
ElevateDB Version 2 Manual

Table Of Contents

Chapter 1 - Local Application Tutorial 1

1.1 Creating the Tutorial Database 1

1.2 Creating the Application 9

Chapter 2 - Client-Server Application Tutorial 15

2.1 Configuring and Starting the ElevateDB Server 15

2.2 Creating the Tutorial Database 18

2.3 Creating the Application 26

Chapter 3 - DBISAM Migration 31

3.1 Introduction 31

3.2 Migrating a DBISAM Database Using the ElevateDB Manager 32

3.3 Migrating a DBISAM Database Using Code 39

3.4 Renaming the DBISAM Components 41

3.5 Updating the Source Code 43

3.6 Component Changes 44

3.7 TDBISAMEngine Component 45

3.8 TDBISAMSession Component 52

3.9 TDBISAMDatabase Component 58

3.10 TDBISAMDataSet Component 60

3.11 TDBISAMDBDataSet Component 62

3.12 TDBISAMTable Component 64

3.13 TDBISAMQuery Component 67

3.14 TDBISAMUpdateSQL Component 70

3.15 EDBISAMEngineError Object 72

3.16 SQL Changes 74

3.17 Naming Conventions 75

3.18 Types 76

3.19 Operators 78

3.20 Functions 79

3.21 Statements 80

Chapter 4 - Getting Started 91

4.1 Architecture 91

Table of Contents

Preface

4.2 Exception Handling and Errors 97

4.3 Multi-Threaded Applications 99

4.4 Recompiling the ElevateDB Source Code 102

Chapter 5 - Using ElevateDB 105

5.1 Configuring and Starting the Engine 105

5.2 Connecting Sessions 113

5.3 Creating, Altering, or Dropping Configuration Objects 118

5.4 Opening Databases 120

5.5 Creating, Altering, or Dropping Database Objects 121

5.6 Executing Queries 123

5.7 Parameterized Queries 128

5.8 Querying Configuration Objects 130

5.9 Querying Database Objects 131

5.10 Executing Scripts 132

5.11 Executing Stored Procedures 135

5.12 Executing Transactions 138

5.13 Creating and Using Stores 140

5.14 Publishing and Unpublishing Databases 142

5.15 Saving Updates To and Loading Updates From Databases 144

5.16 Backing Up and Restoring Databases 146

5.17 Opening Tables and Views 148

5.18 Closing Tables and Views 152

5.19 Navigating Tables, Views, and Query Result Sets 153

5.20 Inserting, Updating, and Deleting Rows 155

5.21 Searching and Sorting Tables, Views, and Query Result Sets 164

5.22 Setting Ranges on Tables 170

5.23 Setting Master-Detail Links on Tables 172

5.24 Setting Filters on Tables, Views, and Query Result Sets 175

5.25 Using Streams with Tables, Views and Query Result Sets 177

5.26 Cached Updates 179

Chapter 6 - Component Reference 181

6.1 EEDBError Component 181

6.2 TEDBBlobStream Component 187

6.3 TEDBDatabase Component 193

6.4 TEDBDataSet Component 215

6.5 TEDBDBDataSet Component 244

Table of Contents

Preface

6.6 TEDBEngine Component 252

6.7 TEDBQuery Component 360

6.8 TEDBScript Component 390

6.9 TEDBServerProcedure Component 429

6.10 TEDBSession Component 436

6.11 TEDBStoredProc Component 537

6.12 TEDBTable Component 557

6.13 TEDBUpdateSQL Component 590

Chapter 7 - Type Reference 603

7.1 pEDBLongWord Type 603

7.2 pInteger Type 604

7.3 pPointer Type 605

7.4 TEDBApplyCachedUpdatesOption Type 606

7.5 TEDBApplyCachedUpdatesOptions Type 607

7.6 TEDBBytes Type 608

7.7 TEDBCharacterSet Type 609

7.8 TEDBDate Type 610

7.9 TEDBDayTimeInterval Type 611

7.10 TEDBDayTimeIntervalType Type 612

7.11 TEDBDebugNotificationEvent Type 613

7.12 TEDBDebugVariable Type 614

7.13 TEDBDebugVariableType Type 615

7.14 TEDBEngineType Type 616

7.15 TEDBFileEncoding Type 617

7.16 TEDBFileFormat Type 618

7.17 TEDBLogCategories Type 619

7.18 TEDBLogCategory Type 620

7.19 TEDBLogMessageEvent Type 621

7.20 TEDBLongWord Type 622

7.21 TEDBProgressEvent Type 623

7.22 TEDBRecordLockProtocol Type 624

7.23 TEDBRemoteProgressEvent Type 625

7.24 TEDBRemoteReconnectEvent Type 626

7.25 TEDBRemoteTimeoutEvent Type 627

7.26 TEDBRemoteTrace Type 628

7.27 TEDBRemoteTraceEvent Type 630

Table of Contents

Preface

7.28 TEDBServerProcedureEvent Type 631

7.29 TEDBServerSession Type 632

7.30 TEDBServerSessionEvent Type 633

7.31 TEDBServerSessionEventType Type 634

7.32 TEDBServerSessionLoginEvent Type 635

7.33 TEDBServerTrace Type 636

7.34 TEDBServerTraceEvent Type 638

7.35 TEDBSessionLoginEvent Type 639

7.36 TEDBSessionType Type 640

7.37 TEDBSetSequenceEvent Type 641

7.38 TEDBSQLStatementType Type 642

7.39 TEDBStatusMessageEvent Type 646

7.40 TEDBStringsArray Type 647

7.41 TEDBTime Type 648

7.42 TEDBTimeStamp Type 649

7.43 TEDBYearMonthInterval Type 650

7.44 TEDBYearMonthIntervalType Type 651

Appendix A - Error Codes and Messages 653

Appendix B - System Capacities 661

Table of Contents

Preface

Chapter 1
Local Application Tutorial

1.1 Creating the Tutorial Database

Before creating the actual tutorial application, you must first create the Tutorial database that will be used
in the application. The following steps will guide you through creating the Tutorial database using the
ElevateDB Manager.

1. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

2. Make sure that the session is using the desired character set and configuration file folder
(C:\Tutorial).

a. Select the Default session from the list of available sessions.

b. In the Tasks pane, click on the Edit Session link.

Local Application Tutorial

Page 1

c. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode. The only exception to this rule is if
you are using Borland Developer Studio 2005 or lower (including Delphi 5, 6, and 7, as well as
C++Builder 5 and 6). You should use the ANSI character set with those older compilers, due to a
lack of proper Unicode support for fixed-character and memo field types.

d. On the Local page of the Edit Session dialog, make sure that the Configuration File - File Folder is set
to the desired folder.

e. Click on the OK button.

Local Application Tutorial

Page 2

3. Double-click on the Default session in the Properties window in order to connect the session.

4. Click on the New button on the main toolbar.

5. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

6. Press the F9 key to execute the SQL statement.

7. Press the F5 key to refresh the explorer contents for the session.

8. Click on the + sign next to the Databases node in the treeview.

Local Application Tutorial

Page 3

9. Click on the new Tutorial database that you just created.

10. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

Local Application Tutorial

Page 4

11. Click on the New.SQL tab to bring forward the SQL window.

12. Paste in the following CREATE TABLE SQL statement. If you are using a Unicode session (see Step 2
above), then you should use the Unicode version of the CREATE TABLE statement. If you are using an
ANSI session, then you should use the ANSI version of the CREATE TABLE statement:

ANSIANSI

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "ANSI_CI" NOT NULL,
"Address1" VARCHAR(40) COLLATE "ANSI_CI",
"Address2" VARCHAR(40) COLLATE "ANSI_CI",
"City" VARCHAR(30) COLLATE "ANSI_CI",
"State" CHAR(2) COLLATE "ANSI_CI",
"Zip" CHAR(10) COLLATE "ANSI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")
)

UnicodeUnicode

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "UNI_CI" NOT NULL,
"Address1" VARCHAR(40) COLLATE "UNI_CI",
"Address2" VARCHAR(40) COLLATE "UNI_CI",
"City" VARCHAR(30) COLLATE "UNI_CI",
"State" CHAR(2) COLLATE "UNI_CI",
"Zip" CHAR(10) COLLATE "UNI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

Local Application Tutorial

Page 5

CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")
)

13. Press the F9 key to execute the SQL statement.

14. Press the F5 key to refresh the explorer contents for the session.

15. The table should now show up in the list of tables for the Tutorial
database.

16. Click on the New.SQL tab to bring forward the SQL window.

17. Paste in the following INSERT SQL statement:

INSERT INTO "Customer" VALUES
(NULL,

Local Application Tutorial

Page 6

'Elevate Software, Inc.',
'168 Christiana Street',
'',
'North Tonawanda',
'NY',
'14120',
NULL)

18. Press the F9 key to execute the SQL statement.

19. Click on the Customer table that you just created.

20. Press the F6 key to make the Properties window the active window, and then click on the Open Table
link in the Tasks pane.

Local Application Tutorial

Page 7

21. You will now see the row that you just inserted.

You have now successfully created the Tutorial database.

Local Application Tutorial

Page 8

1.2 Creating the Application

The following steps will guide you through creating a basic local application using ElevateDB.

Note
It is assumed that you have already created the required database using the steps outlined in the
Creating the Tutorial Database topic.

1. Click on the File option from the main menu.

2. Click on the New option from the File menu, and click on the VCL Forms Application - Delphi option from
the New sub-menu.

3. Select the ElevateDB group on the tool palette and click on the plus (+) sign to expand the ElevateDB
group of components.

4. Click on the TEDBEngine component on the ElevateDB group on the tool palette and then click on the
Form1 form that was created for you by Embarcadero RAD Studio. The TEDBEngine component will be
dropped on the form.

Local Application Tutorial

Page 9

5. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the ConfigPath
property and change its value to C:\Tutorial.

6. Click on the TEDBSession component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBSession component will be dropped on the form.

7. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial, click on the LoginUser property and change its
value to the default administrator user name Administrator, and click on the LoginPassword property
and change its value to the default Administrator user password EDBDefault.

Local Application Tutorial

Page 10

8. Click on the TEDBDatabase component on the ElevateDB group on the tool palette, and then click on
the Form1 form. The TEDBDatabase component will be dropped on the form.

9. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the Database property and select the Tutorial database that you have
already created from the drop-down list.

10. Click on the TEDBTable component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBTable component will be dropped on the form.

Local Application Tutorial

Page 11

11. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the TableName property and change its value to Customer. Click on the
Active property and change its value to True. If you have followed all of the steps correctly, the Active
property should successfully change to True without error.

12. Select the Data Access tab on the tool palette.

13. Click on the TDataSource component on the Data Access tab on the tool palette, and then click on the
Form1 form. The TDataSource component will be dropped on the form.

14. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSet
property and change its value to EDBTable1.

Local Application Tutorial

Page 12

15. Select the Data Controls tab on the tool palette.

16. Click on the TDBGrid component on the Data Controls tab on the tool palette, and then click on the
Form1 form. The TDBGrid component will be dropped on the form. You can use the design-time anchors
to resize the TDBGrid component as required on the form.

17. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSource
property and change its value to DataSource1.

18. Click on the File option from the main menu.

19. Click on the Save All option from the File menu.

Local Application Tutorial

Page 13

20. Save the project and the main form/unit under the desired names.

You have now successfully created a basic local application for ElevateDB.

Local Application Tutorial

Page 14

Chapter 2
Client-Server Application Tutorial

2.1 Configuring and Starting the ElevateDB Server

Before creating the tutorial database and application, you must first configure and start the ElevateDB
Server.

1. Start the ElevateDB Server (edbsrvr.exe) by clicking on the ElevateDB Server link in the Start menu.

2. Make sure that the server is using the desired character set and configuration file folder (C:\Tutorial).

a. In the system tray, right-click on the ElevateDB Server icon to bring up the server menu, and click on
the Restore option on the server menu.

b. In the Tasks pane, click on the Stop Server link.

c. In the Tasks pane, click on the Edit Server Options link.

Client-Server Application Tutorial

Page 15

d. On the Server page, make sure that the Character Set is set to the desired value - either ANSI or
Unicode.

Note
If you're not sure which character set to select and this is the first time using the ElevateDB Server,
then leave the character set at the default of Unicode.

e. On the Configuration page, make sure that the Configuration File - File Folder is set to the desired
folder for the ElevateDB Server configuration file (EDBConfig.EDBCfg).

f. Click on the OK button.

g. In the Tasks pane, click on the Start Server link.

Client-Server Application Tutorial

Page 16

e. Click on the close button in the upper-right-hand corner of the ElevateDB Server window to close the
server window.

You have now successfully configured and started the ElevateDB Server.

Client-Server Application Tutorial

Page 17

2.2 Creating the Tutorial Database

Before creating the actual tutorial application, you must first create the Tutorial database that will be used
in the application. The following steps will guide you through creating the Tutorial database using the
ElevateDB Manager.

Note
It is assumed that you have already configured and started the ElevateDB Server using the steps
outlined in the Configuring and Starting the ElevateDB Server topic.

1. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

2. Make sure that the session is using the correct session type (Remote) and desired character set.

Note
The character set for the session must match the character set being used by the ElevateDB Server
being accessed. Using a different character set will result in you not being able to connect to the
ElevateDB Server.

a. Select the Default session from the list of available sessions.

b. In the Tasks pane, click on the Edit Session link.

Client-Server Application Tutorial

Page 18

c. On the General page of the Edit Session dialog, make sure that the Session Type is set to Remote.

d. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

e. Click on the OK button.

3. Double-click on the Default session in the Properties window in order to connect the session.

Client-Server Application Tutorial

Page 19

4. Click on the New button on the main toolbar.

5. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

6. Press the F9 key to execute the SQL statement.

7. Press the F5 key to refresh the explorer contents for the session.

8. Click on the + sign next to the Databases node in the treeview.

Client-Server Application Tutorial

Page 20

9. Click on the new Tutorial database that you just created.

10. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

Client-Server Application Tutorial

Page 21

11. Click on the New.SQL tab to bring forward the SQL window.

12. Paste in the following CREATE TABLE SQL statement. If you are using a Unicode session (see Step 2
above), then you should use the Unicode version of the CREATE TABLE statement. If you are using an
ANSI session, then you should use the ANSI version of the CREATE TABLE statement:

ANSIANSI

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "ANSI_CI" NOT NULL,
"Address1" VARCHAR(40) COLLATE "ANSI_CI",
"Address2" VARCHAR(40) COLLATE "ANSI_CI",
"City" VARCHAR(30) COLLATE "ANSI_CI",
"State" CHAR(2) COLLATE "ANSI_CI",
"Zip" CHAR(10) COLLATE "ANSI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")
)

UnicodeUnicode

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "UNI_CI" NOT NULL,
"Address1" VARCHAR(40) COLLATE "UNI_CI",
"Address2" VARCHAR(40) COLLATE "UNI_CI",
"City" VARCHAR(30) COLLATE "UNI_CI",
"State" CHAR(2) COLLATE "UNI_CI",
"Zip" CHAR(10) COLLATE "UNI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

Client-Server Application Tutorial

Page 22

CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")
)

13. Press the F9 key to execute the SQL statement.

14. Press the F5 key to refresh the explorer contents for the session.

15. The table should now show up in the list of tables for the Tutorial
database.

16. Click on the New.SQL tab to bring forward the SQL window.

17. Paste in the following INSERT SQL statement:

INSERT INTO "Customer" VALUES
(NULL,

Client-Server Application Tutorial

Page 23

'Elevate Software, Inc.',
'168 Christiana Street',
'',
'North Tonawanda',
'NY',
'14120',
NULL)

18. Press the F9 key to execute the SQL statement.

19. Click on the Customer table that you just created.

20. Press the F6 key to make the Properties window the active window, and then click on the Open Table
link in the Tasks pane.

Client-Server Application Tutorial

Page 24

21. You will now see the row that you just inserted.

You have now successfully created the Tutorial database.

Client-Server Application Tutorial

Page 25

2.3 Creating the Application

The following steps will guide you through creating a basic client-server application using ElevateDB.

Note
It is assumed that you have already created the required database using the steps outlined in the
Creating the Tutorial Database topic, and have configured and started the ElevateDB Server using
the steps outlined in the Starting and Configuring the ElevateDB Server topic.

1. Click on the File option from the main menu.

2. Click on the New option from the File menu, and click on the VCL Forms Application - Delphi option from
the New sub-menu.

3. Select the ElevateDB group on the tool palette and click on the plus (+) sign to expand the ElevateDB
group of components.

4. Click on the TEDBSession component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBSession component will be dropped on the form.

Client-Server Application Tutorial

Page 26

5. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial, click on the SessionType property and change its
value to stRemote, click on the LoginUser property and change its value to the default administrator user
name Administrator, and click on the LoginPassword property and change its value to the default
Administrator user password EDBDefault. Make sure that the RemoteAddress property is set to
127.0.0.1 (the default) and that the RemotePort property is set to 12010 (the default).

6. Click on the TEDBDatabase component on the ElevateDB group on the tool palette, and then click on
the Form1 form. The TEDBDatabase component will be dropped on the form.

7. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the Database property and select the Tutorial database that you have
already created from the drop-down list.

Client-Server Application Tutorial

Page 27

8. Click on the TEDBTable component on the ElevateDB group on the tool palette, and then click on the
Form1 form. The TEDBTable component will be dropped on the form.

9. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the
SessionName property and change its value to Tutorial. Click on the DatabaseName property and change
its value to TutorialDB. Click on the TableName property and change its value to Customer. Click on the
Active property and change its value to True. If you have followed all of the steps correctly, the Active
property should successfully change to True without error.

10. Select the Data Access tab on the tool palette.

11. Click on the TDataSource component on the Data Access tab on the tool palette, and then click on the
Form1 form. The TDataSource component will be dropped on the form.

Client-Server Application Tutorial

Page 28

12. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSet
property and change its value to EDBTable1.

13. Select the Data Controls tab on the tool palette.

14. Click on the TDBGrid component on the Data Controls tab on the tool palette, and then click on the
Form1 form. The TDBGrid component will be dropped on the form. You can use the design-time anchors
to resize the TDBGrid component as required on the form.

15. Hit the F11 key to bring forward the Object Inspector. In the Object Inspector, click on the DataSource
property and change its value to DataSource1.

16. Click on the File option from the main menu.

17. Click on the Save All option from the File menu.

Client-Server Application Tutorial

Page 29

18. Save the project and the main form/unit under the desired names.

You have now successfully created a basic client-server application for ElevateDB.

Client-Server Application Tutorial

Page 30

Chapter 3
DBISAM Migration

3.1 Introduction

Migrating an existing DBISAM application to ElevateDB is a 3-step process that is outlined below:

Step 1 - Migrating a DBISAM Database Using the ElevateDB Manager or Migrating a DBISAM DatabaseStep 1 - Migrating a DBISAM Database Using the ElevateDB Manager or Migrating a DBISAM Database
Using CodeUsing Code

The first step is to migrate the existing DBISAM database (or databases) to ElevateDB format. This can be
accomplished interactively via the ElevateDB Manager or via the MIGRATE DATABASE statement.

Step 2 - Renaming the DBISAM ComponentsStep 2 - Renaming the DBISAM Components

The second step is to rename any existing DBISAM components in the application to their ElevateDB
counterparts. This can be accomplished manually in the Delphi, C++Builder, Borland Developer Studio,
CodeGear RAD Studio, Embarcadero RAD Studio, or Lazarus IDE.

Step 3 - Updating the Source CodeStep 3 - Updating the Source Code

The third step is to update the application source code so that it uses the new ElevateDB components.
This the most involved step of the migration process.

DBISAM Migration

Page 31

3.2 Migrating a DBISAM Database Using the ElevateDB Manager

The following steps will guide you through migrating a database from another format to ElevateDB format
using the ElevateDB Manager.

1. The migrator modules provided with ElevateDB are:

Module Description

edbmigrate ElevateDB migrator module

edbmigratedbisam1 DBISAM Version 1.x migrator module

edbmigratedbisam2 DBISAM Version 2.x migrator module

edbmigratedbisam3 DBISAM Version 3.x migrator module

edbmigratedbisam4 DBISAM Version 4.x migrator module

edbmigratebde BDE (Borland Database Engine) migrator module

edbmigrateado ADO (Microsoft ActiveX Data Objects) migrator module

edbmigratendb NexusDB migrator module

edbmigrateads ADS (Advantage Database Server) migrator module

You can find these migrator modules as part of the ElevateDB Additional Software and Utilities (EDB-ADD)
installation in the \libs subdirectory under the main installation directory. There are ANSI and Unicode
versions of each of the migrator modules that will work with both ANSI or Unicode sessions, and the
ElevateDB Manager will automatically select the correct migrator modules for the session being used.

Note
You can download the ElevateDB Additional Software and Utilities (EDB-ADD) installation from the
Downloads page of the web site.

2. Start the ElevateDB Manager (edbmgr.exe).

Note
You can find the ElevateDB Manager as part of the ElevateDB Additional Software and Utilities
(EDB-ADD) installation available from the Downloads page of the web site.

3. Make sure that the session is using the desired character set and configuration file folder
(C:\Tutorial).

DBISAM Migration

Page 32

a. Select the Default session from the list of available sessions.

b. In the Tasks pane, click on the Edit Session link.

c. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

d. On the Local page of the Edit Session dialog, make sure that the Configuration File - File Folder is set
to the desired folder.

DBISAM Migration

Page 33

e. Click on the OK button.

4. Double-click on the Default session in the Properties window in order to connect the session.

5. In the Tasks pane, click on the Create Database Migrators link. This will automatically create all of
the database migrators that are shipped with the ElevateDB Manager.

DBISAM Migration

Page 34

Note
If the character set of the session is changed in the future (Step 3 above), just re-execute this step
in the ElevateDB Manager and the database migrators will be updated so that they use the correct
migrator modules that match the character set of the session.

6. Click on the New button on the main toolbar.

7. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

8. Press the F9 key to execute the SQL statement.

DBISAM Migration

Page 35

9. Press the F5 key to refresh the explorer contents for the session.

10. Click on the + sign next to the Databases node in the treeview.

11. Click on the new Tutorial database that you just created.

DBISAM Migration

Page 36

12. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

13. Click on the Migrate Database link in the Tasks pane for the database.

DBISAM Migration

Page 37

14. Select the desired migrator from the list of migrators.

15. Each migrator will have various parameters that control how the migration process executes, and
these parameters are expressed in terms that are easily understood. Usually, at a minimum, the source
database name or directory parameter will need to be set. To set the source database parameters:

a. Click on the desired parameter in the list of parameters.

b. Type in the parameter value in the parameter edit control, and click on the Set Parameter button.

15. Click on the OK button, and the migration process will begin and progress information will be present
in the bottom status bar of the ElevateDB Manager.

You have now successfully migrated your database to ElevateDB.

DBISAM Migration

Page 38

3.3 Migrating a DBISAM Database Using Code

The following steps will guide you through migrating a database from DBISAM format to ElevateDB format
using the DBISAM migrators provided with ElevateDB.

1. Make sure that the DBISAM migrator modules (DLLs) are registered in the configuration file. The
DBISAM migrator modules provided with ElevateDB are:

Module Description

edbmigratedbisam1 DBISAM Version 1.x migrator module

edbmigratedbisam2 DBISAM Version 2.x migrator module

edbmigratedbisam3 DBISAM Version 3.x migrator module

edbmigratedbisam4 DBISAM Version 4.x migrator module

You can find these migrator modules as part of the ElevateDB additional software (EDB-ADD) installation
in the \libs subdirectory under the main installation directory. There are ANSI and Unicode versions of
each of the migrator modules that will work with both ANSI or Unicode sessions.

Note
You can download the ElevateDB Additional Software and Utilities (EDB-ADD) installation from the
Downloads page of the web site.

In order to register the required DBISAM migrator module(s), use the CREATE MODULE statement. You
can use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to register the migrator module using the
// Execute method

with Session do
 Execute('CREATE MODULE "DBISAM4" '+
 'PATH ''C:\Program Files\ElevateDB 2
 ADD\libs\edbmigratedbisam4\unicode\win32\edbmigratedbisam4.dll'''+
 'DESCRIPTION ''DBISAM 4 Migrator''');

2. Create a migrator for the desired migrator module using the CREATE MIGRATOR statement. You can
use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to create the migrator using the
// Execute method

with Session do
 Execute('CREATE MIGRATOR "DBISAM4" '+
 'MODULE "DBISAM4" '+
 'DESCRIPTION ''DBISAM 4 Migrator''');

DBISAM Migration

Page 39

Note
It's important that the MODULE referenced in the CREATE MIGRATOR statement matches the
module that you registered first with the CREATE MODULE statement. You'll need to execute both
statements for each migrator that you want to use with ElevateDB.

3. If necessary, create the ElevateDB database to use as the target database for the migration using the
CREATE DATABASE statement. If you have already created the database or the database already exists,
then you can skip this step. You can use the TEDBSession Execute method to execute the statement:

// This example uses the default Session
// component to create the database using the
// Execute method

with Session do
 Execute('CREATE DATABASE MyDatabase '+
 'PATH ''c:\mydatabase''');

4. Execute the MIGRATE DATABASE statement from the ElevateDB database that you just created, or that
already existed. You can use the TEDBDatabase Execute method to execute the statement:

// This example uses an existing TEDBDatabase
// component to migrate the database using the
// Execute method

with MyDatabase do
 begin
 DatabaseName:='MyDatabase';
 Database:='MyDatabase';
 Execute('MIGRATE DATABASE FROM "DBISAM4" '+
 'USING DatabaseDirectory = ''c:\dbisamdata'''+
 'WITH DATA');
 end;

When the MIGRATE DATABASE statement is executed, the source DBISAM database directory should
migrate to the current ElevateDB database. If you would like to display status and progress information
during the migration, you can attach event handlers to the TEDBDatabase OnStatusMessage and
OnProgress events.

DBISAM Migration

Page 40

3.4 Renaming the DBISAM Components

The ElevateDB VCL component set for the Delphi, C++Builder, Borland Developer Studio, CodeGear RAD
Studio, Embarcadero RAD Studio, and Lazarus products are very similar to their DBISAM counterparts.
Therefore, it is possible to simply edit the form files in the IDE and modify the names of the components
and their published properties and events so that they will use the ElevateDB components instead.

Updating Components on a Form or Data Module

The following steps will allow you to modify the DBISAM components on a form or data module so that
they are compatible with ElevateDB:

Warning
It is possible to corrupt a form file or otherwise cause the loss of components by not properly
completing the following steps. Please be very careful when editing a form file as text and make
sure that all defined objects are structured properly.

1. With the form or data module open in the IDE, press the Alt-F12 keys. This will open the form in text
mode.

2. Modify the components and their published properties and events as required. Objects are always
structured as:

object <ObjectName>
<Property or Event Definition>
[<Property or Event Definition>]
[<Property or Event Definition>]
end

<Property or Event Definition> =

<Property or Event Name> = <Value>

Collection properties are defined as:

<Property or Event Name> = <
<ItemDefinition>
[<ItemDefinition>]
[<ItemDefinition>]
>

<ItemDefinition> =

item
<Property or Event Definition>
[<Property or Event Definition>]
[<Property or Event Definition>]
end

DBISAM Migration

Page 41

3. Press the Alt-F12 keys to return the form to design mode. If there are any properties or events still
defined that don't belong to any of the new ElevateDB components, then you will receive a warning and
be prompted to remove them from the form definition. Ideally, if you have edited the form entirely so that
all published properties and events reflect the new ElevateDB components, you will not receive any errors
or warnings.

Component Changes

Detailed information regarding the changes in the existing DBISAM components can be found in the
Component Changes topic.

DBISAM Migration

Page 42

3.5 Updating the Source Code

Updating the source code for an existing DBISAM application so that it works with ElevateDB is a 3-step
process that is outlined below:

Step 1 - Rename All Component ReferencesStep 1 - Rename All Component References

The first step is to rename all component references so that they are using the new ElevateDB component
names. You can find information on the component name changes in the Component Changes topic.

Step 2 - Modify All Property, Method, and Event ReferencesStep 2 - Modify All Property, Method, and Event References

The second step is to modify all property, method, and event references so that they are using the new
ElevateDB properties, methods, and events. You can find information on the changes to the properties,
methods, and events in the Component Changes topic. In many cases you will find that ElevateDB
requires an SQL statement to be executed in place of what used to be a method call in DBISAM.

Step 3 - Modify All SQL StatementsStep 3 - Modify All SQL Statements

The third and final step is to modify all existing DBISAM SQL statements so that they use the new
ElevateDB syntax. You can find information on the differences in the SQL implementations of DBISAM and
ElevateDB in the SQL Changes topic.

DBISAM Migration

Page 43

3.6 Component Changes

The following is the list of components in DBISAM and their counterpart in ElevateDB. Click on each
component name to find out the changes to the properties, methods, and events for the component.

DBISAM Component ElevateDB Component

TDBISAMEngine TEDBEngine

TDBISAMSession TEDBSession

TDBISAMDatabase TEDBDatabase

TDBISAMDataSet TEDBDataSet

TDBISAMDBDataSet TEDBDBDataSet

TDBISAMTable TEDBTable

TDBISAMQuery TEDBQuery

None TEDBStoredProc

TDBISAMUpdateSQL TEDBUpdateSQL

EDBISAMEngineError EEDBError

DBISAM Migration

Page 44

3.7 TDBISAMEngine Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

CreateTempTablesInDatabase This property is no longer necessary. ElevateDB always
creates temporary tables used in optimizing, repairing, or
altering tables in the same location as the tables themselves.

FilterRecordCounts This property is no longer necessary. ElevateDB does not
provide logical record numbers (sequence numbers).

Functions This property is no longer necessary. ElevateDB uses SQL to
create and drop functions, and a special Information Schema
for storing the available functions in a given database. Please
see the CREATE FUNCTION, DROP FUNCTION, and Functions
Table topics for more information.

MaxTableBlobBufferCount
MaxTableBlobBufferSize
MaxTableDataBufferCount
MaxTableDataBufferSize
MaxTableIndexBufferCount
MaxTableIndexBufferSize

These properties are no longer necessary. ElevateDB allows
the buffering settings to be set on a per-table basis for each
table when the table is created or altered. Please see the
CREATE TABLE, ALTER TABLE, and Tables Table topics for
more information.

ServerAdminAddress
ServerAdminPort
ServerAdminThreadCacheSize

These properties are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection.

ServerConfigPassword This property is no longer necessary. ElevateDB uses one
encryption password per application for all encryption, and it
is represented by the EncryptionPassword property.

TableBlobBackupExtension
TableBlobTempExtension
TableBlobUpgradeExtension
TableDataBackupExtension
TableDataTempExtension
TableDataUpgradeExtension
TableIndexBackupExtension
TableIndexTempExtension
TableIndexUpgradeExtension

These properties have been removed and replaced with the
hard-coded value of ".Old". ElevateDB simply appends the
".Old" to the existing file when creating backup copies during
the optimization, alteration, or repair of tables.

TableFilterIndexThreshhold This property is no longer required under ElevateDB and has
been removed.

TableMaxReadLockCount This property is no longer necessary. For performance
reasons, ElevateDB does not relinquish read locks when
performing table scans in order to satisfy a query or filter
condition.

DBISAM Migration

Page 45

TableReadLockTimeout
TableTransLockTimeout
TableWriteLockTimeout

These properties are no longer required under ElevateDB and
have been removed

MethodsMethods

Removed Description

AddServerDatabase
ModifyServerDatabase
DeleteServerDatabase
GetServerDatabase
GetServerDatabaseNames

These methods are no longer necessary. ElevateDB uses SQL
to create and drop databases, and a special Configuration
database for storing the available databases in a given
configuration. Please see the CREATE DATABASE, DROP
DATABASE, and Databases Table topics for more information.

AddServerDatabaseUser
ModifyServerDatabaseUser
DeleteServerDatabaseUser
GetServerDatabaseUser
GetServerDatabaseUserNames

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on databases and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and DatabasePrivileges Table topics for
more information.

AddServerEvent
ModifyServerEvent
DeleteServerEvent
GetServerEvent
GetServerEventNames

These methods are no longer necessary. ElevateDB offers
jobs, which are the same thing as scheduled events in
DBISAM. ElevateDB uses SQL to create and drop jobs, and a
special Configuration database for storing the available jobs in
a given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

AddServerProcedure
ModifyServerProcedure
DeleteServerProcedure
GetServerProcedure
GetServerProcedureNames

These methods are no longer necessary. ElevateDB uses SQL
to create and drop procedures, and a special Information
Schema for storing the available procedures in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

AddServerProcedureUser
ModifyServerProcedureUser
DeleteServerProcedureUser
GetServerProcedureUser
GetServerProcedureUserNames

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on procedures and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and ProcedurePrivileges Table topics for
more information.

AddServerUser
ModifyServerUser
DeleteServerUser
GetServerUser
GetServerUserNames
ModifyServerUserPassword

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users, and a special Configuration
database for storing the available users in a given
configuration. Please see the CREATE USER, ALTER USER,
DROP USER, and Users Table topics for more information.

DBISAM Migration

Page 46

BuildWordList
GetDefaultTextIndexParams

These methods are no longer supported. Word generation
and text filtering for text indexes is directly tied to the defined
text indexes in ElevateDB, so these methods are no longer
possible. Please see the Text Indexing topic for more
information.

ConvertIDToLocaleConstant
ConvertLocaleConstantToID
GetLocaleNames
IsValidLocale
IsValidLocaleConstant

These methods are no longer necessary. ElevateDB uses a
special Configuration database for storing the available
collations (locales) in a given configuration. Please see the
Collations Table topic for more information.

GetServerConfig
ModifyServerConfig

These methods are no longer necessary. ElevateDB stores all
server startup and operational information in the TEDBEngine
component itself, and all additional configuration information,
such as the defined databases, users, roles, and jobs, is
stored in the server configuration file. The information in the
server configuration file can be accessed via the special
Configuration database available for each configuration.
Please see the Configuration Database topic for more
information.

GetServerLogCount
GetServerLogRecord

These methods are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

GetServerMemoryUsage This method is no longer supported, and was deprecated in
the latest DBISAM versions.

GetServerSessionInfo This method is no longer supported. Use the
OnServerSessionEvent event along to track session
information as sessions are created, connected, etc.

StartAdminServer
StopAdminServer
StartMainServer
StopMainServer

These methods are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection. In addition, the ElevateDB server
is automatically stopped and started when the TEDBEngine
Active property is assigned a new value.

EventsEvents

Removed Description

DBISAM Migration

Page 47

AfterDeleteTrigger
AfterInsertTrigger
AfterUpdateTrigger
BeforeDeleteTrigger
BeforeInsertTrigger
BeforeUpdateTrigger

These methods are no longer necessary. ElevateDB uses SQL
to create and drop triggers, and a special Information Schema
for storing the available triggers defined for the tables in a
given database. Please see the CREATE TRIGGER, DROP
TRIGGER, and Triggers Table topics for more information.

OnDeleteError
OnInsertError
OnUpdateError

These events are no longer supported.

OnCompress
OnDecompress

These events are no longer supported. ElevateDB does not
allow for custom compression due to the need for it to run as
managed code under .NET.

OnCryptoInit
OnCryptoReset
OnDecryptBlock
OnEncryptBlock

These events are no longer supported. ElevateDB does not
allow for custom encryption due to the need for it to run as
managed code under .NET.

OnCustomFunction This event is no longer necessary. ElevateDB uses SQL to
create and drop functions, and a special Information Schema
for storing the available functions in a given database. Please
see the CREATE FUNCTION, DROP FUNCTION, and Functions
Table topics for more information.

OnServerConnect
OnServerDisconnect
OnServerLogin
OnServerLogout
OnServerReconnect

These events have been removed and replaced with the
single OnServerSessionEvent event in ElevateDB. See below
for more information on the new OnServerSessionEvent
event.

OnServerLogCount
OnServerLogEvent
OnServerLogRecord

These events are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

OnServerProcedure This event is no longer necessary. ElevateDB uses SQL to
create and drop procedures, and a special Information
Schema for storing the available procedures in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

OnServerScheduledEvent This event is no longer necessary. ElevateDB offers jobs,
which are the same thing as scheduled events in DBISAM.
ElevateDB uses SQL to create and drop jobs, and a special
Configuration database for storing the available jobs in a
given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

OnTextIndexFilter
OnTextIndexTokenFilter

These events are no longer supported. Word generation and
text filtering for text indexes is directly tied to the defined text
indexes in ElevateDB, so these methods are no longer
possible. Please see the Text Indexing topic for more
information.

DBISAM Migration

Page 48

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

EngineSignature This property has been renamed to the Signature property.

LockFileName This property has been split into two properties. In ElevateDB,
the ConfigName property or CatalogName property is
combined with the LockExtension property to name the lock
file for either the configuration or a given database catalog.

ServerConfigFileName This property has been split into two properties. In ElevateDB,
the ConfigName property is combined with the
ConfigExtension property to name the configuration file. The
ConfigPath property is used to determine where the
configuration file is created. ElevateDB uses a configuration
file for local applications as well as the ElevateDB Server,
whereas DBISAM only used a configuration file for the
DBISAM Database Server.

ServerEncryptionPassword This property has been renamed to the EncryptionPassword
property. ElevateDB uses the EncryptionPassword property for
all encryption in the application.

ServerLicensedConnections This property has been renamed to the LicensedSessions
property. ElevateDB supports session count restrictions based
upon the LicensedSessions property for both local applications
and the ElevateDB server.

ServerMainAddress
ServerMainPort
ServerMainThreadCacheSize

These properties have been renamed with the "Main" portion
stripped out. ElevateDB uses one port for both normal
connections and administrative connections, and both types of
operations can be performed using only one connection.

TableDataExtension
TableIndexExtension
TableBlobExtension

These proeprties have renamed to the TableExtension
property, the TableIndexExtension property, and the
TableBlobExtension property, respectively.

MethodsMethods

Changed Description

DBISAM Migration

Page 49

AnsiStrToBoolean
AnsiStrToCurr
AnsiStrToDate
AnsiStrToDateTime
AnsiStrToFloat
AnsiStrToTime
BooleanToAnsiStr
CurrToAnsiStr
DateToAnsiStr
DateTimeToAnsiStr
FloatToAnsiStr
TimeToAnsiStr

These methods have been renamed with the "Ansi" portion
replaced with "SQL". This was done to reflect that these
methods now work with both ANSI strings and Unicode (wide)
strings.

EventsEvents

Changed Description

OnServerStart
OnServerStop
OnShutdown
OnStartup

These events have been replaced with the BeforeStart,
AfterStart, BeforeStop, and AfterStop events. Also, the new
events apply regardless of whether the engine component is
configured to run as a client engine or a server engine via the
EngineType property.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

New Description

BackupExtension This property is used to specify the extension used for
ElevateDB backup files. Please see the BACKUP DATABASE,
RESTORE DATABASE, and Backups Table topics for more
information.

UpdateExtension This property is used to specify the extension used for
ElevateDB update files. Please see the SAVE UPDATES, LOAD
UPDATES, and Updates Table topics for more information.

TablePublishExtension This property is used to specify the extension used for the
publish files associated with published ElevateDB tables.
Please see the PUBLISH DATABASE, UNPUBLISH DATABASE,
and Tables Table topics for more information.

CatalogName
CatalogExtension

These two properties are combined together to specify the file
name used by ElevateDB for all database catalogs.

LogExtension
LogCategories
MaxLogFileSize

These properties are used in ElevateDB to control the naming
of the log file, what types of events are logged in the log file,
and the maximum log file size. ElevateDB combines the
ConfigName property with the LogExtension property to name
the log file, and the log file is always created in the path
specified by the ConfigPath property. The log file in ElevateDB
is a ciruclar log file, and the MaximumLogFileSize determines
at which file size ElevateDB starts to re-use the log file space

DBISAM Migration

Page 50

of the oldest log entries with the newer log entries.

ServerAuthorizedAddresses
ServerBlockedAddresses
ServerDeadSessionExpiration
ServerDeadSessionInterval
ServerMaxDeadSessions
ServerSessionTimeout

These properties were added to replace the same server
configuration file settings that were available in the DBISAM
Database Server.

ServerRunJobs
ServerJobCategory

These properties determine whether the ElevateDB Server can
run jobs, and if so, what category of jobs it should run.

TempTablesPath This property specifies where any temporary tables created by
the engine will be stored.

MethodsMethods

New Description

GetTempTablesPath This method returns the operating system-defined temporary
files path.

DayTimeIntervalToSQLStr
YearMonthIntervalToSQLStr
SQLStrToDayTimeInterval
SQLStrToYearMonthInterval

These four methods are used to convert SQL intervals, either
day-time intervals or year-month intervals, to and from
strings. Please see the Interval Types topic for more
information.

EventsEvents

New Description

None

DBISAM Migration

Page 51

3.8 TDBISAMSession Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

CurrentServerUser This property is no longer necessary. ElevateDB uses SQL for
procedures and functions.

PrivateDir This property is no longer necessary. ElevateDB uses one
temporary tables property setting, the TempTablesPath
property, for all sessions.

RemoteEncryptionPassword This property is no longer necessary. ElevateDB uses one
encryption password per application for all encryption, and it
is represented by the EncryptionPassword property.

RemoteParams This property is no longer necessary. ElevateDB uses SQL for
procedures and the TEDBStoredProc component for executing
the procedures.

StrictChangeDetection This property is no longer supported. ElevateDB does not
support strict change detection.

MethodsMethods

Removed Description

AddPassword
GetPassword
RemoveAllPasswords
RemotePassword

These methods are no longer supported. ElevateDB offers a
complete user security architecture that surpasses simple
password access to individual tables. Please see the User
Security topic for more information.

AddRemoteDatabase
ModifyRemoteDatabase
DeleteRemoteDatabase
GetRemoteDatabase
GetRemoteDatabaseNames

These methods are no longer necessary. ElevateDB uses SQL
to create and drop databases, and a special Configuration
database for storing the available databases in a given
configuration. Please see the CREATE DATABASE, DROP
DATABASE, and Databases Table topics for more information.

AddRemoteDatabaseUser
ModifyRemoteDatabaseUser
DeleteRemoteDatabaseUser
GetRemoteDatabaseUser
GetRemoteDatabaseUserNames

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on databases and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and DatabasePrivileges Table topics for
more information.

AddRemoteEvent
ModifyRemoteEvent

These methods are no longer necessary. ElevateDB offers
jobs, which are the same thing as scheduled events in

DBISAM Migration

Page 52

DeleteRemoteEvent
GetRemoteEvent
GetRemoteEventNames

DBISAM. ElevateDB uses SQL to create and drop jobs, and a
special Configuration database for storing the available jobs in
a given configuration. Please see the CREATE JOB, DROP JOB,
and Jobs Table topics for more information.

AddRemoteProcedure
ModifyRemoteProcedure
DeleteRemoteProcedure
GetRemoteProcedure
GetRemoteProcedureNames

These methods are no longer necessary. ElevateDB uses SQL
to create and drop procedures, and a special Information
Schema for storing the available functions in a given
database. Please see the CREATE PROCEDURE, DROP
PROCEDURE, and Procedures Table topics for more
information.

AddRemoteProcedureUser
ModifyRemoteProcedureUser
DeleteRemoteProcedureUser
GetRemoteProcedureUser
GetRemoteProcedureUserNames

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users and roles, and a special
Configuration database for storing the available users and
roles in a given configuration. ElevateDB also uses SQL for
granting and revoking privileges on procedures and other
objects for existing users and roles. Please see the CREATE
USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT
ROLES, GRANT PRIVILEGES, Users Table, Roles Table,
UserRoles Table, and ProcedurePrivileges Table topics for
more information.

AddRemoteUser
ModifyRemoteUser
ModifyRemoteUserPassword
DeleteRemoteUser
GetRemoteUser
GetRemoteUserNames
ModifyRemoteUserPassword

These methods are no longer necessary. ElevateDB uses SQL
to create and drop users, and a special Configuration
database for storing the available users in a given
configuration. Please see the CREATE USER, ALTER USER,
DROP USER, and Users Table topics for more information.

CallRemoteProcedure
RemoteParamByName
SendProcedureProgress

These methods are no longer necessary. ElevateDB uses SQL
for procedures and the TEDBStoredProc component for
executing the procedures.

DisconnectRemoteSession
RemoveRemoteSession

These methods are no longer necessary. ElevateDB uses the
DISCONNECT SERVER SESSION and REMOVE SERVER
SESSION statements to disconnect and remove server
sessions on an ElevateDB Server. You can issue these
statements via the new Execute method.

GetRemoteAdminAddress
GetRemoteAdminPort
GetRemoteAdminThreadCacheSize
GetMainAdminAddress
GetMainAdminPort
GetMainAdminThreadCacheSize

These methods are no longer necessary. ElevateDB uses one
port for both normal connections and administrative
connections, and both types of operations can be performed
using only one connection. In addition, the address, port, and
thread cache size parameters for an ElevateDB server are not
configurable remotely and must be configured prior to starting
an ElevateDB server.

GetRemoteConfig
ModifyRemoteConfig

These methods are no longer necessary. ElevateDB stores all
server startup and operational information in the TEDBEngine
component itself, and all additional configuration information,
such as the defined databases, users, roles, and jobs, is
stored in the server configuration file. The information in the
server configuration file can be accessed via the special
Configuration database available for each configuration.
Please see the Configuration Database topic for more
information.

DBISAM Migration

Page 53

GetRemoteConnectedSessionCount
GetRemoteSessionCount
GetRemoteSessionInfo

These methods are no longer necessary. ElevateDB uses SQL
to query any ElevateDB server sessions, and a special
Configuration database for storing the server sessions on a
given ElevateDB server. Please see the ServerSessions Table
topic for more information.

GetRemoteLogCount
GetRemoteLogRecord

These methods are no longer necessary. ElevateDB logs all
error, warning, and information events in a special binary log
file available for each configuraton. The information in the log
file can be accessed via the special Configuration database
available for each configuration. Please see the LogEvents
Table topic for more information.

GetRemoteMemoryUsage This method is no longer supported, and was deprecated in
the latest DBISAM versions.

GetRemoteUpTime This method is no longer supported.

RemoveAllRemoteMemoryTables This method is no longer supported.

StartRemoteServer
StopRemoteServer

These methods are no longer supported. The ElevateDB
server cannot be remotely stopped and started.

EventsEvents

Removed Description

OnPassword This event is no longer supported. ElevateDB offers a
complete user security architecture that surpasses simple
password access to individual tables. Please see the User
Security topic for more information.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

DBISAM Migration

Page 54

Active This property has been renamed to the Connected property.

CurrentRemoteUser This property has been renamed to the CurrentUser property.
ElevateDB requires a user login for both local and remote
sessions.

LockProtocol
LockRetryCount
LockWaitTime

These properties have been renamed and prefixed with
"Record" in ElevateDB in order to make clear that these
properties deal with row locking exclusively.

ProgressSteps This property has been changed to the ProgressTimeInterval
property, which uses a time interval instead of a fixed number
of progress steps to ensure that progress updates still take
place in a reasonable span of time irrespective of the length
or scope of a given operation.

RemoteUser
RemotePassword

These properties have been renamed to the LoginUser and
LoginPassword properties, respectively. ElevateDB requires a
user login for both local and remote sessions.

MethodsMethods

Changed Description

GetRemoteEngineVersion This method has been renamed to the
GetRemoteServerVersion method.

EventsEvents

Changed Description

OnRemoteLogin This event has been renamed to the OnLogin event.
ElevateDB requires a user login for both local and remote
sessions.

OnRemoteTrace This event uses a different record type for the trace record
that is passed as a parameter to the event handler.

OnShutdown
OnStartup

These events have been replaced with the BeforeConnect,
AfterConnect, BeforeDisconnect, and AfterDisconnect events.
Also, the new events apply regardless of whether the session
component is configured to run as a remote session or a local
session via the SessionType property.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

New Description

DBISAM Migration

Page 55

KeepTablesOpen This property has been moved from the database level to the
session level in ElevateDB. This gives the developer the ability
to control whether tables should be kept open even in SQL
procedures or functions in addition to controlling whether
tables should be kept open during normal table and query
processing.

RecordChangeDetection This property was added to allow the developer to specify
whether changes to a row will issue a warning exception
when the row is updated or deleted. In DBISAM this behavior
was not configurable and any changes to a row would cause
an #8708 (DBISAM_KEYORRECDELETED) exception to be
raised.

SessionDescription This property allows the developer to specify a description for
the session.

SQLStmtCacheSize This property allows the developer to specify an SQL
statement cache size all open databases in the session.

FuncProcCacheSize This property allows the developer to specify a
function/procedure cache size all open databases in the
session.

ExcludeFromLicensedSessions This property specifies whether the current session should be
included in the session license count controlled by the
TEDBEngine LicensedSessions property for local sessions, or
by the ElevateDB Server for remote sessions.

MethodsMethods

New Description

CalculateCRC32ForStream This method calculates a CRC32 checksum for a stream.

Execute This method allows you to execute an SQL statement against
the special Configuration database. This is useful for
performing configuration-level queries or operations.

GetStoredProcNames This method populates a list with the names of all stored
procedures and functions defined within the specified
database.

SaveStoreFileToStream This method loads a store file into a stream.

SaveStreamToStoreFile This method saves a stream to a store file.

FreeCachedSQLStmts This method allows you to free all cached SQL statements for
a specific open database, or for all open databases.

FreeCachedFuncProcs This method allows you to free all cached
functions/procedures for a specific open database, or for all
open databases.

EventsEvents

New Description

None

DBISAM Migration

Page 56

DBISAM Migration

Page 57

3.9 TDBISAMDatabase Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

KeepTablesOpen This property has been moved to the session level and the
TEDBSession component.

MethodsMethods

Removed Description

Backup
BackupInfo
Restore

These methods are no longer necessary. ElevateDB uses SQL
for backing up and restoring databases, as well as retrieving
information about backups from disk, and a special
Configuration database for storing the available backups in a
given configuration. Please see the BACKUP DATABASE,
RESTORE DATABASE, SET BACKUPS STORE, and Backups
Table topics for more information.

EventsEvents

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

Directory
RemoteDatabase

These properties have been replaced by the single Database
property. ElevateDB uses SQL to create and drop databases,
and a special Configuration database for storing the available
databases in a given configuration. Please see the CREATE
DATABASE, DROP DATABASE, and Databases Table topics for
more information.

MethodsMethods

Changed Description

DBISAM Migration

Page 58

StartTransaction The StartTransaction method accepts a list of tables as a
string array instead of a TStrings object, and there is one
additional parameter for specifying the transaction lock
timeout in milliseconds.

EventsEvents

Changed Description

OnBackupLog
OnBackupProgress
OnRestoreLog
OnRestoreProgress

These events have been replaced with the OnLogMessage,
OnProgress, and OnStatusMessage events.

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

New Description

None

MethodsMethods

New Description

TableInTransaction The TableInTransaction method is used to determine if a
specific table is involved in the current transaction.

EventsEvents

New Description

None

DBISAM Migration

Page 59

3.10 TDBISAMDataSet Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

AutoDisplayLabels This property is no longer supported.

FilterOptimizeLevel This property is no longer supported. Eventually it will be
replaced by a FilterPlan property instead.

FilterRecordCount This property is no longer necessary. ElevateDB does not
provide logical record numbers (sequence numbers).

KeySize This property has been moved to the TEDBTable component.

RecordHash
RecordID

These properties are no longer necessary. ElevateDB does not
use record hashes or IDs.

MethodsMethods

Removed Description

ExportTable
ImportTable

These methods are no longer necessary. ElevateDB uses SQL
for importing and exporting tables to and from delimited text.
Please see the EXPORT TABLE and IMPORT TABLE topics for
more information.

EventsEvents

Removed Description

OnCachedUpdateError This event is not used anymore because ElevateDB uses
ERROR triggers for handling update errors. Please see the
CREATE TRIGGER topic in the ElevateDB SQL Manual for more
information.

OnLoadFromStreamProgress
OnSaveToStreamProgress

These events are no longer supported. ElevateDB streams
should be kept fairly small since they are stored in memory.
Any stream that is large enough to require progress updates
is probably too large and should be handled differently.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

DBISAM Migration

Page 60

RecNo This property no longer returns a logical record number as it
did in DBISAM. It returns zero (0) at all times under
ElevateDB. However, you can still assign a value to the
property in order to navigate to a specific logical row in the
dataset.

MethodsMethods

Changed Description

IsSequenced This method always returns False under ElevateDB. ElevateDB
does not provide logical record numbers (sequence numbers).

LoadFromStream
SaveToStream

ElevateDB uses a completely different stream format than
DBISAM. Do not attempt to load a stream created by DBISAM
into ElevateDB, or vice-versa.

EventsEvents

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

New Description

None

MethodsMethods

New Description

LockCurrentRecord
UnlockCurrentRecord
UnlockAllRecords

These methods allow you to manually lock and unlock rows in
the current cursor.

EventsEvents

New Description

None

DBISAM Migration

Page 61

3.11 TDBISAMDBDataSet Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

None

MethodsMethods

Removed Description

None

EventsEvents

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

None

MethodsMethods

Changed Description

None

EventsEvents

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

DBISAM Migration

Page 62

New Description

None

MethodsMethods

New Description

None

EventsEvents

New Description

None

DBISAM Migration

Page 63

3.12 TDBISAMTable Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

LocaleID
Description
Encrypted
Password
IndexPageSize
BlobBlockSize
LastAutoIncValue
TextIndexFields
TextIndexIncludeChars
TextIndexSpaceChars
TextIndexStopWords
UserMajorVersion
UserMinorVersion

These properties are no longer necessary. ElevateDB
maintains all database metadata in the special Information
Schema for each database. The Information schema tables
can be queried like any normal tables for information on the
structure of tables, columns, indexes, etc.

Exists This property is no longer necessary. To determine if a table
or view exists in a database, query the special Information
Schema for the database.

FullTableName
LastUpdated
TableSize

These properties are no longer supported. The TEDBTable
component supports opening both tables and views.
Therefore, returning the physical characteristics of a table is
not feasible in all cases.

VersionNum This property is no longer necessary.

MethodsMethods

Removed Description

DBISAM Migration

Page 64

CreateTable
AlterTable
CopyTable
RenameTable
DeleteTable
AddIndex
DeleteIndex
DeleteAllIndexes

These methods are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops. Please
see the CREATE TABLE, ALTER TABLE, DROP TABLE, CREATE
INDEX, CREATE TEXT INDEX, and DROP INDEX topics for
more information.

