. Use the TEDBENngine YearMonthIntervalToSQLStr method to
convert a year-month interval into a readable string.

Page 352

Component Reference

TEDBENgine.SubtractDateTimeFromDateTimeAsDayTime Method

__int64 fastcall
SubtractDateTimeFromDateTimeAsDayTime (System: :TDateTime
FirstValue, System::TDateTime SecondValue,
TEDBDayTimeIntervalType DayTimeIntervalType)

Call the SubtractDateTimeFromDateTimeAsDayTime method to subtract a date-time value from another
date-time value, returning the result as a day-time interval.

Note

In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimelntervalToSQLStr method to
convert a day-time interval into a readable string.

Page 353

Component Reference

TEDBEnNgine.SubtractDayTimeFromDateTime Method

System::TDateTime fastcall
SubtractDayTimeFromDateTime (System: :TDateTime Value, int64
DayTimeInterval, TEDBDayTimeIntervalType DayTimelIntervalType)

Call the SubtractDayTimeFromDateTime method to subtract a day-time interval from a date-time value
and return the new date-time value.

Note

In ElevateDB, day-time intervals are Int64 values th