Table of Contents

Elevate Web Builder 2 Manual

Table Of Contents
Chapter 1 - Getting Started 1
1.1 System Requirements 1
1.2 General Architecture 2
1.3 Application Structure 4
1.4 Compiling Applications 6
1.5 Component Library 8
1.6 Visual Applications 10
1.7 Control Interfaces 14
1.8 Icon Library 18
1.9 Accessing Help 21
1.10 Example Applications 26
Chapter 2 - Using the IDE 37
2.1 Introduction 37
2.2 Creating a New Project 39
2.3 Adding to an Existing Project 42
2.4 Modifying Project Options 45
2.5 Compiling a Project 55
2.6 Deploying a Project 57
2.7 Running a Project 58
2.8 Saving a Project 60
2.9 Viewing Project Forms and Databases 61
2.10 Viewing Project Units 62
2.11 Using the Object Inspector 63
2.12 Using the Form and Database Designers 66
2.13 Using the Code Editor 70
2.14 Using the Project Manager 78
2.15 Using the Database Manager 83
2.16 Viewing Messages 91
2.17 Modifying Environment Options 93

Preface

Table of Contents

2.18 Creating a New Component

2.19 Adding a Component to the Component Library
2.20 Removing a Component from the Component Library

2.21 Rebuilding the Component Library

2.22 Creating a New Control Interface

2.23 Modifying a Control Interface

2.24 Using the Control Interface Editor

2.25 Opening the Icon Library

Chapter 3 - Using Visual Controls

3.1 Standard Controls

3.2 Creating and Showing Forms
3.3 Showing Message Dialogs
3.4 Showing Progress Dialogs
3.5 Using HTML Forms

3.6 Layout Management

Chapter 4 - Using Server Requests

4.1 Server Request Architecture

4.2 Executing a Server Request

Chapter 5 - Using Local Storage

5.1 Introduction
5.2 Saving Data To Local Storage
5.3 Loading Data from Local Storage

5.4 Detecting Local Storage Changes

Chapter 6 - Using Databases

Preface

6.1 Database Architecture

6.2 Creating and Using Databases
6.3 Creating and Loading DataSets
6.4 Navigating DataSets

6.5 Searching and Sorting DataSets
6.6 Updating DataSets

6.7 Transactions

6.8 Responding to DataSet Changes
6.9 Binding Controls to DataSets

6.10 Calculated Columns

109
110
112
114
115
116
117
123
125
125
128
131
133
134
136
149
149
153
157
157
158
159
160
163
163
166
168
173
176
178
182
186
189
191

Table of Contents

6.11 API Reference 192
6.12 JSON Reference 194
Chapter 7 - Using the Web Server 201
7.1 Starting the Web Server 201
7.2 Configuring the Web Server 203
7.3 Multiple Web Server Instances 223
7.4 Web Server Request Handling 225
7.5 Creating Web Server Modules 228
Chapter 8 - Language Reference 231
8.1 Introduction 231
8.2 Defines 235
8.3 Types 237
8.4 Operators 240
8.5 Statements 242
8.6 Units 249
8.7 Constant Declarations 254
8.8 Type Declarations 255
8.9 Variable Declarations 257
8.10 Function and Procedure Declarations 258
8.11 Function and Procedure Implementations 259
8.12 Enumerations 261
8.13 Arrays 262
8.14 Classes 265
8.15 Variables (In Classes) 268
8.16 Methods 270
8.17 Properties 277
8.18 Events 282
8.19 Scope 286
8.20 Casting Types 290
8.21 Exception Handling 292
8.22 External Interfaces 296
8.23 Debugging 299
8.24 Asynchronous Calls 301
Chapter 9 - Function and Procedure Reference 303

