
ElevateDB Version 2 SQL Manual

Table Of Contents

Chapter 1 - Getting Started 1

1.1 Adherence to the SQL Standard 1

1.2 Architecture 2

1.3 Creating a Local Database 7

1.4 Migrating a Database 15

1.5 Starting and Configuring the ElevateDB Server 22

1.6 Creating a Client-Server Database 38

1.7 Internationalization 46

1.8 Identifiers 49

1.9 NULLs 51

1.10 User Security 53

1.11 Buffering and Caching 57

1.12 Change Detection 63

1.13 Locking and Concurrency 64

1.14 Transactions 68

1.15 External Modules 72

1.16 Migrating Databases 74

1.17 Text Indexing 76

1.18 Optimizer 81

1.19 Result Set Cursor Sensitivity 87

1.20 Compression 89

1.21 Encryption 90

1.22 Stores 91

1.23 Replication 92

1.24 Row Value Constructors 95

1.25 Object Versioning 97

1.26 Custom Attributes 98

Chapter 2 - Operators 99

2.1 Introduction 99

2.2 Boolean Operators 100

2.3 Comparison Operators 101

Table of Contents

Preface

2.4 Arithmetic Operators 104

2.5 String Operators 107

2.6 Text Index Operators 108

Chapter 3 - Types 111

3.1 Introduction 111

3.2 Exact Numeric Types 112

3.3 Approximate Numeric Types 114

3.4 String Types 115

3.5 Binary Types 117

3.6 Date and Time Types 119

3.7 Interval Types 121

3.8 Boolean Types 124

3.9 Type Promotion 125

Chapter 4 - System Information 127

4.1 Introduction 127

4.2 Configuration Database 128

4.3 Collations Table 129

4.4 DataTypes Table 130

4.5 Modules Table 131

4.6 TextFilters Table 132

4.7 WordGenerators Table 133

4.8 Migrators Table 134

4.9 MigratorParams Table 135

4.10 LogEvents Table 136

4.11 Backups Table 137

4.12 Updates Table 138

4.13 FileIOStatistics Table 139

4.14 SessionStatistics Table 140

4.15 LoggedStatements Table 142

4.16 ServerSessions Table 143

4.17 ServerSessionLocks Table 144

4.18 ServerSessionStatistics Table 146

4.19 Users Table 148

4.20 Roles Table 149

4.21 UserRoles Table 150

4.22 Databases Table 151

Table of Contents

Preface

4.23 DatabasePrivileges Table 153

4.24 Jobs Table 154

4.25 Stores Table 156

4.26 StorePrivileges Table 158

4.27 Files Table 159

4.28 Information Schema 160

4.29 Tables Table 161

4.30 TablePrivileges Table 162

4.31 TableColumns Table 163

4.32 TemporaryTables Table 165

4.33 Constraints Table 166

4.34 ConstraintColumns Table 168

4.35 Indexes Table 169

4.36 IndexColumns Table 171

4.37 Triggers Table 172

4.38 TriggerColumns Table 174

4.39 Views Table 175

4.40 ViewPrivileges Table 176

4.41 ViewColumns Table 177

4.42 ViewIndexes Table 178

4.43 TemporaryViews Table 179

4.44 Procedures Table 180

4.45 ProcedurePrivileges Table 181

4.46 ProcedureParams Table 182

4.47 Functions Table 183

4.48 FunctionPrivileges Table 184

4.49 FunctionParams Table 185

4.50 Dependencies Table 186

4.51 SchemaObjects Table 188

4.52 SchemaDifference Table 190

Chapter 5 - DDL Statements 193

5.1 Introduction 193

5.2 CREATE DATABASE 194

5.3 ALTER DATABASE 196

5.4 DROP DATABASE 197

5.5 RENAME DATABASE 198

Table of Contents

Preface

5.6 CREATE USER 199

5.7 ALTER USER 200

5.8 DROP USER 202

5.9 RENAME USER 203

5.10 CREATE ROLE 204

5.11 ALTER ROLE 205

5.12 DROP ROLE 206

5.13 RENAME ROLE 207

5.14 GRANT PRIVILEGES 208

5.15 REVOKE PRIVILEGES 210

5.16 GRANT ROLES 212

5.17 REVOKE ROLES 213

5.18 CREATE JOB 214

5.19 ALTER JOB 217

5.20 DROP JOB 220

5.21 RENAME JOB 221

5.22 ENABLE JOB 222

5.23 DISABLE JOB 223

5.24 ENABLE JOBS 224

5.25 DISABLE JOBS 225

5.26 RESET JOB 226

5.27 CREATE STORE 227

5.28 ALTER STORE 229

5.29 DROP STORE 231

5.30 RENAME STORE 232

5.31 CREATE MODULE 233

5.32 ALTER MODULE 234

5.33 DROP MODULE 235

5.34 RENAME MODULE 236

5.35 CREATE TEXT FILTER 237

5.36 ALTER TEXT FILTER 238

5.37 DROP TEXT FILTER 239

5.38 RENAME TEXT FILTER 240

5.39 CREATE WORD GENERATOR 241

5.40 ALTER WORD GENERATOR 242

5.41 DROP WORD GENERATOR 243

Table of Contents

Preface

5.42 RENAME WORD GENERATOR 244

5.43 CREATE MIGRATOR 245

5.44 ALTER MIGRATOR 246

5.45 DROP MIGRATOR 247

5.46 RENAME MIGRATOR 248

5.47 CREATE TABLE 249

5.48 ALTER TABLE 254

5.49 DROP TABLE 259

5.50 RENAME TABLE 260

5.51 CREATE TRIGGER 261

5.52 ALTER TRIGGER 266

5.53 DROP TRIGGER 268

5.54 RENAME TRIGGER 269

5.55 ENABLE TRIGGER 270

5.56 DISABLE TRIGGER 271

5.57 ENABLE TRIGGERS 272

5.58 DISABLE TRIGGERS 273

5.59 ENABLE DEFAULTS 274

5.60 DISABLE DEFAULTS 275

5.61 ENABLE GENERATED 276

5.62 DISABLE GENERATED 277

5.63 CREATE INDEX 278

5.64 CREATE TEXT INDEX 280

5.65 ALTER INDEX 282

5.66 ALTER TEXT INDEX 284

5.67 DROP INDEX 286

5.68 RENAME INDEX 287

5.69 CREATE VIEW 288

5.70 ALTER VIEW 290

5.71 DROP VIEW 292

5.72 RENAME VIEW 293

5.73 CREATE FUNCTION 294

5.74 ALTER FUNCTION 296

5.75 DROP FUNCTION 299

5.76 RENAME FUNCTION 300

5.77 CREATE PROCEDURE 301

Table of Contents

Preface

5.78 ALTER PROCEDURE 304

5.79 DROP PROCEDURE 307

5.80 RENAME PROCEDURE 308

Chapter 6 - DML Statements 309

6.1 Introduction 309

6.2 SELECT 310

6.3 INSERT 318

6.4 UPDATE 320

6.5 DELETE 322

Chapter 7 - SQL/PSM Statements 323

7.1 Introduction 323

7.2 BEGIN..END 324

7.3 EXCEPTION 326

7.4 FINALLY 328

7.5 DECLARE 330

7.6 RAISE 334

7.7 IF 336

7.8 CASE 338

7.9 LOOP 340

7.10 REPEAT 342

7.11 WHILE 344

7.12 ITERATE 346

7.13 LEAVE 347

7.14 SET 348

7.15 CALL 350

7.16 USE 351

7.17 EXECUTE IMMEDIATE 353

7.18 PREPARE 355

7.19 UNPREPARE 357

7.20 EXECUTE 359

7.21 OPEN 361

7.22 CLOSE 363

7.23 FETCH 364

7.24 START TRANSACTION 367

7.25 COMMIT 369

7.26 ROLLBACK 371

Table of Contents

Preface

7.27 INSERT 373

7.28 UPDATE 375

7.29 DELETE 377

7.30 REFRESH 379

7.31 SET LOG MESSAGE 380

7.32 SET PROGRESS 382

7.33 SET STATUS MESSAGE 384

7.34 ABORT 386

7.35 RETRY 388

7.36 LOG EVENT 390

7.37 SET STATEMENT CACHE 392

7.38 SET PROCEDURE CACHE 394

Chapter 8 - Administrative Statements 397

8.1 Introduction 397

8.2 ENABLE STATEMENT LOGGING 398

8.3 DISABLE STATEMENT LOGGING 400

8.4 MIGRATE DATABASE 401

8.5 SET MIGRATOR 403

8.6 BACKUP DATABASE 404

8.7 RESTORE DATABASE 406

8.8 SET BACKUPS STORE 408

8.9 PUBLISH DATABASE 409

8.10 UNPUBLISH DATABASE 411

8.11 SET INFORMATION COLLATE 412

8.12 COMPARE DATABASE 413

8.13 SAVE UPDATES 415

8.14 LOAD UPDATES 417

8.15 SET UPDATES STORE 419

8.16 COPY FILE 420

8.17 RENAME FILE 421

8.18 DELETE FILE 422

8.19 SET FILES STORE 423

8.20 VERIFY TABLE 424

8.21 REPAIR TABLE 425

8.22 OPTIMIZE TABLE 427

8.23 IMPORT TABLE 429

Table of Contents

Preface

8.24 EXPORT TABLE 432

8.25 EMPTY TABLE 435

8.26 DISCONNECT SERVER SESSION 436

8.27 REMOVE SERVER SESSION 437

Chapter 9 - Numeric Functions 439

9.1 Introduction 439

9.2 ABS 440

9.3 ACOS 441

9.4 ASIN 442

9.5 ATAN 443

9.6 ATAN2 444

9.7 CEILING 445

9.8 COS 446

9.9 COT 447

Chapter 9 - String Functions 448

9.10 CURRENT_SESSIONID 448

Chapter 9 - Numeric Functions 449

9.11 DEGREES 449

9.12 EXP 450

9.13 FLOOR 451

9.14 LASTIDENTITY 452

9.15 LOG 454

9.16 LOG10 455

9.17 PI 456

9.18 POWER 457

9.19 RADIANS 458

9.20 RAND 459

9.21 ROUND 460

9.22 SIGN 462

9.23 SIN 463

9.24 SQRT 464

9.25 TAN 465

9.26 TRUNCATE 466

Chapter 10 - String Functions 469

10.1 Introduction 469

10.2 CHARACTER_LENGTH 470

Table of Contents

Preface

10.3 CONCAT 471

10.4 CURRENT_GUID 472

10.5 CURRENT_USER 473

10.6 CURRENT_DATABASE 474

10.7 CURRENT_COMPUTER 475

10.8 LEFT 477

10.9 LENGTH 478

10.10 LOWER 479

10.11 LTRIM 480

10.12 OCCURS 481

10.13 POSITION 482

10.14 REPEAT 483

10.15 REPLACE 484

10.16 RIGHT 485

10.17 RTRIM 486

10.18 SUBSTRING 487

10.19 TRIM 489

10.20 UPPER 491

10.21 QUOTEDSTR 492

Chapter 11 - Array Functions 495

11.1 Introduction 495

11.2 CARDINALITY 496

Chapter 12 - Date and Time Functions 499

12.1 Introduction 499

12.2 CURRENT_DATE 500

12.3 CURRENT_TIME 501

12.4 CURRENT_TIMESTAMP 502

12.5 EXTRACT 503

Chapter 13 - Interval Functions 505

13.1 Introduction 505

13.2 ABS 506

13.3 EXTRACT 507

Chapter 14 - Conversion Functions 511

14.1 Introduction 511

14.2 CAST 512

14.3 COALESCE 527

Table of Contents

Preface

14.4 IF 529

14.5 IFNULL 531

14.6 NULLIF 533

14.7 CASE 535

Chapter 15 - Aggregate Functions 537

15.1 Introduction 537

15.2 AVG 538

15.3 COUNT 540

15.4 MAX 542

15.5 MIN 544

15.6 RUNSUM 546

15.7 STDDEV 548

15.8 SUM 549

15.9 LIST 551

Chapter 16 - Boolean Functions 553

16.1 Introduction 553

16.2 EXISTS 554

Chapter 17 - SQL/PSM Functions 555

17.1 Introduction 555

17.2 ABORTED 556

17.3 BOF 558

17.4 EOF 560

17.5 ERRORCODE 562

17.6 ERRORMSG 564

17.7 ROWCOUNT 566

17.8 ROWSAFFECTED 568

17.9 SENSITIVE 570

17.10 LOADINGUPDATES 572

17.11 INTRANSACTION 574

17.12 OPERATION 576

17.13 COLUMNCOUNT 577

17.14 COLUMNNAME 579

17.15 STMTRESULT 581

Appendix A - Error Codes and Messages 583

Appendix B - System Capacities 591

Table of Contents

Preface

Chapter 1
Getting Started

1.1 Adherence to the SQL Standard

ElevateDB was developed according to the SQL 2003 standard (ANSI ISO/IEC 9075:2003), and every
effort was made to make sure that the product adheres to this standard as much as possible with no
deviations. However, there are certain areas where ElevateDB does deviate from the standard. Each type,
operator, statement, or function reference in this manual includes a summary of any deviation from the
SQL 2003 standard at the end of the reference entitled SQL 2003 Standard Deviations that will detail any
deviations from the SQL 2003 standard.

Getting Started

Page 1

1.2 Architecture

ElevateDB is an embedded SQL database engine that can be compiled directly into your application and
offers local single and multi-user access (file-sharing) and client-server access with the provided ElevateDB
server. ElevateDB can switch between these modes of operation quickly, requiring just a few application
changes.

The following image illustrates the general architecture of ElevateDB:

The various areas of the architecture are detailed next.

Getting Started

Page 2

Engine

The ElevateDB engine can act as either a client or a server:

Engine Type Description

Client When acting as a client, the ElevateDB engine can create and
manage both local and remote sessions (see below). These
sessions can be multi-threaded, and there is no set limit to
the number of sessions that can be created. The engine is
automatically started whenever a new session is connected.

Server When acting as a server, the ElevateDB engine can also
create and manage both local and remote sessions. More
importantly, it can listen for and respond to incoming
connections and requests from remote sessions. An ElevateDB
server can listen for incoming connections on all IP addresses
or a specific IP address. By default, the ElevateDB server
listens for incoming connections on port 12010. The
ElevateDB Server is multi-threaded and uses one thread per
session connection. ElevateDB can cache threads and keep a
pool of unused threads available in order to improve
connect/disconnect times. You may have an ElevateDB Server
(or several) accessing the same configuration file and
databases at the same time as other local applications such as
CGI or ISAPI web server applications. This allows you to put
critical server-side processing on the server where it belongs
without incurring a lot of unnecessary overhead that would be
imposed by the transport protocol of the ElevateDB Server.
This can improve the performance of server-based local
applications significantly, especially when they reside on the
same machine as the ElevateDB Server and the databases
being accessed are local to the server machine.

Sessions

ElevateDB is session-based, where a session is equivalent to a virtual user. In multi-threaded applications
ElevateDB requires a separate session for each thread performing database access.

A ElevateDB session can be either local or remote:

Session Type Description

Getting Started

Page 3

Local A local session gains direct access to database tables via the
operating system API to a given storage medium, which can
literally be any such medium that is accessible from the
operating system in use. This means that a local session on
the Windows operating system could access database tables
on a Windows or Linux file server. ElevateDB automatically
provides for the sharing of database tables using a local
session. For example, an application can use local sessions on
a small peer-to-peer network to provide a low-cost, multi-user
solution without the added expense of using the ElevateDB
Server. A local session has all of the capabilities of a remote
session. Before a local session can perform any operation, it
must be logged in with a proper user name and password.

Remote A remote session uses sockets to communicate to an
ElevateDB Server over a network (or on the same physical
machine) using the TCP/IP protocol. ElevateDB allows all
remote session communications to be encrypted. Compression
is also available for remote sessions and can be changed
whenever it is deemed necessary in order to improve the data
transfer speed. This is especially important with low-
bandwidth connections like a dial-up Internet connection. A
remote session connects to a given ElevateDB Server via an IP
address or host name and a port or service name. Before a
remote session can perform any operation on an ElevateDB
Server, it must be logged in with a proper user name and
password.

Note
A developer can mix as many local and remote sessions in one application as needed, thus enabling
a single application to access data from a local hard drive, a shared file server, or an ElevateDB
Server. Also, local and remote sessions are completely identical from a usage standpoint, offering
both navigational and SQL access methods.

A local ElevateDB session relies on a couple of important configuration items:

Item Description

Getting Started

Page 4

Configuration Path This is the path where the configuration file is created and
stored, and can be specified as being located in the process
memory or on-disk. By default, the configuration file is called
EDBConfig.EDBCfg, and is used by ElevateDB to store the
information for the Configuration Database. ElevateDB can
only access and use one configuration file per session, and
the session cannot be connected when the configuration path
is modified. Because the configuration file stores users, roles,
and databases, among other things, it is very important that
the configuration path is set properly for the local session,
and that the local session uses the correct configuration file.
Also, the configuration path is where all external modules are
located, and it is where the system log (EDBConfig.EDBLog) is
created and stored. ElevateDB creates a single hidden file
called "EDBConfig.EDBLck" (by default) in the configuration
path that is used for locking on the Configuration Database. It
is created as needed and may be deleted if not in use by
ElevateDB. However, if ElevateDB cannot write to this file it
will treat the Configuration Database as read-only, thus
preventing any modifications.

Temporary Tables Path This is the path where ElevateDB creates any temporary
tables used by the local session internally for SQL result sets,
or for temporary tables created by the user via the CREATE
TABLE statement. By default, ElevateDB uses the local user
temporary files path in the operating system for this setting.

Please see your product-specific manual for more information on modifying the above configuration items.

Databases

ElevateDB stores all defined databases in the configuration file (see above). A database can be created
using the CREATE DATABASE statement. The path specified when a database is created is subsequently
used by ElevateDB to store both the catalog file and the database table files for the database. All
metadata for a database is stored in the catalog file, and is represented in ElevateDB via the Information
Schema. By default, the catalog file name for a database is EDBDatabase.EDBCat. Also, ElevateDB creates
a single hidden file called "EDBDatabase.EDBLck" (by default) in the database path that is used for
locking. It is created as needed and may be deleted if not in use by ElevateDB. However, if ElevateDB
cannot write to this file it will treat the database as read-only. Please see the Locking and Concurrency
topic for more information.

Tables

ElevateDB tables are divided into up to 4 physical files, one for the table rows, one for indexes, one for
BLOBs (if there are BLOB columns present in the table), and one for published updates (if the table is
published):

File Type Description

Getting Started

Page 5

Table Rows (.EDBTbl) Used to store a fixed-length header for table-specific statistics
along with the fixed-length rows. The use of a fixed-length
header and rows allows for easier repair of tables in the case
of physical table corruption. All rows contain a small row
header and then the actual row data. BLOB columns contain a
link to the BLOB file where the actual variable-length BLOB is
stored in a block format.

Table Indexes (.EDBIdx) Used to store a fixed-length header for index statistics along
with the fixed-length index pages. The index page size is
variable and can be set between 1024 bytes and 16 kilobytes
on a per-table basis. All indexes defined for the table are
stored in this file.

Table BLOBs (.EDBBlb) Used to store a fixed-length header for BLOB statistics along
with the fixed-length BLOB blocks. The BLOB block size is
variable and can be set between 64 bytes and 64 kilobytes on
a per-table basis. All BLOBs for all BLOB columns defined for
the table are stored in this file.

Table Published Updates (.EDBPbl) Used to store a fixed-length header for published updates
statistics along with the fixed-length published updates
blocks. The published updates block size is variable and can
be set between 64 bytes and 64 kilobytes on a per-table
basis.

The file extensions used for these physical files can be changed. Please see your product-specific manual
for more information.

Getting Started

Page 6

1.3 Creating a Local Database

The following steps will guide you through creating the Tutorial database using the ElevateDB Manager.

1. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

2. Make sure that the session is using the desired character set and configuration file folder
(C:\Tutorial).

a. Select the Default session from the list of available sessions.

b. In the Tasks pane, click on the Edit Session link.

Getting Started

Page 7

c. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

d. On the Local page of the Edit Session dialog, make sure that the Configuration File - File Folder is set
to the desired folder.

e. Click on the OK button.

3. Double-click on the Default session in the Properties window in order to connect the session.

Getting Started

Page 8

4. Click on the New button on the main toolbar.

5. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

6. Press the F9 key to execute the SQL statement.

7. Press the F5 key to refresh the explorer contents for the session.

8. Click on the + sign next to the Databases node in the treeview.

Getting Started

Page 9

9. Click on the new Tutorial database that you just created.

10. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

Getting Started

Page 10

11. Click on the New.SQL tab to bring forward the SQL window.

12. Paste in the following CREATE TABLE SQL statement. If you are using a Unicode session (see Step 2
above), then you should use the Unicode version of the CREATE TABLE statement. If you are using an
ANSI session, then you should use the ANSI version of the CREATE TABLE statement:

ANSIANSI

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "ANSI_CI" NOT NULL,
"Address1" VARCHAR(40) COLLATE "ANSI_CI",
"Address2" VARCHAR(40) COLLATE "ANSI_CI",
"City" VARCHAR(30) COLLATE "ANSI_CI",
"State" CHAR(2) COLLATE "ANSI_CI",
"Zip" CHAR(10) COLLATE "ANSI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")
)

UnicodeUnicode

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "UNI_CI" NOT NULL,
"Address1" VARCHAR(40) COLLATE "UNI_CI",
"Address2" VARCHAR(40) COLLATE "UNI_CI",
"City" VARCHAR(30) COLLATE "UNI_CI",
"State" CHAR(2) COLLATE "UNI_CI",
"Zip" CHAR(10) COLLATE "UNI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

Getting Started

Page 11

CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")
)

13. Press the F9 key to execute the SQL statement.

14. Press the F5 key to refresh the explorer contents for the session.

15. The table should now show up in the list of tables for the Tutorial
database.

16. Click on the New.SQL tab to bring forward the SQL window.

17. Paste in the following INSERT SQL statement:

INSERT INTO "Customer" VALUES
(NULL,

Getting Started

Page 12

'Elevate Software, Inc.',
'168 Christiana Street',
'',
'North Tonawanda',
'NY',
'14120',
NULL)

18. Press the F9 key to execute the SQL statement.

19. Click on the Customer table that you just created.

20. Press the F6 key to make the Properties window the active window, and then click on the Open Table
link in the Tasks pane.

Getting Started

Page 13

21. You will now see the row that you just inserted.

You have now successfully created the Tutorial database.

Getting Started

Page 14

1.4 Migrating a Database

The following steps will guide you through migrating a database from another format to ElevateDB format
using the ElevateDB Manager.

1. The migrator modules provided with ElevateDB are:

Module Description

edbmigrate ElevateDB migrator module

edbmigratedbisam1 DBISAM Version 1.x migrator module

edbmigratedbisam2 DBISAM Version 2.x migrator module

edbmigratedbisam3 DBISAM Version 3.x migrator module

edbmigratedbisam4 DBISAM Version 4.x migrator module

edbmigratebde BDE (Borland Database Engine) migrator module

edbmigrateado ADO (Microsoft ActiveX Data Objects) migrator module

edbmigratendb NexusDB migrator module

edbmigrateads ADS (Advantage Database Server) migrator module

You can find these migrator modules as part of the ElevateDB Additional Software and Utilities (EDB-ADD)
installation in the \libs subdirectory under the main installation directory. There are ANSI and Unicode
versions of each of the migrator modules that will work with both ANSI or Unicode sessions, and the
ElevateDB Manager will automatically select the correct migrator modules for the session being used.

Note
You can download the ElevateDB Additional Software and Utilities (EDB-ADD) installation from the
Downloads page of the web site.

2. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

3. Make sure that the session is using the desired character set and configuration file folder
(C:\Tutorial).

Getting Started

Page 15

a. Select the Default session from the list of available sessions.

b. In the Tasks pane, click on the Edit Session link.

c. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

d. On the Local page of the Edit Session dialog, make sure that the Configuration File - File Folder is set
to the desired folder.

Getting Started

Page 16

e. Click on the OK button.

4. Double-click on the Default session in the Properties window in order to connect the session.

5. In the Tasks pane, click on the Create Database Migrators link. This will automatically create all of
the database migrators that are shipped with the ElevateDB Manager.

Getting Started

Page 17

Note
If the character set of the session is changed in the future (Step 3 above), just re-execute this step
in the ElevateDB Manager and the database migrators will be updated so that they use the correct
migrator modules that match the character set of the session.

6. Click on the New button on the main toolbar.

7. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

8. Press the F9 key to execute the SQL statement.

Getting Started

Page 18

9. Press the F5 key to refresh the explorer contents for the session.

10. Click on the + sign next to the Databases node in the treeview.

11. Click on the new Tutorial database that you just created.

Getting Started

Page 19

12. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

13. Click on the Migrate Database link in the Tasks pane for the database.

Getting Started

Page 20

14. Select the desired migrator from the list of migrators.

15. Each migrator will have various parameters that control how the migration process executes, and
these parameters are expressed in terms that are easily understood. Usually, at a minimum, the source
database name or directory parameter will need to be set. To set the source database parameters:

a. Click on the desired parameter in the list of parameters.

b. Type in the parameter value in the parameter edit control, and click on the Set Parameter button.

15. Click on the OK button, and the migration process will begin and progress information will be present
in the bottom status bar of the ElevateDB Manager.

You have now successfully migrated your database to ElevateDB.

Getting Started

Page 21

1.5 Starting and Configuring the ElevateDB Server

ElevateDB comes with a version of the ElevateDB Server called edbsrvr.exe for Windows and a
command-line version of the ElevateDB Server called edbsrvr for Linux. The ElevateDB Server for
Windows can be run as a normal application (with a GUI) or as a service. The ElevateDB Server for Linux
can be run as a normal command-line application or as a service/daemon.

If running the ElevateDB Server as a normal application there is nothing else to do besides start up the
ElevateDB Server from the directory in which the ElevateDB Server binary is located. You can find the
ElevateDB Server binaries in the \servers\edbsrvr sub-directory under the main installation directory. There
are separate subdirectories for 32-bit Windows, 64-bit Windows, and 64-bit Linux binaries.

Note
Before starting, please make note of the fact that there are two types of "configuration" files being
discussed here. The first is the ElevateDB Server configuration file (EDBConfig.EDBCfg, by default).
This file contains system-wide user, role, database, store, and job definitions and is used by the
ElevateDB engine in all modes of operation. The second is the edbsrvr.ini file (Windows) or
edbsrvr.cnf file (Linux), which is used to store the configuration of the ElevateDB Server itself.

Installing the ElevateDB Server as a Windows Service

If you wish to run the ElevateDB Server as a Windows service you must install it as a service by running
the ElevateDB Server with the /install command-line switch set. For example, to install the ElevateDB
Server as a service using the Run command window under Windows you would specify the following
command:

edbsrvr.exe /install

To uninstall the ElevateDB Server as a Windows service you must run the ElevateDB Server with the
/uninstall command-line switch set. For example, to uninstall the ElevateDB Server as a service using the
Run command window under Windows you would specify the following command:

edbsrvr.exe /uninstall

Finally, by default the service will display a "Service installed" dialog box when the service is installed
successfully. This is sometimes not desired during installations, and in these cases you can use the /silent
command-line switch to suppress the dialog box:

edbsrvr.exe /install /silent

Installing the ElevateDB Server as a Linux Service

If you wish to run the ElevateDB Server as a Linux service you must install it as a service so that it can be
managed by the systemd service manager. This can be accomplished by completing the following steps:

Getting Started

Page 22

1. Copy the edbsrvr binary from the installation directory:

<InstallDir>\servers\edbsrvr\linux64

to the following target Linux system's binaries directory:

/usr/sbin

2. Create the systemd service file for the ElevateDB Server by using the following commands from a
terminal window:

cd /etc/systemd/system

sudo gedit edbsrvr.service

Copy and paste the following information into the edbsrvr.service file being edited:

[Unit]
Description=ElevateDB Server

[Service]
Type=forking
ExecStart=/usr/sbin/edbsrvr

[Install]
WantedBy=multi-user.target

Save the service file using Ctrl-S and exit the gedit text editor.

3. Reload the service configurations for systemd using the following command in the terminal window:

sudo systemctl daemon-reload

4. Enable the service so that it will be loaded at boot time:

sudo systemctl enable edbsrvr

Starting the ElevateDB Server

The main difference between starting the ElevateDB Server as a normal application and starting the
ElevateDB Server as a service is that the normal application can be started just like any other application

Getting Started

Page 23

while the service must be started using the operating-system-specific methods for doing so.

Starting the ElevateDB Server as a Normal Application Under WindowsStarting the ElevateDB Server as a Normal Application Under Windows

You can start and configure the ElevateDB Server as a normal application by completing the following
steps.

1. Start the ElevateDB Server (edbsrvr.exe) by clicking on the ElevateDB Server link in the Start menu.

2. Make sure that the server is using the desired character set and configuration file folder (C:\Tutorial).

a. In the system tray, right-click on the ElevateDB Server icon to bring up the server menu, and click on
the Restore option on the server menu.

b. In the Tasks pane, click on the Stop Server link.

c. In the Tasks pane, click on the Edit Server Options link.

d. On the Server page, make sure that the Character Set is set to the desired value - either ANSI or
Unicode.

Getting Started

Page 24

Note
If you're not sure which character set to select and this is the first time using the ElevateDB Server,
then leave the character set at the default of Unicode.

e. On the Configuration page, make sure that the Configuration File - File Folder is set to the desired
folder for the ElevateDB Server configuration file (EDBConfig.EDBCfg).

f. Click on the OK button.

g. In the Tasks pane, click on the Start Server link.

e. Click on the close button in the upper-right-hand corner of the ElevateDB Server window to close the
server window.

Getting Started

Page 25

Starting the ElevateDB Server as a Normal Application Under LinuxStarting the ElevateDB Server as a Normal Application Under Linux

You can start and configure the command-line ElevateDB Server as a normal application by completing the
following steps.

1. Make sure that the ElevateDB Server command-line server binary (edbsrvr) for Linux is copied into the
desired location on the target system.

2. Create the edbsrvr.cnf configuration information file using the following commands from a terminal
window:

cd /etc

mkdir elevate

cd elevate

mkdir edbsrvr

cd edbsrvr

sudo gedit edbsrvr.cnf

Copy and paste the following information into the edbsrvr.cnf file being edited:

[Server]
Configuration Folder=<Configuration File Location>
Configuration Name=EDBConfig
Large File Support=1
Maximum Log File Size=1048576
Log Information Events=0
Log Warning Events=1
Log Error Events=1
Catalog Name=EDBDatabase
Configuration File Extension=.EDBCfg
Lock Files Extension=.EDBLck
Log File Extension=.EDBLog
Backup Files Extension=.EDBBkp
Catalog Files Extension=.EDBCat
Table Files Extension=.EDBTbl
Table Index Files Extension=.EDBIdx
Table BLOB Files Extension=.EDBBlb
Temporary Tables Folder=/tmp
Server Name=EDBSrvr
Server Description=ElevateDB Server
Server Run Jobs=1
Server Job Category=
Server Job Retries=10
Server Address=

Getting Started

Page 26

Server Port=12010
Server Thread Cache Size=128
Server Encrypted Only=0
Server Session Timeout=60
Server Dead Session Interval=30
Server Dead Session Expiration=30
Server Maximum Dead Sessions=64
Server Authorized Addresses=*<#CR#><#LF#>
Server Blocked Addresses=<#CR#><#LF#><#CR#><#LF#>
Update Files Extension=.EDBUpd
Table Publish Files Extension=.EDBPbl
Signature=edb_signature
Licensed Sessions=4096
Encryption Password=elevatesoft
Configuration In Memory=0
Show User Passwords=0
Character Set=0
Show Database Catalog Information=1
Server Encryption Password=elevatesoft
Cache Modules=1
Buffered File IO=0
Buffered File IO Settings=
Buffered File IO Flush Check Interval=60
Trace=0
Trace File Name=edbtrace.log
Auto-Increment Trace File Name=1
Max Trace File Size=134217728
Max Auto-Increment Trace File Name=64

Save the file using Ctrl-S and exit the gedit text editor.

Note
Be sure to modify the Configuration Folder item so that it points to the desired location for the
ElevateDB configuration file (EDBConfig.EDBCfg). Please see the Configuration Reference section
below for more information on the various settings in the edbsrvr.cnf file.

3. Execute the ElevateDB Server binary using the following commands from a terminal window:

cd <Target Location>

./edbsrvr

where <Target Location> is the location where the ElevateDB Server binary was copied in step 1.

Starting the ElevateDB Server as a Windows ServiceStarting the ElevateDB Server as a Windows Service

To start the ElevateDB Server as a Windows service, you can use the following command from the
command-line:

net start edbsrvr

Getting Started

Page 27

Note
In order to start the ElevateDB Server as a Windows service, the ElevateDB Server must have
already been installed as a service using the steps in the Installing the ElevateDB Server as a
Windows Service section above.

Starting the ElevateDB Server as a Linux ServiceStarting the ElevateDB Server as a Linux Service

To start the ElevateDB Server as a Linux service, you can use the following commmands from a terminal
window:

net start edbsrvr

Note
In order to start the ElevateDB Server as a Linux service, the ElevateDB Server must have already
been installed as a service using the steps in the Installing the ElevateDB Server as a Linux
Service section above.

Configuration Reference

On Windows, the ElevateDB Server stores its configuration information in an .ini file that is, by default,
located in the following directory:

C:\ProgramData\Elevate Software\ElevateDB Server

On Linux, the ElevateDB Server stores its configuration information in a .cnf file that is, by default, located
in the following directory:

/etc/elevate/edbsrvr

The name of the .ini or .cnf configuration file is determined by the name of the binary. For example, for
the edbsrvr.exe Windows binary, the name of the .ini file would be edbsrvr.ini, and for the edbsrvr Linux
binary, the name of the .cnf file would be edbsrvr.cnf.

Note
As of the 2.09 release of ElevateDB, if the ElevateDB Server finds an .ini or .cnf file with the proper
name in the same directory as the ElevateDB Server binary, it will use it instead of the .ini or .cnf
file in the above directories.

All of the configuration entries in the ElevateDB Server .ini or .cnf configuration files are stored under a
section called "Server" (see below for how multiple server instances can change this). Each of the
individual configuration entries in this section are as follows:

Getting Started

Page 28

Configuration Entry Description

Encryption Password Specifies the encryption password used by the ElevateDB
Server for all file encryption purposes. The ElevateDB Server
uses this password for all configuration file, database catalog,
and table files encryption (for encrypted tables).

ElevateDB uses the Blowfish block cipher encryption algorithm
with 128-bit MD5 hash keys for encryption. Please see the
Encryption topic for more information.

Signature Specifies the signature used by the ElevateDB Server for all
communications and database access. The ElevateDB Server
uses this signature for all configuration file access, table files
access, and for all communications with a remote session. A
signature is useful for "branding" a server so that it only
communicates with sessions that are using a specific
signature, rejecting any that do not use that signature. The
default value is 'edb_signature'.

Licensed Sessions Specifies that a certain maximum number of concurrent
licensed sessions be allowed. The default value is 4096
sessions. Specifying a lower figure will allow no more than the
specified number of sessions to concurrently access the same
configuration.

Character Set Specifies the character set to use for the ElevateDB Server.
The valid values are 0 for the ANSI character set, or 1 for the
Unicode character set. If the ElevateDB Server is accessing an
existing configuration file and the specified character set does
not match the character set of the configuration file, then an
error message will be displayed and/or logged when the
ElevateDB Server is started. The default is 0 (ANSI) under
Linux and 1 (Unicode) under Windows.

Configuration Folder Specifies the path where the ElevateDB Server should look for
the configuration file. The configuration file is used to store
the information in the Configuration Database in ElevateDB. If
the path specified does not exist, then an error will be raised
when the ElevateDB Server is started. If the path exists, but
the configuration file does not exist in the path, then the
ElevateDB Server will create the configuration file as
necessary.

Note
It is very important that you do not have more than
one instance of the ElevateDB Server using different
configuration files and accessing the same database(s).
Doing so will cause locking errors. All instances of the
ElevateDB Server must use the same configuration file
if they will be accessing the same database(s).

The default value is the current folder where the server
application is running.

Getting Started

Page 29

Configuration In Memory Specifies that the configuration file will be "virtual" for all
sessions in the ElevateDB Server, and reside only in the
process's memory. The default value is 0 (False).

Configuration Name Specifies the root name (without extension) used by the
ElevateDB Server for the configuration file. The extension
used for the configuration file is determined by the
"Configuration File Extension" configuration entry (below).
The location of the configuration file is determined by the
"Configuration Folder" configuration entry (above). The
default value is 'EDBConfig'.

Configuration File Extension Specifies the extension to be used for the configuration file.
The default value is '.EDBCfg'.

Lock Files Extension Specifies the extension to be used for the configuration and
catalog lock files. The default value is '.EDBLck'.

Log File Extension Specifies the extension to be used for the log file. The default
value is '.EDBLog'.

Maximum Log File Size Specifies the maximum log file size. The default value is
1048576 bytes.

Log Information Events Specifies that information events should be logged in the log
file. The default value is 1 (True).

Log Warning Events Specifies that warning events should be logged in the log file.
The default value is 1 (True).

Log Error Events Specifies that error events should be logged in the log file.
The default value is 1 (True).

Catalog Name Specifies the root name (without extension) used by the
ElevateDB Server for all database catalog files. The extension
used for the catalog files is determined by the "Catalog Files
Extension" configuration entry (below). The location of the
catalog file is determined by the path designated for the
applicable database when the database was created. Please
see the CREATE DATABASE topic for more information. The
default value is 'EDBDatabase'.

Catalog Files Extension Specifies the extension to be used for database catalog files.
The default value is '.EDBCat'.

Backup Files Extension Specifies the extension to be used for database backup files.
The default value is '.EDBBkp'.

Update Files Extension Specifies the extension to be used for database update files.
The default value is '.EDBUpd'. Update files are used to store
logged updates for the purposes of synchronizing two
different copies of the same database.

Table Files Extension Specifies the extension to be used for database table files.
The default value is '.EDBTbl'.

Table Index Files Extension Specifies the extension to be used for database table index
files. The default value is '.EDBIdx'.

Table BLOB Files Extension Specifies the extension to be used for database table BLOB
files. The default value is '.EDBBlb'.

Getting Started

Page 30

Table Publish Files Extension Specifies the extension to be used for database table publish
files. The default value is '.EDBPbl'. Publish files are used to
store the logged updates for a table.

Temporary Tables Folder Specifies where the ElevateDB Server creates any temporary
tables that are required for storing query result sets. The
default value is the user-specific temporary tables path for the
operating system.

Show User Passwords Specifies whether the server will include user passwords when
populating the Users system information table. The default
value is 1 (True).

Show Database Catalog Information Specifies whether the server will include database catalog
character set and version information when populating the
Databases system information table. The default value is 1
(True).

Note
Setting this configuration item to 0 (False) can
significantly improve the performance of the loading of
the Databases system information table when there are
a lot of databases in a configuration. This is because
ElevateDB has to open the database catalog for each
database in order to read the character set and version
number.

Cache Modules Specifies whether the server will load external modules once
into memory per session and cache them until the session is
closed. The default value is 0 (False).

Note
Setting this configuration entry to 1 (True) can result in
significant performance improvements. This is
especially true for configurations with many different
external modules.

Buffered File IO Specifies whether buffered file I/O should be enabled. The
default value is 0 (False). Please see the Buffering and
Caching topic for more information on buffered file I/O in
ElevateDB.

Buffered File IO Settings Specifies the buffered file I/O settings for various file
specifications. Each setting is a comma-delimited list of values
that make up the buffer settings: the file specification,
enclosed in double-quotes (") (String), the block size, in KB
(Integer), the buffer size, in MB (Integer), the flush age, in
seconds (Integer), and a flush to disk flag (Boolean). Please
see the Buffering and Caching topic for more information on
each of these settings and their default values.

Getting Started

Page 31

Note
All of the values for each setting must be specified or
an error will occur during server startup. Also, due to
the way that .ini or .cnf file entries must be specified,
multiple settings must be separated with the following
literal value instead of actual line feeds:
<#CR#><#LF#>

Buffered File IO Flush Check Interval If buffered file I/O is enabled, specifies how often ElevateDB
will check buffered files to see if there are any dirty buffers
that need to be written. The default value is 60 seconds.
Please see the Buffering and Caching topic for more
information on how the buffered file I/O flush check interval
works.

Server Name Identifies the ElevateDB Server to external clients once they
have connected to the ElevateDB Server. The default value is
'edbsrvr'. This configuration item is not used for named server
instances (see below Multiple Server Instances for more
information on named server instances).

Server Description Used in conjunction with the "Server Name" configuration
entry to give more information about the ElevateDB Server to
external clients once they have connected to the ElevateDB
Server. The default value is 'ElevateDB Server'.

Server Address Specifies the IP address that the ElevateDB Server should
bind to when listening for incoming connections from remote
sessions. The default value is blank (""), which specifies that
the ElevateDB Server should bind to all available IP
addresses.

Server Port Specifies the port that the ElevateDB Server should bind to
when listening for incoming connections from remote
sessions. The default value is 12010.

Server Thread Cache Size Specifies the number of threads that the ElevateDB Server
should actively cache for connections. When a thread is
terminated in the server it will be added to this thread cache
until the number of threads cached reaches this value. This
allows the ElevateDB Server to re-use the threads from the
cache instead of having to constantly create/destroy the
threads as needed, which can improve the performance of the
ElevateDB Server if there are many connections and
disconnections occurring. The default value is 10.

Server Encryption Password Specifies the encryption password used by the ElevateDB
Server for encrypting all communications with remote
sessions. The default value is 'elevatesoft'.

ElevateDB uses the Blowfish block cipher encryption algorithm
with 128-bit MD5 hash keys for encryption. Please see the
Encryption topic for more information.

Server Encrypted Only Specifies whether all incoming connections from remote
sessions should be encrypted or not. If this configuration
entry is set to 1 (True), then all incoming connections to the
ElevateDB Server that are not encrypted will be rejected with

Getting Started

Page 32

an error. The default value is 0 (False).

Note
If you intend to use encrypted connections to an
ElevateDB Server over a public network then you
should always use a different "Server Encryption
Password" configuration entry (above) from the default
password.

Server Session Timeout Specifies how long the ElevateDB Server should wait for a
request from a connected remote session before it
disconnects the session. This is done to keep the number of
concurrent connections at a minimum. Once a session has
been disconnected by the ElevateDB Server, the session is
then considered to be "dead" until either the remote session
reconnects to the session in the server, or the server removes
the session according to the parameters specified by the
"Server Dead Session Interval", "Server Dead Session
Expiration", and "Server Maximum Dead Sessions"
configuration entries (below). A remote session may enable
pinging in order to prevent the ElevateDB Server from
disconnecting the remote session due to this configuration
entry.

The default value is 180 seconds, or 3 minutes.

Server Dead Session Interval Specifies how often the ElevateDB Server will poll the
disconnected sessions to see if any need to be removed
according to the "Server Dead Session Expiration" or "Server
Maximum Dead Sessions" configuration entries (below). The
default value is 30 seconds.

Server Dead Session Expiration Specifies how long a session can exist in the ElevateDB Server
in a disconnected, or "dead", state before the server removes
the session. This is done to prevent a situation where "dead"
sessions accumulate from client applications whose network
connections were permanently interrupted.

Note
If all of the remote sessions accessing the ElevateDB
Server are using pinging, then you should set this
configuration entry to the minimum value of 10
seconds so that sessions are removed as soon as they
stop pinging the server.

The default value is 300 seconds, or 5 minutes.

Server Maximum Dead Sessions Specifies how many "dead" sessions can accumulate in the
ElevateDB Server before the server begins to remove them
immediately, irrespective of the "Server Dead Session
Expiration" configuration entry (above). If the "Server
Maximum Dead Sessions" configuration entry is exceeded,
then the server removes the "dead" sessions in oldest-to-

Getting Started

Page 33

youngest order until the number of "dead" sessions is at or
under the setting for this configuration entry. The default
value is 64.

Server Authorized Addresses Specifies which IP addresses are authorized to access the
ElevateDB Server. This is commonly referred to as a "white
list". There is no limit to the number of addresses that can be
specified, and the IP address entries may contain the asterisk
(*) wildcard character to represent any portion of an address.

Note
Due to the way that .ini or .cnf file entries must be
specified, multiple addresses must be separated with
the following literal value instead of actual line feeds:
<#CR#><#LF#>

Server Blocked Addresses Specifies which IP addresses are not allowed to access the
ElevateDB Server. This is commonly referred to as a "black
list". There is no limit to the number of addresses that can be
specified, and the IP address entries may contain the asterisk
(*) wildcard character to represent any portion of an address.

Note
Due to the way that .ini or .cnf file entries must be
specified, multiple addresses must be separated with
the following literal value instead of actual line feeds:
<#CR#><#LF#>

Server Run Jobs Specifies whether the ElevateDB Server is allowed to schedule
and run jobs that are defined in the Configuration Database.
If this configuration entry is set to 1 (True, and the default),
then the "Server Job Category" configuration entry (below)
determines which category of jobs that the server will
schedule and run.

Server Job Category Specifies which job category the ElevateDB Server will
schedule and run if the "Server Run Jobs" configuration entry
is set to 1 (True). This configuration entry can contain any
value, and the default value is blank (''), which indicates that
the server can run all job categories. A job category is
assigned to each job when it is created via the CREATE JOB
DDL statement.

Server Job Retries Specifies how many times the ElevateDB Server will attempt
to execute a given job before disabling the job. The default
value is 10.

Trace Specifies whether tracing is enabled in the ElevateDB Server.
If this configuration entry is set to 1 (True), then the
ElevateDB Server will log every request/response to/from the
server to the trace file name indicated by the "Trace File
Name" configuration entry. The default value is 0 (False).

Getting Started

Page 34

Warning
Do not enable tracing in production without being
aware of the consequences. Tracing can generate a
large number of trace files that can easily consume
large amounts of disk space on a busy server.

Trace File Name Specifies the trace file name to use when tracing is enabled
(see above). The "Max Trace File Size" and "Auto-Increment
Trace File Name" configuration entries control how the trace
file is managed (see below). The default value is
"edbtrace.log".

Note
Do not specify a path in the trace file name. The
ElevateDB Server will use the system-defined
temporary files directory for storing the trace files to
ensure that it has proper write permissions.

Max Trace File Size Specifies the maximum allowed size of the trace file. The
default value is 128MB (134217728 bytes).

Auto-Increment Trace File Name Specifies how to handle the trace file when the maximum
allowed trace file size is reached or exceeded. If this
configuration entry is set to 0 (False), then the trace file name
will renamed with a ".bak" extension and a new trace file will
be started with the value of the "Trace File Name". If this
configuration entry is set to 1 (True), then the trace file name
will be renamed to <Trace File Name> + <Auto-Incrementing
Number> + Trace File Name Extension> (starting at 1 for the
<Auto-Incrementing Number> portion of the trace file name),
and a new trace file will be started with the value of the
"Trace File Name". The default value is 0 (False).

Max Auto-Increment Trace File Name Specifies the maximum number of auto-incrementing trace
files that will be created before the auto-incrementing trace
file name is reset to 1. This value, in conjunction with the Max
Trace File Size setting, determines the maximum amount of
disk space that will be used when using auto-incrementing
trace files. The default value is 64.

Multiple Server Instances

Multiple instances of the ElevateDB Server can be run on the same physical machine through named
server instances. Named server instances are simply instances of the ElevateDB Server that were executed
using two special command-line switches:

edbsrvr.exe /name=<Server Instance Name> /desc=<Server Instance Description>

Named server instances use the passed name and description to provide the name of the ElevateDB
Server instance, as well as the description. The name parameter is also used to determine which section of

Getting Started

Page 35

the edbsrvr.ini (Windows) or edbsrvr.cnf (Linux) file is used for configuration purposes. Instead of just the
normal "Server" section being used, the section is named using the provided server name. For example, if
the named server instance is called "MyServer", then the section where the configuration is stored will be
the following:

[Server_MyServer]

The description parameter, if also specified, is immediately written to the named server instance section.
All other configuration options described above in the Configuration Reference must be modified by
running the ElevateDB Server as a normal application on Windows and using the Edit Server Options in the
ElevateDB Server's user interface. You can run the ElevateDB Server as a normal application on Windows
in order to modify the configuration of a named server instance. For example, to modify the MyServer
configuration you would use the following from the command-line:

edbsrvr.exe /name=MyServer"

In order to use a named server instance as a Windows service, the /name parameter must be specified
during the installation of the service. For example, if the named server instance is called "MyServer", then
the service installation would be accomplished using the following from the command-line:

edbsrvr.exe /install /name=MyServer /desc="My Server"

When you want to start the named server instance as a Windows service, you would simply just use the
following from the command-line:

net start MyServer

The following example shows how you would install two ElevateDB Server named server instances as
Windows services, and then start them:

edbsrvr.exe /install /name=MyFirstServer /desc="My First Server"

edbsrvr.exe /install /name=MySecondServer /desc="My Second Server"

net start MyFirstServer

net start MySecondServer

Warning
You will need to verify that the port being used by each named server instance is unique, or one or
more named server instance will not start due to a port conflict. As mentioned above, you can use
the ElevateDB Server run as a normal application to modify the configuration of any named server
instance.

Getting Started

Page 36

Getting Started

Page 37

1.6 Creating a Client-Server Database

The following steps will guide you through creating the Tutorial database using the ElevateDB Manager
and ElevateDB Server.

Note
It is assumed that you have already configured and started the ElevateDB Server using the steps
outlined in the Starting and Configuring the ElevateDB Server topic.

1. Start the ElevateDB Manager (edbmgr.exe) by clicking on the ElevateDB Manager link in the Start
menu.

Note
The ElevateDB Manager is installed with the ElevateDB Additional Software and Utilities (EDB-ADD)
installation available from the Downloads page of the web site.

2. Make sure that the session is using the correct session type (Remote) and desired character set.

Note
The character set for the session must match the character set being used by the ElevateDB Server
being accessed. Using a different character set will result in you not being able to connect to the
ElevateDB Server.

a. Select the Default session from the list of available sessions.

b. In the Tasks pane, click on the Edit Session link.

Getting Started

Page 38

c. On the General page of the Edit Session dialog, make sure that the Session Type is set to Remote.

d. On the General page of the Edit Session dialog, make sure that the Character Set is set to the desired
value - either ANSI or Unicode.

Note
If you're not sure which character set to select and this is the first time using the ElevateDB
Manager, then leave the character set at the default of Unicode.

e. Click on the OK button.

3. Double-click on the Default session in the Properties window in order to connect the session.

Getting Started

Page 39

4. Click on the New button on the main toolbar.

5. Paste in the following CREATE DATABASE SQL statement in the new SQL window:

CREATE DATABASE "Tutorial"
PATH 'C:\Tutorial\DB'
DESCRIPTION 'Tutorial Database'

6. Press the F9 key to execute the SQL statement.

7. Press the F5 key to refresh the explorer contents for the session.

8. Click on the + sign next to the Databases node in the treeview.

Getting Started

Page 40

9. Click on the new Tutorial database that you just created.

10. Press the F6 key to make the Properties window the active window, and then click on the Open
Database link in the Tasks pane.

Getting Started

Page 41

11. Click on the New.SQL tab to bring forward the SQL window.

12. Paste in the following CREATE TABLE SQL statement. If you are using a Unicode session (see Step 2
above), then you should use the Unicode version of the CREATE TABLE statement. If you are using an
ANSI session, then you should use the ANSI version of the CREATE TABLE statement:

ANSIANSI

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "ANSI_CI" NOT NULL,
"Address1" VARCHAR(40) COLLATE "ANSI_CI",
"Address2" VARCHAR(40) COLLATE "ANSI_CI",
"City" VARCHAR(30) COLLATE "ANSI_CI",
"State" CHAR(2) COLLATE "ANSI_CI",
"Zip" CHAR(10) COLLATE "ANSI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")
)

UnicodeUnicode

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "UNI_CI" NOT NULL,
"Address1" VARCHAR(40) COLLATE "UNI_CI",
"Address2" VARCHAR(40) COLLATE "UNI_CI",
"City" VARCHAR(30) COLLATE "UNI_CI",
"State" CHAR(2) COLLATE "UNI_CI",
"Zip" CHAR(10) COLLATE "UNI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

Getting Started

Page 42

CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID")
)

13. Press the F9 key to execute the SQL statement.

14. Press the F5 key to refresh the explorer contents for the session.

15. The table should now show up in the list of tables for the Tutorial
database.

16. Click on the New.SQL tab to bring forward the SQL window.

17. Paste in the following INSERT SQL statement:

INSERT INTO "Customer" VALUES
(NULL,

Getting Started

Page 43

'Elevate Software, Inc.',
'168 Christiana Street',
'',
'North Tonawanda',
'NY',
'14120',
NULL)

18. Press the F9 key to execute the SQL statement.

19. Click on the Customer table that you just created.

20. Press the F6 key to make the Properties window the active window, and then click on the Open Table
link in the Tasks pane.

Getting Started

Page 44

21. You will now see the row that you just inserted.

You have now successfully created the Tutorial database.

Getting Started

Page 45

1.7 Internationalization

Character Sets Supported

ElevateDB supports the Windows ANSI and Unicode character sets. The Windows ANSI character set is
based upon an applicable locale's code page and is an 8-bit character set. The Unicode character set is the
standard ISO 10646 character set and is a 16-bit character set.

ElevateDB supports these two character sets as both an engine-level and session-level option, with the
session-level option inheriting the engine-level setting, by default. A session can only access configuration
files and databases that use the same character set that is specified for the engine/session. However, you
can mix sessions using different character sets within the same application or server.

Character Encodings

At this time, ElevateDB does not completely support using double-byte character set encodings (DBCS)
with the ANSI character set, nor does it completely support using the UTF-16 encoding (Unicode surrogate
pairs) with the Unicode character set. Specifically, operators such as the LIKE operator may not work
properly. This means that one should assume straight single-character comparisons for both the ANSI
character set and the Unicode character set, effectively making UCS-2 the only Unicode encoding
completely supported.

This will change in the near future and complete DBCS and UTF-16 support will be made available.

Collations

ElevateDB supports table column and indexed column collations. Collations specified for a table column
affect all column comparisons. When a table column is indexed, by default the table column collation is
used for the index. If the table column collation is overridden when the index is created using the CREATE
INDEX or CREATE TEXT INDEX statement, then the new indexed column collation in conjunction with the a
specific SQL JOIN or WHERE expression determines whether the index column can be used by the
ElevateDB SQL optimizer to optimize the expression by using the index. Please see the Optimizer topic for
more information on how collations affect index selection in the optimizer. Also, the index column collation
affects whether the index can be used to return a sensitive result set cursor for SELECT statements with
an ORDER BY. Please see the Result Set Cursor Sensitivity topic for more information.

To specify a collation for a table or index column, you must use the COLLATE clause:

COLLATE <CollationName>

The COLLATE clause is supported for any CHAR, VARCHAR, or CLOB column. In addition, the collation
name can be specified with additional modifiers. Each of the modifiers is added to the collation name
using the underscore as a separator

Collation Modifier Description

Getting Started

Page 46

CI Specifies that any case differences between characters are
ignored.

AI Specifies that accents are ignored and only base characters
are considered.

KI Specifies that any Japanese hiragana/katakana character
differences are ignored.

WI Specifies that the equivalent single-byte and double-byte
character should be considered equal, even though they are
encoded differently.

For example, to specify a case-insensitive English (United States) collation for a column, you would use the
following SQL:

COLLATE "ENU_CI"

The available collations in ElevateDB are dynamic and reflect the available installed locales in the
operating system. In addition, ElevateDB includes one default collation:

ANSI ANSI (Binary)
or
UNI Unicode (Binary)

depending upon whether the engine and/or session is using the ANSI or Unicode character set.

Warning
Linux implementations of ElevateDB only support the default ANSI and UNI collations, and any
attempts to use an existing database that references other collations available on Windows only will
result in errors.

This default collation uses the ANSI or Unicode ordinal values for each character comparison. Upper-casing
and lower-casing is done using US and Western European casing rules.

Note
The AI (accent-insensitive), KI (Kana-insensitive), and WI (width-insensitive) collation modifiers
described above are not applicable to the default ANSI or Unicode collations.

You may query the system-created Configuration database to get a list of available collations. All available
collations in the operating system are stored in the Collations table in the Configuration database. For
example, the following SELECT statement returns all of the available collations:

SELECT * FROM Configuration.Collations

Getting Started

Page 47

Note
You will receive an error if you try to open a database that has table columns or index columns that
reference a collation that is not available on the operation system being used.

Getting Started

Page 48

1.8 Identifiers

What Constitutes an Identifier

An identifier is the name of any object that resides in the catalog for a database, such as a table, column,
constraint, index, trigger, stored procedure, function, etc. as well as any predefined ElevateDB objects
such as a collation, module, etc.

Valid Identifiers

Identifiers may contain any non-symbolic or non-punctuation character in the ANSI character set, if using
the ANSI character set with the current engine/session, or the lower 256 characters of the Unicode
character set, if using the Unicode character set with the current engine/session. Identifiers cannot begin
with a digit and must begin with a valid alphabetic character or underscore (_). Identifers may contain
undercores (_), dashes (-), pound signs (#), and right and left parentheses (()), in addition to alpha-
numeric characters. Identifiers can include spaces also, but if they do then the identifier must be enclosed
in double-quotes (""). For example, the following SELECT statement contains a normal table identifier:

SELECT * FROM MyTable

However, the following SELECT statement contains a table name with embedded spaces:

SELECT * FROM "My Table"

and, therefore, must be enclosed in double-quotes.

Table Qualifiers

Table identifiers can optionally be prefaced with a database identifier and/or schema identifier. For
example, the following SELECT statement contains a table identifier that has been prefaced with a
database identifier:

SELECT * FROM MyDatabase.MyTable

Note
If a database identifier is specified, but a schema identifier is not specified, then ElevateDB assumes
the use of the default schema Default for the database.

Also, a table identifier can be prefaced with just a schema identifier:

SELECT * FROM Default.MyTable

Getting Started

Page 49

Finally, a table identifier can be prefaced with both a database identifier and a schema identifier:

SELECT * FROM MyDatabase.Default.MyTable

See the System Information topic for more information on databases and schemas, including the default
and information schemas.

Getting Started

Page 50

1.9 NULLs

Definition of a NULL

NULL is the term used in the SQL standard and database management systems to describe a value that is
not known. It is important to note that while a NULL column value is an unknown value, it does still have a
type. There is no such thing as an unknown column value that also has an unknown type. The only time a
NULL value can also have an unknown type is in the case of a NULL constant:

NULL

NULL Assignments

It is important to remember that a NULL is not the same as a zero value with numeric columns such as
INTEGER columns, and that a NULL is not the same as an empty string value with string columns such as
VARCHAR columns. Assigning any non-NULL value to a column will result in the column value being known
and not NULL. Likewise, assigning a NULL to a column is the only way to set a column's value to NULL. For
example, the following UPDATE statement will result in a State column value that is empty, but still not
NULL:

UPDATE Customer SET State=''

In order to set the State column to NULL, you would need to use this UPDATE statement:

UPDATE Customer SET State=NULL

NULLs and Operators

The primary rule to remember with NULLs is that any operator that uses a NULL as an operand will result
in a NULL. In other words, it is impossible for any operator using an unknown value to return a known
value. For example, in the following UPDATE statement any rows with a NULL in the Quantity column will
still have a NULL in the Quantity column after the statement is executed:

UPDATE Orders SET Quantity=(Quantity + 10)

This is also the case with aggregate functions like MIN, MAX, SUM, COUNT, etc. that operate on an
individual column. Any row values having a NULL in the column being operated on will be ignored for the
purposes of the operation. In addition, any aggregate functions that operate on an individual column will
also return a NULL value as the result of the operation if no rows are visited while executing the aggregate
function. This can be the case when the JOIN or WHERE clauses filter the available rows so that the
aggregate operation is not executed.

Getting Started

Page 51

Note
There is a "special" case, however, with respect to the boolean AND and OR operators. The
following examples illustrate these special cases:

FALSE AND NULL results in FALSE
TRUE OR NULL results in TRUE

These results occur because in each case the NULL, or unknown value, is irrelevant to the outcome of the
operation. ElevateDB already knows enough to be able to give an accurate answer, and it simply wouldn't
matter if the NULL was actually a known value. In each case the result would be the same even with a
known value instead of the NULL.

Preventing NULLs in Columns

In order to prevent NULLs from being allowed in a given column, you may use the NOT NULL check
constraint on a column when creating it via a CREATE TABLE or ALTER TABLE statement. This will prevent
any row from being added or updated with a NULL specified for the column.

NULLs and Primary and Unique Key Constraints

Primary key constraints require that all of the columns that make up the constraint contain a non-NULL
value, irregardless of any NOT NULL check constraints defined for the column(s).

If all of the columns that make up a unique key constraint contain NULLs, then the unique key constraint is
not enforced. In other words, unique key constraints allow multiple rows with NULLs in the unique key
columns. Only known values are used to enforce the unique key constraint.