LockSemaphore
UnlockSemaphore

These methods are no longer supported. ElevateDB does not
support semaphore locks.

LockTable
UnlockTable
TableIsLocked

These methods are no longer supported. ElevateDB does not
support table locks. Instead, it supports manual row locking
via the LockCurrentRecord, UnlockCurrentRecord, and
UnlockAllRecords methods.

OptimizeTable
RepairTable
VerifyTable
UpgradeTable

These methods are no longer necessary. ElevateDB uses SQL
for all administrative functionality. Please see the OPTIMIZE
TABLE and REPAIR TABLE topics for more information.

EventsEvents

Removed Description

OnAlterProgress
OnDataLost
OnCopyProgress
OnIndexProgress

These events are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops, and the
OnLogMessage, OnProgress, and OnStatusMessage events
provide the same functionality.

OnExportProgress
OnImportProgress

These events are no longer necessary. ElevateDB uses SQL
for importing and exporting tables, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

OnOptimizeProgress
OnRepairProgress
OnRepairLog
OnVerifyProgress
OnVerifyLog
OnUpgradeProgress
OnUpgradeLog

These events are no longer necessary. ElevateDB uses SQL
for all administrative functionality, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

DBISAM Migration

Page 65

FieldDefs This property no longer uses a custom TDBISAMFieldDefs
type for the field definitions collection. In ElevateDB this
property uses the standard TFieldDefs collection type.

IndexDefs This property no longer uses a custom TDBISAMIndexDefs
type for the index definitions collection. In ElevateDB this
property uses the standard TIndexDefs collection type.

TableName This property now accepts a view name in addition to a table
name. Furthermore, the drop-down combo box for this
property in the Object Inspector will contain all tables and
views defined for the database.

MethodsMethods

Changed Description

None

EventsEvents

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

New Description

None

MethodsMethods

New Description

None

EventsEvents

New Description

None

DBISAM Migration

Page 66

3.13 TDBISAMQuery Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

TableName This property is no longer supported.

MethodsMethods

Removed Description

SaveToTable This method is no longer supported. In ElevateDB, use the AS
clause of the CREATE TABLE to create a table that is based
upon a query expression.

EventsEvents

Removed Description

BeforeExecute
AfterExecute
OnGetParams
OnQueryError

These events are no longer supported. ElevateDB does not
support multi-statement scripts in the TEDBQuery component.

OnAlterProgress
OnDataLost
OnCopyProgress

These events are no longer necessary. ElevateDB uses SQL
for all table and index creation, alteration, or drops, and the
OnLogMessage, OnProgress, and OnStatusMessage events
provide the same functionality.

OnExportProgress
OnImportProgress

These events are no longer necessary. ElevateDB uses SQL
for importing and exporting tables, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

OnOptimizeProgress
OnRepairProgress
OnRepairLog
OnVerifyProgress
OnVerifyLog
OnUpgradeProgress
OnUpgradeLog

These events are no longer necessary. ElevateDB uses SQL
for all administrative functionality, and the OnLogMessage,
OnProgress, and OnStatusMessage events provide the same
functionality.

OnQueryProgress This event is no longer necessary. The OnProgress event
provides the same functionality.

OnSaveProgress This event is no longer supported since the SaveToTable
method is no longer supported. In ElevateDB, use the AS
clause of the CREATE TABLE to create a table that is based
upon a query expression.

DBISAM Migration

Page 67

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

GeneratePlan This property has been renamed to the RequestPlan property.

Params This property no longer uses a custom TDBISAMParams type
for the parameter definitions collection. In ElevateDB this
property uses the standard TParams collection type.

RequestLive This property has been renamed to the RequestSensitive
property.

ResultIsLive This property has been renamed to the Sensitive property.

SQL This property only accepts a single SQL statement in
ElevateDB. DBISAM allow for multi-statement scripts.

SQLStatementType This property has been renamed to the StatementType
property.

StmtHandle This property has been renamed to the StatementHandle
property.

MethodsMethods

Changed Description

None

EventsEvents

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

New Description

Constrained This property allows you to specify that any inserts or updates
made to a sensitive result set be subject to the WHERE clause
used in the current SELECT statement.

MethodsMethods

New Description

DBISAM Migration

Page 68

None

EventsEvents

New Description

None

DBISAM Migration

Page 69

3.14 TDBISAMUpdateSQL Component

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

None

MethodsMethods

Removed Description

None

EventsEvents

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

None

MethodsMethods

Changed Description

None

EventsEvents

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

DBISAM Migration

Page 70

New Description

None

MethodsMethods

New Description

None

EventsEvents

New Description

None

DBISAM Migration

Page 71

3.15 EDBISAMEngineError Object

Removed Properties, Methods and Events

The following are the properties, methods, and events that have been removed for the component:

PropertiesProperties

Removed Description

ErrorDatabaseName
ErrorEventName
ErrorFieldName
ErrorIndexName
ErrorProcedureName
ErrorRemoteName
ErrorTableName
ErrorUserName
OSErrorCode
SocketErrorCode

These properties are no longer necessary. ElevateDB provides
logging facilities that negates the need for custom logging of
the properties of an exception.

MethodsMethods

Removed Description

None

EventsEvents

Removed Description

None

Property, Method, and Event Changes

The following are the changes to the properties, methods, and events for the component:

PropertiesProperties

Changed Description

ErrorMessage This property has been renamed to the ErrorMsg property.

MethodsMethods

Changed Description

None

EventsEvents

DBISAM Migration

Page 72

Changed Description

None

New Properties, Methods, and Events

The following are the new properties, methods, and events added in the new ElevateDB component:

PropertiesProperties

New Description

None

MethodsMethods

New Description

None

EventsEvents

New Description

None

DBISAM Migration

Page 73

3.16 SQL Changes

The following is the list of the areas that describe the DBISAM SQL implementation. Click on each area to
find out the changes to the SQL implementation.

Naming Conventions
Types
Operators
Functions
Statements

DBISAM Migration

Page 74

3.17 Naming Conventions

Removed Features

The following are the features that have been removed:

Removed Description

Brackets [] The use of brackets [] for identifiers is no longer supported.
Use double-quotes "" instead to specify an identifier in an SQL
statement.

Feature Changes

The following are the changes to the features:

Changed Description

Path Names Path names are no longer supported for databases in
ElevateDB. Use the database name with a period separator in
order to specify a table from a specific database. Please see
the Identifiers topic for more information.

New Features

The following are the new features:

New Description

Line Feeds in String Constants ElevateDB allows for carriage returns (character 13) and line
feeds (character 10) in string constants.

DBISAM Migration

Page 75

3.18 Types

Removed Types

The following are the types that have been removed:

Removed Description

AUTOINC This type is no longer supported. Use the INTEGER type
instead to store integer values, and use the GENERATED
clause in a column definition to dictate that a column should
be generated as an IDENTITY column. Please see the CREATE
TABLE topic for more information.

MONEY This type is no longer supported. Use the FLOAT type instead
to store double-precision floating-point values. Please see the
Approximate Numeric Types topic for more information.

GRAPHIC This type is no longer supported. Use the BLOB type instead
to store graphics or any other large binary objects. Please see
the Binary Types topic for more information.

WORD This type is no longer supported. Use the INTEGER type
instead to store word values. Please see the Exact Numeric
Types topic for more information.

Type Changes

The following are the changes to the types:

Changed Description

CHAR The CHAR (or CHARACTER) type now uses a fixed-length
representation according to the SQL standard. Any strings
that are shorter than the defined length of the column are
padded with blanks.

VARCHAR The alternate CHARACTER VARYING syntax is now
acceptable. Also, VARCHAR columns no longer right-trim any
spaces from strings that are stored in them. The string values
are stored as-is.

BYTES or BINARY
VARBYTES or VARBINARY

These types have been renamed to BYTE and VARBYTE (or
BYTE VARYING), respectively.

LONGVARBINARY This type has been renamed to BINARY LARGE OBJECT. The
shorthand BLOB type notation is still retained also.

MEMO
LONGVARCHAR

These types have been renamed to CLOB and CHARACTER
LARGE OBJECT, respectively.

BIT This shorthand notation for the BOOLEAN type is no longer
permitted.

LARGEINT This type has been renamed to BIGINT.

FLOAT The alternate DOUBLE PRECISION syntax is now acceptable.

DBISAM Migration

Page 76

DATE
TIME
TIMESTAMP

Date, time, and timestamp literals must now be preceded with
the DATE, TIME, and TIMESTAMP keywords, respectively.

New Types

The following are the new types:

New Description

INTERVAL ElevateDB now supports all day-time and year-month interval
types. Please see the Interval Types topic for more
information.

DBISAM Migration

Page 77

3.19 Operators

Removed Operators

The following are the operators that have been removed:

Removed Description

None

Operator Changes

The following are the changes to the operators:

Changed Description

NULL Values NULL constants can no longer be compared using the =, <>,
>=, <=, >, <, BETWEEN, or IN operators. You must use the
IS NULL and IS NOT NULL operators instead. Furthermore,
none of the operators will result in a TRUE value if either side
of the operator contains a NULL value. Please see the NULLs
topic for more information.

Case-Insensitive
Comparisons

DBISAM supported using the UPPER() or LOWER() function
around a column reference and a string constant involved in a
binary operator in order to force a case-insensitive
comparison, and to allow the query optimizer to use a case-
insensitive index to optimize the operation. This is no longer
necessary in ElevateDB. Instead, you can simply use the
COLLATE clause after the column reference to force the
column to use a case-insensitive collation. Please see the
Internationalization and Optimizer topics for more
information.

Date, Time, and
Timestamp Values

Subracting date, time, and timestamp values now results in
an interval type, depending upon the type of the values being
subtracted. Please see the Interval Types topic for more
information.

New Operators

The following are the new operators:

New Description

CONTAINS
DOES NOT CONTAIN

These operators are used to implement a text search using a
text index. If no text index exists on the column being
searched, then these operators will always result in a FALSE
value.

DBISAM Migration

Page 78

3.20 Functions

Removed Functions

The following are the functions that have been removed:

Removed Description

MOD This function is no longer necessary. You may use the MOD
operator instead with ElevateDB.

LASTAUTOINC
IDENT_CURRENT

These functions are no longer necessary. ElevateDB
procedures and functions can retrieve the assigned IDENTITY
value for a column using the FETCH statement on a cursor.

TEXTOCCURS This function is no longer supported.

YEARSFROMMSECS
DAYSFROMMSECS
HOURSFROMMSECS
MINSFROMMSECS
SECSFROMMSECS
MSECSFROMMSECS

These functions are no longer necessary. ElevateDB supports
the standard SQL date and time interval types. Please see the
Interval Types topic for more information.

Function Changes

The following are the changes to the functions:

Changed Description

SUBSTRING The alternate SUBSTR syntax is now acceptable.

TEXTSEARCH This function has been changed to the CONTAINS and DOES
NOT CONTAIN operators.

New Functions

The following are the new functions:

New Description

None

DBISAM Migration

Page 79

3.21 Statements

Removed Statements

The following are the statements that have been removed:

Removed Description

EMPTY TABLE This statement is no longer supported. ElevateDB requires
that you use the DELETE statement to remove all rows from a
table.

VERIFY TABLE This statement is no longer supported. ElevateDB currently
only offers repair facilities by using the REPAIR TABLE
statement.

UPGRADE TABLE This statement is no longer necessary.

START TRANSACTION
COMMIT
ROLLBACK

These statements are now considered part of the ElevateDB
SQL/PSM support and are only allowed in jobs, procedures,
functions, and triggers. Outside of SQL/PSM, use the
TEDBDatabase StartTransaction, Commit, and Rollback

Statement Changes

The following are the changes to the statements:

Changed Description

SELECT ElevateDB supports single-row query expressions as values in
the list of selected columns.

The INTO clause is no longer supported. ElevateDB uses the
standard SQL CREATE TABLE AS clause to create a table using
a query expression.

The EXCLUSIVE clause is no longer necessary.

With ElevateDB you can use the actual table name or the
table correlation name in column references anywhere in the
SELECT statement.

ElevateDB supports single-row query expressions as values in
the JOIN clauses.

ElevateDB does not optimize join expressions in the WHERE
clause, otherwise known as SQL-89 style joins. You must use
the JOIN clause in order to have ElevateDB optimize the joins.

ElevateDB supports correlated sub-queries in the WHERE
clause.

ElevateDB supports single-row query expressions as values in
the WHERE clause.

DBISAM Migration

Page 80

The GROUP BY, HAVING, and ORDER BY clauses in ElevateDB
support any type of expression, and may refer to columns that
aren't in the SELECT list.

The GROUP BY and ORDER BY clauses no longer support
ordinal values as a way to specify a SELECT column position
in the list of SELECT column expressions. You must specify
the actual column reference or expression.

The NOCASE clause is no longer necessary in the ORDER BY
clause. ElevateDB uses the COLLATE clause to specify the
collation for an ORDER BY expression. Please see the
Internationalization topic for more information.

The TOP clause is no longer supported. ElevateDB will
introduce standard WINDOW clause support for selecting
ranges of rows in a later release.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The ENCRYPTED WITH clause is no longer supported.

INSERT The EXCLUSIVE clause is no longer necessary.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
INSERT statements.

UPDATE The EXCLUSIVE clause is no longer necessary.

The FROM clause is no longer supported. ElevateDB can use
correlated sub-queries in the UPDATE values and/or WHERE
clause.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
UPDATE statements.

The NOJOINOPTIMIZE clause is no longer supported.

The JOINOPTIMIZECOSTS clause is no longer supported.

DELETE The EXCLUSIVE clause is no longer necessary.

The FROM clause is no longer supported. ElevateDB can use
correlated sub-queries in the WHERE clause.

The COMMIT clause is no longer supported. ElevateDB
internally determines the optimal commit interval for lengthy
DELETE statements.

The NOJOINOPTIMIZE clause is no longer supported.

The JOINOPTIMIZECOSTS clause is no longer supported.

DBISAM Migration

Page 81

CREATE TABLE The IF NOT EXISTS clause is no longer supported. ElevateDB
uses catalog queries to determine if a table exists. Please see
the System Information topic for more information.

The column definition NULLABLE clause is no longer
supported. To make a column nullable in ElevateDB, don't
include the NOT NULL clause.

The column definition DEFAULT clause accepts any basic
expression in ElevateDB.

A column definition may now include a GENERATED clause to
specify that the column is a generated column. Generated
columns can be generated as sequence numbers or
expressions.

The column definition MIN and MAX clauses are no longer
necessary. ElevateDB supports column constraints via the
CHECK clause.

ElevateDB allows for specifying primary key, unique key, and
foreign key constraints in a column definition.

The CHARCASE clause is no longer supported.

The COMPRESS clause has been renamed to COMPRESSION
and moved so that it is next to the data type definition.

The NOCASE clause is no longer necessary in a primary key,
unique key, or foreign key (new) constraint definition.
ElevateDB uses the collation defined for the column in the
column definition for determining the collation of these types
of constraints. Please see the Internationalization topic for
more information.

The DESC and ASC clauses are no longer supported in a
primary key, unique key, or foreign key (new) constraint
definition. Use the CREATE INDEX statement in ElevateDB to
create an index with custom column sorting.

The COMPRESS clause is no longer supported in a primary
key, unique key, or foreign key (new) constraint definition.
ElevateDB performs automatic index compression as
necessary.

The TEXT INDEX, STOP WORDS, SPACE CHARS, and
INCLUDE CHARS clauses are no longer necessary. Use the
CREATE TEXT INDEX statement in ElevateDB to create a new
text index.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The WITH clause of the ENCRYPTED clause is no longer
necessary. ElevateDB uses one encryption password per

DBISAM Migration

Page 82

application for all encryption, and it is represented by the
EncryptionPassword property. Also, the ENCRYPTED clause
now resides after the VERSION clause (see next item).

The USER MAJOR VERSION and USER MINOR VERSION
clauses have been combined into one VERSION clause that
accepts a NUMERIC value with a scale of 2. Also, the
VERSION clause now resides after the DESCRIPTION clause.

The LAST AUTOINC clause is no longer necessary. The seed
and increment values for IDENTITY columns can be specified
in the column definitions.

CREATE INDEX The IF NOT EXISTS clause is no longer supported. ElevateDB
uses catalog queries to determine if an index exists. Please
see the System Information topic for more information.

The UNIQUE clause is no longer supported. ElevateDB
requires that unique keys constraints be defined using a
constraint definition in a CREATE TABLE or ALTER TABLE
statement.

The NOCASE clause is no longer necessary in an index
definition. ElevateDB uses the collation defined for the column
in the column definition for determining the default collation
for the indexed columns, and also allows for the COLLATE
clause to be used in the index definition in order to override
the default column collation. Please see the
Internationalization topic for more information.

The COMPRESS clause is no longer supported in an index
definition. ElevateDB performs automatic index compression
as necessary.

ALTER TABLE The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The IF EXISTS and IF NOT EXISTS clauses are no longer
supported for column definitions. ElevateDB uses catalog
queries to determine if a table column exists. Please see the
System Information topic for more information.

The REDEFINE clause is no longer supported for column
definitions. In order to redefine a column using the same
column name, use the ALTER AS clause (see next). In order
to rename a column, use the RENAME clause.

The ALTER clause is new for column definitions. This clause
allows you to alter the DEFAULT expression, drop the default
expression, change the DESCRIPTION of the column, move
the column to a new position in the table using the MOVE TO
clause, or alter the entire column definition using the AS
clause.

The column definition AT clause has been moved to the end
of the column definition.

DBISAM Migration

Page 83

The column definition NULLABLE clause is no longer
supported. To make a column nullable in ElevateDB, don't
include the NOT NULL clause.

The column definition DEFAULT clause accepts any basic
expression in ElevateDB.

A column definition may now include a GENERATED clause to
specify that the column is a generated column. Generated
columns can be generated as sequence numbers or
expressions.

The column definition MIN and MAX clauses are no longer
necessary. ElevateDB supports column constraints via the
CHECK clause.

ElevateDB allows for specifying primary key, unique key, and
foreign key constraints in a column definition.

The CHARCASE clause is no longer supported.

The COMPRESS clause has been renamed to COMPRESSION
and moved so that it is next to the data type definition.

The REDEFINE clause is no longer supported for constraint
definitions. Use the RENAME clause to rename a constraint.

The NOCASE clause is no longer necessary in a primary key,
unique key, or foreign key (new) constraint definition.
ElevateDB uses the collation defined for the column in the
column definition for determining the collation of these types
of constraints. Please see the Internationalization topic for
more information.

The DESC and ASC clauses are no longer supported in a
primary key, unique key, or foreign key (new) constraint
definition. Use the CREATE INDEX statement in ElevateDB to
create an index with custom column sorting.

The COMPRESS clause is no longer supported in a primary
key, unique key, or foreign key (new) constraint definition.
ElevateDB performs automatic index compression as
necessary.

The TEXT INDEX, STOP WORDS, SPACE CHARS, and
INCLUDE CHARS clauses are no longer necessary. Use the
CREATE TEXT INDEX statement in ElevateDB to create a new
text index.

The LOCALE clause is no longer necessary. ElevateDB
supports column-level collations. Please see the
Internationalization topic for more information.

The WITH clause of the ENCRYPTED clause is no longer
necessary. ElevateDB uses one encryption password per

DBISAM Migration

Page 84

application for all encryption, and it is represented by the
EncryptionPassword property. Also, the ENCRYPTED clause
now resides after the VERSION clause (see next item).

The USER MAJOR VERSION and USER MINOR VERSION
clauses have been combined into one VERSION clause that
accepts a NUMERIC value with a scale of 2. Also, the
VERSION clause now resides after the DESCRIPTION clause.

The LAST AUTOINC clause is no longer necessary. The seed
and increment values for IDENTITY columns can be specified
in the column definitions.

The NOBACKUP clause has been renamed to the NO BACKUP
FILES clause.

DROP TABLE The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

DROP INDEX The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if an index exists. Please see the
System Information topic for more information.

The PRIMARY clause is no longer supported. ElevateDB does
not allow a primary key to be dropped using the DROP INDEX
statement. Instead, you must use the ALTER TABLE
statement to add or drop constraints for a table.

IMPORT TABLE The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The COLUMNS clause has been renamed and the COLUMN
portion has been dropped, retaining only the columns list in
parentheses. Also, the clause has been moved so that it is
right after the import file name.

The DELIMITER clause has been renamed to DELIMITER
CHAR.

The QUOTE CHAR clause has been added to allow you to
specify the quote character to be used for string values.

The DATE clause has been renamed to the DATE FORMAT
clause.

The TIME clause has been renamed to the TIME FORMAT
clause.

The DECIMAL clause has been renamed to the DECIMAL
CHAR clause.

The BOOLEAN clause has been added to allow you to specify
the literals used for True and False, respectively.

The WITH HEADERS clause has been renamed to the USE

DBISAM Migration

Page 85

HEADERS clause and has been moved to right after the
BOOLEAN clause.

The MAX ROWS clause has been added to allow you to specify
the maximum number of rows that should be imported from
the file.

EXPORT TABLE The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The COLUMNS clause has been renamed and the COLUMN
portion has been dropped, retaining only the columns list in
parentheses. Also, the clause has been moved so that it is
right after the export file name.

The DELIMITER clause has been renamed to DELIMITER
CHAR.

The QUOTE CHAR clause has been added to allow you to
specify the quote character to be used for string values.

The DATE clause has been renamed to the DATE FORMAT
clause.

The TIME clause has been renamed to the TIME FORMAT
clause.

The DECIMAL clause has been renamed to the DECIMAL
CHAR clause.

The BOOLEAN clause has been added to allow you to specify
the literals used for True and False, respectively.

The WITH HEADERS clause has been renamed to the
INCLUDE HEADERS clause and has been moved to right after
the BOOLEAN clause.

The MAX ROWS clause has been added to allow you to specify
the maximum number of rows that should be exported to the
file.

OPTIMIZE TABLE The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The ON clause has been renamed to the USING INDEX clause.

The NOBACKUP clause has been renamed to the NO BACKUP
FILES clause.

REPAIR TABLE The IF EXISTS clause is no longer supported. ElevateDB uses
catalog queries to determine if a table exists. Please see the
System Information topic for more information.

The FORCEINDEXREBUILD clause is no longer supported.

DBISAM Migration

Page 86

New Statements

The following are the new statements:

New Description

CREATE DATABASE Creates a new database.

ALTER DATABASE Alters an existing database.

DROP DATABASE Drops an existing database.

RENAME DATABASE Renames an existing database.

CREATE STORE Creates a new file store.

ALTER STORE Alters an existing file store.

DROP STORE Drops an existing file store.

RENAME STORE Renames an existing file store.

CREATE USER Creates a new user.

ALTER USER Alters an existing user.

DROP USER Drops an existing user.

RENAME USER Renames an existing user.

CREATE ROLE Creates a new role.

ALTER ROLE Alters an existing role.

DROP ROLE Drops an existing role.

RENAME ROLE Renames an existing role.

GRANT PRIVILEGES Grants privileges to an existing user or role on a specified
object.

REVOKE PRIVILEGES Revokes privileges for an existing user or role from an existing
object.

GRANT ROLES Grants roles to an existing user.

REVOKE ROLES Revokes roles from an existing user.

CREATE JOB Creates a new job.

ALTER JOB Alters an existing job.

DROP JOB Drops an existing job.

RENAME JOB Renames an existing job.

CREATE MODULE Creates (registers) a new external module.

ALTER MODULE Alters an existing external module.

DROP MODULE Drops an existing external module.

RENAME MODULE Renames an existing external module.

CREATE TEXT FILTER Creates a new text filter.

ALTER TEXT FILTER Alters an existing text filter.

DBISAM Migration

Page 87

DROP TEXT FILTER Drops an existing text filter.

RENAME TEXT FILTER Renames an existing text filter.

CREATE WORD GENERATOR Creates a new word generator.

ALTER WORD GENERATOR Alters an existing word generator.

DROP WORD GENERATOR Drops an existing word generator.

RENAME WORD GENERATOR Renames an existing word generator.

CREATE MIGRATOR Creates a new database migrator.

ALTER MIGRATOR Alters an existing database migrator.

DROP MIGRATOR Drops an existing database migrator.

RENAME MIGRATOR Renames an existing database migrator.

CREATE TRIGGER Creates a new trigger on an existing table.

ALTER TRIGGER Alters an existing trigger.

DROP TRIGGER Drops an existing trigger from a table.

RENAME TRIGGER Renames an existing trigger on a table.

CREATE TEXT INDEX Creates a new text index on an existing table.

ALTER INDEX Alters an existing index.

CREATE VIEW Creates a new view.

ALTER VIEW Alters an existing view.

DROP VIEW Drops an existing view.

RENAME VIEW Renames an existing view.

CREATE FUNCTION Creates a new function.

ALTER FUNCTION Alters an existing function.

DROP FUNCTION Drops an existing function.

RENAME FUNCTION Renames an existing function.

CREATE PROCEDURE Creates a new procedure.

ALTER PROCEDURE Alters an existing procedure.

DROP PROCEDURE Drops an existing procedure.

RENAME PROCEDURE Renames an existing procedure.

SET BACKUPS STORE Sets the current backups store for ElevateDB.

BACKUP DATABASE Backs up an existing database.

RESTORE DATABASE Restores a database from a backup.

PUBLISH DATABASE Publishes an existing database.

UNPUBLISH DATABASE Unpublishes a database.

SET UPDATES STORE Sets the current updates store for ElevateDB.

SAVE UPDATES Saves all logged updates to published tables in an existing
database.

DBISAM Migration

Page 88

LOAD UPDATES Loads logged updates from an update file into an existing
database.

COPY FILE Copies a file in a store to a new file name, and optionally,
store.

RENAME FILE Renames a file in a store to a new file name.

DELETE FILE Deletes a file in a store.

SET FILES STORE Sets the current files store for ElevateDB.

DISCONNECT SERVER SESSION Disconnects a server session on an ElevateDB Server.

REMOVE SERVER SESSION Removes a server session from an ElevateDB Server.

DBISAM Migration

Page 89

This page intentionally left blank

Getting Started

Page 90

Chapter 4
Getting Started

4.1 Architecture

ElevateDB is a database engine that can be compiled directly into your Embarcadero Delphi, Embarcadero
C++, or Lazarus application, be it a program or library, or it can be distributed as a runtime package
(equivalent to a library) as part of your application. ElevateDB is available for Delphi 5 and later, as well as
Lazarus 0.924 and later. ElevateDB was written in Delphi's Object Pascal language and can be used with
the Delphi VCL (Win32, Win64, MacOS32, MacOS64, and Linux64) or Lazarus LCL (Win32, Win64, and
Linux64) runtime libraries.

The following image illustrates the general architecture of ElevateDB:

Getting Started

Page 91

The various components that make up this architecture are detailed next.

Getting Started

Page 92

Component Architecture

ElevateDB uses a component architecture that includes the following components:

TEDBEngineTEDBEngine

The TEDBEngine component encapsulates the ElevateDB engine itself. A TEDBEngine component is
created automatically when the application is started and can be referenced via the global Engine function
in the edbcomps unit. You can also drop a TEDBEngine component on a form or data-module to change its
properties at design-time. However, only one instance of the TEDBEngine component can exist in a given
application, and both the global Engine function and any TEDBEngine component on a form or data
module point to the same instance of the component (singleton model). The TEDBEngine component can
be configured so that it acts like a local or client engine (etClient) or a server engine (etServer) via the
EngineType property. The engine can be started by setting the Active property to True.

Note
Once the engine has been started, most of the properties that configure the engine cannot be
modified.

By default, ElevateDB allows you to configure all local sessions via the TEDBEngine component and its
ConfigMemory, ConfigPath, ConfigName, and TempTablesPath properties, as well as several other
properties that can customize the local session access for a particular application. However, you can also
set the UseLocalSessionEngineSettings property to True in order to tell ElevateDB to use the Local*
versions of these same properties from the TEDBSession component to override the engine configuration.
This is useful for applications that require access to multiple configuration files for multiple local sessions,
such as the ElevateDB Manager that is provided with ElevateDB. Please see the Configuring and Starting
the Engine topic for more information on the various engine properties that can be modified when
configuring local sessions via the TEDBEngine component.

TEDBSessionTEDBSession

The TEDBSession component encapsulates a session in ElevateDB. A default TEDBSession component is
created automatically when the application is started and can be referenced via the global Session function
in the edbcomps unit. The TEDBSession component can be configured so that it acts like a local (stLocal)
or a remote session (stRemote) via the SessionType property. A local session is single-tier in nature,
meaning that all TEDBDatabase components connected to the session reference databases in a local or
network file system and all TEDBTable, TEDBQuery, or TEDBStoredProc components access the physical
tables directly from these directories using operating system calls. A remote session is two-tier in nature,
meaning that all access is done through the remote session to an ElevateDB Server using a messaging
protocol over a TCP/IP connection. A remote session is configured using the following properties:

RemoteHost or RemoteAddress
RemotePort or RemoteService

In a remote session, all TEDBDatabase components reference databases that are defined on the
ElevateDB Server and all TEDBTable or TEDBQuery components access the physical tables through the
messaging protocol rather than directly through the operating system.

Getting Started

Page 93

Note
You cannot connect remote sessions in an application whose TEDBEngine component is configured
as a server via the EngineType property.

As mentioned above, a local session is usually configured via the TEDBEngine component. However, if the
UseLocalSessionEngineSettings property is set to True, then the Local* versions of the TEDBEngine
configuration properties that are found in the TEDBSession component will be used to override the
TEDBEngine configuration settings.

A session can be connected by setting the Connected property to True or by calling the Open method. The
TEDBSession component contains a SessionName property that is used to give a session a name and a
SessionDescription property that is used to assign a description to the session. All session components
must have a name before they can be connected. The default TEDBSession component is called "Default".
The TEDBDatabase, TEDBTable, TEDBQuery, and TEDBStoredProc components also have a SessionName
property and these properties are used to specify which session these components belong to. Setting their
SessionName property to "Default" or blank ("") indicates that they will use the default TEDBSession
component. Please see the Connecting Sessions topic for more information.

TEDBDatabaseTEDBDatabase

The TEDBDatabase component encapsulates a database in ElevateDB, and is used as an container for all
access to a specific database. A database can be opened by setting the Connected property to True or by
calling the Open method. A TEDBDatabase component contains a DatabaseName property that is used to
give a database a name within the application. All database components must have a name before they
can be opened. The TEDBTable, TEDBQuery, and TEDBStoredProc components also have a
DatabaseName property and these properties are used to specify which database these components
belong to. Please see the Opening Tables and Views topic for more information.

The TEDBDatabase Database property specifies the name of a database that you would like to connect to.

The TEDBDatabase component is used for transaction processing via the StartTransaction, Commit, and
Rollback methods. Please see the Transactions topic for more information.

You can execute dynamic SQL on a specific database by using the Execute method. Please see the
Executing Queries topic for more information.

TEDBTableTEDBTable

The TEDBTable component encapsulates a cursor on a table or view in ElevateDB. It is used to
search,insert, update, or delete rows within the table or view specified by the TableName property. A table
or view cursor can be opened by setting the Active property to True or by calling the Open method. The
DatabaseName property specifies the name of the database component that references the database
where the table or view resides. Please see the Opening Tables and Views topic for more information.

Because the TEDBTable component represents a table or view cursor, you can have multiple TEDBTable
components referencing the same table or view. Each TEDBTable component maintains its own active
order, filter and range conditions, current row position, row count statistics, etc.

Getting Started

Page 94

Note
The TEDBTable component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in VCL or CLX applications. None of these lower-level components should
be used directly and are only for internal structuring purposes in the class hierarchy.

TEDBQueryTEDBQuery

The TEDBQuery component encapsulates a single SQL statement in ElevateDB. This SQL statement may or
may not return a result set, but if it does return a result set, then the TEDBQuery component will act as a
cursor on the result set in the same way that the TEDBTable component acts as a cursor on a table or
view. The SQL statement to execute is specified in the SQL property, and the statement can be executed
by setting the Active property to True, by calling the Open method (for SQL statements that definitely
return a result set), or by calling the ExecSQL method (for SQL statements that may or may not return a
result set). The DatabaseName property specifies the name of the database component that references
the database to be used when executing the SQL statement. Please see the Executing Queries topic for
more information.

Note
The TEDBQuery component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD Studio,
and Lazarus. None of these lower-level components should be used directly and are only for internal
structuring purposes in the class hierarchy.

TEDBScriptTEDBScript

The TEDBScript component encapsulates a single SQL script in ElevateDB. This script may or may not
return a result set, but if it does return a result set, then the TEDBScript component will act as a cursor on
the result set in the same way that the TEDBTable component acts as a cursor on a table or view. The
script to execute is specified in the SQL property, and the script can be executed by setting the Active
property to True, by calling the Open method (for scripts that definitely return a result set), or by calling
the ExecScript method (for scripts that may or may not return a result set). The DatabaseName property
specifies the name of the database component that references the database to be used when executing
the script. Please see the Executing Scripts topic for more information.

Note
The TEDBScript component descends from the TEDBDBDataSet component, which descends from
the TEDBDataSet component, which descends from the common TDataSet component that is the
basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD Studio,
and Lazarus. None of these lower-level components should be used directly and are only for internal
structuring purposes in the class hierarchy.

TEDBStoredProcTEDBStoredProc

The TEDBStoredProc component encapsulates a single stored procedure in ElevateDB. This stored
procedure may or may not return a result set, but if it does return a result set, then the TEDBStoredProc
component will act as a cursor on the result set in the same way that the TEDBTable component acts as a

Getting Started

Page 95

cursor on a table or view. The stored procedure to execute is specified in the StoredProcName property,
and the stored procedure can be executed by setting the Active property to True, by calling the Open
method (for stored procedures that definitely return a result set), or by calling the ExecProc method (for
stored procedures that may or may not return a result set). The DatabaseName property specifies the
name of the database component that references the database to be used when executing the stored
procedure. Please see the Executing Stored Procedures topic for more information.

Note
The TEDBStoredProc component descends from the TEDBDBDataSet component, which descends
from the TEDBDataSet component, which descends from the common TDataSet component that is
the basis for all data access in Delphi, C++Builder, Borland Developer Studio, CodeGear RAD
Studio, and Lazarus. None of these lower-level components should be used directly and are only for
internal structuring purposes in the class hierarchy.

Opening a TEDBTable, TEDBQuery, TEDBScript, or TEDBStoredProc component will automatically cause its
corresponding TEDBDatabase component to open, which will also automatically cause its corresponding
TEDBSession component to connect, which will finally cause the TEDBEngine to start. This design ensures
that the necessary connections for a session, database, etc. are completed before the opening of the
table, query, or stored procedure is attempted.

Getting Started

Page 96

4.2 Exception Handling and Errors

One of the first items to address in any application, and especially a database application, is how to
anticipate and gracefully handle exceptions. This is true as well with ElevateDB.

ElevateDB Exception Types

ElevateDB uses the EEDBError object as its exception object for all errors. This object descends from the
EDatabaseError exception object defined in the common DB unit, which itself descends from the common
Exception object. This hierarchy is important since it allows you to isolate the type of error that is
occurring according to the type of exception object that has been raised, as you will see below when we
demonstrate some exception handling.

Note
ElevateDB also raises certain component-level exceptions as an EDatabaseError to maintain
consistency with the way the common DB unit and TDataSet component behaves. These mainly
pertain to design-time property modifications, but a few can be raised at runtime also.

The EEDBError object contains several important properties that can be accessed to discover specific
information on the nature of the exception. The ErrorCode property is always populated with a value which
indicates the error code for the current exception. Other properties may or may not be populated
according to the error code being raised, and a list of all of the error codes raised by the ElevateDB engine
along with this information can be found in Appendix A - Error Codes and Messages.

Exception Handling

The most basic form of exception handling is to use the try..except block (Delphi and Lazarus) or try..catch
(C++) to locally trap for specific error conditions. The error code that is returned when an open fails due
to an exclusive lock problem is 300, which is defined as EDB_ERROR_LOCK in the edberror unit. The
following example shows how to trap for such an exception on open and display an appropriate error
message to the user:

begin
 with MyEDBTable do
 begin
 DatabaseName:='Tutorial';
 TableName:='customer';
 Exclusive:=True;
 ReadOnly:=False;
 try
 Open;
 except
 on E: Exception do
 begin
 if (E is EDatabaseError) and (E is EEDBError) then
 begin
 if (EEDBError(E).ErrorCode=EDB_ERROR_LOCK) then
 ShowMessage('Cannot open table '+TableName+
 ', another user has the table open already')
 else
 ShowMessage('Unknown or unexpected '+

Getting Started

Page 97

 'database engine error # '+
 IntToStr(EEDBError(E).ErrorCode));
 end
 else
 ShowMessage('Unknown or unexpected '+
 'error has occurred');
 end;
 end;
 end;
end;

Exception Events

Besides trapping exceptions with a try..except or try..catch block, you may also use a global
TApplication.OnException event handler to trap database exceptions. However, doing so will eliminate the
ability to locally recover from the exception and possibly retry the operation or take some other course of
action. There are several events in ElevateDB components that allow you to code event handlers that
remove the necessity of coding try..except or try..catch blocks while still providing for local recovery.
These events are as follows:

Event Description

OnEditError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Edit method
. The usual cause of an error is a row lock failure if the
current session is using the pessimistic row locking protocol
(the default). Please see the Inserting, Updating, and Deleting
Rows topic for more information on using this event, and the
Locking and Concurrency topic for more information on the
ElevateDB row locking protocols.

OnDeleteError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Delete
method. The usual cause of an error is a row lock failure (a
row lock is always obtained before a delete regardless of the
locking protocol in use for the current session). Please see the
Inserting, Updating, and Deleting Rows topic for more
information on using this event, and the Locking and
Concurrency topic for more information on the ElevateDB row
locking protocols.

OnPostError This event is triggered when an error occurs during a call to
the TEDBTable, TEDBQuery , or TEDBStoredProc Post
method. The usual cause of an error is a constraint violation,
however it can also be triggered by a row lock failure if the
locking protocol for the current session is set to optimistic.
Please see the Inserting, Updating, and Deleting Rows topic
for more information on using this event, and the Locking and
Concurrency topic for more information on the ElevateDB row
locking protocols.

Getting Started

Page 98

4.3 Multi-Threaded Applications

ElevateDB is internally structured to be thread-safe and usable within a multi-threaded application
provided that you follow the rules that are outlined below.

Unique Sessions

ElevateDB requires that you use a unique TEDBSession component for every thread that must perform any
database access at all. Each of these TEDBSession components must also be assigned a SessionName
property value that is unique among all TEDBSession components in the application. Doing this allows
ElevateDB to treat each thread as a separate and distinct session and will isolate transactions and other
internal structures accordingly. You may use the AutoSessionName property of the TEDBSession
component to allow ElevateDB to automatically name each session so that is unique or you may use code
similar to the following:

var
 LastSessionValue: Integer;
 SessionNameSection: TRTLCriticalSection;

{ Assume that the following code is being executed
 within a thread }

function UpdateAccounts: Boolean;
var
 LocalSession: TEDBSession;
 LocalDatabase: TEDBDatabase;
 LocalQuery: TEDBQuery;
begin
 Result:=False;
 LocalSession:=GetNewSession;
 try
 LocalDatabase:=TEDBDatabase.Create(nil);
 try
 with LocalDatabase do
 begin
 { Be sure to assign the same session name
 as the TEDBSession component }
 SessionName:=LocalSession.SessionName;
 DatabaseName:='AccountsDB';
 Database:='Accounting';
 Connected:=True;
 end;
 LocalQuery:=TEDBQuery.Create(nil);
 try
 with LocalQuery do
 begin
 { Be sure to assign the same session and
 database name as the TEDBDatabase
 component }
 SessionName:=LocalSession.SessionName;
 DatabaseName:=LocalDatabase.DatabaseName;
 SQL.Clear;
 SQL.Add('UPDATE accounts SET PastDue=True');
 SQL.Add('WHERE DueDate < CURRENT_DATE'));
 Prepare;

Getting Started

Page 99

 try
 { Start the transaction and execute the query }
 LocalDatabase.StartTransaction;
 try
 ExecSQL;
 LocalDatabase.Commit;
 Result:=True;
 except
 LocalDatabase.Rollback;
 end;
 finally
 UnPrepare;
 end;
 end;
 finally
 LocalQuery.Free;
 end;
 finally
 LocalDatabase.Free;
 end;
 finally
 LocalSession.Free;
 end;
end;

function GetNewSession: TEDBSession;
begin
 EnterCriticalSection(SessionNameSection);
 try
 LastSessionValue:=LastSessionValue+1;
 Result:=TEDBSession.Create(nil);
 with Result do
 SessionName:='AccountSession'+IntToStr(LastSessionValue);
 finally
 LeaveCriticalSection(SessionNameSection);
 end;
end;

{ initialization in application }
 LastSessionValue:=0;
 InitializeCriticalSection(SessionNameSection);
{ finalization in application }
 DeleteCriticalSection(SessionNameSection);

The AutoSessionName property is, by default, set to False so you must specifically turn it on if you want
this functionality. You may also use the thread ID of the currently thread to uniquely name a session since
the thread ID is guaranteed to be unique within the context of a process.

Unique Databases

Another requirement is that all TEDBDatabase components must also be unique and have values assigned
to their SessionName properties that refer to the unique SessionName property of the TEDBSession
component defined in the manner discussed above.

Unique Tables, Queries, and Stored Procedures

The final requirement is that all TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components

Getting Started

Page 100

must also be unique and have values assigned to their SessionName properties that refer to the unique
SessionName property of the TEDBSession component defined in the manner discussed above. Also, if a
TEDBTable or TEDBQuery component refers to a TEDBDatabase component's DatabaseName property via
its own DatabaseName property, then the TEDBDatabase referred to must be defined in the manner
discussed above.

ISAPI Applications

ISAPI applications created using the WebBroker components or a similar technology are implicitly multi-
threaded. Because of this, you should ensure that your ISAPI application is thread-safe according to these
rules for multi-threading when using ElevateDB. Also, if you have simply dropped a TEDBSession
component on the WebModule of a WebBroker ISAPI application, you must set its AutoSessionName
property to True before dropping any other ElevateDB components on the form so that ElevateDB will
automatically give the TEDBSession component a unique SessionName property and propogate this name
to all of the other ElevateDB components.

Further Considerations

There are some other things to keep in mind when writing a multi-threaded database application with
ElevateDB, especially if the activity will be heavy and there will be many threads actively running. Be
prepared to handle any errors in a manner that allows the thread to terminate gracefully and properly free
any TEDBSssion, TEDBDatabase, TEDBTable, TEDBQuery, and TEDBStoredProc components that it has
created. Otherwise you may run into a situation where memory is being consumed at an alarming rate.
Finally, writing multi-threaded applications, especially with database access, is not a task for the beginning
developer so please be sure that you are well-versed in using threads and how they work before jumping
into writing a multi-threaded application with ElevateDB.

Getting Started

Page 101

4.4 Recompiling the ElevateDB Source Code

In some cases you may want to change the ElevateDB source code and recompile it to incorporate these
changes into your application. However, you must first have purchased the ElevateDB client and/or server
source code in order to make changes to the source code.

Setting Search Paths

The first thing that you must do is make sure that any search paths, either global to ElevateDB such as the
Library Search Path or local to your project, are pointing to the directory or path where the ElevateDB
source code was installed. By default this directory or path is:

\<base directory>\<product>\<compiler> <n>\code\source

The <product> component of the path can be one of the following values:

Value Description

ElevateDB <type> STD-SRC This indicates the standard version of ElevateDB with source
code

ElevateDB <type> CS-SRC This indicates the client-server version of ElevateDB with
source code

The <type> component of the product name will be either VCL or DAC.

The <compiler> <n> component of the path indicates the development environment in use and the
version number of the development environment. For example, for Delphi 6 this component would look
like this:

Delphi 6

Setting Compiler Switches

The second thing that must be done is to make sure that the compiler switches that you are using are set
properly for ElevateDB. The build system used to compile ElevateDB here at Elevate Software uses the
dcc32.exe and dcc64.exe command-line compilers provided with Delphi, C++Builder, Borland Developer
Studio, CodeGear RAD Studio, and Embarcadero RAD studio to compile ElevateDB. The following switches
are set during compilation and any other switches are assumed to be at their default state for the
compiler:

$D- Debug information off
$L- Local symbols off

Getting Started

Page 102

Note
These same switches are used to compile all ElevateDB utilities and the ElevateDB Server project
also.

A Word of Caution

Making changes to the ElevateDB source code is not an easy task. A mistake in such changes could result
in the loss of critical data and Elevate Software cannot be held responsible for any losses incurred from
such changes. Occasionally our support staff may send a fix to a customer that owns the source code in
order to facilitate a quicker turnaround on a bug report, but it is the responsibility of the customer to
weigh the risks of implementing such a change with the possible problems that such a change could bring
about. Elevate Software tries very hard to also assist any customers that do want to make changes to the
ElevateDB source code for custom purposes and will always make an attempt to guide the customer to a
solution that fits their needs and is reliable in operation. In general, however, it is usually recommended
that you use the generic configuration facilities provided with ElevateDB as opposed to making direct
changes to the source code. Please see the Configuring and Starting the Engine topic for more
information.

Getting Started

Page 103

This page intentionally left blank

Using ElevateDB

Page 104

Chapter 5
Using ElevateDB

5.1 Configuring and Starting the Engine

Configuring the Engine

As already discussed in the Architecture topic, the TEDBEngine component represents the engine in
ElevateDB. The following information will show how to configure the engine for use as a client engine in
an application or as an server engine. The TEDBEngine EngineType property controls whether the engine
is behaving as a local engine or a server engine.

Note
The TEDBEngine component must be inactive (Active=False) when modifying any of the
configuration properties.

Character Set

The TEDBEngine CharacterSet property specifies which character set, ANSI or Unicode, to use for reading
and writing the configuration file and all databases and tables. This property defaults to a value that
matches the default string type used by the current compiler. For example, with Delphi XE the default
string type is a Unicode string, so this property will default to csUnicode when used with Delphi XE. This
setting can be overridden on a per-session basis by modifying the TEDBSession CharacterSet property.

Configuration Path

The TEDBEngine ConfigMemory and ConfigPath properties specify where the engine should look for the
configuration file to use for the application, if running as a client engine, or the server, if running as a
server engine. The configuration file is used to store the information in the Configuration database in
ElevateDB. If the ConfigMemory property is set to True, then the configuration file will be "virtual" and
stored in the process memory. If the ConfigMemory property is False and the path specified for the
ConfigPath property does not exist, then an error will be raised when the engine is started (Active=True).
If the path exists, but the configuration file does not exist in the path, then the ElevateDB engine will
create the configuration file as necessary.

Note
It is very important that you do not have more than one instance of the ElevateDB engine using
different configuration files (including mixing virtual and non-virtual configuration files) and
accessing the same database(s). Doing so will cause locking errors. All instances of the ElevateDB
engine must use the same type of configuration file (virtual or disk-based) and, if disk-based, the
same configuration file if they will be accessing the same database(s).

Temporary Tables Path

The TEDBEngine TempTablesPath property controls where ElevateDB creates any temporary tables that

Using ElevateDB

Page 105

are required for storing query result sets. By default, the TempTablesPath property is set to the user-
specific temporary tables path for the operating system.

Engine Signature

The TEDBEngine Signature property controls the engine signature for the engine. The default engine
signature is "edb_signature". The engine signature in ElevateDB is used to "stamp" all configuration files,
catalog files, table files, backup files, update files, and streams created by the engine so that only an
engine with the same signature can open them or access them afterwards. If an engine does attempt to
access an existing table, backup file, update file, or stream with a different signature than that of the
table, backup file, update file, or stream, an EEDBError exception will be raised. The error that is raised
when the access fails due to an invalid engine signature is 100 (EDB_ERROR_VALIDATE).

Also, if the EngineType property is set to etClient, the engine signature is used to stamp all requests sent
from a remote session to an ElevateDB Server. If the ElevateDB Server is not using the same engine
signature, then the requests will be treated as invalid and rejected by the ElevateDB Server. If the
EngineType property is set to etServer, the engine signature is used to stamp all responses sent from the
ElevateDB Server to any remote session. If the remote session is not using the same engine signature
then the requests will be treated as invalid and rejected by the ElevateDB Server. In summary, both the
remote sessions and the ElevateDB Server must be using the same engine signature or else
communications between the two will be impossible.

Note
It is important to note that ElevateDB can always open any file that is stamped with the default
signature, as well as communicate with any ElevateDB Server using the default signature, even if
the engine signature has been changed to use a custom signature. Therefore, it is important that
one make sure that the engine signature is changed *before* any files are created that one wants
to be stamped with the custom engine signature.

Encryption Password

You can use the EncryptionPassword property to modify the encryption password used by ElevateDB for all
file encryption purposes. ElevateDB uses this password for all configuration, database catalog (for
encrypted catalogs), and table files (for encrypted tables) encryption. The default encryption password is
'elevatesoft'.

ElevateDB uses the Blowfish block cipher encryption algorithm with 128-bit MD5 hash keys for encryption.
Please see the Encryption topic for more information.

Licensed Sessions

You can specify that a certain maximum number of concurrent licensed sessions be allowed by modifying
the TEDBEngine LicensedSessions property. The default value for this property is 4096 sessions. Setting
this property to a lower figure will allow no more than the specified number of sessions to concurrently
access the same configuration.

Buffered File I/O

You can specify whether to enable buffered file I/O in ElevateDB by modifying the TEDBEngine
BufferedFileIO property. The default value for this property is False. If you enable buffered file I/O, you
can use the BufferedFileIOSettings and BufferedFileIOFlushInterval properties to control how the buffered
file I/O behaves.

Using ElevateDB

Page 106

The following is an example of how the buffered file I/O could be configured:

Engine.BufferedFileIO:=True;
with Engine.BufferedFileIOSettings do
 begin
 { Lock files don't use buffering }
 Add('"*EDBConfig.EDBLck",1,1,0,False');
 Add('"*EDBDatabase.EDBLck",1,1,0,False');
 { Configuration and catalog files:
 64KB block size
 4MB buffer size
 0-second flush age (always write any dirty buffers during flush checks)
 Always force flush to disk call in OS }
 Add('"*EDBDatabase.EDBCfg",64,4,0,True');
 Add('"*EDBDatabase.EDBCat",64,4,0,True');
 { Smaller database table files:
 64KB block size
 32MB buffer size
 120-second flush age
 Don't force flush to disk call in OS }
 Add('"*Customer.EDBTbl",64,32,120,False');
 Add('"*Customer.EDBIdx",64,32,120,False');
 Add('"*Customer.EDBBlb",64,32,120,False');
 { Larger database table files:
 64KB block size
 128MB-256MB buffer sizes
 120-second flush age
 Don't force flush to disk call in OS }
 Add('"*Orders.EDBTbl",64,128,120,False');
 Add('"*Orders.EDBIdx",64,256,120,False');
 Add('"*Orders.EDBBlb",64,256,120,False');
 end;

Please see the Buffering and Caching topic in the SQL manual for more information on buffered file I/O in
ElevateDB.

File Names and Extensions

The following file customziations can be made for the engine:

File Description

Configuration File The ConfigName property determines the root name (without
extension) used by the engine for the configuration file. The
extension used for the configuration file is determined by the
ConfigExtension property. The location of the configuration
file is determined by the ConfigPath property.

Configuration Lock File The ConfigName property determines the root name (without
extension) used by the engine for the configuration lock file.
The extension used for the configuration lock file is
determined by the LockExtension property. The location of the
configuration lock file is determined by the ConfigPath
property, and the configuration lock file is hidden, by default.

Using ElevateDB

Page 107

Configuration Log File The ConfigName property determines the root name (without
extension) used by the engine for the configuration log file.
The extension used for the configuration log file is determined
by the LogExtension property. The location of the
configuration log file is determined by the ConfigPath
property. The maximum size of the log file can be controlled
via the MaxLogFileSize property. Log entries are added to the
log in a circular fashion, meaning that once the maximum log
file size ia reached, ElevateDB will start re-using the oldest log
entries for new log entries. The default value is 1048576
bytes. Which types of logged events are recorded in the log
can be controlled by the LogCategories property. By default,
all categories of events are logged (Information, Warning, or
Error).

Warning
It is very important that all applications accessing the
same configuration file use the same maximum log file
size for the configuration log file. Using different values
can result in log entries being prematurely overwritten
or appearing "out-of-order" when viewing the log
entries via the LogEvents Table.

Catalog File The CatalogName property determines the root name
(without extension) used by the engine for all database
catalog files. The extension used for the catalog files is
determined by the CatalogExtension property. The location of
the catalog file is determined by the path designated for the
applicable database when the database was created. Please
see the Creating, Altering, or Dropping Configuration Objects
topic for more information.

Catalog Lock File The CatalogName property determines the root name
(without extension) used by the engine for the database
catalog lock files. The extension used for a catalog lock file is
determined by the LockExtension property. The location of a
catalog lock file is determined by the path designated for the
applicable database when the database was created, and a
catalog lock file is hidden, by default. Please see the Creating,
Altering, or Dropping Configuration Objects topic for more
information.

Backup File The BackupExtension property determines the extension used
for all backup files created by ElevateDB. Please see the
Backing Up and Restoring Databases topic for more
information.

Update File The UpdateExtension property determines the extension used
for all update files created by ElevateDB. Please see the
Saving Updates To and Loading Updates From Databases
topic for more information.

Table Files The TableExtension determines the extension used for all
table files used by ElevateDB, the TableIndexExtension
determines the extension used for all table index files, the
TableBlobExtension determines the extension used for all

Using ElevateDB

Page 108

table BLOB files, and the TablePublishExtension determines
the extension used for all table publish files. Every table in an
ElevateDB database has at least a table file and a table index
file. If the table contains BLOB columns, then it will also have
a table BLOB file. If the table is published, then it will also
have a table publish file. The location of the table files is
determined by the path designated for the applicable
database when the database was created. Please see the
Creating, Altering, or Dropping Configuration Objects topic for
more information.

Server Configuration

There are no extra steps required in order to use the TEDBEngine component in ElevateDB as a client
engine since the default value of the EngineType property is etClient. However, in order to use the
TEDBEngine component in ElevateDB as an ElevateDB Server you will need to make some property
changes before starting the engine.