Preface

Table of Contents

Preface

9.1 Abs

9.2 ArcCos

9.3 ArcSin

9.4 ArcTan

9.5 ArcTan2

9.6 Assigned

9.7 BoolToStr

9.8 Cell

9.9 Chr

9.10 CompareStr
9.11 CompareText
9.12 Copy

9.13 Cos

9.14 CreateActiveXObject
9.15 CreateObject
9.16 Date

9.17 DateTimeToStr
9.18 DateTimeTolSOStr
9.19 DateToStr
9.20 DayOf

9.21 Dec

9.22 Degrees

9.23 Delete

9.24 DoubleToStr
9.25 EncodeDate
9.26 EncodeDateTime
9.27 EncodeTime
9.28 Exp

9.29 FloatToStr
9.30 Floor

9.31 HideProgress
9.32 HourOf

9.33 Inc

9.34 Insert

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

Table of Contents

9.35 IntToHex 337
9.36 IntToStr 338
9.37 ISOStrToDateTime 339
9.38 Join 340
9.39 Length 341
9.40 Ln 342
9.41 LocaleCompareStr 343
9.42 LocaleCompareText 344
9.43 LocaleLowerCase 345
9.44 LocaleSameStr 346
9.45 LocaleSameText 347
9.46 LocaleUpperCase 348
9.47 LowerCase 349
9.48 Max 350
9.49 MessageDlg 351
9.50 Min 353
9.51 MinuteOf 354
9.52 MonthOf 355
9.53 MSecondOf 356
9.54 Now 357
9.55 Ord 358
9.56 Pad 359
9.57 Pi 360
9.58 ParseXML 361
9.59 Pos 362
9.60 Power 363
9.61 Radians 364
9.62 Random 365
9.63 Round 366
9.64 QuotedStr 367
9.65 SameStr 368
9.66 SameText 369
9.67 SecondOf 370

9.68 SerializeXML 371

Preface

Table of Contents

9.69 SetLength
9.70 ShowMessage
9.71 ShowProgress
9.72 Sin

9.73 Split

9.74 Sqrt

9.75 StrReplace
9.76 StrToBool
9.77 StrToDate
9.78 StrToDateTime
9.79 StrToDouble
9.80 StrToFloat
9.81 StrTolnt

9.82 StrToTime
9.83 Tan

9.84 Time

9.85 TimeToStr
9.86 TimeZoneOffset
9.87 Trim

9.88 Trunc

9.89 UpperCase
9.90 WeekDayOf
9.91 YearOf

Chapter 10 - Component Reference

Preface

10.1 TAbstractList Component

10.2 TAddress Component

10.3 TAlertLabel Component

10.4 TAlertLabelControl Component
10.5 TAnimatedlcon Component
10.6 TAnimation Component

10.7 TAnimations Component

10.8 TApplication Component

10.9 TAudio Component

10.10 TAudioElement Component

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
395
399
413
448
450
475
482
490
510
572

10.11 TAutoSize Component

10.12 TBackground Component

10.13 TBackgroundlmage Component
10.14 TBalloonLabel Component

10.15 TBalloonLabelControl Component
10.16 TBasicPanel Component

10.17 TBasicPanelControl Component
10.18 TBindableColumnControl Component
10.19 TBindableControl Component
10.20 TBlobValue Component

10.21 TBodyElement Component

10.22 TBooleanValue Component
10.23 TBorder Component

10.24 TBorderSide Component

10.25 TBoundingAttribute Component
10.26 TBrowser Component

10.27 TButton Component

10.28 TButtonComboBox Component
10.29 TButtonComboControl Component
10.30 TButtonControl Component
10.31 TButtonInputControl Component
10.32 TCalendar Component

10.33 TCalendarControl Component
10.34 TCanvasElement Component
10.35 TCanvasGradient Component
10.36 TCanvasPattern Component
10.37 TCanvasPoint Component

10.38 TCanvasRect Component

10.39 TCaptionBarControl Component
10.40 TCheckBox Component

10.41 TCollection Component

10.42 TCollectionltem Component
10.43 TComponent Component

10.44 TConstraint Component

Table of Contents

573
577
583
596
628
629
663
664
665
666
667
668
669
675
682
688
714
746
793
794
795
796
834
839
888
899
903
911
931
932
969
985
992
1004