Getting Started

Page 52

1.10 User Security

ElevateDB supports most of the SQL security model that is specified in the SQL 2003 standard. This
includes support for users and roles (authorizations), as well as the granting and revoking of privileges on
database objects. However, ElevateDB only allows users that have been granted the special system-
created Administrators role to create, alter, or drop users and roles, or grant or revoke privileges for
either. The SQL statements that apply to user security in ElevateDB are as follows:

 CREATE USER
 ALTER USER
 DROP USER
 RENAME USER
 CREATE ROLE
 ALTER ROLE
 DROP ROLE
 RENAME ROLE
 GRANT ROLES
 REVOKE ROLES
 GRANT PRIVILEGES
 REVOKE PRIVILEGES

Users and Roles

ElevateDB supports the creation of both users and roles, and both are considered authorizations in that
they can be granted privileges on database objects. Roles can be granted to users, which allows for easier
administration of the privileges for a given application and/or database by organizing the granting and
revoking of privileges based upon the tasks required by a certain group of users. For example, in a point-
of-sale application there would possibly be the following roles:

Cashiers
Managers

which would be created using the following SQL statements:

CREATE ROLE Cashiers DESCRIPTION 'Store Cashiers'

CREATE ROLE Managers DESCRIPTION 'Store Managers'

One could then grant privileges on the various database objects to these roles instead of directly to the
users like this:

GRANT SELECT, INSERT ON Transactions
TO Cashiers

GRANT SELECT, INSERT, UPDATE, DELETE ON Inventory
TO Managers

Getting Started

Page 53

Finally, granting these roles to new users can be done using the GRANT ROLE statement:

CREATE USER Jenny PASSWORD '34IJT199'
DESCRIPTION 'Jenny Myers'

GRANT Cashiers TO Jenny

Default Users and Roles

There are two system-created users and two system created roles in every ElevateDB configuration. They
are as follows:

System UserSystem User

The System user is created automatically for each new ElevateDB configuration, and cannot be dropped or
altered. The System user is used in the following contexts:

Context Description

Job Execution By default, the System User is used as the current user within
the actual execution context of a job. However, this can be
changed on a per-job basis in order to use a different user for
the execution context.

Routine Execution Once ElevateDB verifies that the current user has the proper
execution privileges for a function or procedure, the System
User is used as the current user within the actual execution
context of the function or procedure. This is to allow for the
routine to access resources that the executing user may or
may not have access to.

Triggers Triggers always use the System user for the current user
within the execution context of the trigger. This is to allow for
the trigger to access resources that the executing user may or
may not have access to. This is especially useful, for example,
in situations where transactions cause inventory to be
updated but you don't want the person entering the
transactions into the transactions table to have access to the
inventory table.

Foreign Key Constraints Any tables referenced in a foreign key constraint are opened
using the System User. This is necessary because not all users
may have the proper privileges required to open up tables
that have been declared the target of a foreign key constraint.

Administrator UserAdministrator User

The Administrator user is created automatically for each new ElevateDB configuration, and can be dropped
and altered. The default password for the Administrator user is:

EDBDefault (case-sensitive)

Getting Started

Page 54

The default Administrator user is automatically granted the system-created Administrators role (see
below).

Administrators RoleAdministrators Role

The Administrators role is created automatically for each new ElevateDB configuration, and cannot be
dropped or altered. Only users that have been granted the Administrators role can execute the following
statements:

 CREATE USER
 ALTER USER
 DROP USER
 RENAME USER
 CREATE ROLE
 ALTER ROLE
 DROP ROLE
 RENAME ROLE
 GRANT ROLES
 REVOKE ROLES
 GRANT PRIVILEGES
 REVOKE PRIVILEGES
 CREATE DATABASE
 ALTER DATABASE
 DROP DATABASE
 RENAME DATABASE
 CREATE JOB
 ALTER JOB
 DROP JOB
 RENAME JOB
 CREATE STORE
 ALTER STORE
 DROP STORE
 RENAME STORE
 CREATE MODULE
 ALTER MODULE
 DROP MODULE
 RENAME MODULE
 CREATE MIGRATOR
 ALTER MIGRATOR
 DROP MIGRATOR
 RENAME MIGRATOR
 CREATE TEXT FILTER
 ALTER TEXT FILTER
 DROP TEXT FILTER
 RENAME TEXT FILTER
 CREATE WORD GENERATOR
 ALTER WORD GENERATOR
 DROP WORD GENERATOR
 RENAME WORD GENERATOR
 DISCONNECT SERVER SESSION
 REMOVE SERVER SESSION

Getting Started

Page 55

Note
The one exception is the ALTER USER statement, which can also be used by the current user to
change his or her password at any time.

Public RolePublic Role

The Public role is created automatically for each new ElevateDB configuration, and cannot be dropped or
altered. By default, all users are automatically granted the Public role, but the role can be revoked at any
time as necessary.

Privileges

The GRANT PRIVILEGES and REVOKE PRIVILEGES statements can be used by any user that has been
granted the Administrators role, and are used to specify the database object privileges that are available
to the various users and/or roles that are defined in the configuration. The following table shows which
privileges may be granted for the various database objects:

Database Object Privileges

DATABASE SELECT (Determines Visibility)
CREATE (Tables, Views, Functions, Procedures)
ALTER (Tables, Views, Functions, Procedures)
DROP (Tables, Views, Functions, Procedures)
MAINTAIN (Tables)
BACKUP
RESTORE

STORE SELECT (Determines Visibility)
CREATE (Files)
ALTER (Files)
DROP (Files)

TABLE SELECT (Determines Visibility)
INSERT
UPDATE
DELETE
CREATE (Triggers, Indexes)
ALTER (Triggers, Indexes)
DROP (Triggers, Indexes)

VIEW SELECT (Determines Visibility)
INSERT
UPDATE
DELETE

FUNCTION EXECUTE (Determines Visibility)

PROCEDURE EXECUTE (Determines Visibility)

As you can see, the privileges granted on a given object usually dictate whether another object contained
within the object can be accessed or altered in some way. For example, a user or role must have been
granted CREATE privileges on a given table in order for that user or role to be able to use the CREATE
TRIGGER statement to create a new trigger on the table.

Getting Started

Page 56

1.11 Buffering and Caching

ElevateDB uses caching and buffering algorithms internally to ensure that data is cached for as long as
possible and is accessible in the fastest possible manner when needed to perform an operation. ElevateDB
offers several different types of buffering, each having a specific purpose for optimizing performance:
global file I/O buffering, per-session table buffering, and per-session SQL statement and
function/procedure caching.

Global File I/O Buffering

Global file I/O buffering is used to cache as much of the configuration, log, database catalog, and table
files as possible in order to maximize I/O throughput. This is accomplished by utilizing heuristics and
settings that are specific to ElevateDB, allowing for more control over the caching than what is available
when leaving the file caching to the operating system.

Warning
Enabling global file I/O buffering can cause the ElevateDB Server, or any process using ElevateDB
that has the I/O buffering enabled, to be more susceptible to experiencing data loss if the process is
terminated unexpectedly. There are ways to minimize the chances of such an occurrence, but it is
always a possibility at this time. Fail-safe writes will be available at some point in a future update,
so this is not a permanent situation.

Global file I/O buffering can be enabled in ElevateDB at the engine level and specific file I/O buffering
settings can be also specified at the engine level for any configuration, log, database catalog, and table
files that are accessed by ElevateDB. Please see your product-specific manual for more information on
enabling and configuring file I/O buffering in code for ElevateDB, and the Starting and Configuring the
ElevateDB Server topic for more information on enabling and configuring file I/O buffering in the
ElevateDB Server.

Note
When global file I/O buffering is enabled, ElevateDB will exclusively open any configuration, log,
database catalog, and table files so that no other processes can open them. Doing this allows
ElevateDB to buffer as much data as it needs to without worrying about changes being made by
other processes. These files are only accessible through the current ElevateDB process, which
means that the global I/O buffering is not usable with multiple processes that need to share
configurations/databases using direct, local access. In such a case, one can only use the per-session
table buffering form of caching.

After global file I/O buffering has been enabled, buffering settings must also be specified so that they
provide the optimal caching for your specific ElevateDB installation. You can also adjust these settings at a
later time so that they stay current with any system configuration changes, such as adding more physical
memory, or with any major changes to the underlying file sizes. Each buffering setting consists of the
following properties:

Setting Description

Getting Started

Page 57

File Specification The file specification is a file name mask and can contain
wildcards (*). The file specification mask can include paths, or
one can use a wildcard to match on all paths. There is no
default value for this setting and you must specify a file mask.

Block Size This setting controls the size, in KB, of file blocks that will be
used for buffering any file that matches the file specification
mask. The default value is 4KB.

Buffer Size This setting controls the maximum amount of memory, in MB,
that will be used for buffering any file that matches the file
specification mask. The default value is 8MB.

Flush Age This setting controls how long, in seconds, a dirty file block
buffer will stay in the buffer pool before ElevateDB
automatically writes the dirty buffer to the file that matches
the file specification mask. This setting helps to alleviate
issues with dirty buffers not being written to the file on a
regular basis because the buffer size is configured too large
for the current file size. The default value is 120 seconds.

Flush to Disk This setting controls whether any writes to any file that
matches the file specification mask will be followed by a disk
flush call to the operating system. The default value is False.

Note
These settings are evaluated by ElevateDB from back-to-front, so you should specify the settings
from general file specifications to very specific file specifications.

In addition to the file mask buffering settings, there is an additional flush check interval setting that
specifies how often, in seconds, ElevateDB will scan the buffer pools for each file in order to write any
dirty buffers that are past their flush age to the file. The default value is 60 seconds.

As mentioned above, the file I/O buffering is susceptible to causing data loss if the process running
ElevateDB is terminated unexpectedly. You can minimize the possibility of this issue for selected files by:

specifying a low (30 seconds) flush check interval and

specifying a low flush age (30 seconds) for all applicable files.

You can view the file I/O buffer settings, as well as current statistics for the active file I/O buffer pools, by
querying the following table:

FileIOStatistics Table

File Block Buffer Replacement PolicyFile Block Buffer Replacement Policy

Any file block buffer maintained within the global file I/O buffer pool is replaced using an LRU, or least-
recently-used, algorithm. For example, if the buffer pool is full when reading a file block, ElevateDB will
discard the least-recently-used file block in order to make room for the new file block. The "age" of a given
buffered file block is determined by the access patterns at the time. Every time a file block buffer is
accessed, it is moved so it is the first file block buffer in the LRU list of file block buffers. This would make
it the "youngest" buffer present in the LRU list of file block buffers, and all other file block buffers would
be moved down the LRU list. As a particular file block buffer moves down the LRU list, it becomes "older"
and is more likely to be removed and discarded from the LRU list of file block buffers.

Getting Started

Page 58

Optimized Writes with File I/O BufferingOptimized Writes with File I/O Buffering

When ElevateDB writes file block buffers to a file, the file blocks are ordered according to their offset and
ElevateDB attempts to write contiguous file blocks in the fewest number of write operations as possible.
This reduces the number of I/O calls and can greatly improve write throughput, especially on hard disk
drives that benefit from fewer drive seeks.

File I/O Buffering and OS BufferingFile I/O Buffering and OS Buffering

In addition to the file I/O buffering in ElevateDB, additional buffering may be provided by the operating
system. When ElevateDB writes data using operating system calls, there is no guarantee that the data will
be immediately written to disk. On the contrary, it may be several seconds or minutes until the operating
system lazily flushes the data to disk. This has implications in terms of data corruption if the computer is
improperly shut down after updates have taken place in ElevateDB. You can minimize the possibility of this
issue for selected files by:

specifying a low (30 seconds) flush check interval,

specifying a low flush age (30 seconds) for all applicable files,

specifying that all applicable files follow all flush checks with a disk flush call to the operating system
if any file block buffers were written to the file.

Per-Session Table Buffering

At a level above the global file I/O buffering, if enabled, is the per-session table buffering. The per-session
table buffering buffers rows, index pages, BLOB blocks, and published update blocks for each open table.
There are separate buffer pools for each class of buffer - rows, index pages, BLOB blocks, and published
update blocks. If global file I/O buffering is enabled in ElevateDB, any data that isn't available in the per-
session table buffers will require a read operation to the file block buffer pool for the applicable file. If
global file I/O buffering is not enabled in ElevateDB, any data that isn't available in the per-session table
buffers will require a read operation to the operating system.

The amount of memory used for the per-session table buffers is typically very small and only used for
improving the locality of access for rows, index pages, and BLOB/published update blocks that are being
currently accessed/updated. In most cases the default memory settings for the per-session table buffers
will suffice. If necessary, ElevateDB will increase the amount of memory that is being used for the table
buffers for a particularly table.

The only exception to this is when an application wants to use direct access to a shared configuration and
database(s) located on a file server. In such a case, one can modify the per-session table buffers so that
they are larger than the default values. These modifications can be performed when the table is created
via the CREATE TABLE statement, or after the table is created via the ALTER TABLE statement. The
applicable clauses are as follows:

MAX ROW BUFFER SIZE <MaxRowBufferSize>
MAX INDEX BUFFER SIZE <MaxIndexBufferSize>
MAX BLOB BUFFER SIZE <MaxBLOBBufferSize>

The default amount of memory used for each is detailed below:

Getting Started

Page 59

Cache Type Amount

Rows 32768 bytes

Index Pages 65536 bytes

BLOB Blocks 32768 bytes

You can view the per-session table buffer settings, as well as current statistics for the active table buffers,
by querying the following tables:

Type Table

Server Sessions ServerSessionStatistics Table

Local Sessions SessionStatistics Table

Table Buffer Replacement PolicyTable Buffer Replacement Policy

Any table buffer maintained within the per-session table buffer pool is replaced using an LRU, or least-
recently-used, algorithm. Each class of table buffer maintains its own buffer pool. Subsequently, each
buffer pool has its own LRU list. For example, if the table row buffer pool is full when reading a row,
ElevateDB will discard the least-recently-used row in order to make room for the new row. The "age" of a
given buffered row is determined by the access patterns at the time. Every time a row buffer is accessed,
it is moved so it is the first row buffer in the LRU list of row buffers. This would make it the "youngest"
buffer present in the LRU list of row buffers, and all other row buffers would be moved down the LRU list.
As a particular row buffer moves down the LRU list, it becomes "older" and is more likely to be removed
and discarded from the LRU list of row buffers.

Read-Ahead Buffering with Table BufferingRead-Ahead Buffering with Table Buffering

ElevateDB performs intelligent read-ahead when reading rows and BLOB/published update blocks:

For read-ahead on rows, this intelligence is gathered from information in the active index for a given
table when accessing a table using a specific ordering, or using raw row information for non-ordered
access, and allows ElevateDB to determine how rows physically align with one another on disk.

For read-ahead on BLOB/published update blocks, this intelligence is gathered from information in
the row about the size of the BLOB, or from information about the size of the published updates.

Performing read-ahead in this manner can reduce the number of read calls that ElevateDB has to make to
the global file I/O buffering or the operating system and can significantly speed up sequential read
operations such as those found in SQL queries and other bulk operations.

Optimized Writes with Table BufferingOptimized Writes with Table Buffering

When ElevateDB writes table buffers, the table buffers are ordered according to their offset and ElevateDB
attempts to write contiguous table buffers in the fewest number of write operations as possible.

Table Buffering and OS BufferingTable Buffering and OS Buffering

The effect of operating system buffering on per-session table buffering depends upon whether the global
file I/O buffering is enabled or not. If the global file I/O buffering is not enabled, then writes using the
per-session table buffers go directly to the operating system. There are session-level settings in ElevateDB
that will allow you to specify that such writes are followed by a disk flush call to the operating system. In
addition, there are transaction commit options to do the same, as well as specific methods/function calls
for explicitly performing disk flush calls. Please see your product-specific manual for more information on

Getting Started

Page 60

enabling session-level table buffer disk flushing or explicitly performing disk flush calls.

Per-Session SQL Statement and Function/Procedure Caching

At a level above both the per-session table buffering and and the global file I/O buffering is the SQL
statement and function/procedure caching. A session can be configured to cache a specified maximum of
SQL statements, as well a specified maximum of functions/procedures, per open database in the session.

Note
The maximum number of open SQL statements and functions/procedures per connection is 2048, so
you should not set the statement or function/procedure cache size that high. Typically, values
higher than 32 or 64 will exhibit diminishing returns on improved performance.

This level of caching is used to eliminate costly prepare/unprepare cycles with SQL statements and
functions/procedures without requiring the developer to explicitly keep statements and
functions/procedures prepared. In a lot of cases, such as within scripts, triggers, and other forms of
SQL/PSM routines in ElevateDB, it is impossible for a developer to manage the prepared state of various
SQL statements and functions/procedures being used.

The SQL statement and function/procedure caching works as follows:

Each cached SQL statement is managed using a checksum of the SQL statement, and each
function/procedure is managed using a checksum of the function/procedure name. Additionally,
once an object has been added to the cache, it stays present in the cache until is is ejected due to
the LRU replacement policy (see below for the replacement policy details) or explicitly freed from the
cache. Each cached object contains an in-use flag that is used to track whether the object can be
used or whether a new object must be created. This allows the cache to work in the face of
recursive triggers and other functions/procedures, and prevents the cache from incurring an
inordinate amount of overhead due to constant modifications to the internal list of objects in the
cache.

When an SQL statement or function/procedure is prepared, ElevateDB checks the cache for the open
database in which the SQL statement or function/procedure is being prepared. If the same SQL
statement or function/procedure is already present in the cache, then ElevateDB will use the cached
object instead of creating a new object. If the SQL statement or function/procedure cannot be found
in the cache, then a new object is created and added to the cache. If the maximum number of
cached objects has been exceeded, then the oldest (see below for the replacement policy details)
cached object is ejected from the cache and freed before the new object is added to the cache.

When an SQL statement or function/procedure is un-prepared, ElevateDB checks to see if the object
was previously cached. If it was, then ElevateDB simply marks the cached object as available for re-
use in the cache. If it wasn't, then the object is simply un-prepared as normal, releasing all memory
and resources associated with the object.

Possible Cached SQL Statement and Function/Procedure ConflictsPossible Cached SQL Statement and Function/Procedure Conflicts

Within a given session, ElevateDB automatically manages freeing cached SQL statements and
functions/procedures whenever the session performs an operation that may conflict with any of the cached
SQL statements and functions/procedures. This resolves situations where the same session may try to
perform operations that may conflict, but does not address issues with cached SQL statements and
functions/procedures that may conflict with operations being attempted by other sessions. In order to
handle such situations, ElevateDB provides session-level calls that can be used to manually free any
cached SQL statements and/or functions/procedures within the session. There are separate calls for both

Getting Started

Page 61

SQL statements and functions/procedures, and the calls allow you to free objects within a specific open
database, or for all open databases within the session. Please see your product-specific manual for more
information on performing these operations.

Cached SQL Statement and Function/Procedure Replacement PolicyCached SQL Statement and Function/Procedure Replacement Policy

Any cached SQL statement or function/procedure is maintained within a separate pool for each open
database in a session. Each SQL statement or function/procedure is replaced using a LRU, or least-
recently-used, algorithm.

Getting Started

Page 62

1.12 Change Detection

ElevateDB automatically performs change detection when either reading or updating tables.

Reads and Change Detection

When reading from a table, ElevateDB only checks for changes by other sessions when it cannot find the
desired data locally in its cache and must physically read the data from the table. The data can be a row,
index page, or BLOB block, and the actual check for changes is very quick. If changes are found in the
table, ElevateDB will dump its per-session table buffers for the table and retry the read operation that it
was in the process of executing when it found that it needed more data from the table.

Note
The amount of memory used for per-session table buffering can affect how often ElevateDB detects
changes within tables, and ElevateDB allows you to change these settings on a per-table basis.
Please see the Buffering and Caching topic for more information on modifying the per-session table
buffering settings for a table.

Updates and Change Detection

When performing updates using the INSERT, UPDATE, or DELETE statements, ElevateDB will automatically
make sure that it's per-session table buffers contain the most up-to-date data before performing the actual
update operation. ElevateDB performs a row buffer comparison when updating or deleting rows to ensure
that the row has not been deleted by another session. If this is the case, then ElevateDB will raise a 1007
(EDB_ERROR_ROWDELETED) error indicating that the row has been deleted by another session and the
operation will be aborted.

ElevateDB can also perform a row buffer comparison when updating or deleting rows to ensure that the
row that is now present in it's cache contains the same values as the row that was intended to be updated
or deleted before the operation was initiated (i.e. it's what the user sees when the row is selected). If the
row is not the same due to a change by another session, ElevateDB will raise a 1008
(EDB_ERROR_ROWMODIFIED) error indicating that the row has been modified by another session and the
operation will be aborted. By default, this behavior is turned off, but it can be enabled if needed. Please
see your product-specific documentation for more information on enabling row change detection.

Getting Started

Page 63

1.13 Locking and Concurrency

ElevateDB manages most locking and concurrency issues without requiring any action on the part of the
user or developer. The following information details the steps that ElevateDB takes internally in order to
maximize concurrency while still resolving conflicts for shared resources using locking.

ElevateDB performs locking in two different ways, depending upon whether global file I/O buffering is
enabled in the ElevateDB engine. Please see the Buffering and Caching topic for more information on how
the file I/O buffering works in ElevateDB.

How ElevateDB Performs Locking when Global File I/O Buffering is Disabled

When global file I/O buffering is disabled, all locks in ElevateDB are performed using calls to the operating
system on the configuration lock file (EDBConfig.EDBLck), the database lock file (EDBDatabase.EDBLck),
or the database table files themselves (*.EDBTbl). The *.EDBLck files are used for managing shared or
exclusive object locks on users, jobs, databases, tables, views, and functions/procedures. The database
lock file (EDBDatabase.EDBLck) is also used for managing table read, write, and transaction locks for all
tables within the database. The *.EDBTbl files are use for both storing the rows of a table and locking the
rows. If using a local session accessing an ElevateDB database on a network file server, these calls are
then routed by the operating system to the file server's operating system.

Note
If either the configuration lock file (EDBConfig.EDBLck) or the database lock file
(EDBDatabase.EDBLck) does not exist and cannot be created due to issues with security
permissions or read-only media, then the configuration or database will be treated as read-only and
you will not be able to modify any objects contained within them.

ElevateDB takes advantage of the fact that modern operating systems allow an application to lock portions
of a file beyond the actual size of the file. This process is known as virtual byte offset locking. ElevateDB
restricts the size of any physical file that is part of a table to 128,000,000,000 bytes, or slightly below the
maximum file size of 128GB. ElevateDB does this so it can reserve the space available between the 128GB
mark and the 128,000,000,000 byte mark for row locks in the table.

How ElevateDB Performs Locking when Global File I/O Buffering is Enabled

When global file I/O buffering is enabled, ElevateDB will exclusively open any configuration, log, database
catalog, and table files so that no other processes can open them. Doing this allows ElevateDB to buffer as
much data as it needs to without worrying about changes being made by other processes. In addition, all
locks in ElevateDB are performed using lock structures that are internal to the engine along with the
configuration lock file (EDBConfig.EDBLck), the database lock file (EDBDatabase.EDBLck), or the database
table files themselves (*.EDBTbl). The internal lock structures are used for managing shared or exclusive
object locks on users, jobs, databases, tables, views, and functions/procedures. The database lock file
(EDBDatabase.EDBLck) is also used for managing table read, write, and transaction locks for all tables
within the database. The *.EDBTbl files are use for both storing the rows of a table and locking the rows
using additional internal lock structures.

Getting Started

Page 64

Note
If either the configuration lock file (EDBConfig.EDBLck) or the database lock file
(EDBDatabase.EDBLck) does not exist and cannot be created due to issues with security
permissions or read-only media, then the configuration or database will be treated as read-only and
you will not be able to modify any objects contained within them.

Row Locking Protocols

ElevateDB offers two types of row locking protocols, pessimistic (default) and optimistic locking.

Locking Protocol Description

Pessimistic The pessimistic row locking protocol specifies that a row
should be locked when the row is retrieved for updating.

Optimistic The optimistic locking protocol specifies that a row should be
locked when any row modifications are posted back to the
table. Using the optimistic row locking protocol for remote
sessions removes the possibility that dangling row locks will
be left on the ElevateDB Server if the application is terminated
unexpectedly. However, even with the pessimistic row locking
protocol, an ElevateDB server can clean up dead sessions and
remove any row locks that they may be holding.

The two row locking protocols can safely and reliably be used among multiple sessions on the same
database, although it is not recommended due to the potential for confusion for the developer or user of
the application.

Row Locks

Row locks are used to enforce ElevateDB's pessimistic or optimistic row locking protocols and prevent the
same or multiple sessions from updating the same row at the same time. Row locks block other row lock
attempts, but do not block any reads of the locked rows. The following details what happens in the various
scenarios that use row locks:

Action Description

Getting Started

Page 65

Inserting When inserting a row, no row locks are acquired until the row
is actually inserted. During the insertion of a new row, a row
lock is only implicity acquired by ElevateDB on the new row if
the insertion is taking place inside of a transaction.

Updating When updating a row, a row lock is implicity acquired by
ElevateDB. This row lock will fail if the row is already locked
by the same session or a different session. If the row lock
fails, then an exception will be raised. The error code that is
raised when a row lock fails is 1005
(EDB_ERROR_LOCKROW). If the row locking protocol for the
session is set to optimistic then ElevateDB will not attempt to
implicitly acquire a row lock when the row is retrieved, but will
instead wait until the row is actually updated to implicitly
acquire the row lock. This means that another session is
capable of updating or deleting the row before the current
session actually completes the update. If either of these
actions occur, an exception will be raised. The error code that
is raised when an update fails because the row has been
altered is 1008 (EDB_ERROR_ROWMODIFIED). The error code
that is raised when an update fails because the row has been
deleted is 1007 (EDB_ERROR_ROWDELETED).

Deleting When deleting a row, a row lock is implicity acquired by
ElevateDB. This row lock will fail if the row is already locked
by the same session or a different session. If the row lock
fails, then an exception will be raised. The error code that is
raised when a row lock fails is 1005
(EDB_ERROR_LOCKROW).

The number of row lock retries and the amount of time between each retry can be controlled on a per-
session basis. In a busy multi-user application it may be necessary to increase these values in order to
relieve lock contention and provide for smoother concurrency between multiple users. However, in most
cases the default values should work just fine. Please see your product-specific manual for more
information on changing these settings for the session.

Table Locks

There are three types of table locks used by ElevateDB:

Type Description

Getting Started

Page 66

Table Read Locks Table read locks allow ElevateDB to accurately treat reads on
internal table structures, such as the indexes or BLOB
columns, as atomic, or a single unit of work. Table read locks
ensure that no other session writes to the table by blocking
any table write locks. Table read locks are the most widely-
used locks in ElevateDB and are the cornerstone of correct
multi-user operation. They especially play a large role in
change detection. Please see the Change Detection topic for
more information.

Table read locks are also acquired during table scans for un-
optimized query conditions. Please see the Optimizer topic for
more information on optimizing query conditions.

Table Write Locks Table write locks allow ElevateDB to accurately treat writes on
internal table structures, such as the indexes or BLOB
columns, as atomic, or a single unit of work. Table write locks
ensure that no other session reads from or writes to the table
by blocking any table read lock or write locks.

Table Transaction Locks Table transaction locks allow ElevateDB to treat single or
multi-table updates within a transaction as atomic, or a single
unit of work. Table transaction locks ensure that no other
session begins a transaction on the table by blocking any
other table transaction locks. Table read locks are allowed,
however, and other sessions can read the rows from tables
and acquire row locks. When a transaction is ready to be
committed to disk, additional table write locks are acquired in
order to block other table reads or writes while the data is
being committed.

Getting Started

Page 67

1.14 Transactions

ElevateDB allows for transactions in order to provide the ability to execute single or multi-table updates
and have them treated as an atomic unit of work. Transactions are implemented logically in the same
fashion as most other database engines, however at the physical level there are some important
considerations to take into account and these will be discussed here.

Executing a Transaction

A transaction is started and committed or rolled back by using the START TRANSACTION, COMMIT, and
ROLLBACK statements within an ElevateDB job, procedure, function, or trigger.

A typical transaction block of code looks like this:

BEGIN
 START TRANSACTION;
 -- Perform some updates to the table(s) in this database
 COMMIT;
EXCEPTION
 ROLLBACK;
END

Note
It is very important that you always ensure that the transaction is rolled back if there is an
exception of any kind during the transaction. This will ensure that the row and table locks held by
the transaction are released and other sessions can continue to update data while the exception is
dealt with.

Restricted Transactions

It is also possible with ElevateDB to start a restricted transaction. A restricted transaction is one that
specifies only certain tables be part of the transaction. The START TRANSACTION statement accepts an
optional list of tables that can be used to specify what tables should be involved in the transaction and,
subsequently, locked as part of the transaction (see below regarding locking). If this list of tables is not
specified (the default), then the transaction will encompass the entire database.

The following example shows how to use a restricted transaction on two tables, the Customer and Orders
table:

BEGIN
 START TRANSACTION ON TABLES 'Customer', 'Orders';
 -- Perform some updates to the tables
 COMMIT;
EXCEPTION
 ROLLBACK;
END

Getting Started

Page 68

Flushing Data to Disk During a Commit

By default, the COMMIT statement will cause a flush of all data to disk within the operating system. The
COMMIT statement has the optional keywords NO FLUSH that will prevent the OS flush from occurring.
This will improve the performance of a commit operation at the expense of possible data corruption if the
application is improperly terminated after the commit takes place. This is due to the fact that the operating
system may wait several minutes before it lazily flushes any modified data to disk. Please see the
Buffering and Caching topic for more information.

Locking During a Transaction

When a transaction on the entire database is started, ElevateDB acquires a table transaction lock on all
tables in the database. This prevents any other sessions from inserting, updating, or deleting any rows
from the tables in the database while the current transaction is active. When a restricted transaction is
started on a specific set of tables, ElevateDB will only acquire this table transaction locks on the tables
specified as part of the transaction. It is very important with ElevateDB that all transactions be kept as
short as possible.

Note
Table transaction locks do not prevent other sessions from reading rows from the tables involved in
the transaction or acquiring row locks on the tables involved in the transaction while the current
transaction is active. This means that it is still possible for other sessions to cause a row update or
delete within the transaction to fail due to not being able to acquire the necessary row lock. Also,
any row locks acquired during a transaction will remain locked until the transaction is rolled back or
committed. This can have some adverse side affects with some network operating systems that only
permit a fixed number of locks per connection. These row locks can accumulate over the course of a
lengthy transaction and you can run into this limit rather quickly, ending up with an OS locking error
that is seemingly coming from nowhere. If you plan on executing many inserts, updates, or deletes
within a single transaction then you should make sure to check your network operating system
documentation in order to verify that you won't run into any limitations such as this.

Opening and Closing Tables

If a transaction on the entire database (not a restricted transaction) is active and a new table is opened,
that table will automatically become part of the active transaction. Unlike a transaction on the entire
database, if a table involved in a restricted transaction is not currently open at the time that the START
TRANSACTION statement is executed, then an attempt will be made to open it at that time. Also, any
tables that are opened during the restricted transaction and not initially specified as part of the restricted
transaction will be excluded from the transaction. If a table involved in a transaction, either restricted or
not, is closed while the transaction is still active, the table will be kept open internally by ElevateDB until
the transaction is committed or rolled back, at which point the table will then be closed.

SQL and Transactions

The INSERT, UPDATE, or DELETE statements implicitly use a restricted transaction on the involved tables
if a transaction is not already active. The interval at which the implicit transaction is committed is internally
calculated to be optimal for the table being updated. If a transaction was explicitly started by the user or
developer, then ElevateDB will not commit any of the effects of the SQL statement automatically, leaving
the committing up to the explicit transaction.

Getting Started

Page 69

Note
By default, commits that occur during the execution of SQL statements do not force an operating
system flush to disk.

Incompatible Operations

The following statements are not compatible with transactions and will cause an exception if encountered
during a transaction.

BACKUP DATABASE
RESTORE DATABASE

SAVE UPDATES
LOAD UPDATES

CREATE TABLE
ALTER TABLE
DROP TABLE
RENAME TABLE
REPAIR TABLE
OPTIMIZE TABLE

CREATE VIEW
ALTER VIEW
DROP VIEW
RENAME VIEW

CREATE INDEX
CREATE TEXT INDEX
ALTER INDEX
DROP INDEX
RENAME INDEX

CREATE TRIGGER
ALTER TRIGGER
DROP TRIGGER
RENAME TRIGGER

CREATE FUNCTION
ALTER FUNCTION
DROP FUNCTION
RENAME FUNCTION

CREATE PROCEDURE
ALTER PROCEDURE
DROP PROCEDURE
RENAME PROCEDURE

Note
There is an exception to the following statements for temporary tables:

Getting Started

Page 70

CREATE TABLE
ALTER TABLE
DROP TABLE
RENAME TABLE

CREATE INDEX
CREATE TEXT INDEX
ALTER INDEX
DROP INDEX
RENAME INDEX

These statements can be executed for temporary tables, even inside of a transaction.

Isolation Level

The default and only isolation level for transactions in ElevateDB is serializable. This means that only the
session in which the transaction is taking place will be able to see any inserts, updates, or deletes made
during the transaction. All other sessions will see the data as it existed before the transaction began. Only
after the transaction is committed will other sessions see any new row inserts, updates, or deletes.

Data Integrity

A transaction in ElevateDB is buffered, which means that all row inserts, updates, or deletes that take
place during a transaction are cached in memory for the current session and are not physically applied to
the tables involved in the transaction until the transaction is committed. If the transaction is rolled back,
then the updates are discarded. With a local session this allows for a fair degree of stability in the case of
a power failure on the local workstation, however it will not prevent a problem if a power failure happens
to occur while the commit operation is taking place. Under such circumstances it's very likely that physical
and/or logical corruption of the tables involved in the transaction could take place. The only way
corruption can occur with a remote session is if the ElevateDB Server itself is terminated improperly during
the middle of a transaction commit. This type of occurrence is much more rare with a server than with a
workstation.

Getting Started

Page 71

1.15 External Modules

External modules can used to extend the functionality of ElevateDB to external code in the form of DLLs.
The functionality that can be extended via external modules includes:

Functionality Description

Procedures and Functions A procedure or function can be defined to use an external
module for its implementation via the EXTERNAL NAME
keywords in the CREATE PROCEDURE or CREATE FUNCTION
statements.

Text Indexing Text indexing can be customized for a given index by
specifying an external module for the text filtering via the
MODULE keyword in the CREATE TEXT FILTER statement,
and/or by specifying an external module for the word
generation via the MODULE keyword in the CREATE WORD
GENERATOR statement. Please see the Text Indexing topic for
more information.

Migration Migrators used by ElevateDB to migrate databases from
external data sources use external modules to provide their
implementation via the MODULE keyword in the CREATE
MIGRATOR statement. Please see the Migrating Databases
topic for more information.

Creating External Modules

External modules can be created in any language that can generate a DLL (Dynamic Link Library) with a C-
style calling convention, which is the standard calling convention for DLLs under Windows. In addition,
ElevateDB provides template projects for the various types of external modules in every specific compiler
or IDE that it supports. Please see your product-specific manual for more information.

Note
Although all external modules in ElevateDB are DLLs, each type of external module has a different
set of calling conventions and identifies itself differently so that ElevateDB can verify whether the
proper type of external module is being used with the proper type of functionality in ElevateDB.

Installing External Modules

In order to use an external module in ElevateDB, you must make sure that the module is registered in the
current configuration file by using the CREATE MODULE statement. You can verify that this is done by
using the following SELECT statement on the special system-defined Configuration Database:

SELECT * FROM Modules

If the rows returned from the above query include the module that you wish to use with ElevateDB, then
external module has been registered successfully in the configuration file. Please see the Architecture topic
for more information on the configuration file.

Getting Started

Page 72

Once an external module has been registered correctly, it can then be used with ElevateDB with
procedures and functions, text indexing, and/or database migration.

Getting Started

Page 73

1.16 Migrating Databases

ElevateDB provides an open migration interface so that migrators can be written to migrate data from
literally any external data source. Migrators are defined using the CREATE MIGRATOR statement and refer
to migrator modules (DLLs) that implement the actual migration interface. Please see your product-specific
manual for more information on creating migrator modules. The MIGRATE DATABASE statement is used to
actually execute the migration for the external data source.

Standard Migrator Modules

ElevateDB includes the following migrator modules:

Module Description

edbmigrate ElevateDB migrator module

edbmigratedbisam1 DBISAM Version 1.x migrator module

edbmigratedbisam2 DBISAM Version 2.x migrator module

edbmigratedbisam3 DBISAM Version 3.x migrator module

edbmigratedbisam4 DBISAM Version 4.x migrator module

edbmigratebde BDE (Borland Database Engine) migrator module

edbmigrateado ADO (Microsoft ActiveX Data Objects) migrator module

edbmigratendb NexusDB migrator module

edbmigrateads ADS (Advantage Database Server) migrator module

You can find these migrator modules as part of the ElevateDB Additional Software and Utilities (EDB-ADD)
installation in the \libs subdirectory under the main installation directory. There are ANSI and Unicode
versions of each of the migrator modules that will work with both ANSI or Unicode sessions.

Note
You can download the ElevateDB Additional Software and Utilities (EDB-ADD) installation from the
Downloads page of the web site.

In order to reference these migrator modules from within a migrator in ElevateDB, you must make sure
that the migrator modules (DLLs) are registered in the configuration file by using the CREATE MODULE
statement. You can verify that this is done by using the following SELECT statement on the special system-
defined Configuration Database:

SELECT * FROM Modules

If the rows returned from the above query include the five migrator modules listed above, then the
migrator modules have been registered successfully in the configuration file. Please see the Architecture
topic for more information on the configuration file.

Creating a Migrator

Getting Started

Page 74

To create a migrator that uses the desired migrator module, you can use the CREATE MIGRATOR
statement. For example, you would use the following statement to create a migrator for use with DBISAM
1 data sources:

CREATE MIGRATOR "DBISAM1"
MODULE "edbmigratedbisam1"
DESCRIPTION 'DBISAM 1 Migrator'

Migrating the External Data

The first step in migrating an external data source is to query the parameters required for the migrator.
You can do so by querying the MigratorParams Table table in the Configuration database. This table
contains the parameters for each migrator that are retrieved from the migrator module, along with their
type and any default values. These parameters are important because they will be used with the MIGRATE
DATABASE statement to populate the parameters as required by the migrator. Usually, the most important
parameter is the name of the external database, or database directory, or a connection string that
indicates the proper values used to connect to the external data source.

The target database for a migration must be present before the migration takes place, and the migration
is always executed from within the target database. You can use the CREATE DATABASE statement in
order to create the target database.

To perform the migration, you can execute the MIGRATE DATABASE statement from the ElevateDB
database that you just created (or already existed):

MIGRATE DATABASE FROM "DBISAM1"
USING DatabaseDirectory = 'c:\dbisamdata'

When the MIGRATE DATABASE statement is executed, the external data source should migrate to the
current ElevateDB database. Any errors that are encountered will be raised as an exception with an
ElevateDB error code.

Getting Started

Page 75

1.17 Text Indexing

ElevateDB provides the ability to index CHAR, VARCHAR, or CLOB columns so that they may be quickly
searched for a given word or words. This is known as text indexing since it results in the indexing of every
word in a specified column.

The following image illustrates the general architecture of the text indexing in ElevateDB:

You can use the CREATE TEXT INDEX statement to create a new text index on a given column. When
creating a text index, you may specify the CHAR, VARCHAR, or CLOB column to index, the indexed word
length, optionally another CHAR or VARCHAR column to use as a text filter type indicator to ElevateDB,
and optionally a specific word generator module to use for generating the actual words that are added to
the index.

Specifying the Indexed Column

Each text index can index one, and only one, CHAR, VARCHAR, or CLOB column. By default, ElevateDB
always uses the collation of the column that is being indexed and modifies it so that all comparisons are
case-insensitive. However, if a collation is explicitly specified along with the indexed column, then
ElevateDB will use that collation instead of a case-insensitive version of the column being indexed. For
example, the following text index overrides the default collation of the Notes column (ANSI_CI) so that the
text index uses a case-sensitive version:

CREATE TEXT INDEX "Notes" ON "Customer"
(Notes COLLATE ANSI)
INDEXED WORD LENGTH 20

Note
It is generally recommended that you always use a case-insensitive collation with any text index in
order to reduce the size of the text index and to make searching easier.

Specifying the Indexed Word Length

Getting Started

Page 76

The indexed word length controls how long each index key is in the actual text index. It does not affect
which words are indexed in any way. However, if a word that is being indexed is longer than the indexed
word length specified when the text index was created, then the word will be truncated to the indexed
word length. If the indexed word length is not specified, then the default indexed word length of 30
characters is used. You should try to keep the indexed word length as small as possible in order to
minimize the size of the text index.

Note
The minimum word length indexed by the default word generator is 3 characters. Any word smaller
than 3 characters will not be included in the text index.

Specifying a Filter Type Column

The contents of a filter type column indicate to ElevateDB what type of data is in the column being
indexed. This means that you can store text with various types of formatting in the same column and still
have the text index only index the non-formatting information. The filter type indicator is used to look up
the applicable text filter in the defined Text Filters in the current Configuration Database. If a matching
text filter is found, then the text to be indexed is first passed to the text filter before being passed on to
the word generator (see below). If a matching text filter is not found, then the text is passed on directly to
the word generator without being filtered.

For example, suppose that you have a column in your table called Notes and a column called
TypeOfNotes. The Notes column may contain either plain text, HTML-formatted text, or RTF-formatted
text, and the type of text is indicated by the TypeOfNotes column, which will contain either a NULL (plain
text), 'HTML' (HTML Text), or 'RTF' (RTF Text) value in each row. In addition, you have defined two text
filters that use external modules to parse out all non-formatting text and return it to ElevateDB for use in
the word generation:

CREATE TEXT FILTER HTMLFilter
TYPE 'HTML'
MODULE HTMLTextFilterModule
DESCRIPTION 'HTML Text Filter'

CREATE TEXT FILTER RTFFilter
TYPE 'RTF'
MODULE RTFTextFilterModule
DESCRIPTION 'RTF Text Filter'

Whenever the Notes column is updated, the appropriate text filter will be called with the new contents of
the Notes column, and the filtered text that is returned will be passed on to the word generation process.

Please see your product-specific manual for information on creating external modules that can implement
text filtering.

Specifying a Word Generator

By default, ElevateDB will use the following parameters when parsing and generating words from text:

Space CharactersSpace Characters

Space characters are used to determine which characters should be treated as whitespace. Word breaks

Getting Started

Page 77

always occur at any character that is considered whitespace.

#0..#47,#58..#64,
#91..#96,#123..#130,
#132..#137,#139,#141,
#143..#153,#155,#157,
#160..#191,#215,#247

All numeric values represent the ordinal character value in the 256 characters of the Windows ANSI Code
Page 1252 character set.

Include CharactersInclude Characters

Include characters are used to determine which characters should be included in the words that are
generated. Any character that isn't an include character or space character is simply ignored.

'A'..'Z',
'a'..'z',#131,
#138,#140,#142,
#154,#156,#158..#159,
#192..#214,#216..#246,
#248..#255

All numeric values represent the ordinal character value in the 256 characters of the Windows ANSI Code
Page 1252 character set.

Stop WordsStop Words

Stop words are words that are so common in most text that they provide no value in terms of narrowing
the search process and increase the size of the text index. Stop words are sometimes also referred to as
noise words.

'ABOUT','ABOVE','AFAIK','ALL','ALONG','ALSO','ALTHOUGH','AND','ARE','ARENT',
'BECAUSE','BEEN','BTW','BUT','CAN','CANNOT','CANT','COULD','COULDNT','DID',
'DIDNT','DOES','DOESNT','DUH','EITHER','ETC','EVEN','EVER','FOR','FROM',
'FURTHERMORE','FYI','GET','GETS','GOT','GOTTEN','HAD','HADNT','HARDLY',
'HAS','HASNT','HAVING','HENCE','HER','HERE','HERS','HEREBY','HEREIN',
'HEREOF','HEREON','HERETO','HEREWITH','HIM','HIS','HOW','HOWEVER','IMHO',
 'IMO',
'INTO','ISNT','ITS','LOL','MINE','NOR','NOT','ONTO','OTHER','OTOH','OUR',
'OURS','OUT','OVER','REALLY','ROTFL','SAID','SAME','SHE','SHOULD','SHOULDNT',
'SINCE','SOMEWHAT','SUCH','THAN','THAT','THATLL','THATS','THE','THEIR',
'THEIRS','THEM','THEN','THERE','THEREBY','THEREFORE','THEREFROM',
'THEREIN','THEREOF','THEREON','THERETO','THEREWITH','THESE','THEY',
'THEYLL','THEYRE','THIS','THOSE','THROUGH','THROUGHOUT','THUS','TIA','TOO',
'UNDER','UNTIL','UNTO','UPON','VERY','WAS','WASNT','WERE','WERENT','WHAT',
'WHEN','WHERE','WHEREBY','WHEREIN','WHETHER','WHICH','WHILE','WHO','WHOM',
'WHOS','WHOSE','WHY','WITH','WITHIN','WITHOUT','WONT','WOULD','WOULDNT',
'YOU','YOULL','YOUR','YOURE','YOURS'

In order to override the default word generation, one must specify a different word generator when

Getting Started

Page 78

creating a text index.

Please see your product-specific manual for information on creating external modules that can implement
custom word generation.

Performing a Text Index Search

ElevateDB includes CONTAINS, DOES NOT CONTAIN, CONTAINS ANY, and DOES NOT CONTAIN ANY
operators for searching a text index for a series of words. The difference between CONTAINS and
CONTAINS ANY (and their negatives) is that the CONTAINS operator performs an ANDed search of all
specified search words, while the CONTAINS ANY operator performs an ORed search of all specified search
words. The following is an example of using the CONTAINS operator to search for the word 'Development':

SELECT *
FROM Customer
WHERE Notes CONTAINS 'Development'

Note
The CONTAINS, CONTAINS ANY, DOES NOT CONTAIN, and DOES NOT CONTAIN ANY operators
can only be used with columns that have been indexed with a text index. Using them with a non-
text-indexed column will result in an error.

If multiple search words are specified with the CONTAINS or DOES NOT CONTAIN operators, then
ElevateDB will return all rows that contain all of the search words. If you want to return all rows that
contain only some of the search words, then you will need to use the CONTAINS ANY or DOES NOT
CONTAIN ANY operators. For example, if you want to return all rows that contain either the word
'Development' or 'Vacation' in the Notes column, then you would use the following SELECT statement:

SELECT *
FROM Customer
WHERE Notes CONTAINS ANY 'Development Vacation'

You can also specify partial-word searches by using an asterisk (*) anywhere in any of the search words.
The following is an example of using the DOES NOT CONTAIN operator to find all rows that don't contain
any version of the word 'Develop' in the Notes column:

SELECT *
FROM Customer
WHERE Notes DOES NOT CONTAIN 'Develop*'

The following is an example of using the CONTAINS operator to find all rows that contain 'invest' in any
words in the Notes column:

SELECT *
FROM Customer
WHERE Notes CONTAINS '*invest*'

Getting Started

Page 79

You can mix and match search words with wildcards and whole search words in the same search string.

Getting Started

Page 80

1.18 Optimizer

ElevateDB uses available indexes and I/O cost estimates when optimizing SQL queries so that they
execute in the least amount of time possible. In addition, joins are re-arranged whenever possible so that
the smallest number of actual join operations occur during the execution of a query.

Index Selection

ElevateDB will use an available index to optimize any expression in the JOIN or WHERE clause of an
SELECT, UPDATE, or DELETE statement. It will also use an available index to optimize any join expressions
between multiple tables. This index selection is based on the following rules:

1) ElevateDB can only optimize expressions that resolve to the following formats:

<ColumnReference> [<CollationReference>] <Operator> <Expression>

<RowValueConstructor> <Operator> <Expression>

<RowValueConstructor> =

(<ColumnReference> [<CollationReference>],
 <ColumnReference> [<CollationReference>]
 [,<ColumnReference> [<CollationReference>]])

The <ColumnReference> or <RowValueConstructor> and <Expression> items are not order-dependent,
and ElevateDB will reverse them as necessary so that the <ColumnReference> or <RowValueConstructor>
is on the left-hand side of the <Operator>. The only requirement is that the <Expression> be appropriate
for what is being compared against, so if a comparison is being made against a row value constructor,
then the expression must also use a row value constructor.

For more information on row value constructors, please see the Row Value Constructors topic.

2) ElevateDB only uses the first column of any given index for the optimization of single column
references. This means that if you have an index containing the columns LastName and FirstName,
ElevateDB can only use the this index for optimizing any expressions that contain a reference to the
LastName column. When optimizing a row value constructor that is comprised of column references,
ElevateDB will try to find a matching index by comparing the column references in the row value from left-
to-right.

3) ElevateDB can use an index for optimization irrespective of the ascending or descending status of a
given column in the index.

4) ElevateDB can only use an index for optimization if columns in the index match both the column
references and their collation references, if specified, in the expression that ElevateDB is attempting to
optimize. If the collation references are not specified, then columns in the index must match the defined
collations for the column references.

5) ElevateDB can mix and match the optimization of expressions so that it is possible to have one
expression be optimized and the other not. This is known as a partially-optimized query.

For example, suppose that you have a Customer table with a State column that was defined with the
ANSI_CI (ANSI collation, case-insensitive). An index was created on the State column using the following

Getting Started

Page 81

CREATE INDEX statement:

CREATE INDEX State ON Customer (State)

To execute an optimized search for any rows where the State column contains 'FL', one would use the
following SELECT statement:

SELECT *
FROM Customer
WHERE State = 'FL'

Since the collation defined for the State column is case-insensitive, you could also use the following
SELECT statement and get the same result:

SELECT *
FROM Customer
WHERE State = 'fl'

However, suppose that the State column was defined with simply the ANSI collation (case-sensitive), but
the index was created using the following CREATE INDEX statement:

CREATE INDEX State ON Customer
(State COLLATE ANSI_CI)

In order to allow ElevateDB to use this index to optimize any searches on the State column, you must now
specifically reference the ANSI_CI collation in the actual search expression:

SELECT *
FROM Customer
WHERE State COLLATE ANSI_CI = 'FL'

Please see the Internationalization topic for more information on collations.

How ElevateDB Selects the Rows

Once an index is selected for the optimization of an expression in a JOIN or WHERE clause, a range is set
on the index in order to limit the index keys to those that match the current expression being optimized.
The index keys that satisfy the expression are then scanned, and during the scan a bitmap is built in row
order. A bit is turned on if the index key satisfies the expression, and a bit is turned off if it doesn't. This
method of using bitmaps works well because it can represent sets of data with minimal memory
consumption. Also, ElevateDB is able to quickly determine how many rows are in a given set by how many
bits are turned on, and it can easily AND, OR, and NOT bitmaps together to fulfill boolean logic between
multiple expressions joined by the AND, OR, and NOT boolean operators. Finally, because the bitmap is in
row order, accessing the rows using a bitmap is very direct since ElevateDB uses fixed-length rows with

Getting Started

Page 82

directly-addressable offsets in the table.

Optimizing Before-Join Expressions

When optimizing queries that contain both JOIN and WHERE expressions, ElevateDB always processes the
WHERE expressions first if the expressions do not reference the target table(s) in any of the join(s). The
target table in a join is the table on the right side of a LEFT OUTER JOIN or the table on the left side of a
RIGHT OUTER JOIN. WHERE expressions that reference the target table in a join are called after-join
expressions (see below).

Note
INNER JOINs also have target tables, but due to the nature of an INNER JOIN, both the driver and
target table can be optimized as before-join expressions.

Evaluating WHERE expressions as before-join expressions can speed up the joins tremendously since the
joins will only need to take into account the rows in the source tables based upon the before-join WHERE
expressions. For example, consider the following query:

SELECT
OrderHdr.Cust_ID,
OrderHdr.Order_Num,
OrderDet.Model_Num,
OrderDet.Cust_Item
FROM OrderHdr INNER JOIN OrderDet ON
OrderHdr.Order_Num=OrderDet.Order_Num
WHERE OrderHdr.Cust_ID = 'C901'
ORDER BY OrderHdr.Cust_ID,
OrderHdr.Order_Num

In this example, the WHERE expression:

OrderHdr.Cust_ID = 'C901'

will be evaluated first before the INNER JOIN expression:

OrderHdr.Order_Num = OrderDet.Order_Num

so that the INNER JOIN only needs to evaluate a small number of rows in the OrderHdr table.

Optimizing During-Join Expressions

When optimizing SELECT queries that contain INNER JOINs that contain non-join expressions in addition to
join expressions, the non-join expressions are always processed at the same time as the join expression,
even if they affect the target table of the INNER JOIN. This can speed up join operations tremendously
since the join expressions will only take into account the rows existing in the target table based upon the
non-join expression(s). For example, consider the following query:

Getting Started

Page 83

SELECT
OrderHdr.Cust_ID,
OrderHdr.Order_Num,
OrderDet.Model_Num,
OrderDet.Cust_Item
FROM OrderHdr INNER JOIN OrderDet ON
OrderHdr.Order_Num = OrderDet.Order_Num AND OrderHdr.Cust_ID = 'C901'
ORDER BY OrderHdr.Cust_ID,
OrderHdr.Order_Num

In this example, the non-join expression:

OrderHdr.Cust_ID = 'C901'

will be evaluated first before the join expression:

OrderHdr.Order_Num = OrderDet.Order_Num

so that the joins only need to process a small number of rows in the OrderHdr table.

After-Join Expressions

After-join expressions are expressions that must be processed after any joins have executed because they
contain a column reference to a column in a table that is the target table of a right or left outer join. After-
join expressions are always evaluated in an un-optimized manner, meaning that they are processed after
all joins have been executed. Therefore, they are not useful in limiting the amount of work or costs
involved in a particular query, but rather only useful in filtering the resultant rows of the query based upon
a specific expression. For example, consider the following query:

SELECT
OrderHdr.Cust_ID,
OrderHdr.Order_Num,
FROM OrderHdr LEFT OUTER JOIN OrderDet ON
OrderHdr.Order_Num = OrderDet.Order_Num
WHERE OrderDet.Order_Num IS NULL
ORDER BY OrderHdr.Cust_ID,
OrderHdr.Order_Num

In this example, the non-join expression:

OrderHdr.Order_Num IS NULL

will be evaluated after all joins have been executed so that ElevateDB can accurately assess whether the
LEFT OUTER JOIN has caused any NULL Order_Num columns to be generated from the join.

Getting Started

Page 84

How Joins are Executed

Joins in a SELECT statement are executed in ElevateDB using a technique known as nested-loop
evaluation. This means that ElevateDB recursively processes the source tables in a master-detail, master-
detail, etc. arrangement with a driver table and a target table (which then becomes the driver table for
any subsequent joins). When using this technique, it is very important that the table with the smallest row
count, after any non-join expressions have been evaluated, is specified as the first driver table in the join
execution. ElevateDB's optimizer will automatically optimize the join ordering so that the table with the
smallest row count is placed as the first driver table, as long as the joins are INNER JOINS. LEFT OUTER
JOINs and RIGHT OUTER JOINs cannot be re-ordered in such a fashion and must be left as-is.

The following is an example that illustrates nested-loop joins in ElevateDB:

SELECT c.Company,
o.OrderNo,
e.LastName,
p.Description,
v.VendorName
FROM Customer c
INNER JOIN Orders o ON c.CustNo=o.CustNo
INNER JOIN Employee e ON o.EmpNo=e.EmpNo
INNER JOIN Items i ON o.OrderNo=i.OrderNo
INNER JOIN Parts p ON i.PartNo=p.PartNo
INNER JOIN Vendors v ON p.VendorNo=v.VendorNo
ORDER BY e.LastName

In this example, ElevateDB would process the joins in this order:

1) The Customer table is joined to Orders table on the CustNo column.

2) The Orders table is joined to the Items table on the OrderNo column and the Orders table is joined to
Employee table on the EmpNo column (this is also known as a multi-way, or star, join).

3) The Items table is joined to the Parts table on the PartNo column.

4) The Parts table is joined to the Vendors table on the VendorNo column.

In this case the Customer table is the smallest table in terms of its row count, so making it the driver table
in this case is a good choice.

Note
You can use the NOJOINOPTIMIZE keyword at the end of a SELECT statement in order to tell
ElevateDB not to reorder the joins. Also, you can use the JOINOPTIMIZECOSTS clause to force the
ElevateDB optimizer to use I/O cost projections to determine the most efficient way to process the
joins. If you have a join with multiple join expressions in it, then using this clause may help improve
the performance of the join, especially if it is already executing very slowly.

Execution Plans

ElevateDB can generate an execution plan for any DML statement. Please see your product-specific

Getting Started

Page 85

manual for more information on retrieving an execution plan for a SELECT, INSERT, UPDATE, or DELETE
statement.

Limitations to the Optimizer

ElevateDB does not currently optimize multiple JOIN or WHERE expressions joined by an AND operator by
mapping them to multiple columns in an available index. To illustrate this point, consider a table with the
following structure:

Employee

Column Data Type Index
--
LastName VARCHAR(30) Primary Key (both columns are part of the
FirstName VARCHAR(20) Primary Key primary key constraint)

And consider the following SELECT statement:

SELECT *
FROM Employee
WHERE (LastName = 'Smith') and (FirstName = 'John')

Logically you would assume that ElevateDB can use the one index available for the enforcement of the
primary key constraint in order to optimize the entire WHERE clause. Unfortunately, this is not the case,
and instead ElevateDB will only use the index created for the primary key constraint for optimizing the
LastName expression and resort to reading the resultant rows in order to evaluate the FirstName
expression.

However, you can overcome this limitation by using a row value constructor instead of two expressions
combined with the AND operator:

SELECT *
FROM Employee
WHERE (LastName,FirstName) = ('Smith','John')

With the WHERE clause specified using a row value constructor, ElevateDB will be able to use the entire
primary key to optimize the expression.

Note
ElevateDB automatically uses a system-defined index to enforce primary key, unique, and foreign
key constraints, so the presence of an index for such a constraint can always be assumed.

Getting Started

Page 86

1.19 Result Set Cursor Sensitivity

ElevateDB generates two types of query result set cursors depending upon the makeup of a given SELECT
statement:

Type Description

Sensitive The result set cursor is editable and all inserts, updates, and
deletes performed via the cursor are performed directly on the
source table. Also, any changes made by any other sessions
on the source table are reflected in the cursor, subject to
ElevateDB Change Detection. This type of result set cursor is
sometimes also referred to as "Dynamic".

Insensitive The result set cursor is read-only and cannot be edited.. This
type of result set cursor is sometimes also referred to as
"Static".

The following rules determine whether a result set cursor will be sensitive or insensitive.

Single-table queries

Queries that retrieve data from a single table will generate a sensitive result set provided that:

1) The user or developer requests a sensitive result set cursor. Please see the DECLARE statement for
more information on requesting a a sensitive or insensitive result set cursors in SQL/PSM routines, and
your product-specific manual for requesting sensitive or insensitive cursors in client applications.

2) There is no DISTINCT keyword in the SELECT statement.

3) All SELECT expressions are either a column reference or a computed column that does not contain any
aggregate functions (MIN, MAX, SUM, etc.). Computed columns are read-only in the sensitive result set
cursor and cannot be modified.

4) There is no GROUP BY clause in the SELECT statement.

5) There is no ORDER BY clause in the SELECT statement, or there is an ORDER BY clause that minimally
matches the columns, and the collations defined for the columns, in an existing index in the source table.

6) There are no correlated sub-queries in the WHERE clause of the SELECT statement.

Note
For sensitive query result set cursors with computed columns, the update of any column in a given
row causes the update of any dependent computed columns in that same row.

A query containing sub-queries in the SELECT column expressions can return a sensitive result set in
ElevateDB. This means that a query like the following can return a sensitive result set:

SELECT CustNo,
(SELECT Company FROM Customer WHERE Customer.CustNo=Orders.CustNo) AS Company

Getting Started

Page 87

FROM Orders

If the sensitive result set is updated and the CustNo column is changed, the "looked-up" Company value
will automatically change as necessary. This is extremely useful for situations where, in the past, you
would normally use a join and get an insensitive result set.

Multi-table queries

All queries that join two or more tables or merge two or more SELECT statements via the
UNION/INTERSECT/EXCEPT operators will automatically produce an insensitive result set cursor,
irrespective of the requested result set cursor type.

Temporary Tables

If a SELECT statement generates an insensitive result set cursor, then a temporary table will created in
order to hold the rows that make up the result set. This temporary table is stored in a location specified by
either the ElevateDB Server or the client application. By default, ElevateDB uses the local user temporary
files path in the operating system for this setting. Please see your product-specific manual for more
information on modifying the temporary tables path for either the ElevateDB Server or the client
application.

Identifying the Result Set Cursor Type

You may use the SENSITIVE function to identity the type of a result set cursor in an SQL/PSM routine after
it has been opened via the OPEN statement. Please see your product-specific manual for more information
on determining the type of a result set cursor in a client application.

Getting Started

Page 88

1.20 Compression

ElevateDB uses the standard ZLib compression algorithm for compressing data such as BLOB columns and
remote session requests and responses to and from an ElevateDB Server.

Copyright and Credits

The ZLib implementation in ElevateDB was originally contributed by David Martin for use in DBISAM and
was modified extensively for use with ElevateDB. The following are the citations and copyrights for both
the code that was contributed as well as for the ZLib algorithm itself.

 © Copyright 1995-98 Jean-loup Gailly & Mark Adler
 © Copyright 1998-00 Jacques Nomssi Nzali
 © Copyright 2000-2001 David O. Martin

These units build upon a pascal port of the ZLib compression routines by Jean-loup Gailly and Mark Adler.
The original pascal port was performed by Jacques Nomssi Nzali as contained in PasZLib which is based on
ZLib 1.1.2. There are some errors in that port which have been fixed in this version. Although most of the
code in this unit is derivative, there are some important changes (bug fixes). Nevertheless, this code is
released as freeware with the same permissions as granted by the preceding authors (Gailly, Adler, Nzali).