The TEDBEngine component has several key properties that are used to configure the ElevateDB Server,
which are described below in order of importance:

Property Description

EngineType In order to start the TEDBEngine component as an ElevateDB
Server, you must set this property to etServer.

ServerName This property is used to identify the ElevateDB Server to
external clients once they have connected to the ElevateDB
Server. The default value is "EDBSrvr".

ServerDescription This property is used in conjunction with the ServerName
property to give more information about the ElevateDB Server
to external clients once they have connected to the ElevateDB
Server. The default value is "ElevateDB Server".

ServerAddress This property specifies the IP address that the ElevateDB
Server should bind to when listening for incoming connections
from remote sessions. The default value is blank (""), which
specifies that the ElevateDB Server should bind to all available
IP addresses.

ServerPort This property specifies the port that the ElevateDB Server
should bind to when listening for incoming connections from
remote sessions. The default value is 12010.

ServerThreadCacheSize This property specifies the number of threads that the
ElevateDB Server should actively cache for connections. When
a thread is terminated in the server it will be added to this
thread cache until the number of threads cached reaches this
property value. This allows the ElevateDB Server to re-use the
threads from the cache instead of having to constantly
create/destroy the threads as needed, which can improve the
performance of the ElevateDB Server if there are many
connections and disconnections occurring. The default value is
10.

ServerEncryptionPassword This property specifies the encryption password used by the
ElevateDB Server for encrypting all communications with

Using ElevateDB

Page 109

remote sessions. The default encryption password is
'elevatesoft'.

ElevateDB uses the Blowfish block cipher encryption algorithm
with 128-bit MD5 hash keys for encryption. Please see the
Encryption topic for more information.

ServerEncryptedOnly This property specifies whether all incoming connections from
remote sessions should be encrypted or not. If this property is
set to True, then all incoming connections to the ElevateDB
Server that are not encrypted will be rejected with the error
code 1105 (EDB_ERROR_ENCRYPTREQ). The default value is
False.

Note
If you intend to use encrypted connections to an
ElevateDB Server over a public network then you
should always use a different
ServerEncryptionPassword from the default password.

ServerSessionTimeout This property specifies how long the server engine should wait
for a request from a connected remote session before it
disconnects the session. This is done to keep the number of
concurrent connections at a minimum. Once a session has
been disconnected by the server engine, the session is then
considered to be "dead" until either the remote session
reconnects to the session in the server, or the server removes
the session according to the parameters specified by the
ServerDeadSessionInterval,ServerDeadSessionExpiration, or
ServerMaxDeadSessions properties (see below). A remote
session may enable pinging via the TEDBSession RemotePing
property in order to prevent the server engine from
disconnecting the remote session due to the
ServerSessionTimeout property.

The default value for this property is 180 seconds, or 3
minutes.

ServerDeadSessionInterval This property controls how often the server engine will poll
the disconnected sessions to see if any need to be removed
according to the ServerDeadSessionExpiration, or
ServerMaxDeadSessions properties (see below). The default
value is 30 seconds.

ServerDeadSessionExpiration This property controls how long a session can exist in the
server in a disconnected, or "dead", state before the server
engine removes the session. This is done to prevent a
situation where "dead" sessions accumulate from client
applications whose network connections were permanently
interrupted.

Using ElevateDB

Page 110

Note
If all of the remote sessions accessing the server are
using pinging via the TEDBSession RemotePing
property, then you should set this property to the
minimum value of 10 seconds so that sessions are
removed as soon as they stop pinging the server.

The default value for this property is 300 seconds, or 5
minutes.

ServerMaxDeadSessions This property controls how many "dead" sessions can
accumulate in the server before the server engine begins to
remove them immediately, irrespective of the
ServerDeadSessionExpiration property above. If the
ServerMaxDeadSessions property is exceeded, then the server
engine removes the "dead" sessions in oldest-to-youngest
order until the number of "dead" sessions is at or under the
ServerMaxDeadSessions property setting. The default value
for this property is 64.

ServerAuthorizedAddresses This property controls which IP addresses are authorized to
access the server. This is commonly referred to as a "white
list". There is no limit to the number of addresses that can be
specified, and the IP address entries may contain the asterisk
(*) wildcard character to represent any portion of an address.

ServerBlockedAddresses This property controls which IP addresses are not allowed to
access the server. This is commonly referred to as a "black
list". There is no limit to the number of addresses that can be
specified, and the IP address entries may contain the asterisk
(*) wildcard character to represent any portion of an address.

ServerRunJobs This property controls whether the server engine is allowed to
schedule and run jobs that are defined in the Configuration
database. If this property is set to True (the default), then the
ServerJobCategory property below determines which category
of jobs that the server will schedule and run.

ServerJobCategory This property controls which job category the server will
schedule and run if the ServerRunJobs property is set to True.
This property can contain any value, and the default value is
blank (''), which indicates that the server engine can run all
job categories. A job category is assigned to each job when it
is created via the CREATE JOB DDL statement.

OnServerSessionEvent Attach an event handler for this event in order to take certain
actions when a remote session connects, reconnects, logs in,
logs out, or disconnects from the server.

ServerTrace This property controls whether the server will trigger the
OnServerTrace event for every request and response to/from
the server.

Using ElevateDB

Page 111

Warning
Do not enable this property in production without being
aware of the consequences. Enabling this property can
result in a significant amount of overhead, depending
upon how the OnServerTrace event is handled. In the
ElevateDB Server project that is provided with
ElevateDB (see below), enabling this property will
generate a large number of trace files that can easily
consume large amounts of disk space on a busy server.

ElevateDB comes with a default GUI ElevateDB Server project for Delphi called edbsrvr.dpr (Windows
only). You can examine the source code of these projects to see how you would go about setting up a
TEDBEngine component as an ElevateDB Server in a project. Both of these projects are also provided in
compiled form with ElevateDB. You can find these servers in the \servers\edbsrvr subdirectories under the
main ElevateDB installation directory, and you can find the source code to these servers in the \source
subdirectory under each server's directory.

Starting the Engine

Once you have configured the engine using the above information, starting the engine is quite simple. All
you need to do is set the Active property to True. The following shows an example of how one might
configure and start an ElevateDB Server using the default global Engine function in the edbcomps unit
(Delphi and Lazarus) or edbcomps header file (C++):

with Engine do
 begin
 ConfigPath:='\MyApplication';
 ServerName:='MyTestServer';
 ServerDescription:='My Test Server';
 { Only listen on this IP address }
 ServerAddress:='192.168.0.1';
 Active:=True;
 end;

Note
You can use the TEDBEngine BeforeStart event to configure the TEDBEngine component before it is
started. Likewise, you can use the AfterStart, BeforeStop, and AfterStop events to respond to the
engine being started or stopped.

Using ElevateDB

Page 112

5.2 Connecting Sessions

As already discussed in the Architecture topic, the TEDBSession component represents a session in
ElevateDB. The following information will show how to connect a session in an application.

Preparing a Local Session for Connection

If a TEDBSession component has its SessionType property set to stLocal, then it is considered a local
session as opposed to a remote session. A local session must have values assigned to the LoginUser and
LoginPassword properties if you do not wish to have ElevateDB display a login dialog when the session is
connected.

The default Administrator user and password for an ElevateDB configuration is:

User: Administrator (case-insensitive)
Password: EDBDefault (case-sensitive)

Preparing a Remote Session for Connection

If a TEDBSession component has its SessionType property set to stRemote, then it is considered a remote
session as opposed to a local session. In addition to the Login* properties detailed above that are required
for a local or remote session, there are some additional properties for remote sessions that must be
specified.

Connecting a remote session will cause ElevateDB to attempt a connection to the ElevateDB Server
specified by the RemoteAddress or RemoteHost and RemotePort or RemoteService properties, and the
RemoteConnectionTimeout property will indicate how long the remote session will wait for a successful
connection attempt. In addition, the RemoteSignature property indicates the signature that the session's
connection to the ElevateDB Server will be signed with, and the RemoteEncryption property indicates
whether the session's connection to the ElevateDB Server will be encrypted using the
RemoteEncryptionPassword property. You must set these properties properly before trying to connect the
remote session or an exception will be raised.

Note
Even if a session is not encrypted by setting the RemoteEncryption property to True, any login
information is encrypted using the RemoteEncryptionPassword property during session login, so the
RemoteEncryptionPassword must always match the corresponding server encryption password for
session communciations or logins to the ElevateDB Server will fail. Please see the Configuring and
Starting the Engine topic for more information on how to configure the server encryption passowrd
used with session communications.

The RemoteAddress and RemoteHost properties are normally mutually exclusive. They can both be
specified, but the RemoteHost property will take precedence. The host name used for the server can be
specified via the "hosts" text file available from the operating system. In Windows, for example, it is
located in the Windows\System32\Drivers\Etc directory. Adding an entry in this file for the ElevateDB
Server will allow you to refer to the ElevateDB Server by host name instead of IP address. The following is
an example of an entry for an ElevateDB Server running on a LAN:

Using ElevateDB

Page 113

192.168.0.1 ElevateDBServer

This is sometimes more convenient than remembering several IP addresses for different ElevateDB
Servers. It also allows the IP address to change without having to modify your application.

The RemotePort and RemoteService properties are also normally mutually exclusive. They can both be
specified, but the RemoteService property will take precedence. By default the port that ElevateDB Servers
use is 12010. This port can be changed, however, so check with your administrator or person in charge of
the ElevateDB Server configuration to verify that this is the port being used.

The service name used for the ElevateDB Server can be specified via the "services" text file available from
the operating system. In Windows, for example, it's located in the \Windows\System32\Drivers\Etc
directory. Adding an entry to this file for the ElevateDB Server's port will allow you to refer to the server's
port by service name instead of port number. The following is an example of an entry for the server:

ElevateDBServer 12010/tcp

This is sometimes more convenient than remembering the port numbers for different ElevateDB Servers. It
also allows the port number to change without having to modify your application.

The RemoteEncryption property can be set to either True or False and determines whether the session's
connection to the server will be encrypted or not. If this property is set to True, the
RemoteEncryptionPassword property is used to encrypt and decrypt all data transmitted to and from the
ElevateDB Server. This property must match the same encryption password that the ElevateDB Server is
using for communications with remote sessions (TEDBEngine ServerEncryptionPassword property) or else
an exception will be raised when a request is attempted on the server.

If for any reason the remote session cannot connect to an ElevateDB Server, an exception will be raised.
The error that is raised when a connection fails is 1100 (EDB_ERROR_CLIENTCONN). It's also possible for
ElevateDB to be able to connect to the server, but the connection will be rejected due to the ElevateDB
Server blocking the client workstation's IP address from accessing the server (1104 and defined as
EDB_ERROR_ADDRBLOCK), or an encrypted connection being required by the ElevateDB Server (1105 and
defined as EDB_ERROR_ENCRYPTREQ).

Connecting a Session

To connect a session you must set the TEDBSession Active property to True or call its Open method. For a
local session (SessionType property is set to stLocal), the session will be opened immediately. As
discussed above, for a remote session (SessionType property is set to stRemote), performing this
operation will cause the session to attempt a connection to the ElevateDB Server specified by the
RemoteAddress or RemoteHost and RemotePort or RemoteService properties. The connection attempt will
wait the number of seconds specified by theRemoteConnectionTimeout property.

For both local and remote sessions, if the LoginUser and LoginPassword properties are specified and are
valid, then neither the OnLogin event nor the interactive login dialog will be triggered. If these properties
are not specified or are not valid, the OnLogin event will be triggered if there is an event handler assigned
to it. If an event handler is not assigned to the OnLogin event, ElevateDB will display an interactive login
dialog that will prompt for a user ID and password. All ElevateDB configurations require a user ID and
password in order to connect and login. ElevateDB will allow for up to 3 login attempts before issuing an
exception. The error that is raised when a connection fails due to invalid login attempts is 501
(EDB_ERROR_LOGIN).

Using ElevateDB

Page 114

Note
Any version of ElevateDB for Delphi 6 or higher (including C++Builder 6 and higher) requires that
you include the DBLogDlg unit in your uses clause in order to enable the display of a default login
dialog. This is done to allow for ElevateDB to be included in applications without linking in the
Forms unit, which can add a lot of unnecessary overhead and also cause unwanted references to
user interface libraries. This is not required for Delphi 5 or C++Builder 5 since these versions always
included the Forms unit.

The BeforeConnect event is useful for handling the setting of any properties for the session before the
session is connected. This event is called right before the session is connected, so it is useful for situations
where you need to change the session properties from values that were used at design-time to values that
are valid for the environment in which the application is now running. The following is an example of using
an BeforeConnect event handler to set the remote connection properties for a session:

procedure TMyForm.MySessionBeforeConnect(Sender: TObject);
var
 Registry: TRegistry;
begin
 Registry:=TRegistry.Create;
 try
 Registry.RootKey:=HKEY_LOCAL_MACHINE;
 if Registry.OpenKey('SOFTWARE/My Application',False) then
 begin
 if Registry.ReadBool('IsRemote') then
 begin
 with MySession do
 begin
 SessionType:=stRemote;
 RemoteAddress:=Registry.ReadString('RemoteAddress');
 RemotePort:=Registry.ReadString('RemotePort');
 end;
 end
 else
 MySession.SessionType:=stLocal;
 end
 else
 ShowMessage('Error reading connection information '+
 'from the registry');
 finally
 Registry.Free;
 end;
end;

Note
You should not call the session's Open method or toggle the Active property from within this event
handler. Doing so can cause infinite recursion.

The AfterDisconnect event can be used for taking specific actions after a session has been disconnected.
As is the case with the BeforeConnect event, the above warning regarding the Open method or Active
property also applies for the AfterDisconnect event.

Using ElevateDB

Page 115

More Session Properties

A session can also be configured to control several global settings for all TEDBDatabase, TEDBTable,
TEDBQuery, TEDBStoredProc, and TEDBScript components that link to the session via their SessionName
properties. The properties that represent these global settings are detailed below:

Property Description

ForceBufferFlush Controls whether the session will automatically force the
operating system to flush data to disk after every write
operation completed by ElevateDB. Please see the Buffering
and Caching topic for more information. The default value is
False.

RecordLockProtocol Controls whether the session will use a pessimistic or
optimistic locking model when editing rows via navigational or
SQL methods. Please see the Locking and Concurrency topic
for more information. The default value is lpPessimistic.

RecordLockRetryCount Controls the number of times that the engine will retry a row
lock before raising an exception. This property is used in
conjunction with the RecordLockWaitTime property. The
default value is 15 retries.

RecordLockWaitTime Controls the amount of time, in milliseconds, that the engine
will wait in-between row lock attempts. This property is used
in conjuction with the RecordLockRetryCount property. The
default value is 100 milliseconds.

RecordChangeDetection Controls whether the session will detect changes to a row
during editing or deletion and issue an error if the row has
changed since it was last cached. Please see the Change
Detection topic for more information. The default value is
False.

KeepConnections Controls whether temporary TEDBDatabase components are
kept connected even after they are no longer needed. This
property has no obvious effect upon a local session, but can
result in tremendous performance improvements for a remote
session, therefore it defaults to True and should be left as
such in most cases.

KeepTablesOpen Controls whether the physical tables opened within the
session are kept open even after they are no longer being
used by the application. Setting this property to True can
dramatically improve the performance of SQL statements and
any other operations that involve constantly opening and
closing the same tables over and over.

SQLStmtCacheSize Controls how many SQL statements can be cached in memory
for each open database in the session. Caching SQL
statements improves the performance of ElevateDB by
avoiding very expensive preparation/un-preparation cycles.
The default value is 0, which means that SQL statements will
not be cached for the session. If a session needs to free any
cached SQL statements, it can do so at any time by calling the
TEDBSession FreeCachedSQLStmts method.

FuncProcCacheSize Controls how many functions/procedures can be cached in

Using ElevateDB

Page 116

memory for each open database in the session. Caching
functions/procedures improves the performance of ElevateDB
by avoiding very expensive preparation/un-preparation cycles.
The default value is 0, which means that functions/procedures
will not be cached for the session. If a session needs to free
any cached functions/procedures, it can do so at any time by
calling the TEDBSession FreeCachedFuncProcs method.

ProgressTimeInterval Controls the amount of time, in milliseconds, that must elapse
between progress updates before ElevateDB will generate a
progress event. The default value is 1000 milliseconds, or 1
second.

ExcludeFromLicensedSessions Specifies whether the current session should be included in
the session license count controlled by the TEDBEngine
LicensedSessions property for local sessions, or by the
ElevateDB Server for remote sessions. This is useful for
situations where you have a utility session that you want to
exclude from your own licensing restrictions, such as when a
session is used in a thread for performance reasons.

Note
This property does not cause the session to be
excluded from the ElevateDB licensed session count
and only affects the user-defined licensed session
count.

Note
You cannot modify any of the above properties unless the session is disconnected. Attempting to
modify these properties while the session is connected will result in an exception being raised.

Using ElevateDB

Page 117

5.3 Creating, Altering, or Dropping Configuration Objects

Configuration objects are objects that are stored in the ElevateDB configuration file, which is represented
by the special system-created Configuration database. Creating, altering, or dropping configuration objects
can be accomplished by using the TEDBSession Execute method to execute the desired DDL (Data
Definition Language) statement against the Configuration database. This method is always set to execute
any passed SQL statement from the context of the Configuration database, which makes it ideal for use in
creating, altering, or dropping configuration objects such as databases, users, roles, and jobs with a
minimal amount of work.

The following example shows how to create a database called "Test" using the CREATE DATABASE DDL
statement:

// This example uses a session component that
// has already been created and connected
// called MySession

with MySession do
 Execute('CREATE DATABASE "Test" PATH ''C:\Test'''+
 'DESCRIPTION ''Test Database''');

Configuration Object DDL Statements

The following DDL statements can be used to manipulate the various configuration objects available in the
Configuration database:

 • CREATE USER
 • ALTER USER
 • DROP USER
 • RENAME USER
 • CREATE ROLE
 • ALTER ROLE
 • DROP ROLE
 • RENAME ROLE
 • GRANT ROLES
 • REVOKE ROLES
 • GRANT PRIVILEGES
 • REVOKE PRIVILEGES
 • CREATE DATABASE
 • ALTER DATABASE
 • DROP DATABASE
 • RENAME DATABASE
 • CREATE JOB
 • ALTER JOB
 • DROP JOB
 • RENAME JOB
 • CREATE MODULE
 • ALTER MODULE
 • DROP MODULE
 • RENAME MODULE
 • CREATE MIGRATOR
 • ALTER MIGRATOR

Using ElevateDB

Page 118

 • DROP MIGRATOR
 • RENAME MIGRATOR
 • CREATE TEXT FILTER
 • ALTER TEXT FILTER
 • DROP TEXT FILTER
 • RENAME TEXT FILTER
 • CREATE WORD GENERATOR
 • ALTER WORD GENERATOR
 • DROP WORD GENERATOR
 • RENAME WORD GENERATOR
 • DISCONNECT SERVER SESSION
 • REMOVE SERVER SESSION

Please see the User Security topic for more information on the required privileges to execute the above
DDL statements.

Note
Keep in mind that Linux has a case-sensitive file system when specifying path names in any SQL.

Using ElevateDB

Page 119

5.4 Opening Databases

As already discussed in the ElevateDB Architecture topic, the TEDBDatabase component represents a
database in ElevateDB. The following information will show how to open a database in an application.

Preparing a Database for Opening

Before you can open a database using the TEDBDatabase component, you must set a couple of properties.
The TEDBDatabase DatabaseName property is the name given to the database within the application and
is required for naming purposes only. The Database property should contain the name of an existing
database that has already been created using a CREATE DATABASE DDL statement.

Opening a Database

To open a database you must set the TEDBDatabase Connected property to True or call its Open method.
For a local TEDBDatabase component whose SessionName property is linked to a local TEDBSession
component, the database will cause the local TEDBSession to be opened if it is not already, and then the
database will be opened. For a remote database whose SessionName property is linked to a remote
TEDBSession component, performing this operation will cause the remote session to attempt a connection
to the ElevateDB Server if it is not already connected. If the connection is successful, the database will
then be opened.

The BeforeConnect event is useful for handling the setting of any pertinent properties for the
TEDBDatabase component before it is opened. This event is triggered right before the database is opened,
so it's useful for situations where you need to change the database information from that which was used
at design-time to something that is valid for the environment in which the application is now running.

Note
You should not call the TEDBDatabase Open method or modify the Connected property from within
the BeforeConnect event handler. Doing so can cause infinite recursion.

More Database Properties

A TEDBDatabase component has one other property of importance that is detailed below:

Property Description

KeepConnection Controls whether the database connection is kept active even
after it is no longer needed. This property has no effect upon
a local session, but can result in tremendous performance
improvements for a remote session, therefore it defaults to
True and should be left as such in most cases.

Using ElevateDB

Page 120

5.5 Creating, Altering, or Dropping Database Objects

Database objects are objects that are stored in an ElevateDB database catalog, which is represented by
the special system-created Information schema in every ElevateDB database. Creating, altering, or
dropping database objects can be accomplished by using the TEDBDatabase Execute method to execute
the desired DDL statement against the target database. This method is always set to execute any passed
SQL statement from the context of the target database, which makes it ideal for use in creating, altering,
or dropping database objects such as tables, indexes, triggers, views, functions, and procedures with a
minimal amount of work.

The following example shows how to create a table called "Customer" using the CREATE TABLE DDL (Data
Definition Language) statement:

// This example uses a database component that
// has already been created and opened
// called MyDatabase

with MyDatabase do
 Execute('CREATE TABLE "Customer" '+
 '('+
 '"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0,
 INCREMENT BY 1), '+
 '"Name" VARCHAR(30) COLLATE "ANSI_CI", '+
 '"Address1" VARCHAR(40) COLLATE "ANSI_CI", '+
 '"Address2" VARCHAR(40) COLLATE "ANSI_CI", '+
 '"City" VARCHAR(30) COLLATE "ANSI_CI", '+
 '"State" CHAR(2) COLLATE "ANSI_CI", '+
 '"Zip" CHAR(10) COLLATE "ANSI_CI", '+
 '"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP, '+
 'CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID"), '+
 'CONSTRAINT "ID_Check" CHECK (ID IS NOT NULL), '+
 'CONSTRAINT "Name_Check" CHECK (Name IS NOT NULL)'+
 ')');

Database Object DDL Statements

The following DDL statements can be used to manipulate the various database objects available in a
database catalog:

 • CREATE TABLE
 • ALTER TABLE
 • DROP TABLE
 • RENAME TABLE
 • CREATE INDEX
 • CREATE TEXT INDEX
 • ALTER INDEX
 • DROP INDEX
 • RENAME INDEX
 • CREATE TRIGGER
 • ALTER TRIGGER
 • DROP TRIGGER
 • RENAME TRIGGER
 • CREATE VIEW

Using ElevateDB

Page 121

 • ALTER VIEW
 • DROP VIEW
 • RENAME VIEW
 • CREATE FUNCTION
 • ALTER FUNCTION
 • DROP FUNCTION
 • RENAME FUNCTION
 • CREATE PROCEDURE
 • ALTER PROCEDURE
 • DROP PROCEDURE
 • RENAME PROCEDURE

Please see the User Security topic for more information on the required privileges to execute the above
DDL statements.

Note
Keep in mind that Linux has a case-sensitive file system when specifying path names in any SQL.

Using ElevateDB

Page 122

5.6 Executing Queries

Executing SQL queries is accomplished through the ExecSQL and Open methods of the TEDBQuery
component, or by setting the Active property to True. Before executing a query you must first specify the
source database for the query. The source database is specified via the DatabaseName property of the
TEDBQuery component. The actual SQL for the query is specified in the SQL property. You may select
whether you want a sensitive or insensitive query result cursor set via the RequestSensitive property.
Please see the Result Set Cursor Sensitivity topic for more information.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TEDBQuery component to the
DatabaseName property of an existing TEDBDatabase component within the application. In this case the
actual source database being used will come from the Database property. The following example shows
how to use the DatabaseName property to point to an existing TEDBDatabase component for the source
database:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyQuery do
 begin
 DatabaseName:='AccountingDB';
 SQL.Clear;
 SQL.Add('SELECT * FROM ledger');
 Active:=True;
 end;
end;

Note
The above example does not assign a value to the SessionName property of either the
TEDBDatabase or TEDBQuery component because leaving this property blank for both components
means that they will use the default session that is automatically created by ElevateDB when the
engine is initialized. This session is, by default, a local, not remote, session named "Default" or "".
Please see the Connecting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TEDBDatabase component to dynamically
set the Database property before the TEDBDatabase component attempts to connect to the database. This
is especially important when you have the Connected property for the TEDBDatabase component set to
True at design-time during application development and wish to change the Database property before the
connection is attempted when the application is run.

2) The second method is to enter the name of an existing database directly into the DatabaseName
property. In this case a temporary database component will be automatically created, if needed, for the

Using ElevateDB

Page 123

database specified and automatically destroyed when no longer needed. The following example shows
how to use the DatabaseName property to point directly to the desired database without referring to a
TEDBDatabase component:

begin
 with MySession do
 begin
 SessionName:='Remote';
 SessionType:=stRemote;
 RemoteAddress:='192.168.0.2';
 Active:=True;
 end;
 with MyQuery do
 begin
 SessionName:='Remote';
 DatabaseName:='Accounting';
 SQL.Clear;
 SQL.Add('SELECT * FROM ledger');
 Active:=True;
 end;
end;

Setting the SQL Property

The SQL statement is specified via the SQL property of the TEDBQuery component. The SQL property is a
TEDBStrings object. You may enter an SQL statement by using the Add method of the SQL property to
specify the SQL statement line-by-line. You can also assign the entire SQL to the Text property of the SQL
property.

When dynamically building SQL statements that contain literal string constants, you can use the
TEDBEngine QuotedSQLStr method to properly format and escape any embedded single quotes in the
string. For example, suppose you have a TEdit component that contains the following string:

Pete's Garage

The string contains an embedded single quote, so it cannot be specified directly without causing an error
in the SQL statement.

To build an SQL INSERT statement that inserts the above string into a VARCHAR column, you should use
the following code:

MyEDBQuery.SQL.Text:='INSERT INTO MyTable '+
 '(MyVarCharColumn) VALUES ('+
 Engine.QuotedSQLStr(MyEdit.Text)+')';

Using ElevateDB

Page 124

Note
If re-using the same TEDBQuery component for multiple query executions, please be sure to call
the SQL property's Clear method to clear the SQL from the previous query before calling the Add
method to add more SQL statement lines.

Preparing the Query

By default ElevateDB will automatically prepare a query before it is executed. However, you may also
manually prepare a query using the TEDBQuery Prepare method. Once a query has been prepared, the
Prepared property will be True. Preparing a query parses the SQL, opens all referenced tables, and
prepares all internal structures for the execution of the query. You should only need to manually prepare a
query when executing a parameterized query. Please see the Parameterized Queries topic for more
information.

Executing the Query

To execute the query you should call the TEDBQuery ExecSQL or Open methods, or you should set the
Active property to True. Setting the Active property to True is the same as calling the Open method. The
difference between using the ExecSQL and Open methods is as follows:

Method Usage

ExecSQL Use this method when the SQL statement specified in the SQL
property may or may not return a result set. The ExecSQL
method can handle both situations.

Open Use this method only when you know that the SQL statement
specified in the SQL property will return a result set. Using the
Open method with an SQL statement that does not return a
result set will result in an EDatabaseError exception being
raised with an error message "Error creating table handle".

Note
The SQL SELECT statement is the only statement that returns a result set. All other types of SQL
statements do not.

The following example shows how to use the ExecSQL method to execute an UPDATE statement:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyQuery do
 begin
 DatabaseName:='AccountingDB';
 SQL.Clear;
 SQL.Add('UPDATE ledger SET AccountNo=100');

Using ElevateDB

Page 125

 SQL.Add('WHERE AccountNo=300');
 ExecSQL;
 end;
end;

Query Execution Plans

If you wish to retrieve a query execution plan for the current execution via the Plan property, then set the
RequestPlan property to True before executing the query.

Sensitive Result Set Cursors

If you wish to have a sensitive result set generated from the executed query, then set the
RequestSensitive property to True before executing the query. This only requests a sensitive result set
cursor, and the query may still generate an insensitive result set cursor based upon the query being
executed. Please see the Result Set Cursor Sensitivity topic for more information.

Retrieving Query Information

You can retrieve information about a query both after the query has been prepared and after the query
has been executed. The following properties can be interrogated after a query has been prepared or
executed:

Property Description

SQLStatementType Indicates the type of SQL statement currently ready for
execution.

The following properties can only be interrogated after a query has been executed:

Property Description

Plan Contains information about how the current query was
executed, including any optimizations performed by
ElevateDB. This information is very useful in determining how
to optimize a query further or to simply figure out what
ElevateDB is doing behind the scenes. The Plan property is
automatically cleared before each execution of an SQL
statement.

Note
Query plans are only generated for SQL SELECT,
INSERT, UPDATE, or DELETE statements.

RowsAffected Indicates the number of rows affected by the current query.

ExecutionTime Indicates the amount of execution time in seconds consumed
by the current query.

ExecutionResult Indicates the Boolean result of the current SQL execution.

Using ElevateDB

Page 126

Sensitive Indicates the whether the result set cursor for the query is
sensitive or insensitive. Please see the Result Set Cursor
Sensitivity topic for more information.

The following example shows how to use the ExecSQL method to execute an UPDATE SQL statement and
report the number of rows affected as well as how long it took to execute the statement:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyQuery do
 begin
 DatabaseName:='AccountingDB';
 SQL.Clear;
 SQL.Add('UPDATE ledger SET AccountNo=100');
 SQL.Add('WHERE AccountNo=300');
 ExecSQL;
 ShowMessage(IntToStr(RowsAffected)+
 ' rows updated in '+
 FloatToStr(ExecutionTime)+' seconds');
 end;
end;

Tracking the Progress of a Query

To take care of tracking the progress of the query execution, we have provided the TEDBQuery
OnProgress event. You may set the Continue parameter of this event to False in your event handler to
indicate to ElevateDB that you wish to abort the execution of the current SQL statement.

Using ElevateDB

Page 127

5.7 Parameterized Queries

Parameters allow the same SQL statement to be used with different data values, and are placeholders for
those data values. At runtime, the application prepares the query with the parameters and fills the
parameter with a value before the query is executed. When the query is executed, the data values
assigned to the parameters are substituted for the parameter placeholder and the SQL statement is
executed.

Specifying Parameters in SQL

Parameter markers can be used in SQL SELECT, INSERT, UPDATE, and DELETE statements in place of
constants. Parameters are identified by a preceding colon (:). For example:

SELECT Last_Name, First_Name
FROM Customer
WHERE (Last_Name=:LName) AND (First_Name=:FName)

Parameters are used to pass data values to be used in WHERE clause comparisons and as update values in
updating SQL statements such as UPDATE or INSERT. Parameters cannot be used to pass values for
Identifiers. The following example uses the TotalParam parameter to pass the data value that needs to be
assigned to the ItemsTotal column for the row with the OrderNo column equal to 1014:

UPDATE Orders
SET ItemsTotal = :TotalParam
WHERE (OrderNo = 1014)

Populating Parameters with the TEDBQuery Component

You can use the TEDBQuery Params property to populate the parameters in an SQL statement with data
values. You may use two different methods of populating parameters using the Params property:

 • By referencing each parameter by its index position in the available list of parameters
 • By reference each parameter by name using the ParamByName method

The following is an example of using the index positions of the parameters to populate the data values for
an INSERT SQL statement:

begin
 with MyQuery do
 begin
 SQL.Clear;
 SQL.Add('INSERT INTO Country (Name, Capital, Population)');
 SQL.Add('VALUES (:Name, :Capital, :Population)');
 Params[0].AsString := 'Lichtenstein';
 Params[1].AsString := 'Vaduz';
 Params[2].AsInteger := 420000;
 ExecSQL;
 end;

Using ElevateDB

Page 128

end;

The next block of code is an example of using the TEDBQuery ParamByName method in order to populate
the data values for a SELECT SQL statement:

begin
 with MyQuery do
 begin
 SQL.Clear;
 SQL.Add('SELECT *');
 SQL.Add('FROM Orders');
 SQL.Add('WHERE CustID = :CustID');
 ParamByName('CustID').AsFloat:=1221;
 Open;
 end;
end;

Preparing Parameterized Queries

It is usually recommended that you manually prepare parameterized queries that you intend to execute
many times with different parameter values. This can result in significant performance improvements since
the process of preparing a query can be time-consuming. The following is an example of inserting 3 rows
with different values using a manually-prepared, parameterized query:

begin
 with MyQuery do
 begin
 SQL.Clear;
 SQL.Add('INSERT INTO Customer (CustNo, Company');
 SQL.Add('VALUES (:CustNo, :Company)');
 { Manually prepare the query }
 Prepare;
 ParamByName('CustNo').AsInteger:=1000;
 ParamByName('Company').AsString:='Chocolates, Inc.';
 ExecSQL;
 ParamByName('CustNo').AsInteger:=2000;
 ParamByName('Company').AsString:='Flowers, Inc.';
 ExecSQL;
 ParamByName('CustNo').AsInteger:=3000;
 ParamByName('Company').AsString:='Candies, Inc.';
 ExecSQL;
 end;
end;

Using ElevateDB

Page 129

5.8 Querying Configuration Objects

Configuration objects are objects that are stored in the ElevateDB configuration file, which is represented
by the special system-created Configuration database. Querying configuration objects can be accomplished
by using the TEDBQuery component to execute queries against the Configuration database. This allows
you to determine which configuration objects exist in the configuration along with specific information
about the configuration objects.

The following example shows how to use a TEDBQuery component containing a SELECT statement to
query the Databases Table in the Configuration database in order to see if the "Sales" database exists:

// This example uses a query component that
// has already been created and opened
// called MyQuery

with MyQuery do
 begin
 DatabaseName:='Configuration';
 SQL:='SELECT * FROM Databases '+
 'WHERE Name='+Engine.QuotedSQLStr('Sales');
 Open;
 if (RecordCount=1) then
 ShowMessage('The Sales database exists')
 else
 ShowMessage('The Sales database does not exist');
 end;

You can also use the TEDBSession Execute method as a quicker method to determine if a configuration
object or objects exist. The Execute method returns the number of rows affected or returned by a
particular SQL statement, so you can use the return value of an indication of whether any rows exist for
the SELECT statement on the Configuration database:

// This example uses a session component that
// has already been created and opened
// called MySession

with MySession do
 begin
 if (Execute('SELECT * FROM Databases '+
 'WHERE Name='+Engine.QuotedSQLStr('Sales'))=1) then
 ShowMessage('The Sales database exists')
 else
 ShowMessage('The Sales database does not exist');
 end;

Using ElevateDB

Page 130

5.9 Querying Database Objects

Database objects are objects that are stored in an ElevateDB database catalog, which is represented by
the special system-created Information schema in every ElevateDB database. Querying database objects
can be accomplished by using the TEDBQuery component to execute queries against the Information
Schema for a given database. This allows you to determine which database objects exist in the database
along with specific information about the database objects.

The following example shows how to use a TEDBQuery component containing a SELECT statement to
query the Tables Table in the Information Schema in order to see if the "Customer" table exists:

// This example uses a query component that
// has already been created and opened
// called MyQuery

with MyQuery do
 begin
 DatabaseName:='SalesDB';
 SQL:='SELECT * FROM Information.Tables '+
 'WHERE Name='+Engine.QuotedSQLStr('Customer');
 Open;
 if (RecordCount=1) then
 ShowMessage('The Customer table exists')
 else
 ShowMessage('The Customer table does not exist');
 end;

You can also use the TEDBDatabase Execute method as a quicker method to determine if a database
object or objects exist. The Execute method returns the number of rows affected or returned by a
particular SQL statement, so you can use the return value of an indication of whether any rows exist for
the SELECT statement on the Information schema:

// This example uses a database component that
// has already been created and opened
// called MyDatabase

with MyDatabase do
 begin
 if (Execute('SELECT * FROM Information.Tables '+
 'WHERE Name='+Engine.QuotedSQLStr('Customer'))=1) then
 ShowMessage('The Customer table exists')
 else
 ShowMessage('The Customer table does not exist');
 end;

Using ElevateDB

Page 131

5.10 Executing Scripts

Executing scripts is accomplished through the ExecScript and Open methods of the TEDBScript
component, or by setting the Active property to True. Before executing a script you must first specify the
source database for the script. The source database is specified via the DatabaseName property of the
TEDBScript component. The actual script is specified in the SQL property.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TEDBScript component to the
DatabaseName property of an existing TEDBDatabase component within the application. In this case the
actual source database being used will come from the Database property. The following example shows
how to use the DatabaseName property to point to an existing TEDBDatabase component for the source
database:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyScript do
 begin
 DatabaseName:='AccountingDB';
 SQL.LoadFromFile('c:\scripts\GetLedgerEntries.sql');
 Active:=True;
 end;
end;

Note
The above example does not assign a value to the SessionName property of either the
TEDBDatabase or TEDBScript component because leaving this property blank for both components
means that they will use the default session that is automatically created by ElevateDB when the
engine is initialized. This session is, by default, a local, not remote, session named "Default" or "".
Please see the Connecting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TEDBDatabase component to dynamically
set the Database property before the TEDBDatabase component attempts to connect to the database. This
is especially important when you have the Connected property for the TEDBDatabase component set to
True at design-time during application development and wish to change the Database property before the
connection is attempted when the application is run.

2) The second method is to enter the name of an existing database directly into the DatabaseName
property. In this case a temporary database component will be automatically created, if needed, for the
database specified and automatically destroyed when no longer needed. The following example shows
how to use the DatabaseName property to point directly to the desired database without referring to a
TEDBDatabase component:

Using ElevateDB

Page 132

begin
 with MySession do
 begin
 SessionName:='Remote';
 SessionType:=stRemote;
 RemoteAddress:='192.168.0.2';
 Active:=True;
 end;
 with MyScript do
 begin
 SessionName:='Remote';
 DatabaseName:='Accounting';
 SQL.Clear;
 SQL.Add('SCRIPT ()');
 SQL.Add('BEGIN');
 SQL.Add(' EXECUTE IMMEDIATE ''BACKUP DATABASE Test ');
 SQL.Add(' AS TestBackup TO STORE "Backups" ');
 SQL.Add(' INCLUDE CATALOG'';');
 SQL.Add('END');
 ExecScript;
 end;
end;

Setting the SQL Property

The script is specified via the SQL property of the TEDBScript component. You can use the ConvertSQL
method to convert a script that consists of a series of SQL statements (INSERT, UPDATE, DELETE, or
SELECT) separated by semicolons (;) into a proper ElevateDB script that can be executed by the
TEDBScript component.

Preparing the script

By default ElevateDB will automatically prepare a script before it is executed. However, you may also
manually prepare a script using the TEDBScript Prepare method. Once a script has been prepared, the
Prepared property will be True. Preparing a script compiles the script, opens all referenced tables, and
prepares all internal structures for the execution of the script. You should only need to manually prepare a
script when executing a script that requires parameters.

Executing the Script

To execute the script you should call the TEDBScript ExecScript or Open methods, or you should set the
Active property to True. Setting the Active property to True is the same as calling the Open method. The
difference between using the ExecScript and Open methods is as follows:

Method Usage

Using ElevateDB

Page 133

ExecScript Use this method when the script specified in the SQL property
may or may not return a result set. The ExecScript method
can handle both situations.

Open Use this method only when you know that the script specified
in the SQL property will return a result set. Using the Open
method with a script that does not return a result set will
result in an EDatabaseError exception being raised with an
error message "Error creating table handle".

The following example shows how to use the ExecScript method to execute a script:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyScript do
 begin
 DatabaseName:='AccountingDB';
 SQL.LoadFromFile('UpdateLedgerEntries.SQL');
 Prepare;
 ParamByName('AccountNo').AsString:='00100';
 ExecScript;
 end;
end;

Tracking the Progress of a Script

To take care of tracking the progress of the script execution, we have provided the TEDBScript OnProgress
event. This event will only be fired if the script contains manual progress update calls specifically included
by the script creator.

Using ElevateDB

Page 134

5.11 Executing Stored Procedures

Executing stored procedures is accomplished through the ExecProc and Open methods of the
TEDBStoredProc component, or by setting the Active property to True. Before executing a stored
procedure you must first specify the source database for the procedure. The source database is specified
via the DatabaseName property of the TEDBStoredProc component. The actual procedure name is
specified in the StoredProcName property.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TEDBStoredProc component to the
DatabaseName property of an existing TEDBDatabase component within the application. In this case the
actual source database being used will come from the Database property. The following example shows
how to use the DatabaseName property to point to an existing TEDBDatabase component for the source
database:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyStoredProc do
 begin
 DatabaseName:='AccountingDB';
 StoredProcName:='GetLedgerEntries';
 Active:=True;
 end;
end;

Note
The above example does not assign a value to the SessionName property of either the
TEDBDatabase or TEDBStoredProc component because leaving this property blank for both
components means that they will use the default session that is automatically created by ElevateDB
when the engine is initialized. This session is, by default, a local, not remote, session named
"Default" or "". Please see the Connecting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TEDBDatabase component to dynamically
set the Database property before the TEDBDatabase component attempts to connect to the database. This
is especially important when you have the Connected property for the TEDBDatabase component set to
True at design-time during application development and wish to change the Database property before the
connection is attempted when the application is run.

2) The second method is to enter the name of an existing database directly into the DatabaseName
property. In this case a temporary database component will be automatically created, if needed, for the
database specified and automatically destroyed when no longer needed. The following example shows
how to use the DatabaseName property to point directly to the desired database without referring to a

Using ElevateDB

Page 135

TEDBDatabase component:

begin
 with MySession do
 begin
 SessionName:='Remote';
 SessionType:=stRemote;
 RemoteAddress:='192.168.0.2';
 Active:=True;
 end;
 with MyStoredProc do
 begin
 SessionName:='Remote';
 DatabaseName:='Accounting';
 StoredProcName:='GetLedgerEntries';
 Active:=True;
 end;
end;

Setting the StoredProcName Property

The procedure is specified via the StoredProcName property of the TEDBStoredProc component.

Preparing the Stored Procedure

By default ElevateDB will automatically prepare a procedure before it is executed. However, you may also
manually prepare a procedure using the TEDBStoredProc Prepare method. Once a procedure has been
prepared, the Prepared property will be True. Preparing a procedure compiles the procedure, opens all
referenced tables, and prepares all internal structures for the execution of the procedure. You should only
need to manually prepare a procedure when executing a procedure that requires parameters.

Executing the Procedure

To execute the procedure you should call the TEDBStoredProc ExecProc or Open methods, or you should
set the Active property to True. Setting the Active property to True is the same as calling the Open
method. The difference between using the ExecProc and Open methods is as follows:

Method Usage

ExecProc Use this method when the procedure specified in the
StoredProcName property may or may not return a result set.
The ExecProc method can handle both situations.

Open Use this method only when you know that the procedure
specified in the StoredProcName property will return a result
set. Using the Open method with a procedure that does not
return a result set will result in an EDatabaseError exception
being raised with an error message "Error creating table
handle".

The following example shows how to use the ExecProc method to execute a procedure:

Using ElevateDB

Page 136

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyStoredProc do
 begin
 DatabaseName:='AccountingDB';
 StoredProcName='UpdateLedgerEntries';
 Prepare;
 ParamByName('AccountNo').AsString:='00100';
 ExecProc;
 end;
end;

Tracking the Progress of a Procedure

To take care of tracking the progress of the procedure execution, we have provided the TEDBStoredProc
OnProgress event. This event will only be fired if the procedure contains manual progress update calls
specifically included by the procedure creator.

Using ElevateDB

Page 137

5.12 Executing Transactions

A transaction is executed entirely by using the StartTransaction, Commit, and Rollback methods of the
TEDBDatabase component. A typical transaction block of code looks like this:

begin
 with MyDatabase do
 begin
 StartTransaction(EmptyEDBStringsArray);
 try
 { Perform some updates to the table(s) in this database }
 Commit;
 except
 Rollback;
 end;
 end;
end;

The EmptyEDBStringsArray variable is defined in the edbtype unit (Delphi or Lazarus) or edbtype header
file (C++) in ElevateDB.

Note
It is very important that you always ensure that the transaction is rolled back if there is an
exception of any kind during the transaction. This will ensure that the locks held by the transaction
are released and other sessions can continue to update data while the exception is dealt with. Also,
if you roll back a transaction it is always a good idea to refresh any open TEDBTable or TEDBQuery
components linked to the TEDBDatabase component involved in the transaction so that they reflect
the current data and not any data from the transaction that was just rolled back. Along with
refreshing, you should make sure that any pending inserts or edits for the TEDBTable or TEDBQuery
components are cancelled using the Cancel method before the transaction is rolled back to ensure
that the inserts or edits are not accidentally posted using the Post method after the transaction is
rolled back (unless that is specifically what you wish to do).

Restricted Transactions

It is also possible with ElevateDB to start a restricted transaction. A restricted transaction is one that
specifies only certain tables be part of the transaction. The StartTransaction method accepts an optional
array of tables that can be used to specify what tables should be involved in the transaction and,
subsequently, locked as part of the transaction (see below regarding locking). If this list of tables is nil
(the default), then the transaction will encompass the entire database.

The following example shows how to use a restricted transaction on two tables, the Customer and Orders
table:

var
 Tables: TEDBStringsArray;
begin
 with MyDatabase do
 begin

Using ElevateDB

Page 138

 SetLength(Tables,2);
 Tables[0]:='Customer';
 Tables[1]:='Orders';
 StartTransaction(Tables);
 try
 { Perform some updates to the table(s) in the transaction }
 Commit;
 except
 Rollback;
 raise;
 end;
 end;
end;

For more information on transactions in ElevateDB, please see the Transactions topic.

Using ElevateDB

Page 139

5.13 Creating and Using Stores

A store is simply a named storage area that holds files and includes user security privileges so that you
can prevent any accidental destruction or viewing of sensitive files. Creating, altering, and dropping stores,
and working with the files contained within them, is accomplished by using the TEDBSession Execute
method to execute the CREATE STORE, ALTER STORE, DROP STORE, RENAME STORE,SET FILES STORE,
COPY FILE, RENAME FILE, and DELETE FILE statements. You can also attach event handlers to the
TEDBSession OnStatusMessage and OnProgress events in order to track any status messages and progress
during a file copy operation.

Types of Stores

Stores can be created as either local or remote, and they are defined as follows:

Type Description

Local A local store simply points to a local path that is accessible
from the current process.

Remote A remote store is a "virtual" store that is defined locally but
actually points to another store on a remote ElevateDB
Server. This abstraction of remote stores make the stores very
useful because you can transfer files between different
machines by simply copying a file from a local store to a
remote store, and vice-versa.

Creating a Store

To create a store, you can use the CREATE STORE statement. If, at a later time, you wish to change the
store from a local store to a remote store, or vice-versa, you can do so by using the ALTER STORE
statement.

Adding Files to a Store

Adding files to a local store can be done via the operating system itself by copying or moving files into the
local path used by the local store. However, many times the files will be created using statements such as
the BACKUP DATABASE, SAVE UPDATES, or EXPORT TABLE statements. These statements require a local
store as the location where the files generated by these operations will be created.

You can also use the COPY FILE, RENAME FILE, and DELETE FILE statements to manipulate files in a given
local or remote store. This makes stores very useful because they use the existing ElevateDB remote
communications facilities and don't require any extension configuration of the operating system to set up
virtual private networks (VPNs) or other elaborate setups.

For example, here's an example of using the COPY FILE statement to copy a backup file from a local store
to a remote store.

begin
 MySession.Execute('COPY FILE "MyBackup.EDBkp" IN STORE "LocalStore" '+
 'TO "MyBackup.EDBBkp" IN STORE "RemoteStore"');
end;

Using ElevateDB

Page 140

Tracking the Copy File ProgressTracking the Copy File Progress

To take care of tracking the progress of copying files we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the file copy operation and the OnStatusMessage event will report any status messages
regarding the file copy operation.

Retrieving Information About Files

To retrieve information about the files in a specific store, you can use the SET FILES STORE statement to
specify the store where the files are located, and then use a SELECT statement to query the Files Table in
the Configuration Database. The Files table contains information about all of the files in the store specified
by the SET BACKUPS STORE statement, with one row per file. Please see the Executing SQL Statements
for more information on executing a query.

Using ElevateDB

Page 141

5.14 Publishing and Unpublishing Databases

Publishing and unpublishing databases is accomplished by using the TEDBSession Execute method to
execute the PUBLISH DATABASE and UNPUBLISH DATABASE statements. You can also attach event
handlers to the TEDBSession OnStatusMessage event in order to track any status messages during a
publish or unpublish operation.

Publishing a database causes ElevateDB to mark all tables that are included in the publishing as published
and begin to log all insert, update, or delete operations on the published tables. ElevateDB then will
continue to log all such operations until a SAVE UPDATES statement is executed for the published tables,
at which time an update file will be created that contains these logged updates, and then remove the
logged updates from the log associated with each published table.

The logging of the updates for a published table works as follows for each type of operation:

Operation Description

Inserts All modified columns are logged.

Updates The primary key columns for the pre-update version of the
row are logged, and all new modified columns are logged
also.

Deletes The primary key columns for the pre-delete version of the row
are logged.

Unpublishing a database causes ElevateDB to mark all tables that are included in the unpublishing as
unpublished, and to drop all logged updates for the table, making a backup of the logged updates in the
process. The unpublish process effectively undoes the publishing process.

Publishing a Database

When the publish executes, it has to obtain an exclusive lock on all tables that are being published in the
specified database. This is due to the fact that publishing a table alters its metadata in the database
catalog.

The following example shows how to publish a database called "MyDatabase" using the PUBLISH
DATABASE statement and the TEDBSession Execute method:

begin
 MySession.Execute('PUBLISH DATABASE "MyDatabase"');
end;

You can also, optionally, use the TABLES clause of the PUBLISH DATABASE statement to specify a subset
of tables in the DATABASE to publish.

Tracking the Publish Progress

To take care of tracking the status of the publishing we have provided the OnStatusMessage event within
the TEDBSession component. The OnStatusMessage event will report any status messages regarding the
publishing operation.

Using ElevateDB

Page 142

Unpublishing a Database

When the unpublish executes, it has to obtain an exclusive lock on all tables that are being unpublished in
the specified database. This is due to the fact that unpublishing a table alters its metadata in the database
catalog.

The following example shows how to unpublish a database called "MyDatabase" using the UNPUBLISH
DATABASE statement and the TEDBSession Execute method:

begin
 MySession.Execute('UNPUBLISH DATABASE "MyDatabase"');
end;

You can also, optionally, use the TABLES clause of the UNPUBLISH DATABASE statement to specify a
subset of tables in the DATABASE to unpublish.

Retrieving Publishing Information

To retrieve information about which tables are published, an when they were published, you can use a
SELECT statement to query the Tables Table in the Information schema in the published database. The
Tables table contains information about all of the tables in the published database, with one row per table.
Please see the Executing SQL Statements for more information on executing a query.

Using ElevateDB

Page 143

5.15 Saving Updates To and Loading Updates From Databases

Saving updates to databases and loading updates from databases is accomplished by using the
TEDBSession Execute method to execute the SAVE UPDATES, SET UPDATES STORE, and LOAD UPDATES
statements. You can also attach event handlers to the TEDBSession OnStatusMessage and OnProgress
events in order to track any status messages and progress during a save or load operation.

Saving the updates to a database copies the updates to all or some of the tables within the database to a
compressed or uncompressed update file in a local store. Loading the updates from a database applies the
updates from all or some of the tables in a compressed or uncompressed update file in a local store into
the database.

In order to save the updates for a given table or tables in a database, the database table(s) must be
published first using the PUBLISH DATABASE statement. Please see the Publishing and Unpublishing
Databases topic for more information.

Saving the Updates for a Database

When the updates are saved, a read lock is obtained for all tables whose updates are being saved that
prevents any sessions from performing any writes to any of the involved tables in the database until the
save completes. However, since the saving of the updates is quite fast, the time during which the tables
cannot be changed is usually pretty small. To ensure that the database is available as much as possible for
updating, it is recommended that you save the database updates to a file in a local store on a fast hard
drive and then copy the file to a store that references a CD, DVD, or other slower device outside of the
scope of the database being locked instead of creating the update file directly in the store on the slower
device.

The following example shows how to save the updates for a database called "MyDatabase" using the SAVE
UPDATES statement and the TEDBSession Execute method:

begin
 MySession.Execute('SAVE UPDATES FOR DATABASE "MyDatabase" '+
 'AS "MyDatabase-Updates-'+
 Engine.DateToSQLStr(Date)+'" '+
 'TO STORE "Updates"');
end;

Note
You cannot specify a remote store as the location for the update file. It must be a local store.
Please see the Creating and Using Stores for more information on stores.

Tracking the Progress of the SavingTracking the Progress of the Saving

To take care of tracking the progress of the saving we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the saving operation and the OnStatusMessage event will report any status messages
regarding the saving operation.

Retrieving Information from an Update File

Using ElevateDB

Page 144

To retrieve information about the update files in a specific store, you can use the SET UPDATES STORE
statement to specify the store where the update files are located, and then use a SELECT statement to
query the Updates Table in the Configuration Database. The Updates table contains information about all
of the update files in the store specified by the SET UPDATES STORE statement, with one row per update
file. Please see the Executing SQL Statements for more information on executing a query.

Loading the Updates for a Database

When the updates are loaded, a write lock is obtained for all of the tables specified for the load that
prevents any sessions from performing any reads or writes to any of the specified tables until the load
completes. However, since the execution of a load is quite fast, the time during which the tables cannot be
accessed is usually pretty small.

Note
Update files from the same source database should always be loaded in their creation order. For
example, if you have 3 update files that have come from two different copies of the database, then
the 2 update files from one of the source databases should be loaded in their creation order. The
other update file doesn't matter because updates from different source databases can be loaded in
any order. You can find out the creation order by querying the Updates table in the Configuration
database, as described above in the Retrieving Information from an Update File section.