Preface

Table of Contents

Preface

10.45 TConstraints Component

10.46 TContentLayout Component

10.47 TControl Component

10.48 TCookies Component

10.49 TCorner Component

10.50 TCorners Component

10.51 TDatabase Component

10.52 TDataColumn Component

10.53 TDataColumns Component

10.54 TDataRow Component

10.55 TDataSet Component

10.56 TDataSetController Component
10.57 TDataSetToolBar Component

10.58 TDataSetToolBarButton Component
10.59 TDataSetToolBarButtons Component
10.60 TDataValue Component

10.61 TDataValues Component

10.62 TDateEditComboBox Component
10.63 TDateTimeValue Component

10.64 TDateValue Component

10.65 TDialog Component

10.66 TDialogButton Component

10.67 TDialogCaptionBar Component
10.68 TDialogClient Component

10.69 TDialogControl Component

10.70 TDialogEditComboBox Component
10.71 TDivElement Component

10.72 TDropDownButtonControl Component
10.73 TDropDownEditControl Component
10.74 TEdit Component

10.75 TEditComboBox Component

10.76 TEditComboControl Component
10.77 TEditControl Component

10.78 TElement Component

1008
1012
1019
1071
1080
1084
1090
1121
1143
1145
1146
1222
1228
1245
1246
1257
1272
1282
1330
1331
1332
1366
1370
1380
1384
1385
1425
1426
1429
1432
1472
1522
1523
1528

10.79 TElementAttribute Component
10.80 TElementProperties Component
10.81 TElements Component

10.82 TFileComboBox Component
10.83 TFilelnputElement Component
10.84 TFill Component

10.85 TFloatValue Component

10.86 TFont Component

10.87 TFontlcon Component

10.88 TFontStyle Component

10.89 TForm Component

10.90 TFormat Component

10.91 TFormatSettings Component
10.92 TFormControl Component

10.93 TFormElement Component

10.94 TFrameElement Component
10.95 TGradient Component

10.96 TGradientColorStop Component
10.97 TGradientColorStops Component
10.98 TGrid Component

10.99 TGridCell Component

10.100 TGridColumn Component
10.101 TGridControl Component
10.102 TGridHeader Component
10.103 TGridRow Component

10.104 TGridRows Component

10.105 TGroupPanel Component
10.106 TGroupPanelControl Component
10.107 THeaderPanel Component
10.108 THeaderPanelControl Component
10.109 THiddenlnputElement Component
10.110 THTMLForm Component

10.111 THTMLFormControl Component
10.112 THTMLLabel Component

Table of Contents

1630
1634
1662
1670
1704
1707
1712
1713
1721
1725
1731
1768
1773
1794
1800
1807
1814
1822
1826
1833
1882
1887
1929
1983
1990
1996
2002
2035
2036
2068
2069
2070
2101
2104

Preface

Table of Contents

Preface

10.113 THTMLLabelControl Component

10.114 Tlcon Component

10.115 TlconAnimation Component
10.116 TlconButton Component
10.117 TlconControl Component
10.118 TlconLibrary Component
10.119 TlconProperties Component
10.120 TImage Component

10.121 TImageElement Component
10.122 TinputControl Component
10.123 TinputElement Component
10.124 TInsetShadow Component
10.125 TIntegerValue Component

10.126 Tinterface Component

10.127 TinterfaceController Component

10.128 TinterfaceManager Component
10.129 Tinterfaces Component
10.130 TinterfaceState Component
10.131 TinterfaceStates Component
10.132 TLabel Component

10.133 TLabelControl Component
10.134 TLayout Component

10.135 TLink Component

10.136 TLinkControl Component
10.137 TLinkElement Component
10.138 TListBox Component

10.139 TListControl Component
10.140 TLocation Component

10.141 TLocationServices Component
10.142 TMap Component

10.143 TMapControl Component
10.144 TMapLocation Component
10.145 TMapLocations Component
10.146 TMapOption Component

2135
2136
2158
2161
2186
2187
2190
2199
2237
2240
2243
2255
2256
2257
2261
2264
2298
2305
2308
2317
2351
2352
2359
2394
2395
2399
2449
2453
2465
2477
2497
2498
2507
2509