Getting Started

Page 89

1.21 Encryption

ElevateDB uses the Blowfish symmetric block cipher encryption algorithm along with the RSA Data
Security, Inc. MD5 message-digest algorithm for encrypting configuration files, tables and remote session
requests and responses to and from an ElevateDB Server.

Copyright and Credits

Both the Blowfish and MD5 implementations in ElevateDB were developed internally. The following are the
citations and copyrights for the Blowfish and MD5 algorithms.

 Blowfish Algorithm © Copyright 1993 Bruce Schneier
 MD5 Algorithm © Copyright 1991-1992, RSA Data Security, Inc.

ElevateDB uses the MD5 message-digest algorithm to generate 128-bit MD5 hashes from plain-text
passwords. These hashes are then used with the Blowfish 8-byte symmetric block cipher algorithm to
encrypt the actual data.

Getting Started

Page 90

1.22 Stores

Stores are used in ElevateDB to define storage areas where files can be located. Like databases, stores are
defined in the ElevateDB configuration and are privileged objects, so you can control access to stores
based upon the privileges that you grant or revoke from other users or roles defined in the configuration.
Stores are created, altered and dropped via the CREATE STORE, ALTER STORE, DROP STORE, and
RENAME STORE statements.

Types of Stores

Stores can be created as either local or remote, and they are defined as follows:

Type Description

Local A local store simply points to a local path that is accessible
from the current process.

Remote A remote store is a "virtual" store that is defined locally but
actually points to another store on a remote ElevateDB
Server. This abstraction of remote stores make the stores very
useful because you can transfer files between different
machines by simply copying a file from a local store to a
remote store, and vice-versa.

Working with Files in Stores

Adding files to a local store can be done via the operating system itself by copying or moving files into the
local path used by the local store. However, many times the files will be created using statements such as
the BACKUP DATABASE, SAVE UPDATES, or EXPORT TABLE statements. These statements require a local
store as the location where the files generated by these operations will be created.

You can also use the COPY FILE, RENAME FILE, and DELETE FILE statements to manipulate files in a given
local or remote store. This makes stores very useful because they use the existing ElevateDB remote
communications facilities and don't require any extension configuration of the operating system to set up
virtual private networks (VPNs) or other elaborate setups.

For example, here's an example of using the COPY FILE statement to copy a backup file from a local store
to a remote store.

COPY FILE "MyBackup.EDBkp" IN STORE "LocalStore"
TO "MyBackup.EDBBkp" IN STORE "RemoteStore"

When used in conjunction with the SAVE UPDATES, LOAD UPDATES, stores can be used for replicating
updates from a local location to a remote location. Please see the Replication topic for more information
on replicating updates.

Getting Started

Page 91

1.23 Replication

Replication in ElevateDB is accomplished using several different aspects of the product and includes the
capability to replicate virtually any type of data, including but not limited to, updates to databases.

The following image illustrates the general architecture of the replication of database updates in
ElevateDB:

Publishing a Database

The first step in configuring a replication system for database updates in ElevateDB is to publish the
database(s) that you wish to replicate updates for. You can publish a database by using the PUBLISH
DATABASE statement. Once a database has been published, it will begin to log all inserts, updates, and
deletes that take place so that they can be saved to an update file at a later time for replicating to other
copies of the same database.

Creating a Local Store

The next step is to create a local store where the updates can be saved. You can use the CREATE STORE
statement to create the local store.

Saving the Updates to a Database

Once the local store has been created, you can now save the logged updates for the database to an
update file in the local store using the SAVE UPDATES statement. The frequency with which the updates
are saved and replicated is completely up to you, but the general rule is that you want to save the updates
more frequently as the volume of updates increases in order to minimize the synchronization time.

Note
The SAVE UPDATES statement only works with local stores. Any attempt to use a remote store with
this statement will result in an error.

Creating a Remote Store

Getting Started

Page 92

The next step is to create a remote store (or stores, for multiple remote locations) where the update file
can be copied in order to replicate it to the remote location. You can use the CREATE STORE statement to
create the local store. However, in order for this new remote store to be accessible, the store at the
remote location that is pointed to by the remote store must have already been created at the remote
location. The replication will not work until this step has been completed at each remote location.

Replicating the Update File

Once the update file has been created in the local store, you can now begin the process of replicating it to
other copies of the same database. Typically, there are two types of replication used:

Replication Type Description

Push A push replication involves the master location copying a
master update file from a local store to several remote stores,
thus effectively replicating the updates to all of the remote
copies of the database. The remote locations can then load
the update file to complete the process of synchronizing their
database copies so that they now match the database at the
master location.

Pull A pull replication involves the master location copying a
master update file from a local store to several other local
stores. The remote locations are then responsible for copying
the update file from their designated store to their own local
store. The remote locations can then load the update file to
complete the process of synchronizing their database copies
so that they now match the database at the master location.

One method is not necessarily superior to the other, and the choice of which to use usually revolves
around whether the remote locations are constantly accessible to the master location. If they are not, such
as is the case with salesman on the road with laptops, then the pull replication is the better choice.

Replicating an update file from a local store to a remote store, or vice-versa, is accomplished via the COPY
FILE statement. Copying an update file from a local store to a remote store will cause ElevateDB to
automatically log into the remote ElevateDB Server designated for the remote store, and transfer the
update file to the remote store.

Loading the Updates into a Database

At the remote location, we will use the LOAD UPDATES statement to load the update file from a local store
into the copy of the database. The update file is assumed to already be present in the local store as a
result of the previous COPY FILE operation. Once the updates are loaded, the copy of the database at the
remote location is now considered to be synchronized with the database at the master location.

If there are multiple update files in a local store that need to be loaded for a database, it is very important
that you do not confuse the ordering of the update files and attempt to load them out-of-order. Each
update file has a creation timestamp that can be used to determine which should be loaded first, second,
etc. To retrieve information about the update files in a specific store, you can use the SET UPDATES
STORE statement to specify the store where the update files are located, and then use a SELECT
statement to query the Updates Table in the Configuration Database. The Updates table contains
information about all of the update files in the store specified by the SET UPDATES STORE statement, with
one row per update file.

Getting Started

Page 93

Note
The LOAD UPDATES statement only works with local stores. Any attempt to use a remote store with
this statement will result in an error.

You can use the FROM UPDATES clause of the CREATE TABLE statement to examine the contents of any
update file. This is useful when you are trying to load an update file and cannot do so due to constraint
violations or other types of problems.

Bi-Directional Replication

In addition to a scenario where a master location replicates its updates to remote locations, you can also
publish the copies of the databases at the remote locations and replicate their updates back to the
database at the master location. This is called bi-directional replication, and is very common. In order to
set up a bi-directional replication system, you would execute the same steps as before, but you would also
repeat the same steps for each of the remote locations.

Scheduling Replication

The actual processing of saving and loading updates, and copying the update files between different
locations, can be scheduled to run as a job by using the CREATE JOB statement.

Replicating Other Types of Data

The replication capabilities in ElevateDB are not limited solely to database updates. Backups and other
types of files can be replicated in a similar manner, and this is very useful for situations where you want
remote locations to send backups and other important information to a master location where they will be
stored in a more secure fashion than what might be possible at the remote location. It is also sometimes
more efficient to use backups for the initial population of new remote locations instead of using one large
update file, or a series of many update files. Being able to replicate backups is very useful in such a
situation.

Getting Started

Page 94

1.24 Row Value Constructors

Row value constructors are a special syntax used to aggregate basic expressions into a special row value
that can be compared against other row values, or used as a whole in certain DML statments like INSERT
and UPDATE. The syntax is as follows:

(<Expression>,<Expression>[,<Expression>])

Each expression in the row value constructor is separated by a comma (,), and a row value constructor
requires that at least two expressions be specified in order for the parser to recognize that it is dealing
with a row value, as opposed to a simple scalar value enclosed in parentheses. The only exception to this
is when a row value constructor is used in an INSERT statement (see below).

Using Row Value Constructors in SELECT, UPDATE, and DELETE Statements

Row value constructors are very useful in SELECT, UPDATE, and DELETE statements for comparing
multiple expressions in a single operation. Row value constructors can be used with any comparison
operator except for the LIKE/NOT LIKE operators, as the following examples show:

SELECT *
FROM Orders
WHERE (CustNo,OrderNo)=(2156,1020)

SELECT *
FROM Orders INNER JOIN Items ON
(Orders.CustNo,Orders.OrderNo) = (Items.CustNo,Items.OrderNo)

Note
Row values are always compared from left-to-right, so all comparison operators work by comparing
the first scalar value in the row value, followed by the second, and so on. The IS NULL/IS NOT
NULL comparison operators work on an all-or-nothing basis, meaning that the entire row value must
be NULL or NOT NULL in order for these operators to return True.

Please see the Comparison Operators topic for more information on the available comparison operators,
and the Optimizer topic for more information on how ElevateDB optimizes row value constructors in
expressions.

UPDATE statements can also use row value constructors in order to update more than one column at a
time in the SET clause. For example:

UPDATE Orders
SET (ShipToState,ShipToCountry)=
 (SELECT State,Country FROM Customer WHERE CustNo=Orders.CustNo)

Using Row Value Constructors in INSERT Statements

Getting Started

Page 95

Row value constructors can be used in INSERT statements to insert multiple rows in a single statement
execution. In order to accomplish this, just separate each row value with a comma (,):

INSERT INTO Orders (OrderNo, ItemNo, QtyOrdered, UnitPrice)
VALUES (1200, 23478, 10, 30.00),
 (1200, 15453, 4, 23.00),
 (1200, 14545, 1, 89.00)

Note
You should be careful not to specify too many row values in a single INSERT statement. It is quite
possible to exceed the parsing and memory limitations of ElevateDB if you specify hundreds of
thousands of row values in a single INSERT statement.

Getting Started

Page 96

1.25 Object Versioning

User-defined version numbers can be assigned to to certain objects in an ElevateDB configuration or
database using the VERSION clause. These version numbers are specified as a DECIMAL number in the
form of:

<MajorVersion>.<MinorVersion>

The major version may contain up to 19 digits, and the minor version may contain up to 4 digits.

The following DDL statements allow you to define version numbers for the associated object being created
or altered:

CREATE JOB
ALTER JOB

CREATE TABLE
ALTER TABLE

CREATE VIEW
ALTER VIEW

CREATE FUNCTION
ALTER FUNCTION

CREATE PROCEDURE
ALTER PROCEDURE

Getting Started

Page 97

1.26 Custom Attributes

Custom attributes can be assigned to most objects in an ElevateDB configuration or database using the
ATTRIBUTES clause. These attributes are simply stored as a block of text along with the object to which
they are assigned, and can later be retrieved by querying the system information tables in ElevateDB. It is
recommended that you use a structured text format such as XML or INI (key-value pairs) in order to allow
for quick and easy reading of any structured data that you wish to store as custom attributes.

The following DDL statements allow you to define custom attributes for the associated object being
created or altered:

CREATE DATABASE
ALTER DATABASE

CREATE STORE
ALTER STORE

CREATE USER
ALTER USER

CREATE ROLE
ALTER ROLE

CREATE JOB
ALTER JOB

CREATE TABLE
ALTER TABLE

CREATE VIEW
ALTER VIEW

CREATE FUNCTION
ALTER FUNCTION

CREATE PROCEDURE
ALTER PROCEDURE

Getting Started

Page 98

Chapter 2
Operators

2.1 Introduction

ElevateDB supports most standard SQL operators, which are organized by the following categories:

Boolean Operators
Comparison Operators
Arithmetic Operators
String Operators
Text Index Operators

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

None

Operators

Page 99

2.2 Boolean Operators

The following are the boolean operators in ElevateDB, ordered by their operator precedence:

Operator Description

NOT Flips a boolean expression so that True becomes False, or
vice-versa.

AND Returns True if both the left and right boolean expressions are
True.

OR Returns True if either the left or right boolean expression is
True.

Examples

-- The following SQL uses the AND Boolean
-- operator to select all shipped orders
-- placed within the last 100 days

SELECT *
FROM Orders
WHERE OrderDate >= CURRENT_DATE-100 AND
ShipDate IS NOT NULL

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

None

Operators

Page 100

2.3 Comparison Operators

The following are the comparison operators in ElevateDB, ordered by their operator precedence:

Operator Description

= Returns True if both the left and right expressions are equal.

<> Returns True if both the left and right expressions are not
equal.

> Returns True if the left expression is greater than the right
expression.

>= Returns True if the left expression is greater than or equal to
the right expression.

< Returns True if the left expression is less than the right
expression.

<= Returns True if the left expression is less than or equal to the
right expression.

LIKE Returns True if the left string expression matches the right
pattern expression. The percent (%) character can be used to
represent multiple unknown characters in the pattern
expression, while the underline (_) character can be used to
represent a single unknown character in the pattern
expression. In addition, the ESCAPE clause can be used after
the pattern expression to specify a single character to be used
as an escape character in front of any percent or underline
literal characters in the pattern expression itself. This is useful
when you wish to treat the percent or underline characters as
literal characters for the purposes of the comparison.

NOT LIKE Returns True if the left string expression does not match the
right pattern expression. It is the inverse of the LIKE operator.

Note
Both LIKE and NOT LIKE can correctly handle situations
where a specific collation treats two characters as
collating as one character, such as is the case with 'ss'
in the German collations.

BETWEEN Returns True if the left expression is between the two right
expressions. The right expressions must be separated by the
AND keyword.

NOT BETWEEN Returns True if the left expression is not between the two
right expressions. It is the inverse of the BETWEEN operator.

IN Returns True if the left expression equals one of the right
expressions. The right expressions are specified as a comma-
delimited list of expressions enclosed in parentheses.

Operators

Page 101

NOT IN Returns True if the left expression does not equal one of the
right expressions. It is the inverse of the IN operator.

IS NULL Returns True if the left expression is null.

IS NOT NULL Returns True if the left expression is not null. It is the inverse
of the IS NULL operator.

Examples

-- The following uses the LIKE operator
-- to search the Notes column for the
-- occurrence of the string 'angry'

SELECT *
FROM customers
WHERE Notes LIKE '%angry%'

-- This is the same as the last search
-- except this search has been modified
-- to use a case-insensitive comparison
-- using the COLLATE clause

SELECT *
FROM customers
WHERE Notes COLLATE ANSI_CI LIKE '%angry%'

-- The following uses the LIKE operator's
-- ESCAPE clause to perform a search on a
-- phrase that includes the percent (%)
-- character

SELECT *
FROM Orders
WHERE AdjustmentNotes LIKE '20/%' ESCAPE '/'

-- The following query searches for all
-- orders placed between January 1st and
-- January 31st of 2007

SELECT *
FROM Orders
WHERE OrderDate BETWEEN DATE '2007-01-01' AND
DATE '2007-01-31'

-- The following query searches for all
-- orders placed by someone in the states
-- of California (CA) or Nevada (NV)

SELECT *
FROM Orders
WHERE State IN ('CA','NV')

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Operators

Page 102

Deviation Details

None

Operators

Page 103

2.4 Arithmetic Operators

The following are the arithmetic operators in ElevateDB, ordered by their operator precedence:

Operator Description

* Multiplies the left numeric or interval expression by the right
numeric or interval expression.

/ Divides the left numeric or interval expression by the right
numeric expression.

- Subtracts the right numeric, date, time, timestamp, or interval
expression from the left numeric, date, time, timestamp, or
interval expression.

+ Adds the right numeric, date, time, timestamp, or interval
expression to the left numeric, date, time, timestamp, or
interval expression.

MOD Returns the remainder derived from dividing the left numeric
or interval expression by the right numeric or interval
expression.

Date, Time, and Timestamp Subtraction

When subtracting dates, times, and timestamps, the result is always an interval value. The type of interval
value depends upon what is being subtracted. The following details the interval type that you can expect
with the various input types:

Expression Interval Type

DATE - DATE INTERVAL DAY

TIME - TIME INTERVAL HOUR TO MSECOND

TIMESTAMP - TIMESTAMP
TIMESTAMP - DATE

INTERVAL DAY TO MSECOND

In addition, you can force the resulting interval value to a specific type by enclosing the expression in
parentheses and appending the interval type to the expression:

(<Value> - <Value>) <Interval Type>

Note
Unlike in most scenarios in SQL where an interval type is prefaced with the keyword INTERVAL,
specifying an interval type for DATE/TIME/TIMESTAMP subtraction only requires the actual interval
type without the INTERVAL keyword. It is done this way due to the fact that ElevateDB already
knows that the resulting type is an interval. The only question is which type of interval is desired by
the application.

Operators

Page 104

The valid interval types for each type of expression are as follows:

Expression Interval Type

DATE - DATE YEAR
MONTH
YEAR TO MONTH
DAY

TIME - TIME HOUR
HOUR TO MINUTE
HOUR TO SECOND
HOUR TO MSECOND
MINUTE
MINUTE TO SECOND
MINUTE TO MSECOND
SECOND
SECOND TO MSECOND
MSECOND

TIMESTAMP - TIMESTAMP
TIMESTAMP - DATE

YEAR
MONTH
YEAR TO MONTH
DAY
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
DAY TO MSECOND
HOUR
HOUR TO MINUTE
HOUR TO SECOND
HOUR TO MSECOND
MINUTE
MINUTE TO SECOND
MINUTE TO MSECOND
SECOND
SECOND TO MSECOND
MSECOND

Examples

-- The following uses the subtraction
-- operator to show all customers that
-- have not ordered within the last 12
-- months

SELECT *
FROM Customers
WHERE (CURRENT_DATE-LastOrderDate) MONTH > 12

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Operators

Page 105

Deviation Details

None

Operators

Page 106

2.5 String Operators

The following are the string operators in ElevateDB, ordered by their operator precedence:

Operator Description

+ Concatenates the right string expression to the left string
expression.

|| Concatenates the right string expression to the left string
expression.

Examples

-- The following uses the +
-- operator to format the output
-- of one of the SELECT column
-- expressions

SELECT LastName+', '+FirstName+' '+Initial AS FullName,
DateOfBirth
FROM Employees
ORDER BY FullName

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

None

Operators

Page 107

2.6 Text Index Operators

The following are the string operators in ElevateDB, ordered by their operator precedence:

Operator Description

CONTAINS Returns True if the left column reference contains all of the
word values specified in the right string expression (not
necessarily next to each other). The asterisk (*) can be used
to specify a trailing wildcard.

DOES NOT CONTAIN Returns True if the left column reference does not contain all
of the word values specified in the right string expression. It is
the inverse of the CONTAINS operator.

CONTAINS ANY Returns True if the left column reference contains any of the
word values specified in the right string expression (not
necessarily next to each other). The asterisk (*) can be used
to specify a trailing wildcard.

DOES NOT CONTAIN ANY Returns True if the left column reference does not contain any
of the word values specified in the right string expression. It is
the inverse of the CONTAINS ANY operator.

Examples

-- The following uses the text index
-- on the Notes column to find any rows
-- where the word 'angry', 'anger', or 'angered'
-- appears.

SELECT *
FROM customers
WHERE Notes CONTAINS ANY 'angry anger angered'

-- The following uses the text index
-- on the Text column to find any rows
-- where the words 'little', 'red',
-- 'riding', and 'hood' appear

SELECT *
FROM Documents
WHERE Text CONTAINS 'little red riding hood'

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

Operators

Page 108

CONTAINS
DOES NOT CONTAIN
CONTAINS ANY
DOES NOT CONTAIN ANY

The CONTAINS, CONTAINS ANY, DOES NOT CONTAIN, and
DOES NOT CONTAIN ANY operators are ElevateDB extensions

Operators

Page 109

This page intentionally left blank

Types

Page 110

Chapter 3
Types

3.1 Introduction

ElevateDB supports most standard SQL types, which are organized by the following categories:

Exact Numeric Types
Approximate Numeric Types
String Types
Binary Types
Date and Time Types
Interval Types
Boolean Types

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

Collection/Array Types ElevateDB does not support the creation or use of collection
types, and only supports the use of array types in SQL/PSM
routines.

RowTypes ElevateDB does not support the creation or use of row types.

User-Defined Types ElevateDB does not support the creation or use of user-
defined types.

Reference Types ElevateDB does not support the creation or use of reference
types.

Locators ElevateDB does not support the creation or use of locators for
large object types.

Types

Page 111

3.2 Exact Numeric Types

Exact numeric types are used when you wish to store a numeric value in its exact representation without
accumulating rounding errors. Specifically, NUMERIC and DECIMAL types allow you to specify the scale so
that any numeric values with a greater scale are automatically rounded to the specified scale using the
bankers rounding algorithm, which simply says that any digits past the specified scale are rounded to the
specified scale using the following logic:

1) Round towards the nearest integer.

2) If there are two nearest integers, then round the value towards the even integer value.

Type Description

INTEGER
INT

A 32-bit,signed integer value

SMALLINT A 16-bit,signed integer value

BIGINT A 64-bit,signed integer value

NUMERIC[(<Precision>[,<Scale>])] A 64-bit exact numeric value a specifc precision and scale, or
fractional digits. Regardless of the precision specified,
ElevateDB always uses an implementation-defined precision of
19 digits. The maximum scale is 4 digits. This type is ideal for
representing monetary values. If the scale is not specified,
then the default is 0. If the precision is not specified, then the
default is 19 digits.

DECIMAL[(<Precision>[,<Scale>])] An 64-bit exact numeric value a specifc precision and scale, or
fractional digits. Regardless of the precision specified,
ElevateDB always uses an implementation-defined precision of
19 digits. The maximum scale is 4 digits. This type is ideal for
representing monetary values. If the scale is not specified,
then the default is 0. If the precision is not specified, then the
default is 19 digits.

Literals

Exact numeric literals use the period (.) as the decimal point character, the minus (-) as the negative sign
character, the plus (+) as the positive sign character, and scientific notation is not supported.

Literal Examples

-- This example specifies an INTEGER literal

SELECT * FROM Customer WHERE CustNo=1206

-- This example specifies a DECIMAL literal

SELECT * FROM Customer WHERE BalanceDue > 1000.00

SQL 2003 Standard Deviations

Types

Page 112

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

NUMERIC Type ElevateDB translates any NUMERIC into the equivalent
DECIMAL type. Also, it always uses the implementation-
defined precision of 19 digits instead of the precision that is
specified in the type definition.

Types

Page 113

3.3 Approximate Numeric Types

Approximate numeric types are used when you wish to store a numeric value in an approximate
representation with a floating decimal point. Using approximate numeric types can cause rounding errors
due to the fact that certain numbers such as 0.33 cannot be accurately represented using floating-point
precision.

Type Description

DOUBLE PRECISION A 64-bit, floating-point numeric value with a maximum
precision of 16 digits.

FLOAT[(<Precision>)] A 64-bit, floating-point numeric value with a maximum
precision of 16 digits. The precision is ignored if specified.

Literals

Approximate numeric literals use the period (.) as the decimal point character, the minus (-) as the
negative sign character, the plus (+) as the positive sign character, and scientific notation is supported via
E (e or E) as the exponent character followed by a plus (+) or minus (-) character and the actual exponent
value.

Literal Examples

-- This example specifies a FLOAT literal

SELECT * FROM Orders WHERE Amount > 100.00

-- This example specifies a FLOAT literal using
-- scientific notation

SELECT * FROM Planets WHERE Distance > 100E+10

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

REAL Type ElevateDB does not support the REAL type. Use the DOUBLE
PRECISION or FLOAT type instead.

Types

Page 114

3.4 String Types

String types are used when you wish to store a character string of a fixed or variable length, including very
large character strings.

Type Description

CHARACTER[(<Length>)]
CHAR[(<Length>)]

A string value with a fixed number of characters. If the length
of the string value is not specified, then a length of 1 is used.
The maximum length is 1024 characters. When assigning a
value to a CHAR type value that is smaller in length than the
specified length, the value being assigned will be padded with
spaces to the specified length. For example, if you have a
column defined as:

MyColumn CHAR(20)

If you were to assign the value 'Test' to the column, then the
MyColumn column would contain the value 'Test'+<16
Spaces> after the assignment.

CHARACTER VARYING(<Length>)
VARCHAR(<Length>)

A string value with a variable number of characters. The
length of the string value must always be specified. The
maximum length is 1024 characters. Contrary to the
CHARACTER type, this type does not pad the string value with
spaces.

GUID A string value that has an exact length of 38 characters. A
GUID value is treated the same as a VARCHAR value.

CHARACTER LARGE OBJECT
CLOB

A large, variable-length string value with a maximum size of
2GB.

Literals

String literals use the single quote (') character to identify themselves as such. Any single quotes enclosed
inside of the literal must be escaped by prefacing them with another single quote. In addition, single
character constants may be specified using their literal value or by prefacing their ordinal character set
position with the pound sign (#) character.

Literal Examples

-- This example specifies a VARCHAR literal

SELECT * FROM Customer WHERE Name = 'Acme Boot Makers'

-- This example specifies a VARCHAR literal with
-- embedded quotes

SELECT * FROM Customer WHERE Name = 'Bill''s Shoes'

-- This example specifies two CHAR literals (a carriage
-- return and line feed) using pound sign (#) notation

Types

Page 115

SELECT * FROM Documentation WHERE Notes LIKE '%'+#13+#10+'%'

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

NATIONAL Types ElevateDB does not support the NATIONAL versions of the
CHARACTER, CHARACTER VARYING (VARCHAR), or
CHARACTER LARGE OBJECT (CLOB) types. See the
Internationalization topic for more information.

CLOB Type ElevateDB does not support the specification of a default size
in KB, MB, or GB for large object types.

GUID Type ElevateDB adds the GUID type as an extended type.

Types

Page 116

3.5 Binary Types

Binary types are used when you wish to store a series of bytes with a fixed or variable length, including
very large series of bytes.

Type Description

BYTE[(<Length>)] A binary value with a fixed number of bytes. If the length of
the binary value is not specified, then a length of 1 is used.
The maximum length is 1024 bytes. When assigning a value
to a BYTE type value that is smaller in length than the
specified length, the value being assigned will be padded with
NULL bytes (0) to the specified length. For example, if you
have a column defined as:

MyColumn BYTE(8)

If you were to assign the value 0x00 0x01 0x02 0x03 to the
column, then the MyColumn column would contain the value
0x00 0x01 0x02 0x03 0x00 0x00 0x00 0x00 after the
assignment.

BYTE VARYING(<Length>)
VARBYTE(<Length>)

A binary value with a variable number of bytes. The length of
the binary value must always be specified. The maximum
length is 1024 bytes. Contrary to the BYTE type, this type
does not pad the binary value with NULL bytes (0).

BINARY LARGE OBJECT
BLOB

A large, variable-length binary value with a maximum size of
2GB.

Literals

Binary literals use the 'X' character along with the single quote (') character to identify themselves as such.
The contents of a binary literal consists of the bytes that make up the value encoded in hexadecimal form,
such that each byte is represented by two characters from the range of '00' (0) to 'FF' (255).

Literal Examples

-- This example specifies a BYTE literal

SELECT * FROM Instruments WHERE Data = X'01F21028'

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

Types

Page 117

BLOB Type ElevateDB does not support the specification of a default size
in KB, MB, or GB for large object types.

BYTE and BYTE VARYING Types ElevateDB adds the BYTE and BYTE VARYING (VARBYTE)
types as extended types.

Types

Page 118

3.6 Date and Time Types

Date and time types are used when you wish to store a date, time, or timestamp (date and time) value.

Type Description

DATE A date value containing a year, month, and day.

TIME A time value containing an hour, minute, second, and
millisecond.

TIMESTAMP A combined date and time value containing a year, month,
and day along with an hour, minute, second, and millisecond.

Literals

Date and time literals use the IS0 8601 standard which dictates the following formats:

Format Description

DATE 'YYYY-MM-DD' YYYY is the 4-digit year, MM is the 2-digit month (1-based),
and DD is the 2-digit day (1-based).

TIME 'HH:MM [:SS [.ZZZ AM/PM]]' HH is the 2-digit hour (0-based), MM is the 2-digit minute (0-
based), SS is the 2-digit second (0-based), ZZZ is the 3-digit
millisecond, or fraction of a second, and AM/PM is the 12-hour
time format specifier (as opposed to the default 24-hour time
format). The SS, ZZZ, and AM/PM portions of times are
optional.

TIMESTAMP '<Date> <Time>' Timestamp literals use the date and time formats with a space
between them.

Literal Examples

-- This example specifies a date literal

SELECT * FROM Orders
WHERE OrderDate BETWEEN DATE '2006-01-01' AND DATE '2006-01-31'

-- This example specifies a TIME literal
-- using 24-hour format

SELECT * FROM TimeClockEntries
WHERE PunchInTime > TIME '16:00'

-- This example specifies a TIME literal
-- using 12-hour format

SELECT * FROM TimeClockEntries
WHERE PunchInTime > TIME '4:00 PM'

SQL 2003 Standard Deviations

Types

Page 119

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

TIME and TIMESTAMP Types ElevateDB supports including the AM or PM (case-insensitive)
indicator for indicating 12-hour time formats.

TIME and TIMESTAMP Types ElevateDB does not support specifying the precision of a time
or timestamp value and always includes the millisecond
portion.

WITH TIME ZONE Types ElevateDB does not support the time zone versions of the
TIME and TIMESTAMP types.

Types

Page 120

3.7 Interval Types

Interval types are used to represent the difference between two dates, times, or timestamps. There are
two classes of interval values:

Year-Month Intervals
Day-Time Intervals

These two classes are not type-compatible and cannot be assigned to each other or cast between each
other.

Type Description

INTERVAL YEAR An interval value representing the number of years between
two date values.

INTERVAL MONTH An interval value representing the number of months between
two date values.

INTERVAL YEAR TO MONTH An interval value representing the number of years and
months (remainder) between two date values.

INTERVAL DAY An interval value representing the number of days between
two date values.

INTERVAL HOUR An interval value representing the number of hours between
two time values.

INTERVAL MINUTE An interval value representing the number of minutes
between two time values.

INTERVAL SECOND An interval value representing the number of seconds
between two time values.

INTERVAL MSECOND An interval value representing the number of milliseconds
between two time values.

INTERVAL DAY TO HOUR An interval value representing the number of days and hours
between two timestamp values.

INTERVAL DAY TO MINUTE An interval value representing the number of days, hours, and
minutes between two timestamp values.

INTERVAL DAY TO SECOND An interval value representing the number of days, hours,
minutes, and seconds between two timestamp values.

INTERVAL DAY TO MSECOND An interval value representing the number of days, hours,
minutes, seconds, and milliseconds between two timestamp
values.

INTERVAL HOUR TO MINUTE An interval value representing the number of hours and
minutes between two time values.

INTERVAL HOUR TO SECOND An interval value representing the number of hours, minutes,
and seconds between two time values.

INTERVAL HOUR TO MSECOND An interval value representing the number of hours, minutes,
seconds, and milliseconds between two time values.

INTERVAL MINUTE TO SECOND An interval value representing the number of minutes and
seconds between two time values.

Types

Page 121

INTERVAL MINUTE TO MSECOND An interval value representing the number of minutes,
seconds, and milliseconds between two time values.

INTERVAL SECOND TO MSECOND An interval value representing the number of seconds and
milliseconds between two time values.

Literals

Interval literals are specified using the following formats:

Format Description

INTERVAL 'Y' YEAR Y is the years.

INTERVAL 'M' MONTH M is the months.

INTERVAL 'Y-M' YEAR TO MONTH Y is the years and M is the months.

INTERVAL 'D' DAY D is the days.

INTERVAL 'H' HOUR H is the hours.

INTERVAL 'M' MINUTE M is the minutes.

INTERVAL 'S' SECOND S is the seconds.

INTERVAL 'Z' MSECOND Z is the milliseconds.

INTERVAL 'D H' DAY TO HOUR D is the days and H is the hours.

INTERVAL 'D H:M'
DAY TO MINUTE

D is the days, H is the hours, and M is the minutes.

INTERVAL 'D H:M:S'
DAY TO SECOND

D is the days, H is the hours, M is the minutes, and S is the
seconds.

INTERVAL 'D H:M:S.Z'
DAY TO MSECOND

D is the days, H is the hours, M is the minutes, S is the
seconds, and Z is the milliseconds.

INTERVAL 'H:M'
HOUR TO MINUTE

H is the hours and M is the minutes.

INTERVAL 'H:M:S'
HOUR TO SECOND

H is the hours, M is the minutes, and S is the seconds.

INTERVAL 'H:M:S.Z'
HOUR TO MSECOND

H is the hours, M is the minutes, S is the seconds, and Z is the
milliseconds.

INTERVAL 'M:S'
MINUTE TO SECOND

M is the minutes and S is the seconds.

INTERVAL 'M:S.Z'
MINUTE TO MSECOND

M is the minutes, S is the seconds, and Z is the milliseconds.

INTERVAL 'S.Z'
SECOND TO MSECOND

S is the seconds, and Z is the milliseconds.

Literal Examples

-- This example specifies a YEAR interval literal

Types

Page 122

SELECT * FROM Orders
WHERE (OrderDate + INTERVAL '1' YEAR) BETWEEN
DATE '2006-01-01' AND DATE '2006-01-31'

-- This example specifies a DAY interval literal

SELECT * FROM Orders
WHERE (ShipDate - OrderDate) > INTERVAL '2' DAY

-- This example specifies an HOUR interval literal

SELECT * FROM TimeClockEntries
WHERE (PunchOutTime - PunchInTime) > INTERVAL '8' HOUR

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

INTERVAL MSECOND Type This is an ElevateDB extension to the day-time interval data
types.

Interval Precisions ElevateDB does not support specifying the precision of interval
values and always uses 4 digits for years, 1-2 digits for
months, 1-2 digits for days, 1-2 digits for hours, 1-2 digits for
minutes, 1-2 digits for seconds, and 1-3 digits for
milliseconds.

Types

Page 123

3.8 Boolean Types

Boolean types are used to represent the values of True or False.

Type Description

BOOLEAN
BOOL

A logical true/false value.

Literals

Boolean literals are expressed as the literals TRUE and FALSE (case-insensitive) or 1 and 0 for TRUE and
FALSE, respectively.

Literal Examples

-- This example specifies a BOOLEAN literal

SELECT * FROM Customer WHERE SpecialAttention=TRUE

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

None

Types

Page 124

3.9 Type Promotion

Type promotion can occur when the following operators or functions are used:

Operators

UNION, INTERSECT, or EXCEPT in a SELECT statement

When one of these operators is used, the type, collation, length, and scale of the column in the result set
is determined by the type promotion rules outlined below using the corresponding columns of each
SELECT statement involved as the inputs to the type promotion process.

Functions

CASE
IF
IFNULL
NULLIF
COALESCE

Note
CASE is an operator, not a function, but it behaves like a function.

When one of these functions is used, the type, collation, length, and scale of their result values are
determined by the type promotion rules outlined below using their multiple input arguments as the inputs
to the type promotion process.

Rules

The rules for type promotion are as follows:

The precedence for CHAR, VARCHAR, and CLOB types is:

 CLOB (highest)
 VARCHAR
 CHAR

If the resulting type is a CHAR or VARCHAR, then the resulting length is the greatest of all of the input
lengths.

The resulting collation is determined by the input that was selected according to the type precedence
above.

The precedence for BYTE, VARBYTE, and BLOB types is:

 BLOB (highest)
 VARBYTE
 BYTE

If the resulting type is a BYTE or VARBYTE, then the resulting length is the greatest of all of the input

Types

Page 125

lengths.

The precedence for SMALLINT, INTEGER, LARGEINT, DECIMAL, and FLOAT types is:

 FLOAT (highest)
 DECIMAL
 LARGEINT
 INTEGER
 SMALLINT

If the resulting type is a DECIMAL, then the resulting scale is the greatest of all of the input scales.

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

None

Types

Page 126

Chapter 4
System Information

4.1 Introduction

ElevateDB maintains information about both the system configuration and each of the databases
contained within a given configuration. The information about the system configuration is stored in a
special system-generated Configuration database.

Each database, including the Configuration database, contains two schemas:

Schema Description

Information Contains tables describing the objects contained within the
database. See the Information Schema topic for more
information on the tables contained with the Information
schema for each database.

Default Contains the actual objects contained within the database.

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

Configuration Database The SQL standard does not specify any system-generated
databases holding system information.

Schemas The SQL standard dictates a different name for the
information schema along with the ability to define more than
two schemas. In addition, the tables contained within the
ElevateDB Informaton schema are different from the
standard.

System Information

Page 127

4.2 Configuration Database

The tables that make up the Configuration database are as follows:

DataTypes Table
Collations Table
Modules Table
TextFilters Table
WordGenerators Table
Migrators Table
MigratorParams Table
LogEvents Table
Backups Table
Updates Table
ServerSessions Table
ServerSessionLocks Table
ServerSessionStatistics Table
Users Table
Roles Table
UserRoles Table
Databases Table
DatabasePrivileges Table
Jobs Table
Stores Table
StorePrivileges Table
Files Table

The contents of these tables are stored on disk in the configuation file for ElevateDB. You can find out
more information on how to modify the configuration file settings for ElevateDB in your product-specific
manual.

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

Extended Objects Databases, modules, text filters, word generators, log events,
migrators, backups, updates, server sessions, server session
locks, server session statistics, jobs, stores, and files are
ElevateDB extensions, and these objects are not defined in
the SQL 2003 standard.

System Information

Page 128

4.3 Collations Table

Structure

CREATE TABLE "Collations"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI"
)

CREATE INDEX "Name" ON "Collations"
("Name")

Description

The collations in ElevateDB are dynamic and this table reflects the available installed collations (locales) in
the operating system. See the Internationalization topic for more information on collations.

Related DDL Statements

Statement Description

None

System Information

Page 129

4.4 DataTypes Table

Structure

CREATE TABLE "DataTypes"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"BinarySize" INTEGER
)

CREATE INDEX "Name" ON "DataTypes"
("Name")

Description

This table contains the ElevateDB data types. The data types in ElevateDB are fixed and user-defined data
types are not permitted. See the Types topic for more information on the available data types in
ElevateDB.

Related DDL Statements

Statement Description

None

System Information

Page 130

4.5 Modules Table

Structure

CREATE TABLE "Modules"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"FilePath" VARCHAR(255) COLLATE "ANSI_CI",
"FileVersion" VARCHAR(15) COLLATE "ANSI_CI",
"FileDescription" CLOB COLLATE "ANSI",
"Type" VARCHAR(30) COLLATE "ANSI_CI",
"CharacterSet" VARCHAR(30) COLLATE "ANSI_CI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Modules"
("Name")

Description

This table contains all of the defined external modules in an ElevateDB configuration. These external
modules consist of the compiled implementation of text filters, word generators, migrators, or modules
used for stored functions or procedures.

The Type column indicates the purpose of the module.

The CharacterSet column represents the character set used by the module, and the values are as follows:

Character Set Description

ANSI The module uses the ANSI character set

Unicode The module uses the Unicode character set

You can find out more information on how to create such external modules for ElevateDB in your product-
specific manual.

Related DDL Statements

Statement Description

CREATE MODULE Creates (registers) a new external module

ALTER MODULE Alters an existing external module

DROP MODULE Drops an existing external module

RENAME MODULE Renames an existing external module

System Information

Page 131

4.6 TextFilters Table

Structure

CREATE TABLE "TextFilters"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Type" VARCHAR(15) COLLATE "ANSI_CI",
"ModuleName" VARCHAR(255) COLLATE "ANSI_CI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "TextFilters"
("Name")

Description

This table contains the defined text filters in an ElevateDB configuration. The text filters are used by the
full-text indexing functionality in ElevateDB to filter out text before it is indexed. Text filters are defined
with a specific type, such as 'html' or 'rtf'. In addition, each text index defined for a given table can specify
a filter column. The values in this filter column are used by the text index in conjunction with the type
assigned to each text filter to determine which text filter to use for filtering the text before it is indexed.
You can find out more about text indexing in the Text Indexing.

Related DDL Statements

Statement Description

CREATE TEXT FILTER Creates a new text filter

ALTER TEXT FILTER Alters an existing text filter

DROP TEXT FILTER Drops an existing text filter

RENAME TEXT FILTER Renames an existing text filter

System Information

Page 132

4.7 WordGenerators Table

Structure

CREATE TABLE "WordGenerators"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"ModuleName" VARCHAR(255) COLLATE "ANSI_CI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "WordGenerators"
("Name")

Description

This table contains the defined word generators in an ElevateDB configuration. Word generators are used
by the full-text indexing functionality in ElevateDB to parse text and separate the text into distinct words.
This is important when you wish to parse the text in a different fashion than the default in ElevateDB. You
can find out more about text indexing in the Text Indexing topic.

Related DDL Statements

Statement Description

CREATE WORD GENERATOR Creates a new word generator

ALTER WORD GENERATOR Alters an existing word generator

DROP WORD GENERATOR Drops an existing word generator

RENAME WORD GENERATOR Renames an existing word generator

System Information

Page 133

4.8 Migrators Table

Structure

CREATE TABLE "Migrators"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"ModuleName" VARCHAR(255) COLLATE "ANSI_CI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Migrators"
("Name")

Description

This table contains the defined migrators in an ElevateDB configuration. Migrators are used by ElevateDB
to migrate a database from an external database to ElevateDB. You can find out more about migrating
databases in the Migrating Databases topic.

Related DDL Statements

Statement Description

CREATE MIGRATOR Creates a new migrator

ALTER MIGRATOR Alters an existing migrator

DROP MIGRATOR Drops an existing migrator

RENAME MIGRATOR Renames an existing migrator

System Information

Page 134

4.9 MigratorParams Table

Structure

CREATE TABLE "MigratorParams"
(
"MigratorName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Mode" VARCHAR(15) COLLATE "ANSI_CI",
"Type" VARCHAR(30) COLLATE "ANSI_CI",
"Collation" VARCHAR(40) COLLATE "ANSI_CI",
"Length" INTEGER,
"Precision" INTEGER,
"Scale" INTEGER,
"DefaultValue" VARCHAR(60) COLLATE "ANSI",
"OrdinalPos" INTEGER
)

CREATE INDEX "MigratorName" ON "MigratorParams"
("MigratorName")

CREATE INDEX "Name" ON "MigratorParams"
("Name")

Description

The migrator parameters are dynamic in ElevateDB and this table reflects the migrator parameters present
in the current migrator. The migrator can be changed or modified using the SET MIGRATOR statement.
You can find out more about migrating databases in the Migrating Databases topic.

The Mode column values are as follows:

Mode Description

Unknown The parameter type is unknown

In The parameter is an input parameter

Out The parameter is an output parameter

InOut The parameter is both an input and output parameter

Related DDL Statements

Statement Description

None

System Information

Page 135

4.10 LogEvents Table

Structure

CREATE TABLE "LogEvents"
(
"Category" VARCHAR(15) COLLATE "ANSI_CI",
"Function" VARCHAR(40) COLLATE "ANSI_CI",
"ErrorCode" INTEGER,
"Description" CLOB COLLATE "ANSI",
"LogTimeStamp" TIMESTAMP,
"Version" DECIMAL(19,2),
"Build" INTEGER,
"ProductType" VARCHAR(40) COLLATE "ANSI_CI",
"User" VARCHAR(40) COLLATE "ANSI_CI",
"Process" VARCHAR(40) COLLATE "ANSI_CI",
"ThreadID" INTEGER,
"SessionID" INTEGER,
"SessionName" VARCHAR(40) COLLATE "ANSI_CI",
"SessionDescription" CLOB COLLATE "ANSI",
"IPAddress" VARCHAR(16) COLLATE "ANSI_CI",
"Encrypted" BOOLEAN
)

CREATE INDEX "Category" ON "LogEvents"
("Category")

CREATE INDEX "Version" ON "LogEvents"
("Version")

CREATE INDEX "User" ON "LogEvents"
("User")

CREATE INDEX "Process" ON "LogEvents"
("Process")

Description

This table contains the events currently logged by ElevateDB. The log events are generated by ElevateDB
at various times, and can be informational messages, warning messages, or error messages. The current
user must be granted the system-defined Administrators role in order to view this table. Please see the
User Security topic for more information.

Related DDL Statements

Statement Description

None

System Information

Page 136

4.11 Backups Table

Structure

CREATE TABLE "Backups"
(
"Name" VARCHAR(255) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"DatabaseName" VARCHAR(40) COLLATE "ANSI_CI",
"DatabasePath" VARCHAR(255) COLLATE "ANSI_CI",
"CreatedOn" TIMESTAMP,
"CreatedBy" VARCHAR(40) COLLATE "ANSI",
"CompressionLevel" INTEGER,
"Size" BIGINT,
"IncludesCatalog" BOOLEAN,
"NumTables" INTEGER,
"Tables" CLOB COLLATE "ANSI"
)

CREATE INDEX "Name" ON "Backups"
("Name")

Description

The backups are dynamic in ElevateDB and this table reflects the backup files present in the current
backups store. The backups store can be changed or modified using the SET BACKUPS STORE statement.

Related DDL Statements

Statement Description

SET BACKUPS STORE Sets the current backups store

System Information

Page 137

4.12 Updates Table

Structure

CREATE TABLE "Updates"
(
"Name" VARCHAR(255) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"DatabaseName" VARCHAR(40) COLLATE "ANSI_CI",
"DatabasePath" VARCHAR(255) COLLATE "ANSI_CI",
"CreatedOn" TIMESTAMP,
"CreatedBy" VARCHAR(40) COLLATE "ANSI",
"CompressionLevel" INTEGER,
"Size" BIGINT,
"NumTables" INTEGER,
"Tables" CLOB COLLATE "ANSI"
)

CREATE INDEX "Name" ON "Updates"
("Name")

Description

The updates are dynamic in ElevateDB and this table reflects the update files present in the current
updates store. The updates store can be changed or modified using the SET UPDATES STORE statement.

Related DDL Statements

Statement Description

SET UPDATES STORE Sets the current updates store

System Information

Page 138

4.13 FileIOStatistics Table

Structure

CREATE TABLE "FileIOStatistics"
(
"FileName" VARCHAR(40) COLLATE "ANSI_CI",
"BlockSize" INTEGER,
"MaxSize" BIGINT,
"Hits" BIGINT,
"Misses" BIGINT,
"HitRatio" DECIMAL(19,2),
"Reads" BIGINT,
"BytesRead" BIGINT,
"AvgRead" DECIMAL(19,2),
"Writes" BIGINT,
"BytesWritten" BIGINT,
"AvgWrite" DECIMAL(19,2),
"TotalAllocated" BIGINT,
"TotalDirty" BIGINT,
"TotalFlushes" BIGINT
)

CREATE INDEX "FileName" ON "FileIOStatistics"
("FileName")

Description

This table reflects the global file I/O buffering statistics for ElevateDB. This information is useful in
determining the efficiency of the global file I/O buffering in ElevateDB and whether the file I/O buffering
settings may need to be changed. For example, a large number of reads for a file may indicate that you
may need to increase the amount of memory allocated for the file. Please see the Buffering and Caching
topic for more information.

The current user must be granted the system-defined Administrators role in order to view this table.
Please see the User Security topic for more information.

Related DDL Statements

Statement Description

None

System Information

Page 139

4.14 SessionStatistics Table

Structure

CREATE TABLE "SessionStatistics"
(
"SessionID" INTEGER,
"SessionName" VARCHAR(40) COLLATE "ANSI_CI",
"DatabaseName" VARCHAR(40) COLLATE "ANSI_CI",
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"BufferMgr" VARCHAR(40) COLLATE "ANSI_CI",
"MaxBufferSize" INTEGER,
"CurrentBufferSize" INTEGER,
"Hits" BIGINT,
"Misses" BIGINT,
"HitRatio" DECIMAL(19,2),
"Reads" BIGINT,
"BytesRead" BIGINT,
"Writes" BIGINT,
"BytesWritten" BIGINT
)

CREATE INDEX "SessionID" ON "SessionStatistics"
("SessionID")

CREATE INDEX "SessionName" ON "SessionStatistics"
("SessionName")

CREATE INDEX "DatabaseName" ON "SessionStatistics"
("DatabaseName")

CREATE INDEX "TableName" ON "SessionStatistics"
("TableName")

Description

This table reflects the table buffer manager statistics for all of the sessions that are present in the
ElevateDB engine. This information is useful in determining how efficient the ElevateDB engine is with
respect to I/O, and also how much I/O is actually taking place. For example, a large number of reads for
the row buffer manager for a table may indicate that you have an un-optimized query or filter present in
your application that is causing an inordinate number of row reads. The current user must be granted the
system-defined Administrators role in order to view this table. Please see the User Security topic for more
information.

The BufferMgr column values are as follows:

BufferMgr Description

System Information

Page 140

Row The statistics are for the row buffer manager for the table

Index page The statistics are for the index page buffer manager for the
table

BLOB block The statistics are for the BLOB block buffer manager for the
table

Published updates log block The statistics are for the published updates log block buffer
manager for the table

Related DDL Statements

Statement Description

None

System Information

Page 141

4.15 LoggedStatements Table

Structure

CREATE TABLE "LoggedStatements"
(
"ExecutedOn" TIMESTAMP,
"User" VARCHAR(40) COLLATE "ANSI_CI",
"Process" VARCHAR(40) COLLATE "ANSI_CI",
"SessionID" INTEGER,
"SessionName" VARCHAR(40) COLLATE "ANSI_CI",
"SessionDescription" CLOB COLLATE "ANSI",
"DatabaseName" VARCHAR(40) COLLATE "ANSI_CI",
"SQL" CLOB COLLATE "ANSI_CI",
"ExecutionTime" FLOAT,
"RowsAffected" INTEGER
)

Description

This table contains the SQL statements that have been logged while SQL statement logging was enabled
for ElevateDB via the ENABLE STATEMENT LOGGING statement. This information is useful in determining
which SQL statements are causing performance issues in the ElevateDB engine or ElevateDB Server.

Note
The SQL statement logging is engine-wide functionality, which means that this table represents the
slowest SQL statements across all sessions, not just the current session that is querying this table.

The current user must be granted the system-defined Administrators role in order to view this table.
Please see the User Security topic for more information.

Related DDL Statements

Statement Description

ENABLE STATEMENT LOGGING Enables SQL statement logging

DISABLE STATEMENT LOGGING Disables SQL statement logging

System Information

Page 142

4.16 ServerSessions Table

Structure

CREATE TABLE "ServerSessions"
(
"ID" INTEGER,
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Created" TIMESTAMP,
"LastConnected" TIMESTAMP,
"Connected" BOOLEAN,
"Encrypted" BOOLEAN,
"IPAddress" VARCHAR(16) COLLATE "ANSI_CI",
"User" VARCHAR(40) COLLATE "ANSI_CI",
"Process" VARCHAR(40) COLLATE "ANSI_CI"
)

CREATE INDEX "ID" ON "ServerSessions"
("ID")

CREATE INDEX "Name" ON "ServerSessions"
("Name")

Description

This table reflects the sessions that are present on the ElevateDB server that the current session is logged
in to. The current user must be granted the system-defined Administrators role in order to view this table.
Please see the User Security topic for more information.

Related DDL Statements

Statement Description

DISCONNECT SERVER SESSION Disconnects an existing server session

REMOVE SERVER SESSION Removes an existing server session

System Information

Page 143

4.17 ServerSessionLocks Table

Structure

CREATE TABLE "ServerSessionLocks"
(
"SessionID" INTEGER,
"SessionName" VARCHAR(40) COLLATE "ANSI_CI",
"DatabaseName" VARCHAR(40) COLLATE "ANSI_CI",
"ObjectName" VARCHAR(40) COLLATE "ANSI_CI",
"ObjectType" VARCHAR(15) COLLATE "ANSI_CI",
"LockType" VARCHAR(15) COLLATE "ANSI_CI",
"Number" INTEGER
)

CREATE INDEX "SessionID" ON "ServerSessionLocks"
("SessionID")

CREATE INDEX "SessionName" ON "ServerSessionLocks"
("SessionName")

CREATE INDEX "DatabaseName" ON "ServerSessionLocks"
("DatabaseName")

Description

This table reflects all locks currently acquired by all of the sessions that are present on the ElevateDB
server that the current session is logged in to. The current user must be granted the system-defined
Administrators role in order to view this table. Please see the User Security topic for more information.

The LockType column values are as follows:

LockType Description

Shared The lock is a shared table open lock

Exclusive The lock is an exclusive table open lock

Read The lock is a table read lock

Write The lock is a table write lock

Transaction The lock is a transaction table lock

Row The lock is a table row lock

Related DDL Statements

Statement Description

DISCONNECT SERVER SESSION Disconnects an existing server session

REMOVE SERVER SESSION Removes an existing server session

System Information

Page 144

System Information

Page 145

4.18 ServerSessionStatistics Table

Structure

CREATE TABLE "ServerSessionStatistics"
(
"SessionID" INTEGER,
"SessionName" VARCHAR(40) COLLATE "ANSI_CI",
"DatabaseName" VARCHAR(40) COLLATE "ANSI_CI",
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"BufferMgr" VARCHAR(40) COLLATE "ANSI_CI",
"MaxBufferSize" INTEGER,
"CurrentBufferSize" INTEGER,
"Hits" BIGINT,
"Misses" BIGINT,
"HitRatio" DECIMAL(19,2),
"Reads" BIGINT,
"BytesRead" BIGINT,
"Writes" BIGINT,
"BytesWritten" BIGINT
)

CREATE INDEX "SessionID" ON "ServerSessionStatistics"
("SessionID")

CREATE INDEX "SessionName" ON "ServerSessionStatistics"
("SessionName")

CREATE INDEX "DatabaseName" ON "ServerSessionStatistics"
("DatabaseName")

CREATE INDEX "TableName" ON "ServerSessionStatistics"
("TableName")

Description

This table reflects the table buffer manager statistics for all of the sessions that are present on the
ElevateDB server that the current session is logged in to. This information is useful in determining how
efficient the ElevateDB Server is with respect to I/O, and also how much I/O is actually taking place. For
example, a large number of reads for the row buffer manager for a table may indicate that you have an
un-optimized query or filter present in your application that is causing an inordinate number of row reads.
The current user must be granted the system-defined Administrators role in order to view this table.
Please see the User Security topic for more information.

The BufferMgr column values are as follows:

BufferMgr Description

System Information

Page 146

Row The statistics are for the row buffer manager for the table

Index page The statistics are for the index page buffer manager for the
table

BLOB block The statistics are for the BLOB block buffer manager for the
table

Published updates log block The statistics are for the published updates log block buffer
manager for the table

Related DDL Statements

Statement Description

DISCONNECT SERVER SESSION Disconnects an existing server session

REMOVE SERVER SESSION Removes an existing server session

System Information

Page 147

4.19 Users Table

Structure

CREATE TABLE "Users"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Password" VARCHAR(40) COLLATE "ANSI",
"PasswordLastChanged" TIMESTAMP,
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Users"
("Name")

Description

This table contains the defined users in an ElevateDB configuration. Each user may be assigned various
roles as well as granted individual privileges. In each new ElevateDB configuration, there is one pre-
defined System user that cannot be modified at all, and there is one pre-defined Administrator user that
can be modified or deleted. You can find out more about users and privileges in the User Security topic.

Related DDL Statements

Statement Description

CREATE USER Creates a new user

ALTER USER Alters an existing user

DROP USER Drops an existing user

RENAME USER Renames an existing user

System Information

Page 148

4.20 Roles Table

Structure

CREATE TABLE "Roles"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Roles"
("Name")

Description

This table contains the defined roles in an ElevateDB configuration. Each role may be assigned to any
defined user except for the System user, and each role can be granted privileges. Roles can make
administration must simpler by allowing one to grant privileges to a fixed set of roles, and then assign the
roles to individual users as necessary. The privileges granted to an individual user along with the privileges
inherited from roles that have been granted to the same user, are collectively referred to as the effective
privileges for the user. You can find out more information on effective privileges in the User Security topic.

Related DDL Statements

Statement Description

CREATE ROLE Creates a new role

ALTER ROLE Alters an existing role

DROP ROLE Drops an existing role

RENAME ROLE Renames an existing role

System Information

Page 149

4.21 UserRoles Table

Structure

CREATE TABLE "UserRoles"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"GrantedTo" VARCHAR(40) COLLATE "ANSI_CI",
"GrantedBy" VARCHAR(40) COLLATE "ANSI_CI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "UserRoles"
("Name")

CREATE INDEX "GrantedTo" ON "UserRoles"
("GrantedTo")

Description

This table contains the roles assigned to the users in an ElevateDB configuration. You can find out more
about users and roles in the User Security topic.

Related DDL Statements

Statement Description

GRANT ROLES Grants roles to an existing user

REVOKE ROLES Revokes roles from an existing user

System Information

Page 150

4.22 Databases Table

Structure

CREATE TABLE "Databases"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"Path" VARCHAR(255) COLLATE "ANSI_CI",
"InMemory" BOOLEAN,
"EncryptedCatalog" BOOLEAN,
"CatalogCharacterSet" VARCHAR(30) COLLATE "ANSI_CI",
"CatalogVersion" DECIMAL(19,2),
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Databases"
("Name")

Description

This table containes the defined databases in an ElevateDB configuration. Each database in ElevateDB is
defined with path information that determines the folder where the database will store its catalog and
table files.

The CatalogCharacterSet column represents the character set used by the database, and the values are as
follows:

Character Set Description

ANSI The module database the ANSI character set

Unicode The database uses the Unicode character set

Note
The CatalogCharacterSet and CatalogVersion columns are populated by reading the actual database
catalog on disk. Please see your product-specific manual for the relevant settings that allow you to
turn this feature on or off.

Related DDL Statements

Statement Description

System Information

Page 151

CREATE DATABASE Creates a new database

ALTER DATABASE Alters an existing database

DROP DATABASE Drops an existing database

RENAME DATABASE Renames an existing database

System Information

Page 152

4.23 DatabasePrivileges Table

Structure

CREATE TABLE "DatabasePrivileges"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Privilege" VARCHAR(15) COLLATE "ANSI_CI",
"GrantedTo" VARCHAR(40) COLLATE "ANSI_CI",
"GrantedBy" VARCHAR(40) COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "DatabasePrivileges"
("Name")

CREATE INDEX "GrantedTo" ON "DatabasePrivileges"
("GrantedTo")

Description

This table contains the database privileges assigned to the users in an ElevateDB configuration. You can
find out more about users and privileges in the User Security topic.

Related DDL Statements

Statement Description

GRANT PRIVILEGES Grants privileges to an existing user

REVOKE PRIVILEGES Revokes privileges from an existing user

System Information

Page 153

4.24 Jobs Table

Structure

CREATE TABLE "Jobs"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"Version" DECIMAL(19,2),
"Category" VARCHAR(15) COLLATE "ANSI_CI",
"UserName" VARCHAR(40) COLLATE "ANSI_CI",
"StartDate" DATE,
"EndDate" DATE,
"Type" VARCHAR(15) COLLATE "ANSI_CI",
"Interval" INTEGER,
"Days" VARCHAR(60) COLLATE "ANSI_CI",
"DayNumber" INTEGER,
"DayOfMonth" VARCHAR(15) COLLATE "ANSI_CI",
"Months" VARCHAR(60) COLLATE "ANSI_CI",
"StartTime" TIME,
"EndTime" TIME,
"Definition" CLOB COLLATE "ANSI",
"Enabled" BOOLEAN,
"LastRun" TIMESTAMP,
"NextRun" TIMESTAMP,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Jobs"
("Name")

Description

This table contains the defined jobs in an ElevateDB configuration. Jobs are stored procedures that don't
accept or output any parameters and are not contained within a specific database. Jobs are scheduled
when they are defined and can only be executed by an ElevateDB server. In addition, each job can be
assigned a category so that it is run on a specific ElevateDB server that is serving a particular category of
jobs.

The Type column values are as follows:

Type Description

System Information

Page 154

Once The job is scheduled to execute only once

Hourly The job is scheduled to execute every hour

Daily The job is scheduled to execute every day

Weekly The job is scheduled to execute every week

Monthly The job is scheduled to execute every month

Every X Minutes The job is scheduled to execute every X number of minutes

Every X Hours The job is scheduled to execute every X number of hours

Every X Days The job is scheduled to execute every X number of days

Every X Weeks The job is scheduled to execute every X number of weeks

At Server Start The job is scheduled to execute when the ElevateDB Server is
started

Note
The NextRun column will be NULL for any jobs that are disabled.

Related DDL Statements

Statement Description

CREATE JOB Creates a new job

ALTER JOB Alters an existing job

DROP JOB Drops an existing job

RENAME JOB Renames an existing job

ENABLE JOB Enables an existing job

DISABLE JOB Disables an existing job

ENABLE JOBS Enables all existing jobs

DISABLE JOBS Disables all existing jobs

System Information

Page 155

4.25 Stores Table

Structure

CREATE TABLE "Stores"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"Type" VARCHAR(30) COLLATE "ANSI_CI",
"Path" VARCHAR(255) COLLATE "ANSI_CI",
"Address" VARCHAR(16) COLLATE "ANSI_CI",
"Host" VARCHAR(60) COLLATE "ANSI_CI",
"Port" INTEGER,
"Service" VARCHAR(60) COLLATE "ANSI_CI",
"UserName" VARCHAR(40) COLLATE "ANSI_CI",
"Password" VARCHAR(60) COLLATE "ANSI_CI",
"RemoteStore" VARCHAR(40) COLLATE "ANSI_CI",
"Signature" VARCHAR(60) COLLATE "ANSI_CI",
"Encrypted" BOOLEAN,
"EncryptionPassword" VARCHAR(60) COLLATE "ANSI_CI",
"Compression" INTEGER,
"Timeout" INTEGER,
"Ping" BOOLEAN,
"PingInterval" INTEGER,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Stores"
("Name")

Description

This table containes the defined stores in an ElevateDB configuration. Each store in ElevateDB is defined
with path information that determines the folder where the store will manage its files.