The following example shows how to load the updates for a database called "MyDatabase" using the LOAD
UPDATES statement and the TEDBSession Execute method:

begin
 MySession.Execute('LOAD UPDATES FOR DATABASE "MyDatabase" '+
 'FROM "MyDatabase-Updates-'+
 Engine.DateToSQLStr(Date)+'" '+
 'IN STORE "Updates"');
end;

Note
You cannot specify a remote store as the location for the update file. It must be a local store.
Please see the Creating and Using Stores for more information on stores.

Tracking the Progress of the LoadingTracking the Progress of the Loading

To take care of tracking the progress of the loading we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the load operation and the OnStatusMessage event will report any status messages regarding
the load operation.

Using ElevateDB

Page 145

5.16 Backing Up and Restoring Databases

Backing up and restoring databases is accomplished by using the TEDBSession Execute method to execute
the BACKUP DATABASE, SET BACKUPS STORE, and RESTORE DATABASE statements. You can also attach
event handlers to the TEDBSession OnStatusMessage and OnProgress events in order to track any status
messages and progress during a backup or restore operation.

Backing up a database copies all or some of the tables within the database, along with (optionally) the
database catalog, to a compressed or uncompressed backup file in a local store. Restoring a database
copies all or some of the tables in a compressed or uncompressed backup file in a local store into the
database, overwriting any tables with the same names that already exist in the database. You can also
choose to restore the database catalog during a restore operation, if the database catalog was backed up
originally with the tables.

Backing Up a Database

When the backup executes, it obtains a read lock for the entire database that prevents any sessions from
performing any writes to any of the tables in the database until the backup completes. However, since the
execution of a backup is quite fast, the time during which the tables cannot be changed is usually pretty
small. To ensure that the database is available as much as possible for updating, it is recommended that
you backup the database to a file in a local store on a fast hard drive and then copy the file to a store that
references a CD, DVD, or other slower backup device outside of the scope of the database being locked
instead of creating the backup file directly in the store on the slower backup device.

The following example shows how to backup a database called "MyDatabase" using the BACKUP
DATABASE statement and the TEDBSession Execute method:

begin
 MySession.Execute('BACKUP DATABASE "MyDatabase" '+
 'AS "MyDatabase-Backup-'+
 Engine.DateToSQLStr(Date)+'" '+
 'TO STORE "Backups" '+
 'INCLUDE CATALOG');
end;

Note
You cannot specify a remote store as the location for the backup file. It must be a local store.
Please see the Creating and Using Stores for more information on stores.

Tracking the Backup Progress

To take care of tracking the progress of the backup we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the backup operation and the OnStatusMessage event will report any status messages
regarding the backup operation.

Retrieving Information from a Backup File

Using ElevateDB

Page 146

To retrieve information about the backup files in a specific store, you can use the SET BACKUPS STORE
statement to specify the store where the backup files are located, and then use a SELECT statement to
query the Backups Table in the Configuration Database. The Backups table contains information about all
of the backup files in the store specified by the SET BACKUPS STORE statement, with one row per backup
file. Please see the Executing SQL Statements for more information on executing a query.

Restoring a Database

When the restore executes, it obtains an exclusive lock for the entire database that prevents any sessions
from opening the database until the restore completes. However, since the execution of a restore is quite
fast, the time during which the database cannot be accessed is usually pretty small.

Note
The Restore method overwrites any existing database catalogs and tables. You should be very
careful when restoring to an existing database to prevent loss of data.

The following example shows how to restore a database called "MyDatabase" using the RESTORE
DATABASE statement and the TEDBSession Execute method:

begin
 MySession.Execute('RESTORE DATABASE "MyDatabase" '+
 'FROM "MyDatabase-Backup-'+
 Engine.DateToSQLStr(Date)+'" '+
 'IN STORE "Backups" '+
 'INCLUDE CATALOG');
end;

Note
You cannot specify a remote store as the location for the backup file. It must be a local store.
Please see the Creating and Using Stores for more information on stores.

Tracking the Restore Progress

To take care of tracking the progress of the restore we have provided the OnProgress and
OnStatusMessage events within the TEDBSession component. The OnProgress event will report the
progress of the restore operation and the OnStatusMessage event will report any status messages
regarding the restore operation.

Using ElevateDB

Page 147

5.17 Opening Tables and Views

Opening tables and views can be accomplished through the Open method of the TEDBTable component,
or by setting the Active property to True. Before opening a table or view, however, you must first specify
the source database of the table or view and the table or view name. The source database of the table or
view is specified in the DatabaseName property of the TEDBTable component, and the table or view name
is specified in the TableName property.

Setting the DatabaseName Property

You may specify the DatabaseName property using two different methods:

1) The first method is to set the DatabaseName property of the TEDBTable component to the
DatabaseName property of an existing TEDBDatabase component within the application. In this case the
actual source database being used will come from the Database property. The following example shows
how to use the DatabaseName property to point to an existing TEDBDatabase component for the source
database:

begin
 with MyDatabase do
 begin
 DatabaseName:='AccountingDB';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyTable do
 begin
 DatabaseName:='AccountingDB';
 TableName:='ledger';
 Active:=True;
 end;
end;

Note
The above example does not assign a value to the SessionName property of either the
TEDBDatabase or TEDBTable component because leaving this property blank for both components
means that they will use the default session that is automatically created by ElevateDB when the
engine is initialized. This session is, by default, a local, not remote, session named "Default" or "".
Please see the Starting Sessions topic for more information.

Another useful feature is using the BeforeConnect event of the TEDBDatabase component to dynamically
set the Directory or RemoteDatabase property before the TEDBDatabase component attempts to connect
to the database. This is especially important when you have the Connected property for the TEDBDatabase
component set to True at design-time during application development and wish to change the Directory or
RemoteDatabase property before the connection is attempted when the application is run.

2) The second method is to enter the name of an existing database directly into the DatabaseName
property. In this case a temporary database component will be automatically created, if needed, for the
database specified and automatically destroyed when no longer needed. The following example shows
how to use the DatabaseName property to point directly to the desired database without referring to a

Using ElevateDB

Page 148

TEDBDatabase component:

begin
 with MySession do
 begin
 SessionName:='Remote';
 SessionType:=stRemote;
 RemoteAddress:='192.168.0.2';
 Active:=True;
 end;
 with MyTable do
 begin
 SessionName:='Remote';
 DatabaseName:='Accounting';
 TableName:='ledger';
 Active:=True;
 end;
end;

Exclusive and ReadOnly Open Modes

In the above two examples we have left the Exclusive and ReadOnly properties of the TEDBTable
component at their default value of False. However, you can use these two properties to control how the
table or view is opened and how that open affects the ability of other sessions and users to open the same
table or view.

When the Exclusive property is set to True, the table or view specified in the TableName property will be
opened exclusively when the Open method is called or the Active property is set to True. This means that
neither the current session nor any other session or user may open this table or view again without
causing an EEDBError exception. It also means that the table or view open will fail if anyone else has the
table or view opened either shared (Exclusive=False) or exclusively (Exclusive=True). The error code
raised when a table open fails due to access problems is 300 (EDB_ERROR_LOCK). The following example
shows how to trap for such an exception using a try..except block (Delphi and Lazarus) or try..catch block
(C++) and display an appropriate error message to the user:

begin
 with MySession do
 begin
 SessionName:='Remote';
 SessionType:=stRemote;
 RemoteAddress:='192.168.0.2';
 Active:=True;
 end;
 with MyDatabase do
 begin
 SessionName:='Remote';
 DatabaseName:='AccountingData';
 Database:='Accounting';
 Connected:=True;
 end;
 with MyTable do
 begin
 SessionName:='Remote';
 { We're using a database component for the source

Using ElevateDB

Page 149

 database, so we use the same value as the DatabaseName
 property for the TEDBDatabase component above, not
 the same value as the Database property, which
 is the name of the actual database }
 DatabaseName:='AccountingData';
 TableName:='ledger';
 Exclusive:=True;
 ReadOnly:=False;
 try
 Open;
 except
 on E: Exception do
 begin
 if (E is EDatabaseError) and
 (E is EEDBError) then
 begin
 if (EEDBError(E).ErrorCode=EDB_ERROR_LOCK) then
 ShowMessage('Cannot open table '+TableName+
 ', another user has the table '+
 'open already')
 else
 ShowMessage('Unknown or unexpected database '+
 'engine error # '+
 IntToStr(EEDBError(E).ErrorCode));
 end
 else
 ShowMessage('Unknown or unexpected error has occurred');
 end;
 end;
 end;
end;

Note
Regardless of whether you are trying to open a table or view exclusively, you can still receive this
exception if another user or application has opened the table or view exclusively.

When the ReadOnly property is set to True, the table or view specified in the TableName property will be
opened read-only when the Open method is called or the Active property is set to True. This means that
the TEDBTable component will not be able to modify the contents of the table or view until the table is
closed and re-opened with write access (ReadOnly=False). If any of the physical files that make up a table
are marked read-only at the operating system level (such as is the case with CD-ROMs) then ElevateDB
automatically detects this condition and sets the ReadOnly property to True. ElevateDB is also able to do
extensive read buffering on any table that is marked read-only at the operating system level, so if your
application is only requiring read-only access then it would provide a big performance boost to mark the
tables as read-only at the operating system level. Finally, if security permissions for any of the physical
files that make up the table prevent ElevateDB from opening the table with write access, then ElevateDB
will also automatically detect this condition and set the ReadOnly property to True.

Updateable Views

Views behave just like tables in most cases. However, views can only be updated if they are actually
flagged as updateable by ElevateDB when they are created. You can find out if a view is updateable by
querying the Views Table in the Information Schema for the current database. For a view to be flagged as
updateable, it must adhere to the requirements of a query that can generate a sensitive result set cursor.

Using ElevateDB

Page 150

Please see the Result Set Cursor Sensitivity topic for more information. If a view is not updateable, then it
will always have its ReadOnly property set to True when it is opened.

Using ElevateDB

Page 151

5.18 Closing Tables and Views

Closing tables and views can be accomplished through the Close method of the TEDBTable component, or
by setting the Active property to False.

The following example shows how to use the Close method to close a table:

begin
 MyTable.Close;
end;

Note
Once a table or view is closed you cannot perform any operations on the table or view until the
table or view is opened again.

Using ElevateDB

Page 152

5.19 Navigating Tables, Views, and Query Result Sets

Navigation of tables, views, and query result sets is accomplished through several methods of the
TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components. The basic navigational methods
include the First, Next, Prior, Last, and MoveBy methods. The Bof and Eof properties indicate whether the
row pointer is at the beginning or at the end of the table, view, or query result set, respectively. These
methods and properties are used together to navigate a table, view, or query result set.

Moving to the First or Last Row

The First method moves to the first row in the table, view, or query result set based upon the current
index order. The Last method moves to the last row in the table, view, or query result set based upon the
current index order. The following example shows how to move to the first and last rows in a table:

begin
 with MyTable do
 begin
 First;
 { do something to the first row }
 Last;
 { do something to the last row }
 end;
end;

Skipping Rows

The Next method moves to the next row in the table, view, or query result set based upon the current
index order. If the current row pointer is at the last row in the table, view, or query result set, then calling
the Next method will set the Eof property to True and the row pointer will stay on the last row. The Prior
method moves to the previous row in the table, view, or query result set based upon the current index
order. If the current row pointer is at the first row in the table, view, or query result set, then calling the
Prior method will set the Bof property to True and the row pointer will stay on the first row. The following
example shows how to use the First and Next methods along with the Eof property to loop through an
entire table:

begin
 with MyTable do
 begin
 First;
 while not Eof do
 Next;
 end;
end;

The following example shows how to use the Last and Prior methods along with the Bof property to loop
backwards through an entire table:

begin
 with MyTable do

Using ElevateDB

Page 153

 begin
 Last;
 while not Bof do
 Prior;
 end;
end;

Skipping Multiple Rows

The MoveBy method accepts a positive or negative integer that represents the number of rows to move by
within the table, view, or query result set. A positive integer indicates that the movement will be forward
while a negative integer indicates that the movement will be backward. The return value of the MoveBy
method is the number of rows actually visited during the execution of the MoveBy method. If the row
pointer hits the beginning of file or hits the end of file then the return value of the MoveBy method will be
less than the desired number of rows. The following example shows how to use the MoveBy method to
loop through an entire table 10 rows at a time:

begin
 with MyTable do
 begin
 First;
 while not Eof do
 MoveBy(10);
 end;
end;

Using ElevateDB

Page 154

5.20 Inserting, Updating, and Deleting Rows

Updating of tables, views, and query result sets is accomplished through several methods of the
TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components. The basic update methods include
the Append, Insert, Edit, Delete, FieldByName, Post, and Cancel methods. The State property indicates
whether the current table, view, or query result set is in Append/Insert mode (dsInsert), Edit mode
(dsEdit), or Browse mode (dsBrowse). These methods and properties are used together in order to update
a table, view, or query result set. Depending upon your needs, you may require additional methods to
update BLOB columns within a given table, view, or query result set, and information on how to use these
methods are discussed at the end of this topic.

Note
For the rest of this topic, a table, view, or query result set will be referred to as a dataset to reduce
the amount of references to both. Also, it is important to note here that a query result set can be
either sensitive or insensitive, which affects whether an update to a query result set is permitted or
not. Please see the Result Set Cursor Sensitivity topic for more information. Likewise, a view may or
may not be updateable depending upon the view definition. Please see the Opening Tables and
Views topic for more information on updateable views.

Adding a New Row

The Append and Insert methods allow you to begin the process of adding a row to the dataset. The only
difference between these two methods is the Insert method will insert a blank row buffer at the current
position in the dataset, and the Append method will add a blank row buffer at the end of the dataset. This
row buffer does not exist in the physical datset until the row buffer is posted to the actual dataset using
the Post method. If the Cancel method is called, then the row buffer and any updates to it will be
discarded. Also, once the row buffer is posted using the Post method it will be positioned in the dataset
according to the active index order, not according to where it was positioned due to the Insert or Append
methods.

The FieldByName method can be used to reference a specific column for updating and accepts one
parameter, the name of the column to reference. This method returns a TField object if the column name
exists or an error if the column name does not exists. This TField object can be used to update the data
for that column in the row buffer via properties such as AsString, AsInteger, etc.

The following example shows how to use the Append method to add a row to a table with the following
structure:

Column # Name DataType Size
--
1 CustomerID ftString 10
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10
6 EMail ftString 30
7 LastSaleDate ftDate 0
8 Notes ftMemo 0

Index Name Columns In Index Options
--

Using ElevateDB

Page 155

Primary_Key CustomerID ixPrimary

begin
 with MyEDBDataSet do
 begin
 Append; { State property will now reflect dsInsert }
 FieldByName('CustomerID').AsString:='100';
 FieldByName('CustomerName').AsString:='The Hardware Store';
 FieldByName('ContactName').AsString:='Bob Smith';
 FieldByName('Phone').AsString:='5551212';
 FieldByName('Fax').AsString:='5551616';
 FieldByName('Email').AsString:='bobs@thehardwarestore.com';
 Post; { State property will now return to dsBrowse }
 end;
end;

If the row that is being posted violates a table constraint for the dataset then an EEDBError exception will
be raised with the error code 1004 (EDB_ERROR_CONSTRAINT). Please see the Exception Handling and
Errors and Appendix A - Error Codes and Messages topics for general information on exception handling in
ElevateDB.

You may use the OnPostError event to trap for any of these error conditions and display a message to the
user. You can also use a try..except block to do the same, and the approach is very similar. The following
shows how to use an OnPostError event handler to trap for a constraint error:

procedure TMyForm.MyTablePostError(DataSet: TDataSet;
 E: EDatabaseError; var Action: TDataAction);
begin
 Action:=daAbort;
 if (E is EEDBError) then
 begin
 if (EEDBError(E).ErrorCode=EDB_ERROR_CONSTRAINT) then
 ShowMessage('This row violates a table or column constraint ('+
 E.Message+')')
 else
 ShowMessage(E.Message);
 end
 else
 ShowMessage(E.Message);
end;

Note
You will notice that the OnPostError event handler uses the more general EDatabaseError exception
object for it's exception (E) parameter. Because of this, you must always first determine whether
the exception object being passed is actually an EEDBError before casting the exception object and
trying to access specific properties such as the ErrorCode property. The EEDBError object descends
from the EDatabaseError object.

The following shows how to use a try..except block to trap for a constraint error:

Using ElevateDB

Page 156

begin
 try
 with MyEDBDataSet do
 begin
 Append; { State property will now reflect dsInsert }
 FieldByName('CustomerID').AsString:='100';
 FieldByName('CustomerName').AsString:='The Hardware Store';
 FieldByName('ContactName').AsString:='Bob Smith';
 FieldByName('Phone').AsString:='5551212';
 FieldByName('Fax').AsString:='5551616';
 FieldByName('Email').AsString:='bobs@thehardwarestore.com';
 Post; { State property will now return to dsBrowse }
 end;
 except
 on E: Exception do
 begin
 if (E is EEDBError) then
 begin
 if (EEDBError(E).ErrorCode=EDB_ERROR_CONSTRAINT) then
 ShowMessage('This row violates a table or column constraint
 ('+
 E.Message+')')
 else
 ShowMessage(E.Message);
 end
 else
 ShowMessage(E.Message);
 end;
 end;
end;

Editing an Existing Row

The Edit method allows you to begin the process of editing an existing row in the dataset. ElevateDB
offers the choice of a pessimistic or optimistic locking protocol, which is configurable via the
RecordLockProtocol property for the TEDBSession assigned to the current dataset (see the SessionName
property for more information on setting the session for a dataset). With the pessimistic locking protocol a
row lock is obtained when the Edit method is called. As long as the row is being edited ElevateDB will hold
a row lock on that row, and will not release this lock until either the Post or Cancel methods is called. With
the optimistic locking protocol a row lock is not obtained until the Post method is called, and never
obtained if the Cancel method is called. This means that another user or session is capable of editing the
row and posting the changes to the row before the Post method is called, thus potentially causing an
EEDBError exception to be raised with the error code 1007 (EDB_ERROR_ROWDELETED), or even error
code 1008 (EDB_ERROR_ROWMODIFIED) if row change detection is turned on for the current session via
the TEDBSession RecordChangeDetection property. In such cases you must discard the edited row by
calling the Cancel method and begin again with a fresh copy of the row using the Edit method.

Using ElevateDB

Page 157

Note
Any updates to the row are done via a row buffer and do not actually exist in the actual dataset
until the row is posted using the Post method. If the Cancel method is called, then any updates to
the row will be discarded. Also, once the row is posted using the Post method it will be positioned in
the dataset according to the active index order based upon any changes made to the row. What this
means is that if any column that is part of the current active index is changed, then it is possible for
the row to re-position itself in a completely different place in the dataset after the Post method is
called.

The following example shows how to use the Edit method to update a row in a dataset:

begin
 with MyEDBDataSet do
 begin
 Edit; { State property will now reflect dsEdit }
 { Set LastSaleDate column to today's date }
 FieldByName('LastSaleDate').AsDateTime:=Date;
 Post; { State property will now return to dsBrowse }
 end;
end;

If the row that you are attempting to edit (or post, if using the optimistic locking protocol) is already
locked by another session, then an EEDBError exception will be raised with the error code 1005
(EDB_ERROR_LOCKROW).

It is also possible that the row that you are attempting to edit (or post) has been deleted by another
session since it was last cached by ElevateDB. If this is the case then a ElevateDB exception will be raised
with the error code 1007 (EDB_ERROR_ROWDELETED). If row change detection is enabled, then it is also
possible that the row that you are attempting to edit (or post) has been changed by another session since
it was last cached by ElevateDB. If this is the case then a ElevateDB exception will be raised with the error
code 1008 (EDB_ERROR_ROWMODIFIED).

You may use the OnEditError (or OnPostError, depending upon the locking protocol) event to trap for
these error conditions and display a message to the user. You can also use a try..except block to do the
same, and the approach is very similar. The following shows how to use an OnEditError event handler to
trap for several errors:

procedure TMyForm.MyTableEditError(DataSet: TDataSet;
 E: EDatabaseError; var Action: TDataAction);
begin
 Action:=daAbort;
 if (E is EEDBError) then
 begin
 if (EEDBError(E).ErrorCode=EDB_ERROR_LOCKROW) then
 begin
 if MessageDlg('The row you are trying to edit '+
 'is currently locked, do you want to '+
 'try to edit this row again?',
 mtWarning,[mbYes,mbNo],0)=mrYes then
 Action:=daRetry;
 end
 else if (EEDBError(E).ErrorCode=EDB_ERROR_ROWDELETED) then

Using ElevateDB

Page 158

 begin
 MessageDlg('The row you are trying to edit '+
 'has been deleted since it was last '+
 'retrieved',mtError,[mbOk],0);
 DataSet.Refresh;
 end
 else if (EEDBError(E).ErrorCode=EDB_ERROR_ROWMODIFIED) then
 begin
 MessageDlg('The row you are trying to edit '+
 'has been modified since it was last '+
 'retrieved, the row will now be '+
 'refreshed',mtWarning,[mbOk],0);
 DataSet.Refresh;
 Action:=daRetry;
 end
 else
 MessageDlg(E.Message,mtError,[mbOK],0);
 end
 else
 MessageDlg(E.Message,mtError,[mbOK],0);
end;

The following shows how to use a try..except block to trap for several errors:

begin
 while True do
 begin
 try
 with MyEDBDataSet do
 begin
 Edit; { State property will now reflect dsEdit }
 { Set LastSaleDate column to today's date }
 FieldByName('LastSaleDate').AsDateTime:=Date;
 Post; { State property will now return to dsBrowse }
 end;
 Break; { Break out of retry loop }
 except
 on E: Exception do
 begin
 if (E is EEDBError) then
 begin
 if (EEDBError(E).ErrorCode=EDB_ERROR_LOCKROW) then
 begin
 if MessageDlg('The row you are trying '+
 'to edit is currently locked, '+
 'do you want to try to edit '+
 'this row again?,mtWarning,
 [mbYes,mbNo],0)=mrYes then
 Continue;
 end
 else if (EEDBError(E).ErrorCode=EDB_ERROR_ROWDELETED) then
 begin
 MessageDlg('The row you are trying '+
 'to edit has been deleted '+
 'since it was last retrieved',
 mtError,[mbOk],0);
 MyTable.Refresh;

Using ElevateDB

Page 159

 Break;
 end
 else if (EEDBError(E).ErrorCode=EDB_ERROR_ROWMODIFIED) then
 begin
 MessageDlg('The row you are trying '+
 'to edit has been modified '+
 'since it was last retrieved, '+
 'the row will now be '+
 'refreshed',mtWarning,[mbOk],0);
 MyTable.Refresh;
 Continue;
 end
 else
 begin
 MessageDlg(E.Message,mtError,[mbOK],0);
 Break;
 end;
 end
 else
 begin
 MessageDlg(E.Message,mtError,[mbOK],0);
 Break;
 end;
 end;
 end;
 end;
end;

Deleting an Existing Row

The Delete method allows you to delete an existing row in a dataset. Unlike the Append, Insert, and Edit
methods, the Delete method is a one-step process and does not require a call to the Post method to
complete its operation. A row lock is obtained when the Delete method is called and is released as soon as
the method completes. After the row is deleted the current position in the dataset will be the next closest
row based upon the active index order.

The following example shows how to use the Delete method to delete a row in a dataset:

begin
 with MyEDBDataSet do
 Delete;
end;

If the row that you are attempting to delete is already locked by another user or session, then an
EEDBError exception will be raised with the error code 1005 (EDB_ERROR_LOCKROW).

It is also possible that the row that you are attempting to delete has been deleted by another session
since it was last cached by ElevateDB. If this is the case then a ElevateDB exception will be raised with the
error code 1007 (EDB_ERROR_ROWDELETED). If row change detection is enabled, then it is also possible
that the row that you are attempting to delete has been changed by another session since it was last
cached by ElevateDB. If this is the case then a ElevateDB exception will be raised with the error code 1008
(EDB_ERROR_ROWMODIFIED).

You may use the OnDeleteError event to trap for these error conditions and display a message to the user.

Using ElevateDB

Page 160

You can also use a try..except block to do the same, and the approach is very similar. The code for an
handling Delete errors is the same as that of an Edit, so please refer to the above code samples for
handling Edit errors.

Cancelling an Insert/Append or Edit Operation

You may cancel an existing Insert/Append or Edit operation by calling the Cancel method. Doing this will
discard any updates to an existing row if you are editing, or will completely discard a new row if you are
inserting or appending. The following example shows how to cancel an edit operation on an existing row:

begin
 with MyEDBDataSet do
 begin
 Edit; { State property will now reflect dsEdit }
 { Set LastSaleDate column to today's date }
 FieldByName('LastSaleDate').AsDateTime:=Date;
 Cancel; { State property will now return to dsBrowse }
 end;
end;

Additional Events

There are several additional events that can be used to hook into the updating process for a dataset. They
include the BeforeInsert, AfterInsert, OnNewRow, BeforeEdit, AfterEdit, BeforeDelete, AfterDelete,
BeforePost, AfterPost, BeforeCancel, and AfterCancel events. All of these events are fairly self-explanatory,
however the OnNewRow is special in that it can be used to assign values to columns in a newly-inserted or
appended row without having the dataset mark the row as modified. If a row has not been modified in
any manner, then the dataset will not perform an implicit Post operation when navigating off of the row.
Instead, the Cancel method will be called and the row discarded.

Updating BLOB and CLOB Columns

Most of the time you can simply use the general TField AsString and AsVariant properties to update a
BLOB or CLOB column in the same fashion as you would any other column. Both of these properties allow
very large strings or binary data to be stored in a BLOB or CLOB column. However, in certain cases you
may want to take advantage of additional methods and functionality that are available through the
TBlobField object that descends from TField or the TEDBBlobStream object that provides a stream
interface to a BLOB or CLOB column. The most interesting methods of the TBlobField object are the
LoadFromFile, LoadFromStream, SaveToFile, and SaveToStream methods. These methods allow you to
very easily load and save the data to and from BLOB and CLOB columns.

Note
You must make sure that the dataset's State property is either dsInsert or dsEdit before using the
LoadFromFile or LoadFromStream methods.

The following is an example of using the LoadFromFile method of the TBlobField object to load the
contents of a text file into a CLOB column:

begin

Using ElevateDB

Page 161

 with MyEDBDataSet do
 begin
 Edit; { State property will now reflect dsEdit }
 { Load a text file from disk }
 TBlobField(FieldByName('Notes')).LoadFromFile('c:\temp\test.txt');
 Post; { State property will now return to dsBrowse }
 end;
end;

Note
You'll notice that we must cast the result of the FieldByName method, which returns a TField object
reference, to a TBlobField type in order to allow us to call the LoadFromFile method. This is okay
since a CLOB column uses a TMemoField object, which descends directly from TBlobField, which
itself descends directly from TField.

In addition to these very useful methods, you can also directly manipulate a BLOB or CLOB column like
any other stream by using the TEDBBlobStream object. The following is an example of using a
TEDBBlobStream component along with the TEDBTable or TEDBQuery SaveToStream method for storing
ElevateDB tables themselves in the BLOB column of another table:

var
 BlobStream: TEDBBlobStream;
begin
 { First create the BLOB stream - be sure to make sure that
 we put the table into dsEdit or dsInsert mode first since
 we're writing to the BLOB stream }
 FirstEDBDataSet.Append;
 try
 BlobStream:=TEDBBlobStream.Create(TBlobField(
 FirstEDBDataSet.FieldByName('TableStream')),bmWrite);
 try
 { Now save the table to the BLOB stream }
 SecondEDBDataSet.SaveToStream(BlobStream);
 finally
 { Be sure to free the BLOB stream *before* the Post }
 BlobStream.Free;
 end;
 FirstEDBDataSet.Post;
 except
 { Cancel on an exception }
 FirstEDBDataSet.Cancel;
 end;
end;

Note
For proper results when updating a BLOB or CLOB column using a TEDBBlobStream object, you
must create the TEDBBlobStream object after calling the Append/Insert or Edit methods for the
dataset containing the BLOB or CLOB column. Also, you must free the TEDBBlobStream object
before calling the Post method to post the changes to the dataset. Finally, be sure to use the proper
open mode when creating a TEDBBlobStream object for updating (either bmReadWrite or bmWrite).

Using ElevateDB

Page 162

Using ElevateDB

Page 163

5.21 Searching and Sorting Tables, Views, and Query Result Sets

Searching and sorting tables, views, and query result sets is accomplished through several methods of the
TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components. The basic searching methods for
tables (not views or query result sets) include the FindKey, FindNearest, SetKey, EditKey, GotoKey, and
GotoNearest methods. The KeyColumnCount property is used with the SetKey and EditKey methods to
control searching using the GotoKey and GotoNearest methods. The extended searching methods that do
not necessarily rely upon an index and can be used with both tables and query result sets include the
Locate, FindFirst, FindLast, FindNext, and FindPrior methods. The basic sorting methods for tables include
the IndexName and IndexFieldNames properties.

Changing the Sort Order

You may use the TEDBTable IndexName and IndexFieldNames properties to set the current index order,
and in effect, sort the current table based upon the index definition for the selected index order.

The IndexName property is used to set the name of the current index. This property should be set to the
name of the index that you wish to use as the current index order. Setting the IndexName property to
blank ('') will cause the index order to reset to the default order for the table, which is usually the order
defined by the primary key of the table, or the natural insertion order of the table if the table does not
have a primary key defined. The following example shows how you would set the current index order for a
table to an index called "CustomerName":

begin
 with MyTable do
 begin
 IndexName:='CustomerName';
 { do something }
 end;
end;

Note
Changing the index order can cause the current row pointer to move to a different position in the
table (but not necessarily move off of the current row unless the row has been changed or deleted
by another session). Call the First method after setting the IndexName property if you want to have
the row pointer set to the beginning of the table based upon the next index order. Changing the
index order will also remove any ranges that are active.

If you attempt to set the IndexName property to a non-existent index an EEDBError exception will be
raised with the error code 401 (EDB_ERROR_NOTFOUND).

The IndexFieldNames property is used to set the current index order by specifying the column names of
the desired index instead of the index name. Multiple column names should be separated with a
semicolon. Using the IndexFieldNames property is desirable in cases where you are trying to set the
current index order based upon a known set of columns and do not have any knowledge of the index
names available. The IndexFieldNames property will attempt to match the given number of columns with
the same number of beginning columns, in left-to-right order, in any of the available indexes for the table.
The following example shows how you would set the current index order to an index called
"CustomerName" that consists of the CustomerName column and the CustomerNo column:

Using ElevateDB

Page 164

begin
 with MyTable do
 begin
 IndexFieldNames:='CustomerName;CustomerNo';
 { do something }
 end;
end;

Note
Setting the IndexFieldNames will not work on indexes that contain descending columns or contain
columns using case-insensitive collations, so you must use the IndexName property instead. Please
see the Internationalization topic for information on collations and index columns.

If ElevateDB cannot find any indexes that match the desired column names an EDatabaseError exception
will be raised instead of an EEDBError exception. If you are using this method of setting the current index
order you should also be prepared to trap for this exception and deal with it appropriately.

Searching Using an Index

The TEDBTable FindKey method accepts an array of search values to use in order to perform an exact
search for a given row using the active index. The return value of the FindKey method indicates whether
the search was successful. If the search was successful then the row pointer is moved to the desired row,
whereas if the search was not successful then the row pointer stays at its current position. The search
values must correspond to the columns that make up the active index or the search will not work properly.
However, FindKey does not require that you fill in all of the column values for all of the columns in the
active index, rather only that you fill in the column values from left to right. The following example shows
how to perform a search on the index used to enforce the primary key and comprised of the CustomerNo
column:

begin
 with MyTable do
 begin
 { Set to the natural order, which in this case
 is the primary key }
 IndexName:='';
 { Search for customer 100 }
 if FindKey([100]) then
 { Row was found, now do something }
 else
 ShowMessage('Row was not found');
 end;
end;

The FindNearest method accepts an array of search values to use in order to perform a near search for a
given row using the active index. If the search was successful then the row pointer is moved to the
desired row, whereas if the search was not successful then the row pointer is moved to the next row that
most closely matches the current search values. If there are no rows that are greater than the search
values then the row pointer will be positioned at the end of the table. The search values must correspond
to the columns that make up the active index or the search will not work properly. However, FindNearest

Using ElevateDB

Page 165

does not require that you fill in all of the column values for all of the columns in the active index, rather
only that you fill in the column values from left to right. The following example shows how to perform a
near search on the index used to enforce the primary key and comprised of the CustomerNo column:

begin
 with MyTable do
 begin
 { Set to the natural order, which in this case
 is the primary key }
 IndexName:='';
 { Search for customer 100 or closest }
 FindNearest([100]);
 end;
end;

The SetKey and EditKey methods are used in conjunction with the GotoKey and GotoNearest methods to
perform searching using column assignments instead of an array of column values. The SetKey method
begins the search process by putting the TEDBTable component into the dsSetKey state and clearing all
column values. You can examine the state of the table using the State property. The application must then
assign values to the desired columns and call the GotoKey or GotoNearest method to perform the actual
search. The GotoNearest method may be used if you wish to perform a near search instead of an exact
search. The EditKey method extends or continues the current search process by putting the TEDBTable
component into the dsSetKey state but not clearing any column values. This allows you to change only one
column without being forced to re-enter all column values needed for the search. The KeyColumnCount
property controls how many columns, based upon the current index, are to be used in the actual search.
By default the KeyColumnCount property is set to the number of columns for the active index. The
following example shows how to perform an exact search using the SetKey and GotoKey methods and
KeyColumnCount property. The active index is an index called "CustomerName" comprised of the
CustomerName column and the CustomerNo column:

begin
 with MyTable do
 begin
 { Set to the CustomerName index }
 IndexName:='CustomerName';
 { Search for the customer with the
 name 'The Hardware Store' }
 SetKey;
 ColumnByName('CustomerName').AsString:='The Hardware Store';
 { This causes the search to only look at the first column
 in the current index when searching }
 KeyColumnCount:=1;
 if GotoKey then
 { Row was found, now do something }
 else
 ShowMessage('Row was not found');
 end;
end;

Using ElevateDB

Page 166

Note
In the previous example we executed a partial-column search. What this means is that we did not
include all of the columns in the active index. ElevateDB does not require that you use all of the
columns in the active index for searching.

The following example shows how to perform a near search using the SetKey and GotoNearest methods,
and KeyColumnCount property. The active index is an index called "CustomerName" comprised of the
CustomerName column and the CustomerNo column:

begin
 with MyTable do
 begin
 { Set to the CustomerName index }
 IndexName:='CustomerName';
 { Search for the customer with the
 name 'The Hardware Store' }
 SetKey;
 ColumnByName('CustomerName').AsString:='The Hardware Store';
 { This causes the search to only look at the first column
 in the current index when searching }
 KeyColumnCount:=1;
 GotoNearest;
 end;
end;

Searching Without a Specific Index Order Set

The Locate method of the TEDBTable, TEDBQuery, and TEDBStoredProc components is used to locate a
row independent of the active index order or of any indexes at all. This is why it can be used with query
result sets in addition to tables. The Locate method will attempt to use the active index for searching, but
if the current search columns do not match the active index then the Locate method will attempt to use
another available index. Indexes are selected based upon the options passed to the Locate method in
conjunction with the column names that you wish to search upon. The index columns are checked from
left to right, and if an index is found that matches the search columns from left to right and satisfies the
options desired for the search it will be used to perform the search. Finally, if no indexes can be found that
can be used for the search, a table scan will be used to execute the search instead. This is usually a sub-
optimal solution and can take a bit of time since the table scan will read every row in the table in order to
examine the desired column values. The Locate method uses the following criteria when determining
whether to use an index or not for the search:

1) ElevateDB matches the index columns to the search columns in left-to-right order.

2) ElevateDB can use an index for the search irrespective of the ascending or descending status of a given
column in the index.

3) ElevateDB can only use an index for the search if the first column(s) in the index in left-to-right order
match(es) both the column(s) being searched upon and the setting of the loCaseInsensitive flag in the
Locate options. If the loCaseInsensitive flag is not specified, then the index column in the index (being
examined for possible use in the search) must be assigned a case-sensitive collation. If the
loCaseInsensitive flag is specified, then the index column in the index must be assigned a case-insensitive
collation.

Using ElevateDB

Page 167

For example, suppose that you have a Customer table with a State column that was defined with the
ANSI_CI (ANSI collation, case-insensitive). An index was created on the State column using the following
CREATE INDEX statement:

CREATE INDEX State ON Customer (State)

To execute an optimized search for any rows where the State column contains 'FL', one would use the
following code:

begin
 with MyTable do
 begin
 { Search for the customer with the
 state "FL" }
 if Locate('State',['FL'],[loCaseInsensitive]) then
 { Row was found, now do something }
 else
 ShowMessage('Row was not found');
 end;
end;

However, suppose that the State column was defined with simply the ANSI collation (case-sensitive) and
the index was created using the following CREATE INDEX statement:

CREATE INDEX State ON Customer
(State)

In order to allow ElevateDB to use this index to optimize any searches on the State column, you must now
not include the loCaseInsensitive flag:

begin
 with MyTable do
 begin
 { Search for the customer with the
 state "FL" }
 if Locate('State',['FL'],[]) then
 { Row was found, now do something }
 else
 ShowMessage('Row was not found');
 end;
end;

Please see the Internationalization topic for more information on collations.

The FindFirst, FindLast, FindNext, and FindPrior methods all rely on the Filter and FilterOptions properties
to do their work. These methods are the most flexible for searching and can be used with both tables and
query result sets, but there are some important caveats. To get acceptable performance from these
methods you must make sure that the filter expression being used for the Filter property is optimized or at

Using ElevateDB

Page 168

least partially-optimized. If the filter expression is un-optimized it will take a significantly greater amount
of time to complete every call to any of the FindFirst, FindLast, FindNext, or FindPrior methods unless the
table or query result set being searched only has a small number of rows. Please see the Setting Filters on
Tables and Query Result Sets topic for more information. Also, because the Filter property is being used
for these methods, you cannot use a different filter expression in combination with these methods.
However, you can set the Filtered property to True and show only the filtered rows if you so desire.
Finally, the FilterOptions property controls how the filtering is performed during the searching, so you
should make sure that these options are set properly. The following example shows how to use the Filter
property and FindFirst and FindNext methods to find matching rows and navigate through them in a table:

begin
 with MyTable do
 begin
 { Search for the first customer with the
 name "The Hardware Store" }
 Filter:='CustomerName='+QuotedStr('The Hardware Store');
 { We want the search to be case-insensitive }
 FilterOptions:=[foCaseInsensitive];
 if FindFirst then
 begin
 { Row was found, now search through
 the rest of the matching rows }
 while FindNext do
 { Do something here }
 end
 else
 ShowMessage('Row was not found');
 end;
end;

Using ElevateDB

Page 169

5.22 Setting Ranges on Tables

Setting ranges on tables is accomplished through several methods of the TEDBTable component. The
basic range methods include the SetRange, SetRangeStart, SetRangeEnd, EditRangeStart, EditRangeEnd,
and ApplyRange methods. The KeyColumnCount property is used with the SetRangeStart, SetRangeEnd,
EditRangeStart and EditRangeEnd methods to control searching using the ApplyRange method. All range
operations are dependent upon the active index order set using the IndexName or IndexFieldNames
properties. Ranges may be combined with expression filters set using the Filter and Filtered propertes
and/or code-based filters set using the OnFilterRow event to further filter the rows in the table.

Setting a Range

The SetRange method accepts two arrays of values to use in order to set a range on a given table. If the
current row pointer does not fall into the range values specified, then the current row pointer will be
moved to the nearest row that falls within the range. These value arrays must contain the column values
in the same order as the column names in the active index or the range will not return the desired results.
However, SetRange does not require that you fill in all of the column values for all of the columns in the
active index, rather only that you fill in the column values from left to right. The following example shows
how to perform a range on the index used to enforce the primary key and comprised of the CustomerNo
column:

begin
 with MyTable do
 begin
 { Set to the natural order, which in this case
 is the primary key }
 IndexName:='';
 { Set a range from customer 100 to customer 300 }
 SetRange([100],[300]);
 end;
end;

The SetRangeStart, SetRangeEnd, EditRangeStart, and EditRangeEnd methods are used in conjunction
with the ApplyRange method to perform a range using column assignments instead of arrays of column
values. The SetRangeStart method begins the range process by putting the TEDBTable component into
the dsSetKey state and clearing all column values. You can examine the state of the table using the State
property. The application must then assign values to the desired columns for the start of the range and
then proceed to call SetRangeEnd to assign values to the desired columns for the end of the range. After
this is done the application can call the ApplyRange method to perform the actual range operation. The
EditRangeStart and EditRangeEnd methods extend or continue the current range process by putting the
TEDBTable component into the dsSetKey state but not clearing any column values. You can examine the
state of the table using the State property. This allows you to change only one column without being
forced to re-enter all column values needed for the beginning or ending values of the range. The
KeyColumnCount property controls how many columns, based upon the active index, are to be used in the
actual range and can be set independently for both the starting and ending column values of the range. By
default the KeyColumnCount property is set to the number of columns in the active index. The following
example shows how to perform a range using the SetRangeStart, SetRangeEnd, and ApplyRange methods
and KeyColumnCount property. The active index is an index called "CustomerName" that consists of the
CustomerName column and the CustomerNo column:

begin

Using ElevateDB

Page 170

 with MyTable do
 begin
 { Set to the CustomerName index }
 IndexName:='CustomerName';
 { Set a range to find all customers with
 a name beginning with 'A' }
 SetRangeStart;
 ColumnByName('CustomerName').AsString:='A';
 { This causes the range to only look at
 the first column in the current index }
 KeyColumnCount:=1;
 SetRangeEnd;
 { Note the padding of the ending range
 values with lowercase z's
 to the length of the CustomerName
 column, which is 20 characters }
 ColumnByName('CustomerName').AsString:='Azzzzzzzzzzzzzzzzzzz';
 { This causes the range to only look at
 the first column in the current index }
 KeyColumnCount:=1;
 ApplyRange;
 end;
end;

Note
In the previous example we executed a partial-column range. What this means is that we did not
include all of the columns in the active index in the range. ElevateDB does not require that you use
all of the columns in the active index for the range.

Using ElevateDB

Page 171

5.23 Setting Master-Detail Links on Tables

A master-detail link is a property-based linkage between a master TDataSource component and a detail
TEDBTable component. Once a master-detail link is established, any changes to the master TDataSource
component will cause the detail TEDBTable component to automatically reflect the change and show only
the detail rows that match the current master row based upon the link criteria. Master-detail links use
ranges for their functionality, and therefore are dependent upon the active index in the detail table. Like
ranges, master-detail links may be combined with expression filters set using the Filter and Filtered
propertes and/or code-based filters set using the OnFilterRow event to further filter the rows in the detail
table.

Defining the Link Properties

Setting master-detail links on tables is accomplished through four properties in the detail TEDBTable
component. These properties are the MasterSource, MasterColumns, IndexName, and IndexFieldNames
properties.

The first step in setting a master-detail link is to assign the MasterSource property. The MasterSource
property refers to a TDataSource component. This makes master-detail links very flexible, because the
TDataSource component can provide data from any TDataSet-descendant component such as a
TEDBTable or TEDBQuery component as well as many other non-ElevateDB dataset components.

Note
For the link to be valid, the TDataSource DataSet property must refer to a valid TDataSet-
descendant component.

The next step is to assign the IndexName property, or IndexFieldNames property, so that the active index,
and the columns that make up that index, will match the columns that you wish to use for the link. The
only difference between specifying the IndexName property versus the IndexFieldNames property is that
the IndexName property expects the name of an index, whereas the IndexFieldNames only expects the
names of columns in the table that match the columns found in an index in the table from left-to-right.
The IndexFieldNames property also does not require that all of the columns in an existing index be
specified in order to match with that existing index, only enough to be able to select the index so that it
will satisfy the needs of the master-detail link.

Finally, the MasterColumns property must be assigned a value. This property requires a column or list of
columns separated by semicolons from the master data source that match the columns in the active index
for the detail table.

To illustrate all of this we'll use an example. Let's suppose that we have two tables with the following
structure and we wish to link them via a master-detail link:

Customer Table

Column # Name DataType Size
--
1 CustomerID ftString 10
2 CustomerName ftString 30
3 ContactName ftString 30
4 Phone ftString 10
5 Fax ftString 10

Using ElevateDB

Page 172

6 EMail ftString 30

Note
Indexes in this case are not important since this will be the master table

Orders Table

Column # Name DataType Size
--
1 CustomerID ftString 10
2 OrderNumber ftString 10
3 OrderDate ftDate 0
4 OrderAmount ftBCD 2

Index Name Columns In Index Options
--
Primary_Key CustomerID;OrderNumber ixPrimary

We would use the following example code to establish a master-detail link between the two tables. In this
example it is assumed that a TDataSource component called CustomerSource exists and points to a
TEDBTable component for the "customer" table:

begin
 with OrdersTable do
 begin
 { Set to the natural order, which in this case
 is the primary key }
 IndexName:='';
 { Assign the MasterSource property }
 MasterSource:=CustomerSource;
 { Set the MasterColumns property to point to the
 CustomerID column from the Customer table }
 MasterColumns:='CustomerID';
 end;
end;

Now any time the current row in the CustomerSource data source changes in any way, the OrdersTable
will automatically reflect that change and only show rows that match the master row's CustomerID
column. Below is the same example, but changed to use the IndexFieldNames property instead:

begin
 with OrdersTable do
 begin
 { Set to the CustomerID column }
 IndexFieldNames:='CustomerID';
 { Assign the MasterSource property }
 MasterSource:=CustomerSource;
 { Set the MasterColumns property to point to the
 CustomerID column from the Customer table }

Using ElevateDB

Page 173

 MasterColumns:='CustomerID';
 end;
end;

Note
Because a master-detail link uses data-event notification in the TDataSource component for
maintaining the link, if the TDataSet component referred to by the TDataSource component's
DataSet property calls its DisableControls method, it will not only disable the updating of any data-
aware controls that refer to it, but it will also disable any master-detail links that refer to it also.
This is the way the TDataSet and TDataSource components have been designed, so this is an
expected behavior that you should keep in mind when designing your application.

Using ElevateDB

Page 174

5.24 Setting Filters on Tables, Views, and Query Result Sets

Setting filters on tables, views, and query result sets is accomplished through several properties of the
TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc components. These properties include the
Filter, FilterOptions, and Filtered properties. The OnFilterRow event is used to assign a code-based filter
event handler that can be used to filter rows using Delphi, C++Builder, or Lazarus code. All filter
operations are completely independent of any active index order.

Setting an Expression Filter

The Filter, FilterOptions, Filtered, and FilterOptimizeLevel properties are used to set an expression filter.
The steps to set an expression filter include setting the filter expression using the Filter property,
specifying any filter options using the FilterOptions property, and then making the expression filter active
by setting the Filtered property to True. You can turn off or disable an expression filter by setting the
Filtered property to False. If the current row pointer does not fall into the conditions specified by an
expression filter, then the current row pointer will be moved to the nearest row that falls within the filtered
set of rows. Expression filters may be combined with ranges, master-detail links, and/or code-based filters
to further filter the rows in the table or query result set.

ElevateDB's expression filters use the same naming conventions, operators, and functions as its SQL
implementation of WHERE conditions. The only differences are as follows:

Difference Description

Correlation Names You cannot use table or column correlation names in filter
expressions.

Query expressions You cannot use query expressions in filter expressions.

Wildcards You can additionally use the asterisk (*) wildcard character
with the equality operator (=) or inequality operator (<>) in
order to perform partial-length comparisons. However, this
only works when the foNoPartialCompare element is not
included in the FilterOptions property.

Please see the Identifiers, Types and Operators, Numeric Functions, String Functions, Date/Time
Functions, Interval Functions, and Conversion Functions topics for more information.

The following example shows how to set an expression filter where the LastSaleDate column is between
January 1, 1998 and December 31, 1998 and the TotalSales column is greater than 10,000 dollars:

begin
 with MyTable do
 begin
 { Set the filter expression }
 Filter:='(LastSaleDate >= DATE '+Engine.QuotedSQLStr('1998-01-01')+')
 '+
 'and (LastSaleDate <= DATE
 '+Engine.QuotedSQLStr('1998-12-31')+') '+
 'and (TotalSales > 10000)';
 FilterOptions:=[];
 Filtered:=True;
 end;
end;

Using ElevateDB

Page 175

ElevateDB attempts to optimize all expression filters, and the filter optimization process is the same as that
used for optimizing SQL WHERE conditions. Please see the Optimizer topic for more information.

Setting a Code-Based Filter

The OnFilterRow event and the Filtered property are used together to set a code-based filter. The steps to
set a code-based filter include assigning an event handler to the OnFilterRow event and then making the
code-based filter active by setting the Filtered property to True. You can turn off or disable a code-based
filter by setting the Filtered property to False. If the current row pointer does not fall into the conditions
specified within the code-based filter, then the current row pointer will be moved to the nearest row that
falls within the filtered set of rows.

The following example shows how to write a code-based filter event handler where the CustomerName
column contains the word "Hardware" (case-sensitive):

procedure TMyForm.TableFilterRow(DataSet: TDataSet;
 var Accept: Boolean);
begin
 Accept:=False;
 if Pos('Hardware',
 DataSet.ColumnByName('CustomerName').AsString) > 0) then
 Accept:=True;
end;

Code-based filters implemented via an OnFilterRow event handler are always completely un-optimized.
However, ElevateDB only incrementally calls the OnFilterRow event handler for the row or rows necessary
for any data-aware controls or for positioning on a desired row (if data-aware controls are not being
used). For example, if you positioned a table with an active code-based filter on a new row using the
Locate method, then ElevateDB will call the OnFilterRow event handler for the current row and any
subsequent rows using the active index order until it has found a row that satisfies the event handler
(Accept=True). ElevateDB then stops and does not attempt to filter any further rows. The OnFilterRow
event handler can, therefore, be used to filter large numbers of rows incrementally without a large amount
of overhead.

Using ElevateDB

Page 176

5.25 Using Streams with Tables, Views and Query Result Sets

Loading and saving tables, views, and query result sets to and from streams is accomplished through the
LoadFromStream and SaveToStream methods of the TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components. A stream is any TStream-descendant object such as TFileStream,
TMemoryStream, or even the ElevateDB TEDBBlobStream object used for reading and writing to BLOB
columns. Loading a stream copies the entire contents of a stream to an existing table, view, or query
result set. When loading a stream, the contents of the stream must have been created using the
SaveToStream method or else an EEDBError exception will be raised. The error code given when a load
from a stream fails because of an invalid stream is 1003 (EDB_ERROR_STREAM). Saving to a stream
copies the contents of a table, view, or query result set to the stream, overwriting the entire contents of
the stream. The rows that are copied can be controlled by setting a range or filter on the source table or
query result set prior to calling the SaveToStream method. Please see the Setting Ranges on Tables and
Setting Filters on Tables and Query Result Sets topics for more information.

Loading Data from a Stream

To load data from a stream into an existing table, view, or query result set, you must open the
TEDBTable, TEDBQuery, or TEDBStoredProc component and then call the LoadFromStream method.

The following example shows how to load data from a memory stream (assumed to already be created)
into a table using the LoadFromStream method:

begin
 with MyTable do
 begin
 DatabaseName:='SalesDB';
 TableName:='customer';
 Open;
 LoadFromStream(MyMemoryStream);
 end;
end;

Note
Tables, views, or query result sets in remote sessions can load data from a local (client-side)
stream. However, since the stream contents are sent as one buffer to the ElevateDB Server as part
of the load request, it is recommended that you do not load particularly large streams since you will
run the risk of exceeding the available memory on the local workstation or ElevateDB Server.

Saving Data to a Stream

To save the data from a table, view, or query result set to a stream, you must open the TEDBTable,
TEDBQuery, or TEDBStoredProc component and then call the SaveToStream method.

The following example shows how to save the data from a table to a memory stream (assumed to already
be created) using the SaveToStream method of the TEDBTable component:

begin

Using ElevateDB

Page 177

 with MyTable do
 begin
 DatabaseName:='SalesDB';
 TableName:='customer';
 Open;
 SaveToStream(MyMemoryStream);
 end;
end;

Note
When the SaveToStream method is called, the existing position of the stream pointer in the
destination stream is not moved, and the size of the destination stream is not changed except in the
case where the size must be expanded to accomodate the new stream data being saved from the
table, view, or query result set. Therefore, if you wish to overwrite any existing data in the
destination stream during the SaveToStream method call, you should use the following code on the
stream before calling the SaveToStream method:

begin
 with MyStream do
 begin
 Size:=0;
 Position:=0;
 end;
end;

The reason for this behavior is that it allows the developer the possibility of combining multiple streams
from multiple tables, views, or query result sets into one stream.

Using ElevateDB

Page 178

5.26 Cached Updates

Using cached updates with tables, views, and query result sets is accomplished through the
BeginCachedUpdates, and ApplyCachedUpdates, and CancelCachedUpdates methods of the TEDBTable,
TEDBQuery, TEDBScript, and TEDBStoredProc components. In addition, the CachingUpdates property can
be used to find out when cached updates are in effect for a dataset.

Using cached updates permits an application to copy all existing rows in a given table, view, or query
result set to a temporary table that is then used for any inserts, updates, or deletes. Once all updates are
complete, the application may then call the ApplyCachedUpdates method to apply all updates to the
source table or query result set, or the CancelCachedUpdates method to cancel all updates and revert the
table or query result set to its original state prior to the cached updates. The rows that are included in the
cached updates can be controlled by setting a range or filter on the source table or query result set prior
to calling the BeginCachedUpdates method. Please see the Setting Ranges on Tables and Setting Filters on
Tables,Views, and Query Result Sets topics for more information.

Warning
Do not use cached updates on very large tables or query result sets with large number of rows in
the active set according to any active ranges and/or filters. Doing so can result in some serious
performance problems as the entire set of rows will need to be copied when cached updates are
begun.

Beginning Cached Updates

To begin cached updates, you must call the BeginCachedUpdates method. When using either a
TEDBTable, TEDBQuery, TEDBStoredProc, or TEDBScript component, the table, view, or query result set
must be opened (Active property is set to True) or an exception will be raised.

Note
Cached updates require that a primary key be defined for the underlying table that is being updated
or else an EEDBError exception will be raised. The error code given when a BeginCachedUpdates
call fails due to a missing primary key is 1307 (EDB_ERROR_CACHEUPDATES).