Table of Contents

10.147 TMapOptions Component 2511
10.148 TMapTypeControlMapTypes Component 2536
10.149 TMapTypeControlOptions Component 2541
10.150 TMargins Component 2545
10.151 TMediaControl Component 2546
10.152 TMediaElement Component 2550
10.153 TMenu Component 2571
10.154 TMenuBar Component 2593
10.155 TMenuBarltem Component 2614
10.156 TMenuBarSeparatorltem Component 2637
10.157 TMenuControl Component 2640
10.158 TMenultem Component 2651
10.159 TMenultemControl Component 2674
10.160 TMenuSeparatorltem Component 2679
10.161 TMessageDialog Component 2682
10.162 TModalOverlay Component 2720
10.163 TMultiLineEdit Component 2723
10.164 TMultiLineEditControl Component 2769
10.165 TObjectElement Component 2770
10.166 TObjectList Component 2773
10.167 TOutsetShadow Component 2799
10.168 TOverviewMapControlOptions Component 2800
10.169 TPadding Component 2802
10.170 TPage Component 2803
10.171 TPagePanel Component 2834
10.172 TPagePanelControl Component 2853
10.173 TPaint Component 2867
10.174 TPanControlOptions Component 2888
10.175 TPanel Component 2890
10.176 TPanelCaptionBar Component 2935
10.177 TPanelClient Component 2946
10.178 TPanelControl Component 2950
10.179 TParser Component 2952
10.180 TPasswordEdit Component 2980

Preface

Table of Contents

Preface

10.181 TPasswordInputElement Component
10.182 TPersistent Component

10.183 TPersistentStorage Component
10.184 TPlugin Component

10.185 TPoint Component

10.186 TProgressBar Component

10.187 TProgressBarindicator Component
10.188 TProgressDialog Component
10.189 TRadioButton Component

10.190 TReader Component

10.191 TRect Component

10.192 TRepeatControl Component
10.193 TRotateControlOptions Component
10.194 TScript Component

10.195 TScrollableControl Component
10.196 TScrollPanel Component

10.197 TScrollPanelClient Component
10.198 TScrollPanelControl Component
10.199 TServerRequest Component
10.200 TServerRequestQueue Component
10.201 TSet Component

10.202 TShadow Component

10.203 TSizeGrip Component

10.204 TSizeGripControl Component
10.205 TSizer Component

10.206 TSizerControl Component

10.207 TSlideShow Component

10.208 TSlideShowControl Component
10.209 TStateButtonControl Component
10.210 TStreetViewControlOptions Component
10.211 TStringBuilder Component

10.212 TStringList Component

10.213 TStrings Component

10.214 TStringValue Component

3017
3018
3019
3028
3052
3060
3087
3091
3119
3155
3186
3207
3208
3210
3214
3215
3250
3254
3255
3280
3288
3305
3313
3332
3333
3358
3359
3392
3396
3397
3399
3408
3414
3432

Table of Contents

10.215 TSurface Component 3433
10.216 TTab Component 3446
10.217 TTextAreaElement Component 3452
10.218 TTextInputElement Component 3453
10.219 TTimer Component 3455
10.220 TTimeValue Component 3459
10.221 TToolBar Component 3460
10.222 TToolBarButton Component 3476
10.223 TToolBarControl Component 3493
10.224 TVideo Component 3502
10.225 TVideoElement Component 3567
10.226 TViewport Component 3571
10.227 TWebControl Component 3582
10.228 TWebElement Component 3584
10.229 TWriter Component 3591
10.230 TZoomControlOptions Component 3622
Chapter 11 - Type Reference 3625
11.1 TAlertOrientation Type 3625
11.2 TAnimatedlconDirection Type 3626
11.3 TAnimationCompleteEvent Type 3627
11.4 TAnimationStyle Type 3628
11.5 TAuthenticationMethod Type 3631
11.6 TAutoCompleteType Type 3632
11.7 TBackgroundimageAnimateDirection Type 3633
11.8 TBackgroundimagePositionType Type 3634
11.9 TBackgroundimageRepeatStyle Type 3635
11.10 TBackgroundimageSizeType Type 3636
11.11 TBackgroundOrientationType Type 3637
11.12 TBalloonOrientation Type 3638
11.13 TBooleanArray Type 3639
11.14 TBorderStyle Type 3640
11.15 TCalendarView Type 3641
11.16 TCanPlayMedia Type 3642

11.17 TCanvasPoints Type 3643

Preface

Table of Contents

Preface

11.18 TCaption Type

11.19 TCharArray Type

11.20 TClass Type

11.21 TClickEvent Type

11.22 TCloseQueryEvent Type
11.23 TCollectionltemClass Type
11.24 TCollectionltemName Type
11.25 TColor Type

11.26 TComponentClass Type
11.27 TComponentName Type
11.28 TCompositeOperation Type
11.29 TContent Type

11.30 TContentAlignment Type
11.31 TContentDirection Type
11.32 TContentPosition Type
11.33 TContentSize Type

11.34 TControlClass Type

11.35 TCursor Type

11.36 TDatabaseClass Type
11.37 TDatabaseErrorEvent Type
11.38 TDatabaseEvent Type
11.39 TDataColumnTextEvent Type
11.40 TDataRowEvent Type
11.41 TDataSetErrorEvent Type
11.42 TDataSetEvent Type