The Type column values are as follows:

Type Description

Local The store references a local path

Remote The store references another store defined on an ElevateDB
Server

Related DDL Statements

Statement Description

System Information

Page 156

CREATE STORE Creates a new store

ALTER STORE Alters an existing store

DROP STORE Drops an existing store

RENAME STORE Renames an existing store

System Information

Page 157

4.26 StorePrivileges Table

Structure

CREATE TABLE "StorePrivileges"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Privilege" VARCHAR(15) COLLATE "ANSI_CI",
"GrantedTo" VARCHAR(40) COLLATE "ANSI_CI",
"GrantedBy" VARCHAR(40) COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "StorePrivileges"
("Name")

CREATE INDEX "GrantedTo" ON "StorePrivileges"
("GrantedTo")

Description

This table contains the store privileges assigned to the users in an ElevateDB configuration. You can find
out more about users and privileges in the User Security topic.

Related DDL Statements

Statement Description

GRANT PRIVILEGES Grants privileges to an existing user

REVOKE PRIVILEGES Revokes privileges from an existing user

System Information

Page 158

4.27 Files Table

Structure

CREATE TABLE "Files"
(
"Name" VARCHAR(255) COLLATE "ANSI_CI",
"CreatedOn" TIMESTAMP,
"ModifiedOn" TIMESTAMP,
"Size" LARGEINT)

CREATE INDEX "Name" ON "Files"
("Name")

CREATE INDEX "CreatedOn" ON "Files"
("CreatedOn")

CREATE INDEX "ModifiedOn" ON "Files"
("ModifiedOn")

Description

The files are dynamic in ElevateDB and this table reflects the files present in the current files store. The
files store can be changed or modified using the SET FILES STORE statement.

Related DDL Statements

Statement Description

SET FILES STORE Sets the current files store

COPY FILE Copies a file from one file to another file, either in the same
store or in a different store

RENAME FILE Renames a file to a different name in a store

DELETE FILE Deletes a file from a store

System Information

Page 159

4.28 Information Schema

The tables that make up the Information schema for each database are as follows:

Tables Table
TablePrivileges Table
TableColumns Table
TemporaryTables Table
Constraints Table
ConstraintColumns Table
Indexes Table
IndexColumns Table
Triggers Table
TriggerColumns Table
Views Table
ViewPrivileges Table
ViewColumns Table
TemporaryViews Table
Procedures Table
ProcedurePrivileges Table
ProcedureParams Table
Functions Table
FunctionPrivileges Table
FunctionParams Table
Dependencies Table
SchemaObjects Table
SchemaDifference Table

The metadata that these tables are based upon is stored in the catalog file (EDBDatabase.EDBCat, by
default) located in the database folder where the database was created. See the CREATE DATABASE
statement for more information on creating a database.

SQL 2003 Standard Deviations

The following areas are where ElevateDB deviates from the SQL 2003 standard:

Deviation Details

Extended Objects Indexes are an ElevateDB extension, and these objects are
not defined in the SQL 2003 standard.

System Information

Page 160

4.29 Tables Table

Structure

CREATE TABLE "Tables"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI"
"Attributes" CLOB COLLATE "ANSI",
"Version" DECIMAL(19,2),
"ReadOnly" BOOLEAN,
"Encrypted" BOOLEAN,
"RowSize" INTEGER,
"IndexPageSize" INTEGER,
"BlobBlockSize" INTEGER,
"PublishBlockSize" INTEGER,
"PublishCompression" INTEGER,
"MaxRowBufferSize" INTEGER,
"MaxIndexBufferSize" INTEGER,
"MaxBlobBufferSize" INTEGER,
"MaxPublishBufferSize" INTEGER,
"Published" BOOLEAN,
"PublishedOn" TIMESTAMP,
"PublishID" VARCHAR(60) COLLATE "ANSI_CI",
"DefaultsEnabled" BOOLEAN,
"GeneratedEnabled" BOOLEAN,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Tables"
("Name")

Description

This table contains the defined tables in an ElevateDB database.

Related DDL Statements

Statement Description

CREATE TABLE Creates a new table

ALTER TABLE Alters an existing table

DROP TABLE Drops an existing table

RENAME TABLE Renames an existing table

System Information

Page 161

4.30 TablePrivileges Table

Structure

CREATE TABLE "TablePrivileges"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Privilege" VARCHAR(15) COLLATE "ANSI_CI",
"GrantedTo" VARCHAR(40) COLLATE "ANSI_CI",
"GrantedBy" VARCHAR(40) COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "TablePrivileges"
("Name")

CREATE INDEX "GrantedTo" ON "TablePrivileges"
("GrantedTo")

Description

This table contains the table privileges assigned to the users in an ElevateDB configuration for the tables
contained within an ElevateDB database. You can find out more about users and privileges in the User
Security topic.

Related DDL Statements

Statement Description

GRANT PRIVILEGES Grants privileges to an existing user

REVOKE PRIVILEGES Revokes privileges from an existing user

System Information

Page 162

4.31 TableColumns Table

Structure

CREATE TABLE "TableColumns"
(
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Type" VARCHAR(30) COLLATE "ANSI_CI",
"Collation" VARCHAR(40) COLLATE "ANSI_CI",
"Length" INTEGER,
"Precision" INTEGER,
"Scale" INTEGER,
"BlobCompression" INTEGER,
"Nullable" BOOLEAN,
"ErrorCode" INTEGER,
"ErrorMessage" CLOB COLLATE "ANSI",
"Generated" BOOLEAN,
"GeneratedWhen" VARCHAR(15) COLLATE "ANSI_CI",
"GenerateExpr" CLOB COLLATE "ANSI",
"Identity" BOOLEAN,
"IdentitySeed" INTEGER,
"IdentityIncrement" INTEGER,
"Computed" BOOLEAN,
"ComputeExpr" CLOB COLLATE "ANSI",
"DefaultExpr" CLOB COLLATE "ANSI",
"OrdinalPos" INTEGER,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "TableName" ON "TableColumns"
("TableName")

CREATE INDEX "Name" ON "TableColumns"
("Name")

Description

This table contains the defined columns for the tables in an ElevateDB database.

The GeneratedWhen column values are as follows:

GeneratedWhen Description

Always The generated column is always updated when a row is
inserted or updated, overwriting any value that may exist for
the column

By Default The generated column is only updated when a row is inserted
if no value currently exists for the column (NULL)

System Information

Page 163

Related DDL Statements

Statement Description

CREATE TABLE Creates a new table

ALTER TABLE Alters an existing table

System Information

Page 164

4.32 TemporaryTables Table

Structure

CREATE TABLE "TemporaryTables"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"Version" DECIMAL(19,2),
"ReadOnly" BOOLEAN,
"Encrypted" BOOLEAN,
"RowSize" INTEGER,
"IndexPageSize" INTEGER,
"BlobBlockSize" INTEGER,
"MaxRowBufferSize" INTEGER,
"MaxIndexBufferSize" INTEGER,
"MaxBlobBufferSize" INTEGER
)

CREATE INDEX "Name" ON "TemporaryTables"
("Name")

Description

This table contains the defined temporary tables in an ElevateDB database.

Related DDL Statements

Statement Description

CREATE TABLE Creates a new temporary table

ALTER TABLE Alters an existing temporary table

DROP TABLE Drops an existing temporary table

RENAME TABLE Renames an existing temporary table

System Information

Page 165

4.33 Constraints Table

Structure

CREATE TABLE "Constraints"
(
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI"
"Type" VARCHAR(15) COLLATE "ANSI_CI",
"EnforcingIndex" VARCHAR(40) COLLATE "ANSI_CI",
"TargetTable" VARCHAR(40) COLLATE "ANSI_CI",
"TargetTableConstraint" VARCHAR(40) COLLATE "ANSI_CI",
"UpdateAction" VARCHAR(15) COLLATE "ANSI_CI",
"DeleteAction" VARCHAR(15) COLLATE "ANSI_CI",
"CheckExpr" CLOB COLLATE "ANSI",
"ErrorCode" INTEGER,
"ErrorMessage" CLOB COLLATE "ANSI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "TableName" ON "Constraints"
("TableName")

CREATE INDEX "Name" ON "Constraints"
("Name")

CREATE INDEX "Type" ON "Constraints"
("Type")

CREATE INDEX "TargetTable" ON "Constraints"
("TargetTable")

Description

This table contains the defined constraints for the tables in an ElevateDB database.

The Type column values are as follows:

Type Description

Primary Key The constraint is a primary key constraint

Foreign Key The constraint is a foreign key constraint

Unique The constraint is a unique constraint

Check The constraint is a check constraint

The UpdateAction and DeleteAction column values are as follows:

Action Description

System Information

Page 166

No Action This is the same as Restrict

Cascade Not supported currently

Set Null Not supported currently

Set Default Not supported currently

Restrict If a primary key or unique constraint column is updated, then
the update will be rejected if it violates any foreign key
constraints

Related DDL Statements

Statement Description

CREATE TABLE Creates a new table

ALTER TABLE Alters an existing table

System Information

Page 167

4.34 ConstraintColumns Table

Structure

CREATE TABLE "ConstraintColumns"
(
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"ConstraintName" VARCHAR(40) COLLATE "ANSI_CI",
"ColumnName" VARCHAR(40) COLLATE "ANSI_CI",
"OrdinalPos" INTEGER
)

CREATE INDEX "TableName" ON "ConstraintColumns"
("TableName")

CREATE INDEX "ConstraintName" ON "ConstraintColumns"
("ConstraintName")

CREATE INDEX "ColumnName" ON "ConstraintColumns"
("ColumnName")

Description

This table contains the columns that make up the defined primary, unique, or foreign key constraints for
the tables in an ElevateDB database.

Related DDL Statements

Statement Description

CREATE TABLE Creates a new table

ALTER TABLE Alters an existing table

System Information

Page 168

4.35 Indexes Table

Structure

CREATE TABLE "Indexes"
(
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Type" VARCHAR(15) COLLATE "ANSI_CI",
"OwnerConstraint" VARCHAR(40) COLLATE "ANSI_CI",
"IndexedWordLength" INTEGER,
"FilterTypeColumn" VARCHAR(40) COLLATE "ANSI_CI",
"WordGenerator" VARCHAR(40) COLLATE "ANSI_CI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "TableName" ON "Indexes"
("TableName")

CREATE INDEX "Name" ON "Indexes"
("Name")

CREATE INDEX "Type" ON "Indexes"
("Type")

Description

This table contains the defined indexes for the tables in an ElevateDB database.

The Type column values are as follows:

Type Description

Index The index is a normal index

Primary Key The index is used to enforce a primary key constraint, and is
maintained automatically by ElevateDB

Foreign Key The index is used to enforce a foreign key constraint, and is
maintained automatically by ElevateDB

Unique The index is used to enforce a unique constraint, and is
maintained automatically by ElevateDB

Text Index The index is a text index

Related DDL Statements

Statement Description

System Information

Page 169

CREATE INDEX Creates a new index

CREATE TEXT INDEX Creates a new text index

ALTER INDEX Alters an existing index

DROP INDEX Drops an existing index

RENAME INDEX Renames an existing index

System Information

Page 170

4.36 IndexColumns Table

Structure

CREATE TABLE "IndexColumns"
(
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"IndexName" VARCHAR(40) COLLATE "ANSI_CI",
"ColumnName" VARCHAR(40) COLLATE "ANSI_CI",
"Descending" BOOLEAN,
"Collation" VARCHAR(40) COLLATE "ANSI_CI",
"OrdinalPos" INTEGER
)

CREATE INDEX "TableName" ON "IndexColumns"
("TableName")

CREATE INDEX "IndexName" ON "IndexColumns"
("IndexName")

CREATE INDEX "ColumnName" ON "IndexColumns"
("ColumnName")

Description

This table contains the columns that make up the defined indexes for the tables in an ElevateDB database.

Related DDL Statements

Statement Description

CREATE INDEX Creates a new index

CREATE TEXT INDEX Creates a new text index

System Information

Page 171

4.37 Triggers Table

Structure

CREATE TABLE "Triggers"
(
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"ActionTime" VARCHAR(15) COLLATE "ANSI_CI",
"ActionType" VARCHAR(15) COLLATE "ANSI_CI",
"Condition" CLOB COLLATE "ANSI",
"Definition" CLOB COLLATE "ANSI",
"Enabled" BOOLEAN,
"OrdinalPos" INTEGER,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "TableName" ON "Triggers"
("TableName")

CREATE INDEX "Name" ON "Triggers"
("Name")

Description

This table contains the defined triggers for the tables in an ElevateDB database.

The ActionTime column values are as follows:

ActionTime Description

Before The trigger will be executed before the type of operation for
which the trigger is defined

After The trigger will be executed after the type of operation for
which the trigger is defined

Error The trigger will be executed after any error with the type of
operation for which the trigger is defined

The ActionType column values are as follows:

ActionType Description

Insert The trigger will be executed for any insert operation

Update The trigger will be executed for any update operation

Delete The trigger will be executed for any delete operation

All The trigger will be executed for all operations (universal
trigger)

System Information

Page 172

Related DDL Statements

Statement Description

CREATE TRIGGER Creates a new trigger

ALTER TRIGGER Alters an existing trigger

DROP TRIGGER Drops an existing trigger

RENAME TRIGGER Renames an existing trigger

System Information

Page 173

4.38 TriggerColumns Table

Structure

CREATE TABLE "TriggerColumns"
(
"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"TriggerName" VARCHAR(40) COLLATE "ANSI_CI",
"ColumnName" VARCHAR(40) COLLATE "ANSI_CI",
"OrdinalPos" INTEGER
)

CREATE INDEX "TableName" ON "TriggerColumns"
("TableName")

CREATE INDEX "TriggerName" ON "TriggerColumns"
("TriggerName")

CREATE INDEX "ColumnName" ON "TriggerColumns"
("ColumnName")

Description

This table contains the columns that make up the defined update triggers for the tables in an ElevateDB
database. Update triggers can be created so that they fire only when specific columns are updated.

Related DDL Statements

Statement Description

CREATE TRIGGER Creates a new trigger

System Information

Page 174

4.39 Views Table

Structure

CREATE TABLE "Views"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"Version" DECIMAL(19,2),
"Definition" CLOB COLLATE "ANSI",
"Updateable" BOOLEAN,
"WithCheck" BOOLEAN,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Views"
("Name")

Description

This table contains the defined views in an ElevateDB database.

Related DDL Statements

Statement Description

CREATE VIEW Creates a new view

ALTER VIEW Alters an existing view

DROP VIEW Drops an existing view

RENAME VIEW Renames an existing view

System Information

Page 175

4.40 ViewPrivileges Table

Structure

CREATE TABLE "ViewPrivileges"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Privilege" VARCHAR(15) COLLATE "ANSI_CI",
"GrantedTo" VARCHAR(40) COLLATE "ANSI_CI",
"GrantedBy" VARCHAR(40) COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "ViewPrivileges"
("Name")

CREATE INDEX "GrantedTo" ON "ViewPrivileges"
("GrantedTo")

Description

This table contains the view privileges assigned to the users in an ElevateDB configuration for the views
contained within an ElevateDB database. You can find out more about users and privileges in the User
Security topic.

Related DDL Statements

Statement Description

GRANT PRIVILEGES Grants privileges to an existing user

REVOKE PRIVILEGES Revokes privileges from an existing user

System Information

Page 176

4.41 ViewColumns Table

Structure

CREATE TABLE "ViewColumns"
(
"ViewName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Origin" VARCHAR(90) COLLATE "ANSI_CI",
"Type" VARCHAR(30) COLLATE "ANSI_CI",
"Collation" VARCHAR(40) COLLATE "ANSI_CI",
"Length" INTEGER,
"Precision" INTEGER,
"Scale" INTEGER,
"OrdinalPos" INTEGER,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "ViewName" ON "ViewColumns"
("ViewName")

CREATE INDEX "Name" ON "ViewColumns"
("Name")

Description

This table contains the defined columns for the views in an ElevateDB database.

Related DDL Statements

Statement Description

CREATE VIEW Creates a new view

System Information

Page 177

4.42 ViewIndexes Table

Structure

CREATE TABLE "ViewIndexes"
(
"ViewName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Type" VARCHAR(15) COLLATE "ANSI_CI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "TableName" ON "Indexes"
("TableName")

CREATE INDEX "Name" ON "Indexes"
("Name")

Description

This table contains the defined indexes for the non-updateable views in an ElevateDB database.

The Type column values are as follows:

Type Description

Index The index is a normal index

Related DDL Statements

Statement Description

CREATE INDEX Creates a new index

ALTER INDEX Alters an existing index

DROP INDEX Drops an existing index

RENAME INDEX Renames an existing index

System Information

Page 178

4.43 TemporaryViews Table

Structure

CREATE TABLE "TemporaryViews"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Definition" CLOB COLLATE "ANSI",
"Updateable" BOOLEAN
)

CREATE INDEX "Name" ON "TemporaryViews"
("Name")

Description

This table contains the defined temporary views in an ElevateDB database. Temporary views are used to
implement derived tables. The temporary view used to implement a derived table is dropped as soon as
the SELECT statement containing the derived table is unprepared. Please see the SELECT statement for
more information on derived tables.

Related DDL Statements

Statement Description

SELECT Creates a new temporary view via a derived table definition in
the FROM clause

System Information

Page 179

4.44 Procedures Table

Structure

CREATE TABLE "Procedures"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"Version" DECIMAL(19,2),
"Implementation" VARCHAR(15) COLLATE "ANSI_CI",
"Definition" CLOB COLLATE "ANSI",
"ModuleName" VARCHAR(60) COLLATE "ANSI_CI",
"NumParams" INTEGER,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Procedures"
("Name")

Description

This table contains the defined procedures in an ElevateDB database.

The Implementation column values are as follows:

Implementation Description

SQL The procedure is implemented in SQL

External The procedure is implemented in an external module

Related DDL Statements

Statement Description

CREATE PROCEDURE Creates a new procedure

ALTER PROCEDURE Alters an existing procedure

DROP PROCEDURE Drops an existing procedure

RENAME PROCEDURE Renames an existing procedure

System Information

Page 180

4.45 ProcedurePrivileges Table

Structure

CREATE TABLE "ProcedurePrivileges"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Privilege" VARCHAR(15) COLLATE "ANSI_CI",
"GrantedTo" VARCHAR(40) COLLATE "ANSI_CI",
"GrantedBy" VARCHAR(40) COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "ProcedurePrivileges"
("Name")

CREATE INDEX "GrantedTo" ON "ProcedurePrivileges"
("GrantedTo")

Description

This table contains the procedure privileges assigned to the users in an ElevateDB configuration for the
procedures contained within an ElevateDB database. You can find out more about users and privileges in
the User Security topic.

Related DDL Statements

Statement Description

GRANT PRIVILEGES Grants privileges to an existing user

REVOKE PRIVILEGES Revokes privileges from an existing user

System Information

Page 181

4.46 ProcedureParams Table

Structure

CREATE TABLE "ProcedureParams"
(
"ProcedureName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Mode" VARCHAR(15) COLLATE "ANSI_CI",
"Type" VARCHAR(30) COLLATE "ANSI_CI",
"Collation" VARCHAR(40) COLLATE "ANSI_CI",
"Length" INTEGER,
"Precision" INTEGER,
"Scale" INTEGER,
"OrdinalPos" INTEGER
)

CREATE INDEX "ProcedureName" ON "ProcedureParams"
("ProcedureName")

CREATE INDEX "Name" ON "ProcedureParams"
("Name")

Description

This table contains the defined parameters for the procedures in an ElevateDB database.

The Mode column values are as follows:

Mode Description

Unknown The parameter type is unknown

In The parameter is an input parameter

Out The parameter is an output parameter

InOut The parameter is both an input and output parameter

Related DDL Statements

Statement Description

CREATE PROCEDURE Creates a new procedure

System Information

Page 182

4.47 Functions Table

Structure

CREATE TABLE "Functions"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Attributes" CLOB COLLATE "ANSI",
"Version" DECIMAL(19,2),
"Implementation" VARCHAR(15) COLLATE "ANSI_CI",
"Definition" CLOB COLLATE "ANSI",
"ModuleName" VARCHAR(60) COLLATE "ANSI_CI",
"NumParams" INTEGER,
"Type" VARCHAR(30) COLLATE "ANSI_CI",
"Collation" VARCHAR(40) COLLATE "ANSI_CI",
"Length" INTEGER,
"Precision" INTEGER,
"Scale" INTEGER,
"CreateSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "Functions"
("Name")

Description

This table contains the defined functions in an ElevateDB database.

The Implementation column values are as follows:

Implementation Description

SQL The function is implemented in SQL

External The function is implemented in an external module

Related DDL Statements

Statement Description

CREATE FUNCTION Creates a new function

ALTER FUNCTION Alters an existing function

DROP FUNCTION Drops an existing function

RENAME FUNCTION Renames an existing function

System Information

Page 183

4.48 FunctionPrivileges Table

Structure

CREATE TABLE "FunctionPrivileges"
(
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Privilege" VARCHAR(15) COLLATE "ANSI_CI",
"GrantedTo" VARCHAR(40) COLLATE "ANSI_CI",
"GrantedBy" VARCHAR(40) COLLATE "ANSI_CI"
)

CREATE INDEX "Name" ON "FunctionPrivileges"
("Name")

CREATE INDEX "GrantedTo" ON "FunctionPrivileges"
("GrantedTo")

Description

This table contains the function privileges assigned to the users in an ElevateDB configuration for the
functions contained within an ElevateDB database. You can find out more about users and privileges in the
User Security topic.

Related DDL Statements

Statement Description

GRANT PRIVILEGES Grants privileges to an existing user

REVOKE PRIVILEGES Revokes privileges from an existing user

System Information

Page 184

4.49 FunctionParams Table

Structure

CREATE TABLE "FunctionParams"
(
"FunctionName" VARCHAR(40) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Description" CLOB COLLATE "ANSI",
"Mode" VARCHAR(15) COLLATE "ANSI_CI",
"Type" VARCHAR(30) COLLATE "ANSI_CI",
"Collation" VARCHAR(40) COLLATE "ANSI_CI",
"Length" INTEGER,
"Precision" INTEGER,
"Scale" INTEGER,
"OrdinalPos" INTEGER
)

CREATE INDEX "FunctionName" ON "FunctionParams"
("FunctionName")

CREATE INDEX "Name" ON "FunctionParams"
("Name")

Description

This table contains the defined parameters for the functions in an ElevateDB database.

The Mode column values are as follows:

Mode Description

Unknown The parameter type is unknown

In The parameter is an input parameter

Out The parameter is an output parameter

InOut The parameter is both an input and output parameter

Related DDL Statements

Statement Description

CREATE FUNCTION Creates a new function

System Information

Page 185

4.50 Dependencies Table

Structure

CREATE TABLE "Dependencies"
(
"ParentName" VARCHAR(40) COLLATE "ANSI_CI",
"ParentType" VARCHAR(15) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Type" VARCHAR(15) COLLATE "ANSI_CI",
"DependentParentName" VARCHAR(40) COLLATE "ANSI_CI",
"DependentParentType" VARCHAR(15) COLLATE "ANSI_CI",
"DependentName" VARCHAR(40) COLLATE "ANSI_CI",
"DependentType" VARCHAR(15) COLLATE "ANSI_CI"
)

CREATE INDEX "ParentName" ON "Dependencies"
("ParentName")

CREATE INDEX "ParentType" ON "Dependencies"
("ParentType")

CREATE INDEX "Name" ON "Dependencies"
("Name")

CREATE INDEX "Type" ON "Dependencies"
("Type")

CREATE INDEX "DependentParentName" ON "Dependencies"
("DependentParentName")

CREATE INDEX "DependentParentType" ON "Dependencies"
("DependentParentType")

CREATE INDEX "DependentName" ON "Dependencies"
("DependentName")

CREATE INDEX "DependentType" ON "Dependencies"
("DependentType")

Description

This table contains the dependencies for all objects in an ElevateDB database.

The ParentType, Type, DependentParentType, and DependentType column values are as follows:

Type Description

System Information

Page 186

Schema The object is a schema

Table The object is a table

Column The object is a column

Constraint The object is a constraint

Trigger The object is an trigger

Index The object is an index

View The object is a view

Procedure The object is a procedure

Function The object is a function

Related DDL Statements

Statement Description

CREATE TABLE Creates a new table

CREATE TRIGGER Creates a new trigger

CREATE INDEX Creates a new index

CREATE VIEW Creates a new view

CREATE PROCEDURE Creates a new procedure

CREATE FUNCTION Creates a new function

System Information

Page 187

4.51 SchemaObjects Table

Structure

CREATE TABLE "SchemaObjects"
(
"ParentName" VARCHAR(40) COLLATE "ANSI_CI",
"ParentType" VARCHAR(15) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Type" VARCHAR(15) COLLATE "ANSI_CI",
"CreateSQL" CLOB COLLATE "ANSI_CI",
"PostCreateSQL" CLOB COLLATE "ANSI_CI",
"PreDropSQL" CLOB COLLATE "ANSI_CI",
"DropSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "ParentName" ON "SchemaObjects"
("ParentName")

CREATE INDEX "ParentType" ON "SchemaObjects"
("ParentType")

CREATE INDEX "Name" ON "SchemaObjects"
("Name")

CREATE INDEX "Type" ON "SchemaObjects"
("Type")

Description

This table contains all objects in an ElevateDB database in their dependency-sensitive creation order. This
table can be used to generate a script for creating/dropping all objects in a database in a manner that will
not generate any dependency errors.

In order to generate a proper CREATE script, simply navigate this table from the first row to the last row,
using the CreateSQL column for the CREATE SQL statements for each object. After this initial pass,
navigate this table again from the first row to the last row, using the PostCreateSQL column for any
remaining ALTER SQL statements that may exist for dealing with objects that contain mutual
depdendencies between each other, such as the case with two tables that have foreign keys that refer to
the other table.

Note
If you wish to include populating tables with existing rows in your CREATE script, you should do so
before including any PostCreateSQL statements that may exist.

In order to generate a proper DROP script, simply navigate this table in reverse order from the last row to
the first row, using the PreDropSQL column for any ALTER SQL statements that may exist for dealing with
objects that contain mutual dependencies between each other, and need to have these dependencies
removed before the objects can be dropped. After this initial pass, navigate this table again in reverse
order from the last row to the first row, using the DropSQL column for the DROP SQL statements for each

System Information

Page 188

object.

Note
Sub-objects such as indexes and triggers for tables are not specified in this table. Because such
objects are not dependency-sensitive, they can be created according to the order that they appear
in in their corresponding system information table such as the Indexes and Triggers tables. Simply
query these tables for a given parent table name to retrieve the list of sub-objects.

The ParentType and Type column values are as follows:

Type Description

Table The object is a table

View The object is a view

Procedure The object is a procedure

Function The object is a function

Related DDL Statements

Statement Description

CREATE TABLE Creates a new table

CREATE TRIGGER Creates a new trigger

CREATE INDEX Creates a new index

CREATE VIEW Creates a new view

CREATE PROCEDURE Creates a new procedure

CREATE FUNCTION Creates a new function

DROP TABLE Drops an existing table

DROP TRIGGER Drops an existing trigger

DROP INDEX Drops an existing index

DROP VIEW Drops an existing view

DROP PROCEDURE Drops an existing procedure

DROP FUNCTION Drops an existing function

System Information

Page 189

4.52 SchemaDifference Table

Structure

CREATE TABLE "SchemaDifference"
(
"ParentName" VARCHAR(40) COLLATE "ANSI_CI",
"ParentType" VARCHAR(15) COLLATE "ANSI_CI",
"Name" VARCHAR(40) COLLATE "ANSI_CI",
"Type" VARCHAR(15) COLLATE "ANSI_CI",
"AlterSQL" CLOB COLLATE "ANSI_CI"
)

CREATE INDEX "ParentName" ON "SchemaDifference"
("ParentName")

CREATE INDEX "ParentType" ON "SchemaDifference"
("ParentType")

CREATE INDEX "Name" ON "SchemaDifference"
("Name")

CREATE INDEX "Type" ON "SchemaDifference"
("Type")

Description

This table is populated for the source database when the COMPARE DATABASE statement is executed.
The contents of the table reflect the minimal difference between the source database and the target
database, and are in the proper dependency order. This table can be used to generate a script for altering
objects in a database so that they are equivalent to the target databaes, and in a manner that will not
generate any dependency errors.

Note
This table is re-populated every time the COMPARE DATABASE statement is executed. If an object
requires multiple statements for creating, altering, or dropping sub-objects (such as
indexes/triggers for tables), then each statement will be separated by a blank line and terminated
with the statement terminator character specified in the COMPARE DATABASE statement (or '!', if
no statement terminator character is specified).

The ParentType and Type column values are as follows:

Type Description

Table The object is a table

View The object is a view

Procedure The object is a procedure

Function The object is a function

System Information

Page 190

Related DDL Statements

Statement Description

CREATE TABLE Creates a new table

CREATE TRIGGER Creates a new trigger

CREATE INDEX Creates a new index

CREATE VIEW Creates a new view

CREATE PROCEDURE Creates a new procedure

CREATE FUNCTION Creates a new function

ALTER TABLE Alters an existing table

ALTER TRIGGER Alters an existing trigger

ALTER INDEX Alters an existing index

ALTER VIEW Alters an existing view

ALTER PROCEDURE Alters an existing procedure

ALTER FUNCTION Alters an existing function

DROP TABLE Drops an existing table

DROP TRIGGER Drops an existing trigger

DROP INDEX Drops an existing index

DROP VIEW Drops an existing view

DROP PROCEDURE Drops an existing procedure

DROP FUNCTION Drops an existing function

System Information

Page 191

This page intentionally left blank

DDL Statements

Page 192

Chapter 5
DDL Statements

5.1 Introduction

DDL (data definition language) statements are used to create, alter, or drop objects in or from an
ElevateDB configuration or database. This section of the manual details the available DDL statements in
ElevateDB.

Notation

The notation used in the syntax section for each DDL statement is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

DDL Statements

Page 193

5.2 CREATE DATABASE

Creates a new database.

Syntax

CREATE DATABASE <Name>
PATH <Path>|IN MEMORY
[ENCRYPTED CATALOG|UNENCRYPTED CATALOG]
[DESCRIPTION <Description>]
[ATTRIBUTES <CustomAttributes>]

<Path> = Any valid operating system path

Usage

Use this statement to create a new database. If the path specified for the database is not valid, then
ElevateDB will attempt to create the path. Specifying the IN MEMORY keywords instead of a path will
result in the database being created in memory.

Note
As of 2.03 Build 14, if you specify a relative path for an on-disk (not in-memory) database, the
relative path will be interpreted as relative to the current configuration file path setting for the
current session. For example, given a configuration file path of 'C:\MyApplication', the database
path 'MyDatabase' will be interpreted as 'C:\MyApplication\MyDatabase'.

The ENCRYPTED CATALOG clause can be used to indicate that the catalog for the database should be
encrypted on disk.

Note
Using the UNENCRYPTED CATALOG clause is the same as not specifying the ENCRYPTED CATALOG
clause, and is present for compatibility with the CREATE DATABASE syntax.

Examples

-- The following statement creates a Support database using a
-- path name without a drive letter.

CREATE DATABASE "Support"
PATH '\support\data'
DESCRIPTION 'Support Database'

-- The following statement creates an Accounting database using a
-- path name with a drive letter.

CREATE DATABASE "Accounting"

DDL Statements

Page 194

PATH 'g:\acctng\data'
DESCRIPTION 'Accounting Database'

-- The following statement creates an Accounting database using a
-- relative path name. The database will be located in the 'data'
-- subdirectory under the defined configuration path.

CREATE DATABASE "Accounting"
PATH 'data'
DESCRIPTION 'Accounting Database'

-- The following statement creates an Accounting database using a
-- relative path name. The database will be located in the same
-- directory as the defined configuration path

CREATE DATABASE "Accounting"
PATH '.'
DESCRIPTION 'Accounting Database'

-- The following statement creates a Tracks database in memory

CREATE DATABASE "Tracks"
IN MEMORY
DESCRIPTION 'Song Tracks Database'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 195

5.3 ALTER DATABASE

Alters an existing database.

Syntax

ALTER DATABASE <Name>
PATH <Path>|IN MEMORY
[ENCRYPTED CATALOG|UNENCRYPTED CATALOG]
[DESCRIPTION <Description>]
[ATTRIBUTES <CustomAttributes>]

Usage

Use this statement to alter an existing database. The options are the same as those for the CREATE
DATABASE statement.

Note
All clauses after the PATH clause are optional. If they are not specified, then they will not be altered
and will stay the same as before the ALTER DATABASE statement was executed.

Examples

-- The following statement changes the description of the Support database.

ALTER DATABASE "Support"
PATH '\support\data'
DESCRIPTION 'Support Database for All Applications'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 196

5.4 DROP DATABASE

Drops an existing database.

Syntax

DROP DATABASE <Name>
[KEEP CONTENTS]

Usage

Use this statement to drop a database.

Warning
Dropping a database will drop all tables and the entire catalog for the database specified. This
means that all data and metadata for the database will be permanently deleted. However, you can
keep the catalog and tables but remove the database from the configuration by specifying the KEEP
CONTENTS clause.

Examples

-- The following statement drops the Support database.

DROP DATABASE "Support"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 197

5.5 RENAME DATABASE

Renames an existing database.

Syntax

RENAME DATABASE <Name> TO <Name>

Usage

Use this statement to rename a database.

Examples

-- The following statement renames the Support
-- database to MainSupport

RENAME DATABASE "Support" TO "MainSupport"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 198

5.6 CREATE USER

Creates a new user.

Syntax

CREATE USER <Name>
PASSWORD <Password>
[DESCRIPTION <Description>]
[ATTRIBUTES <CustomAttributes>]

Usage

Use this statement to create a new user.

Warning
The password is sent over a network as plain text when this statement is used with a non-encrypted
connection to the ElevateDB server.

Examples

-- The following statement creates a new user "Joe Smith".

CREATE USER "JoeSmith"
PASSWORD 'Test1043'
DESCRIPTION 'Joe Smith'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 199

5.7 ALTER USER

Alters an existing user.

Syntax

ALTER USER <Name>
PASSWORD <Password>
[DESCRIPTION <Description>]
[ATTRIBUTES <CustomAttributes>]

Usage

Use this statement to alter an existing user.

Warning
The password is sent over a network as plain text when this statement is used with a non-encrypted
connection to the ElevateDB server.

Note
All clauses after the PASSWORD clause are optional. If they are not specified, then they will not be
altered and will stay the same as before the ALTER USER statement was executed.

Examples

-- The following statement changes the password of
-- the "Joe Smith" user.

ALTER USER "Joe Smith"
PASSWORD 'New1030'

Required Privileges

The current user must be granted the system-defined Administrators role or be logged in as the same user
that is being altered in order to execute this statement. Please see the User Security topic for more
information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DDL Statements

Page 200

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 201

5.8 DROP USER

Drops an existing user.

Syntax

DROP USER <Name>

Usage

Use this statement to drop a user.

Examples

-- The following statement drops the "Joe Smith" user.

DROP USER "Joe Smith"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 202

5.9 RENAME USER

Renames an existing user.

Syntax

RENAME USER <Name> TO <Name>

Usage

Use this statement to rename a user.

Examples

-- The following statement renames the "Joe Smith"
-- user as "John Doe"

RENAME USER "Joe Smith" TO "John Doe"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 203

5.10 CREATE ROLE

Creates a new role.

Syntax

CREATE ROLE <Name>
[DESCRIPTION <Description>]
[ATTRIBUTES <CustomAttributes>]

Usage

Use this statement to create a new role. Roles can be granted privileges and then granted to users. This
makes it very quick and easy to modify the privileges for a group of users without being force to modify
the privileges for each user individually.

Examples

-- The following statement creates a Cashier role.

CREATE ROLE "Cashier"
DESCRIPTION 'Cashier Role'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

ATTRIBUTES The ATTRIBUTES clause is an ElevateDB extension.

WITH ADMIN The WITH ADMIN clause is not supported.

DDL Statements

Page 204

5.11 ALTER ROLE

Alters an existing role.

Syntax

ALTER ROLE <Name>
[DESCRIPTION <Description>]
[ATTRIBUTES <CustomAttributes>]

Use this statement to alter an existing role.

Note
All clauses are optional. If they are not specified, then they will not be altered and will stay the
same as before the ALTER ROLE statement was executed.

-- The following statement changes the description of the Cashier role.

ALTER ROLE "Cashier"
DESCRIPTION 'Cashier role'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 205

5.12 DROP ROLE

Drops an existing role.

Syntax

DROP ROLE <Name>

Usage

Use this statement to drop a role.

Warning
Dropping a role which has been assigned to existing users may mean that the users will cease to
have the proper privileges required to complete their necessary tasks.

Examples

-- The following statement drops the Cashier role.

DROP ROLE "Cashier"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

DDL Statements

Page 206

5.13 RENAME ROLE

Renames an existing role.

Syntax

RENAME ROLE <Name> TO <Name>

Usage

Use this statement to rename a role.

Examples

-- The following statement renames the Cashier
-- role to the Clerk role

RENAME ROLE "Cashier" TO "Clerk"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 207

5.14 GRANT PRIVILEGES

Grants privileges on a given object to a user or role.

Syntax

GRANT <PrivilegeName> [,<PrivilegeName>]
ON <ObjectName>
TO <Authorization> [,<Authorization>]

<PrivilegeName> =

ALL PRIVILEGES|
SELECT|
INSERT|
UPDATE|
DELETE|
CREATE|
ALTER|
DROP|
MAINTAIN|
BACKUP|
RESTORE|
EXECUTE

<ObjectName> =

DATABASE <DatabaseName>|
STORE <StoreName>|
TABLE <TableName>|
VIEW <ViewName>|
PROCEDURE <ProcedureName>|
FUNCTION <FunctionName>

<Authorization> = <UserName>|<RoleName>

Usage

Use this statement to grant privileges to a user or role.

Examples

-- The following statement grants SELECT privileges
-- on the EmployeesList view to the system-defined
-- Public role which, by default, includes all users.

GRANT SELECT ON VIEW "EmployeesList"
TO "Public"

Required Privileges

DDL Statements

Page 208

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

WITH HIERARCHY OPTION ElevateDB does not support the WITH HIERARCHY OPTION
clause.

WITH GRANT OPTION ElevateDB does not support the WITH GRANT OPTION clause.
Only administrators can grant privileges and roles in
ElevateDB.

GRANTED BY ElevateDB does not support the GRANTED BY clause. The
grantor in ElevateDB is always the administrator executing the
GRANT statement.

Privileges ElevateDB does not support the REFERENCES, USAGE,
TRIGGER, and UNDER privileges, and adds the CREATE,
ALTER, DROP, MAINTAIN, BACKUP, and RESTORE privileges
as extensions.

DDL Statements

Page 209

5.15 REVOKE PRIVILEGES

Revokes privileges on a given object from a user or role.

Syntax

REVOKE <PrivilegeName> [,<PrivilegeName>]
ON <ObjectName>
FROM <Authorization> [,<Authorization>]

<PrivilegeName> =

ALL PRIVILEGES|
SELECT|
INSERT|
UPDATE|
DELETE|
CREATE|
ALTER|
DROP|
MAINTAIN|
BACKUP|
RESTORE|
EXECUTE

<ObjectName> =

DATABASE <DatabaseName>|
STORE <StoreName>|
TABLE <TableName>|
VIEW <ViewName>|
PROCEDURE <ProcedureName>|
FUNCTION <FunctionName>

<Authorization> = <UserName>|<RoleName>

Usage

Use this statement to revoke privileges from a user or role.

Examples

-- The following statement revokes SELECT privileges
-- on the EmployeesList view from the system-defined
-- Public role which, by default, includes all users.

REVOKE SELECT ON VIEW "EmployeesList"
FROM "Public"

Required Privileges

DDL Statements

Page 210

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

HIERARCHY OPTION FOR ElevateDB does not support the HIERARCHY OPTION FOR
clause.

GRANT OPTION FOR ElevateDB does not support the GRANT OPTION FOR clause.
Only administrators can revoke privileges and roles in
ElevateDB.

GRANTED BY ElevateDB does not support the GRANTED BY clause. The
grantor in ElevateDB is always the administrator executing the
GRANT statement.

RESTRICT or CASCADE ElevateDB does not support the RESTRICT or CASCADE
clauses.

Privileges ElevateDB does not support the REFERENCES, USAGE,
TRIGGER, and UNDER privileges, and adds the CREATE,
ALTER, DROP, MAINTAIN, BACKUP, and RESTORE privileges
as extensions.

DDL Statements

Page 211

5.16 GRANT ROLES

Grants roles to a given user.

Syntax

GRANT <RoleName> [,<RoleName>]
TO <Authorization> [,<Authorization>]

<Authorization> = <UserName>

Usage

Use this statement to grant a role to a user.

Examples

-- The following statement grants the Administrators
-- role to the user "Joe Smith".

GRANT "Administrators" TO "Joe Smith"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

WITH ADMIN OPTION ElevateDB does not support the WITH ADMIN OPTION clause.
Only administrators can grant privileges and roles in
ElevateDB.

GRANTED BY ElevateDB does not support the GRANTED BY clause. The
grantor in ElevateDB is always the administrator executing the
GRANT statement.

DDL Statements

Page 212

5.17 REVOKE ROLES

Revokes roles from a given user.

Syntax

REVOKE <RoleName> [,<RoleName>]
FROM <Authorization> [,<Authorization>]

<Authorization> = <UserName>

Usage

Use this statement to revoke a role from a user.

Examples

-- The following statement revokes the Administrators
-- role from the user "Joe Smith".

REVOKE "Administrators" FROM "Joe Smith"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

ADMIN OPTION FOR ElevateDB does not support the ADMIN OPTION FOR clause.
Only administrators can revoke privileges and roles in
ElevateDB.

GRANTED BY ElevateDB does not support the GRANTED BY clause. The
grantor in ElevateDB is always the administrator executing the
GRANT statement.

RESTRICT or CASCADE ElevateDB does not support the RESTRICT or CASCADE
clauses.

DDL Statements

Page 213

5.18 CREATE JOB

Creates a new job.

Syntax

CREATE JOB <Name>
RUN AS <UserName>
FROM <StartDate> TO <EndDate>
<IntervalDefinition>
[CATEGORY <CategoryName>]
<BodyDefinition>
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[ATTRIBUTES <CustomAttributes>]

<BodyDefinition> =

BEGIN
 [<Declaration>;]
 [<Declaration>;]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION
 [<Statement>;]]
END

<IntervalDefinition> =

<IntervalType>|<SpecificInterval>

<IntervalType> =

ONCE|HOURLY|DAILY|WEEKLY|MONTHLY|AT SERVER START
[ON <DaysDefinition>|ON <DaysDefinition> OF <MonthsDefinition>
BETWEEN <StartTime> AND <EndTime>]

<SpecificInterval> =

EVERY <Interval> MINUTES|HOURS|DAYS|WEEKS
ON <DaysDefinition>
BETWEEN <StartTime> AND <EndTime>

HOURLY/DAILY/WEEKLY/EVERY <Interval> MINUTES/HOURS/WEEKS Interval

<DaysDefinition> =

[MON] [,TUE] [,WED]....

MONTHLY Interval

<DaysDefinition> =

DAY <DayNumber>|
FIRST|SECOND|THIRD|FOURTH|LAST MON|TUE|WED|THU|FRI|SAT|SUN

DDL Statements

Page 214

<DayNumber> = 1..31

<MonthsDefinition> =

[JAN] [,FEB] [,MAR] [,APR]...

Usage

Use this statement to create a new job. Jobs are configuration-level procedures that are executed, by
default, within the context of the system-defined Configuration database as the current database. Jobs
accept no parameters and cannot return cursors or values.

Examples

-- The following job backs up all tables in all databases
-- defined in the current system at 11:00 PM every evening.

CREATE JOB Backup
RUN AS "System"
FROM DATE '2006-01-01' TO DATE '2010-12-31'
DAILY
BETWEEN TIME '11:00 PM' AND TIME '11:30 PM'
CATEGORY 'Backup'
BEGIN
 DECLARE DBCursor CURSOR FOR DBStmt;
 DECLARE DBName VARCHAR DEFAULT '';

 PREPARE DBStmt FROM 'SELECT * FROM Databases';

 OPEN DBCursor;

 FETCH FIRST FROM DBCursor ('Name') INTO DBName;

 WHILE NOT EOF(DBCursor) DO
 IF (DBName <> 'Configuration') THEN
 EXECUTE IMMEDIATE 'BACKUP DATABASE "' + DBName + '" AS "' +
 CAST(CURRENT_DATE AS VARCHAR(10)) +
 '-' + DBName + '" TO STORE "Backups" INCLUDE
 CATALOG';
 END IF;
 FETCH NEXT FROM DBCursor ('Name') INTO DBName;
 END WHILE;

 CLOSE DBCursor;
END

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

DDL Statements

Page 215

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 216

5.19 ALTER JOB

Alters an existing job.

Syntax

ALTER JOB <Name>
RUN AS <UserName>
FROM <StartDate> TO <EndDate>
<IntervalDefinition>
[CATEGORY <CategoryName>]
<BodyDefinition>
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[ATTRIBUTES <CustomAttributes>]

<BodyDefinition> =

BEGIN
 [<Declaration>;]
 [<Declaration>;]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION
 [<Statement>;]]
END

<IntervalDefinition> =

<IntervalType>|<SpecificInterval>

<IntervalType> =

ONCE|HOURLY|DAILY|WEEKLY|MONTHLY|AT SERVER START
[ON <DaysDefinition>|ON <DaysDefinition> OF <MonthsDefinition>
BETWEEN <StartTime> AND <EndTime>]

<SpecificInterval> =

EVERY <Interval> MINUTES|HOURS|DAYS|WEEKS
ON <DaysDefinition>
BETWEEN <StartTime> AND <EndTime>

HOURLY/DAILY/WEEKLY/EVERY <Interval> MINUTES/HOURS/WEEKS Interval

<DaysDefinition> =

[MON] [,TUE] [,WED]....

MONTHLY Interval

<DaysDefinition> =

DAY <DayNumber>|
FIRST|SECOND|THIRD|FOURTH|LAST MON|TUE|WED|THU|FRI|SAT|SUN

DDL Statements

Page 217

<DayNumber> = 1..31

<MonthsDefinition> =

[JAN] [,FEB] [,MAR] [,APR]...

Usage

Use this statement to alter an existing job.

Note
All clauses after the job definition are optional. If they are not specified, then they will not be
altered and will stay the same as before the ALTER JOB statement was executed.

Examples

-- The following statement changes the run time
-- of the Backup job.

ALTER JOB Backup
RUN AS "System"
FROM DATE '2006-01-01' TO DATE '2010-12-31'
DAILY
BETWEEN TIME '12:00 AM' AND TIME '12:30 AM'
CATEGORY 'Backup'
BEGIN
 DECLARE DBCursor CURSOR FOR DBStmt;
 DECLARE DBName VARCHAR DEFAULT '';

 PREPARE DBStmt FROM 'SELECT * FROM Databases';

 OPEN DBCursor;

 FETCH FIRST FROM DBCursor ('Name') INTO DBName;

 WHILE NOT EOF(DBCursor) DO
 IF (DBName <> 'Configuration') THEN
 EXECUTE IMMEDIATE 'BACKUP DATABASE "' + DBName + '" AS "' +
 CAST(CURRENT_DATE AS VARCHAR(10)) +
 '-' + DBName + '" TO STORE "Backups" INCLUDE
 CATALOG';
 END IF;
 FETCH NEXT FROM DBCursor ('Name') INTO DBName;
 END WHILE;

 CLOSE DBCursor;
END

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this

DDL Statements

Page 218

statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 219

5.20 DROP JOB

Drops an existing job.

Syntax

DROP JOB <Name>

Usage

Use this statement to drop a job.

Examples

-- The following statement drops the Backup job.

DROP JOB "Backup"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 220

5.21 RENAME JOB

Renames an existing job.

Syntax

RENAME JOB <Name> TO <Name>

Usage

Use this statement to rename a job.

Examples

-- The following statement renames the Backup
-- job to BackupDB

RENAME JOB "Backup" TO "BackupDB"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 221

5.22 ENABLE JOB

Enables an existing job.

Syntax

ENABLE JOB <Name>

Usage

Use this statement to enable a job (if disabled).

Note
This is an in-memory operation and does not persist in the ElevateDB Server configuration. Once
the ElevateDB Server is restarted, all jobs will be enabled, by default.

Examples

-- The following statement enables the Backup job

ENABLE JOB "Backup"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 222

5.23 DISABLE JOB

Disables an existing job.

Syntax

DISABLE JOB <Name>

Usage

Use this statement to disable a job (if enabled).

Note
This is an in-memory operation and does not persist in the ElevateDB Server configuration. Once
the ElevateDB Server is restarted, all jobs will be enabled, by default.

Examples

-- The following statement disables the Backup job

DISABLE JOB "Backup"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 223

5.24 ENABLE JOBS

Enables all existing jobs.

Syntax

ENABLE JOBS

Usage

Use this statement to enable all jobs. If any of the jobs are already enabled, then this statement does
nothing for those jobs.

Note
This is an in-memory operation and does not persist in the ElevateDB Server configuration. Once
the ElevateDB Server is restarted, all jobs will be enabled, by default.

Examples

-- The following statement enables all jobs

ENABLE JOBS

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 224

5.25 DISABLE JOBS

Disables all existing jobs.

Syntax

DISABLE JOBS

Usage

Use this statement to disable all jobs. If any of the jobs are already disabled, then this statement does
nothing for those jobs.

Note
This is an in-memory operation and does not persist in the ElevateDB Server configuration. Once
the ElevateDB Server is restarted, all jobs will be enabled, by default.

Examples

-- The following statement disables all jobs

DISABLE JOBS

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 225

5.26 RESET JOB

Resets an existing job.

Syntax

RESET JOB <Name>

Usage

Use this statement to reset a job. When a job is reset, the last run timestamp for the job is cleared.
Subsequently, ElevateDB treats the job as never having been executed for scheduling purposes.

Note
This is a persistent change that is saved in the current ElevateDB Server configuration file.

Examples

-- The following statement resets the Backup job

RESET JOB "Backup"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 226

5.27 CREATE STORE

Creates a new store.

Syntax

CREATE STORE <StoreName> AS <LocalStoreDefinition>|<RemoteStoreDefinition>
[DESCRIPTION <Description>]
[ATTRIBUTES <CustomAttributes>]

<LocalStoreDefinition> =

LOCAL PATH <Path>

<Path> = Any valid operating system path

<RemoteStoreDefinition> =

REMOTE ADDRESS <IPAddress>|HOST <Host>
PORT <Port>|SERVICE <Service>
USER <UserName>
PASSWORD <Password>
STORE <RemoteStoreName>
[SIGNATURE <Signature>]
[ENCRYPTED]
[ENCRYPTION PASSWORD <EncryptionPassword>]
[COMPRESSION <Compression>]
[TIMEOUT <Timeout (seconds)>]
[PING <PingInterval (seconds)>]

<Compression> = 0..9

Usage

Use this statement to create a new store. Use the LOCAL keyword to create a local store that references a
path accessible from the local process. If the path specified for a local store is not valid, then ElevateDB
will attempt to create the path. Use the REMOTE keyword to create a remote store that references a store
located on an ElevateDB Server specified by the ADDRESS or HOST, and PORT or SERVICE, keywords. The
remote store name is not validated until the store is opened. If the remote store does not exist when the
store is opened, then an appropriate error message will be displayed.

Note
As of 2.03 Build 14, if you specify a relative path for a store, the relative path will be interpreted as
relative to the current configuration file path setting for the current session. For example, given a
configuration file path of 'C:\MyApplication', the store path 'MyStore' will be interpreted as
'C:\MyApplication\MyStore'.

Examples

DDL Statements

Page 227

-- The following statement creates a local Backups
-- store using a path name without a drive letter.

CREATE STORE "Backups" AS
LOCAL PATH '\support\backups'
DESCRIPTION 'Support Database Backups'

-- The following statement creates a remote RemoteOffice store
-- that references the SavedUpdates store on a remote ElevateDB
-- Server.

CREATE STORE "RemoteOffice" AS
REMOTE ADDRESS '64.65.248.118' PORT 12010
USER "MainOffice"
PASSWORD 'LogMeIn'
STORE "SavedUpdates"
DESCRIPTION 'Remote Office Updates'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 228

5.28 ALTER STORE

Alters an existing store.

Syntax

ALTER STORE <StoreName> AS <LocalStoreDefinition>|<RemoteStoreDefinition>
[DESCRIPTION <Description>]
[ATTRIBUTES <CustomAttributes>]

<LocalStoreDefinition> =

LOCAL PATH <Path>

<Path> = Any valid operating system path

<RemoteStoreDefinition> =

REMOTE ADDRESS <IPAddress>|HOST <Host>
PORT <Port>|SERVICE <Service>
USER <UserName>
PASSWORD <Password>
STORE <RemoteStoreName>
[SIGNATURE <Signature>]
[ENCRYPTED]
[ENCRYPTION PASSWORD <EncryptionPassword>]
[COMPRESSION <Compression>]
[TIMEOUT <Timeout (seconds)>]
[PING <PingInterval (seconds)>]

<Compression> = 0..9

Usage

Use this statement to alter an existing store.

Note
All clauses after the local or remote store definition are optional. If they are not specified, then they
will not be altered and will stay the same as before the ALTER STORE statement was executed.

Examples

-- The following statement alters a local Backups
-- store to use a new path.

ALTER STORE "Backups" AS
LOCAL PATH 'c:\backups'
DESCRIPTION 'Support Database Backups'

DDL Statements

Page 229

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 230

5.29 DROP STORE

Drops an existing store.

Syntax

DROP STORE <Name>
[KEEP CONTENTS]

Usage

Use this statement to drop a store.

Warning
Dropping a store will delete all of the files present in the store along with the store directory if the
store is a local store. However, you can keep the files but remove the store from the configuration
by specifying the KEEP CONTENTS clause.

Examples

-- The following statement drops the Backups store.

DROP STORE "Backups"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 231

5.30 RENAME STORE

Renames an existing store.

Syntax

RENAME STORE <Name> TO <Name>

Usage

Use this statement to rename a store.

Examples

-- The following statement renames the Backups
-- store to DBBackups

RENAME STORE "Backups" TO "DBBackups"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 232

5.31 CREATE MODULE

Creates (registers) a new external module.

Syntax

CREATE MODULE <Name>
PATH <ExternalModuleFile>
[DESCRIPTION <Description>]

<ExternalModuleFile> = Path/file name of DLL

Usage

Use this statement to create (register) a new external module. An external module is a compiled DLL that
contains specific code that can be used as a text filter, word generator, migrator, or external
procedure/function. Please see the External Modules topic for more information.

Examples

-- The following statement registers a
-- text filter external module

CREATE MODULE "TextFilterModule"
PATH 'c:\myapplication\modules\txtfilter.dll'
DESCRIPTION 'Text Filter Module'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 233

5.32 ALTER MODULE

Alters an existing external module.

Syntax

ALTER MODULE <Name>
PATH <ExternalModuleFile>
[DESCRIPTION <Description>]

<ExternalModuleFile> = Path/file name of DLL

Usage

Use this statement to alter an existing external module.

Note
All clauses after the PATH clause are optional. If they are not specified, then they will not be altered
and will stay the same as before the ALTER MODULE statement was executed.

Examples

-- The following statement changes the path
-- of the TextFilterModule module

ALTER MODULE "TextFilterModule"
PATH 'c:\myapplication\dlls\txtfilter.dll'
DESCRIPTION 'Text Filter Module'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 234

5.33 DROP MODULE

Drops an existing external module.

Syntax

DROP MODULE <Name>

Usage

Use this statement to drop an external module.

Examples

-- The following statement drops the TextFilterModule
-- external module.

DROP MODULE "TextFilterModule"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 235

5.34 RENAME MODULE

Renames an existing external module.

Syntax

RENAME MODULE <Name> TO <Name>

Usage

Use this statement to rename an external module.

Examples

-- The following statement renames the
-- TextFilterModule external module to
-- TextFilterDLL

RENAME MODULE "TextFilterModule" TO "TextFilterDLL"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 236

5.35 CREATE TEXT FILTER

Creates a new text filter.

Syntax

CREATE TEXT FILTER <Name>
TYPE <FilterType>
MODULE <ExternalModuleName>
[DESCRIPTION <Description>]

Usage

Use this statement to create a new text filter. A text filter associates a particular filter name with a text
filter module that will be used to filter the text prior to the text being indexed by ElevateDB and added to
a text index. The referenced external text filter module must already be created and available to the
current session. Please see the Text Indexing topic for more information.

Examples

-- The following statement creates a text filter for HTML

CREATE TEXT FILTER "HTML"
TYPE 'HTML'
MODULE "HTMLFilter"
DESCRIPTION 'Filters HTML'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 237

5.36 ALTER TEXT FILTER

Alters an existing text filter.

Syntax

ALTER TEXT FILTER <Name>
[DESCRIPTION <Description>]

Usage

Use this statement to alter an existing text filter.

Note
All clauses are optional. If they are not specified, then they will not be altered and will stay the
same as before the ALTER TEXT FILTER statement was executed.

Examples

-- The following statement changes the description of the HTML
-- text filter.

ALTER TEXT FILTER "HTML"
DESCRIPTION 'HTML Filter'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 238

5.37 DROP TEXT FILTER

Drops an existing text filter.

Syntax

DROP TEXT FILTER <Name>

Usage

Use this statement to drop a text filter.

Warning
Dropping a text filter that is in use may cause large amounts of text to be included in the text index.
For example, if you included a CLOB column containing HTML in a text index that relied on an HTML
text filter to remove all formatting prior to indexing, then removing the HTML text filter will cause
the formatting to be subsequently included in the text index whenever the CLOB column is updated.

Examples

-- The following statement drops the HTML text filter.

DROP TEXT FILTER "HTML"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 239

5.38 RENAME TEXT FILTER

Renames an existing text filter.

Syntax

RENAME TEXT FILTER <Name> TO <Name>

Usage

Use this statement to rename a text filter.

Examples

-- The following statement renames the HTML
-- text filter to XML

RENAME TEXT FILTER "HTML" TO "XML"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 240

5.39 CREATE WORD GENERATOR

Creates a new word generator.

Syntax

CREATE WORD GENERATOR <Name>
MODULE <ExternalModuleName>
[DESCRIPTION <Description>]

Use this statement to create a new word generator. A word generator is used by ElevateDB to parse and
extract the words from a column that are indexed via a text index on that column. The referenced external
word generator module must already be created and available to the current session. Please see the Text
Indexing topic for more information.

Examples

-- The following statement creates a word generator for
-- use with Pascal code.

CREATE WORD GENERATOR "Pascal"
MODULE "PascalWordGenerator"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 241

5.40 ALTER WORD GENERATOR

Alters an existing word generator.

Syntax

ALTER WORD GENERATOR <Name>
[DESCRIPTION <Description>]

Usage

Use this statement to alter an existing word generator.

Note
All clauses are optional. If they are not specified, then they will not be altered and will stay the
same as before the ALTER WORD GENERATOR statement was executed.

Examples

-- The following statement changes the description of the Pascal
-- word generator.

ALTER WORD GENERATOR "Pascal"
DESCRIPTION 'Pascal language word generator'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 242

5.41 DROP WORD GENERATOR

Drops an existing word generator.

Syntax

DROP WORD GENERATOR <Name>

Usage

Use this statement to drop a word generator.

Warning
Dropping a word generator that is in use may cause text to be included in a text index that is not
desired. For example, if you included a CLOB column containing German text in a text index that
relied on a German word generator to properly parse all words prior to indexing, then removing the
German word generator will cause different words to be subsequently included in the text index
whenever the CLOB column is updated.

Examples

-- The following statement drops the Pascal word generator.

DROP WORD GENERATOR "Pascal"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 243

5.42 RENAME WORD GENERATOR

Renames an existing word generator.

Syntax

RENAME WORD GENERATOR <Name> TO <Name>

Usage

Use this statement to rename a word generator.

Examples

-- The following statement renames the Pascal
-- word generator to ObjectPascal

RENAME WORD GENERATOR "Pascal" TO "ObjectPascal"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 244

5.43 CREATE MIGRATOR

Creates a new migrator.

Syntax

CREATE MIGRATOR <Name>
MODULE <ExternalModuleName>
[DESCRIPTION <Description>]

Use this statement to create a new migrator. A migrator is used by ElevateDB to migrate a database from
an external source to an ElevateDB database. The referenced external migrator module must already be
created and available to the current session. Please see the Migrating Databases topic for more
information.

Examples

-- The following statement creates a migrator for
-- use with the Borland Database Engine (BDE).

CREATE MIGRATOR "BDE"
MODULE "edbmigratebde"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 245

5.44 ALTER MIGRATOR

Alters an existing migrator.

Syntax

ALTER MIGRATOR <Name>
[DESCRIPTION <Description>]

Usage

Use this statement to alter the an existing migrator.

Note
All clauses are optional. If they are not specified, then they will not be altered and will stay the
same as before the ALTER MIGRATOR statement was executed.

Examples

-- The following statement changes the description of the BDE
-- migrator.

ALTER MIGRATOR "BDE"
DESCRIPTION 'Borland Database Engine (BDE)'

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 246

5.45 DROP MIGRATOR

Drops an existing migrator.