Applying Cached Updates

To apply any cached updates to the source table, view, or query result set, you must call the
ApplyCachedUpdates method. This method will apply any updates that were made to the temporary table
used for the cached updates to the source table, view, or query result set. Only rows that were inserted,
updated, or deleted are processed, so the result is the same as calling the CancelCachedUpdates method
if no rows were inserted, updated, or deleted while cached updates were enabled. You can examine the
CachingUpdates property to determine whether cached udpdates are in effect before trying to apply any
cached updates.

A transaction is not required around the ApplyCachedUpdates method call in order to make it atomic. The
ApplyCachedUpdates method is always executed as an atomic unit of work.

Reconciling Errors

Using ElevateDB

Page 179

Cached updates are handled in an optimistic manner, which means that ElevateDB does not hold any locks
on the rows that are held in the cache while the cached updates are in effect. Subsequently, it is possible
that another session has changed some or all of the rows that were cached and updated or deleted in the
cache. When the cached updates are then applied using the ApplyCachedUpdates method, an error
message will be raised and it is possible that only a portion of the cached updates will be applied to the
source table, view, or query result set. To avoid this, you can define an ERROR trigger on the underlying
table being updated. For more information on ERROR triggers, please see the CREATE TRIGGER topic in
the ElevateDB SQL Manual.

Note
Calling the LOADINGUPDATES function during an ERROR trigger will return TRUE during the
execution of the ApplyCachedUpdates call. This is because the cached updates functionality uses
the ElevateDB replication manager for their implementation.

Filters, Ranges, and Master-Detail Links

Most of the operations that can be performed on a TEDBTable, TEDBQuery, TEDBScript, or
TEDBStoredProc component behave the same regardless of whether cached updates are active or not.
This includes the following operations:

Navigating Tables, Views, and Query Result Sets
Searching and Sorting Tables, Views, and Query Result Sets
Inserting, Updating, and Deleting Rows

However, certain states of the table, view, or query result set are not carried over to the cached updates
temporary table. These include:

Filters
Ranges
Master-Detail Links

All of these states are reset for the cached updates temporary table. You may apply new filters, ranges,
and/or master-detail links on the cached updates temporary table if you wish, but they will not apply to
the base table nor will they affect the base table's state with respect to filters, ranges, or master-detail
links. After the cached updates are applied or cancelled, all of these states are set back to what they were
prior to the cached updates being active.

Refreshing During Cached Updates

If you call the TEDBTable, TEDBQuery, TEDBStoredProc, or TEDBScript Refresh method while cached
updates are active, then the current contents of the cached updates temporary table will be discarded and
replaced with the latest data from the base table. Cached updates will remain in effect after the Refresh is
complete.

Using ElevateDB

Page 180

Chapter 6
Component Reference

6.1 EEDBError Component

Unit: edbcomps

Inherits From EDatabaseError

An EEDBError exception object is raised whenever an ElevateDB error occurs. You will find a list of all of
the ElevateDB error codes in the Appendix A - Error Codes and Messages topic. For general information on
exception handling in ElevateDB please see the Exception Handling and Errors topic.

Properties Methods Events

ErrorCode Create

ErrorColumn

ErrorLine

ErrorMsg

Component Reference

Page 181

EEDBError.ErrorCode Property

property ErrorCode: Integer

Indicates the native ElevateDB error code being raised in the current exception.

Note
This property is always set for every exception.

Component Reference

Page 182

EEDBError.ErrorColumn Property

property ErrorColumn: Integer

Indicates the column of text in that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 183

EEDBError.ErrorLine Property

property ErrorLine: Integer

Indicates the line of text in that the current exception applies to.

Note
This property may or may not be set depending upon the exception being raised.

Component Reference

Page 184

EEDBError.ErrorMsg Property

property ErrorMsg: String

Indicates the error message that gives further information on the exception.

Note
This property is always set for every exception.

Component Reference

Page 185

EEDBError.Create Method

constructor Create(E: Exception)

Call the Create constructor to create an instance of the EEDBError exception class.

Component Reference

Page 186

6.2 TEDBBlobStream Component

Unit: edbcomps

Inherits From TStream

Use the TEDBBlobStream object to access or modify the contents of a BLOB or CLOB column in a dataset
using a stream interface. A BLOB column is represented by the TBlobField object, and a CLOB column is
represented by a TMemoField object. TBlobField and TMemoField objects use streams to implement many
of their data access properties and methods via the standard CreateBlobStream method that is
implemented by the ElevateDB dataset components.

To use a TEDBBlobStream object, create an instance of TEDBBlobStream, use the methods of the
TEDBBlobStream object to read or write the data, and then free the object. Do not use the same instance
of a TEDBBlobStream object to access data from more than one row. Instead, create a new
TEDBBlobStream object every time you need to read or write to a BLOB or CLOB column for a row.

Note
For proper results when updating a BLOB or CLOB column using a TEDBBlobStream object, you
must create the TEDBBlobStream object after calling the Append/Insert or Edit method for the
dataset containing the BLOB or CLOB column. Also, you must free the TEDBBlobStream object
before calling the Post method to post the changes to the dataset. Finally, be sure to use the proper
open mode when creating a TEDBBlobStream object for updating (either bmReadWrite or bmWrite).

Properties Methods Events

Create

Read

Seek

Truncate

Write

Component Reference

Page 187

TEDBBlobStream.Create Method

constructor Create(Field: TBlobField; Mode: TBlobStreamMode)

Call the Create constructor to create an instance of the TEDBBlobStream class.

Component Reference

Page 188

TEDBBlobStream.Read Method

function Read(var Buffer; Count: LongInt): LongInt

Read transfers up to Count bytes from the BLOB or CLOB column into Buffer, starting in the current
position, and then advances the current position by the number of bytes actually transferred. Read returns
the number of bytes actually transferred (which may be less than the number requested in Count). Buffer
must have at least Count bytes allocated to hold the data that was read from the column.

All the other reading methods of a TEDBBlobStream object (ReadBuffer, ReadComponent) call Read to do
their actual reading.

Note
Do not call Read when the TEDBBlobStream object was created in bmWrite mode. Also, please
remember that if you are using a stream on a CLOB column using a Unicode version of ElevateDB,
then the number of characters in the CLOB column will not be equal to the number of bytes in the
stream like it is with an ANSI version of ElevateDB.

Component Reference

Page 189

TEDBBlobStream.Seek Method

function Seek(Offset: LongInt; Origin: Word): LongInt

function Seek(const Offset: Int64; Origin: TSeekOrigin): Int64

Use Seek to move the current position within the BLOB or CLOB column by the indicated offset. Seek
allows an application to read from or write to a particular location within the BLOB or CLOB column.

The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the
following values:

Origin Description

soFromBeginning Offset is from the beginning of the BLOB or CLOB column.
Seek moves to the position Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the BLOB or CLOB
column. Seek moves to Position + Offset.

soFromEnd Offset is from the end of the BLOB or CLOB column. Offset
must be <= 0 to indicate a number of bytes before the end of
the BLOB or CLOB.

Seek returns the new value of the Position property, the new current position in the BLOB or CLOB
column.

Note
Please remember that if you are using a stream on a CLOB column using a Unicode version of
ElevateDB, then the number of characters in the CLOB column will not be equal to the number of
bytes in the stream like it is with an ANSI version of ElevateDB.

Component Reference

Page 190

TEDBBlobStream.Truncate Method

procedure Truncate

Use Truncate to limit the size of the BLOB or CLOB column. Calling Truncate when the current position is 0
will clear the contents of the BLOB or CLOB column.

Note
Do not call Truncate when the TEDBBlobStream was created in bmRead mode. Please remember
that if you are using a stream on a CLOB column using a Unicode version of ElevateDB, then the
number of characters in the CLOB column will not be equal to the number of bytes in the stream
like it is with an ANSI version of ElevateDB.

Component Reference

Page 191

TEDBBlobStream.Write Method

function Write(const Buffer; Count: LongInt): LongInt

Use Write to write Count bytes to the BLOB or CLOB column, starting at the current position.

All the other data-writing methods of a TEDBBlobStream object (WriteBuffer, WriteComponent) call Write
to do their actual writing.

Note
Do not call Write when the TEDBBlobStream object was created in bmRead mode. Also, please
remember that if you are using a stream on a CLOB column using a Unicode version of ElevateDB,
then the number of characters in the CLOB column will not be equal to the number of bytes in the
stream like it is with an ANSI version of ElevateDB.

Component Reference

Page 192

6.3 TEDBDatabase Component

Unit: edbcomps

Inherits From TCustomConnection

Use the TEDBDatabase component to manage a database within an application. You may have multiple
TEDBDatabase components referring to the same database and they will share the same transaction
status, etc.

Note
Explicit declaration of a TEDBDatabase component for each database connection in an application is
optional if the application does not need to explicitly control that database. If a TEDBDatabase
component is not explicitly declared and instantiated for a database, a temporary TEDBDatabase
component with a default set of properties is created for it at runtime.

Properties Methods Events

Database CloseDataSets OnLogMessage

DatabaseName Commit OnProgress

DataSets Execute OnStatusMessage

EngineVersion ExecuteScript

Handle Rollback

InTransaction StartTransaction

KeepConnection TableInTransaction

Session ValidateName

SessionName

Temporary

Component Reference

Page 193

TEDBDatabase.Database Property

property Database: String

Use the Database property to specify the actual ElevateDB database that will be accessed by this
TEDBDatabase component.

Note
Attempting to set this property when the Connected property of the TEDBDatabase component is
True will result in an exception being raised.

Component Reference

Page 194

TEDBDatabase.DatabaseName Property

property DatabaseName: String

Use the DatabaseName property to specify the name of the database to associate with this TEDBDatabase
component. The database name is arbitrary and is used only for identification of the database when
connecting TEDBTable, TEDBQuery, and TEDBStoredProc components. It is best to think of the
DatabaseName as an alias to the actual database, which is represented by the Database property. The
DatabaseName property must begin with an alpha character.

Note
Attempting to set this property when the Connected property of the TEDBDatabase component is
True will result in an exception being raised.

Component Reference

Page 195

TEDBDatabase.DataSets Property

property DataSets[Index: Integer]: TEDBDBDataSet

The DataSets property provides an indexed array of all active datasets for a TEDBDatabase component. An
active dataset is one that is currently open.

Note
A "dataset" is a TEDBTable, TEDBQuery, or TEDBStoredProc component, all of which descend from
the TEDBDBDataSet component.

Component Reference

Page 196

TEDBDatabase.EngineVersion Property

property EngineVersion: String

Indicates the current version of ElevateDB being used. This property is read-only.

Component Reference

Page 197

TEDBDatabase.Handle Property

property Handle: TEDBDatabaseManager

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Component Reference

Page 198

TEDBDatabase.InTransaction Property

property InTransaction: Boolean

Use the InTransaction property at run-time to determine if a transaction is currently in progress. The
InTransaction property is True if a transaction is in progress and False if a transaction is not in progress.

The value of the InTransaction property cannot be changed directly. Calling the TEDBDatabase
StartTransaction sets the InTransaction property to True. Calling the TEDBDatabase Commit or Rollback
methods sets the InTransaction property to False.

Note
If the current TEDBDatabase component refers to the same database as another TEDBDatabase
component, then calling StartTransaction on one component will also cause the other component's
InTransaction property to return True. This is because ElevateDB never allocates more than one
internal handle for a given database.

Component Reference

Page 199

TEDBDatabase.KeepConnection Property

property KeepConnection: Boolean

Use the KeepConnection property to specify whether an application remains connected to a database even
if no datasets are open. When the KeepConnection property is True (the default) the connection is
maintained. When the KeepConnection property is False a connection is dropped when there are no open
datasets. Dropping a connection releases system resources allocated to the connection, but if a dataset is
later opened that uses the database, the connection must be reestablished and initialized.

Note
The KeepConnection property setting for temporary TEDBDatabase components created
automatically as needed is determined by the KeepConnections property of the TEDBSession
component that the TEDBDatabase component is linked to via its SessionName property.

Component Reference

Page 200

TEDBDatabase.Session Property

property Session: TEDBSession

Use the Session property to determine the TEDBSession component that the TEDBDatabase component is
linked to. By default, a TEDBDatabase component is linked with the default TEDBSession component that
is automatically created for all applications and can be referenced via the global Session function in the
edbcomps unit. To assign a TEDBDatabase component to a different session, specify the name of a
different TEDBSession component in the SessionName property.

Component Reference

Page 201

TEDBDatabase.SessionName Property

property SessionName: String

Use the SessionName property to specify the session with which the TEDBDatabase component is linked.
If the SessionName property is blank, a TEDBDatabase component is automatically linked with the default
TEDBSession component that can be referenced via the global Session function in the edbcomps unit. To
link a TEDBDatabase component with a different session in an application, the SessionName property must
match the SessionName property of an existing TEDBSession component.

Component Reference

Page 202

TEDBDatabase.Temporary Property

property Temporary: Boolean

The Temporary property indicates whether a TEDBDatabase component is temporary and created by
ElevateDB as needed, or persistent and explicitly created, managed, and freed within the application. A
temporary TEDBDatabase component is created when a dataset is opened and the dataset is not already
linked with an existing TEDBDatabase component via its DatabaseName property. If Temporary remains
True, then a temporary TEDBDatabase component is freed when the dataset is closed. An application can
prevent the destruction of a temporary TEDBDatabase component by setting Temporary to False while the
dataset is active, but the application is then responsible for closing the TEDBDatabase component when it
is no longer needed.

Note
A "dataset" is a TEDBTable, TEDBQuery, or TEDBStoredProc component, all of which descend from
the TEDBDBDataSet component.

Component Reference

Page 203

TEDBDatabase.CloseDataSets Method

procedure CloseDataSets

Call the CloseDataSets method to close all active datasets without disconnecting from the database.
Ordinarily, when an application calls the Close method, all datasets are closed, and the connection to the
database is dropped. Calling CloseDataSets instead of Close ensures that an application can close all active
datasets without having to reconnect to the database at a later time.

Component Reference

Page 204

TEDBDatabase.Commit Method

procedure Commit(ForceFlush: Boolean=True)

Call the Commit method to permanently store to the database all row updates, insertions, and deletions
that have occurred within the current transaction and then end the transaction. The current transaction is
the last transaction started by calling the StartTransaction method. The optional ForceFlush parameter
allows you to specifically indicate whether the commit should also perform an operating system flush of
the committed data. The default value is True.

Note
Before calling the Commit method, an application may check the status of the InTransaction
property. If an application calls Commit and there is no current transaction, an exception is raised.

Component Reference

Page 205

TEDBDatabase.Execute Method

function Execute(const SQL: String; Params: TParams=nil; Query:
 TEDBQuery=nil): Integer

Call the Execute method to execute an SQL statement directly. The number of rows affected is returned as
the result of this method. The SQL statement may also be parameterized.

Note
You may pass in a TEDBQuery component that has already been created for use with this method.
However, in such a case you should be aware that several properties of the TEDBQuery component
will be overwritten by this method in order to execute the SQL.

Component Reference

Page 206

TEDBDatabase.ExecuteScript Method

procedure ExecuteScript(const SQL: String; Params: TParams=nil;
 Script: TEDBScript=nil)

Call the ExecuteScript method to execute an SQL script directly. The SQL script may also be
parameterized.

Note
You may pass in a TEDBScript component that has already been created for use with this method.
However, in such a case you should be aware that several properties of the TEDBScript component
will be overwritten by this method in order to execute the script.

Component Reference

Page 207

TEDBDatabase.Rollback Method

procedure Rollback

Call the Rollback method to cancel all row updates, insertions, and deletions for the current transaction
and to end the transaction. The current transaction is the last transaction started by calling the Rollback
method.

Note
Before calling the Rollback method, an application may check the status of the InTransaction
property. If an application calls the Rollback method and there is no current transaction, an
exception is raised.

Component Reference

Page 208

TEDBDatabase.StartTransaction Method

procedure StartTransaction(const Tables: TEDBStringsArray;
 Timeout: Integer=-1)

procedure StartTransaction(const Tables: array of const;
 Timeout: Integer=-1)

Call the StartTransaction method to begin a new transaction. Before calling the StartTransaction method,
an application should check the status of the InTransaction property. If the InTransaction property is True,
indicating that a transaction is already in progress, a subsequent call to StartTransaction without first
calling the Commit or Rollback methods to end the current transaction will raise an exception.

The Tables parameter allows you to specify a list of table names that should be included in the
transaction. This is called a restricted transaction, since it usually involves only a subset of the tables in
the database. If the Tables parameter is nil or has a length of 0, then the transaction will encompass the
entire database. To make things easier in cases where an empty array is required, we have included the
following pre-declared empty array in the edbtype unit:

EmptyEDBStringsArray

Just pass this variable name to the StartTransaction method whenever you wish to start a transaction on
the entire database.

After the StartTransaction method is called, any row updates, insertions, and deletions that take place on
tables that are part of the active transaction are buffered by ElevateDB until an application calls the
Commit method to save the changes or the Rollback method is to cancel them.

The Timeout parameter indicates how long a transaction will wait, in milliseconds, to acquire the
necessary lock(s) to start the transaction. The default value is -1, which will cause the transaction to wait
up to several minutes before issuing a lock failure exception.

Note
The transaction isolation level in ElevateDB is always serialized, meaning that ElevateDB will only
allow one session at a time to have an active transaction on the same table or tables.

Component Reference

Page 209

TEDBDatabase.TableInTransaction Method

function TableInTransaction(const TableName: String): Boolean

Use the TableInTransaction method to determine if a particular table is involved in the current transaction.

Component Reference

Page 210

TEDBDatabase.ValidateName Method

procedure ValidateName(const Name: String)

Call the ValidateName method to prevent duplicate access to a TEDBDatabase component from within a
single TEDBSession component. The Name parameter contains the DatabaseName of the TEDBDatabase
component to test. If the TEDBDatabase component is already open, the ValidateName method raises an
exception. If the TEDBDatabase component is not open, the procedure returns, and the application
continues processing.

Note
Most applications should not need to call this method directly. It is called automatically each time a
TEDBDatabase component is opened.

Component Reference

Page 211

TEDBDatabase.OnLogMessage Event

property OnLogMessage: TEDBLogMessageEvent

The OnLogMessage event is fired when an SQL statement is executed via the Execute method and that
statement generates log messages. Assign an event handler to the OnLogMessage event to save or display
these log messages within your application. The following SQL statements will generate log messages:

ALTER TABLE
VERIFY TABLE
REPAIR TABLE
OPTIMIZE TABLE

Component Reference

Page 212

TEDBDatabase.OnProgress Event

property OnProgress: TEDBProgressEvent

The OnProgress event is fired when an SQL statement is executed via the Execute method and that
statement generates progress. Assign an event handler to the OnProgress event to display the progress in
your application and to, optionally, abort the execution of the SQL statement by setting the Continue
parameter to False. The following SQL statements will generate progress:

SELECT
INSERT
UPDATE
DELETE
ALTER TABLE
VERIFY TABLE
REPAIR TABLE
OPTIMIZE TABLE
IMPORT TABLE
EXPORT TABLE
MIGRATE DATABASE
BACKUP DATABASE
RESTORE DATABASE
SAVE UPDATES
LOAD UPDATES
COPY FILE
RENAME FILE
DELETE FILE

Component Reference

Page 213

TEDBDatabase.OnStatusMessage Event

property OnStatusMessage: TEDBStatusMessageEvent

The OnStatusMessage event is fired when an SQL statement is executed via the Execute method and that
statement generates status messages. Assign an event handler to the OnStatusMessage event to display
these messages in your application. All SQL statements will generate status messages.

Component Reference

Page 214

6.4 TEDBDataSet Component

Unit: edbcomps

Inherits From TDataSet

The TEDBDataSet component is a dataset component that defines ElevateDB-specific functionality for a
dataset. Applications never use TEDBDataSet components directly. Instead they use the descendants of
TEDBDataSet, the TEDBTable, TEDBQuery, and TEDBStoredProc components, which inherit its database-
related properties and methods.

Properties Methods Events

AutoDisplayLabels ApplyCachedUpdates OnUpdateRecord

BookmarkSize BeginCachedUpdates

CachedUpdatesModified CancelCachedUpdates

CachingUpdates CreateCalculatedField

CopyOnAppend Export

FilterExecutionTime FlushBuffers

Handle GetCollationForField

ReadOnly GetDayTimeIntervalTypeForField

RecordUpdateCounter GetYearMonthIntervalTypeForField

RemoteReadSize Import

UpdateObject LoadFromStream

LockCurrentRecord

RecordIsLocked

SaveToStream

UnlockAllRecords

UnlockCurrentRecord

Component Reference

Page 215

TEDBDataSet.AutoDisplayLabels Property

property AutoDisplayLabels: Boolean

Use the AutoDisplayLabels property to specify whether the descriptions for each column in the dataset
should be automatically populated as the DisplayLabel property of each TField component defined for this
TEDBDataSet component. Since the TDBGrid component uses the DisplayLabel property of a TField
component automatically, this property is very useful when data will be displayed in a TDBGrid
component.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 216

TEDBDataSet.BookmarkSize Property

property BookmarkSize: Integer

Component Reference

Page 217

TEDBDataSet.CachedUpdatesModified Property

property CachedUpdatesModified: Boolean

Component Reference

Page 218

TEDBDataSet.CachingUpdates Property

property CachingUpdates: Boolean

Use the CachingUpdates property to determine whether updates are being cached.

Component Reference

Page 219

TEDBDataSet.CopyOnAppend Property

property CopyOnAppend: Boolean

Use the CopyOnAppend property to control whether the current or last row's contents should be copied
automatically to any newly inserted or appended rows.

Note
Using the Append method will cause the last row to be copied, not the current row. If you wish to
copy the current row's contents then you should use the Insert method. Also, this property is only
used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and TEDBStoredProc
components.

Component Reference

Page 220

TEDBDataSet.FilterExecutionTime Property

property FilterExecutionTime: Double

Use the FilterExecutionTime property to determine how long the current expression filter, specified via the
Filter property, took to execute in seconds.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 221

TEDBDataSet.Handle Property

property Handle: TEDBCursor

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Component Reference

Page 222

TEDBDataSet.ReadOnly Property

property ReadOnly: Boolean

Use the ReadOnly property to prevent any updates to the dataset. The default value is False, meaning
users can insert, update, and delete rows in the dataset. When the ReadOnly property is True, the
dataset's CanModify property is False.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 223

TEDBDataSet.RecordUpdateCounter Property

property RecordUpdateCounter: Integer

Use the RecordUpdateCounter property to retrieve the update counter for the current row. ElevateDB
tracks changes to rows using an update counter for each row, and any time a row is updated, the update
counter will be incremented by 1.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 224

TEDBDataSet.RemoteReadSize Property

property RemoteReadSize: Integer

Use the RemoteReadSize property to specify how many rows should be read at once whenever a remote
session needs to read rows from an ElevateDB Server. This property is most useful when performing a
sequential navigation of a large remote table, view, or query result set on an ElevateDB Server. You
should be careful to not set this property to too high of a value since doing so can result in excessive
memory consumption and network traffic. This is especially true when the access to a remote table, view,
or query result set is mostly random and not sequential.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 225

TEDBDataSet.UpdateObject Property

property UpdateObject: TEDBDataSetUpdateObject

Use the UpdateObject property to specify a TEDBUpdateSQL component that will be used to apply any
updates from a TClientDataSet component via the IProvider support in ElevateDB.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 226

TEDBDataSet.ApplyCachedUpdates Method

procedure ApplyCachedUpdates(Options:
 TEDBApplyCachedUpdatesOptions=[])

Use the ApplyCachedUpdates method to begin the process of applying any inserts, updates, or deletes
that were cached to the source table, view, or query result set.

Component Reference

Page 227

TEDBDataSet.BeginCachedUpdates Method

procedure BeginCachedUpdates

Use the BeginCachedUpdates method to copy all rows to a temporary table that will be used for caching
all inserts, updates, and deletes until the cached updates are applied using the ApplyCachedUpdates
method or cancelled using the CancelCachedUpdates method.

Component Reference

Page 228

TEDBDataSet.CancelCachedUpdates Method

procedure CancelCachedUpdates

Use the CancelCachedUpdates method to discard any cached updates and return the source table, view, or
query result set to its original state.

Component Reference

Page 229

TEDBDataSet.CreateCalculatedField Method

function CreateCalculatedField(AOwner: TComponent; const
 AFieldName: String; ADataType: TFieldType; ASize: Integer=0):
 TField;

Component Reference

Page 230

TEDBDataSet.Export Method

procedure Export(const ExportFile: String; const StoreName:
 String; const ColumnsToExport: TEDBStringsArray=nil; Format:
 TEDBFileFormat=ffDelimited; Encoding: TEDBFileEncoding=feAuto;
 DelimiterChar: Char=SEPARATOR; QuoteChar: Char=DOUBLE_QUOTE;
 const DateFormatStr: String=ANSI_DATE_FORMAT; const
 TimeFormatStr: String=ANSI_TIME_FORMAT; const AMStr:
 String=ANSI_12HOUR_AM; const PMStr: String=ANSI_12HOUR_PM;
 DecimalChar: Char=ANSI_DECIMAL_SEPARATOR; const TrueStr:
 String=ANSI_TRUE; const FalseStr: String=ANSI_FALSE;
 IncludeHeaders: Boolean=False; MaxRows: Integer=-1)

Use this method to export the rows in a dataset to a delimited or XML file.

Note
This method is defined as a way to provide for the exporting of result sets, and is simply a method
version of the SQL EXPORT TABLE statement in ElevateDB. Please consult the ElevateDB SQL
Manual for more information on the various export options available in the EXPORT TABLE
statement.

Component Reference

Page 231

TEDBDataSet.FlushBuffers Method

procedure FlushBuffers

Use the FlushBuffers method to flush data to disk. If the table, view, or query result set being updated is
opened exclusively, then the FlushBuffers method flushes all cached writes in ElevateDB to disk and
proceeds to instruct the operating system to flush all cached writes to disk also. If the table, view, or
query result set is opened shared, then FlushBuffers only instructs the operating system to flush all cached
writes to disk since shared datasets in ElevateDB do not cache any writes.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 232

TEDBDataSet.GetCollationForField Method

function GetCollationForField(const FieldName: String): String

Use the GetCollationForField method to retrieve the collation name for a given CHAR/VARCHAR/CLOB
column.

Component Reference

Page 233

TEDBDataSet.GetDayTimeIntervalTypeForField Method

function GetDayTimeIntervalTypeForField(const FieldName:
 String): TEDBDayTimeIntervalType

Use the GetDayTimeIntervalTypeForField method to retrieve the interval type for a given DAY-TIME
INTERVAL column. This is useful when trying to format interval values properly for display in data-aware
controls.

Component Reference

Page 234

TEDBDataSet.GetYearMonthIntervalTypeForField Method

function GetYearMonthIntervalTypeForField(const FieldName:
 String): TEDBYearMonthIntervalType

Use the GetYearMonthIntervalTypeForField method to retrieve the interval type for a given YEAR-MONTH
INTERVAL column. This is useful when trying to format interval values properly for display in data-aware
controls.

Component Reference

Page 235

TEDBDataSet.Import Method

procedure Import(const ImportFile: String; const StoreName:
 String; const ColumnsToImport: TEDBStringsArray=nil; Format:
 TEDBFileFormat=ffDelimited; Encoding: TEDBFileEncoding=feAuto;
 DelimiterChar: Char=SEPARATOR; QuoteChar: Char=DOUBLE_QUOTE;
 const DateFormatStr: String=ANSI_DATE_FORMAT; const
 TimeFormatStr: String=ANSI_TIME_FORMAT; const AMStr:
 String=ANSI_12HOUR_AM; const PMStr: String=ANSI_12HOUR_PM;
 DecimalChar: Char=ANSI_DECIMAL_SEPARATOR; const TrueStr:
 String=ANSI_TRUE; const FalseStr: String=ANSI_FALSE; UseHeaders:
 Boolean=False; MaxRows: Integer=-1)

Use this method to import rows into a dataset from a delimited or XML file.

Note
This method is defined as a way to provide for the importing of result sets, and is simply a method
version of the SQL IMPORT TABLE statement in ElevateDB. Please consult the ElevateDB SQL
Manual for more information on the various import options available in the IMPORT TABLE
statement.

Component Reference

Page 236

TEDBDataSet.LoadFromStream Method

procedure LoadFromStream(SourceStream: TStream)

Call the LoadFromStream method to load the contents of a table, view, or query result set from a stream
containing data previously created using the SaveToStream method. The table, view, or query result set
must first be opened or generated by calling the Open, ExecSQL, or ExecProc methods.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 237

TEDBDataSet.LockCurrentRecord Method

procedure LockCurrentRecord

Use the LockCurrentRecord method to manually lock the current row. Row locks established via this
method are persistent and are maintained across any Edit or Delete calls. You must manually unlock any
rows locked using this method via the UnlockCurrentRecord or UnlockAllRecords methods.

Note
Any row locks established using this method are automatically unlocked when the current dataset is
closed.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 238

TEDBDataSet.RecordIsLocked Method

function RecordIsLocked: Boolean

Use this method to determine if the current row has been locked by the LockCurrentRecord method. This
method only includes manually-locked rows and will not indicate if a row is locked via the Edit method
when the current session's RecordLockProtocol is set to lpPessimistic. Such row locks are considered
implicit.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 239

TEDBDataSet.SaveToStream Method

procedure SaveToStream(DestStream: TStream)

Call the SaveToStream method to save the contents of a table, view, or query result set to a stream. You
can then use LoadFromStream method to load the data from the stream using another TEDBTable,
TEDBQuery, or TEDBStoredProc component.The table, view, or query result set must first be opened or
generated by calling the Open, ExecSQL, or ExecProc methods. This method will respect any active filters
on the query result set when copying the data to the stream.

Note
Do not use this method with very large tables, views, or query result sets. It is recommended that
you do not use it with tables, views, or query result sets over a few megs in size. Also, this method
is only used in the context of the descendant TEDBTable, TEDBQuery, and TEDBStoredProc
components.

Component Reference

Page 240

TEDBDataSet.UnlockAllRecords Method

procedure UnlockAllRecords

Use this method to unlock all rows that have been manually locked using the LockCurrentRecord method.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 241

TEDBDataSet.UnlockCurrentRecord Method

procedure UnlockCurrentRecord

Use this method to unlock the current row. If the current row was not previously manually locked using
the LockCurrentRecord method, then this method does nothing. You can use the RecordIsLocked method
to determine if the current row is manually locked.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 242

TEDBDataSet.OnUpdateRecord Event

property OnUpdateRecord: TUpdateRecordEvent

The OnUpdateRecord event is fired when the IProvider support in ElevateDB is attempting to apply an
update from a TClientDataSet component. Write an event handler for this event to intercept an update
before it is applied automatically by ElevateDB. This will allow you to provide custom processing for
situations where the standard update processing is not sufficient.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 243

6.5 TEDBDBDataSet Component

Unit: edbcomps

Inherits From TEDBDataSet

The TEDBDBDataSet component is a dataset component that defines database-related connectivity
properties and methods for an ElevateDB dataset. Applications never use TEDBDBDataSet components
directly. Instead they use the descendants of TEDBDBDataSet, the TEDBTable, TEDBQuery, and
TEDBStoredProc components, which inherit its database-related properties and methods.

Properties Methods Events

Database CloseDatabase

DatabaseName OpenDatabase

DBHandle

DBSession

SessionName

Component Reference

Page 244

TEDBDBDataSet.Database Property

property Database: TEDBDatabase

Use the Database property to access the properties, events, and methods of the TEDBDatabase
component linked to this TEDBDBDataSet component. The Database property is read-only and is
automatically set when the database specified by the DatabaseName property is opened.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 245

TEDBDBDataSet.DatabaseName Property

property DatabaseName: String

Use the DatabaseName property to specify the name of the TEDBDatabase component to link to this
TEDBDBDataSet component. The DatabaseName property should match the DatabaseName property of an
existing TEDBDatabase component or should specify a valid database name.

Note
Attempting to set the DatabaseName property when the TEDBDBDataSet component is open
(Active=True) will raise an exception. Also, this property is only used in the context of the
descendant TEDBTable, TEDBQuery, and TEDBStoredProc components.

Component Reference

Page 246

TEDBDBDataSet.DBHandle Property

property DBHandle: TEDBDatabaseManager

The DBHandle property is for internal use only and is not useful to the application developer using
ElevateDB.

Component Reference

Page 247

TEDBDBDataSet.DBSession Property

property DBSession: TEDBSession

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Component Reference

Page 248

TEDBDBDataSet.SessionName Property

property SessionName: String

Use the SessionName property to specify the TEDBSession component to link to this TEDBDBDataSet
component. If the SessionName property is blank, the TEDBDBDataSet component is automatically linked
to the default TEDBSession component, which can be referenced via the global Session function in the
edbcomps unit. To link the TEDBDBDataset component with a different TEDBSession component, the
SessionName property must match the SessionName property of an existing TEDBSession component.

Note
This method is only used in the context of the descendant TEDBTable, TEDBQuery, TEDBScript, and
TEDBStoredProc components.

Component Reference

Page 249

TEDBDBDataSet.CloseDatabase Method

procedure CloseDatabase(Database: TEDBDatabase)

The CloseDatabase method is just a local version of the TEDBSession CloseDatabase method for the
TEDBSession that the TEDBDBDataSet is linked to via its SessionName property.

Component Reference

Page 250

TEDBDBDataSet.OpenDatabase Method

function OpenDatabase: TEDBDatabase

The OpenDatabase method is just a local version of the TEDBSession OpenDatabase method for the
TEDBSession that the TEDBDBDataSet is linked to via its SessionName property.

Component Reference

Page 251

6.6 TEDBEngine Component

Unit: edbcomps

Inherits From TComponent

Use the TEDBEngine component to manage the ElevateDB engine from within an application. The
ElevateDB engine can behave as either a client engine or as an ElevateDB Server.

A default TEDBEngine component is created automatically when the application is started and can be
referenced via the global Engine function in the edbcomps unit.

Properties Methods Events

Active AddDayTimeToDateTime AfterStart

BackupExtension AddDayTimeToTime AfterStop

BufferedFileIO AddYearMonthToDate BeforeStart

BufferedFileIOFlushInterval AddYearMonthToDateTime BeforeStop

BufferedFileIOSettings BinaryToSQLStr OnServerProcedure

CacheModules BooleanToSQLStr OnServerSessionEvent

CatalogExtension Close OnServerSessionLogin

CatalogName Create OnServerTrace

CharacterSet CurrToSQLStr

ConfigExtension DateTimeToSQLStr

ConfigMemory DateToSQLStr

ConfigName DayTimeIntervalToSQLStr

ConfigPath DisconnectServerSession

EncryptionPassword FindSession

EngineType FloatToSQLStr

EngineVersion GetServerConnectedSessionCount

Handle GetServerSessionCount

LicensedSessions GetServerUpTime

LockExtension GetServerUTCDateTime

LogCategories GetSessionNames

LogExtension GetTempTablesPath

MaxLogFileSize Open

PreloadModules OpenSession

ServerAddress QuotedSQLStr

ServerAuthorizedAddresses RemoveServerSession

ServerBlockedAddresses SQLStrToBinary

Component Reference

Page 252

ServerDeadSessionExpiration SQLStrToBoolean

ServerDeadSessionInterval SQLStrToCurr

ServerDescription SQLStrToDate

ServerEncryptedOnly SQLStrToDateTime

ServerEncryptionPassword SQLStrToDayTimeInterval

ServerJobCategory SQLStrToFloat

ServerJobRetries SQLStrToTime

ServerMaxDeadSessions SQLStrToYearMonthInterval

ServerName SubtractDateFromDateAsDayTime

ServerPort SubtractDateFromDateAsYearMonth

ServerRunJobs SubtractDateTimeFromDateTimeAsDayTime

ServerSessionTimeout SubtractDayTimeFromDateTime

ServerThreadCacheSize SubtractDayTimeFromTime

ServerTrace SubtractTimeFromTimeAsDayTime

SessionCount SubtractYearMonthFromDate

SessionList SubtractYearMonthFromDateTime

Sessions TimeToSQLStr

ShowDatabaseCatalogInfo YearMonthIntervalToSQLStr

ShowUserPasswords

Signature

StoreActive

TableBlobExtension

TableExtension

TableIndexExtension

TablePublishExtension

TempTablesPath

UpdateExtension

UseLocalSessionEngineSettings

Component Reference

Page 253

TEDBEngine.Active Property

property Active: Boolean

Use the Active property to specify whether or not the engine is active. Setting Active to True starts the
engine.

If the EngineType property is set to etClient, then ElevateDB will attempt to start the engine as client
engine.

If the EngineType property is set to etServer, then ElevateDB will attempt to start the engine as an
ElevateDB Server.

The BeforeStart event will be triggered before the engine is started, and the AfterStart event will be
triggered after the engine has been successfully started.

Setting Active to False closes any open datasets, disconnects active database connections, and stops all
active sessions.

Component Reference

Page 254

TEDBEngine.BackupExtension Property

property BackupExtension: String

Use the BackupExtension property to specify the extension to be used for ElevateDB backup files. Please
see the Backing Up and Restoring Databases for more information on backup files. The default value is
".EDBBkp".

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 255

TEDBEngine.BufferedFileIO Property

property BufferedFileIO: Boolean

Use the BufferedFileIO property to specify whether buffered file I/O buffering will be enabled. The default
value is False. If buffered file I/O is enabled, you can use the BufferedFileIOSettings and
BufferedFileIOFlushInterval properties to configure how the buffered file I/O behaves.

Component Reference

Page 256

TEDBEngine.BufferedFileIOFlushInterval Property

property BufferedFileIOFlushInterval: Integer

When the BufferedFileIO property is True, specifies how often ElevateDB will check buffered files to see if
there are any dirty buffers that need to be written. The default value is 60 seconds.

Component Reference

Page 257

TEDBEngine.BufferedFileIOSettings Property

property BufferedFileIOSettings: TStrings

Specifies the buffered file I/O settings for various file specifications. Each setting is specified on a separate
line of the string list and is a comma-delimited list of values that make up the buffer settings.

Setting Description

File Specification The file specification is a file name mask and can contain
wildcards (*). The file specification mask can include paths, or
one can use a wildcard to match on all paths. There is no
default value for this setting and you must specify a file mask.
The file specification should be enclosed in double-quotes (")
in order to allow the proper parsing of file specifications
containing spaces and other special characters.

Block Size This setting controls the size, in KB, of file blocks that will be
used for buffering any file that matches the file specification
mask. The default value is 4KB.

Buffer Size This setting controls the maximum amount of memory, in MB,
that will be used for buffering any file that matches the file
specification mask. The default value is 8MB.

Flush Age This setting controls how long, in seconds, a dirty file block
buffer will stay in the buffer pool before ElevateDB
automatically writes the dirty buffer to the file that matches
the file specification mask. This setting helps to alleviate
issues with dirty buffers not being written to the file on a
regular basis because the buffer size is configured too large
for the current file size. The default value is 120 seconds.

Flush to Disk This setting controls whether any writes to any file that
matches the file specification mask will be followed by a disk
flush call to the operating system. The default value is False.

Note
These settings are evaluated by ElevateDB from back-to-front, so you should specify the settings
from general file specifications to very specific file specifications in the string list.

Component Reference

Page 258

TEDBEngine.CacheModules Property

property CacheModules: Boolean

Use the CacheModules property to specify whether external modules will be loaded once into memory at
session open and remain loaded until the current session is closed. Setting this property to True can result
in significant performance improvements. This is especially true for configurations with many different
external modules. The default value is False.

This property is superceded by the PreloadModules property, which controls whether the engine preloads
all external modules associated with the active configuration when the engine starts.

Note
Setting this property to True will prevent you from replacing any of the external modules on disk
while the session is active.

Component Reference

Page 259

TEDBEngine.CatalogExtension Property

property CatalogExtension: String

Use the CatalogExtension property to specify the extension to be used for ElevateDB database catalogs.
This property is used in conjunction with the CatalogName property to form the full name of a database
catalog. The default value is ".EDBCat".

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 260

TEDBEngine.CatalogName Property

property CatalogName: String

Use the CatalogName property to specify the name to be used for ElevateDB database catalogs. This
property is used in conjunction with the CatalogExtension property to form the full name of a database
catalog. The default value is "EDBDatabase".

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 261

TEDBEngine.CharacterSet Property

property CharacterSet: TEDBCharacterSet

Use the CharacterSet property to specify the character set to use with the engine and, subsequently, all
local and remote sessions used with the engine.

Note
The default value for this property will always be determined by the default string type of the
compiler being used. For example, with Delphi XE the default string type is a Unicode string, so this
property will default to csUnicode when used with Delphi XE.

Component Reference

Page 262

TEDBEngine.ConfigExtension Property

property ConfigExtension: String

Use the ConfigExtension property to specify the extension to be used for ElevateDB configuration files.
This property is used in conjunction with the ConfigName property to form the full name of a configuration
file. The default value is ".EDBCfg".

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 263

TEDBEngine.ConfigMemory Property

property ConfigMemory: Boolean

Use the ConfigMemory property to specify that the configuration file will be "virtual" for ElevateDB, and
reside only in the process's memory. The configuration file is used to store the contents of the system-
created Configuration Database.

Warning
All applications accessing the same databases must use the same configuration file. Failure to do so
will result in locking errors. This means that if one application is accessing a database with a virtual
configuration file, then all applications accessing the same database must all be using virtual
configuration files. Also, when using virtual configurations, you will have to recreate all necessary
database, user/role, job, and store definitions every time the application is started, although the
default users and roles will always be created for you. Finally, the Active property must be False in
order to assign a value to this property.

Component Reference

Page 264

TEDBEngine.ConfigName Property

property ConfigName: String

Use the ConfigName property to specify the name to be used for ElevateDB configuration files. This
property is used in conjunction with the ConfigExtension property to form the full name of a configuration
file. The default value is "EDBConfig".

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 265

TEDBEngine.ConfigPath Property

property ConfigPath: String

Use the ConfigPath property to specify the path to the configuration file to use for ElevateDB. The
configuration file is used to store the contents of the system-created Configuration Database.

Warning
All applications accessing the same databases must use the same configuration file. Failure to do so
will result in locking errors. Also, it is recommended that you do not use relative path names for this
property. Complete UNC path names are the most reliable since they do not rely on local drive
mappings. Finally, the Active property must be False in order to assign a value to this property.

Component Reference

Page 266

TEDBEngine.EncryptionPassword Property

property EncryptionPassword: String

Use the EncryptionPassword property to specify the encryption password used by ElevateDB for all
encryption purposes. ElevateDB uses this password for all configuration, database catalog (for encrypted
catalogs), and table files (for encrypted tables) encryption. The default value is 'elevatesoft'.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 267

TEDBEngine.EngineType Property

property EngineType: TEDBEngineType

Use the EngineType property to specify whether the engine should behave as a local, client engine (the
default) or as an ElevateDB Server engine. ElevateDB only allows one instance of the TEDBEngine
component per application, which means that an application can only behave as a local, client application,
or as an ElevateDB Server application, but not both.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 268

TEDBEngine.EngineVersion Property

property EngineVersion: String

Indicates the current version of ElevateDB being used. This property is read-only.

Component Reference

Page 269

TEDBEngine.Handle Property

property Handle: TEDBEngineManager

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Component Reference

Page 270

TEDBEngine.LicensedSessions Property

property LicensedSessions: Integer

Use the LicensedSessions property to specify the maximum number of licensed sessions allowed to access
the configuration file specified by the ConfigPath, ConfigName, and ConfigExtension properties.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 271

TEDBEngine.LockExtension Property

property LockExtension: String

Use the LockExtension property to specify the extension to be used for ElevateDB configuration lock files
and database catalog lock files. This property is used in conjunction with the ConfigName and
CatalogName properties to form the full name of configuration lock files and database catalog lock files.
The default value is ".EDBLck".

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 272

TEDBEngine.LogCategories Property

property LogCategories: TEDBLogCategories

Use the LogCategories property to specify which type of events should be logged by the engine to the
configuration log file specified by the ConfigName and LogExtension properties. The configuration log file
is stored in the path specified by the ConfigPath property. The default value is all categories - errors,
warnings, and information.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 273

TEDBEngine.LogExtension Property

property LogExtension: String

Use the LogExtension property to specify the extension to be used for ElevateDB configuration log files.
This property is used in conjunction with the ConfigName properties to form the full name of configuration
log files. The configuration log file is stored in the path specified by the ConfigPath property. The default
value is ".EDBLog".

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 274

TEDBEngine.MaxLogFileSize Property

property MaxLogFileSize: Integer

Use the MaxLogFileSize property to specify the maximum file size to be used for the configuration log file
specified by the ConfigName and LogExtension properties. The configuration log file is stored in the path
specified by the ConfigPath property.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 275

TEDBEngine.PreloadModules Property

property PreloadModules: Boolean

Use the PreloadModules property to specify whether all external modules associated with the active
configuration will be loaded once into memory at engine start and remain cached there until the engine is
stopped. Setting this property to True can result in significant performance improvements. This is
especially true for configurations with many different external modules. The default value is False.

This property supercedes the CacheModules property, which controls how external modules are cached at
a session level.

Note
Setting this property to True will prevent you from replacing any of the external modules on disk
while the engine is active.

Component Reference

Page 276

TEDBEngine.ServerAddress Property

property ServerAddress: String

Use the ServerAddress property to specify the IP address that the ElevateDB Server should listen on for
connections when the EngineType property is set to etServer. A blank value (the default) indicates that
the ElevateDB Server should listen on all available IP addresses defined in the operating system for the
machine.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 277

TEDBEngine.ServerAuthorizedAddresses Property

property ServerAuthorizedAddresses: TStrings

Use the ServerAuthorizedAddresses property to specify which IP addresses are authorized to access the
ElevateDB Server when the EngineType property is set to etServer. This is commonly referred to as a
"white list". There is no limit to the number of addresses that can be specified, and the IP address entries
may contain the asterisk (*) wildcard character to represent any portion of an address.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 278

TEDBEngine.ServerBlockedAddresses Property

property ServerBlockedAddresses: TStrings

Use the ServerBlockedAddresses property to specify which IP addresses are not allowed to access the
ElevateDB Server when the EngineType property is set to etServer. This is commonly referred to as a
"black list". There is no limit to the number of addresses that can be specified, and the IP address entries
may contain the asterisk (*) wildcard character to represent any portion of an address.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 279

TEDBEngine.ServerDeadSessionExpiration Property

property ServerDeadSessionExpiration: Integer

Use the ServerDeadSessionExpiration property to specify how long a session can exist in the ElevateDB
Server in a disconnected, or "dead", state before the server removes the session. This is done to prevent a
situation where "dead" sessions accumulate from client applications whose network connections were
permanently interrupted. This property only applies when the EngineType property is set to etServer. The
default value is 300 seconds, or 5 minutes.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 280

TEDBEngine.ServerDeadSessionInterval Property

property ServerDeadSessionInterval: Integer

Use the ServerDeadSessionInterval to specify how often the ElevateDB Server will poll the disconnected
sessions to see if any need to be removed according to the ServerDeadSessionExpiration, or
ServerMaxDeadSessions properties. This property only applies when the EngineType property is set to
etServer. The default value is 30 seconds.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 281

TEDBEngine.ServerDescription Property

property ServerDescription: String

Use the ServerDescription property to specify the description of the ElevateDB Server when the
EngineType property is set to etServer. The default value is "ElevateDB Server". This description is used to
describe the ElevateDB Server when a remote session asks for the description using the TEDBSession
GetRemoteServerDescription method.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 282

TEDBEngine.ServerEncryptedOnly Property

property ServerEncryptedOnly: Boolean

Use the ServerEncryptedOnly property to specify that the ElevateDB Server should only accept encrypted
connections when the EngineType property is set to etServer. The default value is False.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 283

TEDBEngine.ServerEncryptionPassword Property

property ServerEncryptionPassword: String

Use the ServerEncryptionPassword property to specify the encryption password the ElevateDB Server will
use for all communications with remote sessions. The default value is 'elevatesoft'. This property only
applies when the EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 284

TEDBEngine.ServerJobCategory Property

property ServerJobCategory: String

Use the ServerJobCategory property to specify which job category the ElevateDB Server will schedule and
run if the ServerRunJobs property is set to True. This property can contain any value, and the default
value is blank (''), which indicates that the server engine can run all job categories. This property only
applies when the EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 285

TEDBEngine.ServerJobRetries Property

property ServerJobRetries: Integer

Use the ServerJobRetries property to specify how many times the ElevateDB Server will attempt to execute
a given job before disabling the job. The default value is 10. This property only applies when the
EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 286

TEDBEngine.ServerMaxDeadSessions Property

property ServerMaxDeadSessions: Integer

Use the ServerMaxDeadSessions property to specify how many "dead" sessions can accumulate in the
ElevateDB Server before the server begins to remove them immediately, irrespective of the
ServerDeadSessionExpiration property. If the ServerMaxDeadSessions property is exceeded, then the
server engine removes the "dead" sessions in oldest-to-youngest order until the number of "dead"
sessions is at or under the ServerMaxDeadSessions property setting. The default value for this property is
64. This property only applies when the EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 287

TEDBEngine.ServerName Property

property ServerName: String

Use the ServerName property to specify the name of the ElevateDB Server when the EngineType property
is set to etServer. The default value is "EDBSrvr". This name is used when a remote session asks for it
using the TEDBSession GetRemoteServerName method.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 288

TEDBEngine.ServerPort Property

property ServerPort: Integer

Use the ServerPort property to specify the port that the ElevateDB Sserver should listen on for connections
when the EngineType property is set to etServer. The default value is 12010.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 289

TEDBEngine.ServerRunJobs Property

property ServerRunJobs: Boolean

Use the ServerRunJobs property to specify whether the ElevateDB Server is allowed to schedule and run
jobs that are defined in the Configuration database. If this property is set to True (the default), then the
ServerJobCategory property determines which category of jobs that the server will schedule and run. This
property only applies when the EngineType property is set to etServer.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 290

TEDBEngine.ServerSessionTimeout Property

property ServerSessionTimeout: Integer

Use the ServerSessionTimeout property to specify how long the ElevateDB Server should wait for a request
from a connected remote session before it disconnects the session. This is done to keep the number of
concurrent connections at a minimum. Once a session has been disconnected by the server, the session is
then considered to be "dead" until either the remote session reconnects to the session in the server, or the
server removes the session according to the parameters specified by the
ServerDeadSessionInterval,ServerDeadSessionExpiration, or ServerMaxDeadSessions properties. The
default value is 180 seconds, or 3 minutes. This property only applies when the EngineType property is set
to etServer.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 291

TEDBEngine.ServerThreadCacheSize Property

property ServerThreadCacheSize: Integer

Use the ServerThreadCacheSize property to specify the total number of threads that should be cached by
the ElevateDB Server for connections when the EngineType property is set to etServer. The default value
is 10. Caching threads helps improve connection times by eliminating the need to constantly create and
destroy threads as remote sessions connect to and disconnect from the server.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 292

TEDBEngine.ServerTrace Property

property ServerTrace: Boolean

Use the ServerTrace property to specify that the ElevateDB Server should trigger the OnServerTrace event
for every request/reply to/from the ElevateDB Server when the EngineType property is set to etServer.
The default value is False. Server-side tracing is useful for diagnosing issues with performance/locking that
are hard to diagnose from the client side.

Warning
Do not enable this property in production without being aware of the consequences. Enabling this
property can result in a significant amount of overhead, depending upon how the OnServerTrace
event is handled. In the ElevateDB Server project that is provided with ElevateDB (see below),
enabling this property will generate a large number of trace files that can easily consume large
amounts of disk space on a busy server.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 293

TEDBEngine.SessionCount Property

property SessionCount: Integer

Use the SessionCount property to determine how many sessions are currently created in the engine.

Note
This property only applies when the EngineType property is set to etClient.

Component Reference

Page 294

TEDBEngine.SessionList Property

property SessionList[const SessionName: String]: TEDBSession

Use the SessionList property to access a given TEDBSession component by name. The name of a session is
specified via the TEDBSession SessionName property.

Note
This property only applies when the EngineType property is set to etClient.

Component Reference

Page 295

TEDBEngine.Sessions Property

property Sessions[Index: Integer]: TEDBSession

Use the Sessions property to access a given TEDBSession component by index. The Index parameter must
be in the range of zero to the current value of the SessionCount property minus one.

Note
This property only applies when the EngineType property is set to etClient.

Component Reference

Page 296

TEDBEngine.ShowDatabaseCatalogInfo Property

property ShowDatabaseCatalogInfo: Boolean

This property allows you to specify whether database catalog character set and version information should
appear in the Databases system information table.

Note
Setting this property to False can significantly improve the performance of the loading of the
Databases system information table when there are a lot of databases in a configuration. This is
because ElevateDB has to open the database catalog for each database in order to read the
character set and version number.

The default value of this property is True.

Component Reference

Page 297

TEDBEngine.ShowUserPasswords Property

property ShowUserPasswords: Boolean

This property allows you to specify whether user passwords should appear in the Users system information
table.

Note
Even with this propery enabled, only Administrators can see other users' passwords. Normal users
that aren't assigned the Administrators role can only see their own user information.

The default value of this property is True.

Component Reference

Page 298

TEDBEngine.Signature Property

property Signature: String

Use the Signature property to specify the signature to be used by the engine when accessing or creating
configuration files, database catalogs, tables, backup files, or streams as well as any communications
between a remote session and an ElevateDB Server. The default value of the Signature property is
"edb_signature" and should not be changed unless you are sure of the consequences. Using a custom
value for the Signature property will prevent any other application that uses ElevateDB from accessing any
configuration files, database catalogs, tables, backup files, or streams created with the custom signature,
as well as accessing an ElevateDB Server using the custom signature.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 299

TEDBEngine.StoreActive Property

property StoreActive: Boolean

Use the StoreActive property to determine if the ElevateDB engine should store the current value of its
Active property, and subsequently, the Active/Connected property values of all other ElevateDB
components such as the TEDBDatabase, TEDBTable, TEDBQuery, and TEDBStoredProc components, in the
owner form or data module. The default value for this property is True.