11.43 TDataSetState Type

11.44 TDataType Type

11.45 TDateTimeFormat Type
11.46 TDrawStyle Type

11.47 TDropDownPosition Type
11.48 TElementClass Type

11.49 TErrorEvent Type

11.50 TFillType Type

11.51 TFormControlClass Type

3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3656
3657
3658
3659
3660
3661
3662
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679

Table of Contents

11.52 TGenericFontFamily Type 3680
11.53 TGradientType Type 3681
11.54 TGridColumnCellEvent Type 3682
11.55 TGridColumnCompareEvent Type 3683
11.56 TGridColumnControlType Type 3684
11.57 TGridHeaderClickEvent Type 3685
11.58 THTMLFormEncoding Type 3686
11.59 THTMLFormMethod Type 3687
11.60 TIntegerArray Type 3688
11.61 TinterfaceAnimationEvent Type 3689
11.62 TInterfaceControllerClass Type 3690
11.63 TInterfaceErrorEvent Type 3691
11.64 TinterfaceldleEvent Type 3692
11.65 TInterfaceTimeoutEvent Type 3693
11.66 TInterfaceTimerEvent Type 3694
11.67 TInterfaceViewportResizeEvent Type 3695
11.68 TInterfaceViewportScrollEvent Type 3696
11.69 TKeyDownEvent Type 3697
11.70 TKeyPressEvent Type 3698
11.71 TKeyUpEvent Type 3699
11.72 TLayoutConsumption Type 3700
11.73 TLayoutOverflow Type 3701
11.74 TLayoutPosition Type 3702
11.75 TLayoutStretch Type 3704
11.76 TLineCapStyle Type 3705
11.77 TLineJoinStyle Type 3706
11.78 TLocationError Type 3707
11.79 TMapControlPosition Type 3708
11.80 TMapTilt Type 3709
11.81 TMapType Type 3710
11.82 TMapTypeControlStyle Type 3711
11.83 TMediaNetworkState Type 3712
11.84 TMediaPreload Type 3713

11.85 TMediaReadyState Type 3714

Preface

Table of Contents

Preface

11.86 TModalResult Type

11.87 TMouseDownEvent Type
11.88 TMouseMoveEvent Type
11.89 TMouseUpEvent Type
11.90 TMouseWheelEvent Type
11.91 TMsgDlgBtn Type

11.92 TMsgDlgBtns Type

11.93 TMsgDlgResultEvent Type
11.94 TMsgDIgType Type

11.95 TNotifyEvent Type

11.96 TObjectsArray Type

11.97 TOverflowType Type
11.98 TPageChangeEvent Type
11.99 TPatternRepeatStyle Type
11.100 TRequestMethod Type
11.101 TScrollBars Type

11.102 TScrollSupport Type
11.103 TSelectionState Type
11.104 TServerRequestEvent Type
11.105 TServerRequestProgressEvent Type
11.106 TServerRequestURL Type
11.107 TSizerOrientation Type
11.108 TSlideEvent Type

11.109 TSortDirection Type
11.110 TStorageChangeEvent Type
11.111 TStringsArray Type
11.112 TTextAlignment Type
11.113 TTextBaseLine Type
11.114 TTextInputType Type
11.115 TTouchEvent Type
11.116 TTouchScrollEvent Type
11.117 TWebElementEvent Type

11.118 TZoomControlStyle Type

3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747

Getting Started

Chapter 1
Getting Started

1.1 System Requirements

IDE Requirements

The Elevate Web Builder IDE requires the following:

@ Windows Vista or higher

@ 1024x768 or higher display resolution (widescreen display highly recommended)
@ 32-bit color display adapter

= 1GB of installed memory

@ 128MB of disk space

@ Internet Explorer 9 or higher

Runtime Browser Compatibility
Applications created with Elevate Web Builder work with the following browsers:

Browser Minimum Version Required

Internet Explorer 9
(Microsoft)

FireFox 5
(Mozilla)

Chrome 10
(Google)

Safari 5
(Apple)

Opera 11

(Opera Software)

Mobile Browsers

Most mobile devices today use the WebKit web browser engine as the engine for their web browser. This
is the case with both Android and iOS devices. Elevate Web Builder applications will work properly with
any device that uses the WebKit web browser engine. Some other devices may use embedded versions of
the Opera web browser engine, and Elevate Web Builder applications will work properly with those
devices as well.