Syntax

DROP MIGRATOR <Name>

Usage

Use this statement to drop a migrator.

Examples

-- The following statement drops the BDE migrator.

DROP MIGRATOR "BDE"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 247

5.46 RENAME MIGRATOR

Renames an existing migrator.

Syntax

RENAME MIGRATOR <Name> TO <Name>

Usage

Use this statement to rename a migrator.

Examples

-- The following statement renames the BDE
-- migrator to Borland Database Engine.

RENAME MIGRATOR "BDE" TO "Borland Database Engine"

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 248

5.47 CREATE TABLE

Creates a new table.

Syntax

CREATE [TEMPORARY] TABLE <Name>
[[(
<ColumnName> <ColumnDefinition>|
LIKE <LikeDefinition>|
[CONSTRAINT <ConstraintName>] <ConstraintDefinition>]
[,<ColumnName> <ColumnDefinition>|
LIKE <LikeDefinition>|
[CONSTRAINT <ConstraintName>] <ConstraintDefinition>]
)]
[AS <QueryExpression> WITH DATA|WITH NO DATA]
[FROM PUBLISHED UPDATES [TABLES <TableName> [,<TableName>]]] | [FROM UPDATES
 <UpdateName> IN STORE <StoreName>]]
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[READONLY|READWRITE]
[ENCRYPTED|UNENCRYPTED]
[INDEX PAGE SIZE <IndexPageSize>]
[BLOB BLOCK SIZE <BLOBBlockSize>]
[PUBLISH BLOCK SIZE <PublishBlockSize>]
[PUBLISH COMPREESSION <Compression>]
[MAX ROW BUFFER SIZE <MaxRowBufferSize>]
[MAX INDEX BUFFER SIZE <MaxIndexBufferSize>]
[MAX BLOB BUFFER SIZE <MaxBLOBBufferSize>]
[MAX PUBLISH BUFFER SIZE <MaxPublishBufferSize>]
[ATTRIBUTES <CustomAttributes>]

<ColumnDefinition> =

<DataType>
[COMPRESSION <Compression>]
[GENERATED <GenerationOptions>|COMPUTED <ComputationOptions>|
DEFAULT <DefaultExpression>]
[NOT NULL [ERROR CODE <ErrorCode> MESSAGE <ErrorMessage>]]
[<ColumnConstraintDefinition>] [<ColumnConstraintDefinition>]
[DESCRIPTION <Description>]

<ErrorCode> = Any user-defined (10000-High(INTEGER)) error code

<DataType> =

CHARACTER|CHAR [(<Length>]) [<CollationName>]
CHARACTER VARYING|VARCHAR [(<Length>]) [<CollationName>]
GUID
BYTE [(<LengthInBytes>])
BYTE VARYING|VARBYTE [(<LengthInBytes>])
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB [<CollationName>]
BOOLEAN|BOOL
SMALLINT
INTEGER|INT

DDL Statements

Page 249

BIGINT
FLOAT [(<Precision>,<Scale>)]
DECIMAL|NUMERIC [(<Precision>,<Scale>)]
DATE
TIME
TIMESTAMP
INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

<Compression> = 0..9

<GenerationOptions> =
ALWAYS AS <GenerateExpression>|
ALWAYS AS IDENTITY (START WITH <SeedValue>, INCREMENT BY <IncrementValue>)|
BY DEFAULT AS IDENTITY (START WITH <SeedValue>, INCREMENT BY
 <IncrementValue>)

<GenerateExpression> =
Any valid SQL expression that does not include any sub-queries

<ComputationOptions> =
ALWAYS AS <ComputeExpression>

<ComputeExpression> =
Any valid SQL expression that does not include any sub-queries
or user-defined function references

<DefaultExpression> =
Any valid SQL expression that does not include any sub-queries

<ColumnConstraintDefinition> =

CHECK <CheckExpression>
PRIMARY KEY|
UNIQUE|
REFERENCES <TableName> [(<ColumnName> [,<ColumnName>])]
 [ON UPDATE RESTRICT|ON DELETE RESTRICT]
[ERROR CODE <ErrorCode> MESSAGE <ErrorMessage>]

<CheckExpression> =
Any valid SQL expression that does not include any sub-queries

<ErrorCode> = Any user-defined (10000-High(INTEGER)) error code

<LikeDefinition> =

<TableName>
[INCLUDING|EXCLUDING IDENTITY]
[INCLUDING|EXCLUDING DEFAULTS]
[INCLUDING|EXCLUDING GENERATED]

<ConstraintDefinition> =

CHECK <CheckExpression>
PRIMARY KEY (<ColumnName> [,<ColumnName>])|

DDL Statements

Page 250

UNIQUE (<ColumnName> [,<ColumnName>])|
FOREIGN KEY (<ColumnName> [,<ColumnName>])
 REFERENCES <TableName> [(<ColumnName> [,<ColumnName>])]
 [ON UPDATE RESTRICT|ON DELETE RESTRICT]
[ERROR CODE <ErrorCode> MESSAGE <ErrorMessage>]
[DESCRIPTION <Description>]

<CheckExpression> =
Any valid SQL expression that does not include any sub-queries

<ErrorCode> = Any user-defined (10000-High(INTEGER)) error code

Usage

Use this statement to create a new table. Use the TEMPORARY clause to specify that the table should be
created as a local temporary table that is only visible to the current session. You may only use the
following DDL statements on temporary tables:

 DROP TABLE
 RENAME TABLE
 EMPTY TABLE
 CREATE INDEX
 CREATE TEXT INDEX
 DROP INDEX
 RENAME INDEX

Use the READONLY clause to specify that a table is always read-only. Doing so can improve multi-user
performance on a table because ElevateDB will not need to perform any locking on such a table.

FROM PUBLISHED UPDATES and FROM UPDATES ClausesFROM PUBLISHED UPDATES and FROM UPDATES Clauses

Use the FROM PUBLISHED UPDATES or FROM UPDATES version of the CREATE TABLE statement to create
a table that contains the contents of pending published updates that have not been saved, or the contents
of an existing replication update file in a store. These two clauses are mutually-exclusive, and only one can
be used at a time.

The format of the created table will be as follows:

"TableName" VARCHAR(40) COLLATE "ANSI_CI",
"UpdateType" VARCHAR(15) COLLATE "ANSI_CI",
"UpdateTimeStamp" TIMESTAMP,
"Manifest" CLOB COLLATE "ANSI_CI",
"KeyData" CLOB COLLATE "ANSI_CI",
"RowData" CLOB COLLATE "ANSI_CI"

The UpdateType column will contain one of the following values:

UpdateType Description

DDL Statements

Page 251

Insert The update is an insert operation. The RowData column will
contain a CRLF-delimited list of column:value pairs.

Update The update is an update operation. The KeyData column will
contain a CRLF-delimited list of primary key column:value
pairs, and the RowData column will contain a CRLF-delimited
list of column:value pairs.

Delete The update is an update operation. The KeyData column will
contain a CRLF-delimited list of primary key column:value
pairs.

The Manifest column contains a CRLF-delimited list of published table IDs that serve to tell ElevateDB
which published tables have loaded this update already.

With the PUBLISHED UPDATES clause, you can further limit the published tables that are used to generate
the table by using the TABLES clause. When using the TABLES clause, only the pending published updates
for the specified tables will be included in the created table.

For more information on replication, please see the Replication topic.

Examples

-- The following statement creates the Customer table

CREATE TABLE "Customer"
(
"ID" INTEGER GENERATED ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1),
"Name" VARCHAR(30) COLLATE "ANSI_CI",
"Address1" VARCHAR(40) COLLATE "ANSI_CI",
"Address2" VARCHAR(40) COLLATE "ANSI_CI",
"City" VARCHAR(30) COLLATE "ANSI_CI",
"State" CHAR(2) COLLATE "ANSI_CI",
"Zip" CHAR(10) COLLATE "ANSI_CI",
"CreatedOn" TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT "ID_PrimaryKey" PRIMARY KEY ("ID"),
CONSTRAINT "ID_Check" CHECK (ID IS NOT NULL),
CONSTRAINT "Name_Check" CHECK (Name IS NOT NULL)
)

-- The following statement creates a temporary table containing
-- the contents of an update file

CREATE TEMPORARY TABLE "MainOfficeUpdates"
FROM UPDATES "MainOffice-2010-12-14 17-57-12.0306"
IN STORE MainUpdates

Required Privileges

The current user must be granted the CREATE privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

DDL Statements

Page 252

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Column COMPUTED The column COMPUTED clause is an ElevateDB extension.

Column ERROR CODE/MESSAGE The column ERROR CODE/MESSAGE clause is an ElevateDB
extension.

Column DESCRIPTION The column DESCRIPTION clause is an ElevateDB extension.

Column COMPRESSION The column COMPRESSION clause is an ElevateDB extension.

Constraint ON UPDATE The only option supported for the ON UPDATE clause is the
RESTRICT option.

Constraint ON DELETE The only option supported for the ON DELETE clause is the
RESTRICT option.

Constraint ERROR CODE/MESSAGE The constraint ERROR CODE/MESSAGE clause is an ElevateDB
extension.

Constraint DESCRIPTION The constraint DESCRIPTION clause is an ElevateDB
extension.

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

VERSION The VERSION clause is an ElevateDB extension.

ENCRYPTED The ENCRYPTED and UNENCRYPTED clauses are an
ElevateDB extension.

INDEX PAGE SIZE The INDEX PAGE SIZE clause is an ElevateDB extension.

BLOB BLOCK SIZE The BLOB BLOCK SIZE clause is an ElevateDB extension.

PUBLISH BLOCK SIZE The PUBLISH BLOCK SIZE clause is an ElevateDB extension.

PUBLISH COMPRESSION The PUBLISH COMPRESSION clause is an ElevateDB
extension.

MAX ROW BUFFER SIZE The MAX ROW BUFFER SIZE clause is an ElevateDB extension.

MAX INDEX BUFFER SIZE The MAX INDEX BUFFER SIZE clause is an ElevateDB
extension.

MAX BLOB BUFFER SIZE The MAX BLOB BUFFER SIZE clause is an ElevateDB
extension.

MAX PUBLISH BUFFER SIZE The MAX PUBLISH BUFFER SIZE clause is an ElevateDB
extension.

ATTRIBUTES The ATTRIBUTES clause is an ElevateDB extension.

FROM PUBLISHED UPDATES The FROM PUBLISHED UPDATES clause is an ElevateDB
extension.

FROM UPDATES The FROM UPDATES clause is an ElevateDB extension.

DDL Statements

Page 253

5.48 ALTER TABLE

Alters an existing table.

Syntax

ALTER TABLE <Name>
[ADD [COLUMN] <ColumnName> <ColumnDefinition>]
[ALTER [COLUMN] <ColumnName> <ColumnAlterOptions>|AS <ColumnDefinition>
[RENAME [COLUMN] <ColumnName> TO <ColumnName>]
[DROP [COLUMN] <ColumnName>]
[ADD [CONSTRAINT <ConstraintName>] <ConstraintDefinition>]
[ALTER CONSTRAINT <ConstraintName> <ConstraintAlterOptions>|AS
 <ConstraintDefinition>
[RENAME CONSTRAINT <ConstraintName> TO <ConstraintName>
[DROP CONSTRAINT <ConstraintName>]
[,ADD|ALTER|DROP]
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[READONLY|READWRITE]
[ENCRYPTED|UNENCRYPTED]
[INDEX PAGE SIZE <IndexPageSize>]
[BLOB BLOCK SIZE <BLOBBlockSize>]
[PUBLISH BLOCK SIZE <PublishBlockSize>]
[PUBLISH COMPREESSION <Compression>]
[MAX ROW BUFFER SIZE <MaxRowBufferSize>]
[MAX INDEX BUFFER SIZE <MaxIndexBufferSize>]
[MAX BLOB BUFFER SIZE <MaxBLOBBufferSize>]
[MAX PUBLISH BUFFER SIZE <MaxPublishBufferSize>]
[ATTRIBUTES <CustomAttributes>]
[NO BACKUP FILES]

<ColumnDefinition> =

<DataType>
[COMPRESSION <Compression>]
[GENERATED <GenerationOptions>|COMPUTED <ComputationOptions>|
DEFAULT <DefaultExpression>]
[<ColumnConstraintDefinition>] [<ColumnConstraintDefinition>]
[NOT NULL [ERROR CODE <ErrorCode> MESSAGE <ErrorMessage>]]
[<ColumnConstraintDefinition>] [<ColumnConstraintDefinition>]
[DESCRIPTION <Description>]
[AT <ColumnPos>]

<ErrorCode> = Any user-defined (10000-High(INTEGER)) error code

<DataType> =

CHARACTER|CHAR [(<Length>]) [<CollationName>]
CHARACTER VARYING|VARCHAR [(<Length>]) [<CollationName>]
GUID
BYTE [(<LengthInBytes>])
BYTE VARYING|VARBYTE [(<LengthInBytes>])
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB [<CollationName>]
BOOLEAN|BOOL

DDL Statements

Page 254

SMALLINT
INTEGER|INT
BIGINT
FLOAT [(<Precision>,<Scale>)]
DECIMAL|NUMERIC [(<Precision>,<Scale>)]
DATE
TIME
TIMESTAMP
INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

<Compression> = 0..9

<GenerationOptions> =
ALWAYS AS <GenerateExpression>|
ALWAYS AS IDENTITY (START WITH <SeedValue>, INCREMENT BY <IncrementValue>)|
BY DEFAULT AS IDENTITY (START WITH <SeedValue>, INCREMENT BY
 <IncrementValue>)

<GenerateExpression> =
Any valid SQL expression that does not include any sub-queries

<ComputationOptions> =
ALWAYS AS <ComputeExpression>

<ComputeExpression> =
Any valid SQL expression that does not include any sub-queries
or user-defined function references

<DefaultExpression> =
Any valid SQL expression that does not include any sub-queries

<ColumnConstraintDefinition> =

CHECK <CheckExpression>
PRIMARY KEY|
UNIQUE|
REFERENCES <TableName> [(<ColumnName> [,<ColumnName>])]
 [ON UPDATE RESTRICT|ON DELETE RESTRICT]
[ERROR CODE <ErrorCode> MESSAGE <ErrorMessage>]

<CheckExpression> =
Any valid SQL expression that does not include any sub-queries

<ErrorCode> = Any user-defined (10000-High(INTEGER)) error code

<ColumnAlterOptions> =

[SET <DefaultExpression>|DROP DEFAULT|DESCRIPTION <Description>|
MOVE TO <ColumnPos>|RESTART WITH <SeedValue>]

<ConstraintDefinition> =

CHECK <CheckExpression>
PRIMARY KEY (<ColumnName> [,<ColumnName>])|

DDL Statements

Page 255

UNIQUE (<ColumnName> [,<ColumnName>])|
FOREIGN KEY (<ColumnName> [,<ColumnName>])
 REFERENCES <TableName> [(<ColumnName> [,<ColumnName>])]
 [ON UPDATE RESTRICT|ON DELETE RESTRICT]
[ERROR CODE <ErrorCode> MESSAGE <ErrorMessage>]
[DESCRIPTION <Description>]

<CheckExpression> =
Any valid SQL expression that does not include any sub-queries

<ErrorCode> = Any user-defined (10000-High(INTEGER)) error code

<ConstraintAlterOptions> =

[DESCRIPTION <Description>]

Usage

Use this statement to alter the structure of an existing table. You may add new columns or constraints,
alter existing columns, or drop existing columns or constraints.

To alter an existing column in a table, use the ALTER COLUMN AS clause. To alter an existing constraint in
a table, use the ALTER CONSTRAINT AS clause. These clauses allow for the complete re-definition of a
column or constraint.

Note
If you alter an existing column that was previously defined with column-level constraints, then you
should not specify the column-level constraints again when altering the column. Doing so will result
in a duplicate constraint being added again, possibly causing an error. This is due to the fact that
column-level constraints are, except for the NOT NULL constraint, defined as table-level constraints
internally in ElevateDB.

The AT clause is 1-based, with 1 being the first column and the column count being the last column.

Note
All clauses after the ADD, ALTER, or DROP clauses are optional. If they are not specified, then they
will not be altered and will stay the same as before the ALTER TABLE statement was executed.

The NO BACKUP FILES clause is optional. Unless this clause is specified, ElevateDB will create backup files
(*.old) of any physical table files that were altered during the execution of the statement. Also, this clause
does not apply to physical backup files created for the database catalog, which are always created and
retained.

Examples

-- The following statement alters the structure of the
-- Customer table by adding a new Notes column.

ALTER TABLE "Customer"
ADD COLUMN Notes CLOB

DDL Statements

Page 256

-- The following statement alters the structure of the
-- Customer table by adding a new foreign key constraint
-- on the State column that establishes a referential
-- integrity link to the State table.

ALTER TABLE "Customer"
ADD CONSTRAINT "State_ForeignKey" FOREIGN KEY REFERENCES "State"

-- The following statement alters the structure of the
-- Customer table by renaming the State column to StateProvince.

ALTER TABLE "Customer"
RENAME COLUMN State TO StateProvince

Required Privileges

The current user must be granted the ALTER privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Column AS The AS column alteration clause is an ElevateDB extension.

Column COMPUTED The column COMPUTED clause is an ElevateDB extension.

Column ERROR CODE/MESSAGE The column ERROR CODE/MESSAGE clause is an ElevateDB
extension.

Column DESCRIPTION The column DESCRIPTION and SET DESCRIPTION clauses are
ElevateDB extensions.

Column COMPRESSION The column COMPRESSION clause is an ElevateDB extension.

Column AT The column AT clause for adding columns at a specific
position is an ElevateDB extension.

Column MOVE TO The column MOVE TO clause for altering columns and moving
them to a specific position is an ElevateDB extension.

RENAME COLUMN The RENAME COLUMN clause is an ElevateDB extension.

Constraint AS The AS constraint alteration clause is an ElevateDB extension.

Constraint ON UPDATE The only option supported for the ON UPDATE clause is the
RESTRICT option.

Constraint ON DELETE The only option supported for the ON DELETE clause is the
RESTRICT option.

Constraint ERROR CODE/MESSAGE The constraint ERROR CODE/MESSAGE clause is an ElevateDB
extension.

Constraint DESCRIPTION The constraint DESCRIPTION and SET DESCRIPTION clauses
are ElevateDB extensions.

DDL Statements

Page 257

RENAME CONSTRAINT The RENAME CONSTRAINT clause is an ElevateDB extension.

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

VERSION The VERSION clause is an ElevateDB extension.

ENCRYPTED The ENCRYPTED and UNENCRYPTED clauses are an
ElevateDB extension.

INDEX PAGE SIZE The INDEX PAGE SIZE clause is an ElevateDB extension.

BLOB BLOCK SIZE The BLOB BLOCK SIZE clause is an ElevateDB extension.

PUBLISH BLOCK SIZE The PUBLISH BLOCK SIZE clause is an ElevateDB extension.

PUBLISH COMPRESSION The PUBLISH COMPRESSION clause is an ElevateDB
extension.

MAX ROW BUFFER SIZE The MAX ROW BUFFER SIZE clause is an ElevateDB extension.

MAX INDEX BUFFER SIZE The MAX INDEX BUFFER SIZE clause is an ElevateDB
extension.

MAX BLOB BUFFER SIZE The MAX BLOB BUFFER SIZE clause is an ElevateDB
extension.

MAX PUBLISH BUFFER SIZE The MAX PUBLISH BUFFER SIZE clause is an ElevateDB
extension.

ATTRIBUTES The ATTRIBUTES clause is an ElevateDB extension.

NO BACKUP FILES The NO BACKUP FILES clause is an ElevateDB extension.

DDL Statements

Page 258

5.49 DROP TABLE

Drops an existing table.

Syntax

DROP TABLE <Name>

Usage

Use this statement to drop a table from a database.

NOTE

You cannot drop a table that is involved in any referential integrity links to other tables via foreign keys.
You must first alter the table and drop the foreign key constraints before you will be allowed to drop the
table.

Warning
Dropping a table can cause other jobs, functions, procedures, and triggers to generate an error if
they refer to the table being dropped.

Examples

-- The following statement drops the Customer table.

DROP TABLE "Customer"

Required Privileges

The current user must be granted the DROP privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

RESTRICT and CASCADE ElevateDB does not support the RESTRICT or CASCADE
clauses.

DDL Statements

Page 259

5.50 RENAME TABLE

Renames an existing table.

Syntax

RENAME TABLE <Name> TO <Name>

Usage

Use this statement to rename a table in a database.

Warning
Renaming a table can cause other jobs, functions, procedures, and triggers to generate an error if
they refer to the table being renamed.

Examples

-- The following statement renames the Customer
-- table to Cust.

RENAME TABLE "Customer" TO "Cust"

Required Privileges

The current user must be granted the ALTER privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 260

5.51 CREATE TRIGGER

Creates a new trigger on a given table.

Syntax

CREATE TRIGGER <Name> <ActionTime> <Type> ON <TableName>
[AT <ExecutionPos>]
[WHEN <Condition>]
<BodyDefinition>
[DESCRIPTION <Description>]

<ActionTime>=BEFORE|AFTER|ERROR

<Type>=INSERT|UPDATE [OF <UpdateColumns>]|DELETE|LOAD UPDATE|ALL

<UpdateColumns>=

<ColumnName> [,<ColumnName>]

<BodyDefinition> =

BEGIN
 [<Declaration>;]
 [<Declaration>;]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION]
 [<Statement>;]
END

Usage

Use this statement to create a new trigger on a table. Triggers can be created to respond to any INSERT,
UPDATE, DELETE, or LOAD UPDATE of a row. The AT clause can be used to specify the position (1-based)
of the new trigger in relation to any existing triggers on the same table. You can use the WHEN condition
to restrict when the trigger will fire as well as the OF clause to restrict the trigger to firing only when
certain columns are updated.

OLDROW/NEWROW Row ValuesOLDROW/NEWROW Row Values

You may refer to the special row identifiers OLDROW and NEWROW anywhere within the WHEN condition
or the trigger body itself. They identify the row being inserted, updated, or deleted in the state prior to the
action (OLDROW) and after the action (NEWROW).

DDL Statements

Page 261

Note
NEWROW row values may only be assigned new values from within a BEFORE INSERT, BEFORE
UPDATE, BEFORE LOAD UPDATE, ERROR INSERT, ERROR UPDATE, or ERROR LOAD UPDATE
trigger body definition. OLDROW row values may only be assigned new values from within a
BEFORE LOAD UPDATE or ERROR LOAD UPDATE trigger body. You can use the SET statement to
assign a value to any of the OLDROW or NEWROW row values.

For any type of trigger, you can use the LOADINGUPDATES function to determine whether the trigger is
executing during the execution of a LOAD UPDATES statement. This is useful for situations where you only
want triggers to execute when loading updates, or want to conditionally execute different code depending
upon whether the operation is due to a LOAD UPDATES statement execution.

ERROR TriggersERROR Triggers

Error triggers are a special kind of trigger that can be defined for insert, update, or delete operations and
are called whenever an error occurs during these operations. Normally, the ERRORCODE and ERRORMSG
functions are accessible only from within EXCEPTION blocks. However, they are also accessible from
anywhere within an error trigger. In addition, the RETRY statement is provided for allowing the trigger to
attempt to correct the exception and retry the operation that originally caused the error.

Universal TriggersUniversal Triggers

Starting in 2.04, you may define a universal trigger using the ALL keyword instead of a specific INSERT,
UPDATE, DELETE, or LOAD UPDATE trigger type. This will cause the trigger to be fired for all operations,
and you can use the OPERATION function to determine the current operation that caused the trigger to be
fired. In the case of a LOAD UPDATE trigger, the current operation is always the type of operation for the
update that the LOAD UPDATES statement is currently trying to load.

LOAD UPDATE TriggersLOAD UPDATE Triggers

Starting in 2.05, you can also create LOAD UPDATE triggers that are fired for each update being loaded
during the execution of the LOAD UPDATES statement. This is useful for being able to respond to update
load errors due to constraint violations or missing rows, as well as controlling the update loading process
itself by choosing which updates should or should not be loaded (see next section on aborting an
operation). Please see the Replication topic for more information on loading updates for a database.

LOAD UPDATE triggers occur before any triggers for the actual update operation occurring. The following
shows the order in which the operations that make up the loading of an update occur:

If the update being loaded is not an INSERT, then the primary key values for the UPDATE or DELETE
are loaded.

The BEFORE LOAD UPDATE triggers are executed, giving you the chance to modify the primary key
values in the OLDROW column values before ElevateDB searches for the row in an UPDATE or
DELETE operation.

For UPDATE or DELETE operations, ElevateDB searches for the row using the primary key values.

DDL Statements

Page 262

The INSERT, UPDATE, or DELETE operation is performed:

If the update being loaded is an INSERT, then the BEFORE INSERT triggers, INSERT operation,
AFTER INSERT triggers, or ERROR INSERT triggers (if any errors occur) are executed.

If the update being loaded is an UPDATE, then the BEFORE UPDATE triggers, UPDATE operation,
AFTER UPDATE triggers, or ERROR UPDATE triggers (if any errors occur) are executed.

If the update being loaded is a DELETE, then the BEFORE DELETE triggers, DELETE operation,
AFTER DELETE triggers, or ERROR DELETE triggers (if any errors occur) are executed.

The AFTER LOAD UPDATE triggers are executed, with the NEWROW column values representing the
column values after the operation has been executed.

If any errors occur during this entire sequence of operations, then the ERROR LOAD UPDATE
triggers are executed.

The OLDROW and NEWROW row values have a specific usage when accessed from within LOAD UPDATE
triggers, depending upon the operation being performed. As mentioned above, you can use the
OPERATION function to determine the actual operation being performed.

Operation OLDROW/NEWROW Usage

INSERT OLDROW values are the column values for the INSERT
operation.

NEWROW values are the column values after the INSERT
operation, and are all NULL for any BEFORE LOAD UPDATE
triggers.

UPDATE OLDROW values are the primary key values used to find the
row for the UPDATE operation.

NEWROW values are the column values after the UPDATE
operation, and are all NULL for any BEFORE LOAD UPDATE
triggers.

DELETE OLDROW values are the primary key values used to find the
row for the DELETE operation.

NEWROW values are the column values after the DELETE
operation, and are all NULL for any BEFORE LOAD UPDATE
triggers.

ERROR OLDROW and NEWROW values depend upon the operation
being performed during the loading of the update. Use the
OPERATION function to determine how to modify or examine
the column values.

Using a Trigger to Abort an OperationUsing a Trigger to Abort an Operation

Starting in 2.05, you can use the ABORT statement to abort any INSERT, UPDATE, DELETE, or LOAD
UPDATE operation. Aborting an operation sets the aborted flag for the current operation and, after the
current trigger is done executing, will cause the operation and any subsequent triggers to be silently
ignored. For example, calling ABORT in a BEFORE LOAD trigger will cause the current load operation to
stop and the LOAD UPDATES execution to continue on the next update to be loaded, if any more updates
are present in the incoming update file.

DDL Statements

Page 263

Note
Calling ABORT does not cause the trigger execution to stop immediately. Any statements after the
ABORT statement will continue to execute. If you want to abort the current operation and
immediately exit the current trigger being executed, then you should use the ABORT statement
followed immediately by the LEAVE statement.

Examples

-- This trigger calls the external
-- SendMail procedure with which group to
-- send the email to along with the new
-- value of the Notes column for the customer
-- being updated

CREATE TRIGGER "NotesUpdate" AFTER UPDATE OF "Notes"
ON "Customer"
BEGIN
 CALL SendEmail('CustomerReps',NEWROW.Notes);
END

-- This trigger logs any insert errors that
-- occur during a LOAD UPDATES for
-- the Customer table into a table called
-- LoadErrors

CREATE TRIGGER "LogInsertError" ERROR INSERT ON "customer"
WHEN LOADINGUPDATES()
BEGIN
 DECLARE ErrorData VARCHAR DEFAULT '';

 SET ErrorData = 'Cust #: ' + CAST(NEWROW.CustNo AS VARCHAR);
 SET ErrorData = ErrorData + 'Name: ' + NEWROW.Company;
 SET ErrorData = ErrorData + 'Error #: ' + CAST(ERRORCODE() AS VARCHAR);
 SET ErrorData = ErrorData + 'Error Msg: ' + ERRORMSG();

 EXECUTE IMMEDIATE 'INSERT INTO LoadErrors (''Customer'',''INSERT'',
 ''' + ErrorData + '''';
END

-- This trigger updates any new row with
-- a timestamp of when the row was inserted
-- into the Customer table. The AT clause
-- is used to ensure that this trigger always
-- fires first before any other triggers

CREATE TRIGGER "SetTimeStamp" BEFORE INSERT ON "customer"
AT 1
BEGIN
 SET NEWROW.CreatedOn = CURRENT_TIMESTAMP();
END

-- This trigger examines the primary key
-- values for an update being loaded into
-- the Customer table. If the SiteID column

DDL Statements

Page 264

-- value for the update does not match the
-- SiteID column in the System table in the
-- same database, then the loading of the update
-- is aborted using the ABORT statement.
-- NOTE: the column being filtered on, in this case
-- the SiteID column, must be part of the primary
-- key in order for it to be non-NULL in the
-- OLDROW column values for UPDATE and DELETE
-- operations.

CREATE TRIGGER "FilterUpdates" BEFORE LOAD UPDATE ON "customer"
BEGIN
 DECLARE SiteID INTEGER DEFAULT 0;

 EXECUTE IMMEDIATE 'SELECT SiteID INTO ? FROM System' USING SiteID;

 IF OLDROW.SiteID <> SiteID THEN
 ABORT;
 END IF;
END

Required Privileges

The current user must be granted the CREATE privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

REFERENCING The REFERENCING clause is not supported in ElevateDB and
the old and new row values are always referred to as
OLDROW and NEWROW.

FOR EACH The FOR EACH clause is not supported. ElevateDB triggers are
always fired on a row basis and never on a statement basis.

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

DDL Statements

Page 265

5.52 ALTER TRIGGER

Alters an existing trigger on a given table.

Syntax

ALTER TRIGGER <Name> <ActionTime> <Type> ON <TableName>
[AT <ExecutionPos>]
[WHEN <Condition>]
<BodyDefinition>
[DESCRIPTION <Description>]

<ActionTime>=BEFORE|AFTER|ERROR

<Type>=INSERT|UPDATE [OF <UpdateColumns>]|DELETE|LOAD UPDATE|ALL

<UpdateColumns>=

<ColumnName> [,<ColumnName>]

<BodyDefinition> =

BEGIN
 [<Declaration>;]
 [<Declaration>;]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION]
 [<Statement>;]
END

Usage

Use this statement to alter an existing trigger.

Note
All clauses after the body definition are optional. If they are not specified, then they will not be
altered and will stay the same as before the ALTER TRIGGER statement was executed.

Examples

-- The following statement changes the description of the
-- NotesUpdate trigger.

ALTER TRIGGER "NotesUpdate" AFTER UPDATE OF "Notes"
ON "Customer"
BEGIN
 CALL SendEmail('CustomerReps',NEWROW.Notes);
END
DESCRIPTION 'Sends an email to all customer reps when Notes is updated'

DDL Statements

Page 266

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 267

5.53 DROP TRIGGER

Drops an existing trigger from a given table.

Syntax

DROP TRIGGER <Name> FROM <TableName>

Usage

Use this statement to drop a trigger from a table.

Examples

-- The following statement drops the UpdateNotes trigger.

DROP TRIGGER "UpdateNotes" FROM "Customer"

Required Privileges

The current user must be granted the DROP privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

FROM Clause The FROM clause is an ElevateDB extension. Triggers are a
table-level object in ElevateDB, whereas they are a schema-
level object in the standard.

DDL Statements

Page 268

5.54 RENAME TRIGGER

Renames an existing trigger on a given table.

Syntax

RENAME TRIGGER <Name> ON <TableName>
TO <Name>

Usage

Use this statement to rename a trigger on a table.

Examples

-- The following statement renames the UpdateNotes
-- trigger to UpdNotes.

RENAME TRIGGER "UpdateNotes" ON "Customer"
TO "UpdNotes"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 269

5.55 ENABLE TRIGGER

Enables an existing trigger on a given table.

Syntax

ENABLE TRIGGER <Name> ON <TableName>

Usage

Use this statement to enable a trigger on a table. If the trigger is already enabled, then this statement
does nothing.

Note
Triggers are enabled or disabled on a per-session basis, so this statement only affects the current
session.

Examples

-- The following statement enables the UpdateNotes trigger

ENABLE TRIGGER "UpdateNotes" ON "Customer"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 270

5.56 DISABLE TRIGGER

Disables an existing trigger on a given table.

Syntax

DISABLE TRIGGER <Name> ON <TableName>

Usage

Use this statement to disable a trigger on a table. If the trigger is already disabled, then this statement
does nothing.

Note
Triggers are enabled or disabled on a per-session basis, so this statement only affects the current
session.

Examples

-- The following statement disables the UpdateNotes trigger

DISABLE TRIGGER "UpdateNotes" ON "Customer"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 271

5.57 ENABLE TRIGGERS

Enables all existing triggers on a given table.

Syntax

ENABLE TRIGGERS ON <TableName>

Usage

Use this statement to enable all triggers on a table. If any of the triggers are already enabled, then this
statement does nothing for those triggers.

Note
Triggers are enabled or disabled on a per-session basis, so this statement only affects the current
session.

Examples

-- The following statement enables all triggers on
-- the Customer table

ENABLE TRIGGERS ON "Customer"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 272

5.58 DISABLE TRIGGERS

Disables all existing triggers on a given table.

Syntax

DISABLE TRIGGERS ON <TableName>

Usage

Use this statement to disable all triggers on a table. If any of the triggers are already disabled, then this
statement does nothing for those triggers.

Note
Triggers are enabled or disabled on a per-session basis, so this statement only affects the current
session.

Examples

-- The following statement disables all triggers on
-- the Customer table

DISABLE TRIGGERS ON "Customer"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 273

5.59 ENABLE DEFAULTS

Enables the use of default column values for inserts on a given table.

Syntax

ENABLE DEFAULTS ON <TableName>

Usage

Use this statement to enable the use of default column values on a table. By default, default column
values are enabled for all tables.

You can find out if default column values are enabled or not by querying the Tables system information
table.

Note
Default column values are enabled or disabled on a per-session basis, so this statement only affects
the current session.

Examples

-- The following statement enables all default column values on
-- the Customer table

ENABLE DEFAULTS ON "Customer"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 274

5.60 DISABLE DEFAULTS

Disables the use of default column values for inserts on a given table.

Syntax

DISABLE DEFAULTS ON <TableName>

Usage

Use this statement to disable the use of default column values on a table. By default, default column
values are enabled for all tables.

You can find out if default column values are enabled or not by querying the Tables system information
table.

Note
Default column values are enabled or disabled on a per-session basis, so this statement only affects
the current session.

Examples

-- The following statement disables all default column values on
-- the Customer table

DISABLE DEFAULTS ON "Customer"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 275

5.61 ENABLE GENERATED

Enables the evaluation of generated column values for inserts and updates on a given table.

Syntax

ENABLE GENERATED ON <TableName>

Usage

Use this statement to enable the evaluation of generated column values on a table. By default, generated
column values are enabled for all tables.

You can find out if generated column values are enabled or not by querying the Tables system information
table.

Note
Generated column values are enabled or disabled on a per-session basis, so this statement only
affects the current session.

Examples

-- The following statement enables all generated column values on
-- the Customer table

ENABLE GENERATED ON "Customer"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 276

5.62 DISABLE GENERATED

Disables the evaluation of generated column values for inserts and updates on a given table.

Syntax

DISABLE GENERATED ON <TableName>

Usage

Use this statement to disable the evaluation of generated column values on a table. By default, generated
column values are enabled for all tables.

You can find out if generated column values are enabled or not by querying the Tables system information
table.

Note
Generated column values are enabled or disabled on a per-session basis, so this statement only
affects the current session.

Examples

-- The following statement disables all generated column values on
-- the Customer table

DISABLE GENERATED ON "Customer"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 277

5.63 CREATE INDEX

Creates a new index on a given table.

Syntax

CREATE INDEX <Name> ON <TableName>|<ViewName>
(<ColumnName> [COLLATE <CollationName>]
 [[ASC|ASCENDING]|[DESC|DESCENDING]] [,<ColumnName>])
[DESCRIPTION <Description>]
[NO BACKUP FILES]

Usage

Use this statement to create a new index on a table or non-updateable view. Multiple columns can be
defined for an index, however it is recommended that you try to keep the number and size of the columns,
and subsequently the size of the index keys in the index, to a minimum for performance purposes.

If a collation is specified for a CHAR, VARCHAR, or CLOB column, it overrides the default collation specified
for the column being included in the index.

The NO BACKUP FILES clause is optional. Unless this clause is specified, ElevateDB will create backup files
(*.old) of any physical table files that were altered during the execution of the statement. Also, this clause
does not apply to physical backup files created for the database catalog, which are always created and
retained.

As of ElevateDB 2.21, you can now index non-updateable views. Non-updateable views are views that
generate a static, insensitive result set.

Note
If you alter a view definition using the ALTER VIEW DDL statement, it will remove all defined
indexes for the view and will require that you use this statement to recreate the indexes.

Examples

-- The following statement creates a Name index on the
-- Customer table consisting of the Name column in
-- ascending order.

CREATE INDEX "Name" ON "Customer" (Name ASC)

-- The following statement creates a State index on the
-- Customer table consisting of the State column in
-- ascending order.

CREATE INDEX "State" ON "Customer" (State ASC)

DDL Statements

Page 278

Required Privileges

The current user must be granted the CREATE privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 279

5.64 CREATE TEXT INDEX

Creates a new text index on a given table.

Syntax

CREATE TEXT INDEX <Name> ON <TableName>
(<ColumnName> [COLLATE <CollationName>])
[DESCRIPTION <Description>]
[INDEXED WORD LENGTH <WordLength>]
[FILTER TYPE COLUMN <ColumnName>]
[WORD GENERATOR <WordGeneratorName>]
[NO BACKUP FILES]

Usage

Use this statement to create a new text index on a table column. Please see the Text Indexing topic for
more information.

The NO BACKUP FILES clause is optional. Unless this clause is specified, ElevateDB will create backup files
(*.old) of any physical table files that were altered during the execution of the statement. Also, this clause
does not apply to physical backup files created for the database catalog, which are always created and
retained.

Examples

-- The following statement creates a text index on the
-- Notes column in the Customer table. Notice that the collation
-- for the Notes column is overridden with the case-insensitive
-- ANSI collation.

CREATE TEXT INDEX "Notes" ON "Customer"
(Notes COLLATE ANSI_CI)
INDEXED WORD LENGTH 20

-- The following statement creates a text index on the
-- Notes column in the Customer table. In this example,
-- however, another column called TextType is used to
-- determine the type of text in the Notes column so that
-- it can be properly filtered using a text filter. This
-- will allow us to store HTML, RTF, and other non-plain
-- text in the Notes column and have it be indexed properly.

CREATE TEXT INDEX "Notes" ON "Customer"
(Notes COLLATE ANSI_CI)
INDEXED WORD LENGTH 20
FILTER TYPE COLUMN "TextType"

Required Privileges

DDL Statements

Page 280

The current user must be granted the CREATE privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 281

5.65 ALTER INDEX

Alters an existing index on a given table.

Syntax

ALTER INDEX <Name> ON <TableName>|<ViewName>
(<ColumnName> [COLLATE <CollationName>]
 [[ASC|ASCENDING]|[DESC|DESCENDING]] [,<ColumnName>])
[DESCRIPTION <Description>]
[NO BACKUP FILES]

Usage

Use this statement to alter an existing index in a table or non-updateable view.

Note
All clauses after the column definitions are optional. If they are not specified, then they will not be
altered and will stay the same as before the ALTER INDEX statement was executed.

The NO BACKUP FILES clause is optional. Unless this clause is specified, ElevateDB will create backup files
(*.old) of any physical table files that were altered during the execution of the statement. Also, this clause
does not apply to physical backup files created for the database catalog, which are always created and
retained.

As of ElevateDB 2.21, you can now index non-updateable views. Non-updateable views are views that
generate a static, insensitive result set.

Examples

-- The following statement changes the Name index on the
-- Customer table so that the Name column is sorted case-insensitive

ALTER INDEX "Name" ON "Customer" (Name COLLATE "ANSI_CI" ASC)

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DDL Statements

Page 282

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 283

5.66 ALTER TEXT INDEX

Alters an existing text index on a given table.

Syntax

ALTER TEXT INDEX <Name> ON <TableName>
(<ColumnName> [COLLATE <CollationName>])
[DESCRIPTION <Description>]
[INDEXED WORD LENGTH <WordLength>]
[FILTER TYPE COLUMN <ColumnName>]
[WORD GENERATOR <WordGeneratorName>]
[NO BACKUP FILES]

Usage

Use this statement to alter an existing text index on a table column. Please see the Text Indexing topic for
more information.

The NO BACKUP FILES clause is optional. Unless this clause is specified, ElevateDB will create backup files
(*.old) of any physical table files that were altered during the execution of the statement. Also, this clause
does not apply to physical backup files created for the database catalog, which are always created and
retained.

Note
All clauses after the column definitions are optional. If they are not specified, then they will not be
altered and will stay the same as before the ALTER INDEX statement was executed.

Examples

-- The following statement changes the Notes text
-- index so that the indexed word length is 30 characters

ALTER TEXT INDEX "Notes" ON "Customer"
(Notes COLLATE ANSI_CI)
INDEXED WORD LENGTH 30

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

DDL Statements

Page 284

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 285

5.67 DROP INDEX

Drops an existing index from a given table.

Syntax

DROP INDEX <Name> FROM <TableName>|<ViewName>
[NO BACKUP FILES]

Usage

Use this statement to drop an index or text index from a table or non-updateable view.

The NO BACKUP FILES clause is optional. Unless this clause is specified, ElevateDB will create backup files
(*.old) of any physical table files that were altered during the execution of the statement. Also, this clause
does not apply to physical backup files created for the database catalog, which are always created and
retained.

As of ElevateDB 2.21, you can now index non-updateable views. Non-updateable views are views that
generate a static, insensitive result set.

Warning
Dropping an index from a table can affect the performance of DML statements that refer to the
table columns defined for the index in JOIN or WHERE clauses.

Examples

-- The following statement drops the Name index.

DROP INDEX "Name" FROM "Customer"

Required Privileges

The current user must be granted the DROP privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 286

5.68 RENAME INDEX

Renames an existing index on a given table.

Syntax

RENAME INDEX <Name> ON <TableName>|<ViewName>
TO <Name>

Usage

Use this statement to rename an index or text index on a table or non-updateable view.

As of ElevateDB 2.21, you can now index non-updateable views. Non-updateable views are views that
generate a static, insensitive result set.

Examples

-- The following statement renames the Name
index to CustName.

RENAME INDEX "Name" FROM "Customer"
TO "CustName"

Required Privileges

The current user must be granted the ALTER privilege on the specified table in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 287

5.69 CREATE VIEW

Creates a new view.

Syntax

CREATE VIEW <Name> AS
<View Definition>
[WITH CHECK OPTION|WITHOUT CHECK OPTION]
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[ATTRIBUTES <CustomAttributes>]

Usage

Use this statement to create a new view. A view is a query expression that can act like a virtual table, and
is useful when you want restrict which columns in a table (or tables) are visible to users. This can be
accomplished by giving users (or roles) SELECT privileges on a view that only references a few select
columns while not giving users (or roles) any SELECT privileges on the base table(s) that are referenced
by the view.

The WITH CHECK OPTION clause is used with updateable views to specify whether INSERTS or UPDATES
that would violate the WHERE clause will be permitted or not. If WITH CHECK OPTION is specified, then
INSERTS or UPDATES that would violate the WHERE clause are not permitted.

Note
Using the WITHOUT CHECK OPTION clause is the same as not specifying the WITH CHECK OPTION
clause, and is present for compatibility with the ALTER VIEW syntax.

By default, ElevateDB always tries to make a view updateable if possible. The rules for updateability are
the same as those for sensitive query result sets, and are discussed in detail in the Result Set Cursor
Sensitivity topic.

Note
It is possible to have a view be considered as updateable and still be read-only. Such is the case in
situations where the current view SQL does fullfill the requirements for a sensitive result set, but the
view references other views or derived tables that are not updateable. In such a case, the current
view will inherit the updateable state of the referenced views or derived tables.

Any time the columns in any referenced base table or view change, ElevateDB will automatically reflect
these changes in the view columns. You can always query this information via the ViewColumns
Information schema table.

Examples

-- The following view selects the employee Name and

DDL Statements

Page 288

-- HireDate column from the Employees table.

CREATE VIEW "EmployeesList" AS
SELECT Name, HireDate
FROM Employees

-- The following view uses a derived table to retrieve
-- data. It will be considered updateable, but will not
-- be updateable at runtime.

CREATE VIEW "DerivedSum" AS
SELECT *
FROM (SELECT CustNo, SUM(Orders.ItemsTotal) AS Total
 FROM Customer INNER JOIN Orders ON Orders.CustNo=Customer.CustNo
 GROUP BY CustNo) AS CustomerTotals
WHERE Total > 80000

Required Privileges

The current user must be granted the CREATE privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Columns List ElevateDB does not support specifying a list of column names
for the view. Instead, it always uses the column correlation
names from the SELECT columns in the query expression to
determine the names of the columns in the view.

RECURSIVE ElevateDB does not support the RECURSIVE clause and
recursive views. This means that you cannot reference the
view being created within the view definition.

LOCAL or CASCADED ElevateDB does not support the LOCAL or CASCADED clauses
in the WITH CHECK OPTION clause.

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

VERSION The VERSION clause is an ElevateDB extension.

ATTRIBUTES The ATTRIBUTES clause is an ElevateDB extension.

DDL Statements

Page 289

5.70 ALTER VIEW

Alters an existing view.

Syntax

ALTER VIEW <Name> AS
<View Definition>
[WITH CHECK OPTION|WITHOUT CHECK OPTION]
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[ATTRIBUTES <CustomAttributes>]

Usage

Use this statement to alter an existing view.

Note
All clauses after the view definition are optional. If they are not specified, then they will not be
altered and will stay the same as before the ALTER VIEW statement was executed.

Note
If you alter a view definition using this statement, it will remove any defined indexes for the view
and will require that you use the CREATE INDEX statement to recreate the index(es).

Examples

-- The following statement changes the description of the
-- EmployeesList view.

ALTER VIEW "EmployeesList" AS
SELECT Name, HireDate
FROM Employees
DESCRIPTION 'List of all employees and hire dates'

Required Privileges

The current user must be granted the ALTER privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

DDL Statements

Page 290

Deviation Details

Extension This SQL statement is an ElevateDB extension

DDL Statements

Page 291

5.71 DROP VIEW

Drops an existing view.

Syntax

DROP VIEW <Name>

Usage

Use this statement to drop a view from a database.

Warning
Dropping a view can cause other jobs, functions, procedures, and triggers to generate an error if
they refer to the view being dropped.

Examples

-- The following statement drops the EmployeesList view.

DROP VIEW "EmployeesList"

Required Privileges

The current user must be granted the DROP privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

RESTRICT and CASCADE ElevateDB does not support the RESTRICT or CASCADE
clauses.

DDL Statements

Page 292

5.72 RENAME VIEW

Renames an existing view.

Syntax

RENAME VIEW <Name> TO <Name>

Usage

Use this statement to rename a view in a database.

Warning
Renaming a view can cause other jobs, functions, procedures, and triggers to generate an error if
they refer to the view being renamed.

Examples

-- The following statement renames the EmployeesList
-- view to Employees.

RENAME VIEW "EmployeesList" TO "Employees"

Required Privileges

The current user must be granted the ALTER privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 293

5.73 CREATE FUNCTION

Creates a new function.

Syntax

CREATE FUNCTION <Name>
([<ParamDefinition>[,ParamDefinition]])
RETURNS <DataType>
EXTERNAL NAME <ModuleName> | <BodyDefinition>
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[ATTRIBUTES <CustomAttributes>]

<ParamDefinition> =

<Mode> <Name> <DataType> [<Description>]

<Mode> =

IN|OUT|INOUT

<DataType> =

CHARACTER|CHAR [(<Length>]) [<CollationName>]
CHARACTER VARYING|VARCHAR [(<Length>]) [<CollationName>]
GUID
BYTE [(<LengthInBytes>])
BYTE VARYING|VARBYTE [(<LengthInBytes>])
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB [<CollationName>]
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT [(<Precision>,<Scale>)]
DECIMAL|NUMERIC [(<Precision>,<Scale>)]
DATE
TIME
TIMESTAMP
INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

<BodyDefinition> =

BEGIN
 [<Declaration>;]
 [<Declaration>;]
 [<Statement>;]
 [<Statement>;]
 RETURN <Expression>

DDL Statements

Page 294

[EXCEPTION
 [<Statement>;]]
END

Usage

Use this statement to create a new function in a given database. Functions can be used in jobs, other
functions and procedures, triggers, DML statements, and catalog-bound expressions such as table column
default expressions and table constraint check expressions.

Examples

-- This function looks up the sales tax
-- rate for a given state and county

CREATE FUNCTION LookupSalesTaxRate(IN State CHAR(2), IN County VARCHAR)
RETURNS DECIMAL(19,2)
BEGIN
 DECLARE TempCursor CURSOR FOR stmt;
 DECLARE Result DECIMAL(19,2) DEFAULT 0;

 PREPARE stmt FROM 'SELECT * FROM SalesTaxes WHERE State = ? AND County =
 ?';

 OPEN TempCursor USING State, County;

 IF (ROWCOUNT(TempCursor) > 0) THEN
 FETCH FIRST FROM TempCursor ('TaxRate') INTO Result;
 END IF;

 CLOSE TempCursor;

 RETURN Result;
END

Required Privileges

The current user must be granted the CREATE privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

VERSION The VERSION clause is an ElevateDB extension.

ATTRIBUTES The ATTRIBUTES clause is an ElevateDB extension.

DDL Statements

Page 295

5.74 ALTER FUNCTION

Alters an existing function.

Syntax

ALTER FUNCTION <Name>
([<ParamDefinition>[,ParamDefinition]])
RETURNS <DataType>
EXTERNAL NAME <ModuleName> | <BodyDefinition>
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[ATTRIBUTES <CustomAttributes>]

<ParamDefinition> =

<Mode> <Name> <DataType> [<Description>]

<Mode> =

IN|OUT|INOUT

<DataType> =

CHARACTER|CHAR [(<Length>]) [<CollationName>]
CHARACTER VARYING|VARCHAR [(<Length>]) [<CollationName>]
GUID
BYTE [(<LengthInBytes>])
BYTE VARYING|VARBYTE [(<LengthInBytes>])
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB [<CollationName>]
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT [(<Precision>,<Scale>)]
DECIMAL|NUMERIC [(<Precision>,<Scale>)]
DATE
TIME
TIMESTAMP
INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

<BodyDefinition> =

BEGIN
 [<Declaration>;]
 [<Declaration>;]
 [<Statement>;]
 [<Statement>;]
 RETURN <Expression>

DDL Statements

Page 296

[EXCEPTION
 [<Statement>;]]
END

Usage

Use this statement to alter an existing function.

Note
All clauses after the body definition are optional. If they are not specified, then they will not be
altered and will stay the same as before the ALTER FUNCTION statement was executed.

Examples

-- The following statement changes the description of the
-- LookupSalesTaxRate function.

ALTER FUNCTION LookupSalesTaxRate(IN State CHAR(2), IN County VARCHAR)
RETURNS DECIMAL(19,2)
BEGIN
 DECLARE TempCursor CURSOR FOR stmt;
 DECLARE Result DECIMAL(19,2) DEFAULT 0;

 PREPARE stmt FROM 'SELECT * FROM SalesTaxes WHERE State = ? AND County =
 ?';

 OPEN TempCursor USING State, County;

 IF (ROWCOUNT(TempCursor) > 0) THEN
 FETCH FIRST FROM TempCursor ('TaxRate') INTO Result;
 END IF;

 CLOSE TempCursor;

 RETURN Result;
END
DESCRIPTION 'Function for looking up sales tax rates'

Required Privileges

The current user must be granted the ALTER privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DDL Statements

Page 297

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

VERSION The VERSION clause is an ElevateDB extension.

ATTRIBUTES The ATTRIBUTES clause is an ElevateDB extension.

DDL Statements

Page 298

5.75 DROP FUNCTION

Drops an existing function.

Syntax

DROP FUNCTION <Name>

Usage

Use this statement to drop a function from a database.

Warning
Dropping a function can cause other jobs, functions, procedures, views, triggers, constraints, or
column defaults to generate an error if they refer to the function being dropped.

Examples

-- The following statement drops the LookupTaxRate function.

DROP FUNCTION "LookupTaxRate"

Required Privileges

The current user must be granted the DROP privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

RESTRICT and CASCADE ElevateDB does not support the RESTRICT or CASCADE
clauses.

DDL Statements

Page 299

5.76 RENAME FUNCTION

Renames an existing function.

Syntax

RENAME FUNCTION <Name> TO <Name>

Usage

Use this statement to rename a function in a database.

Warning
Renaming a function can cause other jobs, functions, procedures, views, triggers, constraints, or
column defaults to generate an error if they refer to the function being renamed.

Examples

-- The following statement renames the LookupTaxRate
-- function to LookupRate.

RENAME FUNCTION "LookupTaxRate" TO "LookupRate"

Required Privileges

The current user must be granted the ALTER privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 300

5.77 CREATE PROCEDURE

Creates a new procedure.

Syntax

CREATE PROCEDURE <Name>
([<ParamDefinition>[,ParamDefinition]])
EXTERNAL NAME <ModuleName> | <BodyDefinition>
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[ATTRIBUTES <CustomAttributes>]

<ParamDefinition> =

<Mode> <Name> <DataType> [<Description>]

<Mode> =

IN|OUT|INOUT

<DataType> =

CHARACTER|CHAR [(<Length>]) [<CollationName>]
CHARACTER VARYING|VARCHAR [(<Length>]) [<CollationName>]
GUID
BYTE [(<LengthInBytes>])
BYTE VARYING|VARBYTE [(<LengthInBytes>])
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB [<CollationName>]
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT [(<Precision>,<Scale>)]
DECIMAL|NUMERIC [(<Precision>,<Scale>)]
DATE
TIME
TIMESTAMP
INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

<BodyDefinition> =

BEGIN
 [<Declaration>;]
 [<Declaration>;]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION
 [<Statement>;]]

DDL Statements

Page 301

END

Usage

Use this statement to create a new procedure in a given database. Procedures can be used in jobs, other
functions and procedures, and triggers.

Note
If you wish to return a result set from a procedure, declare the cursor in the procedure using the
WITH RETURN clause and leave the cursor open when the procedure completes.

Examples

-- The following procedure updates any Customer row
-- with a State column value of 'FL' to 'NY' and returns a cursor
-- on the Customer table.

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State = 'FL') THEN
 UPDATE CustCursor SET 'State' = 'NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;
END

Required Privileges

The current user must be granted the CREATE privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DDL Statements

Page 302

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

VERSION The VERSION clause is an ElevateDB extension.

ATTRIBUTES The ATTRIBUTES clause is an ElevateDB extension.

DDL Statements

Page 303

5.78 ALTER PROCEDURE

Alters an existing procedure.

Syntax

ALTER PROCEDURE <Name>
([<ParamDefinition>[,ParamDefinition]])
EXTERNAL NAME <ModuleName> | <BodyDefinition>
[DESCRIPTION <Description>]
[VERSION <VersionNumber>]
[ATTRIBUTES <CustomAttributes>]

<ParamDefinition> =

<Mode> <Name> <DataType> [<Description>]

<Mode> =

IN|OUT|INOUT

<DataType> =

CHARACTER|CHAR [(<Length>]) [<CollationName>]
CHARACTER VARYING|VARCHAR [(<Length>]) [<CollationName>]
GUID
BYTE [(<LengthInBytes>])
BYTE VARYING|VARBYTE [(<LengthInBytes>])
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB [<CollationName>]
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT [(<Precision>,<Scale>)]
DECIMAL|NUMERIC [(<Precision>,<Scale>)]
DATE
TIME
TIMESTAMP
INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

<BodyDefinition> =

BEGIN
 [<Declaration>;]
 [<Declaration>;]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION
 [<Statement>;]]

DDL Statements

Page 304

END

Usage

Use this statement to alter an existing procedure.

Note
All clauses after the body definition are optional. If they are not specified, then they will not be
altered and will stay the same as before the ALTER PROCEDURE statement was executed.

Examples

-- The following statement changes the description of the
-- UpdateState procedure.

ALTER PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State = 'FL') THEN
 UPDATE CustCursor SET 'State' = 'NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;
END
DESCRIPTION 'Procedure for updating FL states to NY'

Required Privileges

The current user must be granted the ALTER privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DDL Statements

Page 305

DESCRIPTION The DESCRIPTION clause is an ElevateDB extension.

VERSION The VERSION clause is an ElevateDB extension.

ATTRIBUTES The ATTRIBUTES clause is an ElevateDB extension.

DDL Statements

Page 306

5.79 DROP PROCEDURE

Drops an existing procedure.

Syntax

DROP PROCEDURE <Name>

Usage

Use this statement to drop a procedure from a database.

Warning
Dropping a procedure can cause other jobs, functions, procedures, and triggers to generate an
error if they refer to the procedure being dropped.

Examples

-- The following statement drops the UpdateState procedure.

DROP PROCEDURE "UpdateState"

Required Privileges

The current user must be granted the DROP privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

RESTRICT and CASCADE ElevateDB does not support the RESTRICT or CASCADE
clauses.

DDL Statements

Page 307

5.80 RENAME PROCEDURE

Renames an existing procedure.

Syntax

RENAME PROCEDURE <Name> TO <Name>

Usage

Use this statement to rename a procedure in a database.

Warning
Renaming a procedure can cause other jobs, functions, procedures, and triggers to generate an
error if they refer to the procedure being renamed.

Examples

-- The following statement renames the UpdateState
-- procedure to UpdState.

RENAME PROCEDURE "UpdateState" TO "UpdState"

Required Privileges

The current user must be granted the ALTER privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

DDL Statements

Page 308

Chapter 6
DML Statements

6.1 Introduction

DML (data manipulation language) statements are used to select, insert, update, or delete rows from
tables in an ElevateDB database. This section of the manual details the available DML statements in
ElevateDB.

Notation

The notation used in the syntax section for each DML statement is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

DML Statements

Page 309

6.2 SELECT

Selects rows from one or more tables.

Syntax

SELECT [ALL|DISTINCT]
*|<SelectColumn> [,<SelectColumn>]
[INTO <OutputParameter>[,<OutputParameter>]]
[FROM <SelectTable> [<Join> [,<Join>]|,<SelectTable>]]
[WHERE <FilterCondition>]
[GROUP BY <GroupColumn> [,<GroupColumn>]]
[HAVING <GroupFilterCondition>]
[UNION|
UNION ALL|
INTERSECT|
INTERSECT ALL|
EXCEPT|
EXCEPT ALL <QueryExpression>]
[ORDER BY <OrderColumn> [,<OrderColumn>]]
[RANGE <Start> [TO <End>]]
[NOJOINOPTIMIZE]
[JOINOPTIMIZECOSTS]
[JOININDEXTHRESHHOLD <ThreshholdPercent>]

<SelectColumn> = <ColumnExpression> [AS <ColumnCorrelationName>]

<SelectTable> = <TableName>|<ViewName>|<DerivedTable> [AS
 <TableCorrelationName>]

<DerivedTable> =

(<SELECT Statement>)

<Join> = [INNER|[LEFT|RIGHT OUTER] JOIN <SelectTable> ON <JoinCondition>

<GroupColumn> = <ColumnExpression> [COLLATE <CollationName>]

<OrderColumn> = <ColumnExpression> [COLLATE <CollationName>]
[[ASC|ASCENDING]|[DESC|DESCENDING]]

<Start> = INTEGER
<End> = INTEGER

<ThreshholdPercent> = INTEGER

Usage

Use this statement to select rows from one or more tables in an ElevateDB database. The SELECT
statement generates a result set that will contain the selected rows in the using the grouping specified by
the GROUP BY statement, if present, and the ordering specified by the ORDER BY clause, if present.

ALL and DISTINCT ClausesALL and DISTINCT Clauses

DML Statements

Page 310

The ALL and DISTINCT clauses control whether the generated result set contains duplicate rows. The
DISTINCT clause prevents duplicate rows while the ALL clause outputs all rows, including duplicates. The
ALL clause is the default condition and does not need to be specified in order to allow for duplicate rows in
the result set.

SELECT ColumnsSELECT Columns

The SELECT column list specifies the list of columns to be output into the result set. The columns specified
in the SELECT column list can contain any combination of columns and valid SQL expressions. The only
requirement is that any column references be valid in the context of the tables being selected from via the
FROM clause (see below) or via any sub-queries that are present as part of a valid SQL expression.

The special columns wildcard * can be used to specify that all columns from the first table in the FROM
clause, or a specific table if prefaced with the table name using the <TableName>.* notation, be output
into the result set.

Use the AS clause to output any SELECT column in the result set using a specific column name.

Note
Any duplicate SELECT column names will be output using a numbered suffix in order to make them
unique. Furthermore, any SQL expressions without an associated AS clause will be output using a
special column name of:

Expression

for general SQL expressions and a column name of:

<AggregateFunction> OF <ColumnName>|ALL

for any aggregate function expressions using the MIN, MAX, SUM, RUNSUM, AVG, STDDEV, or COUNT
functions.