Setting this property to False will ensure that you never run into the situation where the TEDBEngine
component's Active property is automatically set to True (its design-time state) when the owning
form/data module is created at runtime. This is a common problem when a developer is working with the
ElevateDB components at design-time, and then compiles the application with one or more of the
ElevateDB components' Active/Connected property set to True. The end result is usually many ElevateDB
runtime errors caused by the fact that the ElevateDB engine has not been configured for the target
machine and operating system, but rather is still configured for the developer's machine and operating
system.

Component Reference

Page 300

TEDBEngine.TableBlobExtension Property

property TableBlobExtension: String

Use the TableBlobExtension to specify the file extension used by the engine for the physical BLOB file that
makes up part of an ElevateDB table. The default value is ".EDBBlb". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 301

TEDBEngine.TableExtension Property

property TableExtension: String

Use the TableDataExtension to specify the file extension used by the engine for the physical table file that
makes up part of an ElevateDB table. The default value is ".EDBTbl". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 302

TEDBEngine.TableIndexExtension Property

property TableIndexExtension: String

Use the TableIndexExtension to specify the file extension used by the engine for the physical index file
that makes up part of an ElevateDB table. The default value is ".EDBIdx". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 303

TEDBEngine.TablePublishExtension Property

property TablePublishExtension: String

Use the TablePublishExtension to specify the file extension used by the engine for the physical publish file
that makes up part of an ElevateDB table. The default value is ".EDBPbl". Be sure to always include the
filename extension separator (.) when specifying the file extension.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 304

TEDBEngine.TempTablesPath Property

property TempTablesPath: String

Use the TempTablesPath property to specify where ElevateDB creates any temporary tables that are
required for storing query result sets. By default, the TempTablesPath property is set to the user-specific
temporary tables path for the operating system.

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 305

TEDBEngine.UpdateExtension Property

property UpdateExtension: String

Use the UpdateExtension property to specify the extension to be used for ElevateDB update files. Please
see the Backing Up and Restoring Databases for more information on backup files. The default value is
".EDBUpd".

Note
The Active property must be False in order to assign a value to this property.

Component Reference

Page 306

TEDBEngine.UseLocalSessionEngineSettings Property

property UseLocalSessionEngineSettings: Boolean

Use the UseLocalSessionEngineSettings property to indicate that you wish to have any TEDBSession
component use its own Local* versions of the following TEDBEngine properties:

Signature
EncryptionPassword
ConfigPath
ConfigMemory
ConfigName
ConfigExtension
LockExtension
LogExtension
MaxLogFileSize
LogCategories
CatalogName
CatalogExtension
BackupExtension
TableExtension
TableIndexExtension
TableBlobExtension
TempTablesPath

The TEDBSession Local* property values will then override the above properties in the TEDBEngine
component. This is useful for applications like the ElevateDB Manager that need to provide the ability to
have multiple local sessions that use different engine settings. The default value for this property is False.

Note
Although the TEDBSession Local* versions of the above properties will override the corresponding
TEDBEngine properties, they are initially set to the same value as the corresponding TEDBEngine
properties when the TEDBSession component is first created.

Component Reference

Page 307

TEDBEngine.AddDayTimeToDateTime Method

function AddDayTimeToDateTime(Value: TDateTime; DayTimeInterval:
 TEDBDayTimeInterval; DayTimeIntervalType:
 TEDBDayTimeIntervalType): TDateTime

Call the AddDayTimeToDateTime method to add a day-time interval to a date-time value and return the
new date-time value.

Note
In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimeIntervalToSQLStr method to
convert a day-time interval into a readable string.

Component Reference

Page 308

TEDBEngine.AddDayTimeToTime Method

function AddDayTimeToTime(Value: TDateTime; DayTimeInterval:
 TEDBDayTimeInterval; DayTimeIntervalType:
 TEDBDayTimeIntervalType): TDateTime

Call the AddDayTimeToTime method to add a day-time interval to a time value and return the new time
value.

Note
In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimeIntervalToSQLStr method to
convert a day-time interval into a readable string.

Component Reference

Page 309

TEDBEngine.AddYearMonthToDate Method

function AddYearMonthToDate(Value: TDateTime; YearMonthInterval:
 TEDBYearMonthInterval; YearMonthIntervalType:
 TEDBYearMonthIntervalType): TDateTime

Call the AddYearMonthToDate method to add a year-month interval to a date value and return the new
date value.

Note
In ElevateDB, year-month intervals are Integer values that represent the number of days that have
elapsed between two calendar days. Use the TEDBEngine YearMonthIntervalToSQLStr method to
convert a year-month interval into a readable string.

Component Reference

Page 310

TEDBEngine.AddYearMonthToDateTime Method

function AddYearMonthToDateTime(Value: TDateTime;
 YearMonthInterval: TEDBYearMonthInterval; YearMonthIntervalType:
 TEDBYearMonthIntervalType): TDateTime

Call the AddYearMonthToDateTime method to add a year-month interval to a date-time value and return
the new date-time value.

Note
In ElevateDB, year-month intervals are Integer values that represent the number of days that have
elapsed between two calendar days. Use the TEDBEngine YearMonthIntervalToSQLStr method to
convert a year-month interval into a readable string.

Component Reference

Page 311

TEDBEngine.BinaryToSQLStr Method

function BinaryToSQLStr(Value: TEDBBytes): String

Call the BinaryToSQLStr method to convert a TEDBBytes (byte array) value to an SQL 2003 standard
binary constant string. All SQL and filter expressions in ElevateDB require standard binary constants, which
are represented by the binary value in hexadecimal format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 312

TEDBEngine.BooleanToSQLStr Method

function BooleanToSQLStr(Value: Boolean): String

Call the BooleanToSQLStr method to convert a Boolean value to an SQL 2003 standard boolean constant
string. All SQL and filter expressions in ElevateDB require standard boolean constants, which are TRUE and
FALSE (case-insensitive).

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 313

TEDBEngine.Close Method

procedure Close

Call the Close method to stop the engine. Calling this method will change the Active property from True to
False if the engine has been started, or it will do nothing if the Active property is already False.

Component Reference

Page 314

TEDBEngine.Create Method

constructor Create(AOwner: TComponent)

Call the Create constructor to create an instance of the TEDBEngine component.

Component Reference

Page 315

TEDBEngine.CurrToSQLStr Method

function CurrToSQLStr(Value: Currency; Scale: Integer=0): String

Call the CurrToSQLStr method to convert a Currency value to an SQL 2003 standard decimal constant
string. All SQL and filter expressions in ElevateDB require standard decimal constants which use the period
(.) as the decimal separator. Use the Scale parameter to specify the number of decimal places to use for
the output string, or 0 to specify that the number of decimal places in the output string will depend upon
the Currency value being converted.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 316

TEDBEngine.DateTimeToSQLStr Method

function DateTimeToSQLStr(Value: TDateTime; MilitaryTime:
 Boolean=True): String

Call the DateTimeToSQLStr method to convert a TDateTime value to an SQL 2003 standard timestamp
constant string. All SQL and filter expressions in ElevateDB require standard timestamp constants which
use the 'yyyy-mm-dd hh:mm:ss.zzz am/pm' format. Use the MilitaryTime parameter to indicate whether
the time should be returned in 24-hour format instead of 12-hour format with an am/pm indicator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 317

TEDBEngine.DateToSQLStr Method

function DateToSQLStr(Value: TDateTime): String

Call the DateToSQLStr method to convert a TDateTime value to an SQL 2003 standard date constant
string. All SQL and filter expressions in ElevateDB require standard date constants which use the 'yyyy-
mm-dd' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 318

TEDBEngine.DayTimeIntervalToSQLStr Method

function DayTimeIntervalToSQLStr(Value: TEDBDayTimeInterval;
 DayTimeIntervalType: TEDBDayTimeIntervalType): String

Call the DayTimeIntervalToSQLStr method to convert a TEDBDayTimeInterval (Int64) value to an SQL
2003 standard day-time interval constant string. All SQL and filter expressions in ElevateDB require
standard day-time interval constants which use the general 'dd hh:mm:ss.zzz am/pm' format. Use the
DayTimeIntervalType parameter to indicate how the day-time interval should be formatted.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 319

TEDBEngine.DisconnectServerSession Method

function DisconnectServerSession(SessionID: Integer): Boolean

Call the DisconnectServerSession method to disconnect a specific session on the ElevateDB Server.
Disconnecting a session only terminates its connection, it does not remove the session completely from the
server nor does it release any resources for the session other than the thread used for the connection and
the connection itself at the operating system level. Use the SessionID parameter to specify the session ID
to disconnect. You can log the session ID for a particular session by defining an event handler for the
OnServerSessionEvent event and passing the session ID to this method.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Component Reference

Page 320

TEDBEngine.FindSession Method

function FindSession(const SessionName: String): TEDBSession

Use the FindSession method to search the list of TEDBSession components for a specified session name.
SessionName specifies the session to search for.

FindSession compares the SessionName parameter to the SessionName property for each TEDBSession
component in the available list of sessions in the engine. If a match is found, FindSession returns a
reference to the applicable TEDBSession component. If an application passes an empty string in the
SessionName parameter, FindSession returns the default global TEDBSession, Session. If a match is not
found, FindSession returns nil.

Note
This method only applies when the EngineType property is set to etClient.

Component Reference

Page 321

TEDBEngine.FloatToSQLStr Method

function FloatToSQLStr(Value: Double): String

Call the FloatToSQLStr method to convert a Double value to an SQL 2003 standard float constant string.
All SQL and filter expressions in ElevateDB require standard float constants which use the period (.) as the
decimal separator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 322

TEDBEngine.GetServerConnectedSessionCount Method

function GetServerConnectedSessionCount: Integer

Call the GetServerConnectedSessionCount method to retrieve the total number of connected sessions on
the ElevateDB Server. Sessions that are present on the server, but not connected, are not reported in this
figure. To get a total count of the number of sessions on the server use the GetServerSessionCount
method instead.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Component Reference

Page 323

TEDBEngine.GetServerSessionCount Method

function GetServerSessionCount: Integer

Call the GetServerSessionCount method to retrieve the total number of sessions on the ElevateDB Server.
To get a total count of just the number of connected sessions on the server use the
GetServerConnectedSessionCount method instead.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Component Reference

Page 324

TEDBEngine.GetServerUpTime Method

function GetServerUpTime: Int64

Call the GetServerUpTime method to retrieve the number of seconds that the ElevateDB Server has been
active and accepting new connections.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Component Reference

Page 325

TEDBEngine.GetServerUTCDateTime Method

function GetServerUTCDateTime: TDateTime

Call the GetServerUTCDateTime method to retrieve the universal coordinate date and time from the
ElevateDB Server. This is especially useful if you wish to get the date and time in a standard format that
doesn't need to take into account the local server time offset.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Component Reference

Page 326

TEDBEngine.GetSessionNames Method

procedure GetSessionNames(List: TStrings)

Call the GetSessionNames method to populate a string list with the names of all available TEDBSession
components. The List parameter is a string list object, created and maintained by the application, into
which to store session names. The names returned by GetSessionNames correspond to the SessionName
properties of all available TEDBSession components.

Note
This method only applies when the EngineType property is set to etClient.

Component Reference

Page 327

TEDBEngine.GetTempTablesPath Method

function GetTempTablesPath: String

Call the GetTempTablesPath method to return a string with the location of the operating system's default
temporary files path for the current user.

Component Reference

Page 328

TEDBEngine.Open Method

procedure Open

Call the Open method to start the engine. Calling this method will change the Active property from False
to True if the engine has not been started, or it will do nothing if the Active property is already True.

Component Reference

Page 329

TEDBEngine.OpenSession Method

function OpenSession(const SessionName: String): TEDBSession

Call the OpenSession method to make an existing TEDBSession component active, or to create a new
TEDBSession component and make it active. SessionName specifies the name of the session to open.

OpenSession calls the TEDBEngine FindSession method to see if the TEDBSession component specified in
the SessionName parameter already exists. If it finds a match via the SessionName property of an existing
TEDBSession component, it starts that session if necessary, and makes the session active. If OpenSession
does not find an existing TEDBSession component with that name, it creates a new TEDBSession
component using the name specified in the SessionName parameter, starts the session, and makes it
active.

In either case, OpenSession returns the TEDBSession component.

Note
This method only applies when the EngineType property is set to etClient.

Component Reference

Page 330

TEDBEngine.QuotedSQLStr Method

function QuotedSQLStr(const Value: String): String

Call the QuotedSQLStr method to format a string constant so that it can properly used as a literal constant
in an SQL statement. This method converts escapes all single quotes and converts all characters less than
#32 (space) into the #<ASCII value> syntax.

Component Reference

Page 331

TEDBEngine.RemoveServerSession Method

function RemoveServerSession(SessionID: Integer): Boolean;

Call the RemoveServerSession method to completely remove a specific session on the ElevateDB Server.
Removing a session not only terminates its connection (if connected), but it also removes the session
completely and releases any resources for the session including the thread used for the connection and
the connection itself at the operating system level. Use the SessionID parameter to specify the session ID
to remove. You can log the session ID for a particular session by defining an event handler for the
OnServerSessionEvent event and passing the session ID to this method.

Note
This method is only valid when the engine is running as an ElevateDB Server and the EngineType is
set to etServer.

Component Reference

Page 332

TEDBEngine.SQLStrToBinary Method

function SQLStrToBinary(const Value: String): TEDBBytes

Call the SQLStrToBinary method to convert a string that contains an SQL 2003 standard binary constant to
an actual TEDBBytes (byte array) value. All SQL and filter expressions in ElevateDB require standard
binary constants, which are represented by the binary value in hexadecimal format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 333

TEDBEngine.SQLStrToBoolean Method

function SQLStrToBoolean(const Value: String): Boolean

Call the SQLStrToBoolean method to convert a string that contains an SQL 2003 standard boolean
constant to an actual Boolean value. All SQL and filter expressions in ElevateDB require standard boolean
constants, which are TRUE and FALSE (case-insensitive).

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 334

TEDBEngine.SQLStrToCurr Method

function SQLStrToCurr(const Value: String): Currency

Call the SQLStrToCurr method to convert a string that contains an SQL 2003 standard decimal constant to
an actual Currency value. All SQL and filter expressions in ElevateDB require standard decimal constants
which use the period (.) as the decimal separator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 335

TEDBEngine.SQLStrToDate Method

function SQLStrToDate(const Value: String): TDateTime

Call the SQLStrToDate method to convert a string that contains an SQL 2003 standard date constant to an
actual TDateTime value. All SQL and filter expressions in ElevateDB require standard date constants which
use the 'yyyy-mm-dd' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 336

TEDBEngine.SQLStrToDateTime Method

function SQLStrToDateTime(const Value: String): TDateTime

Call the SQLStrToDateTime method to convert a string that contains an SQL 2003 standard timestamp
constant to an actual TDateTime value.All SQL and filter expressions in ElevateDB require standard
timestamp constants which use the 'yyyy-mm-dd hh:mm:ss.zzz am/pm' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 337

TEDBEngine.SQLStrToDayTimeInterval Method

function SQLStrToDayTimeInterval(const Value: String;
 DayTimeIntervalType: TEDBDayTimeIntervalType):
 TEDBDayTimeInterval

Call the SQLStrToDayTimeInterval method to convert a string that contains an SQL 2003 standard day-
time interval constant to an actual TEDBDayTimeInterval (Int64) value. All SQL and filter expressions in
ElevateDB require standard day-time interval constants which use the 'dd hh:mm:ss.zzz am/pm' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 338

TEDBEngine.SQLStrToFloat Method

function SQLStrToFloat(const Value: String): Double

Call the SQLStrToFloat method to convert a string that contains an SQL 2003 standard float constant to an
actual Double value. All SQL and filter expressions in ElevateDB require standard float constants which use
the period (.) as the decimal separator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 339

TEDBEngine.SQLStrToTime Method

function SQLStrToTime(const Value: String): TDateTime

Call the SQLStrToTime method to convert a string that contains an SQL 2003 standard time constant to an
actual TDateTime value. All SQL and filter expressions in ElevateDB require standard time constants which
use the 'hh:mm:ss.zzz am/pm' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 340

TEDBEngine.SQLStrToYearMonthInterval Method

function SQLStrToYearMonthInterval(const Value: String;
 YearMonthIntervalType: TEDBYearMonthIntervalType):
 TEDBYearMonthInterval

Call the SQLStrToYearMonthInterval method to convert a string that contains an SQL 2003 standard year-
month interval constant to an actual TEDBYearMonthInterval (Integer) value. All SQL and filter expressions
in ElevateDB require standard year-month interval constants which use the 'yyyy-mm' format.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 341

TEDBEngine.SubtractDateFromDateAsDayTime Method

function SubtractDateFromDateAsDayTime(FirstValue: TDateTime;
 SecondValue: TDateTime; DayTimeIntervalType:
 TEDBDayTimeIntervalType): TEDBDayTimeInterval

Call the SubtractDateFromDateAsDayTime method to subtract a date value from another date value,
returning the result as a day-time interval.

Note
In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimeIntervalToSQLStr method to
convert a day-time interval into a readable string.

Component Reference

Page 342

TEDBEngine.SubtractDateFromDateAsYearMonth Method

function SubtractDateFromDateAsYearMonth(FirstValue: TDateTime;
 SecondValue: TDateTime; YearMonthIntervalType:
 TEDBYearMonthIntervalType): TEDBYearMonthInterval

Call the SubtractDateFromDateAsYearMonth method to subtract a date value from another date value,
returning the result as a year-month interval.

Note
In ElevateDB, year-month intervals are Integer values that represent the number of days that have
elapsed between two calendar days. Use the TEDBEngine YearMonthIntervalToSQLStr method to
convert a year-month interval into a readable string.

Component Reference

Page 343

TEDBEngine.SubtractDateTimeFromDateTimeAsDayTime Method

function SubtractDateTimeFromDateTimeAsDayTime(FirstValue:
 TDateTime; SecondValue: TDateTime; DayTimeIntervalType:
 TEDBDayTimeIntervalType): TEDBDayTimeInterval

Call the SubtractDateTimeFromDateTimeAsDayTime method to subtract a date-time value from another
date-time value, returning the result as a day-time interval.

Note
In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimeIntervalToSQLStr method to
convert a day-time interval into a readable string.

Component Reference

Page 344

TEDBEngine.SubtractDayTimeFromDateTime Method

function SubtractDayTimeFromDateTime(Value: TDateTime;
 DayTimeInterval: TEDBDayTimeInterval; DayTimeIntervalType:
 TEDBDayTimeIntervalType): TDateTime

Call the SubtractDayTimeFromDateTime method to subtract a day-time interval from a date-time value
and return the new date-time value.

Note
In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimeIntervalToSQLStr method to
convert a day-time interval into a readable string.

Component Reference

Page 345

TEDBEngine.SubtractDayTimeFromTime Method

function SubtractDayTimeFromTime(Value: TDateTime;
 DayTimeInterval: TEDBDayTimeInterval; DayTimeIntervalType:
 TEDBDayTimeIntervalType): TDateTime

Call the SubtractDayTimeFromTime method to subtract a day-time interval from a time value and return
the new time value.

Note
In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimeIntervalToSQLStr method to
convert a day-time interval into a readable string.

Component Reference

Page 346

TEDBEngine.SubtractTimeFromTimeAsDayTime Method

function SubtractTimeFromTimeAsDayTime(FirstValue: TDateTime;
 SecondValue: TDateTime; DayTimeIntervalType:
 TEDBDayTimeIntervalType): TEDBDayTimeInterval

Call the SubtractTimeFromTimeAsDayTime method to subtract a time value from another time value,
returning the result as a day-time interval.

Note
In ElevateDB, day-time intervals are Int64 values that represent the number of milliseconds that
have elapsed between two points in time. Use the TEDBEngine DayTimeIntervalToSQLStr method to
convert a day-time interval into a readable string.

Component Reference

Page 347

TEDBEngine.SubtractYearMonthFromDate Method

function SubtractYearMonthFromDate(Value: TDateTime;
 YearMonthInterval: TEDBYearMonthInterval; YearMonthIntervalType:
 TEDBYearMonthIntervalType): TDateTime

Call the SubtractYearMonthFromDate method to subtract a year-month interval from a date value and
return the new date value.

Note
In ElevateDB, year-month intervals are Integer values that represent the number of days that have
elapsed between two calendar days. Use the TEDBEngine YearMonthIntervalToSQLStr method to
convert a year-month interval into a readable string.

Component Reference

Page 348

TEDBEngine.SubtractYearMonthFromDateTime Method

function SubtractYearMonthFromDateTime(Value: TDateTime;
 YearMonthInterval: TEDBYearMonthInterval; YearMonthIntervalType:
 TEDBYearMonthIntervalType): TDateTime

Call the SubtractYearMonthFromDateTime method to subtract a year-month interval from a date-time
value and return the new date-time value.

Note
In ElevateDB, year-month intervals are Integer values that represent the number of days that have
elapsed between two calendar days. Use the TEDBEngine YearMonthIntervalToSQLStr method to
convert a year-month interval into a readable string.

Component Reference

Page 349

TEDBEngine.TimeToSQLStr Method

function TimeToSQLStr(Value: TDateTime; MilitaryTime:
 Boolean=True): String

Call the TimeToSQLStr method to convert a TDateTime value to an SQL 2003 standard time constant
string. All SQL and filter expressions in ElevateDB require standard time constants which use the
'hh:mm:ss.zzz am/pm' format. Use the MilitaryTime parameter to indicate whether the time should be
returned in 24-hour format instead of 12-hour format with an am/pm indicator.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 350

TEDBEngine.YearMonthIntervalToSQLStr Method

function YearMonthIntervalToSQLStr(Value: TEDBYearMonthInterval;
 YearMonthIntervalType: TEDBYearMonthIntervalType): String

Call the YearMonthIntervalToSQLStr method to convert a TEDBYearMonthInterval (Integer) value to an
SQL 2003 standard year-month interval constant string. All SQL and filter expressions in ElevateDB require
standard year-month interval constants which use the general 'yyyy-mm' format. Use the
YearMonthIntervalType parameter to indicate how the year-month interval should be formatted.

Please see the Types topic for more information on the data types in ElevateDB and their literal
representation.

Component Reference

Page 351

TEDBEngine.AfterStart Event

property AfterStart: TNotifyEvent

The AfterStart event is fired right after the engine has been successfully started. Write an event handler
for this event to take action at this time.

Component Reference

Page 352

TEDBEngine.AfterStop Event

property AfterStop: TNotifyEvent

The AfterStop event is fired right after the engine has been successfully stopped. Write an event handler
for this event to take action at this time.

Component Reference

Page 353

TEDBEngine.BeforeStart Event

property BeforeStart: TNotifyEvent

The BeforeStart event is fired right before the engine is started. Write an event handler for this event to
take action at this time.

Component Reference

Page 354

TEDBEngine.BeforeStop Event

property BeforeStop: TNotifyEvent

The BeforeStop event is fired right before the engine is stopped. Write an event handler for this event to
take action at this time.

Component Reference

Page 355

TEDBEngine.OnServerProcedure Event

property OnServerProcedure: TEDBServerProcedureEvent

The OnServerProcedure event is fired when a remote session calls its CallRemoteProcedure method to call
a custom server procedure and the EngineType property is set to etServer. Write an event handler for this
event in order to handle such custom server procedure calls.

Warning
This event can be called from multiple threads, so any code that is called from this event handler
must be thread-safe. Also, you should never destroy the instance of the TEDBServerProcedure
object passed to the OnServerProcedure event. It is automatically created and destroyed for you in
a thread-safe manner.

Component Reference

Page 356

TEDBEngine.OnServerSessionEvent Event

property OnServerSessionEvent: TEDBServerSessionEvent

The OnServerSessionEvent event is fired when a remote session connects, logs in, reconnects, logs out, or
disconnects from the ElevateDB Server when the EngineType property is set to etServer. Write an event
handler for this event in order to track and display these activities in a visual interface for the server.

Warning
This event can be called from multiple threads, so any code that is called from this event handler
must be thread-safe.

Please see the edbsrvr.dpr GUI ElevateDB Server and the edbcmd.dpr command-line ElevateDB Server
projects that are provided with ElevateDB for more information on how to use this event. You can find
these servers in the \servers\edbsrvr and \servers\edbcmd subdirectories under the main ElevateDB
installation directory, and you can find the source code to these servers in the \source subdirectory under
each server's directory.

Component Reference

Page 357

TEDBEngine.OnServerSessionLogin Event

property OnServerSessionLogin: TEDBServerSessionLoginEvent

The OnServerSessionLogin event is fired when a remote session attempts to log in to the ElevateDB Server
when the EngineType property is set to etServer. Write an event handler for this event in order to
intercept all logins and perform any processing before the login, or even reject the login, if necessary. This
is useful in situations where one wants to validate a session login against another authority, such as Active
Directory Services in Windows.

Note
This event handler does not replace the normal login process, which will still occur after this event
has been executed. For example, even if one validates the login information against another
authority and allows the login to proceed, the login information will still need to be valid for a
defined user in the ElevateDB Server's current configuration.

Warning
This event can be called from multiple threads, so any code that is called from this event handler
must be thread-safe.

Component Reference

Page 358

TEDBEngine.OnServerTrace Event

property OnServerTrace: TEDBServerTraceEvent

The OnServerTrace event is fired for every request/reply to/from the ElevateDB Server when the
EngineType property is set to etServer and the ServerTrace property is set to True. Write an event handler
for this event in order to log these trace events to a console debug log or a log file.

Warning
This event can be called from multiple threads, so any code that is called from this event handler
must be thread-safe.

Please see the edbsrvr.dpr GUI ElevateDB Server project that is provided with ElevateDB for more
information on how to use this event. You can find this server in the \servers\edbsrvr subdirectory under
the main ElevateDB installation directory, and you can find the source code to this server in the \source
subdirectory under the server's directory.

Component Reference

Page 359

6.7 TEDBQuery Component

Unit: edbcomps

Inherits From TEDBDBDataSet

Use the TEDBQuery component to prepare and execute an SQL statement for a given database. When
preparing and executing a SELECT statement, parameterized queries can be use to manually prepare a
query once and execute it multiple times with different parameter values, which is much more efficient
then preparing a different query each time.

Properties Methods Events

Constrained ExecSQL AfterPrepare

DataSource ParamByName AfterUnPrepare

EngineVersion Prepare BeforePrepare

ExecutionResult UnPrepare BeforeUnPrepare

ExecutionTime OnLogMessage

ParamCheck OnProgress

ParamCount OnStatusMessage

Params

Plan

Prepared

RequestPlan

RequestSensitive

RowsAffected

Sensitive

SQL

StatementHandle

StatementType

Text

Component Reference

Page 360

TEDBQuery.Constrained Property

property Constrained: Boolean

Use the Constrained property to specify that no rows should be allowed to be inserted into a sensitve
query result set that violate the WHERE clause of the query specified in the SQL property. This property
only applies to query result sets that are sensitive to changes by other sessions, and this is indicated by
the Sensitive property.

Component Reference

Page 361

TEDBQuery.DataSource Property

property DataSource: TDataSource

The DataSource property specifies the TDataSource component from which to extract current column
values to use in the identically-named parameters in the query's SQL statement specified via the SQL
property. This allows you to automatically fill parameters in a query with column values from another data
source. Parameters that have the same name as columns in the other data source are filled with the
column values. Parameters with names that are not the same as columns in the other dataset do not
automatically get values, and must be set by the application manually.

DataSource must point to a TDataSource component linked to another dataset component, meaning that it
cannot point to this TEDBQuery component. The dataset specified in the TDataSource component's
DataSet property must be created, populated, and opened before attempting to bind parameters.
Parameters are bound by calling the Prepare method prior to executing the query using the ExecSQL or
Open method. If the SQL statement used by the query does not contain parameters, or all parameters are
bound by the application using the Params property or the ParamByName method, the DataSource
property need not be assigned.

If the SQL statement specified in the SQL property of the TEDBQuery component is a SELECT statement,
the query is executed using the new column values each time the row pointer in the other data source is
changed. It is not necessary to call the Open method of the TEDBQuery component each time. This makes
using the DataSource property to dynamically modify WHERE clause conditions useful for establishing
master-detail relationships. Set the DataSource property in the detail query to the TDataSource component
for the master data source.

Note
If the SQL statement contains parameters with the same name as columns in the other dataset, do
not manually set values for these parameters. Any values manually set, either by using the Params
property or the ParamByName method, will be overridden with automatic values.

Component Reference

Page 362

TEDBQuery.EngineVersion Property

property EngineVersion: String

Indicates the current version of ElevateDB being used. This property is read-only.

Component Reference

Page 363

TEDBQuery.ExecutionResult Property

property ExecutionResult: Boolean

The ExecutionResult property indicates the result of the execution of the current SQL statement. Currently,
this only applies to the VERIFY TABLE and REPAIR TABLE SQL statements. This property will be True if
any errors were found, and False if no errors were found.

Component Reference

Page 364

TEDBQuery.ExecutionTime Property

property ExecutionTime: Double

The ExecutionTime property indicates the total time, in seconds, that the current SQL statement took to
execute. This time does not include any time taken to prepare and parse the query, only the execution
time itself.

Component Reference

Page 365

TEDBQuery.ParamCheck Property

property ParamCheck: Boolean

Use the ParamCheck property to specify whether or not the Params property is cleared and regenerated if
an application modifies the SQL property at runtime. By default the ParamCheck property is True, meaning
that the Params property is automatically regenerated at runtime. When ParamCheck is True, the proper
number of parameters is guaranteed to be generated for the current SQL statement.

Note
The TEDBQuery component always behaves like the ParamCheck property is set to True at design-
time. The ParamCheck property setting is only respected at runtime.

Component Reference

Page 366

TEDBQuery.ParamCount Property

property ParamCount: Integer

Use the ParamCount property to determine how many parameters are in the Params property. If the
ParamCheck property is True, the ParamCount property always corresponds to the number of actual
parameters in the SQL statement specified in the SQL property.

Note
An application can add or delete parameters to the Params property. Such additions and deletions
are automatically reflected in ParamCount.

Component Reference

Page 367

TEDBQuery.Params Property

property Params: TParams

Use the Params property to specify the parameters for an SQL statement. The Params proerty is a zero-
based array of TParam objects. Index specifies the array element to access.

Note
An easier way to set and retrieve parameter values when the name of each parameter is known is
to call the ParamByName method.

Component Reference

Page 368

TEDBQuery.Plan Property

property Plan: TStrings

The Plan property is where the query plan is stored when the SQL statement specified in the SQL property
is/are executed and the RequestPlan property is set to True. The Plan property is cleared before each new
SQL statement specified in the SQL property is executed.

Note
Query plans are only generated for SQL SELECT, INSERT, UPDATE, or DELETE statements.

Component Reference

Page 369

TEDBQuery.Prepared Property

property Prepared: Boolean

Use the Prepared property to determine if an SQL statement is already prepared for execution. If Prepared
is True, the SQL statement is prepared, and if Prepared is False, the SQL statement is not prepared. While
an SQL statement need not be prepared before execution, execution performance is enhanced if the SQL
statement is prepared beforehand, particularly if it is a parameterized SQL statement that is executed
more than once using different parameter values.

Note
An application can change the current setting of Prepared to prepare or unprepare an SQL
statement. If Prepared is True, setting it to False calls the UnPrepare method to unprepare the SQL
statement. If Prepared is False, setting it to True calls the Prepare method to prepare the SQL
statement.

Component Reference

Page 370

TEDBQuery.RequestPlan Property

property RequestPlan: Boolean

The RequestPlan property can be used to specify that a query plan be generated and stored in the Plan
property when the SQL statement specified in the SQL property is executed.

Note
Query plans are only generated for SQL SELECT, INSERT, UPDATE, or DELETE statements.

Component Reference

Page 371

TEDBQuery.RequestSensitive Property

property RequestSensitive: Boolean

Use the RequestSensitive property to specify whether or not ElevateDB should attempt to return a
sensitive result set when the current SELECT statement in the SQL property is excuted. The
RequestSensitive property is False by default, meaning that an insensitive and read-only result set will be
returned. Set the RequestSensitive property to True and the ReadOnly property to False to request a
sensitive result set that can be modified.

Note
Setting RequestSensitive to True does not guarantee that a sensitive result set will be returned by
ElevateDB. A sensitive result set will be returned only if the SELECT statement syntax conforms to
the syntax requirements for a sensitive result set. If the RequestSensitive property is True, but the
syntax does not conform to the requirements, ElevateDB returns an insensitive result set. After
executing the query, inspect the Sensitive property to determine whether the request for a sensitive
result set was successful.

Component Reference

Page 372

TEDBQuery.RowsAffected Property

property RowsAffected: Integer

Use the RowsAffected property to determine how many rows were inserted, updated or deleted by the
execution of the current SQL statement specified via the SQL property. If RowsAffected is 0, the SQL
statement did not insert, update or delete any rows.

Note
This property is only useful for INSERT, UPDATE, or DELETE statements and will always be equal to
the RecordCount property for any SELECT statement that returns a result set.

Component Reference

Page 373

TEDBQuery.Sensitive Property

property Sensitive: Boolean

The Sensitive property indicates whether the current SELECT statement returned a sensitive result set.

Component Reference

Page 374

TEDBQuery.SQL Property

property SQL: TStrings

Use the SQL property to specify the SQL statement that the TEDBQuery component executes when its
Open or ExecSQL methods are called.

Component Reference

Page 375

TEDBQuery.StatementHandle Property

property StatementHandle: TEDBStatementManager

The StatementHandle property is for internal use only and is not useful to the application developer using
ElevateDB.

Component Reference

Page 376

TEDBQuery.StatementType Property

property StatementType: TEDBSQLStatementType

The StatementType property indicates the kind of SQL statement currently specified in the SQL property.

Component Reference

Page 377

TEDBQuery.Text Property

property Text: String

The Text property indicates the actual text of the SQL statement passed to ElevateDB. For parameterized
SQL statements, the Text property contains the SQL statement with parameters replaced by the parameter
substitution symbol (?) in place of actual parameter values.

Component Reference

Page 378

TEDBQuery.ExecSQL Method

procedure ExecSQL

Call the ExecSQL method to execute the SQL statement currently assigned to the SQL property. Use the
ExecSQL method to execute any type of SQL statement. If the SQL statement is a SELECT statement, then
the ExecSQL method will automatically call the Open method to open the query result set returned by the
SELECT statement.

The ExecSQL method prepares the SQL statement in the SQL property for execution if it has not already
been prepared. To speed performance in situations where an SQL statement will be executed multiple
times with parameters, an application should ordinarily call the Prepare method before calling the ExecSQL
method for the first time.

Component Reference

Page 379

TEDBQuery.ParamByName Method

function ParamByName(const Value: String): TParam

Call the ParamByName method to set or access parameter information for a specific parameter based on
its name. Value is the name of the parameter to access.

Component Reference

Page 380

TEDBQuery.Prepare Method

procedure Prepare

Call the Prepare method to have ElevateDB allocate resources for the execution of an SQL statement,
compile the SQL statement, and perform the process of setting up the SQL statement for execution by
opening up source tables, etc. The SQL statement is specified via the SQL property.

ElevateDB automatically prepares an SQL statement if it is executed without first being prepared. After
execution, ElevateDB unprepares the SQL statement. When an SQL statement will be executed a number
of times, an application should always explicitly prepare the SQL statement using the Prepare method to
avoid multiple and unnecessary prepares and unprepares.

Preparing a query consumes some database resources, so it is good practice for an application to
unprepare a query once it is done using it. The UnPrepare method unprepares a query.

Note
When you change the SQL property, the current SQL statement is automatically closed and
unprepared.

Component Reference

Page 381

TEDBQuery.UnPrepare Method

procedure UnPrepare

Call the UnPrepare method to free the resources allocated for an SQL statement previously prepared with
the Prepare method.

Component Reference

Page 382

TEDBQuery.AfterPrepare Event

property AfterPrepare: TNotifyEvent

The AfterPrepare event is fired right after the query has been successfully prepared by calling the Prepare
method or by setting the Prepared to True. Write an event handler for this event to take action at this
time.

Component Reference

Page 383

TEDBQuery.AfterUnPrepare Event

property AfterUnPrepare: TNotifyEvent

The AfterUnPrepare event is fired right after the query has been unprepared by calling the UnPrepare
method or by setting the Prepared to False. Write an event handler for this event to take action at this
time.

Component Reference

Page 384

TEDBQuery.BeforePrepare Event

property BeforePrepare: TNotifyEvent

The BeforePrepare event is fired right before the query is prepared by calling the Prepare method or by
setting the Prepared to True. Write an event handler for this event to take action at this time.

Component Reference

Page 385

TEDBQuery.BeforeUnPrepare Event

property BeforeUnPrepare: TNotifyEvent

The BeforePrepare event is fired right before the query is unprepared by calling the UnPrepare method or
by setting the Prepared to False. Write an event handler for this event to take action at this time.

Component Reference

Page 386

TEDBQuery.OnLogMessage Event

property OnLogMessage: TEDBLogMessageEvent

The OnLogMessage event is fired when an SQL statement is executed via the ExecSQL or Open methods
and that statement generates log messages. Assign an event handler to the OnLogMessage event to save
or display these log messages within your application. The following SQL statements will generate log
messages:

ALTER TABLE
VERIFY TABLE
REPAIR TABLE
OPTIMIZE TABLE

Component Reference

Page 387

TEDBQuery.OnProgress Event

property OnProgress: TEDBProgressEvent

The OnProgress event is fired when an SQL statement is executed via the ExecSQL or Open methods and
that statement generates progress. Assign an event handler to the OnProgress event to display the
progress in your application and to, optionally, abort the execution of the SQL statement by setting the
Continue parameter to False. The following SQL statements will generate progress:

SELECT
INSERT
UPDATE
DELETE
ALTER TABLE
VERIFY TABLE
REPAIR TABLE
OPTIMIZE TABLE
IMPORT TABLE
EXPORT TABLE
MIGRATE DATABASE
BACKUP DATABASE
RESTORE DATABASE
COMPARE DATABASE
SAVE UPDATES
LOAD UPDATES
COPY FILE
RENAME FILE
DELETE FILE

Component Reference

Page 388

TEDBQuery.OnStatusMessage Event

property OnStatusMessage: TEDBStatusMessageEvent

The OnStatusMessage event is fired when an SQL statement is executed via the ExecSQL or Open
methods and that statement generates status messages. Assign an event handler to the OnStatusMessage
event to display these messages in your application. All SQL statements will generate status messages.

Component Reference

Page 389

6.8 TEDBScript Component

Unit: edbcomps

Inherits From TEDBDBDataSet

Use the TEDBScript component to prepare and execute a script. The parameter values for the script are
automatically discovered when preparing the script, and then can be assigned values to be used when the
script is executed. In addition, the component can executed scripts that return result sets and the returned
result set can be navigated and updated just like any other dataset.

Properties Methods Events

Debugging BreakpointSet AfterPrepare

EngineVersion ConvertSQL AfterUnPrepare

ExecutionTime CopyParams BeforePrepare

ParamCount EndDebugScript BeforeUnPrepare

Params ExecScript OnDebugCompletion

Paused GetDebugVariable OnDebugNotification

PauseOnExceptions GetDebugVariableNames OnDebugStart

Prepared ParamByName OnLogMessage

ScriptHandle Pause OnProgress

SQL Prepare OnStatusMessage

Stopped RemoveBreakpoint

Resume

SetBreakpoint

StartDebugScript

StepOver

Stop

UnPrepare

Component Reference

Page 390

TEDBScript.Debugging Property

property Debugging: Boolean

The Debugging property is True when the threaded debug execution of a script has started by a call to the
StartDebugScript method from the main thread.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 391

TEDBScript.EngineVersion Property

property EngineVersion: String

Indicates the current version of ElevateDB being used. This property is read-only.

Component Reference

Page 392

TEDBScript.ExecutionTime Property

property ExecutionTime: Double

The ExecutionTime property indicates the total time, in seconds, that the current script took to execute.
This time does not include any time taken to prepare and parse the script, only the execution time itself.

Component Reference

Page 393

TEDBScript.ParamCount Property

property ParamCount: Integer

Use the ParamCount property to determine how many parameters are in the Params property. If the
Prepared property is True, the ParamCount property always corresponds to the number of actual
parameters in the script specified in the SQL property.

Component Reference

Page 394

TEDBScript.Params Property

property Params: TParams

Use the Params property to specify the parameters for a script. The Params proerty is a zero-based array
of TParam objects. Index specifies the array element to access.

Note
An easier way to set and retrieve parameter values when the name of each parameter is known is
to call the ParamByName method.

Component Reference

Page 395

TEDBScript.Paused Property

property Paused: Boolean

The Paused property is True when the threaded debug execution of a script has been paused by a call to
the Pause method from the main thread.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 396

TEDBScript.PauseOnExceptions Property

property PauseOnExceptions: Boolean

Use the PauseOnExceptions property to indicate whether to have the threaded debug execution of a script
pause when an exception is encountered in the script.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 397

TEDBScript.Prepared Property

property Prepared: Boolean

Use the Prepared property to determine if a script is already prepared for execution. If Prepared is True,
the script is prepared, and if Prepared is False, the script is not prepared. While a script need not be
prepared before execution if it doesn't accept any parameters, it is recommended that you always prepare
a script before executing it, particularly if the script accepts parameters and is executed more than once.

Note
An application can change the current setting of Prepared to prepare or unprepare a script. If
Prepared is True, setting it to False calls the UnPrepare method to unprepare the script. If Prepared
is False, setting it to True calls the Prepare method to prepare the script.

Component Reference

Page 398

TEDBScript.ScriptHandle Property

property ScriptHandle: TEDBScriptManager

The ScriptHandle property is for internal use only and is not useful to the application developer using
ElevateDB.

Component Reference

Page 399

TEDBScript.SQL Property

property SQL: TStrings

Use the SQL property to specify the script that the TEDBScript component executes when its Open or
ExecScript methods are called. The script must contain, at a minimum, the following SQL/PSM:

SCRIPT
BEGIN
END

Component Reference

Page 400

TEDBScript.Stopped Property

property Stopped: Boolean

The Stopped property is True when the threaded debug execution of a script has been stopped by a call to
the Stop method from the main thread.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 401

TEDBScript.BreakpointSet Method

function BreakpointSet(LineNumber: Integer): Boolean

Call BreakpointSet from the main thread to determine if a breakpoint has been set for a specific line in the
current script.

Component Reference

Page 402

TEDBScript.ConvertSQL Method

procedure ConvertSQL(TabSize: Integer=3)

Call ConvertSQL to convert a series of SQL statements separated by semicolons (;) in the SQL property
into a proper ElevateDB script with the following structure:

SCRIPT
BEGIN
END

The converted script is placed back into the SQL property when the conversion is complete. In the
converted ElevateDB script, each statement will be enclosed within an EXECUTE IMMEDIATE statement,
with the statement to be executed enclosed in single quotes ('). The TabSize parameter determines how
many spaces are added in front of each EXECUTE IMMEDIATE statement in the converted script.

Component Reference

Page 403

TEDBScript.CopyParams Method

procedure CopyParams(Value: TParams)

Call CopyParams to copy the script's parameters into a separate parameter list object. Value is the
parameter list into which to assign the script's parameters. Value can be the parameter list of another
script. If the script is not prepared when an application calls CopyParams, CopyParams calls Prepare
before assigning the parameters to the target parameters list, and then calls UnPrepare to return the
script to its previous state.

Component Reference

Page 404

TEDBScript.EndDebugScript Method

function EndDebugScript: Boolean

Call EndDebugScript from the main thread to end the threaded debug execution of the script.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 405

TEDBScript.ExecScript Method

procedure ExecScript

Call the ExecScript method to execute the script currently assigned to the SQL property. If the script
returns a result set, then the ExecScript method will automatically call the Open method to open the
script's result set.

The ExecScript method prepares the script in the SQL property for execution if it has not already been
prepared. To speed performance in situations where a script will be executed multiple times with
parameters, an application should ordinarily call the Prepare method before calling the ExecScript method
for the first time.

Component Reference

Page 406

TEDBScript.GetDebugVariable Method

function GetDebugVariable(const Name: String): TEDBDebugVariable

Call GetDebugVariable from the main thread to retrieve information about a specific script variable during
the threaded debug execution of the script. You should only call GetDebugVariable when the Paused
property is True.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 407

TEDBScript.GetDebugVariableNames Method

procedure GetDebugVariableNames(List: TStrings)

Call GetDebugVariableNames from the main thread to retrieve a list of the current script variable names
during the threaded debug execution of the script. You should only call GetDebugVariableNames when the
Paused property is True.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 408

TEDBScript.ParamByName Method

function ParamByName(const Value: String): TParam

Call the ParamByName method to set or access parameter information for a specific parameter based on
its name. Value is the name of the parameter to access.

Component Reference

Page 409

TEDBScript.Pause Method

procedure Pause

Call Pause from the main thread to pause the threaded debug execution of the script.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 410

TEDBScript.Prepare Method

procedure Prepare

Call the Prepare method to have ElevateDB allocate resources for the execution of a script, compile the
script, and perform the process of setting up the script for execution. The script is specified via the SQL
property.

ElevateDB automatically prepares a script if it is executed without first being prepared. After execution,
ElevateDB unprepares the script. When a script will be executed a number of times, an application should
always explicitly prepare the script using the Prepare method to avoid multiple and unnecessary prepares
and unprepares.

Preparing a script consumes some database resources, so it is good practice for an application to
unprepare a script once it is done using it. The UnPrepare method unprepares a script.

Note
When you change the SQL property, the current script is automatically closed and unprepared.

Component Reference

Page 411

TEDBScript.RemoveBreakpoint Method

function RemoveBreakpoint(LineNumber: Integer): Boolean

Call RemoveBreakpoint from the main thread to remove a breakpoint on a specific line from the current
script.

Component Reference

Page 412

TEDBScript.Resume Method

procedure Resume

Call Resume from the main thread to resume the threaded debug execution of the script. You should only
call Resume when the Paused property is True.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 413

TEDBScript.SetBreakpoint Method

function SetBreakpoint(LineNumber: Integer): Boolean

Call SetBreakpoint from the main thread to set a breakpoint on a specific line in the current script.

Component Reference

Page 414

TEDBScript.StartDebugScript Method

procedure StartDebugScript

Call StartDebugScript from the main thread to start the threaded debug execution of the script.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 415

TEDBScript.StepOver Method

procedure StepOver

Call StepOver from the main thread to step over the current line in the threaded debug execution of the
script. You should only call StepOver when the Paused property is True.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 416

TEDBScript.Stop Method

procedure Stop

Call Stop from the main thread to stop the threaded debug execution of the script.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 417

TEDBScript.UnPrepare Method

procedure UnPrepare

Call the UnPrepare method to free the resources allocated for a script previously prepared with the
Prepare method.

Component Reference

Page 418

TEDBScript.AfterPrepare Event

property AfterPrepare: TNotifyEvent

The AfterPrepare event is fired right after the script has been successfully prepared by calling the Prepare
method or by setting the Prepared to True. Write an event handler for this event to take action at this
time.

Component Reference

Page 419

TEDBScript.AfterUnPrepare Event

property AfterUnPrepare: TNotifyEvent

The AfterUnPrepare event is fired right after the script has been unprepared by calling the UnPrepare
method or by setting the Prepared to False. Write an event handler for this event to take action at this
time.

Component Reference

Page 420

TEDBScript.BeforePrepare Event

property BeforePrepare: TNotifyEvent

The BeforePrepare event is fired right before the script is prepared by calling the Prepare method or by
setting the Prepared to True. Write an event handler for this event to take action at this time.

Component Reference

Page 421

TEDBScript.BeforeUnPrepare Event

property BeforeUnPrepare: TNotifyEvent

The BeforePrepare event is fired right before the script is unprepared by calling the UnPrepare method or
by setting the Prepared to False. Write an event handler for this event to take action at this time.

Component Reference

Page 422

TEDBScript.OnDebugCompletion Event

property OnDebugCompletion: TNotifyEvent

The OnDebugCompletion event is fired when the threaded debug execution of a script has completed. You
can call the EndDebugScript from the main thread to end the execution.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 423

TEDBScript.OnDebugNotification Event

property OnDebugNotification: TEDBDebugNotificationEvent

The OnDebugNotification event is fired when the threaded debug execution of a script has been paused, a
breakpoint has been encountered, or an exception has been encountered and the PauseOnExceptions
property is set to True. You can call the GetDebugVariableNames and GetDebugVariable methods from the
main thread to retrieve the value of debug variables from within this event handler.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 424

TEDBScript.OnDebugStart Event

property OnDebugStart: TNotifyEvent

The OnDebugStart event is fired when the threaded debug execution of a script has started by a call to
the StartDebugScript method from the main thread.

Note
The script debugging functionality is primarily for use in the ElevateDB Manager, and relies on
proper multi-threading techniques. It can easily result in application lock-ups and erratic behaviors if
not implemented properly. You can use the debugging functionality in your own application, but
please consult the ElevateDB Manager source code for more information on how to properly use this
functionality.

Component Reference

Page 425

TEDBScript.OnLogMessage Event

property OnLogMessage: TEDBLogMessageEvent

The OnLogMessage event is fired when a script is executed via the ExecScript or Open methods and that
script generates log messages. Assign an event handler to the OnLogMessage event to save or display
these log messages within your application.

Component Reference

Page 426

TEDBScript.OnProgress Event

property OnProgress: TEDBProgressEvent

The OnProgress event is fired when a script is executed via the ExecScript or Open methods and that
script generates progress. Assign an event handler to the OnProgress event to display the progress in your
application and to, optionally, abort the execution of the script by setting the Continue parameter to False.

Note
Whether a script aborts its execution when setting the Continue parameter to False depends
completely upon the script code. The script can choose to completely ignore the request to abort
execution.

Component Reference

Page 427

TEDBScript.OnStatusMessage Event

property OnStatusMessage: TEDBStatusMessageEvent

The OnStatusMessage event is fired when a script is executed via the ExecScript or Open methods and
that script generates status messages. Assign an event handler to the OnStatusMessage event to display
these messages in your application. All scripts will generate status messages.

Component Reference

Page 428

6.9 TEDBServerProcedure Component

Unit: edbcomps

Inherits From TObject

Use the TEDBServerProcedure object to access the calling information for a custom server procedure in
the ElevateDB Server engine. This object is passed to the TEDBEngine OnServerProcedure event in order
to allow an event handler to identify which procedure is being called, get and set parameters for the
procedure, and send status, log, and progress messages back to the client application.

Warning
You should never destroy the instance of the TEDBServerProcedure object passed to the
OnServerProcedure event. It is automatically created and destroyed for you in a thread-safe
manner.

Properties Methods Events

Name Create

Params SendLogMessage

SendProgress

SendStatusMessage

Component Reference

Page 429

TEDBServerProcedure.Name Property

property Name: String

This is the name of the custom server procedure that is being called.

Component Reference

Page 430

TEDBServerProcedure.Params Property

property Params: TParams

Use the Params property to get/set the parameters for the custom server procedure. The Params proerty
is a zero-based array of TParam objects. Index specifies the array element to access.

Warning
Do not add or delete parameters, or change their name, using this property. The parameters that
are sent by the calling remote session should be left as-is. Any result or output parameters required
by the calling remote session will be marked as such (ptInputOutput, ptOutput, or ptResult) via
their ParamType property.

Component Reference

Page 431

TEDBServerProcedure.Create Method

constructor Create(ServerProcedure: TObject)

Call the Create constructor to create an instance of the TEDBServerProcedure class.

Note
Do not call this constructor. It is used internally by ElevateDB to create instances of the
TEDBServerProcedure class for use with the TEDBEngine OnServerProcedure event.

Component Reference

Page 432

TEDBServerProcedure.SendLogMessage Method

procedure SendLogMessage(const LogMsg: String)

Use this method to send a log message back to the calling remote session. This message will appear via
the calling remote session's OnLogMessage event handler.

Component Reference

Page 433

TEDBServerProcedure.SendProgress Method

procedure SendProgress(PercentDone: Integer; var Continue:
 Boolean)

Use this method to send progress back to the calling remote session. The progress will appear via the
calling remote session's OnProgress event handler.

Note
If the remote session does not want to continue with the custom server procedure, it will set the
Continue property to False. It is completely up to the custom server procedure as to whether it
respects this setting or not. Certain types of custom server procedures will not be interruptable, and
should ignore this parameter.

Component Reference

Page 434

TEDBServerProcedure.SendStatusMessage Method

procedure SendStatusMessage(const StatusMsg: String)

Use this method to send a status message back to the calling remote session. This message will appear
via the calling remote session's OnStatusMessage event handler.

Component Reference

Page 435

6.10 TEDBSession Component

Unit: edbcomps

Inherits From TComponent

Use the TEDBSession component to manage a local or remote session within an application. A session acts
like a "virtual user" and each new session component used in an application maintains its own database
connections, table buffers, table/view/query result set cursors, etc. Because of the unique requirements of
a multi-threaded application, ElevateDB requires that you use a separate TEDBSession component for each
thread in use, thus treating each thread as a separate "virtual user".

A default TEDBSession component is created automatically when the application is started and can be
referenced via the global Session function in the edbcomps unit.

Note
Applications that maintain multiple sessions can manage them through the TEDBEngine component.
A TEDBEngine component is created automatically when an application is started and can be
referenced via the global Engine function in the edbcomps unit.