Page 1

Getting Started

1.2 General Architecture

Elevate Web Builder allows developers to easily create rich, fully-functional web browser applications that
use 100% standard browser technologies and don't require any external browser plugins or layers.

At run-time, an Elevate Web Builder application has the following architecture:

r'\\ u Web Server Application

Elevate Web Builder Application
{Browsor)

Elevate Web Builder Architecture

Elevate Web Builder's IDE/compiler only produces web browser applications, and does not produce the
web server application. However, included with the product is the Elevate Web Builder Web Server, which
is the same internal web server used in the IDE for running applications. You can create native web server
application modules using Embarcadero RAD Studio and Delphi by using the Elevate Web Builder Web
Server. Please see the following topics for more information on the Elevate Web Builder Web Server:

Starting the Web Server
Configuring the Web Server
Web Server Request Handling
Creating Web Server Modules

You are required to create a web server application if you want to accept requests from the web browser
application, such as those used for loading datasets, committing transactions, or executing custom
requests to the web server application. Please see the Database Architecture and Server Request
Architecture topics for more information on how databases and server requests work in Elevate Web
Builder applications.

Page 2

Getting Started

Core Language

Elevate Web Builder uses an Object Pascal language dialect for its source code that is very close to the
Object Pascal language used by the RAD Studio and Delphi development environments from
Embarcadero Technologies. Object Pascal was chosen as the language because it is a very easy language
to learn due to its very English-like keywords, and because it is highly-structured and strongly-typed,
making compiled applications highly-resistant to easily-avoided run-time type or class definition errors.
For more information on the language in Elevate Web Builder, please see the Language Reference section
of the manual.

Integrated Development Environment (IDE)

The IDE in Elevate Web Builder is also modeled after the RAD Studio and Delphi IDEs from Embarcadero
Technologies, and is specifically designed to facilitate rapid application development (RAD). Rapid
application development is a development process that allows a developer to quickly proceed from an
application design to a fully-functional application by tightly integrating the design portion of application
development with the coding/compilation/deployment portion of development. Please see the Using the
IDE topic for more information on the layout and usage of the IDE.

Page 3

Getting Started

1.3 Application Structure

An Elevate Web Builder application is structured as follows:

Project Source File {.whp)

™ T 1 k.
\ ,

= | SINTERFACE

U uses containg [g = Claiiasy -
clause u
Source Unit File {.whs) Interface File (.whi)

if exists L ' :] if exists = i' ‘

Source Unit File {whs) Source Form File (. wbf}
.
N S
Project Configuration File {.wbc) Included External Files
{optianal) {optional)

Elevate Web Builder Application Structure
An application can be either visual or non-visual. The main difference between visual projects and non-
visual projects is the way that the IDE generates code in the project source file as forms/source units are
added and removed from the project.
The project source file (wbp) looks like the following for a visual application:

project Frojectl:

Contains contains Unitl:

clause
uses WebForms, WebCtrls:
begin
Application.Title := '"';
Application Application.LoadProgress := False:
Startup Code Application.CreateForm(TForml) ;
. ; Application.Run('Formi');
end.

Project Source File

The project source file (wbp) looks like the following for a non-visual application:

Page 4

Getting Started

project Projectl:
Uses clause | nses WebCore;

begin Project
end. code

The IDE and compiler use the contains clause in the project source file to determine which source units
are part of the actual project (as opposed to simply being referenced in a source unit that is part of the
project). This is important for several dialogs in the IDE that present a list of source units or forms for
selection, as well as the Project Manager.

Note

By default, the IDE does not create a contains clause for non-visual projects because non-visual
projects don't have any additional project units when first created. However, you can add units to
the project using the project manager, and they will appear in the contains clause of the project
source file.