INTO ClauseINTO Clause

The INTO clause allows you to specify one or more output parameters as the target of a SELECT
statement. Such a statement doesn't return a result set at all, which is useful for situations where you only
want one, or a few, values from a specific row in a table.

Note
The use of the INTO clause requires that the SELECT statement only return a single row. If the
SELECT statement returns more than one row, then an exception will be raised.

FROM ClauseFROM Clause

The FROM clause specifies the table or view, or tables or views, from which the rows in the result set
should be selected. In addition, ElevateDB supports the use of derived tables in the FROM clause. A
derived table is another SELECT statement enclosed in parentheses, and can be any valid SELECT

DML Statements

Page 311

statement. ElevateDB uses temporary views to implement derived tables.

Each table or view can be assigned a correlation name that is used instead of the actual table or view
name in column references. This is useful when you must specify the same table or view name more than
once in the FROM clause, such as is the case when joining a table or view to itself. Each table or view's
name or correlation name must be unique in the context of the FROM clause. Derived tables, however,
must be assigned a correlation name so that the derived table can be indentified elsewhere in the SELECT
statement.

Note
As of ElevateDB 2.08, the FROM clause is optional. If you do not include the FROM clause, then you
cannot specify the WHERE, GROUP BY, HAVING, NOJOINOPTIMIZE, JOINOPTIMIZECOSTS, ORDER
BY, or RANGE clauses. Executing a SELECT statement without a FROM clause is useful for retrieving
information via system functions such as the CURRENT_USER or CURRENT_DATABASE function.

If more than one table is specified, then the JOIN clause can be used to specify the relationship(s)
between the tables. ElevateDB supports three different JOIN clauses:

Join Clause Description

INNER JOIN An INNER join specifies that any rows output into the result
set from the target table of the join must match the join
expression specified in the join expression. If any row from
the target table does not match the join expression, then it is
discarded.

LEFT OUTER JOIN A LEFT OUTER join specifies that any rows output into the
result set from the target table of the join must match the join
expression specified in the join expression. If any row from
the target table does not match the join expression, then
NULL values are generated for all column references to the
target table in the SELECT column list.

RIGHT OUTER JOIN A RIGHT OUTER join is the exact opposite of a LEFT OUTER
JOIN and specifies that any rows output into the result set
from the source table of the join must match the join
expression specified in the join expression. If any row from
the source table does not match the join expression, then
NULL values are generated for all column references to the
source table in the SELECT column list.

Note
If you specify multiple tables in the FROM clause without specifying JOIN clauses between all of
them, then the tables without applicable JOIN clauses will be joined using a CROSS JOIN, which is a
join that joins every row from the source table to every row in the target table. This produces a
cartesian product of both tables, and even very small tables can result in very large result sets, so
one should be careful to ensure that join conditions are always specified for all tables in the SELECT
statement.

WHERE ClauseWHERE Clause

The WHERE clause is used to filter the rows output into the result set after the rows have been filtered

DML Statements

Page 312

using any join expressions that may be present. The WHERE clause can contain any valid boolean SQL
expression.

Note
Aggregate functions such as the MIN, MAX, or SUM functions cannot be used anywhere in the
WHERE clause. Also, do not specify joins in the WHERE clause according to the outdated SQL-89
SQL standard. Use the SQL-92 or higher standard JOIN syntax mentioned above instead. ElevateDB
will not optimize any joins that are specified in the WHERE clause.

GROUP BY ClauseGROUP BY Clause

The GROUP BY clause is used to group the rows output into the result set by one or more SQL columns or
expressions. Each GROUP BY column or expression may optionally include a COLLATE clause that specifies
the collation that should be used for the grouping.

Note
Any aggregate functions such as the MIN, MAX, or SUM functions in the SELECT column list will be
aggregated based upon the columns specified in the GROUP BY clause. If aggregate functions are
present in the SELECT column list, but no GROUP BY clause is specified, then the result set will
contain a single row.

HAVING ClauseHAVING Clause

The HAVING clause is used to filter any rows after they have been grouped using the GROUP BY clause,
but before they are output to the result set. The HAVING clause can contain any valid boolean SQL
expression. Also, aggregate functions are allowed to be used in the HAVING clause.

UNION, INTERSECT, and EXCEPT ClausesUNION, INTERSECT, and EXCEPT Clauses

The UNION, INTERSECT, and EXCEPT clauses are used to perform set operations between two query
expressions. The SELECT column list of the query expressions involved in a set operation must contain the
same number of columns or expressions, and the columns or expressions must be type-compatible. The
set operations work as follows:

Clause Description

UNION Outputs the rows of both query expressions into the result
set.

INTERSECT Outputs the rows of the first query expression that match the
rows of the second query expression into the result set.

EXCEPT Outputs the rows of the first query expression that do not
match the rows of the seoncd query expressions into the
result set.

By default, non-distinct rows are aggregated into single rows in a UNION, INTERSECT, or EXCEPT
operation. Use the ALL clause to retain non-distinct rows.

ORDER BY ClauseORDER BY Clause

The ORDER BY clause is used to order the rows output into the result set by one or more SQL columns or

DML Statements

Page 313

expressions. Each ORDER BY column or expression may optionally include a COLLATE clause that specifies
the collation that should be used for the ordering and an ASCENDING or DESCENDING clause that
specifies the direction in which the ordering should be performed. The default direction is ASCENDING.

RANGE ClauseRANGE Clause

The RANGE clause is used to limit the rows generated in the result set to the sequential range specified,
with the start value being the first row to return and the end value being the last. The TO clause and end
value are optional, and can be left off if you wish to return all of the rows in the result set starting with the
specified first row.

You may use dynamic parameter markers instead of constant values in the RANGE clause. This permits
you to prepare the query once, and then execute it multiple times with different ranges in the result set
without forcing ElevateDB to re-compile the query. See your product-specific manual for more information
on preparing and executing parameterized queries.

Incremental Result Set PopulationIncremental Result Set Population

The RANGE clause can also be used with insensitive result sets. ElevateDB can use the ending row value
for the range to perform incremental population of the result set, resulting in better performance when
you only want to see a small set of rows at a time. Combined with dynamic parameters for the start and
end values, this allows you to incrementally populate the result set as each set of rows is viewed. For
example, consider the following SQL, set in the client application to return an insensitive result set:

SELECT * FROM Orders
RANGE ? TO ?

Once this query is prepared, you may then execute the query many times with different values. In this
example, let's assume that the first execution uses 1 as the starting parameter value and 20 for the ending
parameter value. This will cause ElevateDB to populate the first 20 rows in the result set, and return these
rows as the insensitive result set. The second execution uses 21 as the starting parameter value and 40 as
the ending parameter value. This will cause ElevateDB to populate the next 20 rows in the result set, and
return rows 21 through 40 as the insensitive result set. The third execution uses the starting and ending
values of 1 and 20 again. In this case, ElevateDB won't populate any more rows into the result and will
quickly return the first 20 rows again as the result set.

Please see the Result Set Cursor Sensitivity topic for more information on sensitive and insensitive result
sets.

Scalar QueriesScalar Queries

Scalar queries are SELECT statements that result in a single row containing exactly one column. Such
queries can be used almost anywhere that a normal scalar value would be used. However, it is important
to note that if such a query returns more than a single row, or more than one column in the single row,
then an exception will be raised.

NOJOINOPTIMIZE ClauseNOJOINOPTIMIZE Clause

The NOJOINOPTIMIZE clause is used to force the query optimizer to stop re-ordering joins for a SELECT
statement. In certain rare cases the query optimizer might not have enough information to know that re-
ordering the joins will result in worse performance than if the joins were left in their original order, so in
such cases you can include this clause to force the query optimizer to not perform the join re-ordering.

DML Statements

Page 314

Note
Only INNER JOIN expressions can be re-ordered by the query optimizer. LEFT and RIGHT OUTER
JOIN expressions cannot be re-ordered.

JOINOPTIMIZECOSTS ClauseJOINOPTIMIZECOSTS Clause

The JOINOPTIMIZECOSTS clause is used to force the query optimizer to use I/O cost projections to
determine the most efficient way to process a join expression. If you have a join expression with multiple
conditions in it, then using this clause may help improve the performance of the join expression, especially
if it is already executing very slowly.

JOININDEXTHRESHHOLD ClauseJOININDEXTHRESHHOLD Clause

As of ElevateDB 2.26, there is a new JOININDEXTHRESHHOLD keyword available for the SELECT
statement. This keyword controls how ElevateDB handles optimized (indexed) WHERE conditions on tables
that are the target of INNER JOINs. For more general information, please see the How ElevateDB
Selects the Rows section in the Optimizer topic.

Previously, ElevateDB would simply use any available, usable index and build a bitmap that represented
the set of rows, irrespective of how many rows were selected. This works fine when there are no joins, but
can be problematic when the number of rows selected is large and the table is also the target of an INNER
JOIN. In such cases, the INNER JOIN condition's bitmap must constantly be assigned/ANDed with the
WHERE condition's bitmap and, because the join condition's bitmap typically represents a much smaller set
of rows than the WHERE condition, this process of reconciling the bitmaps becomes computationally
expensive and a drag on performance.

The value provided with the JOININDEXTHRESHHOLD clause is an integer value representing a
percentage of rows that, when exceeded, causes ElevateDB to treat such WHERE conditions as un-
optimized row scans instead of index scans. This eliminates the computationally expensive bitmap
operations and drastically improves the performance of the SELECT statement. The default value for the
JOININDEXTHRESHHOLD is 75. This means that a WHERE condition must select at least 75% of the rows
in a table is also the target of an INNER JOIN condition in order to be converted into a row scan.

Examples

-- This SELECT statement selects several columns
-- from the OrderItems table along with an expression
-- for computing the extended price of an ordered item

SELECT OrderNo,
LineNo,
ItemNo,
QtyOrdered,
UnitPrice,
(QtyOrdered * UnitPrice) AS ExtendedPrice
FROM OrderItems

-- This SELECT statement selects all columns
-- from the Orders and OrderItems tables
-- joined on the OrderNo column. Note that
-- this statement will not output any rows
-- into the result set for any rows in the
-- Orders table that do not have a corresponding
-- row in the OrderItems table

DML Statements

Page 315

SELECT Orders.*,
OrderItems.*
FROM Orders INNER JOIN OrderItems ON
Orders.OrderNo = OrderItems.OrderNo

-- This SELECT statement solves the previous
-- issue with missing OrderItems rows by using
-- a LEFT OUTER JOIN instead. If a corresponding
-- row does not exist in the OrderItems table
-- for a given Orders row, then the Orders row
-- will still be included and NULL values will
-- be output for all OrderItems columns

SELECT Orders.*,
OrderItems.*
FROM Orders LEFT OUTER JOIN OrderItems ON
Orders.OrderNo = OrderItems.OrderNo

-- This SELECT statement outputs all rows from
-- the Customers table where the customer has
-- not placed an order within the last year

SELECT *
FROM Customers
WHERE NOT EXISTS
 (SELECT *
 FROM Orders
 WHERE CustNo=Customers.CustNo AND
 OrderDate BETWEEN (CURRENT_DATE - INTERVAL '1' YEAR) AND CURRENT_DATE)

-- This SELECT statement outputs all customers
-- and their total orders for the last year in
-- descending order by the TotalOrdersAmount
-- SELECT column expression

SELECT Customer.CustNo,
Customer.Name,
COUNT(Orders.*) AS TotalOrders,
SUM(OrderItems.QtyOrdered * OrderItems.UnitPrice) AS TotalOrdersAmount
FROM Customers INNER JOIN Orders ON
Customer.CustNo = Orders.CustNo
INNER JOIN OrderItems ON
Orders.OrderNo = OrderItems.OrderNo
WHERE Orders.OrderDate BETWEEN (CURRENT_DATE - INTERVAL '1' YEAR) AND
 CURRENT_DATE)
GROUP BY Customer.CustNo, Customer.Name
ORDER BY TotalOrdersAmount DESC

-- This SELECT statement selects the total orders
-- from the Orders table for all rows where the
-- OrderDate is in January and uses the UNION
-- clause to append the total orders from the Orders
-- table where the OrderDate is in February

SELECT 'January' AS OrderMonth,
SUM(OrderItems.QtyOrdered * OrderItems.UnitPrice) AS TotalOrdersAmount
FROM Orders INNER JOIN OrderItems ON
Orders.OrderNo = OrderItems.OrderNo
WHERE Orders.OrderDate BETWEEN DATE '2006-01-01' AND DATE '2006-01-31'

DML Statements

Page 316

UNION ALL
SELECT 'February' AS OrderMonth,
SUM(OrderItems.QtyOrdered * OrderItems.UnitPrice) AS TotalOrdersAmount
FROM Orders INNER JOIN OrderItems ON
Orders.OrderNo = OrderItems.OrderNo
WHERE Orders.OrderDate BETWEEN DATE '2006-02-01' AND DATE '2006-02-28'

-- This SELECT statement returns the
-- user-defined version for a given
-- table, or NULL if the table does
-- not exist. It uses the INTO clause
-- to put the resultant value into an
-- output parameter.

SELECT Version INTO :Version
FROM Information.Tables WHERE Name=:Name

Required Privileges

The current user must be granted the SELECT privilege on all tables referenced in the FROM clause in
order to execute this statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Recursive Queries ElevateDB does not support recursive queries.

Sampling ElevateDB does not support sampling in SELECT statements.

FULL OUTER JOINS ElevateDB does not support FULL OUTER JOINs.

NATURAL JOINS ElevateDB does not support NATURAL JOINs.

USING ElevateDB does not support the USING clause in joins.

CUBE and ROLLUP ElevateDB does not support the CUBE and ROLLUP clauses in
the GROUP BY clause.

GROUPING SETS ElevateDB does not support the GROUPING SETS clause in the
GROUP BY clause.

GROUP BY DISTINCT ElevateDB does not support the DISTINCT clause in the
GROUP BY clause.

WINDOW ElevateDB does not support the WINDOW clause.

CORRESPONDING BY ElevateDB does not support the CORRESPONDING BY clause
in the UNION, INTERSECT, and EXCEPT set operators.

RANGE The RANGE clause is an ElevateDB extension.

DML Statements

Page 317

6.3 INSERT

Inserts one or more rows into a table.

Syntax

INSERT INTO <TableName>
[(<ColumnName> [,<ColumnName>])]
VALUES (<Value> [,<Value>])|
<QueryExpression>

<QueryExpression> = query with the same number of
columns as the INSERT statement and columns that
are type-compatible with the INSERT columns

Usage

Use this statement to insert a row or rows into a table. If a list of columns to populate is not specified,
then the number of values specified in the VALUES clause must match the number of columns in the table.
All values specified in the VALUES clause must be type-compatible with the specified columns, or all of the
columns in the table if the columns are not specified. If a query expression is used to insert multiple rows
into a table, then the SELECT column list of the query expression must contain columns or expressions
that are type-compatible with the specified columns, or all of the or all of the columns in the table if the
columns are not specified.

Note
If a list of columns is specified, then any columns not specified will be populated with the default
value defined for the column.

Examples

-- This INSERT statement inserts a new
-- row into the Orders table

INSERT INTO Orders
(OrderNo, ItemNo, QtyOrdered, UnitPrice)
VALUES (1200, 23478, 10, 30.00)

-- This INSERT statement inserts all of
-- the Orders rows for the year 2006 into
-- the ArchivedOrders table

INSERT INTO ArchivedOrders
SELECT * FROM Orders
WHERE OrderDate BETWEEN DATE '2006-01-01' AND DATE '2006-12-31'

Required Privileges

DML Statements

Page 318

The current user must be granted the INSERT and SELECT privileges on the target table. In addition, the
current user must be granted the SELECT privilege on any tables referenced in the FROM clause of a query
expression, if one is used. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DEFAULT VALUES ElevateDB does not support the DEFAULT VALUES clause.

DML Statements

Page 319

6.4 UPDATE

Updates one or more rows in a table.

Syntax

UPDATE <TableName>
SET <ColumnName> = <Value> [,<ColumnName> = <Value>])
[WHERE <FilterCondition>]

Usage

Use this statement to update one or more rows in a table. The SET clause is used to specify which
columns you want to update and the values to assign to the columns. Each value can be any valid SQL
expression.

WHERE ClauseWHERE Clause

Use the WHERE clause to limit the rows that are updated to those that satisfy a boolean SQL expression.

Examples

-- This UPDATE statement updates
-- the customer with the customer # of
-- 8354 and sets their LastOrdered column
-- to today

UPDATE Customers
SET LastOrdered = CURRENT_DATE
WHERE CustNo = 8354

-- This UPDATE statement updates all of
-- the rows in the Customers table and sets
-- their SentMailer column to False

UPDATE Customers
SET SentMailer = FALSE

Required Privileges

The current user must be granted the UPDATE and SELECT privileges on the target table. Please see the
User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

DML Statements

Page 320

Positioned Updates ElevateDB does not support positioned updates. Instead
ElevateDB supports using a cursor-based UPDATE statement
directly on the current position of a cursor.

DML Statements

Page 321

6.5 DELETE

Deletes one or more rows from a table.

Syntax

DELETE FROM <TableName>
[WHERE <FilterCondition>]

Usage

Use this statement to delete one or more rows from a table.

WHERE ClauseWHERE Clause

Use the WHERE clause to limit the rows that are deleted to those that satisfy a boolean SQL expression.

Examples

-- This DELETE statement deletes
-- all rows from the Orders table for the
-- year 2006

DELETE FROM Orders
WHERE OrderDate BETWEEN DATE '2006-01-01' AND DATE '2006-12-31'

Required Privileges

The current user must be granted the DELETE and SELECT privileges on the target table. Please see the
User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Positioned Deletes ElevateDB does not support positioned deletes. Instead
ElevateDB supports using a cursor-based DELETE statement
directly on the current position of a cursor.

DML Statements

Page 322

Chapter 7
SQL/PSM Statements

7.1 Introduction

SQL/PSM (persistent stored module) statements are used to define stored functions and procedures that
are stored in an ElevateDB database and can be called from both client code and other stored functions
and procedures. This section of the manual details the available SQL/PSM statements in ElevateDB.

Notation

The notation used in the syntax section for each SQL/PSM statement is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

SQL/PSM Statements

Page 323

7.2 BEGIN..END

Declares a block of statements.

Syntax

[Label:]
BEGIN
 [<Statement>;]
 [<Statement>;]
END [Label];

Usage

Use these statements to declare a block of statements for execution in a procedure or function.

Note
The outermost BEGIN..END block for any procedure or function does not require a line termination
character (;) after the END, where any BEGIN..END block within the outermost block does require a
line termination character after the END.

Examples

-- This procedure produces a summary
-- of the number of albums and total album
-- purchases by genre, label, or artist

CREATE PROCEDURE Summaries(IN "SummaryType" CHAR(1) COLLATE ANSI_CI)
BEGIN
 DECLARE Result CURSOR WITH RETURN FOR Stmt;

 CASE SummaryType
 -- Genres summary
 WHEN 'G' THEN
 BEGIN
 PREPARE Stmt FROM 'SELECT Genre AS Name, COUNT(Name) AS NumAlbums,
 SUM(PurchasePrice) AS TotalPurchases
 FROM Albums
 GROUP BY Genre';
 OPEN Result;
 END;
 -- Labels summary
 WHEN 'L' THEN
 BEGIN
 PREPARE Stmt FROM 'SELECT Label AS Name, COUNT(Name) AS NumAlbums,
 SUM(PurchasePrice) AS TotalPurchases
 FROM Albums
 GROUP BY Label';
 OPEN Result;
 END;

SQL/PSM Statements

Page 324

 -- Artists summary
 WHEN 'A' THEN
 BEGIN
 PREPARE Stmt FROM 'SELECT Artist AS Name, COUNT(Name) AS NumAlbums,
 SUM(PurchasePrice) AS TotalPurchases
 FROM Albums
 GROUP BY Artist';
 OPEN Result;
 END;
 END CASE;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 325

7.3 EXCEPTION

Declares a block of statements for handling an exception.

Syntax

[Label:]
BEGIN
 [<Statement>;]
 [<Statement>;]
EXCEPTION
 [<Statement>;]
END [Label];

Usage

Use these statements to declare a block of statements for execution in a procedure or function with an
associated exception block of statements for handling any exceptions that may occur in the block of
statements.

You can use the ERRORCODE and ERRORMSG functions in an exception handling block to determine the
current error code and message.

Examples

-- This procedure uses an EXCEPTION
-- block to handle any exceptions while
-- executing a CREATE TABLE statement

CREATE PROCEDURE CreateTestTable()
BEGIN
 DECLARE stmt STATEMENT;

 PREPARE stmt FROM 'CREATE TEMPORARY TABLE "TestTable"
 (
 "FirstColumn" INTEGER,
 "SecondColumn" VARCHAR(30),
 "ThirdColumn" CLOB,
 PRIMARY KEY ("FirstColumn")
)

 DESCRIPTION ''Test Table''';

 EXECUTE stmt;
EXCEPTION
 IF ERRORCODE()=700 THEN
 RAISE ERROR CODE 10000 MESSAGE 'Syntax error';
 ELSE
 RAISE ERROR CODE 10000 MESSAGE 'Unexpected error - ' +
 ERRORMSG();
 END IF;
END

SQL/PSM Statements

Page 326

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 327

7.4 FINALLY

Declares a block of statements for always executing a block, regardless of whether an exception occurs or
not.

Syntax

[Label:]
BEGIN
 [<Statement>;]
 [<Statement>;]
FINALLY
 [<Statement>;]
END [Label];

Usage

Use these statements to declare a block of statements for execution in a procedure or function with an
associated block of statements that will be executed regardless of any exceptions that are raised, or
whether the block of statements was exited using the LEAVE statement.

FINALLY blocks are useful for ensuring that any resources that are allocated before the block is executed,
are released after the block is executed. For example, if an external function/procedure is called that
opens a file on disk, you would want to use a FINALLY block to ensure that another external
function/procedure is called to close the file.

Examples

-- This procedure uses a FINALLY
-- block to make sure that the file opened
-- using the OpenFile() external function
-- is closed using the CloseFile() external
-- function

CREATE FUNCTION ReadTextFile(IN TextFileName VARCHAR)
RETURNS VARCHAR
BEGIN
 DECLARE FileHandle INTEGER DEFAULT 0;
 DECLARE Result VARCHAR DEFAULT '';

 SET FileHandle=OpenFile(TextFileName);
 BEGIN
 SET Result=ReadFile(FileHandle);
 FINALLY
 CloseFile(FileHandle);
 END;

END

SQL 2003 Standard Deviations

SQL/PSM Statements

Page 328

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 329

7.5 DECLARE

Declares one or more variables, cursors, or statements.

Syntax

DECLARE <VariableDefinition>|<CursorDefinition>|
 <StatementDefinition>

<VariableDefinition> =

<VariableName> [,<VariableName>] <DataType>
[ARRAY [<MaximumCardinality>]]
[DEFAULT <DefaultExpression>]

<DataType> =

CHARACTER|CHAR [(<Length>]) [<CollationName>]
CHARACTER VARYING|VARCHAR [(<Length>]) [<CollationName>]
GUID
BYTE [(<LengthInBytes>])
BYTE VARYING|VARBYTE [(<LengthInBytes>])
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB [<CollationName>]
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT [(<Precision>,<Scale>)]
DECIMAL|NUMERIC [(<Precision>,<Scale>)]
DATE
TIME
TIMESTAMP
INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

<CursorDefinition> =

<CursorName> [SENSITIVE|INSENSITIVE|ASENSITIVE] CURSOR
[WITH RETURN|WITHOUT RETURN] FOR <StatementName>

<StatementDefinition> =

<StatementName> STATEMENT

Usage

Use this statement to declare one or more variables, cursors, or statements to be used later in the function
or procedure.

SQL/PSM Statements

Page 330

VariablesVariables

Variables can be declared as any valid data type, and the DEFAULT clause can be used to specify an initial
value for the variable. To declare an array, use the ARRAY clause along with the maximum cardinality
specifier after the data type. The maximum cardinality sets the limit on the size of the array, and any
attempt to reference any index (1-based) greater than the maximum cardinality of the array will result in
an exception.

Note
If you specify a default value for an array using the DEFAULT clause, then every single element in
the array will be initialized to the specified default value.

CursorsCursors

Cursors can be declared as sensitive, insensitive, or asensitive.

Type Description

SENSITIVE Sensitive cursors are dynamic and change along with the table
used to output the rows in the result set on which the cursor
is operating.

INSENSITIVE Insensitive cursors are static and do not change even if the
tables used to output the rows in the result set on which the
cursor is operating change.

ASENSITIVE Asensitive cursors, the default, are esentially the same as a
sensitive cursor because ElevateDB will always attempt to
open a sensitive cursor if the cursor is declared as asensitive.

It is important to recognize that the cursor type in a cursor declaration is simply a request for a certain
type of cursor, except in the case of the ASENSITIVE cursor declaration which is equivalent to declaring
that the type of cursor is irrelevant. ElevateDB may or may not be able to create a declared cursor type.
To determine the actual type of cursor that was created, use the SENSITIVE function on any opened
cursor. See the Result Set Cursor Sensitivity topic for more information on what rules determine whether a
cursor can be sensitive or not.

Cursor declarations also may specify whether the cursor should be returned to the calling program.
Returnability only applies to procedures and does not apply to functions.

Type Description

WITH RETURN Specifies that the cursor should be returned to the calling
program if it is left open in the procedure.

WITHOUT RETURN Specifies that the cursor should be automatically closed if it is
left open when the function or procedure exits. This is the
default.

The statement name given in a cursor associates a statement (see below) with the cursor for use in the
preparation of the SQL SELECT statement used to output the result set on which the cursor will be
operating.

SQL/PSM Statements

Page 331

StatementsStatements

Statements are simply containers for executing dynamic SQL statements in a procedure or function. To
actually use a statement you must first bind SQL statement text to the statement using the PREPARE
statement. Then the statement may be executed any number of times using the EXECUTE statement.

Examples

-- This procedure changes all
-- rows with a State column value of 'FL'
-- to 'NY'and returns a sensitive cursor
-- on the Customers table

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;
END

-- This procedure simply returns an insensitive
-- cursor on the States table

CREATE PROCEDURE States()
BEGIN
 DECLARE Test INSENSITIVE CURSOR WITH RETURN FOR stmt;

 PREPARE stmt FROM 'SELECT * FROM States';

 OPEN Test;
END

-- This procedure uses a statement to
-- execute a CREATE TABLE statement

CREATE PROCEDURE CreateTestTable()
BEGIN
 DECLARE stmt STATEMENT;

 PREPARE stmt FROM 'CREATE TEMPORARY TABLE "TestTable"
 (
 "FirstColumn" INTEGER,
 "SecondColumn" VARCHAR(30),
 "ThirdColumn" CLOB,
 PRIMARY KEY ("FirstColumn")
)

SQL/PSM Statements

Page 332

 DESCRIPTION ''Test Table''';

 EXECUTE stmt;
END

-- This script loops through the Customer table and
-- populates an array with the CustNo column value
-- for each row

SCRIPT
BEGIN
 DECLARE Done BOOLEAN DEFAULT False;
 DECLARE TotalRows INTEGER DEFAULT 0;
 DECLARE CustCursor CURSOR FOR CustStmt;
 DECLARE CustArray INTEGER ARRAY [56];

 PREPARE CustStmt FROM 'SELECT CustNo,
 Company
 FROM Customer';

 OPEN CustCursor;

 WHILE (NOT EOF(CustCursor)) DO
 SET TotalRows=TotalRows+1;
 FETCH NEXT FROM CustCursor INTO CustArray[TotalRows];
 SET PROGRESS TO TRUNC((TotalRows/ROWCOUNT(CustCursor))*100);
 END WHILE;

 CLOSE CustCursor;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Dynamic SQL The use of dynamic SQL for cursor declarations and statement
declarations instead of static SQL in procedures and functions
is an ElevateDB extension.

BEGIN..END Declarations can only be made at the beginning of the
outermost BEGIN..END block in an ElevateDB procedure or
function. The standard dictates that declarations can be made
anywhere inside of any BEGIN..END block.

SQL/PSM Statements

Page 333

7.6 RAISE

Re-raises an exception or creates a new user-defined exception.

Syntax

RAISE [ERROR CODE <ErrorCode> MESSAGE <ErrorMessage>]

<ErrorCode> = Any user-defined (10000-High(INTEGER)) error code

Usage

Use this statement to re-raise an existing exception or raise a new exception using the user-defined error
code range of 10000 or higher.

This statement can only be used from within an EXCEPTION block or from within an error trigger when it is
specified without an error code and message and is simply trying to re-raise an existing exception. See the
CREATE TRIGGER topic for more information on error triggers.

Examples

-- This procedure uses an exception
-- block to handle any exceptions while
-- executing a CREATE TABLE statement

PROCEDURE CreateTestTable()
BEGIN
 DECLARE stmt STATEMENT;

 PREPARE stmt FROM 'CREATE TEMPORARY TABLE "TestTable"
 (
 "FirstColumn" INTEGER,
 "SecondColumn" VARCHAR(30),
 "ThirdColumn" CLOB,
 PRIMARY KEY ("FirstColumn")
)

 DESCRIPTION ''Test Table''';

 EXECUTE stmt;
EXCEPTION
 IF ERRORCODE()=700 THEN
 RAISE ERROR CODE 10000 MESSAGE 'Syntax error';
 ELSE
 RAISE ERROR CODE 10000 MESSAGE 'Unexpected error - ' +
 ERRORMSG();
 END IF;
END

SQL 2003 Standard Deviations

SQL/PSM Statements

Page 334

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 335

7.7 IF

Provides conditional branching.

Syntax

IF <BooleanExpression> THEN
 <StatementBlock>
[ELSEIF <BooleanExpression> THEN
 <StatementBlock>]
[ELSE
 <StatementBlock>]
END IF;

<StatementBlock> =

[[Label:]
BEGIN]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION]
 [<Statement>;]
[END [Label];]

Usage

Use this statement to provide conditional branching based upon a single or multiple boolean expressions.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

SQL/PSM Statements

Page 336

END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 337

7.8 CASE

Provides conditional branching.

Syntax

CASE
WHEN <BooleanExpression> THEN
 <StatementBlock>
[WHEN <BooleanExpression> THEN
 <StatementBlock>]
[ELSE
 <StatementBlock>]
END CASE;

Shorthand Value Syntax

CASE <Expression>
WHEN <Expression> THEN
 <StatementBlock>
[WHEN <Expression> THEN
 <StatementBlock>]
[ELSE
 <StatementBlock>]
END CASE;

<StatementBlock> =

[[Label:]
BEGIN]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION]
 [<Statement>;]
[END [Label];]

Usage

Use this statement to provide conditional branching based upon a single or multiple boolean expressions,
or based upon multiple simple value comparisons.

Examples

-- This procedure produces a summary
-- of the number of albums and total album
-- purchases by genre, label, or artist

CREATE PROCEDURE Summaries(IN "SummaryType" CHAR(1) COLLATE ANSI_CI)
BEGIN
 DECLARE Result CURSOR WITH RETURN FOR Stmt;

 CASE SummaryType

SQL/PSM Statements

Page 338

 -- Genres summary
 WHEN 'G' THEN
 BEGIN
 PREPARE Stmt FROM 'SELECT Genre AS Name, COUNT(Name) AS NumAlbums,
 SUM(PurchasePrice) AS TotalPurchases
 FROM Albums
 GROUP BY Genre';
 OPEN Result;
 END;
 -- Labels summary
 WHEN 'L' THEN
 BEGIN
 PREPARE Stmt FROM 'SELECT Label AS Name, COUNT(Name) AS NumAlbums,
 SUM(PurchasePrice) AS TotalPurchases
 FROM Albums
 GROUP BY Label';
 OPEN Result;
 END;
 -- Artists summary
 WHEN 'A' THEN
 BEGIN
 PREPARE Stmt FROM 'SELECT Artist AS Name, COUNT(Name) AS NumAlbums,
 SUM(PurchasePrice) AS TotalPurchases
 FROM Albums
 GROUP BY Artist';
 OPEN Result;
 END;
 END CASE;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 339

7.9 LOOP

Provides an unconditional looping construct.

Syntax

[Label:]
LOOP
 <StatementBlock>
END LOOP [Label];

<StatementBlock> =

<StatementBlock> =

[[Label:]
BEGIN]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION]
 [<Statement>;]
[END [Label];]

Usage

Use this statement to loop unconditionally on a single statement or multiple statements. You can use the
LEAVE statement to exit the loop at any time, and the ITERATE statement to jump to the top of the loop
at any time.

Examples

-- This procedure loops through
-- the Customers table and exits the loop
-- when the EOF is reached on the cursor

CREATE PROCEDURE LoopCustomers()
BEGIN
 DECLARE CustCursor SENSITIVE CURSOR FOR Stmt;

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 FETCH FIRST FROM CustCursor;

 LOOP
 IF EOF(CustCursor) THEN
 LEAVE;
 ELSE
 FETCH NEXT FROM CustCursor;
 END IF;
 END LOOP;

SQL/PSM Statements

Page 340

END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 341

7.10 REPEAT

Conditionally repeats a single statement or multiple statements.

Syntax

[Label:]
REPEAT
 <StatementBlock>
UNTIL <BooleanExpression> END REPEAT [Label];

<StatementBlock> =

<StatementBlock> =

[[Label:]
BEGIN]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION]
 [<Statement>;]
[END [Label];]

Usage

Use this statement to repeat a single statement or multiple statements until a boolean expression
evaluates to True. You can use the LEAVE statement to exit the loop at any time, and the ITERATE
statement to jump to the top of the loop at any time.

Examples

-- This function simply repeats a
-- a string the specified number of times
-- and returns the resultant string

CREATE FUNCTION RepeatString(IN "StringToRepeat" VARCHAR, IN "RepeatCount"
 INTEGER)
RETURNS VARCHAR
BEGIN
 DECLARE I INTEGER DEFAULT 1;
 DECLARE Result VARCHAR DEFAULT '';

 IF RepeatCount = 0 THEN
 LEAVE;
 END IF;

 REPEAT
 SET Result = (Result + StringToRepeat);
 SET I = (I + 1);
 UNTIL (I > RepeatCount) END REPEAT;

 RETURN Result;

SQL/PSM Statements

Page 342

END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 343

7.11 WHILE

Provides an conditional looping construct.

Syntax

[Label:]
WHILE <BooleanExpression> DO
 <StatementBlock>
END WHILE [Label];

<StatementBlock> =

<StatementBlock> =

[[Label:]
BEGIN]
 [<Statement>;]
 [<Statement>;]
[EXCEPTION]
 [<Statement>;]
[END [Label];]

Usage

Use this statement to conditionally loop on a single statement or multiple statements. You can use the
LEAVE statement to exit the loop at any time, and the ITERATE statement to jump to the top of the loop
at any time.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;

SQL/PSM Statements

Page 344

 END WHILE;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 345

7.12 ITERATE

Jumps to the top of a loop.

Syntax

ITERATE [<Label>]

Usage

Use this statement to jump to the top of the current loop or a specified loop using the name of a labeled
loop. This statement is only valid within a LOOP, REPEAT, or WHILE loop.

Examples

-- This procedure deletes all rows
-- in the Customers table with a State
-- column of 'FL'

CREATE PROCEDURE DeleteFLCustomers()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 DELETE FROM CustCursor;
 FETCH FROM CustCursor ('State') INTO State;
 ITERATE;
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Optional Label The label is optional in ElevateDB, and if not provided,
defaults to the current loop being executed.

SQL/PSM Statements

Page 346

7.13 LEAVE

Exits a block of statements.

Syntax

LEAVE [<Label>]

Usage

Use this statement to exit a block of statements contained within a BEGIN..END block or LOOP, REPEAT,
or WHILE loop.

Examples

-- This function simply repeats a
-- a string the specified number of times
-- and returns the resultant string

CREATE FUNCTION RepeatString(IN "StringToRepeat" VARCHAR, IN "RepeatCount"
 INTEGER)
RETURNS VARCHAR
BEGIN
 DECLARE I INTEGER DEFAULT 1;
 DECLARE Result VARCHAR DEFAULT '';

 IF RepeatCount = 0 THEN
 LEAVE;
 END IF;

 REPEAT
 SET Result = (Result + StringToRepeat);
 SET I = (I + 1);
 UNTIL (I > RepeatCount) END REPEAT;

 RETURN Result;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Optional Label The label is optional in ElevateDB, and if not provided,
defaults to the current block being executed.

SQL/PSM Statements

Page 347

7.14 SET

Assigns a value to a variable, parameter, or trigger NEWROW value.

Syntax

SET <TargetName> = <Expression> [,<TargetName> = <Expression>]

<TargetName> =

<VariableName>|<ParameterName>|NEWROW.<ColumnName>

Usage

Use this statement to assign a value to a variable, parameter, or trigger NEWROW value.

Examples

-- This function uses the SET
-- statement to assign the count of the
-- rows in the Customers table to the
-- result variable returned from the function

CREATE FUNCTION CountCustomers()
RETURNS INTEGER
BEGIN
 DECLARE Test SENSITIVE CURSOR FOR stmt;
 DECLARE Result INTEGER DEFAULT 0;

 PREPARE stmt FROM 'SELECT * FROM Customers';

 OPEN Test;

 FETCH FIRST FROM Test;

 WHILE NOT EOF(Test) DO
 SET Result = Result + 1;
 FETCH NEXT FROM Test;
 END WHILE;

 RETURN Result;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 348

SQL/PSM Statements

Page 349

7.15 CALL

Calls a procedure.

Syntax

CALL <FunctionName>|<ProcedureName>([<Value>[,<Value>]])

Usage

Use this statement to call a function/procedure, passing parameter values if the function/procedure being
called has been defined with parameters.

Note
Any return values from functions are ignored when using the CALL statement.

Examples

-- This trigger calls the external
-- SendMail procedure with which group to
-- send the email to along with the new
-- value of the Notes column for the customer
-- being updated

CREATE TRIGGER "NotesUpdate" AFTER UPDATE OF "Notes"
ON "Customer"
BEGIN
 CALL SendEmail('CustomerReps',NEWROW.Notes);
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 350

7.16 USE

Opens a new database or closes the existing database.

Syntax

USE [<DatabaseName>]

Usage

Use this statement in a script or job definition to open a new database or close a database that was
previously opened. To open a new database, specify the database name after the USE keyword. Opening
a new database automatically closes the current database that is open. To close the current database and
not open a new database, leave the database name blank. This reverts the current database back to the
default database, which is always the system-defined Configuration database for jobs.

Examples

-- This job optimizes the Inventory
-- table in the ShopFloor database.

CREATE JOB OptimizeInventory
RUN AS "System"
FROM DATE '2000-01-01' TO DATE '2030-12-31'
WEEKLY
ON SUN
BETWEEN TIME '03:00' AND TIME '04:00'
CATEGORY ''
BEGIN
 USE ShopFloor;
 EXECUTE IMMEDIATE 'OPTIMIZE TABLE Inventory';
 USE;
END

-- Here's the same thing as a script instead

SCRIPT
BEGIN
 USE ShopFloor;
 EXECUTE IMMEDIATE 'OPTIMIZE TABLE Inventory';
 USE;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

SQL/PSM Statements

Page 351

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 352

7.17 EXECUTE IMMEDIATE

Executes an SQL statement.

Syntax

EXECUTE IMMEDIATE <SQLStatement>
[USING <Value> [,<Value>]]

Usage

Use this statement to execute the specified DDL, DML, or administrative SQL statement. If the SQL
statement is parameterized, then you can use the USING clause to specify the values to use for the
parameters. The values are in left-to-right order, corresponding to how the parameters were declared in
the SQL statement.

Examples

-- This procedure executes a
-- CREATE TABLE statement to create a
-- temporary table

CREATE PROCEDURE CreateTestTable()
BEGIN
 EXECUTE IMMEDIATE 'CREATE TEMPORARY TABLE "TestTable"
 (
 "FirstColumn" INTEGER,
 "SecondColumn" VARCHAR(30),
 "ThirdColumn" CLOB,
 PRIMARY KEY ("FirstColumn")
)

 DESCRIPTION ''Test Table''';
END

-- This function returns the user-defined
-- version for a given table, or NULL if
-- the table does not exist

FUNCTION "GetTableVersion" (IN TableName VARCHAR)
RETURNS DECIMAL(19,2)
BEGIN
 DECLARE Version DECIMAL(19,2) DEFAULT 0;
 EXECUTE IMMEDIATE 'SELECT Version INTO ?
 FROM Information.Tables WHERE Name=?'
 USING Version,TableName;
 RETURN Version;
END

SQL 2003 Standard Deviations

SQL/PSM Statements

Page 353

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Dynamic SQL The use of dynamic SQL for DDL, DML, and administrative
statement execution instead of static SQL in procedures and
functions is both an ElevateDB extension and a deviation from
the standard.

SQL/PSM Statements

Page 354

7.18 PREPARE

Prepares an SQL statement and binds it to a statement variable.

Syntax

PREPARE <StatementName> FROM <SQLStatement>

Usage

Use this statement to prepare a DDL, DML, or administrative SQL statement and bind it to a statement
variable. The statement variable must have been previously declared in a DECLARE statement.

Using PREPARE pre-compiles the SQL statement so that it may be executed multiple times using the
EXECUTE statement. This is especially useful with parameterized SQL statements.

For a SELECT statement, the PREPARE statement can be used to bind the statement to a cursor so that
the cursor may then be opened using the OPEN statement.

Examples

-- This function looks up the sales tax
-- rate for a given state and county

CREATE FUNCTION LookupSalesTaxRate(IN State CHAR(2), IN County VARCHAR)
RETURNS DECIMAL(19,2)
BEGIN
 DECLARE TempCursor CURSOR FOR stmt;
 DECLARE Result DECIMAL(19,2) DEFAULT 0;

 PREPARE stmt FROM 'SELECT * FROM SalesTaxes WHERE State = ? AND County =
 ?';

 OPEN TempCursor USING State, County;

 IF (ROWCOUNT(TempCursor) > 0) THEN
 FETCH FIRST FROM TempCursor ('TaxRate') INTO Result;
 END IF;

 CLOSE TempCursor;

 RETURN Result;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

SQL/PSM Statements

Page 355

Dynamic SQL The use of dynamic SQL for DDL, DML, and administrative
statement execution instead of static SQL in procedures and
functions is both an ElevateDB extension and a deviation from
the standard.

SQL/PSM Statements

Page 356

7.19 UNPREPARE

Un-prepares an SQL statement, releasing all associated resources.

Syntax

UNPREPARE <StatementName>

Usage

Use this statement to un-prepare a DDL, DML, or administrative SQL statement and release all resources
associated with the statement, including any compiled symbols, opened tables, or result set cursors. The
statement variable must have been previously declared in a DECLARE statement.

For a SELECT statement, the UNPREPARE statement will cause any cursor created using the OPEN to be
released, making it inaccessible until the OPEN statement is used again to create a new cursor.

Examples

-- This function looks up the sales tax
-- rate for a given state and county

CREATE FUNCTION LookupSalesTaxRate(IN State CHAR(2), IN County VARCHAR)
RETURNS DECIMAL(19,2)
BEGIN
 DECLARE TempCursor CURSOR FOR stmt;
 DECLARE Result DECIMAL(19,2) DEFAULT 0;

 PREPARE stmt FROM 'SELECT * FROM SalesTaxes WHERE State = ? AND County =
 ?';

 OPEN TempCursor USING State, County;

 IF (ROWCOUNT(TempCursor) > 0) THEN
 FETCH FIRST FROM TempCursor ('TaxRate') INTO Result;
 END IF;

 CLOSE TempCursor;
 UNPREPARE stmt;

 RETURN Result;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

SQL/PSM Statements

Page 357

Dynamic SQL The use of dynamic SQL for DDL, DML, and administrative
statement execution instead of static SQL in procedures and
functions is both an ElevateDB extension and a deviation from
the standard.

SQL/PSM Statements

Page 358

7.20 EXECUTE

Executes a previously-prepared SQL statement.

Syntax

EXECUTE <StatementName> [USING <Value> [,<Value>]]

Usage

Use this statement to execute a previously-prepared DDL, DML, or administrative SQL statement. SQL
statements are prepared using the PREPARE statement. If the prepared SQL statement is parameterized,
then you can use the USING clause to specify the values to use for the parameters. The values are in left-
to-right order, corresponding to how the parameters were declared in the SQL statement.

After executing an SQL statement, you can use the ROWSAFFECTED function to determine the number of
rows affected by the statement.

Examples

-- This procedure creates 100,000 test
-- rows in the Customers table using a
-- parameterized INSERT statement

CREATE PROCEDURE PopulateCustomers()
BEGIN
 DECLARE stmt STATEMENT;
 DECLARE I INTEGER DEFAULT 1;

 PREPARE stmt FROM 'INSERT INTO Customers
 (CustNo, Name)
 VALUES (?, ?)';

 WHILE I <= 10000 DO
 EXECUTE stmt USING I, 'Test Customer #' + CAST(I AS VARCHAR(10));
 SET I = I + 1;
 END WHILE;

 UNPREPARE stmt;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

SQL/PSM Statements

Page 359

Dynamic SQL The use of dynamic SQL for DDL, DML, and administrative
statement execution instead of static SQL in procedures and
functions is both an ElevateDB extension and a deviation from
the standard.

SQL/PSM Statements

Page 360

7.21 OPEN

Opens a result set cursor.

Syntax

OPEN <CursorName> [USING <Value> [,<Value>]]

Usage

Use this statement to open a result set cursor on a previously-prepared SELECT statement. If the
statement is parameterized, then you can use the USING clause to specify the values to use for the
parameters in left-to-right order corresponding to how they were declared in the SELECT statement.

After opening a cursor, you can use the ROWCOUNT function to determine the number of rows in the
cursor and the SENSITIVE function to determine if the cursor is a sensitive or asensitive cursor. See the
Result Set Cursor Sensitivity topic for more information on cursor sensitivity.

Examples

-- This procedure looks up the sales tax
-- rate for a given state and county

CREATE FUNCTION LookupSalesTaxRate(IN State CHAR(2), IN County VARCHAR)
RETURNS DECIMAL
BEGIN
 DECLARE TempCursor CURSOR FOR stmt;
 DECLARE Result DECIMAL DEFAULT 0;

 PREPARE stmt FROM 'SELECT * FROM SalesTaxes WHERE State = ? AND County =
 ?';

 OPEN TempCursor USING State, County;

 IF (ROWCOUNT(TempCursor) > 0) THEN
 FETCH FIRST FROM TempCursor ('TaxRate') INTO Result;
 END IF;

 CLOSE TempCursor;

 RETURN Result;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

SQL/PSM Statements

Page 361

Dynamic SQL The use of dynamic SQL for DDL, DML, and administrative
statement execution instead of static SQL in procedures and
functions is both an ElevateDB extension and a deviation from
the standard.

SQL/PSM Statements

Page 362

7.22 CLOSE

Closes a result set cursor.

Syntax

CLOSE <CursorName>

Usage

Use this statement to close a previously-opened result set cursor. If the cursor specified is not open, then
this statement does nothing.

Examples

-- This procedure looks up the sales tax
-- rate for a given state and county

CREATE FUNCTION LookupSalesTaxRate(IN State CHAR(2), IN County VARCHAR)
RETURNS DECIMAL
BEGIN
 DECLARE TempCursor CURSOR FOR stmt;
 DECLARE Result DECIMAL DEFAULT 0;

 PREPARE stmt FROM 'SELECT * FROM SalesTaxes WHERE State = ? AND County =
 ?';

 OPEN TempCursor USING State, County;

 IF (ROWCOUNT(TempCursor) > 0) THEN
 FETCH FIRST FROM TempCursor ('TaxRate') INTO Result;
 END IF;

 CLOSE TempCursor;

 RETURN Result;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Dynamic SQL The use of dynamic SQL for DDL, DML, and administrative
statement execution instead of static SQL in procedures and
functions is both an ElevateDB extension and a deviation from
the standard.

SQL/PSM Statements

Page 363

7.23 FETCH

Navigates a result set cursor and reads column values into variables, parameters, or trigger NEWROW
values.

Syntax

FETCH [<Orientation>] [FROM] <CursorName>
[[(<ColumnName> [,<ColumnName>])]
INTO <TargetName> [,<TargetName>]]

<Orientation> =

NEXT|PRIOR|FIRST|LAST|{ABSOLUTE|RELATIVE} <IntegerValue>

<TargetName> =

<VariableName>|<ParameterName>|NEWROW.<ColumnName>

Usage

Use this statement to navigate a result set cursor and read column values into variables, parameters, or
NEWROW values in a trigger.

The various orientations work as follows:

Orientation Description

NEXT Navigates to the next row in the cursor. If there are no more
subsequent rows in the cursor, then the EOF flag is set for the
cursor and the current row stays the same. If there are no
rows in the cursor, then both the BOF and EOF flags are set
for the cursor.

PRIOR Navigates to the prior row in the cursor. If there are no more
prior rows in the cursor, then the BOF flag is set for the cursor
and the current row stays the same. If there are no rows in
the cursor, then both the BOF and EOF flags are set for the
cursor.

FIRST Navigates to the first row in the cursor. If there are no rows in
the cursor, then both the BOF and EOF flags are set for the
cursor.

LAST Navigates to the last row in the cursor. If there are no rows in
the cursor, then both the BOF and EOF flags are set for the
cursor.

ABSOLUTE Navigates to the Nth row specified. If the Nth row is greater
than the number of rows in the cursor, then the EOF flag is
set for the cursor. If there are no rows in the cursor, then
both the BOF and EOF flags are set for the cursor.

RELATIVE Navigates to the Nth row specified relative to the current row

SQL/PSM Statements

Page 364

position. If the specified relative row is negative and the
current row position minus the Nth row is less than 0, then
the BOF flag is set for the cursor. If the current row position
plus the Nth row is greater than the number of rows in the
cursor, then the EOF flag is set for the cursor. If there are no
rows in the cursor, then both the BOF and EOF flags are set
for the cursor.

Note
If you do not specify a fetch orientation, then the default orientation is to fetch from the current
row position in the cursor.

You can use the BOF and EOF functions to determine if the BOF flag or EOF flag has been set on a cursor.

Specify a list of columns to only read the column values from a specific set of columns. If a list of columns
is not specified and the INTO keyword is specified, then it is assumed that all column values should be
read.

Use the INTO keyword to list one or more variables, parameters, or trigger NEWROW values into which
the column values should be read.

Examples

-- The following job backs up all tables in all databases
-- defined in the current system at 11:00 PM every evening.

CREATE JOB Backup
RUN AS "System"
FROM DATE '2006-01-01' TO DATE '2010-12-31'
DAILY
BETWEEN TIME '11:00 PM' AND TIME '11:30 PM'
CATEGORY 'Backup'
BEGIN
 DECLARE DBCursor CURSOR FOR DBStmt;
 DECLARE DBName VARCHAR DEFAULT '';

 PREPARE DBStmt FROM 'SELECT * FROM Databases';

 OPEN DBCursor;

 FETCH FIRST FROM DBCursor ('Name') INTO DBName;

 WHILE NOT EOF(DBCursor) DO
 IF (DBName <> 'Configuration') THEN
 EXECUTE IMMEDIATE 'BACKUP DATABASE "' + DBName + '" AS "' +
 CAST(CURRENT_DATE AS VARCHAR(10)) +
 '-' + DBName + '" TO STORE "Backups" INCLUDE
 CATALOG';
 END IF;
 FETCH NEXT FROM DBCursor ('Name') INTO DBName;
 END WHILE;

 CLOSE DBCursor;
END

SQL/PSM Statements

Page 365

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Columns list The list of columns to fetch from is an ElevateDB extension.

Exceptions The SQL standard dictates that exceptions are raised
whenever a fetch operation cannot be completed due to a
BOF or EOF condition or a row not being found. ElevateDB
does not raise an exception in any of these cases and instead
uses the BOF and EOF functions to indicate these conditions.

SQL/PSM Statements

Page 366

7.24 START TRANSACTION

Starts a transaction.

Syntax

START TRANSACTION
[ON TABLES <TableName> [,<TableName>]]
[TIMEOUT <Timeout>]

<Timeout> = Milliseconds to wait for lock

Usage

Use this statement to start a transaction on the current database or a specific set of tables in the current
database. Use the ON TABLES clause to specify a specific table or set of tables to start the transaction on.

Note
Using the ON TABLES clause will help concurrency by only locking the tables that will be involved in
the transaction instead of all of the tables in the current database. See the Transactions topic for
more information on transaction locking.

Use the TIMEOUT clause to specify the amount of time, in milliseconds, to wait for the transaction lock to
succeed before raising a lock exception.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

-- The whole update process is wrapped inside
-- of a transaction start..commit/rollback block

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

SQL/PSM Statements

Page 367

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

ON TABLES The ON TABLES clause is an ElevateDB extension.

TIMEOUT The TIMEOUT clause is an ElevateDB extension.

SQL/PSM Statements

Page 368

7.25 COMMIT

Commits an transaction.

Syntax

COMMIT [WORK] [NO FLUSH]

Usage

Use this statement to commit an active transaction. The WORK keyword is optional. Use the NO FLUSH
keyword to specify that the COMMIT should not force a flush to disk through the operating system. See
the Transactions topic for more information on commit processing.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

-- The whole update process is wrapped inside
-- of a transaction start..commit/rollback block

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL/PSM Statements

Page 369

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

NO FLUSH The NO FLUSH clause is an ElevateDB extension.

SQL/PSM Statements

Page 370

7.26 ROLLBACK

Rolls back a transaction.

Syntax

ROLLBACK [WORK]

Usage

Use this statement to roll back an active transaction. The WORK keyword is optional. See the Transactions
topic for more information on rolling back transactions.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

-- The whole update process is wrapped inside
-- of a transaction start..commit/rollback block

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL/PSM Statements

Page 371

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

SQL/PSM Statements

Page 372

7.27 INSERT

Inserts a new row into a result set cursor.

Syntax

INSERT INTO <CursorName>
[(<ColumnName> [,<ColumnName>])]
VALUES (<Value> [,<Value>])

Usage

Use this statement to insert a new row into a result set cursor. If a list of columns to populate is not
specified, then the number of values specified in the VALUES clause must match the number of columns in
the result set that the cursor is using. All values specified in the VALUES clause must be type-compatible
with the specified columns, or all of the columns in the result set if the columns are not specified.

Examples

-- This procedure checks to see if the
-- specified State exists in the States lookup
-- table and inserts it if it isn't

CREATE PROCEDURE LookupState(IN StateParam CHAR(2) COLLATE ANSI_CI)
BEGIN
 DECLARE StateCursor SENSITIVE CURSOR FOR Stmt;

 PREPARE Stmt FROM 'SELECT * FROM States WHERE State = ?';

 OPEN StateCursor USING StateParam;

 IF (ROWCOUNT(StateCursor) = 0) THEN
 INSERT INTO StateCursor ('State') VALUES (StateParam);
 END IF;

 CLOSE StateCursor;

END

Required Privileges

If the result set cursor is a sensitive cursor, then the current user must be granted the INSERT and
SELECT privileges on the table in the SELECT statement used to output the result set that the cursor is
using. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

SQL/PSM Statements

Page 373

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 374

7.28 UPDATE

Updates the current row in a result set cursor.

Syntax

UPDATE <CursorName>
SET <ColumnName> = <Value> [,<ColumnName> = <Value>])

Usage

Use this statement to update the current row in a result set cursor. The SET clause is used to specify
which columns you want to update and the values to assign to the columns. Each value can be any valid
SQL expression.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

-- The whole update process is wrapped inside
-- of a transaction start..commit/rollback block

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL/PSM Statements

Page 375

Required Privileges

If the result set cursor is a sensitive cursor, then the current user must be granted the UPDATE and
SELECT privileges on the table in the SELECT statement used to output the result set that the cursor is
using. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 376

7.29 DELETE

Deletes the current row in a result set cursor.

Syntax

DELETE FROM <CursorName>

Usage

Use this statement to delete the current row in a result set cursor.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to delete the row

-- The whole update process is wrapped inside
-- of a transaction start..commit/rollback block

CREATE PROCEDURE DeleteFLCustomers()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 DELETE FROM CustCursor;
 FETCH FROM CustCursor ('State') INTO State;
 ELSE
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END IF;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL/PSM Statements

Page 377

Required Privileges

If the result set cursor is a sensitive cursor, then the current user must be granted the DELETE and
SELECT privileges on the table in the SELECT statement used to output the result set that the cursor is
using. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 378

7.30 REFRESH

Refreshes a result set cursor.

Syntax

REFRESH <CursorName>

Usage

Use this statement to refresh an open result set cursor. Calling the REFRESH statement will cause any row
changes made by other sessions to appear. This statement is the only way to refresh an insensitive result
set cursor, since such a cursor does not automatically reflect changes made by other sessions. See the
Result Set Cursor Sensitivity topic for more information on cursor sensitivity.

Note
This statement will only refresh the cursor itself. You must use the FETCH statement to re-fetch the
updated data into whatever variables you have declared to hold the fetched column values.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 379

7.31 SET LOG MESSAGE

Creates a new log message.

Syntax

SET LOG MESSAGE TO <Message>

Usage

Use this statement to create a new log message that can be retrieved and viewed by the application that
is executing the current routine. The message can be any text that you wish.

Examples

-- This procedure uses a SET LOG MESSAGE
-- statement to log which rows are updated

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE CustNo INTEGER DEFAULT 0;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 FETCH FROM CustCursor ('CustNo') INTO CustNo;
 SET LOG MESSAGE TO 'Customer # '+CAST(CustNo AS VARCHAR)+'
 updated';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

SQL/PSM Statements

Page 380

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 381

7.32 SET PROGRESS

Creates a new progress update.

Syntax

SET PROGRESS TO <CompletionPercent>

Usage

Use this statement to create a progress update that can be displayed by the application that is executing
the current routine. The completion percentage should be be any valid percentage between 1 and 100.

You can use the ABORTED SQL/PSM function to determine if the application indicated that it wished to
abort the current execution in response to the progress update.

Examples

-- This procedure uses a SET PROGRESS
-- statement to display progress during its
-- execution and uses the ABORTED function
-- to abort the execution if the application
-- requests it

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';
 DECLARE TotalRows INTEGER DEFAULT 0;
 DECLARE NumRows INTEGER DEFAULT 0;

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;
 SET TotalRows=ROWCOUNT(CustCursor);

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE (NOT (EOF(CustCursor) OR ABORTED)) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 SET NumRows=NumRows+1;
 SET PROGRESS TO TRUNC(((NumRows/TotalRows)*100));
 END WHILE;

 IF (NOT ABORTED) THEN
 COMMIT;

SQL/PSM Statements

Page 382

 ELSE
 ROLLBACK;
 END IF;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 383

7.33 SET STATUS MESSAGE

Creates a new status message.

Syntax

SET STATUS MESSAGE TO <Message>

Usage

Use this statement to create a new status message that can be retrieved and viewed by the application
that is executing the current routine. The message can be any text that you wish.

Examples

-- This procedure uses a SET STATUS MESSAGE
-- statement to display which rows are updated

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE CustNo INTEGER DEFAULT 0;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 FETCH FROM CustCursor ('CustNo') INTO CustNo;
 SET STATUS MESSAGE TO 'Customer # '+
 CAST(CustNo AS VARCHAR)+' updated';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

SQL/PSM Statements

Page 384

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 385

7.34 ABORT

Sets the aborted flag for the current execution.

Syntax

ABORT

Usage

Use this statement to set the aborted flag for the current execution. This statement can be used in
conjunction with the ABORTED function to perform conditional execution.

Starting in 2.05, you can use the ABORT statement to abort an INSERT, UPDATE, DELETE, or LOAD
UPDATE operation from within a trigger. Please see the CREATE TRIGGER topic for more information.

Examples

-- This procedure uses an ABORT statement
-- to exit the WHILE loop once the number of
-- rows visited reaches 10

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';
 DECLARE TotalRows INTEGER DEFAULT 0;
 DECLARE NumRows INTEGER DEFAULT 0;

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;
 SET TotalRows=ROWCOUNT(CustCursor);

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE (NOT (EOF(CustCursor) OR ABORTED)) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 SET NumRows=NumRows+1;
 SET PROGRESS TO TRUNC(((NumRows/TotalRows)*100));
 IF (NumRows=10) THEN
 ABORT;
 END WHILE;

 IF (NOT ABORTED) THEN
 COMMIT;

SQL/PSM Statements

Page 386

 ELSE
 ROLLBACK;
 END IF;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 387

7.35 RETRY

Retries an insert, update, or delete operation.

Syntax

RETRY

Usage

Use this statement to retry an insert, update, or delete operation from within the body of an error trigger.
Error triggers are called whenever there is an error in an insert, update, or delete operation. If the trigger
body has taken action to rectify the original exception that caused the error trigger to be called, then the
RETRY statement can retry the operation. The body of the trigger is exited immediately at the point where
the RETRY statement is specified, and any code after that point is skipped. Please see the CREATE
TRIGGER statement for more information.

Warning
Retrying an operation without making sure that the operation isn't being recursively triggered can
result in the trigger locking up the application. You should always make sure to check the conditions
under which a RETRY is occurring.

Examples

-- This error trigger will handle a constraint
-- error, update the value so that the constraint error
-- doesn't happen. However, if the value has already
-- been changed, then it re-raises the constraint error

CREATE TRIGGER "ErrorTest" ERROR INSERT ON "customer"
BEGIN
 IF ERRORCODE()=1004 THEN
 IF NEWROW.CustNo <> 100 THEN
 SET NEWROW.CustNo=100;
 RETRY;
 ELSE
 RAISE;
 END IF;
 END IF;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

SQL/PSM Statements

Page 388

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 389

7.36 LOG EVENT

Logs an information, warning, or error event in the logged events for the current configuration.