Properties Methods Events

AutoSessionName CalculateCRC32ForStream AfterConnect

CharacterSet CallRemoteProcedure AfterDisconnect

Connected Close BeforeConnect

CurrentRemoteID CloseDatabase BeforeDisconnect

CurrentUser Create OnLogin

DatabaseCount DropConnections OnLogMessage

Databases Execute OnProgress

EngineVersion ExecuteScript OnRemoteReceiveProgress

ExcludeFromLicensedSessions FindDatabase OnRemoteReconnect

ForceBufferFlush FreeCachedFuncProcs OnRemoteSendProgress

FuncProcCacheSize FreeCachedSQLStmts OnRemoteTimeout

Handle GetDatabaseNames OnRemoteTrace

KeepConnections GetDatabases OnStatusMessage

KeepTablesOpen GetRemoteDateTime

LocalBackupExtension GetRemoteServerDescription

LocalCacheModules GetRemoteServerName

LocalCatalogExtension GetRemoteServerVersion

LocalCatalogName GetRemoteUTCDateTime

Component Reference

Page 436

LocalConfigExtension GetStoredProcNames

LocalConfigMemory GetTableNames

LocalConfigName Open

LocalConfigPath OpenDatabase

LocalEncryptionPassword SaveStoreFileToStream

LocalLockExtension SaveStreamToStoreFile

LocalLogCategories

LocalLogExtension

LocalMaxLogFileSize

LocalShowDatabaseCatalogInfo

LocalShowUserPasswords

LocalSignature

LocalTableBlobExtension

LocalTableExtension

LocalTableIndexExtension

LocalTablePublishExtension

LocalTempTablesPath

LocalUpdateExtension

LoginPassword

LoginUser

ProgressTimeInterval

RecordChangeDetection

RecordLockProtocol

RecordLockRetryCount

RecordLockWaitTime

RemoteAddress

RemoteCompression

RemoteConnectionTimeout

RemoteEncryption

RemoteEncryptionPassword

RemoteHost

RemoteParams

RemotePing

RemotePingInterval

RemotePort

RemoteService

Component Reference

Page 437

RemoteSignature

RemoteTimeout

RemoteTrace

SessionDescription

SessionName

SessionType

SQLStmtCacheSize

Component Reference

Page 438

TEDBSession.AutoSessionName Property

property AutoSessionName: Boolean

Use the AutoSessionName property to specify whether or not a unique session name is automatically
generated for the TEDBSession component. AutoSessionName is intended to guarantee developers of
multi-threaded applications that TEDBSession components created for each thread are assigned unique
names at runtime.

When AutoSessionName is False (the default), the application must set the SessionName property for a
session component to a unique name within the context of the application. When AutoSessionName is
True, the TEDBSession component assigns the SessionName property automatically and replicates this
session name across the SessionName properties of all TEDBDatabase, TEDBQuery, TEDBTable, and
TEDBStoredProc components in the data module or form where the session component is created. This
allows applications to use TEDBSession components in data modules that are replicated over multiple
threads without having to worry about providing unique names for each session when the data module is
created. The TEDBSession component constructs a session name by taking the current value of the Name
property and appending an underscore (_) followed by a numeric value. For example, if the Name
property was set to "CustomerSession", then the AutoSessionName property would be set to
"CustomerSession_2" for the second session created.

Note
The following restrictions apply to the AutoSessionName property:

 • You cannot set the AutoSessionName property to True for a TEDBSession component in a data module
or form that contains more than one TEDBSession component.

 • You cannot add a TEDBSession component to a data module or form that already contains a
TEDBSession component with its AutoSessionName property set to True.

 • You cannot directly set the SessionName property of a TEDBSession component when its
AutoSessionName property is True.

Component Reference

Page 439

TEDBSession.CharacterSet Property

property CharacterSet: TEDBCharacterSet

Use the CharacterSet property to specify the character set to use with the session. The character set must
match the character set of the configuration being accessed for local sessions, or the ElevateDB Server's
configuration for remote sessions.

Note
The default value for this property is inherited from the TEDBEngine CharacterSet property.

Component Reference

Page 440

TEDBSession.Connected Property

property Connected: Boolean

Use the Connected property to connect or disconnect a session. Setting Connected to True connects the
session, triggering the BeforeConnect event before connecting and the AfterConnect event after
successfully connecting. If the SessionType property is set to stRemote, then ElevateDB will attempt to
connect to the ElevateDB Server specified by the RemoteHost or RemoteAddressand RemotePort or
RemoteService properties. If the session can successfully connect to the ElevateDB Server, it will then
automatically login to the server using the LoginUser and LoginPasword properties. If the SessionType
property is set to stLocal, then ElevateDB will connect the session and then automatically login to the
configuration specified via the TEDBEngine ConfigPath property, using the LoginUser and LoginPasword
properties.

Setting Active to False closes any open datasets, and disconnects active database connections. If the
SessionType property is set to stRemote, then the connection to the ElevateDB Server is closed and the
user is logged out. If the SessionType property is set to stLocal, then the user is simply logged out.

Component Reference

Page 441

TEDBSession.CurrentRemoteID Property

property CurrentRemoteID: Integer

Indicates the ID of the session that is currently logged in to the ElevateDB Server when the SessionType
property is set to stRemote.

Component Reference

Page 442

TEDBSession.CurrentUser Property

property CurrentUser: String

Indicates the user name of the session that is currently logged in. If the session is not connected or logged
in, then this property returns an empty string ('').

Component Reference

Page 443

TEDBSession.DatabaseCount Property

property DatabaseCount: Integer

Indicates the number of active TEDBDatabase components currently associated with the session. This
number can change as TEDBDatabase components are opened and closed. If the DatabaseCount property
is zero, there are currently no active TEDBDatabase components associated with the session.

DatabaseCount is typically used with the Databases property to iterate through the current set of active
TEDBDatabase components in a session.

Component Reference

Page 444

TEDBSession.Databases Property

property Databases[Index: Integer]: TEDBDatabase

Use the Databases property to access active TEDBDatabase components associated with a session. An
active TEDBDatabase component is one that has its Connected property set to True.

The Databases property is typically used with the DatabaseCount property to iterate through the current
set of active TEDBDatabase components in a session.

Component Reference

Page 445

TEDBSession.EngineVersion Property

property EngineVersion: String

Indicates the current version of ElevateDB being used. This property is read-only.

Component Reference

Page 446

TEDBSession.ExcludeFromLicensedSessions Property

property ExcludeFromLicensedSessions: Boolean

Use the ExcludeFromLicensedSessions property to exclude the current session from the total licensed
session count specified by the TEDBEngine LicensedSessions property for local sessions, and the licensed
session count configured for the ElevateDB Server for remote sessions.

Component Reference

Page 447

TEDBSession.ForceBufferFlush Property

property ForceBufferFlush: Boolean

Use the ForceBufferFlush property to specify that the all TEDBTable, TEDBQuery, and TEDBStoredProc
components in this session should automatically force the operating system to flush any cached writes to
disk after ElevateDB has written any data using operating system calls. This can significantly reduce
instances of corruption in the event of an improper application shutdown, however it can also cause
performance degradation for large updates, repairing tables, etc. A better alternative for reducing the
performance implications of this property is to use the FlushBuffers method of the TEDBTable, TEDBQuery,
or TEDBStoredProc components to selectively flush the cached operating system writes to disk as
necessary.

Component Reference

Page 448

TEDBSession.FuncProcCacheSize Property

property FuncProcCacheSize: Integer

Use the FuncProcCacheSize property to specify how many functions/procedures can be cached in memory
for the duration of the session. Caching functions/procedures improves the performance of ElevateDB by
avoiding very expensive preparation/un-preparation cycles. The default value is 0, which means that
functions/procedures will not be cached for the session.

Note
The maximum number of open functions/procedures per connection is 2048, so you should not set
the function/procedure cache size that high. Also, the function/procedure cache size is a per-open-
database setting.

Component Reference

Page 449

TEDBSession.Handle Property

property Handle: TEDBSessionManager

The Handle property is for internal use only and is not useful to the application developer using ElevateDB.

Component Reference

Page 450

TEDBSession.KeepConnections Property

property KeepConnections: Boolean

Use the KeepConnections property to specify whether or not a temporary TEDBDatabase component
created in the context of a session maintains a database connection even if there are no active
TEDBTable, TEDBQuery, or TEDBStoredProc components associated with the TEDBDatabase component.
If the KeepConnections property is True (the default), the application maintains TEDBDatabase
connections until the application exits or calls the DropConnections method. For remote sessions, the
KeepConnections property should remain True to reduce network traffic and avoid constantly opening and
closing databases.

When the KeepConnections property is False, an application disconnects from a database when all
TEDBTable, TEDBQuery, and TEDBStoredProc components associated with a TEDBDatabase component
are closed. Dropping a connection releases system resources allocated to the connection, but if a dataset
is later reopened that uses the same database, the connection must be reestablished and initialized.

Note
The duration of a connection for a persistent, not temporary, TEDBDatabase component is
determined by the TEDBDatabase component's KeepConnection property instead of the session's
KeepConnections property.

Component Reference

Page 451

TEDBSession.KeepTablesOpen Property

property KeepTablesOpen: Boolean

Use the KeepTablesOpen property to specify that any tables opened are kept open internally in ElevateDB,
even though they have been closed by the application. These tables are kept open internally until the
session is disconnected and the Connected property is False. This can result in significant performance
improvements in situations where ElevateDB must open and close the same set of tables frequently, such
as with SQL statements.

Component Reference

Page 452

TEDBSession.LocalBackupExtension Property

property LocalBackupExtension: String

This property overrides the TEDBEngine BackupExtension property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 453

TEDBSession.LocalCacheModules Property

property LocalCacheModules: Boolean

This property overrides the TEDBEngine CacheModules property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 454

TEDBSession.LocalCatalogExtension Property

property LocalCatalogExtension: String

This property overrides the TEDBEngine CatalogExtension property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 455

TEDBSession.LocalCatalogName Property

property LocalCatalogName: String

This property overrides the TEDBEngine CatalogName property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 456

TEDBSession.LocalConfigExtension Property

property LocalConfigExtension: String

This property overrides the TEDBEngine ConfigExtension property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 457

TEDBSession.LocalConfigMemory Property

property LocalConfigMemory: Boolean

This property overrides the TEDBEngine ConfigMemory property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 458

TEDBSession.LocalConfigName Property

property LocalConfigName: String

This property overrides the TEDBEngine ConfigName property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 459

TEDBSession.LocalConfigPath Property

property LocalConfigPath: String

This property overrides the TEDBEngine ConfigPath property when the TEDBSession SessionType property
is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 460

TEDBSession.LocalEncryptionPassword Property

property LocalEncryptionPassword: String

This property overrides the TEDBEngine EncryptionPassword property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 461

TEDBSession.LocalLockExtension Property

property LocalLockExtension: String

This property overrides the TEDBEngine LockExtension property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 462

TEDBSession.LocalLogCategories Property

property LocalLogCategories: TEDBLogCategories

This property overrides the TEDBEngine LogCategories property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 463

TEDBSession.LocalLogExtension Property

property LocalLogExtension: String

This property overrides the TEDBEngine LogExtension property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 464

TEDBSession.LocalMaxLogFileSize Property

property LocalMaxLogFileSize: Integer

This property overrides the TEDBEngine MaxLogFileSize property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 465

TEDBSession.LocalShowDatabaseCatalogInfo Property

property LocalShowDatabaseCatalogInfo: Boolean

This property overrides the TEDBEngine ShowDatabaseCatalogInfo property when the TEDBSession
SessionType property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set
to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 466

TEDBSession.LocalShowUserPasswords Property

property LocalShowUserPasswords: Boolean

This property overrides the TEDBEngine ShowUserPasswords property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 467

TEDBSession.LocalSignature Property

property LocalSignature: String

This property overrides the TEDBEngine Signature property when the TEDBSession SessionType property
is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 468

TEDBSession.LocalTableBlobExtension Property

property LocalTableBlobExtension: String

This property overrides the TEDBEngine TableBlobExtension property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 469

TEDBSession.LocalTableExtension Property

property LocalTableExtension: String

This property overrides the TEDBEngine TableExtension property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 470

TEDBSession.LocalTableIndexExtension Property

property LocalTableIndexExtension: String

This property overrides the TEDBEngine TableIndexExtension property when the TEDBSession
SessionType property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set
to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 471

TEDBSession.LocalTablePublishExtension Property

property LocalTablePublishExtension: String

This property overrides the TEDBEngine TablePublishExtension property when the TEDBSession
SessionType property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set
to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 472

TEDBSession.LocalTempTablesPath Property

property LocalTempTablesPath: String

This property overrides the TEDBEngine TempTablesPath property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 473

TEDBSession.LocalUpdateExtension Property

property LocalUpdateExtension: String

This property overrides the TEDBEngine UpdateExtension property when the TEDBSession SessionType
property is set to stLocal and the TEDBEngine UseLocalSessionEngineSettings property is set to True.

Note
The value of this property is initially set to the corresponding TEDBEngine property value when the
TEDBSession component is first created.

Component Reference

Page 474

TEDBSession.LoginPassword Property

property LoginPassword: String

Use the LoginPassword property to specify the password for automating the login of a session. When the
session is opened via the Open method or by setting the Connected property to True, ElevateDB will
attempt to connect the session and then automatically login the user specified by the LoginUser and
LoginPassword properties. If for any reason these properties are not set correctly then the OnLogin event
will be triggered. If an event handler is not assigned to the OnLogin event then a login dialog will be
displayed in order to prompt the user for a user name and password.

Component Reference

Page 475

TEDBSession.LoginUser Property

property LoginUser: String

Use the LoginUser property to specify the user name for automating the login of a session. When the
session is opened via the Open method or by setting the Connected property to True, ElevateDB will
attempt to connect the session and then automatically login the user specified by the LoginUser and
LoginPassword properties. If for any reason these properties are not set correctly then the OnLogin event
will be triggered. If an event handler is not assigned to the OnLogin event then a login dialog will be
displayed in order to prompt the user for a user name and password.

Component Reference

Page 476

TEDBSession.ProgressTimeInterval Property

property ProgressTimeInterval: Integer

Use the ProgressTimeInterval property to specify the amount of time, in milliseconds, that must elapse
between progress updates before ElevateDB will generate a progress event. The default value is 1000
milliseconds, or 1 second.

Component Reference

Page 477

TEDBSession.RecordChangeDetection Property

property RecordChangeDetection: Boolean

Use the RecordChangeDetection property to specify whether the session will detect changes to a row
during editing or deletion and issue an error if the row has changed since it was last cached. Please see
the Change Detection topic for more information. The default value is False.

Component Reference

Page 478

TEDBSession.RecordLockProtocol Property

property RecordLockProtocol: TEDBRecordLockProtocol

Use the RecordLockProtocol property to specify whether the session will use a pessimistic or optimistic row
locking model when editing records via navigational methods or SQL statements. The pessimistic row
locking model dictates that a row should be locked when the row is retrieved for editing, which is during
the Edit method of a TEDBTable, TEDBQuery, or TEDBStoredProc component and during the execution of
an UPDATE statement. The optimistic row locking model dictates that a row should be locked when the
row modifications are posted to the table, which is during the Post method of a TEDBTable, TEDBQuery ,
or TEDBStoredProc component and during the execution of an UPDATE statement. Using an optimistic row
locking model for remote connections to an ElevateDB Server removes the possibility that dangling row
locks will be left on the server if a client application is terminated unexpectedly.

The default value is lpPessimistic.

Component Reference

Page 479

TEDBSession.RecordLockRetryCount Property

property RecordLockRetryCount: Integer

Use the RecordLockRetryCount property to specify the number of times ElevateDB will retry a row lock
before raising a row lock exception. The amount of time between each row lock retry is controlled by the
RecordLockWaitTime property of the TEDBSession component.

Note
This property only affects datasets (TEDBTable, TEDBQuery, or TEDBStoredProc components)
attached to this TEDBSession component via their SessionName property.

Component Reference

Page 480

TEDBSession.RecordLockWaitTime Property

property RecordLockWaitTime: Integer

Use the RecordLockWaitTime property to specify the amount of time, in milliseconds, ElevateDB will wait
between retries of a row lock. The number of times that a row lock is retried is controlled by the
RecordLockRetryCount property of the TEDBSession component.

Note
This property only affects datasets (TEDBTable, TEDBQuery, or TEDBStoredProc components)
attached to this TEDBSession component via their SessionName property.

Component Reference

Page 481

TEDBSession.RemoteAddress Property

property RemoteAddress: String

Use the RemoteAddress property to specify the IP address of an ElevateDB Server that you wish to
connect to. This property only applies to remote sessions where the SessionType property is set to
stRemote. When the session is opened via the Open method or by setting the Connected property to True,
ElevateDB will attempt to connect to the ElevateDB Server specified by the RemoteAddress or RemoteHost
and RemotePort or RemoteService properties.

Component Reference

Page 482

TEDBSession.RemoteCompression Property

property RemoteCompression: Integer

Use the RemoteCompression property to set the level of compression used for a remote session. This
property only applies to remote sessions where the SessionType property is set to stRemote. The
compression is specified as a value between 0 and 9, with the default being 0, or none, and 6 being the
best selection for size/speed.

Note
This property can be changed while the session is connected so that you may adjust the level of
compression for individual situations.

Component Reference

Page 483

TEDBSession.RemoteConnectionTimeout Property

property RemoteConnectionTimeout: Integer

Use the RemoteConnectionTimeout property to specify the maximum amount of time, in seconds, that the
remote session will wait for a successful connection before aborting the connection attempt. The default
value is 15 seconds.

Component Reference

Page 484

TEDBSession.RemoteEncryption Property

property RemoteEncryption: Boolean

Use the RemoteEncryption property to specify that a remote session will be encrypted using the
RemoteEncryptionPassword property. This property only applies to remote sessions where the
SessionType property is set to stRemote.

Note
This property must be set prior to connecting the session to the ElevateDB Server via the Open
method or the Connected property.

Component Reference

Page 485

TEDBSession.RemoteEncryptionPassword Property

property RemoteEncryptionPassword: String

Use the RemoteEncryptionPassword property to specify the password that a remote session will be
encrypted with when the RemoteEncryption property is set to True. However, even if the
RemoteEncryption property is set to False, the RemoteEncryptionPassword property will be used to
encrypt any login information sent to the ElevateDB Server, so the RemoteEncryptionPassword must
always match the corresponding server encryption password for session communciations or logins will be
unsuccessful. This property only applies to remote sessions where the SessionType property is set to
stRemote.

Note
This property must be set prior to connecting the session to the ElevateDB Server via the Open
method or the Connected property.

Component Reference

Page 486

TEDBSession.RemoteHost Property

property RemoteHost: String

Use the RemoteHost property to specify the host name of an ElevateDB Server that you wish to connect
to. A host name is alternate way of specifying a remote IP address by relying on DNS to translate the host
name into a usable IP address. This property only applies to remote sessions where the SessionType
property is set to stRemote. When the session is opened via the Open method or by setting the Connected
property to True, ElevateDB will attempt to connect to the ElevateDB Server specified by the
RemoteAddress or RemoteHost and RemotePort or RemoteService properties.

Component Reference

Page 487

TEDBSession.RemoteParams Property

property RemoteParams: TParams

This property is used with the CallRemoteProcedure method to call custom server procedures added to the
ElevateDB Server engine. This property only applies to remote sessions where the SessionType property is
set to stRemote.

Note
The parameters that are sent along with the custom server procedure call are completely user-
defined. It is up to the calling remote session to define all necessary parameters, including output
or result parameters for getting data back from the custom server procedure.

Component Reference

Page 488

TEDBSession.RemotePing Property

property RemotePing: Boolean

Use the RemotePing property to enable or disable pinging to an ElevateDB Server. Pinging the server
allows for the use of a smaller dead session expiration time on the server and can be used to prevent
dangling locks when a client workstation shuts down and leaves an open session on the server.

The default value is True.

When the RemotePing property is set to True, the remote session will ping the server according to the
interval in seconds specified by the RemotePingInterval property. This property only applies to remote
sessions where the SessionType property is set to stRemote.

Component Reference

Page 489

TEDBSession.RemotePingInterval Property

property RemotePingInterval: Integer

Use the RemotePingInterval property to specify the interval in seconds between pings to an ElevateDB
Server when the RemotePing property is set to True. This property only applies to remote sessions where
the SessionType property is set to stRemote.

Component Reference

Page 490

TEDBSession.RemotePort Property

property RemotePort: Integer

Use the RemotePort property to specify the port of an ElevateDB Server that you wish to connect to. This
property only applies to remote sessions where the SessionType property is set to stRemote. When the
session is opened via the Open method or by setting the Connected property to True, ElevateDB will
attempt to connect to the ElevateDB Server specified by the RemoteAddress or RemoteHost and
RemotePort or RemoteService properties.

Component Reference

Page 491

TEDBSession.RemoteService Property

property RemoteService: String

Use the RemoteService property to specify the service name of an ElevateDB Server that you wish to
connect to. A service name is an alternate way of specifying a remote port using a standard name instead
of a port number. This property only applies to remote sessions where the SessionType property is set to
stRemote. When the session is opened via the Open method or by setting the Connected property to True,
ElevateDB will attempt to connect to the server specified by the RemoteAddress or RemoteHost and
RemotePort or RemoteService properties.

Component Reference

Page 492

TEDBSession.RemoteSignature Property

property RemoteSignature: String

Use the RemoteSignature property to specify the signature that a remote session will be signed with. This
property only applies to remote sessions where the SessionType property is set to stRemote.

Note
This property must be set prior to connecting the session to the ElevateDB Server via the Open
method or the Connected property.

Component Reference

Page 493

TEDBSession.RemoteTimeout Property

property RemoteTimeout: Integer

Use the RemoteTimeout property to specify the amount of time, in seconds, that a remote session should
wait for a response from an ElevateDB Server before firing the OnRemoteTimeout event. If the
OnRemoteTimeout event is assigned an event handler, then the event handler can decide whether to
disconnect the session or not. If the OnRemoteTimeout event is not assigned an event handler, then
ElevateDB will disconnect the session. This property only applies to remote sessions where the
SessionType property is set to stRemote.

Note
Just because the session disconnects its side of the connection with the server does not necessarily
mean that the server knows the session is disconnected or immediately treats the session as a
"dead" session. The server may just simply be executing a very long process and has not sent a
progress message in a longer period of time than what is configured for the RemoteTimeout
property. Please see the Configuring and Starting the Engine topic for more information on the
meaning of "dead" sessions on an ElevateDB Server.

Component Reference

Page 494

TEDBSession.RemoteTrace Property

property RemoteTrace: Boolean

Use the RemoteTrace property to enable or disable tracing of all requests sent to and responses received
from an ElevateDB Server. When the RemoteTrace property is set to True, the OnRemoteTrace event is
fired whenever a request is sent to or a response is received from the server. This can be useful in
debugging performance issues with a connection. This property only applies to remote sessions where the
SessionType property is set to stRemote.

Component Reference

Page 495

TEDBSession.SessionDescription Property

property SessionDescription: String

Use the SessionDescription property to specify a description for the session. This description is used to
further identify the session in logged events involving the session or in session events on an ElevateDB
Server.

Component Reference

Page 496

TEDBSession.SessionName Property

property SessionName: String

Use the SessionName property to specify a unique session name that can be used by TEDBDatabase,
TEDBTable, TEDBQuery, and TEDBStoredProc components to link to this session via their own
SessionName properties, which must either match the SessionName property of an active session or be
blank, indicating that they should be associated with the default global TEDBSession component that is
created automatically when the application is started and can be referenced via the global Session function
in the edbcomps unit.

Note
If the AutoSessionName property is True, an application cannot set the SessionName property
directly.

Component Reference

Page 497

TEDBSession.SessionType Property

property SessionType: TEDBSessionType

Use the SessionType property to specify the type of session represented by the session component.
Setting this property to stLocal (the default) will cause ElevateDB to access all databases and tables in the
session directly using operating system calls. Setting this property to stRemote will cause ElevateDB to
access all databases and tables in the session remotely through the ElevateDB Server specified by the
RemoteAddress or RemoteHost and RemotePort or RemoteService properties.

Note
This property must be set prior to starting the session via the Open method or the Connected
property.

Component Reference

Page 498

TEDBSession.SQLStmtCacheSize Property

property SQLStmtCacheSize: Integer

Use the SQLStmtCacheSize property to specify how many SQL statements can be cached in memory for
the duration of the session. Caching SQL statements improves the performance of ElevateDB by avoiding
very expensive preparation/un-preparation cycles. The default value is 0, which means that SQL
statements will not be cached for the session.

Note
The maximum number of open SQL statements per connection is 2048, so you should not set the
statement cache size that high. Also, the SQL statement cache size is a per-open-database
setting.

Component Reference

Page 499

TEDBSession.CalculateCRC32ForStream Method

function CalculateCRC32ForStream(Stream: TStream): TEDBLongWord

Use the CalculateCRC32ForStream method to calculate the CRC32 checksum value for any stream. This is
useful for detecting changes to a given stream when used with the SaveStoreFileToStream and
SaveStreamToStoreFile methods for loading and then saving a store file to and from a stream. For more
information, please see the Stores topic in the ElevateDB SQL Manual.

Component Reference

Page 500

TEDBSession.CallRemoteProcedure Method

procedure CallRemoteProcedure(const NameOfProcedure: String)

Use the CallRemoteProcedure method along with the RemoteParams property to call a custom server
procedure in the ElevateDB Server engine.

Note
The parameters that are sent along with the custom server procedure call are completely user-
defined. It is up to the calling remote session to define all necessary parameters, including output
or result parameters for getting data back from the custom server procedure.

Component Reference

Page 501

TEDBSession.Close Method

procedure Close

Call the Close method to close the session and disconnect from an ElevateDB Server if the SessionType
property is set to stRemote. The Close method disconnects all active TEDBDatabase components that are
linked to the session via their SessionName property, which in turn closes all TEDBTable, TEDBQuery, and
TEDBStoredProc components linked to these databases.

Note
Setting the Connected property to False also closes a session.

Component Reference

Page 502

TEDBSession.CloseDatabase Method

procedure CloseDatabase(Database: TEDBDatabase)

Call the CloseDatabase method to close a TEDBDatabase component linked to the current session. The
Database parameter specifies TEDBDatabase component that you wish to close.

The CloseDatabase method decrements the specified TEDBDatabase component's reference count and
then, if the reference count is zero and the TEDBDatabase component's KeepConnection property is False,
closes the TEDBDatabase component.

Component Reference

Page 503

TEDBSession.Create Method

constructor Create(AOwner: TComponent)

Call the Create constructor to create an instance of the TEDBSession component.

Component Reference

Page 504

TEDBSession.DropConnections Method

procedure DropConnections

Call the DropConnections method to free all temporary TEDBDatabase components for the session that are
inactive. If the KeepConnections property of the session is True (the default), then temporary
TEDBDatabase components created as needed for the session by ElevateDB at runtime are not
automatically freed when their database connections are closed. DropConnections enables an application
to free these TEDBDatabase components when they are no longer needed.

Component Reference

Page 505

TEDBSession.Execute Method

function Execute(const SQL: String; Params: TParams=nil; Query:
 TEDBQuery=nil): Integer

Call the Execute method to execute an SQL statement directly. The number of rows affected is returned as
the result of this method. The SQL statement may also be parameterized. Any SQL statement executed
using this method is automatically executed from the context of the system-created Configuration
database. This makes this method ideal for creating objects in the Configuration database.

Note
You may pass in a TEDBQuery component that has already been created for use with this method.
However, in such a case you should be aware that several properties of the TEDBQuery component
will be overwritten by this method in order to execute the SQL.

Component Reference

Page 506

TEDBSession.ExecuteScript Method

procedure ExecuteScript(const SQL: String; Params: TParams=nil;
 Script: TEDBScript=nil)

Call the ExecuteScript method to execute an SQL script directly. The SQL script may also be
parameterized. Any SQL script executed using this method is automatically executed from the context of
the system-created Configuration database. This makes this method ideal for working with the
Configuration database.

Note
You may pass in a TEDBScript component that has already been created for use with this method.
However, in such a case you should be aware that several properties of the TEDBScript component
will be overwritten by this method in order to execute the script.

Component Reference

Page 507

TEDBSession.FindDatabase Method

function FindDatabase(const DatabaseName: String): TEDBDatabase

Call the FindDatabase method to searches a session's list of TEDBDatabase components for a specified
database. The DatabaseName parameter specifies the name of the TEDBDatabase component to search
for. The FindDatabase method compares the DatabaseName parameter to the DatabaseName property for
each TEDBDatabase component linked to the session via its SessionName property. If a match is found,
the FindDatabase method returns a reference to the TEDBDatabase component. Otherwise the
FindDatabase method returns nil.

Component Reference

Page 508

TEDBSession.FreeCachedFuncProcs Method

procedure FreeCachedFuncProcs(const DatabaseName: String)

Frees any cached functions/procedures for the specified open database. If a database is not specified,
then any cached functions/procedures in the open databases for the session will be freed.

Component Reference

Page 509

TEDBSession.FreeCachedSQLStmts Method

procedure FreeCachedSQLStmts(const DatabaseName: String)

Frees any cached SQL statements for the specified open database. If a database is not specified, then any
cached SQL statements in the open databases for the session will be freed.

Component Reference

Page 510

TEDBSession.GetDatabaseNames Method

procedure GetDatabaseNames(List: TStrings)

Call the GetDatabaseNames method to populate a string list with the names of all TEDBDatabase
components linked to the session via their SessionName property. List is a string list object, created and
maintained by the application, into which to store the database names.

Note
This method is not the same as the GetDatabases method, which returns a list of databases defined
in the configuration file pointed to by the TEDBEngine ConfigPath property for local sessions, or the
list of databases defined on the ElevateDB Server for remote sessions.

Component Reference

Page 511

TEDBSession.GetDatabases Method

procedure GetDatabases(List: TStrings)

Call the GetDatabases method to populate a string list with the names of all databases defined in the
configuration file pointed to by the TEDBEngine ConfigPath property for local sessions, or the list of
databases defined on the ElevateDB Server for remote sessions. List is a string list object, created and
maintained by the application, into which to store the database names.

Component Reference

Page 512

TEDBSession.GetRemoteDateTime Method

function GetRemoteDateTime: TDateTime

Call the GetRemoteDateTime method to retrieve the local date and time from an ElevateDB Server.

Component Reference

Page 513

TEDBSession.GetRemoteServerDescription Method

function GetRemoteServerDescription: String

Use the GetRemoteServerDescription method to retrieve the description of an ElevateDB Server.

Component Reference

Page 514

TEDBSession.GetRemoteServerName Method

function GetRemoteServerName: String

Use the GetRemoteServerName method to retrieve the name of an ElevateDB Server.

Component Reference

Page 515

TEDBSession.GetRemoteServerVersion Method

function GetRemoteServerVersion: String

Call the GetRemoteServerVersion method to retrieve the ElevateDB version from an ElevateDB Server.

Component Reference

Page 516

TEDBSession.GetRemoteUTCDateTime Method

function GetRemoteUTCDateTime: TDateTime

Call the GetRemoteUTCDateTime method to retrieve the universal coordinate date and time from an
ElevateDB Server. This is especially useful if you are accessing a server in a different time zone and wish
to get the date and time in a standard format that doesn't need to take into account the local server time
offset.

Component Reference

Page 517

TEDBSession.GetStoredProcNames Method

procedure GetStoredProcNames(const DatabaseName: String; List:
 TStrings)

Call the GetStoredProcNames method to populate a string list with the names of all stored procedures and
functions found in the TEDBDatabase component specified by the DatabaseName parameter. List is a
string list object, created and maintained by the application, into which to store the stored procedure and
function names.

Note
The DatabaseName parameter can refer to either the DatabaseName property of a TEDBDatabase
component or the name of an actual database. If the DatabaseName parameter matches the
DatabaseName property of an existing TEDBDatabase component, then the stored procedure
names returned will be from that TEDBDatabase component. Otherwise, the DatabaseName
parameter will be treated as an actual database name and the stored procedure names will be
retrieved from the appropriate database.

Component Reference

Page 518

TEDBSession.GetTableNames Method

procedure GetTableNames(const DatabaseName: String; List:
 TStrings)

Call the GetTableNames method to populate a string list with the names of all tables found in the
TEDBDatabase component specified by the DatabaseName parameter. List is a string list object, created
and maintained by the application, into which to store the table names.

Note
The DatabaseName parameter can refer to either the DatabaseName property of a TEDBDatabase
component or the name of an actual database. If the DatabaseName parameter matches the
DatabaseName property of an existing TEDBDatabase component, then the table names returned
will be from that TEDBDatabase component. Otherwise, the DatabaseName parameter will be
treated as an actual database name and the table names will be retrieved from the appropriate
database.

Component Reference

Page 519

TEDBSession.Open Method

procedure Open

Call the Open method to connect a session. The Open method connects the session, triggering the
BeforeConnect event before connecting and the AfterConnect event after successfully connecting. If the
SessionType property is set to stRemote, then ElevateDB will attempt to connect to the ElevateDB Server
specified by the RemoteHost or RemoteAddressand RemotePort or RemoteService properties. If the
session can successfully connect to the ElevateDB Server, it will then automatically login to the server
using the LoginUser and LoginPasword properties.

Component Reference

Page 520

TEDBSession.OpenDatabase Method

function OpenDatabase(const DatabaseName: String): TEDBDatabase

Call the OpenDatabase method to open an existing TEDBDatabase component, or create a temporary
TEDBDatabase component and open it. OpenDatabase calls the FindDatabase method to determine if the
DatabaseName parameter corresponds to the DatabaseName property of an existing TEDBDatabase
component. If it does not, OpenDatabase creates a temporary TEDBDatabase component, assigning the
DatabaseName parameter to the DatabaseName property. It also assigns the DatabaseName parameter to
the Database property. Finally, OpenDatabase calls the Open method of the TEDBDatabase component.

Component Reference

Page 521

TEDBSession.SaveStoreFileToStream Method

procedure SaveStoreFileToStream(const StoreName: String; const
 FileName: String; DestStream: TStream)

Use the SaveStoreFileToStream method to load a store file into a stream. For more information, please see
the Stores topic in the ElevateDB SQL Manual.

Component Reference

Page 522

TEDBSession.SaveStreamToStoreFile Method

procedure SaveStreamToStoreFile(const StoreName: String; const
 FileName: String; SourceStream: TStream)

Use the SaveStreamToStoreFile method to save a stream as a store file. For more information, please see
the Stores topic in the ElevateDB SQL Manual.

Component Reference

Page 523

TEDBSession.AfterConnect Event

property AfterConnect: TNotifyEvent

The AfterConnect event is fired right after the session has been successfully connected. Write an event
handler for this event to take action at this time.

Component Reference

Page 524

TEDBSession.AfterDisconnect Event

property AfterDisconnect: TNotifyEvent

The AfterDisconnect event is fired right after the session has been successfully disconnected. Write an
event handler for this event to take action at this time.

Component Reference

Page 525

TEDBSession.BeforeConnect Event

property BeforeConnect: TNotifyEvent

The BeforeConnect event is fired right before the session is connected. Write an event handler for this
event to take action at this time.

Component Reference

Page 526

TEDBSession.BeforeDisconnect Event

property BeforeDisconnect: TNotifyEvent

The BeforeDisconnect event is fired right before the session is disconnected. Write an event handler for
this event to take action at this time.

Component Reference

Page 527

TEDBSession.OnLogin Event

property OnLogin: TEDBSessionLoginEvent

The OnLogin event is fired when the session is connected and the LoginUser and LoginPassword
properties have not been assigned or have been assigned but are not valid. You can specify the user name
and password via the UserName and Password parameters. The Continue parameter indicates whether the
connection process should continue or whether the session should stop trying to connect.

Note
Any version of ElevateDB for Delphi 6 or higher (including C++Builder 6 and higher as well as Kylix
2 and higher) requires that you include the DBLogDlg unit to your uses clause in order to enable the
display of a default remote login dialog. This is done to allow for ElevateDB to be included in
applications without linking in the forms support, which can add a lot of unnecessary overhead and
also cause unwanted references to user interface libraries. This is not required for Delphi 5 or
C++Builder 5, but these versions always include forms support.

Component Reference

Page 528

TEDBSession.OnLogMessage Event

property OnLogMessage: TEDBLogMessageEvent

The OnLogMessage event is fired when an SQL statement is executed via the Execute method and that
statement generates log messages. Assign an event handler to the OnLogMessage event to save or display
these log messages within your application. The following SQL statements will generate log messages:

ALTER TABLE
VERIFY TABLE
REPAIR TABLE
OPTIMIZE TABLE

Component Reference

Page 529

TEDBSession.OnProgress Event

property OnProgress: TEDBProgressEvent

The OnProgress event is fired when an SQL statement is executed via the Execute method and that
statement generates progress. Assign an event handler to the OnProgress event to display the progress in
your application and to, optionally, abort the execution of the SQL statement by setting the Continue
parameter to False. The following SQL statements will generate progress:

SELECT
INSERT
UPDATE
DELETE
ALTER TABLE
VERIFY TABLE
REPAIR TABLE
OPTIMIZE TABLE
IMPORT TABLE
EXPORT TABLE
MIGRATE DATABASE
BACKUP DATABASE
RESTORE DATABASE
SAVE UPDATES
LOAD UPDATES
COPY FILE
RENAME FILE
DELETE FILE

Component Reference

Page 530

TEDBSession.OnRemoteReceiveProgress Event

property OnRemoteReceiveProgress: TEDBRemoteProgressEvent

The OnRemoteReceiveProgress event is fired whenever a remote session receives a response from the
ElevateDB Server. The NumBytes parameter indicates the amount of data in bytes that has been received
so far, and always starts at 0 bytes to indicate the beginning of a response. The PercentDone parameter
indicates the percentage of the response that has been received so far, and is also 0 at the beginning of a
response.

Component Reference

Page 531

TEDBSession.OnRemoteReconnect Event

property OnRemoteReconnect: TEDBRemoteReconnectEvent

The OnRemoteReconnect event is fired when a remote session tries to send a request to the ElevateDB
Server and cannot because the connection to the server has been broken. This is usually due to network
issues or the remote session being disconnected by the server because the connection timeout setting for
the server has been exceeded. In such a case the remote session would normally attempt an automatic
reconnection. However, attaching an event handler to this event intercepts this reconnection process and
allows the application to choose to skip the automatic reconnection by setting the Continue parameter to
False (the default value is True). This can be useful in situations where the application knows that the
network is down or there is a configuration issue that would prevent the remote session from reconnecting
successfully. The application can also set the StopAsking parameter to True to tell ElevateDB that it should
stop firing this event from now until the session's connection is finally terminated. This avoids a lot of calls
to the event handler as tables and databases are closed and each of them try to send requests to the
server.

Component Reference

Page 532

TEDBSession.OnRemoteSendProgress Event

property OnRemoteSendProgress: TEDBRemoteProgressEvent

The OnRemoteSendProgress event is fired whenever a remote session sends a request to the ElevateDB
Server. The NumBytes parameter indicates the amount of data in bytes that has been sent so far, and
always starts at 0 bytes to indicate the beginning of a request. The PercentDone parameter indicates the
percentage of the request that has been sent so far, and is also 0 at the beginning of a request.

Component Reference

Page 533

TEDBSession.OnRemoteTimeout Event

property OnRemoteTimeout: TEDBRemoteTimeoutEvent

The OnRemoteTimeout event is fired when a remote session is waiting on a response from the ElevateDB
Server and has not received a response within the number of seconds indicated by the RemoteTimeout
property. The StayConnected parameter indicates whether the remote session should stay connected and
keep waiting on a response or whether it should disconnect from the server.

Component Reference

Page 534

TEDBSession.OnRemoteTrace Event

property OnRemoteTrace: TEDBRemoteTraceEvent

The OnRemoteTrace event is fired when remote message tracing is enabled for a remote session via the
RemoteTrace property and a request is being sent to the ElevateDB Server or a response is being received
from the server. You can use the Trace parameter to log information about the request or response.

Component Reference

Page 535

TEDBSession.OnStatusMessage Event

property OnStatusMessage: TEDBStatusMessageEvent

The OnStatusMessage event is fired when an SQL statement is executed via the Execute method and that
statement generates status messages. Assign an event handler to the OnStatusMessage event to display
these messages in your application. All SQL statements will generate status messages.

Component Reference

Page 536

6.11 TEDBStoredProc Component

Unit: edbcomps

Inherits From TEDBDBDataSet

Use the TEDBStoredProc component to prepare and execute a stored procedure or function. The
parameter values for the stored procedure or function are automatically discovered when preparing the
stored procedure or function, and then can be assigned values to be used when the stored procedure or
function is executed. In addition, the component can execute stored procedures that return result sets and
the returned result sets can be navigated and updated just like any other dataset. When executing
functions, any result value can be read by examining the "Result" parameter that will automatically
defined when preparing the function. This parameter will also have a TParam.ParamType value of
ptResult.

Properties Methods Events

EngineVersion CopyParams AfterPrepare

ExecutionTime ExecProc AfterUnPrepare

ParamCount ParamByName BeforePrepare

Params Prepare BeforeUnPrepare

Prepared UnPrepare OnLogMessage

ProcedureHandle OnProgress

StoredProcName OnStatusMessage

Component Reference

Page 537

TEDBStoredProc.EngineVersion Property

property EngineVersion: String

Indicates the current version of ElevateDB being used. This property is read-only.

Component Reference

Page 538

TEDBStoredProc.ExecutionTime Property

property ExecutionTime: Double

The ExecutionTime property indicates the total time, in seconds, that the current procedure/function took
to execute. This time does not include any time taken to compile the procedure/function, only the
execution time itself.

Component Reference

Page 539

TEDBStoredProc.ParamCount Property

property ParamCount: Integer

Use the ParamCount property to determine how many parameters are in the Params property. If the
Prepared property is True, the ParamCount property always corresponds to the number of actual
parameters in the procedure/function specified in the StoredProcName property.

Component Reference

Page 540

TEDBStoredProc.Params Property

property Params: TParams

Use the Params property to specify the parameters for a procedure/function. The Params proerty is a zero-
based array of TParam objects. Index specifies the array element to access.

Note
An easier way to set and retrieve parameter values when the name of each parameter is known is
to call the ParamByName method.

Component Reference

Page 541

TEDBStoredProc.Prepared Property

property Prepared: Boolean

Use the Prepared property to determine if a procedure/function is already prepared for execution. If
Prepared is True, the procedure/function is prepared, and if Prepared is False, the procedure/function is
not prepared. While a procedure/function need not be prepared before execution if it doesn't accept any
parameters, it is recommended that you always prepare a procedure/function before executing it,
particularly if the procedure/function accepts parameters and is executed more than once.

Note
An application can change the current setting of Prepared to prepare or unprepare a
procedure/function. If Prepared is True, setting it to False calls the UnPrepare method to unprepare
the procedure/function. If Prepared is False, setting it to True calls the Prepare method to prepare
the procedure/function.

Component Reference

Page 542

TEDBStoredProc.ProcedureHandle Property

property ProcedureHandle: TEDBProcedureManager

The ProcedureHandle property is for internal use only and is not useful to the application developer using
ElevateDB.

Component Reference

Page 543

TEDBStoredProc.StoredProcName Property

property StoredProcName: String

Use the StoredProcName property to specify the name of the procedure/function that the TEDBStoredProc
component executes when its Open or ExecProc methods are called.

Component Reference

Page 544

TEDBStoredProc.CopyParams Method

procedure CopyParams(Value: TParams)

Call CopyParams to copy the procedure/function's parameters into a separate parameter list object. Value
is the parameter list into which to assign the procedure/function's parameters. Value can be the parameter
list of another procedure/function. If the procedure/function is not prepared when an application calls
CopyParams, CopyParams calls Prepare before assigning the parameters to the target parameters list, and
then calls UnPrepare to return the procedure/function to its previous state.

Component Reference

Page 545

TEDBStoredProc.ExecProc Method

procedure ExecProc

Call the ExecProc method to execute the procedure/function currently assigned to the StoredProcName
property. If the procedure returns a result set, then the ExecProc method will automatically call the Open
method to open the procedure's result set.

The ExecProc method prepares the procedure/function in the StoredProcName property for execution if it
has not already been prepared. To speed performance in situations where a procedure/function will be
executed multiple times with parameters, an application should ordinarily call the Prepare method before
calling the ExecProc method for the first time.

Component Reference

Page 546

TEDBStoredProc.ParamByName Method

function ParamByName(const Value: String): TParam

Call the ParamByName method to set or access parameter information for a specific parameter based on
its name. Value is the name of the parameter to access.

Component Reference

Page 547

TEDBStoredProc.Prepare Method

procedure Prepare

Call the Prepare method to have ElevateDB allocate resources for the execution of a procedure/function,
compile the procedure/function, and perform the process of setting up the procedure/function for
execution. The procedure/function is specified via the StoredProcName property.

ElevateDB automatically prepares a procedure/function if it is executed without first being prepared. After
execution, ElevateDB unprepares the procedure/function. When a procedure/function will be executed a
number of times, an application should always explicitly prepare the procedure/function using the Prepare
method to avoid multiple and unnecessary prepares and unprepares.

Preparing a procedure/function consumes some database resources, so it is good practice for an
application to unprepare a procedure/function once it is done using it. The UnPrepare method unprepares
a procedure/function.

Note
When you change the StoredProcName property, the current procedure/function is automatically
closed and unprepared.

Component Reference

Page 548

TEDBStoredProc.UnPrepare Method

procedure UnPrepare

Call the UnPrepare method to free the resources allocated for a procedure/function previously prepared
with the Prepare method.

Component Reference

Page 549

TEDBStoredProc.AfterPrepare Event

property AfterPrepare: TNotifyEvent

The AfterPrepare event is fired right after the procedure/function has been successfully prepared by calling
the Prepare method or by setting the Prepared to True. Write an event handler for this event to take
action at this time.

Component Reference

Page 550

TEDBStoredProc.AfterUnPrepare Event

property AfterUnPrepare: TNotifyEvent

The AfterUnPrepare event is fired right after the procedure/function has been unprepared by calling the
UnPrepare method or by setting the Prepared to False. Write an event handler for this event to take action
at this time.

Component Reference

Page 551

TEDBStoredProc.BeforePrepare Event

property BeforePrepare: TNotifyEvent

The BeforePrepare event is fired right before the procedure/function is prepared by calling the Prepare
method or by setting the Prepared to True. Write an event handler for this event to take action at this
time.

Component Reference

Page 552

TEDBStoredProc.BeforeUnPrepare Event

property BeforeUnPrepare: TNotifyEvent

The BeforePrepare event is fired right before the procedure/function is unprepared by calling the
UnPrepare method or by setting the Prepared to False. Write an event handler for this event to take action
at this time.

Component Reference

Page 553

TEDBStoredProc.OnLogMessage Event

property OnLogMessage: TEDBLogMessageEvent

The OnLogMessage event is fired when a procedure/function is executed via the ExecProc or Open
methods and that procedure generates log messages. Assign an event handler to the OnLogMessage
event to save or display these log messages within your application.

Component Reference

Page 554

TEDBStoredProc.OnProgress Event

property OnProgress: TEDBProgressEvent

The OnProgress event is fired when a procedure/function is executed via the ExecProc or Open methods
and that procedure generates progress. Assign an event handler to the OnProgress event to display the
progress in your application and to, optionally, abort the execution of the procedure by setting the
Continue parameter to False.

Note
Whether a procedure/function aborts its execution when setting the Continue parameter to False
depends completely upon the procedure/function code. The procedure/function can choose to
completely ignore the request to abort execution.

Component Reference

Page 555

TEDBStoredProc.OnStatusMessage Event

property OnStatusMessage: TEDBStatusMessageEvent

The OnStatusMessage event is fired when a procedure/function is executed via the ExecProc or Open
methods and that procedure generates status messages. Assign an event handler to the OnStatusMessage
event to display these messages in your application. All procedures/functions will generate status
messages.

Component Reference

Page 556

6.12 TEDBTable Component

Unit: edbcomps

Inherits From TEDBDBDataSet

Use the TEDBTable component to access rows and columns in a table or view. A TEDBTable component
can also work with a subset of rows within a table or view by using ranges and filters.

Properties Methods Events

EngineVersion ApplyRange OnLogMessage

Exclusive CancelRange OnProgress

IndexDefs EditKey OnStatusMessage

IndexFieldCount EditRangeEnd

IndexFieldNames EditRangeStart

IndexFields FindKey

IndexName FindNearest

KeyFieldCount GetIndexNames

MasterFields GotoCurrent

MasterSource GotoKey

PhysicalRecordCount GotoNearest

Ranged SetKey

StoreDefs SetRange

TableName SetRangeEnd

SetRangeStart

Component Reference

Page 557

TEDBTable.EngineVersion Property

property EngineVersion: String

Indicates the current version of ElevateDB being used. This property is read-only.

Component Reference

Page 558

TEDBTable.Exclusive Property

property Exclusive: Boolean

Use the Exclusive property to True to specify that the table or view should be opened exclusively when
calling the Open method or when setting the Active property to True. When the Exclusive property is set to
True and the application successfully opens the table or view, no other application can access the table or
view. If the table or view for which the application has requested exclusive access is already in use by
another application, an exception is raised.

A table or view must be closed (Active property should be False) before changing the setting of the
Exclusive property. Do not set Exclusive to True at design time if you also intend to set the Active property
to True at design time. In this case an exception is raised because the table or view is already in use by
the IDE.

Component Reference

Page 559

TEDBTable.IndexDefs Property

property IndexDefs: TIndexDefs

The IndexDefs property lists the index definitions for a table. While an application can examine IndexDefs
to explore the index definitions for a table. To set the active index for a table, use the IndexName or
IndexFieldNames property.

Note
The index definitions in the IndexDefs may not always reflect the current index definitions available
for a table unless the table has been opened and the IndexName or IndexFieldNames property has
been assigned a value. Before using the index definitions from an existing table, call the Update
method to read the index definitions from the actual table.

Component Reference

Page 560

TEDBTable.IndexFieldCount Property

property IndexFieldCount: Integer

The IndexFieldCount property indicates the number of columns that make up the active index in the table.
The IndexName or IndexFieldNames property can be used to set and inspect the active index for the
table.

Component Reference

Page 561

TEDBTable.IndexFieldNames Property

property IndexFieldNames: String

Use the IndexFieldNames property as an alternative method to the IndexName property of specifying the
active index for a table. Each column name should be separated with a semicolon. Any column names
specified in the IndexFieldNames property must already be indexed, and must exist in the index in the
order specified, from left to right.

Note
The IndexFieldNames and IndexName properties are mutually exclusive. Setting one clears the
other.

Component Reference

Page 562

TEDBTable.IndexFields Property

property IndexFields[Index: Integer]: TField

Use the IndexFields property to access a TField object for a given column in an index. The IndexFields
property provides a zero-based array of TField objects. The first column in the index is referenced as
IndexFields[0], the second is referenced as IndexFields[1], and so on.

Note
Do not set the IndexFields propety directly. Instead use the IndexName or IndexFieldNames
property to set the active index for a table.

Component Reference

Page 563

TEDBTable.IndexName Property

property IndexName: String

Use the IndexName property to specify the active index for a table. If the IndexName property is empty
(the default), the active index is set to the default order for the table. The default order is the primary key
of the table or, if a primary key is not defined for the table, the natural row insertion order for the table. If
the IndexName property is set to a valid index name, then that index is used to determine the sort order
of rows, otherwise an exception will be raised.

Note
The IndexName and IndexFieldNames properties are mutually exclusive. Setting one clears the
other.

Component Reference

Page 564

TEDBTable.KeyFieldCount Property

property KeyFieldCount: Integer

Use the KeyFieldCount property to limit a search on the active multi-column index to a consecutive sub-set
(left to right) of the index columns. For example, if the active index for a table consists of three columns, a
partial-key search can be conducted using only the first column in the index by setting KeyFieldCount to 1.
If the KeyFieldCount property is 0, the table searches on all columns in the index. The active index for a
table is specified via the IndexName or IndexFieldNames property.

Note
Searches are only conducted based on consecutive indexed columns beginning with the first column
in the index. For example if an index consists of three columns, an application can set the
KeyFieldCount property to 1 to search on the first column, 2 to search on the first and second
columns, or 3 to search on all columns. By default KeyFieldCount is initially set to include all
columns in a search.

Component Reference

Page 565

TEDBTable.MasterFields Property

property MasterFields: String

After setting the MasterFields property, use the MasterFields property to specify the names of one or more
columns to use in establishing a master-detail link between this table and the data source specified in the
MasterSource property. Separate multiple column names with a semicolon. Each time the current row in
the master data source changes, the new values in the master columns are used to select corresponding
rows in this table for display.

Note
At design time, you can use the Field Link property editor to establish a master-detail link between
a data source and the current table.

Component Reference

Page 566

TEDBTable.MasterSource Property

property MasterSource: TDataSource

Use the MasterSource property to specify the name of a TDataSource component whose DataSet property
identifies a dataset to use as a master table in establishing a master-detail link with this table. After
setting the MasterSource property, specify which columns to use in the master data source by setting the
MasterFields property.

Component Reference

Page 567

TEDBTable.PhysicalRecordCount Property

property PhysicalRecordCount: Integer

The PhysicalRecordCount property indicates the number of rows present in the table or view, irrespective
of any filters or ranges that may currently be active.

Component Reference

Page 568

TEDBTable.Ranged Property

property Ranged: Boolean

The Ranged property indicates whether a range if active for the current table.

Component Reference

Page 569

TEDBTable.StoreDefs Property

property StoreDefs: Boolean

The StoreDefs property indicates whether the FieldDefs property and its contained list of TFieldDef
objects, as well as the IndexDefs property and its contained list of TIndexDef objects, will be stored at
design-time.

Component Reference

Page 570

TEDBTable.TableName Property

property TableName: String

Use the TableName property to specify the name of the table or view that this TEDBTable component
should access. The TableName property is used in conjunction with the DatabaseName property to specify
the database name and table or view name.

Note
To set the TableName property, the Active property must be False.

Component Reference

Page 571

TEDBTable.ApplyRange Method

procedure ApplyRange

Call the ApplyRange method to cause a range established with the SetRangeStart and SetRangeEnd or
EditRangeStart and EditRangeEnd methods to take effect. When a range is in effect, only those rows that
fall within the range are available for viewing and editing.

Component Reference

Page 572

TEDBTable.CancelRange Method

procedure CancelRange

Call the CancelRange method to remove a range currently applied to a table using the SetRange or
ApplyRange methods. Cancelling a range reenables access to all rows in the table.

Component Reference

Page 573

TEDBTable.EditKey Method

procedure EditKey

Call the EditKey method to put the table in dsSetKey state while preserving the current contents of the
current search key buffer. To set the current search values, you can use the IndexFields property to iterate
over the columns used by the active index. The IndexName or IndexFieldNames property specifies the
active index. Once the search values are set, you can then use the GotoKey or GotoNearest method to
perform the actual search.

EditKey is especially useful when performing multiple searches where only one or two column values
among many change between each search.

Component Reference

Page 574

TEDBTable.EditRangeEnd Method

procedure EditRangeEnd

Call the EditRangeEnd method to change the ending value for an existing range. To specify an end range
value, call the FieldByName method after calling the EditRangeEnd method. After assigning a new ending
value, call the ApplyRange method to activate the modified range.