Project Configuration File

The project configuration file (wbc) is an .ini file with the same root name as the project source file that
contains the project settings for the current project. If it does not exist, then it is automatically created by
the IDE. The settings stored in this file include:

= |DE layout settings (open windows, panel positions/sizes)

= Compilation settings (search paths, output paths, compression)
@ External files (JavaScript, images)

= Deployment settings (FTP settings, copy settings)

Form Files

Forms are associated with a specific source unit by the existence of a .wbf form file with the same root
name as the .wbs source unit. Form files are JSON files that contain information about all components
contained within a form and all non-default published property values assigned to the components.

Control Interface Files

Control interfaces are associated with an application or the component library via this compiler directive:

{$INTERFACE <ControlInterfaceFileNameRoot>}

Control interfaces are JSON files that contain information about the various visual states of a control
interface class. Each state is represented by one or more Ul elements that correspond to the Ul elements
created by a control class. Please see the Control Interfaces topic for more information on the architecture
of control interfaces.

Page 5

Getting Started

1.4 Compiling Applications

When you compile an application, the Elevate Web Builder uses the project's compiler search paths along
with the component library search paths to determine where to look for units and control interface files.
Please see the Modifying the Project Options and Modifying Environment Options topics for more
information on modifying these search paths.

Elevate Web Builder compiles the application source code (Object Pascal) into a 100% JavaScript
application that will run in any modern browser. During compilation of an application, the compiler emits
the following files:

HTML Loader File {.html)

el loads - 7
JavaScript Application File {.js)

Elevate Web Builder Runtime Application Structure

The HTML loader file contains all of the control interface files, form files, and database files in special tags
in the header of the file.

An Elevate Web Builder application is typically loaded in a web browser via a URL that includes the HTML
loader file for the application. Once the loader file is loaded in the web browser, the following steps occur:

@ The HTML loader file loads the application's .js (JavaScript) file, which causes the browser to compile
the JavaScript and prepare the execution environment.

@ A special JavaScript loader function is called that initializes the application and starts execution.
@ Any control interfaces are loaded from the special tags in the HTML loader file.

= Any auto-create forms and/or databases are created. During creation, the associated form or
database files are loaded from the special tags in the HTML loader file.

= If the web browser navigates away from the current URL, or if the web browser refreshes the current
URL, then a special JavaScript unloader function is called that cleans up all allocated resources and
terminates the application.
Elevate Web Builder applications are designed to be loaded and then stay loaded until they are exited.
They are not "page-oriented" like many web application or general web sites. You can, however, display
HTML pages within an application by using the TBrowser control that is provided as part of the
component library.

The JavaScript file that is emitted by the compiler can be compressed, making the size of the resultant
application much smaller. As a side-effect of the compression, the resultant JavaScript source code is also
heavily obfuscated and virtually unreadable, which is desirable for many applications that wish to protect
their source code. Please see the Modifying the Project Options topic for more information on
compression.

Page 6

Getting Started

Page 7

Getting Started

1.5 Component Library

Elevate Web Builder includes a complete component library for use with both your visual and non-visual
web applications. The component library is a separate design-time application that is automatically
loaded and compiled by the IDE during startup. You can add and remove components from the library in
the IDE, and those changes will persist for any subsequent IDE usage. You can also rebuild the component
library at any time, which is useful for situations where an existing component or control is modified, and
you wish to have those changes reflected immediately at design-time.

Note

The component library is the foundation for all design-time visual designers: you cannot work with
visual application projects and forms unless the component library has been successfully loaded
and compiled.

The TComponent class is the base class for all components and contains all core functionality for
component ownership and notification. It inherits from the TPersistent class, so any TComponent-
descendant class can automatically load itself from a JSON input string.

The locations of the component library source units are automatically included in the compiler search path
during the compilation of projects, but after the project's defined compiler search paths. Please see the
Modifying Environment Options topic for more information on modifying the component library search
paths used by the compiler.

The following source units make up the core of the runtime and component library:

Source Unit Description

WebDOM This source unit contains all external declarations for the web
browser DOM (Document Object Model) classes, functions,
procedures, and variables. You can use this unit to manipulate
the browser DOM directly at run-time.

WebDesign This source unit contains just a few class declarations for use
with the design-time environment in the IDE.