Syntax

LOG [INFORMATION|WARNING|ERROR] EVENT <Message>

Usage

Use this statement to log an event in the logged events for the current configuration. The message can be
any text that you wish.

Any events logged using this statement will have a function name of "Logged Event" in the logged events
for the current configuration.

Note
Do not use this statement to log ElevateDB errors or exceptions. ElevateDB already logs such events
automatically. The only exception is if a routine traps an exception, preventing it from escaping the
routine in which the exception occurred. In such a case, you can use this statement to log the
event.

Examples

-- This procedure uses a LOG ERROR EVENT
-- statement to log an event when an error occurs

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE CustNo INTEGER DEFAULT 0;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 FETCH FROM CustCursor ('CustNo') INTO CustNo;
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

SQL/PSM Statements

Page 390

 COMMIT;

 EXCEPTION
 LOG ERROR EVENT 'Unexpected error occurred during the UpdateState
 procedure: '+
 CAST(ERRORCODE() AS VARCHAR)+' '+ERRORMSG();
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 391

7.37 SET STATEMENT CACHE

Sets the statement cache size within a job.

Syntax

SET STATEMENT CACHE TO <NumStatements>

Usage

Use this statement to set the statement cache size within a job. The default statement cache size in a job
is 0, which results in no statement caching at all. Please see the Buffering and Caching topic for more
information on the statement caching functionality in ElevateDB.

Note
This statement will override any existing statement cache size set for the session via client-specific
connection parameters, so it is normally recommended that you only use this statement within the
body of jobs, which use unique sessions per job execution. Please see the CREATE JOB statement
for more information on how to create a job.

Examples

-- The following job backs up all tables in all databases
-- defined in the current system at 11:00 PM every evening.

CREATE JOB Backup
RUN AS "System"
FROM DATE '2006-01-01' TO DATE '2010-12-31'
DAILY
BETWEEN TIME '11:00 PM' AND TIME '11:30 PM'
CATEGORY 'Backup'
BEGIN
 DECLARE DBCursor CURSOR FOR DBStmt;
 DECLARE DBName VARCHAR DEFAULT '';

 -- 8 statements is more than we need, but isn't wasteful
 SET STATEMENT CACHE TO 8;

 PREPARE DBStmt FROM 'SELECT * FROM Databases';

 OPEN DBCursor;

 FETCH FIRST FROM DBCursor ('Name') INTO DBName;

 WHILE NOT EOF(DBCursor) DO
 IF (DBName <> 'Configuration') THEN
 EXECUTE IMMEDIATE 'BACKUP DATABASE "' + DBName + '" AS "' +
 CAST(CURRENT_DATE AS VARCHAR(10)) +
 '-' + DBName + '" TO STORE "Backups" INCLUDE

SQL/PSM Statements

Page 392

 CATALOG';
 -- This next statement is the one that we're interested in caching
 EXECUTE IMMEDIATE 'INSERT INTO BackupLog(ExecTime) Values
 (CURRENT_TIMESTAMP)';
 END IF;
 FETCH NEXT FROM DBCursor ('Name') INTO DBName;
 END WHILE;

 CLOSE DBCursor;
END

Required Privileges

Any user can execute this statement.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 393

7.38 SET PROCEDURE CACHE

Sets the function/procedure cache size within a job.

Syntax

SET PROCEDURE CACHE TO <NumStatements>

Usage

Use this statement to set the function/procedure cache size within a job. The default function/procedure
cache size in a job is 0, which results in no function/procedure caching at all. Please see the Buffering and
Caching topic for more information on the function/procedure caching functionality in ElevateDB.

Note
This statement will override any existing function/procedure cache size set for the session via client-
specific connection parameters, so it is normally recommended that you only use this statement
within the body of jobs, which use unique sessions per job execution. Please see the CREATE JOB
statement for more information on how to create a job.

Examples

-- The following job backs up all tables in all databases
-- defined in the current system at 11:00 PM every evening.

CREATE JOB Backup
RUN AS "System"
FROM DATE '2006-01-01' TO DATE '2010-12-31'
DAILY
BETWEEN TIME '11:00 PM' AND TIME '11:30 PM'
CATEGORY 'Backup'
BEGIN
 DECLARE DBCursor CURSOR FOR DBStmt;
 DECLARE DBName VARCHAR DEFAULT '';

 -- 8 procedures is more than we need, but isn't wasteful
 SET PROCEDURE CACHE TO 8;

 PREPARE DBStmt FROM 'SELECT * FROM Databases';

 OPEN DBCursor;

 FETCH FIRST FROM DBCursor ('Name') INTO DBName;

 WHILE NOT EOF(DBCursor) DO
 IF (DBName <> 'Configuration') THEN
 EXECUTE IMMEDIATE 'BACKUP DATABASE "' + DBName + '" AS "' +
 CAST(CURRENT_DATE AS VARCHAR(10)) +
 '-' + DBName + '" TO STORE "Backups" INCLUDE

SQL/PSM Statements

Page 394

 CATALOG';
 -- This next call is the one that we're interested in caching
 CALL LogBackup(CURRENT_TIMESTAMP);
 END IF;
 FETCH NEXT FROM DBCursor ('Name') INTO DBName;
 END WHILE;

 CLOSE DBCursor;
END

Required Privileges

Any user can execute this statement.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

SQL/PSM Statements

Page 395

This page intentionally left blank

Administrative Statements

Page 396

Chapter 8
Administrative Statements

8.1 Introduction

Administrative statements are used to execute tasks such as migration, backup, restore, repair,
optimization, and import/export. This section of the manual details the available administrative statements
in ElevateDB.

Notation

The notation used in the syntax section for each administrative statement is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

Administrative Statements

Page 397

8.2 ENABLE STATEMENT LOGGING

Enables engine-wide, SQL statement performance logging for ElevateDB.

Syntax

ENABLE STATEMENT LOGGING
[MINIMUM EXECUTION <MinExecutionTime>]
[MAXIMUM LOGGED <MaxNumStatements>]

<MinExecutionTime> = The minimum execution time, in seconds, of an SQL
 statement

<MaxNumStatements> = The maximum number of logged SQL statements allowed

Usage

Use this statement to enable SQL statement performance logging for the ElevateDB engine (or ElevateDB
Server).

The MINIMUM EXECUTION clause is optional and allows you to specify the minimum amount of time, in
seconds, that an SQL statement must execute before it is logged. The specified minimum execution time
must be greater than 0, and the default minimum execution time is 30 seconds.

The MAXIMUM LOGGED clause is optional and allows you to specify the maximum number of SQL
statements that will be logged at one time. The specified maximum number of SQL statements must be
greater than 0, and the default maximum number of SQL statements is 128.

Note
You can execute this statement multiple times with different clauses in order to adjust the
statement logging parameters. Also, the logged SQL statements are ordered by their execution
time, so adjusting either of these values can effect which SQL statements are present in the log
(after the ENABLE STATEMENT LOGGING statement is executed).

After enabling SQL statement logging, you can query the LoggedStatements system information table in
order to find out which SQL statements have performance issues.

Examples

ENABLE STATEMENT LOGGING
MINIMUM EXECUTION 10
MAXIMUM LOGGED 256

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

Administrative Statements

Page 398

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 399

8.3 DISABLE STATEMENT LOGGING

Disables engine-wide, SQL statement performance logging for ElevateDB.

Syntax

DISABLE STATEMENT LOGGING

Usage

Use this statement to disable SQL statement performance logging for the ElevateDB engine (or ElevateDB
Server).

Statement performance logging can be enabled via the ENABLE STATEMENT LOGGING statement.

Examples

DISABLE STATEMENT LOGGING

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 400

8.4 MIGRATE DATABASE

Migrates the current database from an external source using a migrator.

Syntax

MIGRATE DATABASE FROM <MigratorName>
[USING <ParamName> = <ParamValue> [,<ParamName> = <ParamValue>]]
[WITH DATA|WITH NO DATA]
[START AT TABLE <TableName>]

<ParamName> = The name of a migrator parameter

<ParamValue> = A literal value to be assigned to the paramter

Usage

Use this statement to migrate the current database from an external source.

The FROM clause specifies the migrator to use for the migration process. Migrators are defined using the
CREATE MIGRATOR statement.

The USING clause is optional and allows you specify a comma-delimited list of parameters and the values
to assign to each parameter. You can find out the parameters for a migrator along with their type and
default value by querying the MigratorParams table in the Configuration Database.

The WITH DATA clause specifies that the table data for the external data source should be migrated also,
while the WITH NO DATA clause specifies that only the metadata for the database objects should be
migrated. The default is WITH NO DATA.

Starting in 2.29, the START AT TABLE clause can be used to specify the table from which to start the
migration. The order of the tables that are being migrated is determined by the migrator being used,
along with its associated database engine.

Note
ElevateDB allows for tables (including constraints), indexes, triggers, functions, and procedures to
migrated from an external data source. However, not all migrators and/or data sources support all
of these types of objects.

Examples

-- This example migrates a BDE alias called
-- DBDEMOS using the BDE migrator

MIGRATE DATABASE FROM "BDE"
USING DatabaseName = 'DBDEMOS', Transliterate = False

Administrative Statements

Page 401

Required Privileges

The current user must be granted the proper CREATE privilege on the current database in order to execute
this statement. Additionally, if the WITH DATA clause is specified, then the current user must be granted
the INSERT privilege on any tables that will be migrated so that the rows from the external data source
can be inserted into the new ElevateDB tables. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 402

8.5 SET MIGRATOR

Sets the current migrator used for configuration queries.

Syntax

SET MIGRATOR TO <MigratorName>

Usage

Use this statement to set the current migrator. The current migrator dictates where ElevateDB will retrieve
the list of avalable migrator parameters when queries on the MigratorParams Table in the special
Configuration Database are executed. The name provided must be a valid migrator name. You can find out
which migrators exist by querying the Migrators Table in the Configuration database.

Note
This statement is not persistent and is reset once the current session is disconnected.

Examples

SET MIGRATOR TO "EDB"

Required Privileges

Any user can execute this statement.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 403

8.6 BACKUP DATABASE

Backs up the specified database.

Syntax

BACKUP DATABASE <Name>
AS <BackupName>
TO STORE <StoreName>
[TABLES <TableName> [,<TableName>]]
[DESCRIPTION <Description>]
[COMPRESSION <Compression>]
[INCLUDE CATALOG [ONLY]]
[EXCLUDE PUBLISHED UPDATES]

<Compression> = 0..9

Usage

Use this statement to backup the specified database to a single backup file in the specified store. The
store must have already been created using the CREATE STORE statement.

The TABLES clause is optional and allows you specify a subset of tables from the database for backup. The
default behavior is to backup all tables in the database.

Note
The TABLES clause only limits the table data that is backed up. It doesn't prevent the table
metadata from being backed up. That is controlled by the INCLUDE CATALOG clause.

The COMPRESSION clause allows you to specify the compression level (0..9). The default level of
compression is 6.

The INCLUDE CATALOG clause specifies that the database catalog should be backed up in addition to the
table data. It is recommended that you always include this clause. At the very least, you should backup
the database with this clause whenever any of the database objects changes. This includes views,
procedures, and functions in addition to tables. You can use the ONLY clause to extend the INCLUDE
CATALOG clause so that only the catalog is backed up.

Note
The ONLY clause can only be used if the TABLES clause is not present.

Starting in 2.05, the EXCLUDE PUBLISHED UPDATES clause can be used to specify that you do not want
published updates to be included in the backup, which can reduce the size of the backup significantly if
there are a lot of published updates present for the tables being backed up.

Examples

Administrative Statements

Page 404

-- This example backs up the entire
-- Accounting database with the catalog included

BACKUP DATABASE Accounting
AS "AccountingDB-DailyBackup-2007-03-12"
TO STORE "Backups"
INCLUDE CATALOG

Required Privileges

The current user must be granted the BACKUP privilege on the specified database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 405

8.7 RESTORE DATABASE

Restores the specified backup to a database.

Syntax

RESTORE DATABASE <Name>
FROM <BackupName>
IN STORE <StoreName>
[TABLES <TableName> [,<TableName>]]
[INCLUDE CATALOG [ONLY]]
[RESET PUBLISHED TABLES]

Usage

Use this statement to restore a backup from a specific store to a database.

The TABLES clause is optional and can be used to limit which tables will be restored from the backup. The
default behavior is to restore all tables in the backup.

Note
The TABLES clause only limits the table data that is restored. It doesn't prevent the table metadata
from being restored. That is controlled by the INCLUDE CATALOG clause.

The INCLUDE CATALOG clause specifies that the database catalog should be restored in addition to the
table data. It is recommended that you always include this clause. At the very least, you should restore
the database with this clause whenever the catalog metadata in the backup doesn't match the existing
catalog metadata in the database.

Warning
Failure to include this clause in such a scenario would cause the restore to fail with an error.

You can use the ONLY clause to extend the INCLUDE CATALOG clause so that only the catalog is restored.
This is dependent, of course, on the backup having the database catalog included during the BACKUP
DATABASE statement that created the backup.

Note
The ONLY clause can only be used if the TABLES clause is not present.

Starting in 2.05, the RESET PUBLISHED TABLES clause can be used to reset the publisher IDs for all
published tables in the backup being restored. This is useful when you have backed up a database that
includes published tables and do not want the target database to have the same publisher IDs. This is a
common scenario when setting up a replicated database for the first time.

Administrative Statements

Page 406

Note
The RESET PUBLISHED TABLES clause can only be used in conjunction with the INCLUDE CATALOG
clause.

Examples

-- This example restores the entire
-- Accounting database with the catalog included

RESTORE DATABASE Accounting
FROM "AccountingDB-DailyBackup-2006-03-12"
IN STORE "Backups"
INCLUDE CATALOG

Required Privileges

The current user must be granted the RESTORE privilege on the specified database in order to execute
this statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 407

8.8 SET BACKUPS STORE

Sets the current backups store used for configuration queries.

Syntax

SET BACKUPS STORE TO <StoreName>

Usage

Use this statement to set the current backups store. The current backups store dictates where ElevateDB
will retrieve the list of avalable backups when queries on the Backups Table in the special Configuration
Database are executed. The name provided must be a valid store name. You can find out which stores
exist by querying the Stores Table in the Configuration database.

Note
This statement is not persistent and is reset once the current session is disconnected.

Examples

SET BACKUPS STORE TO "Backups"

Required Privileges

Any user can execute this statement.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 408

8.9 PUBLISH DATABASE

Publishes the specified database so that updates are logged.

Syntax

PUBLISH DATABASE <DatabaseName>
[TABLES <TableName> [,<TableName>]]
[BY COLUMN|ROW]

Usage

Use this statement to publish the specified database so that any updates to the database tables are
logged. Once a database table has been published using this statement, any logged updates to the table
can be saved to an update file using the SAVE UPDATES statement and then loaded on a diffent copy of
the database using the LOAD UPDATES statement.

The TABLES clause is optional and allows you specify a subset of tables from the database for publishing.
The default behavior is to publish all tables in the database. If the specified tables, either via the TABLES
clause, or all of the tables in the database, have been already published, then this statement is essentially
ignored.

The BY clause is optional and allows you to specify how inserts and updates are logged and replicated
after the table(s) has/have been published. If a table is published BY COLUMN, then only modified column
values are logged when an insert or update takes place. If a table is published BY ROW, then all columns
in a row are logged, even if they aren't modified in any way during the insert or update. The default
logging method is BY COLUMN.

Note
For updates and deletes, the column values for the primary key of the table are always logged,
independently of the logging that takes place for other columns.

You can unpublish a database using the UNPUBLISH DATABASE statement.

Please see the Replication topic for more information on loading/saving updates for a database.

Examples

-- This example publishes the Transaction
-- table in the Accounting database

PUBLISH DATABASE Accounting
TABLES Transaction

Required Privileges

Administrative Statements

Page 409

The current user must be granted the MAINTAIN privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 410

8.10 UNPUBLISH DATABASE

Unpublishes the specified database so that updates are no longer logged.

Syntax

UNPUBLISH DATABASE <DatabaseName>
[TABLES <TableName> [,<TableName>]]

Usage

Use this statement to unpublish the specified database so that any updates to the database tables are no
longer logged. Once a database table has been unpublished using this statement, it will no longer be
possible to save any logged updates to the table to an update file using the SAVE UPDATES statement.

The TABLES clause is optional and allows you specify a subset of tables from the database for
unpublishing. The default behavior is to unpublish all tables in the database. If the specified tables, either
via the TABLES clause, or all of the tables in the database, have been already unpublished, then this
statement is essentially ignored.

You can publish a database using the PUBLISH DATABASE statement.

Please see the Replication topic for more information on loading/saving updates for a database.

Examples

-- This example unpublishes the Transaction
-- table in the Accounting database

UNPUBLISH DATABASE Accounting
TABLES Transaction

Required Privileges

The current user must be granted the MAINTAIN privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 411

8.11 SET INFORMATION COLLATE

Sets the collation used for SQL generation in information queries.

Syntax

SET INFORMATION COLLATE TO <CollationName>

Usage

Use this statement to set the collation for information queries. The specified collation will be used in place
of the defined collation for table columns, index columns, and procedure/function parameters in the
CreateSQL column when such objects are queried in the Information schema for a database.

For example, the Tables information table includes a CreateSQL column that indicates the SQL that is used
to create the tables. By default, the collations used for the table columns will be the defined collations for
the table. By using the SET INFORMATION COLLATE statement, we can change the collation used in the
SQL in these columns to something other than the defined collations. This is useful for situations where
one wants to reverse-engineer a database and use a different target collation.

Note
This statement is not persistent and is reset once the current session is disconnected. To reset the
collation to the defined collations again, just leave out the collation name. Also, you cannot use
collation modifiers such as "CI" (case-insensitive) in this statement. The specified collation must be
the root collation identifier only.

Examples

SET INFORMATION COLLATE TO "UNI"

Required Privileges

Any user can execute this statement.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 412

8.12 COMPARE DATABASE

Compares a source database to a target database and generates the differences as SQL statements.

Syntax

COMPARE DATABASE <SourceDatabaseName>
TO <TargetDatabaseName>
[STATEMENT TERM CHAR <TermChar>]

Usage

Use this statement to compare a database to another database, generating the minimal difference
between the two databases as CREATE, ALTER, and DROP SQL statements. These statements are
generated into the SchemaDifference table in the system Information schema of the source database.

If not specified, the statement terminator character defaults to the exclamation character ('!'). If an object
requires multiple statements for creating, altering, or dropping sub-objects (such as indexes/triggers for
tables), then the statement terminator character will be used for separating the multiple statements in the
AlterSQL CLOB column of the SchemaDifference table.

Note
Every time this statement is executed, any existing information in the SchemaDifference table for
the source database will be deleted and replaced with the results of the current statement
execution.

Examples

-- This example compares the Accounting2012
-- database to the Accounting2013 database

COMPARE DATABASE Accounting2012 TO Accounting2013

Required Privileges

The current user must be granted the SELECT privilege on the both the source and target databases in
order to execute this statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 413

Administrative Statements

Page 414

8.13 SAVE UPDATES

Saves all logged updates for the specified database.

Syntax

SAVE UPDATES FOR DATABASE <DatabaseName>
AS <UpdateName> TO STORE <StoreName>
[TABLES <TableName> [,<TableName>]]
[DESCRIPTION <Description>]
[COMPRESSION <Compression>]
[IF NOT EMPTY]

<Compression> = 0..9

Usage

Use this statement to save the updates that have been logged for the specified tables to a single update
file in the specified store. The store must have already been created using the CREATE STORE statement,
and must be a local store.

The TABLES clause is optional and allows you specify a subset of tables from the database for saving. The
default behavior is to save the logged updates for all tables in the database. All specified tables, either via
the TABLES clause, or all of the tables in the database, must have been published already using the
PUBLISH DATABASE statement, or you will receive an error.

Only the updates that have occurred since the last SAVE UPDATES execution will be saved. Once the SAVE
UPDATES execution completes successfully, the logged updates are cleared from the specified tables, or
all tables, if the TABLES clause is not specified.

The save process automatically uses special locking to ensure that none of the tables specified are
updated until the process completes. This ensures a consistent snapshot of the logged updates for the
specified tables.

The COMPRESSION clause allows you to specify the compression level (0..9). The default level of
compression is 6.

Starting in 2.05, the IF NOT EMPTY clause can be used to specify that an update file should not be created
if there aren't any updates present in any of the tables whose logged updates are being saved in the
current operation. This is especially useful for situations where updates are being saved frequently.

Please see the Replication topic for more information on saving updates for a database.

Examples

-- This example saves the updates for the
-- Transaction table in the Accounting database

SAVE UPDATES FOR DATABASE Accounting
AS "AccountingDB-Updates-2007-03-12"
TO STORE TransactionUpdatesOut

Administrative Statements

Page 415

TABLES Transaction

Required Privileges

The current user must be granted the MAINTAIN privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 416

8.14 LOAD UPDATES

Loads all logged updates from an update file into the specified database.

Syntax

LOAD UPDATES FOR DATABASE <Name>
FROM <UpdateName> IN STORE <StoreName>
[TABLES <TableName> [,<TableName>]]
[MERGE DUPLICATE INSERTS]
[IGNORE|INSERT MISSING UPDATES]
[DISABLE TRIGGERS]

Usage

Use this statement to load an update file that has been created from logged updates for a different copy
of the database from the specified store. The store must have already been created using the CREATE
STORE statement, and must be a local store.

The TABLES clause is optional and allows you specify a subset of tables from the database for loading.
The default behavior is to load the logged updates for all tables in the database.

The MERGE DUPLICATE INSERTS clause is optional and allows you to specify that row inserts whose
primary key already exists are treated as updates. By default, row inserts whose primary key already
exists will cause an exception to be raised.

The IGNORE/INSERT MISSING UPDATES clause is optional and allows you to specify that either:

Row updates whose primary key cannot be found in the target table be ignored and not raise an
exception. (IGNORE)

Row updates whose primary key cannot be found in the target table be converted into inserts.
(INSERT)

By default, row updates whose primary key cannot be found will cause an exception to be raised. Also,
row deletions whose primary key cannot be found are always ignored since such a situation is considered
equivalent to a row deletion.

The DISABLE TRIGGERS clause is optional and allows you to specify that all tables being updated should
have all of their triggers disabled before any updates are loaded. The current state of the triggers is saved
before the triggers are disabled, and restored after the updates are finished loading.

If loading multiple update files from the same source database, it is important that you load the update
files in the creation order dictated by the creation timestamp of the update files. You can use the SET
UPDATES STORE statement with the Updates table in the Configuration database to retrieve a list of the
updates in a given store and order them by their creation timestamp.

Note
The creation timestamp is stored inside of the update file and is different from the operating
system's file creation timestamp.

Administrative Statements

Page 417

The load process automatically uses a transaction to ensure that the load is done in an atomic fashion. If
any errors occur during the load, then the entire process is rolled back.

You can use the CREATE TABLE FROM UPDATES clause to create a table that contains the contents of any
given update file. This is useful for auditing purposes, or for debugging issues when loading a particular
update file into a database.

Please see the Replication topic for more information on loading updates for a database.

Examples

-- This example loads the updates for the
-- Transaction table in the Accounting database

LOAD UPDATES FOR DATABASE Accounting
FROM "AccountingDB-Updates-2007-03-12"
IN STORE TransactionUpdatesIn
TABLES Transaction

Required Privileges

The current user must be granted the MAINTAIN privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 418

8.15 SET UPDATES STORE

Sets the current updates store used for configuration queries.

Syntax

SET UPDATES STORE TO <StoreName>

Usage

Use this statement to set the current updates store. The current updates store dictates where ElevateDB
will retrieve the list of avalable updates when queries on the Updates Table in the special Configuration
Database are executed. The name provided must be a valid store name. You can find out which stores
exist by querying the Stores Table in the Configuration database.

Note
This statement is not persistent and is reset once the current session is disconnected.

Please see the Replication topic for more information on loading/saving updates for a database.

Examples

SET UPDATES STORE TO "RemoteOffice"

Required Privileges

Any user can execute this statement.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 419

8.16 COPY FILE

Copies the specified file to a new file name in the same store or in a different store.

Syntax

COPY FILE <FileName> IN STORE <StoreName>
TO <FileName> [IN STORE <StoreName>]

Usage

Use this statement to copy the specified file in the specified store to a new file in the same or a different
store. The stores may be either local or remote, and copying from a local store to a remote store, or vice-
versa, is permitted. Both stores must have already been created using the CREATE STORE statement.

Examples

-- This example copies an update file
-- from a local store called OutUpdates to
-- a remote store called RemoteUpdates

COPY FILE "AccountingDB-Updates-2007-03-12.EDBUpd" IN STORE "OutUpdates"
TO "AccountingDB-Updates-2007-03-12.EDBUpd" IN STORE "RemoteUpdates"

Required Privileges

The current user must be granted the SELECT privilege on the store from which the file is being copied,
and the CREATE privilege on the store where the new file will be created. Please see the User Security
topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 420

8.17 RENAME FILE

Renames the specified file to a new file name in the same store.

Syntax

RENAME FILE <FileName> IN STORE <StoreName>
TO <FileName>

Usage

Use this statement to rename the specified file in the specified store to a new file in the same store. The
store may be either local or remote. The store must have already been created using the CREATE STORE
statement.

Examples

-- This example renames an update file
-- in a local store called OutUpdates

RENAME FILE "AccountingDB-Updates-2007-03-12.EDBUpd" IN "STORE OutUpdates"
TO "AcctUpdatersdelphiuni20070312.EDBUpd"

Required Privileges

The current user must be granted the ALTER privilege on the store in which the file is being renamed.
Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 421

8.18 DELETE FILE

Deletes the specified file in the specified store.

Syntax

DELETE FILE <FileName> FROM STORE <StoreName>

Usage

Use this statement to delete the specified file in the specified store. The store may be either local or
remote. The store must have already been created using the CREATE STORE statement.

Examples

-- This example deletes an update file
-- in a local store called OutUpdates

DELETE FILE "AccountingDB-Updates-2007-03-12.EDBUpd" FROM STORE "OutUpdates"

Required Privileges

The current user must be granted the DROP privilege on the store in which the file is being deleted. Please
see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 422

8.19 SET FILES STORE

Sets the current files store used for configuration queries.

Syntax

SET FILES STORE TO <StoreName>

Usage

Use this statement to set the current files store. The current files store dictates where ElevateDB will
retrieve the list of avalable filess when queries on the Files Table in the special Configuration Database are
executed. The name provided must be a valid store name. You can find out which stores exist by querying
the Stores Table in the Configuration database.

Note
This statement is not persistent and is reset once the current session is disconnected.

Examples

SET FILES STORE TO "RemoteOffice"

Required Privileges

Any user can execute this statement.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 423

8.20 VERIFY TABLE

Verifies a table to see if any corruption exists in the table.

Syntax

VERIFY TABLE <TableName>
[STRUCTURE ONLY]

Usage

Use this statement to verify the specified table.

The STRUCTURE ONLY clause can be used to specify that ElevateDB should only do a structural scan, and
not actually examine the contents of rows for more in-depth corruption checks. Using this clause can
improve the performance of a table verification greatly, but does not guarantee that the row contents are
not possibly still corrupted. Usually the best practice is to first execute the VERIFY TABLE statement on the
specified table with the STRUCTURE ONLY clause. If the VERIFY TABLE execution indicates any corruption
at all, then you should execute the REPAIR TABLE statement on the specified table without the
STRUCTURE ONLY clause so that the table is exhaustively repaired.

You can use the STMTRESULT function to retrieve the result of a table verification in any procedure,
function, script, or job. For retrieving the result of a table verification from a client application, please see
your compiler-specific manual for retrieving the result of a statement exectuion.

The VERIFY TABLE statement requires a read lock on the specified table during its execution.

Examples

VERIFY TABLE Orders

Required Privileges

The current user must be granted the MAINTAIN privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 424

8.21 REPAIR TABLE

Repairs a table.

Syntax

REPAIR TABLE <TableName>
[STRUCTURE ONLY]
[STATISTICS]

Usage

Use this statement to repair the specified table.

The STRUCTURE ONLY clause can be used to specify that ElevateDB should only do a structural scan, and
not actually examine the contents of rows for more in-depth corruption checks. Using this clause can
improve the performance of a repair greatly, but does not guarantee that the row contents are not
possibly still corrupted. Usually the best practice is to first execute the VERIFY TABLE statement on the
specified table with the STRUCTURE ONLY clause. If the VERIFY TABLE execution indicates any corruption
at all, then you should execute the REPAIR TABLE statement on the specified table without the
STRUCTURE ONLY clause so that the table is exhaustively repaired.

The STATISTICS clause was added in ElevateDB 2.03 Build 7 in order to correct an issue with prior
releases and builds where the engine was incorrectly calculating the index statistics for a table. These
statistics are used by the query optimizer to estimate the amount of I/O that a particular index scan will
cause, and so it is very important that this information be correct. Running the REPAIR TABLE statement
with the STATISTICS clause will cause the index statistics to be recalculated for all indexes present in the
specified table.

Note
The STATISTICS clause causes the REPAIR TABLE to only recalculate the index statistics, and not
actually perform a complete repair.

If you create a table with ElevateDB 2.03 Build 7 or higher, then you will never need to use the
STATISTICS clause. The STATISTICS clause is deprecated in 2.04 or higher due to the new repair/verify
functionality.

You can use the STMTRESULT function to retrieve the result of a table repair in any procedure, function,
script, or job. For retrieving the result of a table repair from a client application, please see your compiler-
specific manual for retrieving the result of a statement exectuion.

The REPAIR TABLE statement requires exclusive access to the specified table.

Examples

REPAIR TABLE Orders

Administrative Statements

Page 425

Required Privileges

The current user must be granted the MAINTAIN privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 426

8.22 OPTIMIZE TABLE

Optimizes a table and removes any unused space.

Syntax

OPTIMIZE TABLE <TableName>
[USING <IndexName>]
[NO BACKUP FILES]

Usage

Use this statement to optimize the specified table. Optimization accomplishes three things:

It removes any unused space from a table and compacts the data.

It rebuilds all indexes, both system and user-defined, for the table.

It can optionally physically order the rows in the table according to the most-frequently-used index
via the USING clause. This helps ElevateDB optimize the read-ahead of physical rows when
executing SQL SELECT queries.

The USING clause is optional. The default behavior is for ElevateDB to physically re-order the rows in the
table according to the primary key, or the natural order if there is no primary key defined for the table.

The NO BACKUP FILES clause is optional. Unless this clause is specified, ElevateDB will create backup files
(*.old) of the physical table files when optimizing the table.

Examples

-- This example optimizes the Customer table
-- and physically orders the rows according to the
-- primary key

OPTIMIZE TABLE Customer

Required Privileges

The current user must be granted the MAINTAIN privilege on the current database in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 427

Administrative Statements

Page 428

8.23 IMPORT TABLE

Imports the data from a delimited text file into a table or view.

Syntax

IMPORT TABLE <ImportTable>
FROM <FileName>
IN STORE <StoreName>
[(<ColumnName>[,<ColumnName>])]
[FORMAT DELIMITED|XML]
[ENCODING AUTO|ANSI|UNICODE]
[DELIMITER CHAR <DelimiterChar>]
[QUOTE CHAR <QuoteChar>]
[DATE FORMAT <DateFormat>]
[TIME FORMAT <TimeFormat> [AM LITERAL <AMLiteral> PM LITERAL <PMLiteral>]]
[DECIMAL CHAR <DecimalChar>]
[BOOLEAN TRUE LITERAL <TrueLiteral> FALSE LITERAL <FalseLiteral>]
[USE HEADERS]
[MAX ROWS <MaxRowCount>]

<ImportTable> = <TableName>|<ViewName>

<DateFormat> =

YYYY or YY = Year digits
MM or M = Month digits
DD or D = Day digits
Any other character = literal

<TimeFormat> =

HH or H = Hours digits
MM or M = Minutes digits
SS or S = Seconds digits
ZZZ or Z = Milliseconds digits
N = AM/PM literal
Any other character = literal

Usage

Use this statement to import data from a delimited or XML text file in the specified store into a table or
view.

Use the optional FORMAT clause to specify the format of the incoming text file. The format can be
specified as DELIMITED or XML, and defaults to DELIMITED if the FORMAT clause is not specified.

For delimited text files, ElevateDB expects each incoming row of data to be terminated with a carriage
return (#13) and line feed (#10) character, or just a line feed character (#10). For XML text files,
ElevateDB expects the incoming data to be in in the following format:

<row>

Administrative Statements

Page 429

 <columnname>data</columnname>
 [<columnname>data</columnname>]
</row>

The store must have already been created using the CREATE STORE statement, and must be a local store.

Any existing data in the table or view is not overwritten, and the data in the text file is appended to the
table or view. If you wish to replace the contents of a table or view with the contents of the text file, then
you should execute the following DELETE statement before executing the IMPORT TABLE statement:

DELETE FROM <TableName>|<ViewName>

If importing into a view, the view must be updateable or an error will be raised.

You can specify the columns in the import file by including them in parentheses after the FROM clause.

Use the ENCODING, DELIMITER CHAR, QUOTE CHAR, DATE FORMAT, TIME FORMAT, DECIMAL CHAR,
and BOOLEAN LITERAL clauses to control how ElevateDB reads the data from the import file.

The ENCODING clause is used to determine the character encoding of the import file. If this cause isn't
included, then the default encoding is AUTO, meaning that ElevateDB will attempt to determine the
character encoding of the import file by first looking for BOM (Byte Order Mark) bytes at the beginning of
the file. If it doesn't find them, then it will attempt to determine the character encoding by examining the
actual import file characters themselves. If the import file does not include BOM bytes, and you know that
the character encoding is UNICODE, then you should specify the UNICODE encoding option.

If the DELIMITER CHAR clause is not included, then the default delimiter character is the comma ','
character.

Note
The DELIMITER CHAR clause is only valid when the FORMAT clause is DELIMITED (the default if the
FORMAT clause is not specified).

If the QUOTE CHAR clause is not included, then the default quote character for character strings is the
double quote '"' character.

If the DATE FORMAT clause is not specified, then the default date format is the ANSI SQL standard date
format 'YYYY-MM-DD'.

If the TIME FORMAT clause is not specified, then the default date format is 'HH:MM:SS.ZZZ N'. The AM
LITERAL and PM LITERAL clauses are only used if the N format specifier is included in the time format.

If the DECIMAL CHAR clause is not included, then the default decimal separator character for character
strings is the period '.' character.

If the BOOLEAN TRUE LITERAL is not included then the default boolean True literal value is 'TRUE'. If the
BOOLEAN FALSE LITERAL is not included then the default boolean False literal value is 'FALSE'.

For delimited text files, the USE HEADERS clause determines whether ElevateDB interprets the first line in
the import file as a list of column names that are included in the import file. If any column specified in this

Administrative Statements

Page 430

line is not a valid column for the table, then it is simply ignored.

For XML text files, the USE HEADERS clause determines whether ElevateDB looks for the following tags in
the import file to control which columns are imported:

<columns>
 <column>columnname</column>
 [<column>columnname</column>]
<columns>

If any column specified using these tags is not a valid column for the table, then it is simply ignored. Also,
due to the nature of XML, it is possible to have multiple <columns> sections in the same XML import file in
order to allow for different columns for the incoming data.

Note
This clause overrides any columns specified after the FROM clause.

The MAX ROWS clause can be used to limit the number of rows that are imported. This is useful when you
simply want to do a preview in order to determine whether the first few lines of the import file are
importing correctly.

Examples

-- The following example imports tab-delimited
-- data from an import file into the Customer table,
-- using the first line in the import file to determine
-- which columns to import

IMPORT TABLE Customer
FROM "custdata.txt"
IN STORE "ImportFiles"
DELIMITER CHAR #9
USE HEADERS

Required Privileges

The current user must be granted the INSERT and SELECT privileges on the table or view into which the
data is being imported, and the SELECT privilege on the store from which the file is being imported. Please
see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 431

8.24 EXPORT TABLE

Exports the data from a table or view into a delimited text file.

Syntax

EXPORT TABLE <ExportTable>
TO <FileName>
IN STORE <StoreName>
[(<ColumnName>[,<ColumnName>])]
[FORMAT DELIMITED|XML]
[ENCODING AUTO|ANSI|UNICODE]
[DELIMITER CHAR <DelimiterChar>]
[QUOTE CHAR <QuoteChar>]
[DATE FORMAT <DateFormat>]
[TIME FORMAT <TimeFormat> [AM LITERAL <AMLiteral> PM LITERAL <PMLiteral>]]
[DECIMAL CHAR <DecimalChar>]
[BOOLEAN TRUE LITERAL <TrueLiteral> FALSE LITERAL <FalseLiteral>]
[INCLUDE HEADERS]
[MAX ROWS <MaxRowCount>]

<ExportTable> = <TableName>|<ViewName>

<DateFormat> =

YYYY or YY = Year digits
MM or M = Month digits
DD or D = Day digits
Any other character = literal

<TimeFormat> =

HH or H = Hours digits
MM or M = Minutes digits
SS or S = Seconds digits
ZZZ or Z = Milliseconds digits
N = AM/PM literal
Any other character = literal

Usage

Use this statement to export data from a table or view into a delimited or XML text file in the specified
store.

Use the optional FORMAT clause to specify the format of the created text file. The format can be specified
as DELIMITED or XML, and defaults to DELIMITED if the FORMAT clause is not specified.

For delimited text files, ElevateDB terminates each row of data in the export file with a carriage return
(#13) and line feed (#10) character.

For XML text files, ElevateDB outputs the data in the export file in the following format:

Administrative Statements

Page 432

<row>
 <columnname>data</columnname>
 [<columnname>data</columnname>]
</row>

The store must have already been created using the CREATE STORE statement, and must be a local store.

Any existing data in the destination export file is overwritten.

You can specify the columns in the export file by including them in parentheses after the TO clause.

The ENCODING clause is used to determine the character encoding of the export file. If this cause isn't
included, then the default encoding is AUTO, meaning that ElevateDB will create the export file using the
current character encoding of the engine itself (ANSI/UNICODE). Whenever the character encoding of the
export file is UNICODE (explicitly or by using AUTO), ElevateDB will always write out BOM (Byte Order
Mark) bytes as the first two bytes of the export file.

Use the DELIMITER CHAR, QUOTE CHAR, DATE FORMAT, TIME FORMAT, DECIMAL CHAR, and BOOLEAN
LITERAL clauses to control how ElevateDB writes the data to the export file.

If the DELIMITER CHAR clause is not included, then the default delimiter character is the comma ','
character.

If the QUOTE CHAR clause is not included, then the default quote character for character strings is the
double quote '"' character.

If the DATE FORMAT clause is not specified, then the default date format is the ANSI SQL standard date
format 'YYYY-MM-DD'.

If the TIME FORMAT clause is not specified, then the default date format is 'HH:MM:SS.ZZZ N'. The AM
LITERAL and PM LITERAL clauses are only used if the N format specifier is included in the time format.

If the DECIMAL CHAR clause is not included, then the default decimal separator character for character
strings is the period '.' character.

If the BOOLEAN TRUE LITERAL is not included then the default boolean True literal value is 'TRUE'. If the
BOOLEAN FALSE LITERAL is not included then the default boolean False literal value is 'FALSE'.

For delimited text files, the INCLUDE HEADERS clause determines whether ElevateDB writes the first line
in the export file as a list of column names that have been included in the export.

For XML text files, the INCLUDE HEADERS clause determines whether ElevateDB writes the list of column
names that have been included in the export in the following format:

<columns>
 <column>columnname</column>
 [<column>columnname</column>]
<columns>

The MAX ROWS clause can be used to limit the number of rows that are exported. This is useful when you
simply want to test an import of the file on another system in order to determine whether the export file is
being generated correctly.

Administrative Statements

Page 433

Examples

-- The following example exports the CustomerNo
-- and TotalOrders columns in the Customer table as
-- comma-delimited data into an export file

EXPORT TABLE Customer
TO "custordtotals.txt"
IN STORE "ExportFiles"
(CustomerNo, TotalOrders)

Required Privileges

The current user must be granted the SELECT privilege on the table or view from which the data is being
exported, and the CREATE privilege on the store in which the export file is being created. Please see the
User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 434

8.25 EMPTY TABLE

Empties a base table by truncation.

Syntax

EMPTY TABLE <TableName>
[IGNORE CONSTRAINTS]

Usage

Use this statement to empty a base table so that all rows are physically removed from the table. When all
rows are normally deleted from a table using the DELETE statement, the physical row space is marked for
re-use, and the physical table files where the rows, indexes, and BLOBs are stored does not decrease in
size. Emptying a table also physically truncates the table file space so that the table files appear as if they
were newly-created.

The IGNORE CONSTRAINT clause is used to bypass any constraint checks, which makes the EMPTY TABLE
operation faster, but at the risk of violating foreign-key constraints, if any are present. See below for more
information on the elevated privileges required to use this clause.

Examples

-- The following example empties
-- the Customer table, ignoring any
-- defined constraints

EMPTY TABLE Customer
IGNORE CONSTRAINTS

Required Privileges

The current user must be granted the DELETE privilege on the table being emptied. If the IGNORE
CONSTRAINTS clause is specified, then the current user must be granted the system-defined
Administrators role in order to execute this statement. Please see the User Security topic for more
information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 435

8.26 DISCONNECT SERVER SESSION

Disconnects a server session on an ElevateDB Server.

Syntax

DISCONNECT SERVER SESSION <SessionID>

Usage

Use this statement to disconnect the specified session on the ElevateDB Server that the current remote
session is connnected to. If the current session is local, and not remote, then this statement is simply
ignored. To get the session IDs (and other information) for the current sessions on the ElevateDB Server
that the current remote session is connected to, you can query the ServerSessions Table in the special
Configuration Database.

Examples

DISCONNECT SERVER SESSION 8034217

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 436

8.27 REMOVE SERVER SESSION

Removes a server session from an ElevateDB Server.

Syntax

REMOVE SERVER SESSION <SessionID>

Usage

Use this statement to remove the specified session from the ElevateDB Server that the current remote
session is connnected to. If the current session is local, and not remote, then this statement is simply
ignored. To get the session IDs (and other information) for the current sessions on the ElevateDB Server
that the current remote session is connected to, you can query the ServerSessions Table in the special
Configuration Database.

Examples

REMOVE SERVER SESSION 8034217

Required Privileges

The current user must be granted the system-defined Administrators role in order to execute this
statement. Please see the User Security topic for more information.

SQL 2003 Standard Deviations

This statement deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This SQL statement is an ElevateDB extension.

Administrative Statements

Page 437

This page intentionally left blank

Numeric Functions

Page 438

Chapter 9
Numeric Functions

9.1 Introduction

Numeric functions are used to convert and manipulate exact and approximate numeric types in ElevateDB
SQL expressions. This section of the manual details the available numeric functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

Numeric Functions

Page 439

9.2 ABS

Converts a number to its absolute value.

Syntax

ABS(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

Same as Input

Usage

The ABS function converts a numeric value to its absolute, or non-negative value.

Examples

SELECT ABS(Difference) AS Difference
FROM Populations

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Numeric Functions

Page 440

9.3 ACOS

Returns the arc cosine of a number as an angle expressed in radians.

Syntax

ACOS(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The ACOS function returns the arc cosine of a number as an angle expressed in radians. Arc cosine is the
inverse operation of cosine.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 441

9.4 ASIN

Returns the arc sine of a number as an angle expressed in radians.

Syntax

ASIN(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The ASIN function returns the arc sine of a number as an angle expressed in radians.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 442

9.5 ATAN

Returns the arc tangent of a number as an angle expressed in radians.

Syntax

ATAN(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The ATAN function returns the arc tangent of a number as an angle expressed in radians.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 443

9.6 ATAN2

Returns the arc tangent of x and y coordinates as an angle expressed in radians.

Syntax

ATAN2(<NumericExpression>,<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The ATAN2 function returns the arc tangent of x and y coordinates as an angle expressed in radians.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 444

9.7 CEILING

Returns the lowest integer greater than or equal to a number.

Syntax

CEILING(<NumericExpression>)
CEIL(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

INTEGER

Usage

The CEIL or CEILING function returns the lowest integer greater than or equal to a number.

Examples

SELECT SUM(CEIL(Distance)) AS ApproxDistance
FROM Destinations

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Numeric Functions

Page 445

9.8 COS

Returns the cosine of an angle.

Syntax

Returns

FLOAT

Usage

The COS function returns the cosine of an angle.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 446

9.9 COT

Returns the cotangent of an angle.

Syntax

COT(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The COT function returns the cotangent of an angle.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 447

9.10 CURRENT_SESSIONID

Returns the current session ID as an integer.

Syntax

CURRENT_SESSIONID()

Returns

INTEGER

Usage

The CURRENT_SESSIONID function returns the current session ID as an integer.

Examples

SELECT *
FROM Configuration.ServerSessionLocks
WHERE SessionID = CURRENT_SESSIONID()

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 448

9.11 DEGREES

Converts a number representing radians into degrees.

Syntax

DEGREES(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The DEGREES function converts a number representing radians into degrees.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 449

9.12 EXP

Returns the exponential value of a number.

Syntax

EXP(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The EXP function returns the exponential value of a number, which is E raised to the power of X, where E
is the base of the natural logarithms.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Numeric Functions

Page 450

9.13 FLOOR

Returns the highest integer less than or equal to a number.

Syntax

FLOOR(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

INTEGER

Usage

The FLOOR function returns the highest integer less than or equal to a number.

Examples

SELECT SUM(FLOOR(Distance)) AS ApproxDistance
FROM Destinations

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Numeric Functions

Page 451

9.14 LASTIDENTITY

Returns the last identity value assigned to the specified column in the specified table.

Syntax

LASTIDENTITY(<StringExpression>, <StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

INTEGER

Usage

The LASTIDENTITY function returns the last identity value assigned to the specified column in the
specified table. The table name is the first parameter to the function, and the column name is the second
parameter to the function.

Warning
This function only returns the last identity value assigned for the specified column for the current
session. It does not reflect any identity values assigned to any other session for the same table.
Therefore, if the current session has not inserted any rows in the specified table since the session
was first logged in, then the value returned will be 0.

Examples

SELECT LASTIDENTITY('Customer', 'CustNo') AS LastCustNo

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 452

Numeric Functions

Page 453

9.15 LOG

Returns the natural logarithm of a number.

Syntax

LOG(<NumericExpression>)
LN(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The LOG or LN function returns the natural logarithm of a number.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

LOG The LOG version of the function is an ElevateDB extension.

Numeric Functions

Page 454

9.16 LOG10

Returns the base 10 logarithm of a number.

Syntax

LOG10(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The LOG10 function returns the base 10 logarithm of a number.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 455

9.17 PI

Returns the ratio of a circle's circumference to its diameter.

Syntax

PI()

Returns

FLOAT

Usage

The PI function returns the ratio of a circle's circumference to its diameter - approximated as
3.1415926535897932385.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 456

9.18 POWER

Returns the value of a base number raised to the specified power.

Syntax

POWER(<NumericExpression> TO <IntegerExpression>)
POWER(<NumericExpression>, <IntegerExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

<IntegerExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT

Returns

FLOAT

Usage

The POWER function returns value of a base number raised to the specified power.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

TO The TO version of the function is an ElevateDB extension.

Numeric Functions

Page 457

9.19 RADIANS

Converts a number representing degrees into radians.

Syntax

RADIANS(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The RADIANS function converts a number representing degrees into radians.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 458

9.20 RAND

Returns a random number.

Syntax

RAND([RANGE <IntegerExpression>])
RAND([<IntegerExpression>])

<IntegerExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT

Returns

FLOAT if no range specified
INTEGER equivalent to range if range specified

Usage

The RAND function returns a random number. The RANGE value is optional used to limit the random
numbers returned to between 0 and the RANGE value specified. If the range is not specified then any
number within the range of positive FLOAT values may be returned.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 459

9.21 ROUND

Rounds a number to a specified number of decimal places.

Syntax

ROUND(<NumericExpression> [TO <IntegerExpression>])
ROUND(<NumericExpression> [, <IntegerExpression>])

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

<IntegerExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT

Returns

Same as input

Usage

The ROUND function rounds a numeric value to a specified number of decimal places. The number of
decimal places is optional, and if not specified the value returned will be rounded to 0 decimal places.

Note
The ROUND function performs "normal" rounding where the number is rounded up if the fractional
portion beyond the number of decimal places being rounded to is greater than or equal to 5 and
down if the fractional portion is less than 5. Also, if using the ROUND function with DOUBLE
PRECISION or FLOAT values, it is possible to encounter rounding errors due to the nature of
floating-point values and their inability to accurately express certain fractional real numbers.

Examples

SELECT SUM(ROUND(Distance TO 2)) AS ApproxDistance
FROM Destinations

Numeric Functions

Page 460

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 461

9.22 SIGN

Returns -1 if a number is less than 0, 0 if a number is 0, or 1 if a number is greater than 0.

Syntax

SIGN(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

INTEGER

Usage

The SIGN function returns -1 if a number is less than 0, 0 if a number is 0, or 1 if a number is greater than
0.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 462

9.23 SIN

Returns the sine of an angle.

Syntax

SIN(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The SIN function returns the sine of an angle.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 463

9.24 SQRT

Returns the square root of a number.

Syntax

SQRT(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The SQRT function returns the square root of a number.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Numeric Functions

Page 464

9.25 TAN

Returns the tangent of an angle.

Syntax

TAN(<NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The TAN function returns the tangent of an angle.

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 465

9.26 TRUNCATE

Truncates a numeric argument to the specified number of decimal places.

Syntax

TRUNCATE(<NumericExpression> [TO <IntegerExpression>])
TRUNCATE(<NumericExpression> [, <IntegerExpression>])
TRUNC(<NumericExpression> [TO <IntegerExpression>])
TRUNC(<NumericExpression> [, <IntegerExpression>])

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

<IntegerExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT

Returns

Same as input

Usage

The TRUNC or TRUNCATE function truncates a numeric value to a specified number of decimal places. The
number of decimal places is optional, and if not specified the value returned will be truncated to 0 decimal
places.

Note
If using the TRUNC or TRUNCATE function with FLOAT or DOUBLE PRECISION values and a number
of decimal places greater than 0, it is possible to encounter truncation errors due to the nature of
floating-point values and their inability to accurately express certain fractional real numbers.

Examples

SELECT SUM(TRUNCATE(Distance TO 2)) AS ApproxDistance

Numeric Functions

Page 466

FROM Destinations

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Numeric Functions

Page 467

This page intentionally left blank

String Functions

Page 468

Chapter 10
String Functions

10.1 Introduction

String functions are used to convert and manipulate string types in ElevateDB SQL expressions. This
section of the manual details the available string functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

String Functions

Page 469

10.2 CHARACTER_LENGTH

Returns the length of a string value.

Syntax

CHARACTER_LENGTH(<StringExpression>)
CHAR_LENGTH(<StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

INTEGER

Usage

The CHAR_LENGTH function returns the length of a string value as an integer value.

Examples

SELECT Notes, CHAR_LENGTH(Notes) AS NumChars
FROM Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

String Functions

Page 470

10.3 CONCAT

Concatenates two string values together.

Syntax

CONCAT(<StringExpression> WITH <StringExpression>)
CONCAT(<StringExpression>, <StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as first input

Usage

The CONCAT function concatenates two strings together and returns the concatenated result.

Examples

UPDATE Customers
SET notes = CONCAT(Notes WITH #13 + #10 + #13 + #10 + 'End of Notes')

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 471

10.4 CURRENT_GUID

Returns a new GUID value as a string.

Syntax

CURRENT_GUID()

Returns

GUID

Usage

The CURRENT_GUID function returns a new GUID value as a 38-character string.

Examples

INSERT INTO Transactions
VALUES (CURRENT_GUID(), CURRENT_TIMESTAMP(), CURRENT_USER(),
 'DEBIT', 200.00)

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 472

10.5 CURRENT_USER

Returns the current user's name as a string.

Syntax

CURRENT_USER()

Returns

VARCHAR

Usage

The CURRENT_USER function returns the current user's name as a string.

Examples

SELECT *
FROM TransactionHistory
WHERE User = CURRENT_USER()

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

String Functions

Page 473

10.6 CURRENT_DATABASE

Returns the current database's name as a string.

Syntax

CURRENT_DATABASE()

Returns

VARCHAR

Usage

The CURRENT_DATABASE function returns the current database's name as a string.

Examples

-- This script backs up the current database

SCRIPT
BEGIN
 EXECUTE IMMEDIATE 'BACKUP DATABASE "' + CURRENT_DATABASE() + '" AS "' +
 CAST(CURRENT_DATE AS VARCHAR(10)) +
 '-' + CURRENT_DATABASE() +
 '" TO STORE "Backups" INCLUDE CATALOG';
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 474

10.7 CURRENT_COMPUTER

Returns the current computer's name as a string.

Syntax

CURRENT_COMPUTER()

Returns

VARCHAR

Usage

The CURRENT_COMPUTER function returns the current computer's name as a string.

Note
When this function is used with the ElevateDB Server, it will always return the computer name for
the ElevateDB Server machine.

Examples

-- This trigger logs information about
-- inserts, updates, and deletes,
-- including the computer the executed the
-- operation

CREATE TRIGGER "LogValues" AFTER ALL ON "customer"
BEGIN
 IF OPERATION() IN ('Insert','Update') THEN
 EXECUTE IMMEDIATE 'INSERT INTO AuditLog (Operation, Computer, Value)
 VALUES (?,?,?)' USING OPERATION(), CURRENT_COMPUTER(),
 NEWROW.MyColumn;
 ELSE IF OPERATION()='Delete' THEN
 EXECUTE IMMEDIATE 'INSERT INTO AuditLog (Operation, Computer, Value)
 VALUES (?,?,?)' USING OPERATION(), CURRENT_COMPUTER(),
 OLDROW.MyColumn;
 END IF;
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

String Functions

Page 475

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 476

10.8 LEFT

Extracts a certain number of characters from the leading portion of a string value.

Syntax

LEFT(<StringExpression> FOR <IntegerExpression>)
LEFT(<StringExpression>, <IntegerExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The LEFT function extracts a certain number of characters from the leading portion of a string. The FOR
parameter specifies the length of the extracted substring. If the FOR parameter is greater than the length
of the input string, then the result will be the input string.

Examples

SELECT LEFT(CustomerID, 6)
FROM Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 477

10.9 LENGTH

Returns the length of a string or binary value

Syntax

LENGTH(<StringExpression>|<BinaryExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

<BinaryExpression> =

Type of:

BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB

Returns

INTEGER

Usage

The LENGTH function returns the length of a string or binary value as an integer value.

Examples

SELECT Notes, LENGTH(Notes) AS NumChars
FROM Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 478

10.10 LOWER

Forces a string to lower-case.

Syntax

LOWER(<StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The LOWER function converts all characters in a string value to lower-case. The collation of the input value
is used to determine how the lower-case operation is performed.

Examples

SELECT LOWER(CustomerID) AS CustomerID
FROM Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Argument Separator The use of a comma separator for the function arguments is
an ElevateDB extension.

String Functions

Page 479

10.11 LTRIM

Removes any leading spaces from a string.

Syntax

LTRIM(<StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The LTRIM function removes any leading spaces from a string.

Examples

SELECT LTRIM(Name) AS Name
AS Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 480

10.12 OCCURS

Returns the number of times one string value is present within another string value.

Syntax

OCCURS(<StringExpression> IN <StringExpression>)
OCCURS(<StringExpression>, <StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

INTEGER

Usage

The OCCURS function returns the number of occurrences of one string within another string. If the search
string is not present, then 0 will be returned.

Examples

SELECT *
FROM Customers
WHERE (OCCURS('COMPLAINT' IN UPPER(Notes)) > 0)

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 481

10.13 POSITION

Returns the position of one string value within another string value.

Syntax

POSITION(<StringExpression> IN <StringExpression>)
POSITION(<StringExpression>, <StringExpression>)
POS(<StringExpression> IN <StringExpression>)
POS(<StringExpression>, <StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

INTEGER

Usage

The POSITION function returns the position of one string within another string. If the search string is not
present, then 0 will be returned.

Examples

SELECT *
FROM Customers
WHERE (POSITION('COMPLAINT' IN UPPER(Notes)) > 0)

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Argument Separator The use of a comma separator for the function arguments is
an ElevateDB extension.

POS The POS version of the function is an ElevateDB extension.

String Functions

Page 482

10.14 REPEAT

Repeats a string value a specified number of times.

Syntax

REPEAT(<StringExpression> FOR <IntegerExpression>)
REPEAT(<StringExpression>, <IntegerExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The REPEAT function repeats a given string a specified number of times and returns the concatenated
result.

Examples

SELECT REPEAT('=' FOR 60) + #13 + #10 +
 CustomerID + #13 + #10 +
 REPEAT('=' FOR 60) + #13 + #10 +
Notes AS Notes
FROM Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 483

10.15 REPLACE

Replaces all occurrences of one string value with a new string value within another string value.

Syntax

REPLACE(<StringExpression> WITH <StringExpression>
 IN <StringExpression>)
REPLACE(<StringExpression>, <StringExpression>,
 <StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as last input

Usage

The REPLACE function replaces all occurrences of a given string with a new string within another string. If
the search string is not present, then the result will be the input string.

Examples

UPDATE Customers
SET Notes = REPLACE('Complaint' WITH 'Suggestion' IN Notes)

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 484

10.16 RIGHT

Extracts a certain number of characters from the trailing portion of a string value.

Syntax

RIGHT(<StringExpression> FOR <IntegerExpression>)
RIGHT(<StringExpression>, <IntegerExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The RIGHT function extracts a certain number of characters from the trailing portion of a string. The FOR
parameter specifies the length of the extracted substring. If the FOR parameter is greater than the length
of the input string, then the result will be the input string.

Examples

SELECT RIGHT(CustomerID, 6)
FROM Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 485

10.17 RTRIM

Removes any trailing spaces from a string.

Syntax

RTRIM(<StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The RTRIM function removes any trailing spaces from a string.

Examples

SELECT RTRIM(Name) AS Name
AS Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 486

10.18 SUBSTRING

Extracts a portion of a string value.

Syntax

SUBSTRING(<StringExpression> FROM <IntegerExpression>
 [FOR <IntegerExpression>])
SUBSTRING(<StringExpression>, <IntegerExpression>
 [, <IntegerExpression>])
SUBSTR(<StringExpression> FROM <IntegerExpression>
 [FOR <IntegerExpression>])
SUBSTR(<StringExpression>, <IntegerExpression>
 [, <IntegerExpression>])

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The SUBSTRING function extracts a portion of a string value. The second FROM parameter is the character
position at which the extracted string starts within the original string. The index for the FROM parameter is
based on the first character in the source value being 1.

The FOR parameter is optional, and specifies the length of the extracted string. If the FOR parameter is
omitted, the extracted string will be equal to the portion of the string starting at the position specified by
the FROM parameter to the end of the string.

Examples

SELECT SUBSTRING(CustomerID, 8 FOR 2) AS Category
FROM Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

String Functions

Page 487

Deviation Details

Argument Separator The use of a comma separator for the function arguments is
an ElevateDB extension.

SIMILAR ElevateDB does not support the SIMILAR syntax for regular
expression matching.

String Functions

Page 488

10.19 TRIM

Removes repetitions of a specified character from the left, right, or both sides of a string.

Syntax

TRIM(LEADING|TRAILING|BOTH <CharacterExpression>
 FROM <StringExpression>)
TRIM(LEADING|TRAILING|BOTH <CharacterExpression>,
 <StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The TRIM function removes any repetitions of the specified trailing or leading character, or both, from a
string. The first parameter indicates the position of the character to be deleted, and has one of the
following values:

Keyword Description

LEADING Deletes the character in the leading portion of the string.

TRAILING Deletes the character in the trailing portion of the string.

BOTH Deletes the character at both ends of the string.

The character parameter specifies the character to be deleted.

The FROM parameter specifies the string value to trim.

Examples

SELECT TRIM(TRAILING ' ' FROM CustomerID) AS CustomerID
FROM Customers

SQL 2003 Standard Deviations

String Functions

Page 489

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Argument Separator The use of a comma separator for the function arguments is
an ElevateDB extension.

String Functions

Page 490

10.20 UPPER

Forces a string to upper-case.

Syntax

UPPER(<StringExpression>)

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The UPPER function converts all characters in a string value to upper-case. The collation of the input value
is used to determine how the upper-case operation is performed.

Examples

SELECT UPPER(CustomerID) AS CustomerID
FROM Customers

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

String Functions

Page 491

10.21 QUOTEDSTR

Escapes quotes in a string.

Syntax

QUOTEDSTR(<StringExpression> [USING <CharacterExpression>])
QUOTEDSTR(<StringExpression>[, <CharacterExpression>])

<StringExpression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

Same as input

Usage

The QUOTEDSTR function escapes quotes in a string so that it can be used as a literal constant without
causing parsing errors. The default character that is escaped is the single quote ('), but you may also
specify a character like the double quote ("), if necessary.

Examples

-- The following script accepts a table
-- name and returns a result set that includes
-- all of the rows in the specified table.