Component Reference

Page 575

TEDBTable.EditRangeStart Method

procedure EditRangeStart

Call the EditRangeStart method to change the starting value for an existing range. To specify a starting
range value, call the FieldByName method after calling the EditRangeStart method. After assigning a new
starting value, call the ApplyRange method to activate the modified range.

Component Reference

Page 576

TEDBTable.FindKey Method

function FindKey(const KeyValues: array of const): Boolean

Call the FindKey method to search for a specific row in a table using the active index. The IndexName or
IndexFieldNames property specifies the active index. The KeyValues parameter contains a comma-
delimited array of column values. Each value in the KeyValues parameter can be a literal, a variable, a
null, or nil. If the number of values passed in the KeyValues parameters is less than the number of
columns in the active index, the missing values are assumed to be null. If a search is successful, the
FindKey method positions the table on the matching row and returns True. Otherwise the current table
position is not altered, and FindKey returns False.

Component Reference

Page 577

TEDBTable.FindNearest Method

function FindNearest(const KeyValues: array of const): Boolean

Call the FindNearest method search for a row in the table that is greater than or equal to the values
specified in the KeyValues parameter using the active index. The IndexName or IndexFieldNames property
specifies the active index. The KeyValues parameter contains a comma-delimited array of column values.
If the number of values passed in the KeyValues parameter is less than the number of columns in the
active index, the missing values are assumed to be null. FindNearest positions the table either on a row
that exactly matches the search criteria, returning True, or on the first row whose values are greater than
those specified in the search criteria, returning False.

Component Reference

Page 578

TEDBTable.GetIndexNames Method

procedure GetIndexNames(List: TStrings)

Call the GetIndexNames method to retrieve a list of all available indexes for a table. The List parameter is
a string list object, created and maintained by the application, into which to retrieve the index names.

Component Reference

Page 579

TEDBTable.GotoCurrent Method

procedure GotoCurrent(Table: TEDBTable)

Call the GotoCurrent method to synchronize the current position for the table or view based on the current
position in another TEDBTable component, but which is connected to the same underlying table or view.
The Table parameter is the TEDBTable component whose position should be used for synchronizing.

Note
This procedure works only for TEDBTable components that have the same DatabaseName and
TableName properties. Otherwise an exception is raised.

Component Reference

Page 580

TEDBTable.GotoKey Method

function GotoKey: Boolean

Use the GotoKey method to move to a row specified by search values assigned with previous calls to the
SetKey or EditKey methods. The search is peformed using the active index. The IndexName or
IndexFieldNames property specifies the active index. If the GotoKey method finds a matching row, it
positions the table on the row and returns True. Otherwise the current table position remains unchanged,
and GotoKey returns False.

Component Reference

Page 581

TEDBTable.GotoNearest Method

function GotoNearest: Boolean

Call the GotoNearest method to position the table on the row that is either the exact row specified by the
current search values, returning True, or on the first row whose values exceed those specified, returning
False. The search is peformed using the active index. The IndexName or IndexFieldNames property
specifies the active index. Before calling the GotoNearest method, an application must specify the search
values by calling the SetKey or EditKey methods, which put the table into the dsSetKey state. The
application then uses the FieldByName method to populate the search values.

Component Reference

Page 582

TEDBTable.SetKey Method

procedure SetKey

Call the SetKey method to put the table into dsSetKey state and clear the current search values. The
FieldByName method can then be used to supply a new set of search values prior to conducting a search
using the active index. The IndexName or IndexFieldNames property specifies the active index.

Note
To modify existing search values, call the EditKey method instead.

Component Reference

Page 583

TEDBTable.SetRange Method

procedure SetRange(const StartValues,EndValues: array of const)

Call the SetRange method to specify a range and apply it to the table. A range is set using the active
index. The IndexName or IndexFieldNames property specifies the active index. The StartValues parameter
indicates the column values that designate the first row in the range. The EndValues parameter indicates
the column values that designate the last row in the range. If either the StartValues or EndValues
parameters has fewer elements than the number of columns in the active index, then the remaining
entries are set to NULL.

The SetRange method combines the functionality of the SetRangeStart, SetRangeEnd, and ApplyRange
methods in a single method call.

Component Reference

Page 584

TEDBTable.SetRangeEnd Method

procedure SetRangeEnd

Call the SetRangeEnd method to put the table into dsSetKey state, erase any previous end range values,
and set them to NULL. The FieldByName method can be used to set the ending values for a range.

After assigning ending range values to FieldValues, call the ApplyRange method to activate the modified
range.

Component Reference

Page 585

TEDBTable.SetRangeStart Method

procedure SetRangeStart

Call the SetRangeStart method to put the table into dsSetKey state, erase any previous start range values,
and set them to NULL. The FieldByName method can be used to set the starting values for a range.

After assigning starting range values to FieldValues, call the ApplyRange method to activate the modified
range.

Component Reference

Page 586

TEDBTable.OnLogMessage Event

property OnLogMessage: TEDBLogMessageEvent

The OnLogMessage event is fired when a trigger is executed on the table and that trigger generates log
messages. Assign an event handler to the OnLogMessage event to save or display these log messages
within your application.

Component Reference

Page 587

TEDBTable.OnProgress Event

property OnProgress: TEDBProgressEvent

The OnProgress event is fired when a trigger is executed on the table and that trigger generates progress.
Assign an event handler to the OnProgress event to display the progress in your application and to,
optionally, abort the execution of the trigger by setting the Continue parameter to False.

Note
Whether a trigger aborts its execution when setting the Continue parameter to False depends
completely upon the trigger code. The trigger can choose to completely ignore the request to abort
execution.

Component Reference

Page 588

TEDBTable.OnStatusMessage Event

property OnStatusMessage: TEDBStatusMessageEvent

The OnStatusMessage event is fired when a trigger is executed on the table and that trigger generates
status messages. Assign an event handler to the OnStatusMessage event to save or display these status
messages within your application.

Component Reference

Page 589

6.13 TEDBUpdateSQL Component

Unit: edbcomps

Inherits From TEDBSQLUpdateObject

Use the TEDBUpdateSQL component to update table(s) during the application of updates from a
TClientDataSet component through the IProvider support in ElevateDB. Usually the TEDBUpdateSQL
component is used to handle complex updates to multiple tables that cannot be handled by the default
IProvider support.

Properties Methods Events

DatabaseName Apply

DeleteSQL Create

InsertSQL ExecSQL

ModifySQL SetParams

Query

SessionName

SQL

Component Reference

Page 590

TEDBUpdateSQL.DatabaseName Property

property DatabaseName: String

This property is automatically internally set by ElevateDB.

Component Reference

Page 591

TEDBUpdateSQL.DeleteSQL Property

property DeleteSQL: TStrings

Use the DeleteSQL property to specify the DELETE statement to use when applying a deletion to a source
table. Use parameters with the same names as any column names in the source table for any WHERE
clause conditions, and use the prefix "OLD_" on any parameter names where you want an original column
value to be used instead of the current column value being used for the update.

Component Reference

Page 592

TEDBUpdateSQL.InsertSQL Property

property InsertSQL: TStrings

Use the InsertSQL property to specify the INSERT statement to use when applying an insert to a source
table. Use parameters with the same names as any column names in the source table.

Component Reference

Page 593

TEDBUpdateSQL.ModifySQL Property

property ModifySQL: TStrings

Use the ModifySQL property to specify the UPDATE statement to use when applying an update to a source
table. Use parameters with the same names as any column names in the source table for any SET
operations or WHERE clause conditions, and use the prefix "OLD_" on any parameter names where you
want an original column value to be used instead of the current column value being used for the update.

Component Reference

Page 594

TEDBUpdateSQL.Query Property

property Query[UpdateKind: TUpdateKind]: TEDBQuery

The Query property provides a reference to the internal TEDBQuery component actually used to execute
the SQL in the InsertSQL, ModifySQL, and DeleteSQL properties.

Component Reference

Page 595

TEDBUpdateSQL.SessionName Property

property SessionName: String

This property is automatically internally set by ElevateDB.

Component Reference

Page 596

TEDBUpdateSQL.SQL Property

property SQL[UpdateKind: TUpdateKind]: TStrings

The SQL property indicates the SQL statement in the InsertSQL, ModifySQL, or DeleteSQL property,
depending on the setting of the UpdateKind index.

Component Reference

Page 597

TEDBUpdateSQL.Apply Method

procedure Apply(UpdateKind: TUpdateKind)

Call the Apply method to set the parameters for an SQL statement and execute it in order to update a row.
The UpdateKind parameter indicates which SQL statement to bind and execute. The Apply method is
primarily intended for manually executing update statements from an OnUpdateRecord event handler.

Note
If an SQL statement does not contain parameters, it is more efficient to call the ExecSQL method
instead of the Apply method.

Component Reference

Page 598

TEDBUpdateSQL.Create Method

constructor Create(AOwner: TComponent)

Call the Create constructor to create an instance of the TEDBUpdateSQL component.

Component Reference

Page 599

TEDBUpdateSQL.ExecSQL Method

procedure ExecSQL(UpdateKind: TUpdateKind)

Call the ExecSQL method to execute an SQL statement in order to update a row. The UpdateKind
parameter indicates which SQL statement to execute.

Note
If the statement to execute contains any parameters, an application must call the SetParams
method to bind the parameters before calling the ExecSQL method.

Component Reference

Page 600

TEDBUpdateSQL.SetParams Method

procedure SetParams(UpdateKind: TUpdateKind)

Call the SetParams method to bind any parameters in an SQL statement associated with the update object
prior to executing the statement. Parameters are indicated in an SQL statement by a colon. Except for the
leading colon in the parameter name, the parameter name must exactly match the name of an existing
column name for the source table.

Note
Parameter names can be prefaced by the "OLD_" prefix. If so, the old value of the column is used
to perform the update instead of any updates in the cache.

Component Reference

Page 601

This page intentionally left blank

Type Reference

Page 602

Chapter 7
Type Reference

7.1 pEDBLongWord Type

Unit: edbtype

pEDBLongWord = ^TEDBLongWord

Type Reference

Page 603

7.2 pInteger Type

Unit: edbtype

pInteger = ^Integer

Type Reference

Page 604

7.3 pPointer Type

Unit: edbtype

pPointer = ^Pointer

Type Reference

Page 605

7.4 TEDBApplyCachedUpdatesOption Type

Unit: edbcomps

TEDBApplyCachedUpdatesOption = (acMergeDuplicateInserts,
 acIgnoreMissingUpdates, acInsertMissingUpdates)

Element Description

acIgnoreMissingUpdates

acInsertMissingUpdates

acMergeDuplicateInserts

Type Reference

Page 606

7.5 TEDBApplyCachedUpdatesOptions Type

Unit: edbcomps

TEDBApplyCachedUpdatesOptions = set of
 TEDBApplyCachedUpdatesOption

Type Reference

Page 607

7.6 TEDBBytes Type

Unit: edbtype

TEDBBytes = array of Byte

This type is a synonym for the array of Byte type.

Type Reference

Page 608

7.7 TEDBCharacterSet Type

Unit: edbcomps

TEDBCharacterSet = (csAnsi,csUnicode)

This type is used with the TEDBEngine CharacterSet and TEDBSession CharacterSet properties to specify
the character set that should be used for all database access.

Element Description

csAnsi Indicates that the ANSI character set is being used (256
characters with code pages).

csUnicode Indicates that the Unicode character set is being used (65536
characters).

Type Reference

Page 609

7.8 TEDBDate Type

Unit: edbtype

TEDBDate = Integer

This type is a synonym for the Integer type.

Type Reference

Page 610

7.9 TEDBDayTimeInterval Type

Unit: edbtype

TEDBDayTimeInterval = Int64

This type is a synonym for the Int64 type.

Type Reference

Page 611

7.10 TEDBDayTimeIntervalType Type

Unit: edbcomps

TEDBDayTimeIntervalType = (dtUnknown,dtDay,dtHour,dtMinute,
 dtSecond,dtMSecond, dtDayHour,dtDayMinute,dtDaySecond,
 dtDayMSecond, dtHourMinute,dtHourSecond,dtHourMSecond,
 dtMinuteSecond,dtMinuteMSecond, dtSecondMSecond)

This type indicates the type of day-time interval to use with the TEDBEngine DayTimeIntervalToSQLStr
and SQLStrToDayTimeInterval methods. Please see the Interval Types topic for more information.

Element Description

dtDay Indicates that the value is a day interval.

dtDayHour Indicates that the value is a day-hour interval.

dtDayMinute Indicates that the value is a day-minute interval.

dtDayMSecond Indicates that the value is a day-millisecond interval.

dtDaySecond Indicates that the value is a day-second interval.

dtHour Indicates that the value is an hour interval.

dtHourMinute Indicates that the value is an hour-minute interval.

dtHourMSecond Indicates that the value is an hour-millisecond interval.

dtHourSecond Indicates that the value is an hour-second interval.

dtMinute Indicates that the value is a minute interval.

dtMinuteMSecond Indicates that the value is a minute-millisecond interval.

dtMinuteSecond Indicates that the value is a minute-second interval.

dtMSecond Indicates that the value is a millisecond interval.

dtSecond Indicates that the value is a second interval.

dtSecondMSecond Indicates that the value is a second-millisecond interval.

dtUnknown Indicates that the value's interval type is unknown.

Type Reference

Page 612

7.11 TEDBDebugNotificationEvent Type

Unit: edbcomps

TEDBDebugNotificationEvent = procedure (Sender: TObject;
 SourceLine: Integer; ExceptionRaised: TObject) of object

This type is used for the TEDBScript OnDebugNotification event.

Type Reference

Page 613

7.12 TEDBDebugVariable Type

Unit: edbcomps

TEDBDebugVariable = record Name: String; VariableType:
 TEDBDebugVariableType; Line: Integer; Column: Integer; DataType:
 String; Count: Integer; Value: String; end

This type is used with the TEDBScript GetDebugVariable method.

Type Reference

Page 614

7.13 TEDBDebugVariableType Type

Unit: edbcomps

TEDBDebugVariableType = (vtNone,vtSimple,vtArray,vtRow,vtCursor,
 vtStatement)

This type is used with the TEDBScript TEDBDebugVariable record type to specify the type of variable being
described.

Element Description

vtArray Indicates an array type.

vtCursor Indicates a cursor type.

vtNone Indicates an unknown type.

vtRow Indicates a row type.

vtSimple Indicates a simple scalar type.

vtStatement Indicates a statement type.

Type Reference

Page 615

7.14 TEDBEngineType Type

Unit: edbcomps

TEDBEngineType = (etClient,etServer)

This type is used to indicate the type of engine that the TEDBEngine component is being used as in the
application. Please see the Configuring and Starting the Engine for more information.

Element Description

etClient Indicates that the engine is configured as a client engine.

etServer Indicates that the engine is configured as an ElevateDB
server.

Type Reference

Page 616

7.15 TEDBFileEncoding Type

Unit: edbcomps

TEDBFileEncoding = (feAuto,feAnsi,feUnicode)

This type is used to indicate the encoding of the import/export files when calling the TEDBDataSet Import
and Export methods.

Element Description

feAnsi Indicates an ANSI-encoded (byte-per-character, with code-
page translations) import/export file.

feAuto Indicates that the encoding of the import/export file defaults
to match that of the character set of the current session.

feUnicode Indicates a Unicode-encoded (two bytes-per-character,
Unicode code points) import/export file.

Type Reference

Page 617

7.16 TEDBFileFormat Type

Unit: edbcomps

TEDBFileFormat = (ffDelimited,ffXML)

This type is used to indicate the format of the import/export files when calling the TEDBDataSet Import
and Export methods.

Element Description

ffDelimited Indicates a delimited import/export file.

ffXML Indicates an XML import/export file.

Type Reference

Page 618

7.17 TEDBLogCategories Type

Unit: edbcomps

TEDBLogCategories = set of TEDBLogCategory

This set type is used with the TEDBEngine LogCategories property to specify which types of log categories
should be logged by the engine.

Type Reference

Page 619

7.18 TEDBLogCategory Type

Unit: edbcomps

TEDBLogCategory = (lcInformation,lcWarning,lcError)

This type is used with the TEDBEngine LogCategories property to specify which types of log categories
should be logged by the engine.

Element Description

lcError Indicates an error log category.

lcInformation Indicates an informational log category.

lcWarning Indicates a warning log category.

Type Reference

Page 620

7.19 TEDBLogMessageEvent Type

Unit: edbcomps

TEDBLogMessageEvent = procedure (Sender: TObject; const
 LogMessage: String) of object

This type is used for the TEDBSession OnLogMessage, TEDBDatabase OnLogMessage, TEDBQuery
OnLogMessage, and TEDBStoredProc OnLogMessage events.

Type Reference

Page 621

7.20 TEDBLongWord Type

Unit: edbtype

TEDBLongWord = Cardinal

Type Reference

Page 622

7.21 TEDBProgressEvent Type

Unit: edbcomps

TEDBProgressEvent = procedure (Sender: TObject; PercentDone:
 Integer; var Continue: Boolean) of object

This type is used for the TEDBSession OnProgress, TEDBDatabase OnProgress, TEDBQuery OnProgress,
and TEDBStoredProc OnProgress events.

Type Reference

Page 623

7.22 TEDBRecordLockProtocol Type

Unit: edbcomps

TEDBRecordLockProtocol = (lpPessimistic,lpOptimistic)

This type is used with the TEDBSession RecordLockProtocol property.

Element Description

lpOptimistic Indicates an optimistic row locking model.

lpPessimistic Indicates a pessimistic row locking model.

Type Reference

Page 624

7.23 TEDBRemoteProgressEvent Type

Unit: edbcomps

TEDBRemoteProgressEvent = procedure (Sender: TObject; NumBytes:
 Integer; PercentDone: Integer) of object

This type is used for the TEDBSession OnRemoteSendProgress and OnRemoteReceiveProgress events.

Type Reference

Page 625

7.24 TEDBRemoteReconnectEvent Type

Unit: edbcomps

TEDBRemoteReconnectEvent = procedure (Sender: TObject; var
 Continue: Boolean; var StopAsking: Boolean) of object

This type is used for the TEDBSession OnRemoteReconnect event.

Type Reference

Page 626

7.25 TEDBRemoteTimeoutEvent Type

Unit: edbcomps

TEDBRemoteTimeoutEvent = procedure (Sender: TObject; var
 StayConnected: Boolean) of object

This type is used for the TEDBSession OnRemoteTimeout event.

Type Reference

Page 627

7.26 TEDBRemoteTrace Type

Unit: edbcomps

TEDBRemoteTrace = record DateTime: TDateTime; ElapsedTime:
 TEDBLongWord; Compression: Integer; FunctionCode: Integer;
 FunctionName: String; ResultCode: Integer; Size: Integer; Info:
 String; end

This type is used as a parameter to the TEDBSession OnRemoteTrace event. The fields of the record are
as follows:

Field Description

DateTime Indicates the date and time of the request/response.

ElapsedTime Indicates the total elapsed time in milliseconds for the
request/response.

Compression Indicates the current compression level for the
request/response. This value normally ranges from 0 (no
compression) to 9 (best compression), but in some cases may
actually appear in the trace record as values greater than or
equal to 10. In these cases, the compression has been
adjusted by the engine due to the size of the data being too
small (less than 1024 bytes). The adjusted compression level
can be found by doing this calculation:

Compression mod 10

And the original compression level before the adjustment can
be found by using the following calculation:

Compression div 10

Any adjustments to the compression such as this are active
for the current request/response only and do not persist any
further.

FunctionCode Indicates the function ID of the request.

FunctionName Indicates the function name of the request.

ResultCode Indicates the result code of the request/response. If this value
is -1, then the trace record represents a request. Any 0 or
higher value indicates that the trace record is a response. You
can use this field to determine whether the trace record is for
a request (-1) or a response (0 or higher).

Size Indicates the request/response size, in bytes.

Info Indicates any additional information about the request, such
as the SQL being prepared or executed, or the name of a
table being opened.

Type Reference

Page 628

Type Reference

Page 629

7.27 TEDBRemoteTraceEvent Type

Unit: edbcomps

TEDBRemoteTraceEvent = procedure (Sender: TObject; Trace:
 TEDBRemoteTrace) of object

This type is used for the TEDBSession OnRemoteTrace event.

Type Reference

Page 630

7.28 TEDBServerProcedureEvent Type

Unit: edbcomps

TEDBServerProcedureEvent = procedure (Sender: TObject;
 ServerProcedure: TEDBServerProcedure) of object

This type is used for the TEDBEngine OnServerProcedure event.

Type Reference

Page 631

7.29 TEDBServerSession Type

Unit: edbcomps

TEDBServerSession = record ID: Integer; Name: String;
 Description: String; Created: TDateTime; LastConnected:
 TDateTime; Connected: Boolean; Encrypted: Boolean; Address:
 String; UserName: String; ProcessName: String; end

This type is used as a parameter to the TEDBEngine OnServerSessionEvent event. The fields of the record
are as follows:

Field Description

ID Indicates the session ID.

Name Indicates the session name.

Description Indicates the session description.

Created Indicates the date and time when the session was created.

LastConnected Indicates the last date and time the session was connected.

Connected Indicates whether the session is currently connected or not.

Encrypted Indicates whether the session connection is encrypted.

Address Indicates the IP address of the session connection.

UserName Indicates the user name of the session.

ProcessName Indicates the process name of the session.

Type Reference

Page 632

7.30 TEDBServerSessionEvent Type

Unit: edbcomps

TEDBServerSessionEvent = procedure(Sender: TObject; EventType:
 TEDBServerSessionEventType; const Session: TEDBServerSession;
 var UserObject: TObject) of object

This type is used for the TEDBEngine OnServerSessionEvent event.

Type Reference

Page 633

7.31 TEDBServerSessionEventType Type

Unit: edbcomps

TEDBServerSessionEventType = (seOpen,seConnect,seLogin,seLogout,
 seDisconnect,seClose)

This type is used as a parameter to the TEDBEngine OnServerSessionEvent event.

Element Description

seClose Indicates that the session is being closed.

seConnect Indicates that the session is being connected.

seDisconnect Indicates that the session is being disconnected.

seLogin Indicates that the session is logging in.

seLogout Indicates that the session is logging out.

seOpen Indicates that the session is begin opened.

Type Reference

Page 634

7.32 TEDBServerSessionLoginEvent Type

Unit: edbcomps

TEDBServerSessionLoginEvent = procedure(Sender: TObject; const
 UserName: String; const UserPassword: String; const Address:
 String; const ProcessName: String; ThreadID: Integer;
 ReleaseNumber: Currency; BuildNumber: Integer; var AllowLogin:
 Boolean) of object

This type is used for the TEDBEngine OnServerSessionLoginEvent event.

Type Reference

Page 635

7.33 TEDBServerTrace Type

Unit: edbcomps

TEDBServerTrace = record SessionVersion: Currency; SessionBuild:
 Integer; SessionType: String; SessionAddress: String;
 SessionProcessName: String; SessionName: String;
 SessionDescription: String; SessionThreadID: Integer;
 SessionEncrypted: Boolean; DateTime: TDateTime; ElapsedTime:
 TEDBLongWord; Compression: Integer; FunctionCode: Integer;
 FunctionName: String; ResultCode: Integer; ResultElapsedTime:
 TEDBLongWord; Size: Integer; Info: String; end

This type is used as a parameter to the TEDBEngine OnServerTrace event. The fields of the record are as
follows:

Field Description

SessionVersion Indicates the ElevateDB version being used by the remote
session.

SessionBuild Indicates the ElevateDB build number being used by the
remote session.

SessionType Indicates the ElevateDB product type being used by the
remote session.

SessionAddress Indicates the IP address of the remote session.

SessionProcessName Indicates the process name of the remote session.

SessionName Indicates the name (ID) of the remote session.

SessionDescription Indicates the description of the remote session.

SessionThreadID Indicates the thread ID of the remote session.

SessionEncrypted Indicates whether the remote session is using an encrypted
connection.

DateTime Indicates the date and time of the request/response.

ElapsedTime Indicates the total elapsed time in milliseconds for the
request/response.

Compression Indicates the current compression level for the
request/response. This value normally ranges from 0 (no
compression) to 9 (best compression), but in some cases may
actually appear in the trace record as values greater than or
equal to 10. In these cases, the compression has been
adjusted by the engine due to the size of the data being too
small (less than 1024 bytes). The adjusted compression level
can be found by doing this calculation:

Compression mod 10

And the original compression level before the adjustment can

Type Reference

Page 636

be found by using the following calculation:

Compression div 10

Any adjustments to the compression such as this are active
for the current request/response only and do not persist any
further.

FunctionCode Indicates the function ID of the request.

FunctionName Indicates the function name of the request.

ResultCode Indicates the result code of the request/response. If this value
is -1, then the trace record represents a request. Any 0 or
higher value indicates that the trace record is a response. You
can use this field to determine whether the trace record is for
a request (-1) or a response (0 or higher).

Size Indicates the request/response size, in bytes.

Info Indicates any additional information about the request, such
as the SQL being prepared or executed, or the name of a
table being opened.

Type Reference

Page 637

7.34 TEDBServerTraceEvent Type

Unit: edbcomps

TEDBServerTraceEvent = procedure (Sender: TObject; const Trace:
 TEDBServerTrace) of object

This type is used for the TEDBEngine OnServerTrace event.

Type Reference

Page 638

7.35 TEDBSessionLoginEvent Type

Unit: edbcomps

TEDBSessionLoginEvent = procedure (Sender: TObject; var
 UserName: String; var Password: String; var Continue: Boolean)
 of object

This type is used for the TEDBSession OnLogin event.

Type Reference

Page 639

7.36 TEDBSessionType Type

Unit: edbcomps

TEDBSessionType = (stLocal,stRemote)

This type is used to indicate the type of session that the TEDBSession component is being used as in the
application.

Element Description

stLocal Indicates the session is a local session directly accessing a
local or network-based hard drive where the databases and
tables are located.

stRemote Indicates the session is a remote session connecting to an
ElevateDB Server.

Type Reference

Page 640

7.37 TEDBSetSequenceEvent Type

Unit: edbcomps

TEDBSetSequenceEvent = procedure (Sender: TObject; Value:
 Integer) of object

Type Reference

Page 641

7.38 TEDBSQLStatementType Type

Unit: edbcomps

TEDBSQLStatementType = (stUnknown,stSelect,stInsert,stUpdate,
 stDelete, stCreateDatabase,stCreateUser,stCreateRole,stCreateJob,
 stCreateStore,stCreateModule,stCreateTextFilter,
 stCreateWordGenerator,stCreateMigrator, stCreateTable,
 stCreateView,stCreateIndex, stCreateTrigger,stCreateTextIndex,
 stCreateFunction, stCreateProcedure, stDropDatabase,stDropUser,
 stDropRole, stDropJob,stDropStore,stDropModule,stDropTextFilter,
 stDropWordGenerator,stDropMigrator, stDropTable,stDropView,
 stDropIndex, stDropTrigger,stDropFunction,stDropProcedure,
 stAlterDatabase,stAlterUser,stAlterRole,stAlterJob, stAlterStore,
 stAlterModule,stAlterTextFilter, stAlterWordGenerator,
 stAlterMigrator, stAlterTable,stAlterView,stAlterIndex,
 stAlterTrigger,stAlterFunction,stAlterProcedure,
 stRenameDatabase,stRenameUser,stRenameRole, stRenameJob,
 stRenameStore,stRenameModule,stRenameTextFilter,
 stRenameWordGenerator,stRenameMigrator,stRenameTable,
 stRenameView,stRenameIndex,stRenameTrigger, stRenameFunction,
 stRenameProcedure, stGrant,stRevoke, stRepairTable,stVerifyTable,
 stOptimizeTable,stEmptyTable, stExportTable,stImportTable,
 stSetBackupsStore,stBackupDatabase,stRestoreDatabase,
 stSetUpdatesStore, stSaveDatabaseUpdates,stLoadDatabaseUpdates,
 stPublishDatabase,stUnpublishDatabase, stSetMigrator,
 stMigrateDatabase, stDisconnectServerSession,
 stRemoveServerSession, stSetFilesStore,stCopyFile,stRenameFile,
 stDeleteFile, stSetInformationCollate,stCompareDatabase,
 stEnableJob,stEnableJobs,stEnableTrigger,stEnableTiggers,
 stEnableDefaults,stEnableGenerated,stEnableStatementLogging,
 stDisableJob,stDisableJobs,stDisableTrigger,stDisableTriggers,
 stDisableDefaults,stDisableGenerated,stDisableStatementLogging,
 stSetStatementCache,stSetProcedureCache)

This type is used to indicate the type of SQL statement in the TEDBQuery SQL property.

Element Description

stAlterDatabase Indicates an ALTER DATABASE statement.

stAlterFunction Indicates an ALTER FUNCTION statement.

stAlterIndex Indicates an ALTER INDEX statement.

stAlterJob Indicates an ALTER JOB statement.

stAlterMigrator Indicates an ALTER MIGRATOR statement.

stAlterModule Indicates an ALTER MODULE statement.

stAlterProcedure Indicates an ALTER PROCEDURE statement.

stAlterRole Indicates an ALTER ROLE statement.

stAlterStore Indicates an ALTER STORE statement.

Type Reference

Page 642

stAlterTable Indicates an ALTER TABLE statement.

stAlterTextFilter Indicates an ALTER TEXT FILTER statement.

stAlterTrigger Indicates an ALTER TRIGGER statement.

stAlterUser Indicates an ALTER USER statement.

stAlterView Indicates an ALTER VIEW statement.

stAlterWordGenerator Indicates an ALTER WORD GENERATOR statement.

stBackupDatabase Indicates a BACKUP DATABASE statement.

stCompareDatabase Indicates a COMPARE DATABASE statement.

stCopyFile Indicates a COPY FILE statement.

stCreateDatabase Indicates a CREATE DATABASE statement.

stCreateFunction Indicates a CREATE FUNCTION statement.

stCreateIndex Indicates a CREATE INDEX statement.

stCreateJob Indicates a CREATE JOB statement.

stCreateMigrator Indicates a CREATE MIGRATOR statement.

stCreateModule Indicates a CREATE MODULE statement.

stCreateProcedure Indicates a CREATE PROCEDURE statement.

stCreateRole Indicates a CREATE ROLE statement.

stCreateStore Indicates a CREATE STORE statement.

stCreateTable Indicates a CREATE TABLE statement.

stCreateTextFilter Indicates a CREATE TEXT FILTER statement.

stCreateTextIndex Indicates a CREATE TEXT INDEX statement.

stCreateTrigger Indicates a CREATE TRIGGER statement.

stCreateUser Indicates a CREATE USER statement.

stCreateView Indicates a CREATE VIEW statement.

stCreateWordGenerator Indicates a CREATE WORD GENERATOR statement.

stDelete Indicates a DELETE statement.

stDeleteFile Indicates a RENAME FILE statement.

stDisableDefaults

stDisableGenerated

stDisableJob

stDisableJobs

stDisableStatementLogging

stDisableTrigger

stDisableTriggers

stDisconnectServerSession Indicates a DISCONNECT SERVER SESSION statement.

stDropDatabase Indicates a DROP DATABASE statement.

Type Reference

Page 643

stDropFunction Indicates a DROP FUNCTION statement.

stDropIndex Indicates a DROP INDEX statement.

stDropJob Indicates a DROP JOB statement.

stDropMigrator Indicates a DROP MIGRATOR statement.

stDropModule Indicates a DROP MODULE statement.

stDropProcedure Indicates a DROP PROCEDURE statement.

stDropRole Indicates a DROP ROLE statement.

stDropStore Indicates a DROP STORE statement.

stDropTable Indicates a DROP TABLE statement.

stDropTextFilter Indicates a DROP TEXT FILTER statement.

stDropTrigger Indicates a DROP TRIGGER statement.

stDropUser Indicates a DROP USER statement.

stDropView Indicates a DROP VIEW statement.

stDropWordGenerator Indicates a DROP WORD GENERATOR statement.

stEmptyTable Indicates an EMPTY TABLE statement.

stEnableDefaults

stEnableGenerated

stEnableJob

stEnableJobs

stEnableStatementLogging

stEnableTiggers

stEnableTrigger

stExportTable Indicates an EXPORT TABLE statement.

stGrant Indicates a GRANT statement.

stImportTable Indicates an IMPORT TABLE statement.

stInsert Indicates an INSERT statement.

stLoadDatabaseUpdates Indicates a LOAD UPDATES statement.

stMigrateDatabase Indicates a MIGRATE DATABASE statement.

stOptimizeTable Indicates an OPTIMIZE TABLE statement.

stPublishDatabase Indicates a PUBLISH DATABASE statement.

stRemoveServerSession Indicates a REMOVE SERVER SESSION statement.

stRenameDatabase Indicates an RENAME DATABASE statement.

stRenameFile Indicates a RENAME FILE statement.

stRenameFunction Indicates an RENAME FUNCTION statement.

stRenameIndex Indicates an RENAME INDEX statement.

stRenameJob Indicates an RENAME JOB statement.

Type Reference

Page 644

stRenameMigrator Indicates an RENAME MIGRATOR statement.

stRenameModule Indicates a RENAME MODULE statement.

stRenameProcedure Indicates an RENAME PROCEDURE statement.

stRenameRole Indicates an RENAME ROLE statement.

stRenameStore Indicates an RENAME STORE statement.

stRenameTable Indicates an RENAME TABLE statement.

stRenameTextFilter Indicates an RENAME TEXT FILTER statement.

stRenameTrigger Indicates an RENAME TRIGGER statement.

stRenameUser Indicates an RENAME USER statement.

stRenameView Indicates an RENAME VIEW statement.

stRenameWordGenerator Indicates an RENAME WORD GENERATOR statement.

stRepairTable Indicates a REPAIR TABLE statement.

stRestoreDatabase Indicates a RESTORE DATABASE statement.

stRevoke Indicates a REVOKE statement.

stSaveDatabaseUpdates Indicates a SAVE UPDATES statement.

stSelect Indicates a SELECT statement.

stSetBackupsStore Indicates a SET BACKUPS STORE statement.

stSetFilesStore Indicates a SET FILES STORE statement.

stSetInformationCollate Indicates a SET INFORMATION COLLATE statement.

stSetMigrator

stSetProcedureCache

stSetStatementCache

stSetUpdatesStore Indicates a SET UPDATES STORE statement.

stUnknown Indicates an unknown statement.

stUnpublishDatabase Indicates an UNPUBLISH DATABASE statement.

stUpdate Indicates an UPDATE statement.

stVerifyTable Indicates a VERIFY TABLE statement.

Type Reference

Page 645

7.39 TEDBStatusMessageEvent Type

Unit: edbcomps

TEDBStatusMessageEvent = procedure (Sender: TObject; const
 StatusMessage: String) of object

This type is used for the TEDBSession OnStatusMessage, TEDBDatabase OnStatusMessage, TEDBQuery
OnStatusMessage, and TEDBStoredProc OnStatusMessage events.

Type Reference

Page 646

7.40 TEDBStringsArray Type

Unit: edbtype

TEDBStringsArray = array of String

This type is a synonym for an array of Strings.

Type Reference

Page 647

7.41 TEDBTime Type

Unit: edbtype

TEDBTime = Integer

This type is a synonym for the Integer type.

Type Reference

Page 648

7.42 TEDBTimeStamp Type

Unit: edbtype

TEDBTimeStamp = Int64

This type is a synonym for the Int64 type.

Type Reference

Page 649

7.43 TEDBYearMonthInterval Type

Unit: edbtype

TEDBYearMonthInterval = Integer

This type is a synonym for the Integer type.

Type Reference

Page 650

7.44 TEDBYearMonthIntervalType Type

Unit: edbcomps

TEDBYearMonthIntervalType = (ymUnknown,ymYear,ymMonth,
 ymYearMonth)

This type indicates the type of day-time interval to use with the TEDBEngine YearMonthIntervalToSQLStr
and SQLStrToYearMonthInterval methods. Please see the Interval Types topic for more information.

Element Description

ymMonth Indicates that the value is a month interval.

ymUnknown Indicates that the value's interval type is unknown.

ymYear Indicates that the value is a year interval.

ymYearMonth Indicates that the value is a year-month interval.

Type Reference

Page 651

This page intentionally left blank

Appendix A - Error Codes and Messages

Page 652

Appendix A - Error Codes and Messages

The following is a table of the error codes and messages for ElevateDB. ElevateDB uses the exception
object to raise exceptions when an error occurs.

Note
This list only covers the exceptions raised by ElevateDB itself and does not cover the general
exceptions raised by the component units.

If you wish to use the error constants defined by ElevateDB in your applications you need to make sure:

 For Delphi applications, that the edberror unit file is included in your uses clause for the source unit in
question

 For C++Builder applications, that the edberror header file is included in your .h header file for the
source file in question

If you wish to change the following error messages or translate them into a different language, you may
do so by altering the contents of the edbconsts unit that can be found in the same directory where the
other ElevateDB units were installed.

For more information on exception handling in your application, please see the Exception Handling and
Errors topic in this manual.

Error Code Message and Further Details

EDB_ERROR_VALIDATE (100) There is an error in the metadata for the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever an attempt is made to create a new catalog or
configuration object, and there is an error in the
specification of the object. The specific error message is
indicated within the parentheses.

EDB_ERROR_UPDATE (101) There was an error updating the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever ElevateDB encounters an issue while trying to
update the disk file used to store a catalog or
configuration. The specific error message is indicated
within the parentheses.

EDB_ERROR_SYSTEM (200) This operation cannot be performed on the system
<ObjectType> <ObjectName> or any privileges granted
to itThis error is raised whenever an attempt is made to
alter or drop any system-defined catalog or configuration
objects. Please see the System Information topic for
more information on the system-defined objects in
ElevateDB.

EDB_ERROR_DEPENDENCY (201) The <ObjectType> <ObjectName> cannot be dropped
or moved because it is still referenced by the
<ObjectType> <ObjectName>This error is raised
whenever an attempt is made to drop any catalog or
configuration object, and that catalog or configuration

Appendix A - Error Codes and Messages

Page 653

object is still being referenced by another catalog or
configuration object. You must first remove the
reference to the object that you wish to drop before you
can drop the referenced object.

EDB_ERROR_MODULE (202) An error occurred with the module <ModuleName>
(<ErrorMessage>)This error is raised whenever
ElevateDB encounters an issue with loading an external
module. Please see the External Modules topic for more
information.

EDB_ERROR_LOCK (300) Cannot lock <ObjectType> <ObjectName> for
<AccessType> accessThis error is raised whenever
ElevateDB cannot obtain the desired lock access to a
given object. This is usually due to another session
already having an incompatible lock on the object
already. Please see the Locking topic for more
information.

EDB_ERROR_UNLOCK (301) Cannot unlock <ObjectType> <ObjectName> for
<AccessType> accessThis error is raised whenever
ElevateDB cannot unlock a given object. If this error
occurs during normal operation of ElevateDB, please
contact Elevate Software for further instructions on how
to correct the issue.

EDB_ERROR_EXISTS (400) The <ObjectType> <ObjectName> already existsThis
error is raised whenever an attempt is made to create a
new catalog or configuration object, and a catalog or
configuration object already exists with that name.

EDB_ERROR_NOTFOUND (401) The <ObjectType> <ObjectName> does not existThis
error is raised when an attempt is made to
open/execute, alter, or drop a catalog or configuration
object that does not exist.

EDB_ERROR_NOTOPEN (402) The database <DatabaseName> must be open in order
to perform this operation (<OperationName>)This error
is raised when an attempt is made to perform an
operation on a given database before it has been
opened.

EDB_ERROR_READONLY (403) The <ObjectType> <ObjectName> is read-only and this
operation cannot be performed (<OperationName>)This
error is raised whenever a create, alter, or drop
operation is attempted on an object that is read-only.

EDB_ERROR_TRANS (404) Transaction error (This operation cannot be performed
while the database <DatabaseName> has an active
transaction (<OperationName>))This error is raised
whenever ElevateDB encounters an invalid transaction
operation. Some SQL statements cannot be executed
within a transaction. For a list of transaction-compatible
statements, please see the Transactions topic.

EDB_ERROR_MAXIMUM (405) The maximum number of <ObjectType>s has been
reached (<MaximumObjectsAllowed>)This error is raised
when an attempt is made to create a new catalog or
configuration object and doing so would exceed the
maximum allowable number of objects. Please see the

Appendix A - Error Codes and Messages

Page 654

Appendix B - System Capacities topic for more
information.

EDB_ERROR_IDENTIFIER (406) Invalid <ObjectType> identifier '<ObjectName>'This
error is raised when an attempt is made to create a new
catalog or configuration object with an invalid name.
Please see the Identifiers topic for more information on
what constitutes a valid identifier.

EDB_ERROR_FULL (407) The table <TableName> is full (<FileName>)This error
occurs when a given table contains the maximum
number of rows or the maximum file size is reached for
one of the files that make up the table. The file name is
indicated within the parentheses.

EDB_ERROR_CONFIG (409) There is an error in the configuration
(<ErrorMessage>)This error is raised whenever there is
an error in the configuration. The specific error message
is indicated within the parentheses.

EDB_ERROR_NOLOGIN (500) A user must be logged in in order to perform this
operation (<OperationName>)This error is raised
whenever an attempt is made to perform an operation
for a session that has not been logged in yet with a valid
user name and password.

EDB_ERROR_LOGIN (501) Login failed (<ErrorMessage>)This error is raised
whenever a user login fails. ElevateDB allows for a
maximum of 3 login attempts before raising a login
exception.

EDB_ERROR_ADMIN (502) Administrator privileges are required to perform this
operation (<Operation>)This error is raised when an
attempt is made to perform an operation that requires
administrator privileges. Administrator privileges are
granted to a given user by granting the system-defined
"Administrators" role to that user.

Please see the User Security topic for more information.

EDB_ERROR_PRIVILEGE (503) The current user does not have the proper privileges to
perform this operation (<OperationName>)This error is
raised when a user attempts an operation when he/she
does not have the proper privileges required to execute
the operation. Please see the User Security topic for
more information.

EDB_ERROR_MAXSESSIONS (504) Maximum number of concurrent sessions reached for the
configuration <ConfigurationName>This error is raised
when the maximum number of licensed sessions for a
given configuration is exceeded. The number of licensed
sessions for a given configuration depends upon the
ElevateDB product purchased along with the particular
compilation of the application made by the developer
using the ElevateDB product.

EDB_ERROR_SERVER (505) The ElevateDB Server cannot be started
(<ErrorMessage>) The ElevateDB Server cannot be
stopped (<ErrorMessage>)This error is raised when the
ElevateDB Server cannot be started or stopped for any

Appendix A - Error Codes and Messages

Page 655

reason. Normally, the error message will contain a native
operating system error message that will reveal the
reason for the issue.

EDB_ERROR_FILEMANAGER (600) File manager error (<ErrorMessage>)This error is raised
whenever ElevateDB encounters a file manager error
while trying to create, open, close, delete, or rename a
file. The specific error message, including operating
system error code (if available), is indicated within the
parentheses.

EDB_ERROR_CORRUPT (601) The table <TableName> is corrupt
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while reading, writing, or validating
a table. If this error occurs during normal operation of
ElevateDB, please contact Elevate Software for further
instructions on how to correct the issue. The specific
error message is indicated within the parentheses.

EDB_ERROR_COMPILE (700) An error was found in the <ObjectType> at line <Line>
and column <Column> (<ErrorMessage>)This error is
raised whenever an error is encountered while compiling
an SQL expression, statement, or routine. The specific
error message is indicated within the parentheses.

EDB_ERROR_BINDING (800) A row binding error occurredThis error is raised when
ElevateDB encounters an issue while trying to bind the
cursor row values in a cursor row. It is an internal error
and will not occur unless there is a bug in ElevateDB.

EDB_ERROR_STATEMENT (900) An error occurred with the statement <StatementName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while executing a statement. The specific
error message is indicated within the parentheses.

EDB_ERROR_PROCEDURE (901) An error occurred with the procedure <ProcedureName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while executing a procedure. The specific
error message is indicated within the parentheses.

EDB_ERROR_VIEW (902) An error occurred with the view <ViewName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while opening a view. The specific error
message is indicated within the parentheses.

EDB_ERROR_JOB (903) An error occurred with the job <JobName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while running a job. The specific error
message is indicated within the parentheses.

EDB_ERROR_IMPORT (904) Error importing the file <FileName> into the table
<TableName> (<ErrorMessage>)This error is raised
when an error occurs during the import process for a
given table. The specific error message is indicated
within the parentheses.

Appendix A - Error Codes and Messages

Page 656

EDB_ERROR_EXPORT (905) Error exporting the table <TableName> to the file
<FileName> (<ErrorMessage>)This error is raised when
an error occurs during the export process for a given
table. The specific error message is indicated within the
parentheses.

EDB_ERROR_CURSOR (1000) An error occurred with the cursor <CursorName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while operating on a cursor. The specific
error message is indicated within the parentheses.

EDB_ERROR_FILTER (1001) A filter error occurred (<ErrorMessage>)This error is
raised whenever ElevateDB encounters an issue while
trying to set or clear a filter on a given cursor. The
specific error message is indicated within the
parentheses.

EDB_ERROR_LOCATE (1002) A locate error occurred (<ErrorMessage>)This error is
raised whenever ElevateDB encounters an issue while
trying to locate a row in a given cursor. The specific
error message is indicated within the parentheses.

EDB_ERROR_STREAM (1003) An error occurred in the cursor stream
(<ErrorMessage>)This error is raised whenever an issue
is encountered while loading or saving a cursor to or
from a stream. The specific error message is indicated
within the parentheses.

EDB_ERROR_CONSTRAINT (1004) The constraint <ConstrainName> has been violated
(<ErrorMessage>)This error is raised when a constraint
that has been defined for a table is violated. This
includes primary key, unique key, foreign key, and check
constraints. The specific error message is indicated
within the parentheses.

EDB_ERROR_LOCKROW (1005) Cannot lock the row in the table <TableName>This error
is raised when a request is made to lock a given row and
the request fails because another session has the row
already locked. Please see the Locking topic for more
information.

EDB_ERROR_UNLOCKROW (1006) Cannot unlock the row in the table <TableName>This
error is raised whenever ElevateDB cannot unlock a
specific row because the row had not been previously
locked, or had been locked and the lock has since been
cleared. Please see the Locking topic for more
information.

EDB_ERROR_ROWDELETED (1007) The row has been deleted since last cached for the table
<TableName>This error is raised whenever an attempt
is made to update or delete a row, and the row no
longer exists because it has been deleted by another
session. Please see the Updating Rows topic for more
information.

EDB_ERROR_ROWMODIFIED (1008) The row has been modified since last cached for the
table <TableName>This error is raised whenever an
attempt is made to update or delete a row, and the row
has been updated by another session since the last time
it was cached by the current session. Please see the

Appendix A - Error Codes and Messages

Page 657

Updating Rows topic for more information.

EDB_ERROR_CONSTRAINED (1009) The cursor is constrained and this row violates the
current cursor constraint condition(s)This error is raised
when an attempt is made to insert a new row into a
constrained cursor that violates the filter constraints
defined for the cursor. Both views defined in database
catalogs and the result sets of dynamic queries can be
defined as constrained, and the filter constraints in both
cases are the WHERE conditions defined for the
underlying SELECT query that the view or dynamic query
is based upon.

EDB_ERROR_ROWVISIBILITY (1010) The row is no longer visible in the table
<TableName>This error is raised whenever an attempt
is made to update or delete a row within the context of a
cursor with an active filter or range condition, and the
row has been updated by another session since the last
time it was cached by the current session, thus causing it
to fall out of the scope of the cursor's active filter or
range condition. Please see the Updating Rows topic for
more information.

EDB_ERROR_VALUE (1011) An error occurred with the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever an attempt is made to store a value in a
column, parameter, or variable and the value is invalid
because it is out of range or would be truncated. The
specific error message is indicated within the
parentheses.

EDB_ERROR_ROWCORRUPTED (1012) The row has been corrupted since last cached for the
table <TableName>This error is raised whenever an
attempt is made to update or delete a row, and the row
buffer being used for the operation has been corrupted.
This is typically due to improper multi-threaded access to
the ElevateDB client engine.

EDB_ERROR_CLIENTCONN (1100) A connection to the server at <ServerAddress> cannot
be established (<ErrorMessage>)This error is raised
when ElevateDB encounters an issue while trying to
connect to a remote ElevateDB Server. The error
message will indicate the reason why the connection
cannot be completed.

EDB_ERROR_CLIENTLOST (1101) A connection to the server at <ServerAddress> has been
lost <ErrorMessage>)This error is raised when
ElevateDB encounters an issue while connected to a
remote ElevateDB Server. The error message will
indicate the reason why the connection was lost.

EDB_ERROR_INVREQUEST (1103) An invalid or unknown request was sent to the
serverThis error is raised when an ElevateDB Server
encounters an unknown request from a client session.

EDB_ERROR_ADDRBLOCK (1104) The IP address <IPAddress> is blockedThis error is
raised when a session tries to connect to an ElevateDB
Server, and the originating IP address for the session
matches one of the configured blocked IP addresses in
the ElevateDB Server, or does not match one of the

Appendix A - Error Codes and Messages

Page 658

configured authorized IP addresses in the ElevateDB
Server.

EDB_ERROR_ENCRYPTREQ (1105) An encrypted connection is requiredThis error is raised
when a non-encrypted session tries to connect to an
ElevateDB Server that has been configured to only
accept encrypted session connections.

EDB_ERROR_SESSIONNOTFOUND (1107) The session ID <SessionID> is no longer present on the
serverThis error is raised whenever a remote session
attempts to reconnect to a session that has already been
designated as a dead session and removed by the
ElevateDB Server. This can occur when a session is
inactive for a long period of time, or when the ElevateDB
Server has been stopped and then restarted.

EDB_ERROR_SESSIONCURRENT (1108) The current session ID <SessionID> cannot be
disconnected or removedThis error is raised whenever a
remote session attempts to disconnect or remove itself.

EDB_ERROR_COMPRESS (1200) An error occurred while compressing data
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while attempting to compress data.
It is an internal error and will not occur unless there is a
bug in ElevateDB. The specific error message is indicated
within the parentheses.

EDB_ERROR_DECOMPRESS (1201) An error occurred while uncompressing data
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while attempting to decompress
data. It is an internal error and will not occur unless
there is a bug in ElevateDB. The specific error message
is indicated within the parentheses.

EDB_ERROR_BACKUP (1300) Error backing up the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the backing up of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_RESTORE (1301) Error restoring the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the restore of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_PUBLISH (1302) Error backing up the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the backing up of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_UNPUBLISH (1303) Error unpublishing the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the unpublishing of a database. The
specific error message is indicated within the
parentheses.

EDB_ERROR_SAVEUPDATES (1304) Error saving updates for the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the saving of the updates for a database.
The specific error message is indicated within the
parentheses.

Appendix A - Error Codes and Messages

Page 659

EDB_ERROR_LOADUPDATES (1305) Error loading updates for the database
<DatabaseName> (<ErrorMessage>)This error is raised
when any error occurs during the loading of the updates
for a database. The specific error message is indicated
within the parentheses.

EDB_ERROR_STORE (1306) Error with the store <StoreName>
(<ErrorMessage>)This error is raised when any error
occurs while trying to access a store, such as a read or
write error while working with files in the store. The
specific error message is indicated within the
parentheses.

EDB_ERROR_CACHEUPDATES (1307) Error caching updates for the cursor <CursorName>
(<ErrorMessage>)This error is raised when any error
occurs during the caching of updates for a specific table,
view, or query cursor. The specific error message is
indicated within the parentheses.

EDB_ERROR_FORMAT (1400) Error in the format string <FormatString>
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue with a format string used in a date,
time, or timestamp format used in a table import or
export. The specific error message is indicated within the
parentheses.

Appendix A - Error Codes and Messages

Page 660

Appendix B - System Capacities

The following is a list of the capacities for the different objects in ElevateDB. Any object that is not
specifically mentioned here has an implicit capacity of 2147483647, or High(Integer). For example, there is
no stated capacity for the maximum number of roles allowed in a configuration. Therefore, the implicit
capacity is 2147483647 roles.

Capacity Details

Max BLOB Column Size The maximum size of a BLOB column is 2GB.

Max CHAR/VARCHAR Column Length The maximum length of a VARCHAR/CHAR columns is
1024 characters.

Max Identifier Length The maximum length of an identifier is 80 characters.

Max Number of Columns in a Table The maximum number of columns in a table is 2048.

Max Number of Columns in an Index The maximum number of columns in an index is limited
by the table's defined index page size.

Max Number of Concurrent Sessions The maximum number of concurrent sessions for an
application or ElevateDB server is 4096.

Max Number of Indexes in a Table The maximum number of indexes in a table is 512.

Max Number of Jobs in a Configuration The maximum number of jobs in a configuration is 4096.

Max Number of Routines in a Database The maximum number of routines (procedures and
functions combined) in a database is 4096.

Max Number of Rows in a Table The maximum number of rows in a table is determined
by whether global file I/O buffering is enabled in
ElevateDB. If global file I/O buffering is enabled, then
the maximum number of rows is determined by the
maximum file size permitted in the operating system. If
global file I/O buffering is not enabled, then the
approximate maximum number of rows can be
determined by dividing 128GB by the row size.

Max Number of Rows in a Transaction The maximum number of rows in a single transaction is
only limited by the available memory constraints of the
operating system and/or hardware.

Max Number of Tables in a Database The maximum number of tables in a database is 4096.

Max Number of Users in a Configuration The maximum number of users in a configuration is
4096.

Max Row Size for a Table The maximum row size for a table is 2GB.

Max Scale for DECIMAL or NUMERIC Columns The maximum scale for DECIMAL or NUMERIC columns
is 4.

Max Size of an In-Memory Table The maximum size of an in-memory table is only limited
by the available memory constraints of the operating
system or hardware.

Min/Max BLOB Block Size for a Table The minimum BLOB block size is 64 bytes for ANSI
databases and 128 bytes for Unicode databases. The
maximum BLOB block size is 2GB.

Appendix B - System Capacities

Page 661

Min/Max Index Page Size for a Table The minimum index page size is 1 kilobyte for ANSI
databases and 2 kilobytes for Unicode databases. The
maximum index page size is 2GB.

Appendix B - System Capacities

Page 662