SCRIPT (IN TableName VARCHAR)
BEGIN
 DECLARE ResultCursor CURSOR WITH RETURN FOR ResultStmt;

 IF (COALESCE(TableName,'') <> '') THEN
 PREPARE ResultStmt FROM 'SELECT * FROM '+QUOTEDSTR(TableName USING '"');

 OPEN ResultCursor;
 END IF;
END

SQL 2003 Standard Deviations

String Functions

Page 492

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

String Functions

Page 493

This page intentionally left blank

Array Functions

Page 494

Chapter 11
Array Functions

11.1 Introduction

Array functions are used to manipulate array types in ElevateDB SQL expressions. This section of the
manual details the available array functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

Array Functions

Page 495

11.2 CARDINALITY

Returns the cardinality of an array.

Syntax

CARDINALITY(<ArrayExpression>)

<ArrayExpression> =

Any array of type:
CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

INTEGER

Usage

Array Functions

Page 496

The CARDINALITY function returns the index (1-based) of the highest defined array element in an array.
The highest defined array element is the highest array element that has been referenced in the array. For
example, if you define an array with a maximum cardinality of 10, and reference the fifth (5) element in
the array, then the CARDINALITY function will return 5 for the array.

Note
ElevateDB currently only supports the use of arrays in SQL/PSM routines and does not support
arrays as column types.

Examples

-- This script loops through the Customer table and
-- populates an array with the CustNo column value
-- for each row

SCRIPT
BEGIN
 DECLARE Done BOOLEAN DEFAULT False;
 DECLARE TotalRows INTEGER DEFAULT 0;
 DECLARE CustCursor CURSOR FOR CustStmt;
 DECLARE CustArray INTEGER ARRAY [56];

 SET LOG MESSAGE TO CAST(CARDINALITY(CustArray) AS VARCHAR);

 PREPARE CustStmt FROM 'SELECT CustNo,
 Company
 FROM Customer';

 OPEN CustCursor;

 WHILE (NOT EOF(CustCursor)) DO
 SET TotalRows=TotalRows+1;
 FETCH NEXT FROM CustCursor INTO CustArray[TotalRows];
 SET PROGRESS TO TRUNC((TotalRows/ROWCOUNT(CustCursor))*100);
 END WHILE;

 SET LOG MESSAGE TO CAST(CARDINALITY(CustArray) AS VARCHAR);

 CLOSE CustCursor;
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Referenced Elements ElevateDB sets the cardinality of an array on any array access
to a specific index, not just the assignment of a value to a
specific index.

Array Functions

Page 497

This page intentionally left blank

Date and Time Functions

Page 498

Chapter 12
Date and Time Functions

12.1 Introduction

Date and time functions are used to convert and manipulate date and time types in ElevateDB SQL
expressions. This section of the manual details the available date and time functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

Date and Time Functions

Page 499

12.2 CURRENT_DATE

Returns the current date.

Syntax

CURRENT_DATE([UTC])

Returns

DATE

Usage

The CURRENT_DATE function returns the current date. Use the UTC designation to indicate that the date
returned should be a UTC (Coordinated Universal Time) value.

Note
When this function is used with the ElevateDB Server, it will always return the current date for the
ElevateDB Server machine.

Examples

SELECT *
FROM Transactions
WHERE CAST(TransTimeStamp AS DATE) = CURRENT_DATE

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

UTC Parameter The UTC parameter is an ElevateDB extension.

Date and Time Functions

Page 500

12.3 CURRENT_TIME

Returns the current time.

Syntax

CURRENT_TIME([UTC])

Returns

TIME

Usage

The CURRENT_TIME function returns the current time. Use the UTC designation to indicate that the time
returned should be a UTC (Coordinated Universal Time) value.

Note
When this function is used with the ElevateDB Server, it will always return the current time for the
ElevateDB Server machine.

Examples

INSERT INTO Logins
VALUES (CURRENT_USER(), CURENT_DATE(), CURRENT_TIME())

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

UTC Parameter The UTC parameter is an ElevateDB extension.

Date and Time Functions

Page 501

12.4 CURRENT_TIMESTAMP

Returns the current timestamp.

Syntax

CURRENT_TIMESTAMP([UTC])

Returns

TIMESTAMP

Usage

The CURRENT_TIMESTAMP function returns the current date and time. Use the UTC designation to
indicate that the date and time returned should be a UTC (Coordinated Universal Time) value.

Note
When this function is used with the ElevateDB Server, it will always return the current date/time for
the ElevateDB Server machine.

Examples

INSERT INTO Logins
VALUES (CURRENT_USER(), CURENT_TIMESTAMP())

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

UTC Parameter The UTC parameter is an ElevateDB extension.

Date and Time Functions

Page 502

12.5 EXTRACT

Extracts the a portion of a date, time, or timestamp value.

Syntax

EXTRACT(<ValueToExract> FROM <DateTimeExpression>)
EXTRACT(<ValueToExract>, <DateTimeExpression>)

<ValueToExtract> =

YEAR
MONTH
WEEK
DAYOFWEEK
DAYOFYEAR
DAY
HOUR
MINUTE
SECOND
MSECOND

<DateTimeExpression> =

DATE
TIME
TIMESTAMP

Returns

INTEGER

Usage

The EXTRACT function extracts a designated portion of a date, time, or timestamp value and returns it.
The following table details which portions can be extracted from which types:

Portion Types

Date and Time Functions

Page 503

YEAR DATE
TIMESTAMP

MONTH DATE
TIMESTAMP

WEEK DATE
TIMESTAMP

DAYOFWEEK DATE
TIMESTAMP

DAYOFYEAR DATE
TIMESTAMP

DAY DATE
TIMESTAMP

HOUR TIME
TIMESTAMP

MINUTE TIME
TIMESTAMP

SECOND TIME
TIMESTAMP

MSECOND TIME
TIMESTAMP

Note
All day and week values returned from EXTRACT follow the ISO 8601 standard for day and week
numbers.

Examples

SELECT *
FROM Transactions
WHERE EXTRACT(YEAR FROM TransDateTime) = 2006

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Date and Time Functions

Page 504

Chapter 13
Interval Functions

13.1 Introduction

Interval functions are used to convert and manipulate interval types in ElevateDB SQL expressions. This
section of the manual details the available interval functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

Interval Functions

Page 505

13.2 ABS

Converts an interval to its absolute value.

Syntax

ABS(<IntervalExpression>)

<IntervalExpression> =

Type of:

INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

Returns

Same as Input

Usage

The ABS function converts an interval value to its absolute, or non-negative value.

Examples

SELECT ABS(StartDate - EndDate) AS NumDays
FROM Reservations

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Interval Functions

Page 506

13.3 EXTRACT

Extracts the a portion of an interval value.

Syntax

EXTRACT(<ValueToExract> FROM <IntervalExpression>)
EXTRACT(<ValueToExract>, <IntervalExpression>)

<ValueToExtract> =

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
MSECOND

<IntervalExpression> =

Type of:

INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

Returns

INTEGER

Usage

The EXTRACT function extracts a designated portion of an interval value and returns it. The following table
details which portions can be extracted from which types:

Portion Types

Interval Functions

Page 507

YEAR INTERVAL YEAR
INTERVAL YEAR TO MONTH

MONTH INTERVAL YEAR TO MONTH
INTERVAL MONTH

DAY INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND

HOUR INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND

MINUTE INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND

SECOND INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND

MSECOND INTERVAL DAY TO MSECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Examples

SELECT EXTRACT(HOUR FROM (EndTime - StartTime)) AS NumHours
FROM TimeCards

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Interval Functions

Page 508

Deviation Details

None

Interval Functions

Page 509

This page intentionally left blank

Conversion Functions

Page 510

Chapter 14
Conversion Functions

14.1 Introduction

Conversion functions are used to convert values from one type to another or otherwise return a value
based upon various conditions in ElevateDB SQL expressions. This section of the manual details the
available conversion functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

Conversion Functions

Page 511

14.2 CAST

Converts a given value to a different, but compatible, type.

Syntax

CAST(<Expression> AS <DataType>
[DATE FORMAT <DateFormat>]
[TIME FORMAT <TimeFormat> [AM LITERAL <AMLiteral> PM LITERAL <PMLiteral>]]
[DECIMAL CHAR <DecimalChar>]
[BOOLEAN TRUE LITERAL <TrueLiteral> FALSE LITERAL <FalseLiteral>]
)
CAST(<Expression>, <DataType>
[DATE FORMAT <DateFormat>]
[TIME FORMAT <TimeFormat> [AM LITERAL <AMLiteral> PM LITERAL <PMLiteral>]]
[DECIMAL CHAR <DecimalChar>]
[BOOLEAN TRUE LITERAL <TrueLiteral> FALSE LITERAL <FalseLiteral>])

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Conversion Functions

Page 512

<DataType> =

CHARACTER|CHAR [(<Length>]) [<CollationName>]
CHARACTER VARYING|VARCHAR [(<Length>]) [<CollationName>]
GUID
BYTE [(<LengthInBytes>])
BYTE VARYING|VARBYTE [(<LengthInBytes>])
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB [<CollationName>]
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT [(<Precision>,<Scale>)]
DECIMAL|NUMERIC [(<Precision>,<Scale>)]
DATE
TIME
TIMESTAMP
INTERVAL YEAR [TO MONTH]
INTERVAL MONTH
INTERVAL DAY [TO HOUR|MINUTE|SECOND|MSECOND]
INTERVAL HOUR [TO MINUTE|SECOND|MSECOND]
INTERVAL MINUTE [TO SECOND|MSECOND]
INTERVAL SECOND [TO MSECOND]
INTERVAL MSECOND

<DateFormat> =

YYYY or YY = Year digits
MM or M = Month digits
DD or D = Day digits
Any other character = literal

<TimeFormat> =

HH or H = Hours digits
MM or M = Minutes digits
SS or S = Seconds digits
ZZZ or Z = Milliseconds digits
N = AM/PM literal
Any other character = literal

Returns

Input converted to specified data type, provided
that there aren't any numeric overflow errors

Usage

The CAST function converts a given value to a different, but compatible, type. The following table details
the various types and which types they can be converted to:

Source Type Destination Types

Conversion Functions

Page 513

CHARACTER|CHAR CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

CHARACTER VARYING|VARCHAR CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE

Conversion Functions

Page 514

INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

GUID CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB

BYTE CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

BYTE VARYING|VARBYTE CHARACTER|CHAR

Conversion Functions

Page 515

CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

BINARY LARGE OBJECT|BLOB CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND

Conversion Functions

Page 516

INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

CHARACTER LARGE OBJECT|CLOB CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

BOOLEAN|BOOL CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Conversion Functions

Page 517

SMALLINT CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
INTERVAL YEAR
INTERVAL MONTH
INTERVAL DAY
INTERVAL HOUR
INTERVAL MINUTE
INTERVAL SECOND
INTERVAL MSECOND

INTEGER|INT CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
INTERVAL YEAR
INTERVAL MONTH
INTERVAL DAY
INTERVAL HOUR
INTERVAL MINUTE
INTERVAL SECOND
INTERVAL MSECOND

BIGINT CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
INTERVAL YEAR
INTERVAL MONTH
INTERVAL DAY
INTERVAL HOUR
INTERVAL MINUTE
INTERVAL SECOND
INTERVAL MSECOND

FLOAT CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE

Conversion Functions

Page 518

BYTE VARYING|VARBYTE
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

DECIMAL|NUMERIC CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

DATE CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
DATE
TIMESTAMP

TIME CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
TIME
TIMESTAMP

TIMESTAMP CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
DATE
TIME
TIMESTAMP

INTERVAL YEAR CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
SMALLINT
INTEGER|INT
BIGINT
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH

INTERVAL YEAR TO MONTH CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH

Conversion Functions

Page 519

INTERVAL MONTH CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
SMALLINT
INTEGER|INT
BIGINT
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH

INTERVAL DAY CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
SMALLINT
INTEGER|INT
BIGINT
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL DAY TO HOUR CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL DAY TO MINUTE CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE

Conversion Functions

Page 520

BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL DAY TO SECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL DAY TO MSECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Conversion Functions

Page 521

INTERVAL HOUR CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
SMALLINT
INTEGER|INT
BIGINT
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL HOUR TO MINUTE CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL HOUR TO SECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE

Conversion Functions

Page 522

INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL HOUR TO MSECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL MINUTE CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
SMALLINT
INTEGER|INT
BIGINT
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL MINUTE TO SECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND

Conversion Functions

Page 523

INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL MINUTE TO MSECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL SECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
SMALLINT
INTEGER|INT
BIGINT
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL SECOND TO MSECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR

Conversion Functions

Page 524

BYTE
BYTE VARYING|VARBYTE
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

INTERVAL MSECOND CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
BYTE
BYTE VARYING|VARBYTE
SMALLINT
INTEGER|INT
BIGINT
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

The CAST function can also be used to convert a string value from one collation to the other without
changing the actual base string type.

When casting a value to and from a string type such as CHAR or VARCHAR, you can use the formatting
extensions to specify how the resultant string or value will look once the conversion takes place. The
following tables shows which source types can use which formatting extensions:

Data Type Formatting Extension

Conversion Functions

Page 525

BOOLEAN BOOLEAN TRUE LITERAL FALSE LITERAL

SMALLINT BOOLEAN TRUE LITERAL FALSE LITERAL (0 is False, > 0 is
True)

INTEGER BOOLEAN TRUE LITERAL FALSE LITERAL (0 is False, > 0 is
True)

BIGINT BOOLEAN TRUE LITERAL FALSE LITERAL (0 is False, > 0 is
True)

FLOAT DECIMAL CHAR and BOOLEAN TRUE LITERAL FALSE LITERAL
(0 is False, > 0 is True)

DECIMAL|NUMERIC DECIMAL CHAR and BOOLEAN TRUE LITERAL FALSE LITERAL
(0 is False, > 0 is True)

DATE DATE FORMAT

TIME TIME FORMAT

TIMESTAMP DATE FORMAT and TIME FORMAT

Examples

SELECT 'Date/Time: '+CAST(TransDateTime AS VARCHAR(25)) +
'User: '+TransUser AS TransInfo
FROM Transactions

SELECT CAST(LastInvoiceDate AS VARCHAR(24)
DATE FORMAT 'm/dd/yyyy' TIME FORMAT 'h:mm:ss n')
FROM customer

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

DATE FORMAT The DATE FORMAT clause is an ElevateDB extension.

TIME FORMAT The TIME FORMAT clause is an ElevateDB extension.

DECIMAL CHAR The DECIMAL CHAR clause is an ElevateDB extension.

BOOLEAN The BOOLEAN clause is an ElevateDB extension.

Conversion Functions

Page 526

14.3 COALESCE

Returns the first non-NULL value from a list of expressions.

Syntax

COALESCE(<Expression>, [<Expression>])

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

Same as input

Usage

Conversion Functions

Page 527

The COALESCE function returns the first non-NULL value from a list of expressions. There is no limit to the
number of expressions that can be passed as parameters, and the expressions can be of any type.

This function is useful for converting NULL numeric column values into zeros for display purposes.

Examples

SELECT TransDateTime,
COALESCE(Amount, 0.00) AS Amount
FROM Transactions

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Conversion Functions

Page 528

14.4 IF

Performs IF..ELSE type of inline expression handling.

Syntax

IF(<BooleanExpression> THEN <Expression> ELSE <Expression>)
IF(<BooleanExpression>, <Expression>, <Expression>)

<BooleanExpression> =

Type of:

BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Conversion Functions

Page 529

Returns

Same as input

Usage

The IF function performs inline IF..ELSE boolean expression handling. Both result expressions must be
type-compatible. Use the CAST function to ensure that both expressions are type-compatible.

Examples

SELECT CAST(TransDateTime AS VARCHAR(25)) + ':' +
IF(Amount < 0 THEN
 '(' + CAST(Amount AS VARCHAR(20)) + ')'
ELSE
 CAST(Amount AS VARCHAR(20)))
AS Entry
FROM Transactions

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Conversion Functions

Page 530

14.5 IFNULL

Performs IF..ELSE type of inline expression handling specifically for NULL values.

Syntax

IFNULL(<Expression> THEN <Expression> ELSE <Expression>)
IFNULL(<Expression>, <Expression>, <Expression>)

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

Same as input

Conversion Functions

Page 531

Usage

The IF function performs inline IF..ELSE boolean expression handling specifically for NULL values. Both
result expressions must be type-compatible. Use the CAST function to ensure that both expressions are
type-compatible.

Examples

SELECT TransDateTime,
IFNULL(Amount THEN
 0.00
ELSE
 Amount)
AS Amount
FROM Transactions

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Conversion Functions

Page 532

14.6 NULLIF

Returns a NULL if two expressions are equivalent.

Syntax

NULLIF(<Expression>, <Expression>)

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

NULL if both expressions are equal, otherwise same as input

Usage

Conversion Functions

Page 533

The NULLIF function returns a NULL if two expressions are equal. Both expressions must be type-
compatible. Use the CAST function to ensure that both expressions are type-compatible.

Examples

SELECT TransDateTime,
NULLIF(Amount, -1) AS Amount
FROM Transactions

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Conversion Functions

Page 534

14.7 CASE

Evaluates a series of boolean expressions and returns the matching result value for the first boolean
expression that evaluates to True.

Syntax

CASE
WHEN <BooleanExpression> THEN <Expression>
[WHEN <BooleanExpression> THEN <Expression>]
[ELSE] <Expression>
END

Short-hand syntax:

CASE <Expression>
WHEN <Expression> THEN <Expression>
[WHEN <Expression> THEN <Expression>]
[ELSE] <Expression>
END

<BooleanExpression> =

Type of:

BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE

Conversion Functions

Page 535

INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

Same as input

Usage

The CASE expression is not actually a function, but it behaves like one so it is included with the functions.
The CASE expression can be used in with two different syntaxes, one being the normal syntax while the
other being a short-hand syntax. The normal syntax evaluates a series of boolean expressions and returns
the matching result expression associated with the first boolean expression that evaluates to True. The
primary difference between the short-hand syntax and the normal syntax is the inclusion of the expression
directly after the CASE keyword itself. It is used as the comparison value for every WHEN expression. All
WHEN expressions must be type-compatible with this expression, unlike the normal syntax which requires
boolean expressions. The rest of the short-hand syntax is the same as the normal syntax.

Examples

SELECT CAST(TransDateTime AS VARCHAR(25)) + ':' +
CASE
 WHEN Amount < 0 THEN
 '(' + CAST(Amount AS VARCHAR(20)) + ')'
 ELSE
 CAST(Amount AS VARCHAR(20))
END
AS Entry
FROM Transactions

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Conversion Functions

Page 536

Chapter 15
Aggregate Functions

15.1 Introduction

Aggregate functions are used to perform specific calculations across all selected rows or sets of selected
rows in an ElevateDB SELECT statement. This section of the manual details the available aggregate
functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

Aggregate Functions

Page 537

15.2 AVG

Returns the average of a given numeric, date and time, or interval expression for all selected rows.

Syntax

AVG([DISTINCT] <NumericExpression>|<DateTimeExpression>|
<IntervalExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

<IntervalExpression> =

Type of:

INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

Same as input

Usage

The AVG function returns the average of a given numeric, date and time, or interval expression for all
selected rows. The selected rows can be grouped into logical sub-sets by using the GROUP BY clause of
the SELECT statement. Any time the averaged expression is NULL, it is excluded from the average

Aggregate Functions

Page 538

calculation.

Use the DISTINCT clause to specify that the average calculation will only use distinct values when
calculating the result.

Examples

SELECT AVG(Amount) AS AvgAmount
FROM Transactions

SELECT CAST(TransDateTime AS DATE) AS TransDate,
AVG(Amount) AS AvgAmount
FROM Transactions
GROUP BY TransDate

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Aggregate Functions

Page 539

15.3 COUNT

Returns the count of a given expression for all selected rows, or the count of all selected rows.

Syntax

COUNT(*|[DISTINCT] <Expression>)

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

INTEGER

Usage

Aggregate Functions

Page 540

The COUNT function returns the count of a given expression for all selected rows, or the count of all
selected rows. The selected rows can be grouped into logical sub-sets by using the GROUP BY clause of
the SELECT statement. Any time the counted expression is NULL, it is excluded from the count calculation.
Use of the asterisk (*) instead of an expression indicates that you want the function to count all selected
rows, irrespective of any given expression.

Use the DISTINCT clause to specify that the count calculation will only use distinct values when calculating
the result.

Examples

SELECT CAST(TransDateTime AS DATE) AS TransDate,
COUNT(*) AS NumTransactions
FROM Transactions
GROUP BY TransDate

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Aggregate Functions

Page 541

15.4 MAX

Returns the maximum value of a given expression for all selected rows.

Syntax

MAX(<Expression>)

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

Same as input

Usage

Aggregate Functions

Page 542

The MAX function returns the maximum value of a given expression for all selected rows. The selected
rows can be grouped into logical sub-sets by using the GROUP BY clause of the SELECT statement. Any
time the expression is NULL, it is excluded from the maximum calculation.

Examples

SELECT MAX(CAST(TransDateTime AS DATE)) AS TransDate
FROM Transactions
WHERE Amount > 1000.00

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Aggregate Functions

Page 543

15.5 MIN

Returns the minimum value of a given expression for all selected rows.

Syntax

MIN(<Expression>)

<Expression> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
BYTE
BYTE VARYING|VARBYTE
BINARY LARGE OBJECT|BLOB
CHARACTER LARGE OBJECT|CLOB
BOOLEAN|BOOL
SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC
DATE
TIME
TIMESTAMP
INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

Same as input

Usage

Aggregate Functions

Page 544

The MIN function returns the minimum value of a given expression for all selected rows. The selected rows
can be grouped into logical sub-sets by using the GROUP BY clause of the SELECT statement. Any time the
expression is NULL, it is excluded from the minimum calculation.

Examples

SELECT MIN(CAST(TransDateTime AS DATE)) AS TransDate
FROM Transactions
WHERE Amount > 1000.00

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Aggregate Functions

Page 545

15.6 RUNSUM

Returns the running sum of a given numeric or interval expression for all selected rows.

Syntax

RUNSUM([DISTINCT] <NumericExpression>|<IntervalExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

<IntervalExpression> =

Type of:

INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

Same as input, except for the following types:

A SMALLINT expression is promoted to an INTEGER
An INTEGER expression is promoted to a BIGINT

This is done to prevent numeric overflows

Usage

Aggregate Functions

Page 546

The RUNSUM function returns the running sum of a given numeric or interval expression for all selected
rows. The selected rows can be grouped into logical sub-sets by using the GROUP BY clause of the SELECT
statement. Any time the numeric or interval expression is NULL, it is excluded from the running sum
calculation.

Use the DISTINCT clause to specify that the running sum calculation will only use distinct values when
calculating the result.

Examples

SELECT Month,
RUNSUM(Amount) AS RunningTotal
FROM TransactionHistory
GROUP BY Month

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Aggregate Functions

Page 547

15.7 STDDEV

Returns the standard deviation of a given numeric expression for all selected rows.

Syntax

STDDEV([DISTINCT] <NumericExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

Returns

FLOAT

Usage

The STDDEV function returns the standard deviation of a given numeric expression for all selected rows.
The standard deviation is the distance from the mean for a set of values. If all of the values are equal,
then the standard deviation is zero. The selected rows can be grouped into logical sub-sets by using the
GROUP BY clause of the SELECT statement. Any time the numeric expression is NULL, it is excluded from
the standard deviation calculation.

Use the DISTINCT clause to specify that the standard deviation calculation will only use distinct values
when calculating the result.

Examples

SELECT STDDEV(TestScore) AS Deviation
FROM Scores

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Aggregate Functions

Page 548

15.8 SUM

Returns the sum of a given numeric or interval expression for all selected rows.

Syntax

SUM([DISTINCT] <NumericExpression>|<IntervalExpression>)

<NumericExpression> =

Type of:

SMALLINT
INTEGER|INT
BIGINT
FLOAT
DECIMAL|NUMERIC

<IntervalExpression> =

Type of:

INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY TO MSECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL HOUR TO MSECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL MINUTE TO MSECOND
INTERVAL SECOND
INTERVAL SECOND TO MSECOND
INTERVAL MSECOND

Returns

Same as input, except for the following types:

A SMALLINT expression is promoted to an INTEGER
An INTEGER expression is promoted to a BIGINT

This is done to prevent numeric overflows

Usage

Aggregate Functions

Page 549

The SUM function returns the sum of a given numeric or interval expression for all selected rows. The
selected rows can be grouped into logical sub-sets by using the GROUP BY clause of the SELECT
statement. Any time the numeric or interval expression is NULL, it is excluded from the sum calculation.

Use the DISTINCT clause to specify that the sum calculation will only use distinct values when calculating
the result.

Examples

SELECT SUM(Amount) AS TotalAmount
FROM Transactions

SELECT CAST(TransDateTime AS DATE) AS TransDate,
SUM(Amount) AS TotalAmount
FROM Transactions
GROUP BY TransDate

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Aggregate Functions

Page 550

15.9 LIST

Returns the concatenation of a given string expression for all selected rows.

Syntax

LIST([DISTINCT] [ORDERED] <StringExpression> [USING <Delimiter>])
LIST([DISTINCT] [ORDERED] <StringExpression> [, <Delimiter>])

<StringExpression> =

Type of:

CHAR
VARCHAR
CLOB

<Delimiter> =

Type of:

CHAR
VARCHAR
CLOB

Returns

CLOB

Usage

The LIST function returns the concatenation of a given string expression for all selected rows. The selected
rows can be grouped into logical sub-sets by using the GROUP BY clause of the SELECT statement. Any
time the string expression is NULL, it is excluded from the concatenation operation. If the delimiter
expression is not specified, then it defaults to using a comma (,).

Use the DISTINCT clause to specify that the list concatenation will only use distinct values when creating
the result.

The ORDERED clause indicates that you wish to have the listed values in the result sorted in ascending
order.

Examples

SELECT LIST(Company) AS CompanyNames
FROM Customer

Aggregate Functions

Page 551

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

Aggregate Functions

Page 552

Chapter 16
Boolean Functions

16.1 Introduction

Boolean functions are used to test for a certain condition and return a TRUE or FALSE value. This section
of the manual details the available boolean functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

Boolean Functions

Page 553

16.2 EXISTS

Returns whether or not any rows exist in a given subquery.

Syntax

EXISTS(<QueryExpression>)

<QueryExpression> = SELECT statement

Returns

BOOLEAN

Usage

The EXISTS function returns the TRUE if a given sub-query returns any rows, or FALSE if the sub-query
does not return any rows. EXISTS is useful in situations where you simply want to know if any rows are
present for a given set of conditions, which would be expressed via the WHERE clause of the sub-query.

Examples

SELECT *
FROM Customers
WHERE EXISTS(SELECT * FROM Orders
 WHERE Orders.CustomerNo=Customers.CustomerNo)

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

None

Boolean Functions

Page 554

Chapter 17
SQL/PSM Functions

17.1 Introduction

SQL/PSM functions are used strictly within an SQL/PSM routine such as an ElevateDB function, procedure,
trigger, or job. This section of the manual details the available SQL/PSM functions in ElevateDB.

Notation

The notation used in the syntax section for each function is as follows:

Notation Description

<Element> Specifies an element of the statement that may be expanded
upon further on in the syntax section

<Element> = Describes an element specified earlier in the syntax section

[Optional Element] Describes an optional element by enclosing it in square
brackets []

Element|Element Describes multiple elements, of which one and only one may
be used in the syntax

SQL/PSM Functions

Page 555

17.2 ABORTED

Returns whether or not a the current execution has been aborted as a response to a progress update.

Syntax

ABORTED()

Returns

BOOLEAN

Usage

The ABORTED function returns whether or not the current execution has been aborted as the result of a
progress update executed via the SET PROGRESS statement.

Examples

-- This procedure uses a SET PROGRESS
-- statement to display progress during its
-- execution and uses the ABORTED function
-- to abort the execution if the application
-- requests it

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';
 DECLARE TotalRows INTEGER DEFAULT 0;
 DECLARE NumRows INTEGER DEFAULT 0;

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;
 SET TotalRows=ROWCOUNT(CustCursor);

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE (NOT (EOF(CustCursor) OR ABORTED)) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 SET NumRows=NumRows+1;
 SET PROGRESS TO TRUNC(((NumRows/TotalRows)*100));
 END WHILE;

SQL/PSM Functions

Page 556

 IF (NOT ABORTED) THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 557

17.3 BOF

Returns whether or not a result set cursor is at the beginning of the result set.

Syntax

BOF(<CursorName>)

<CursorName> =

Previously-opened result set cursor

Returns

BOOLEAN

Usage

The BOF function returns whether or not a result set cursor is at the beginning of the result set. The BOF
function only returns True once an attempt is made to navigate prior to the first row via the FETCH
statement, or if the result set is empty and contains no rows.

When a result set cursor is first opened via the OPEN statement, the cursor is always positioned so that
the BOF function will return True. If a result set is empty, then both the BOF and the EOF functions will
return True.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

-- The whole update process is wrapped inside
-- of a transaction start..commit/rollback block

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH LAST FROM CustCursor ('State') INTO State;

SQL/PSM Functions

Page 558

 WHILE NOT BOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH PRIOR FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 559

17.4 EOF

Returns whether or not a result set cursor is at the end of the result set.

Syntax

EOF(<CursorName>)

<CursorName> =

Previously-opened result set cursor

Returns

BOOLEAN

Usage

The EOF function returns whether or not a result set cursor is at the end of the result set. The EOF
function only returns True once an attempt is made to navigate past the last row via the FETCH statement,
or if the result set is empty and contains no rows.

When a result set cursor is first opened via the OPEN statement, the cursor is always positioned so that
the EOF function will return False unless the result set is empty, in which case both the EOF and the BOF
functions will return True.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

-- The whole update process is wrapped inside
-- of a transaction start..commit/rollback block

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer';

 OPEN CustCursor;

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

SQL/PSM Functions

Page 560

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 561

17.5 ERRORCODE

Returns the current error code.

Syntax

ERRORCODE()

Returns

INTEGER

Usage

The ERRORCODE function returns the current error code. This function can only be called from within an
EXCEPTION block or from within an error trigger. See the CREATE TRIGGER topic for more information on
error triggers.

Examples

-- This procedure uses an exception
-- block to handle any exceptions while
-- executing a CREATE TABLE statement

CREATE PROCEDURE CreateTestTable()
BEGIN
 DECLARE stmt STATEMENT;

 PREPARE stmt FROM 'CREATE TEMPORARY TABLE "TestTable"
 (
 "FirstColumn" INTEGER,
 "SecondColumn" VARCHAR(30),
 "ThirdColumn" CLOB,
 PRIMARY KEY ("FirstColumn")
)

 DESCRIPTION ''Test Table''';

 EXECUTE stmt;
EXCEPTION
 IF ERRORCODE()=700 THEN
 RAISE ERROR CODE 10000 MESSAGE 'Syntax error';
 ELSE
 RAISE ERROR CODE 10000 MESSAGE 'Unexpected error - ' +
 ERRORMSG();
 END IF;
END

SQL/PSM Functions

Page 562

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 563

17.6 ERRORMSG

Returns the current error message.

Syntax

ERRORMSG()

Returns

VARCHAR

Usage

The ERRORMSG function returns the current error message. This function can only be called from within
an EXCEPTION block or from within an error trigger. See the CREATE TRIGGER topic for more information
on error triggers.

Examples

-- This procedure uses an exception
-- block to handle any exceptions while
-- executing a CREATE TABLE statement

CREATE PROCEDURE CreateTestTable()
BEGIN
 DECLARE stmt STATEMENT;

 PREPARE stmt FROM 'CREATE TEMPORARY TABLE "TestTable"
 (
 "FirstColumn" INTEGER,
 "SecondColumn" VARCHAR(30),
 "ThirdColumn" CLOB,
 PRIMARY KEY ("FirstColumn")
)

 DESCRIPTION ''Test Table''';

 EXECUTE stmt;
EXCEPTION
 IF ERRORCODE()=700 THEN
 RAISE ERROR CODE 10000 MESSAGE 'Syntax error';
 ELSE
 RAISE ERROR CODE 10000 MESSAGE 'Unexpected error - ' +
 ERRORMSG();
 END IF;
END

SQL/PSM Functions

Page 564

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 565

17.7 ROWCOUNT

Returns the row count for a result set cursor.

Syntax

ROWCOUNT(<CursorName>)

<CursorName> =

Previously-opened result set cursor

Returns

INTEGER

Usage

The ROWCOUNT function returns the row count for a result set cursor. If the result set cursor has not
been opened yet by using the OPEN statement, then calling this function will result in an error.

Examples

-- This procedure checks to see if the
-- specified State exists in the States lookup
-- table and inserts it if it isn't

CREATE PROCEDURE LookupState(IN State CHAR(2) COLLATE ANSI_CI)
BEGIN
 DECLARE StateCursor SENSITIVE CURSOR FOR Stmt;

 PREPARE Stmt FROM 'SELECT * FROM States WHERE State = ?';

 OPEN StateCursor USING State;

 IF (ROWCOUNT(StateCursor) = 0) THEN
 INSERT INTO StateCursor VALUES (State);
 END IF;

 CLOSE StateCursor;

END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

SQL/PSM Functions

Page 566

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 567

17.8 ROWSAFFECTED

Returns the number of rows affected by the execution of a statement.

Syntax

ROWSAFFECTED(<StatementName>)

<StatementName> =

Previously-executed statement

Returns

INTEGER

Usage

The ROWSAFFECTED function returns the number of rows affected by a given statement.

Examples

-- This procedure updates all Customers
-- who have purchased a product last year and
-- flags them to receive a mailer

CREATE PROCEDURE UpdateMailer(OUT NumCustomers INTEGER)
BEGIN
 DECLARE UpdateStmt STATEMENT;

 EXECUTE IMMEDIATE 'UPDATE Customers SET Mailer = False';

 PREPARE UpdateStmt FROM 'UPDATE Customers SET Mailer = True ' +
 'WHERE EXTRACT(YEAR FROM LastPurchased) = ' +
 'EXTRACT(YEAR FROM CURRENT_DATE()) - 1';

 EXECUTE UpdateStmt;

 SET NumCustomers = ROWSAFFECTED(UpdateStmt);

 UNPREPARE UpdateStmt;

END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

SQL/PSM Functions

Page 568

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 569

17.9 SENSITIVE

Returns whether or not a result set cursor is sensitive to changes by other sessions.

Syntax

SENSITIVE(<CursorName>)

<CursorName> =

Previously-opened result set cursor

Returns

BOOLEAN

Usage

The SENSITIVE function returns whether or not a result set cursor is sensitive to changes by other
sessions. If the result set cursor has not been opened yet by using the OPEN statement, then calling this
function will result in an error. Please see the Result Set Cursor Sensitivity topic for more information.

Examples

-- This procedure uses an IF statement
-- to conditionally test if the State column
-- is equal to 'FL', and if so, to change it
-- to 'NY'

-- The whole update process is wrapped inside
-- of a transaction start..commit/rollback block

-- An error is raised if the result cursor generated
-- is not sensitive to changes by other sessions

CREATE PROCEDURE UpdateState()
BEGIN
 DECLARE CustCursor CURSOR WITH RETURN FOR Stmt;
 DECLARE State CHAR(2) DEFAULT '';

 PREPARE Stmt FROM 'SELECT * FROM Customer ORDER BY CustomerID';

 OPEN CustCursor;

 IF (NOT SENSITIVE(CustCursor)) THEN
 CLOSE CustCursor;
 RAISE ERROR CODE 12000 MESSAGE 'Result set cursor is insensitive';
 END IF;

SQL/PSM Functions

Page 570

 START TRANSACTION ON TABLES 'Customer';
 BEGIN

 FETCH FIRST FROM CustCursor ('State') INTO State;

 WHILE NOT EOF(CustCursor) DO
 IF (State='FL') THEN
 UPDATE CustCursor SET 'State'='NY';
 END IF;
 FETCH NEXT FROM CustCursor ('State') INTO State;
 END WHILE;

 COMMIT;

 EXCEPTION
 ROLLBACK;
 END;
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 571

17.10 LOADINGUPDATES

Returns whether or not a trigger is being executed during the execution of a LOAD UPDATES statement.

Syntax

LOADINGUPDATES()

Returns

BOOLEAN

Usage

The LOADINGUPDATES function returns whether or not the current trigger is being executed during the
execution of a LOAD UPDATES statement. This is useful for situations where you only want to log errors
for insert, update, and delete operations that occur during a LOAD UPDATES statement, and have defined
error triggers to handle this. Please see the CREATE TRIGGER statement for more information on creating
error triggers.

Examples

-- This trigger logs any insert errors that
-- occur during a LOAD UPDATES for
-- the Customer table into a table called
-- LoadErrors

CREATE TRIGGER "LogInsertError" ERROR INSERT ON "customer"
WHEN LOADINGUPDATES()
BEGIN
 DECLARE ErrorData VARCHAR DEFAULT '';

 SET ErrorData = 'Cust #: ' + CAST(NEWROW.CustNo AS VARCHAR);
 SET ErrorData = ErrorData + 'Name: ' + NEWROW.Company;
 SET ErrorData = ErrorData + 'Error #: ' + CAST(ERRORCODE() AS VARCHAR);
 SET ErrorData = ErrorData + 'Error Msg: ' + ERRORMSG();

 EXECUTE IMMEDIATE 'INSERT INTO LoadErrors
 (''Customer'',''INSERT'',''' + ErrorData + '''';
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

SQL/PSM Functions

Page 572

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 573

17.11 INTRANSACTION

Returns whether or not the current database, or a specific table in the current database, is currently in a
transaction started by the START TRANSACTION statement.

Syntax

INTRANSACTION([<TableName>])

<TableName> =

Type of:

CHARACTER|CHAR
CHARACTER VARYING|VARCHAR
GUID
CHARACTER LARGE OBJECT|CLOB

Returns

BOOLEAN

Usage

The INTRANSACTION function returns the transaction status of the current database, or a table in the
current database. This is useful in situations such as triggers where you may be updating tables that are
already part of a transaction. Please see the CREATE TRIGGER statement for more information on creating
triggers.

Examples

-- This trigger checks to see if the
-- current table is involved in a transaction
-- and starts a transaction, if necessary.

CREATE TRIGGER "CascadeChanges" AFTER UPDATE ON "customer"
BEGIN
 DECLARE LocalTrans BOOLEAN DEFAULT FALSE;

 IF (NEWROW.CustNo <> OLDROW.CustNo) THEN
 IF NOT INTRANSACTION('customer') THEN
 START TRANSACTION ON TABLES 'customer';
 SET LocalTrans=TRUE;
 END IF;
 BEGIN
 EXECUTE IMMEDIATE 'UPDATE Orders SET CustNo=?
 WHERE CustNo=?' USING NEWROW.CustNo,OLDROW.CustNo;
 IF LocalTrans THEN
 COMMIT;

SQL/PSM Functions

Page 574

 END IF;
 EXCEPTION
 IF LocalTrans THEN
 ROLLBACK;
 END IF;
 RAISE;
 END;
 END IF;
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 575

17.12 OPERATION

Returns the current operation (Insert, Update, or Delete) when called from within a trigger.

Syntax

OPERATION()

Returns

VARCHAR

Return values are case-sensitive and can be one of the following:

Insert
Update
Delete

Usage

The OPERATION function returns the operation that is currently being executed when a trigger is fired.
This is useful for universal (ALL) triggers that are defined so that they are fired during any insert, update,
or delete operation. Please see the CREATE TRIGGER statement for more information on creating triggers.

Examples

-- This trigger checks to see if the
-- State column is filled in, and if not fills
-- in the column with a default value.

CREATE TRIGGER "SetDefaultValues" BEFORE ALL ON "customer"
WHEN OPERATION() IN ('Insert','Update')
BEGIN
 IF NEWROW.State IS NULL OR TRIM(BOTH ' ' FROM NEWROW.State)='' THEN
 SET NEWROW.State='NY';
 END IF;
END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 576

17.13 COLUMNCOUNT

Returns the column count for a result set cursor.

Syntax

COLUMNCOUNT(<CursorName>)

<CursorName> =

Previously-opened result set cursor

Returns

INTEGER

Usage

The COLUMNCOUNT function returns the column count for a result set cursor. If the result set cursor has
not been opened yet by using the OPEN statement, then calling this function will result in an error.

Combined with the COLUMNNAME function, this function is useful for dynamically iterating over the result
set columns, optionally fetching, inserting, or updating them.

Examples

-- This procedure returns a semicolon-delimited
-- string containing the column names for a given table

CREATE FUNCTION ColumnNames(IN TableName VARCHAR COLLATE ANSI_CI)
RETURNS VARCHAR COLLATE ANSI_CI
BEGIN
 DECLARE ResultCursor SENSITIVE CURSOR FOR Stmt;
 DECLARE I INTEGER;
 DECLARE ResultColumnCount INTEGER;
 DECLARE Result VARCHAR DEFAULT '';

 PREPARE Stmt FROM 'TABLE '+QUOTEDSTR(TableName,'"');

 OPEN ResultCursor;

 SET I=1;
 SET ResultColumnCount=COLUMNCOUNT(ResultCursor);

 WHILE I <= ResultColumnCount DO
 IF Result <> '' THEN
 SET Result=Result+';';
 END IF;
 SET Result=Result+COLUMNNAME(ResultCursor,I);

SQL/PSM Functions

Page 577

 SET I=I+1;
 END WHILE;

 CLOSE ResultCursor;

 RETURN Result;

END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 578

17.14 COLUMNNAME

Returns the column name of the column at a given position in a result set cursor.

Syntax

COLUMNNAME(<CursorName>,<Position>)

<CursorName> =

Previously-opened result set cursor

<Position> = 1-based column position

Returns

VARCHAR

Usage

The COLUMNNAME function returns the column name for the column at a given position in a result set
cursor. If the result set cursor has not been opened yet by using the OPEN statement, then calling this
function will result in an error.

Combined with the COLUMNCOUNT function, this function is useful for dynamically iterating over the result
set columns, optionally fetching, inserting, or updating them.

Examples

-- This procedure returns a semicolon-delimited
-- string containing the column names for a given table

CREATE FUNCTION ColumnNames(IN TableName VARCHAR COLLATE ANSI_CI)
RETURNS VARCHAR COLLATE ANSI_CI
BEGIN
 DECLARE ResultCursor SENSITIVE CURSOR FOR Stmt;
 DECLARE I INTEGER;
 DECLARE ResultColumnCount INTEGER;
 DECLARE Result VARCHAR DEFAULT '';

 PREPARE Stmt FROM 'TABLE '+QUOTEDSTR(TableName,'"');

 OPEN ResultCursor;

 SET I=1;
 SET ResultColumnCount=COLUMNCOUNT(ResultCursor);

 WHILE I <= ResultColumnCount DO
 IF Result <> '' THEN

SQL/PSM Functions

Page 579

 SET Result=Result+';';
 END IF;
 SET Result=Result+COLUMNNAME(ResultCursor,I);
 SET I=I+1;
 END WHILE;

 CLOSE ResultCursor;

 RETURN Result;

END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 580

17.15 STMTRESULT

Returns the result of the last statement execution (if available).

Syntax

STMTRESULT(<StatementName>)

<StatementName> =

Previously-executed statement

Returns

BOOLEAN

Usage

The STMTRESULT function returns the result of the execution of a given statement. Currently, only the
VERIFY TABLE and REPAIR TABLE statements report a result, and each reports False if no errors were
found during the verification or repair process.

Examples

-- This function returns whether any errors
-- were found when repairing the passed table name

CREATE FUNCTION RepairTable(IN TableName VARCHAR COLLATE ANSI_CI,
 IN StructureOnly BOOLEAN)
RETURNS BOOLEAN
BEGIN
 DECLARE Stmt STATEMENT;

 PREPARE Stmt FROM 'REPAIR TABLE '+QUOTEDSTR(TableName,'"')+
 IF(StructureOnly,' STRUCTURE ONLY','');

 EXECUTE Stmt;

 RETURN STMTRESULT(Stmt);

END

SQL 2003 Standard Deviations

This function deviates from the SQL 2003 standard in the following ways:

SQL/PSM Functions

Page 581

Deviation Details

Extension This function is an ElevateDB extension.

SQL/PSM Functions

Page 582

Appendix A - Error Codes and Messages

The following is a table of the error codes and messages for ElevateDB. You can find out more information
on how to handle ElevateDB exceptions in your product-specific manual.

Error Code Message and Further Details

EDB_ERROR_VALIDATE (100) There is an error in the metadata for the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever an attempt is made to create a new catalog or
configuration object, and there is an error in the
specification of the object. The specific error message is
indicated within the parentheses.

EDB_ERROR_UPDATE (101) There was an error updating the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever ElevateDB encounters an issue while trying to
update the disk file used to store a catalog or
configuration. The specific error message is indicated
within the parentheses.

EDB_ERROR_SYSTEM (200) This operation cannot be performed on the system
<ObjectType> <ObjectName> or any privileges granted
to itThis error is raised whenever an attempt is made to
alter or drop any system-defined catalog or configuration
objects. Please see the System Information topic for
more information on the system-defined objects in
ElevateDB.

EDB_ERROR_DEPENDENCY (201) The <ObjectType> <ObjectName> cannot be dropped
or moved because it is still referenced by the
<ObjectType> <ObjectName>This error is raised
whenever an attempt is made to drop any catalog or
configuration object, and that catalog or configuration
object is still being referenced by another catalog or
configuration object. You must first remove the
reference to the object that you wish to drop before you
can drop the referenced object.

EDB_ERROR_MODULE (202) An error occurred with the module <ModuleName>
(<ErrorMessage>)This error is raised whenever
ElevateDB encounters an issue with loading an external
module. Please see the External Modules topic for more
information.

EDB_ERROR_LOCK (300) Cannot lock <ObjectType> <ObjectName> for
<AccessType> accessThis error is raised whenever
ElevateDB cannot obtain the desired lock access to a
given catalog or configuration object. This is usually due
to another session already having an incompatible lock
on the object already. Please see the Locking and
Concurrency topic for more information.

EDB_ERROR_UNLOCK (301) Cannot unlock <ObjectType> <ObjectName> for
<AccessType> accessThis error is raised whenever
ElevateDB cannot unlock a given catalog or configuration
object. If this error occurs during normal operation of

Appendix A - Error Codes and Messages

Page 583

ElevateDB, please contact Elevate Software for further
instructions on how to correct the issue

EDB_ERROR_EXISTS (400) The <ObjectType> <ObjectName> already existsThis
error is raised whenever an attempt is made to create a
new catalog or configuration object, and a catalog or
configuration object already exists with that name.

EDB_ERROR_NOTFOUND (401) The <ObjectType> <ObjectName> does not existThis
error is raised when an attempt is made to
open/execute, alter, or drop a catalog or configuration
object that does not exist.

EDB_ERROR_NOTOPEN (402) The database <DatabaseName> must be open in order
to perform this operation (<OperationName>)This error
is raised when an attempt is made to perform an
operation on a given database before it has been
opened.

EDB_ERROR_READONLY (403) The <ObjectType> <ObjectName> is read-only and this
operation cannot be performed (<OperationName>)This
error is raised whenever a create, alter, or drop
operation is attempted on an object that is read-only.

EDB_ERROR_TRANS (404) This operation cannot be performed while the database
<DatabaseName> has an active transaction
(<OperationName>)This error is raised whenever
ElevateDB encounters an invalid transaction operation.
Some SQL statements cannot be executed within a
transaction. For a list of transaction-compatible
statements, please see the Transactions topic.

EDB_ERROR_MAXIMUM (405) The maximum number of <ObjectType>s has been
reached (<MaximumObjectsAllowed>)This error is raised
when an attempt is made to create a new catalog or
configuration object and doing so would exceed the
maximum allowable number of objects. Please see the
Appendix B - System Capacities topic for more
information.

EDB_ERROR_IDENTIFIER (406) Invalid <ObjectType> identifier '<ObjectName>'This
error is raised when an attempt is made to create a new
catalog or configuration object with an invalid name.
Please see the Identifiers topic for more information on
what constitutes a valid identifier.

EDB_ERROR_FULL (407) The table <TableName> is full (<FileName>)This error
occurs when a given table contains the maximum
number of rows or the maximum file size is reached for
one of the files that make up the table. The file name is
indicated within the parentheses.

EDB_ERROR_CONFIG (409) There is an error in the configuration
(<ErrorMessage>)This error is raised whenever there is
an error in the configuration. The specific error message
is indicated within the parentheses.

Appendix A - Error Codes and Messages

Page 584

EDB_ERROR_NOLOGIN (500) A user must be logged in in order to perform this
operation (<OperationName>)This error is raised
whenever an attempt is made to perform an operation
for a session that has not been logged in yet with a valid
user name and password.

EDB_ERROR_LOGIN (501) Login failed (<ErrorMessage>)This error is raised
whenever a user login fails. ElevateDB allows for a
maximum of 3 login attempts before raising a login
exception.

EDB_ERROR_ADMIN (502) Administrator privileges are required to perform this
operation (<Operation>)This error is raised when an
attempt is made to perform an operation that requires
administrator privileges. Administrator privileges are
granted to a given user by granting the system-defined
"Administrators" role to that user.

Please see the User Security topic for more information.

EDB_ERROR_PRIVILEGE (503) The current user does not have the proper privileges to
perform this operation (<OperationName>)This error is
raised when a user attempts an operation when he/she
does not have the proper privileges required to execute
the operation. Please see the User Security topic for
more information.

EDB_ERROR_MAXSESSIONS (504) Maximum number of concurrent sessions reached for the
configuration <ConfigurationName>This error is raised
when the maximum number of licensed sessions for a
given configuration is exceeded. The number of licensed
sessions for a given configuration depends upon the
ElevateDB product purchased along with the particular
compilation of the application made by the developer
using the ElevateDB product.

EDB_ERROR_SERVER (505) The ElevateDB Server cannot be started
(<ErrorMessage>) The ElevateDB Server cannot be
stopped (<ErrorMessage>)This error is raised when the
ElevateDB Server cannot be started or stopped for any
reason. Normally, the error message will contain a native
operating system error message that will reveal the
reason for the issue.

EDB_ERROR_FILEMANAGER (600) File manager error (<ErrorMessage>)This error is raised
whenever ElevateDB encounters a file manager error
while trying to create, open, close, delete, or rename a
file. The specific error message, including operating
system error code (if available), is indicated within the
parentheses.

EDB_ERROR_CORRUPT (601) The table <TableName> is corrupt
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while reading, writing, or validating
a table. If this error occurs during normal operation of
ElevateDB, please contact Elevate Software for further
instructions on how to correct the issue. The specific
error message is indicated within the parentheses.

Appendix A - Error Codes and Messages

Page 585

EDB_ERROR_COMPILE (700) An error was found in the <ObjectType> at line <Line>
and column <Column> (<ErrorMessage>)This error is
raised whenever an error is encountered while compiling
an SQL expression, statement, or routine. The specific
error message is indicated within the parentheses.

EDB_ERROR_BINDING (800) A row binding error occurredThis error is raised when
ElevateDB encounters an issue while trying to bind the
cursor row values in a cursor row. It is an internal error
and will not occur unless there is a bug in ElevateDB.

EDB_ERROR_STATEMENT (900) An error occurred with the statement <StatementName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while executing a statement. The specific
error message is indicated within the parentheses.

EDB_ERROR_PROCEDURE (901) An error occurred with the procedure <ProcedureName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while executing a procedure. The specific
error message is indicated within the parentheses.

EDB_ERROR_VIEW (902) An error occurred with the view <ViewName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while opening a view. The specific error
message is indicated within the parentheses.

EDB_ERROR_JOB (903) An error occurred with the job <JobName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while running a job. The specific error
message is indicated within the parentheses.

EDB_ERROR_IMPORT (904) Error importing the file <FileName> into the table
<TableName> (<ErrorMessage>)This error is raised
when an error occurs during the import process for a
given table. The specific error message is indicated
within the parentheses.

EDB_ERROR_EXPORT (905) Error exporting the table <TableName> to the file
<FileName> (<ErrorMessage>)This error is raised when
an error occurs during the export process for a given
table. The specific error message is indicated within the
parentheses.

EDB_ERROR_CURSOR (1000) An error occurred with the cursor <CursorName>
(<ErrorMessage>)This error is raised whenever an issue
is encountered while operating on a cursor. The specific
error message is indicated within the parentheses.

EDB_ERROR_FILTER (1001) A filter error occurred (<ErrorMessage>)This error is
raised whenever ElevateDB encounters an issue while
trying to set or clear a filter on a given cursor. The
specific error message is indicated within the
parentheses.

EDB_ERROR_LOCATE (1002) A locate error occurred (<ErrorMessage>)This error is
raised whenever ElevateDB encounters an issue while
trying to locate a row in a given cursor. The specific
error message is indicated within the parentheses.

Appendix A - Error Codes and Messages

Page 586

EDB_ERROR_STREAM (1003) An error occurred in the cursor stream
(<ErrorMessage>)This error is raised whenever an issue
is encountered while loading or saving a cursor to or
from a stream. The specific error message is indicated
within the parentheses.

EDB_ERROR_CONSTRAINT (1004) The constraint <ConstrainName> has been violated
(<ErrorMessage>)This error is raised when a constraint
that has been defined for a table is violated. This
includes primary key, unique key, foreign key, and check
constraints. The specific error message is indicated
within the parentheses.

EDB_ERROR_LOCKROW (1005) Cannot lock the row in the table <TableName>This error
is raised when a request is made to lock a given row and
the request fails because another session has the row
already locked. Please see the Locking and Concurrency
topic for more information.

EDB_ERROR_UNLOCKROW (1006) Cannot unlock the row in the table <TableName>This
error is raised whenever ElevateDB cannot unlock a
specific row because the row had not been previously
locked, or had been locked and the lock has since been
cleared. Please see the Locking and Concurrency topic
for more information.

EDB_ERROR_ROWDELETED (1007) The row has been deleted since last cached for the table
<TableName>This error is raised whenever an attempt
is made to update or delete a row, and the row no
longer exists because it has been deleted by another
session. Please see the Updating Rows topic for more
information.

EDB_ERROR_ROWMODIFIED (1008) The row has been modified since last cached for the
table <TableName>This error is raised whenever an
attempt is made to update or delete a row, and the row
has been updated by another session since the last time
it was cached by the current session. Please see the
Updating Rows topic for more information.

EDB_ERROR_CONSTRAINED (1009) The cursor is constrained and this row violates the
current cursor constraint condition(s)This error is raised
when an attempt is made to insert a new row into a
constrained cursor that violates the filter constraints
defined for the cursor. Both views defined in database
catalogs and the result sets of dynamic queries can be
defined as constrained, and the filter constraints in both
cases are the WHERE conditions defined for the
underlying SELECT query that the view or dynamic query
is based upon.

EDB_ERROR_ROWVISIBILITY (1010) The row is no longer visible in the table
<TableName>This error is raised whenever an attempt
is made to update or delete a row within the context of a
cursor with an active filter or range condition, and the
row has been updated by another session since the last
time it was cached by the current session, thus causing it
to fall out of the scope of the cursor's active filter or
range condition. Please see the Updating Rows topic for

Appendix A - Error Codes and Messages

Page 587

more information.

EDB_ERROR_VALUE (1011) An error occurred with the <ObjectType>
<ObjectName> (<ErrorMessage>)This error is raised
whenever an attempt is made to store a value in a
column, parameter, or variable and the value is invalid
because it is out of range or would be truncated. The
specific error message is indicated within the
parentheses.

EDB_ERROR_CLIENTCONN (1100) A connection to the server at <ServerAddress> cannot
be established (<ErrorMessage>)This error is raised
when ElevateDB encounters an issue while trying to
connect to a remote ElevateDB Server. The error
message will indicate the reason why the connection
cannot be completed.

EDB_ERROR_CLIENTLOST (1101) A connection to the server at <ServerAddress> has been
lost <ErrorMessage>)This error is raised when
ElevateDB encounters an issue while connected to a
remote ElevateDB Server. The error message will
indicate the reason why the connection was lost.

EDB_ERROR_INVREQUEST (1103) An invalid or unknown request was sent to the
serverThis error is raised when an ElevateDB Server
encounters an unknown request from a client session.

EDB_ERROR_ADDRBLOCK (1104) The IP address <IPAddress> is blockedThis error is
raised when a session tries to connect to an ElevateDB
Server, and the originating IP address for the session
matches one of the configured blocked IP addresses in
the ElevateDB Server, or does not match one of the
configured authorized IP addresses in the ElevateDB
Server.

EDB_ERROR_ENCRYPTREQ (1105) An encrypted connection is requiredThis error is raised
when a non-encrypted session tries to connect to an
ElevateDB Server that has been configured to only
accept encrypted session connections.

EDB_ERROR_SESSIONNOTFOUND (1107) The session ID <SessionID> is no longer present on the
serverThis error is raised whenever a remote session
attempts to reconnect to a session that has already been
designated as a dead session and removed by the
ElevateDB Server. This can occur when a session is
inactive for a long period of time, or when the ElevateDB
Server has been stopped and then restarted.

EDB_ERROR_SESSIONCURRENT (1108) The current session ID <SessionID> cannot be
disconnected or removedThis error is raised whenever a
remote session attempts to disconnect or remove itself.

EDB_ERROR_COMPRESS (1200) An error occurred while compressing data
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while attempting to compress data.
It is an internal error and will not occur unless there is a
bug in ElevateDB. The specific error message is indicated
within the parentheses.

EDB_ERROR_DECOMPRESS (1201) An error occurred while uncompressing data

Appendix A - Error Codes and Messages

Page 588

(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue while attempting to decompress
data. It is an internal error and will not occur unless
there is a bug in ElevateDB. The specific error message
is indicated within the parentheses.

EDB_ERROR_BACKUP (1300) Error backing up the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the backing up of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_RESTORE (1301) Error restoring the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the restore of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_PUBLISH (1302) Error publishing the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the publishing of a database. The specific
error message is indicated within the parentheses.

EDB_ERROR_UNPUBLISH (1303) Error unpublishing the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the unpublishing of a database. The
specific error message is indicated within the
parentheses.

EDB_ERROR_SAVEUPDATES (1304) Error saving updates for the database <DatabaseName>
(<ErrorMessage>)This error is raised when any error
occurs during the saving of the updates for a database.
The specific error message is indicated within the
parentheses.

EDB_ERROR_LOADUPDATES (1305) Error loading updates for the database
<DatabaseName> (<ErrorMessage>)This error is raised
when any error occurs during the loading of the updates
for a database. The specific error message is indicated
within the parentheses.

EDB_ERROR_STORE (1306) Error with the store <StoreName>
(<ErrorMessage>)This error is raised when any error
occurs while trying to access a store, such as a read or
write error while working with files in the store. The
specific error message is indicated within the
parentheses.

EDB_ERROR_CACHEUPDATES (1307) Error caching updates for the cursor <CursorName>
(<ErrorMessage>)This error is raised when any error
occurs during the caching of updates for a specific table,
view, or query cursor. The specific error message is
indicated within the parentheses.

EDB_ERROR_FORMAT (1400) Error in the format string <FormatString>
(<ErrorMessage>)This error is raised when ElevateDB
encounters an issue with a format string used in a date,
time, or timestamp format used in a table import or
export. The specific error message is indicated within the
parentheses.

Appendix A - Error Codes and Messages

Page 589

This page intentionally left blank

Appendix B - System Capacities

Page 590

Appendix B - System Capacities

The following is a list of the capacities for the different objects in ElevateDB. Any object that is not
specifically mentioned here has an implicit capacity of 2147483647, or High(Integer). For example, there is
no stated capacity for the maximum number of roles allowed in a configuration. Therefore, the implicit
capacity is 2147483647 roles.

Capacity Details

Max BLOB Column Size The maximum size of a BLOB column is 2GB.

Max CHAR/VARCHAR Column Length The maximum length of a VARCHAR/CHAR columns is
1024 characters.

Max Identifier Length The maximum length of an identifier is 80 characters.

Max Number of Columns in a Table The maximum number of columns in a table is 2048.

Max Number of Columns in an Index The maximum number of columns in an index is limited
by the table's defined index page size.

Max Number of Concurrent Sessions The maximum number of concurrent sessions for an
application or ElevateDB server is 4096.

Max Number of Indexes in a Table The maximum number of indexes in a table is 512.

Max Number of Jobs in a Configuration The maximum number of jobs in a configuration is 4096.

Max Number of Routines in a Database The maximum number of routines (procedures and
functions combined) in a database is 4096.

Max Number of Rows in a Table The maximum number of rows in a table is determined
by whether global file I/O buffering is enabled in
ElevateDB. If global file I/O buffering is enabled, then
the maximum number of rows is determined by the
maximum file size permitted in the operating system. If
global file I/O buffering is not enabled, then the
approximate maximum number of rows can be
determined by dividing 128GB by the row size.

Max Number of Rows in a Transaction The maximum number of rows in a single transaction is
only limited by the available memory constraints of the
operating system and/or hardware.

Max Number of Tables in a Database The maximum number of tables in a database is 4096.

Max Number of Users in a Configuration The maximum number of users in a configuration is
4096.

Max Row Size for a Table The maximum row size for a table is 2GB.

Max Scale for DECIMAL/NUMERIC Columns The maximum scale for DECIMAL or NUMERIC columns
is 4.

Max Size of an In-Memory Table The maximum size of an in-memory table is only limited
by the available memory constraints of the operating
system or hardware.

Min/Max BLOB Block Size for a Table The minimum BLOB block size is 64 bytes for ANSI
databases and 128 bytes for Unicode databases. The
maximum BLOB block size is 2GB.

Appendix B - System Capacities

Page 591

Min/Max Index Page Size for a Table The minimum index page size is 1 kilobyte for ANSI
databases and 2 kilobytes for Unicode databases. The
maximum index page size is 2GB.

Appendix B - System Capacities

Page 592