WebCore This source unit contains core functions/procedures and
classes. It does not contain any visual controls so it can be
used in non-visual applications.

WebUI This source unit contains the interface manager and all of the
base Ul functionality for both design-time and run-time.

WebCtrls This source unit contains the base controls and functionality.

WebForms This source unit contains the application, surface, and core
form/dialog controls.

WebData This source unit contains the database and dataset
components.
WebHTTP This source unit contains the server request components.

Page 8

Getting Started

In addition to these units, there are many other units that make up the rest of the component library.
Please see the Component Reference section of this manual for detailed documentation about the units,
classes, and types in the Elevate Web Builder component library.

Page 9

Getting Started

1.6 Visual Applications
The interface of a visual Elevate Web Builder application has the following structure:

TInterface Manager

Element
{Design-Time and

Run=-Time)

L

Y Properties;

Root
Element

AutoSiza
Backgrownd
LE - Bardar
| Canstraints

Content

" Carners

¢ [T

? Fonl
arma

Child Child iatashey

Height
Elemeant Eiement Hint

InselShadow
Layout
Margins
Mame
Dpacity
' ' OutsctShadow
Padding
Visible
Width

Elevate Web Builder Visual Application Interface

A visual application uses a global instance of the TInterfaceManager class called InterfaceManager to
manage all aspects of the user interface. The TinterfaceManager class and all related classes, types, and
functions/procedures are declared in the WebUI unit included with the standard component library. All
interface elements are represented by instances of the TElement class (or a descendant class).

At design-time, the root element managed by the interface manager represents the base element for the
active form instance in the form designer. At run-time, the root element is the base element for the global

instance of the application surface. The application surface wraps the body element in the browser tree of
elements, and is the ancestor container for all controls at run-time.

Note

At run-time, all elements are wrappers around browser elements. Except for the body element,

these browser elements are owned by the TElement class instances of the corresponding interface
elements.

Controls and Interface Elements
In Elevate Web Builder, controls are simply wrappers around a base element that is the container for all

Page 10

Getting Started

elements that are created and owned by the control itself, or assigned as child elements:

TSurface [Dwns Base
Class Instance Element
Client
Element
i i
| J Y
TControl Owhs Owns TControl
Descendant EIE:::HI: FIE 215:“1: Descendant
Class Instance 3) Class Instance
L J
Client
Element
|

Elevate Web Builder Controls and UI Elements
Many controls never use more than the base element, while others such as grid controls require many
elements in order to provide the necessary functionality in the control.
Controls create both their base element and any other owned elements by calling the TInterfaceManager
CreateElement method. Controls, and the elements that they own or parent, can be moved to different
parts of the user interface tree of elements by modifying the TControl Parent property.
Because controls are simply wrappers around interface elements, it is up to the control class to determine
what aspects of the owned element(s) is/are exposed at design-time and at run-time via properties. For

example, a container control may wish to expose the background property of the base element so that the
developer can modify the background of the control.

Core Application Components

A visual Elevate Web Builder application has the following structure in the web browser:

Page 11

Getting Started

Web Browser Window

The visual application functionality in Elevate Web Builder contains several core components, all residing
in the WebForms and WebCtrls units in the standard component library.

TControl

The TControl component is the base class for all controls and forms. It contains all core functionality for
control iteration, dimension and layout management, and display control. You can find the TControl
component in the WebCtrls unit.

TApplication

An instance of the TApplication component is automatically created when the WebForms unit is initialized,
and is available as the global Application variable (also in the WebForms unit). The TApplication
component allows the developer to manage the browser surface via the Surface property, as well as
various aspects of the application such as the application title and the properties of the browser viewport.

TSurface

An instance of the TSurface component is automatically created by, and as part of, the global TApplication
instance and, as noted above, is available via the TApplication Surface property. You can access the active
form via the ActiveForm property.

TForm

The TForm component encapsulates a form in an Elevate Web Builder visual application. Forms are the
container controls in which all other visual controls reside. Forms can be designated as auto-create in a
project and the IDE will automatically add the appropriate code to the program source of the project for
creating the forms at application start. The first form in the list of auto-create forms is considered the main
form of the application. The TForm class can be found in the WebForms unit.

Page 12

Getting Started

TDialog

The TDialog component encapsulates a dialog in an Elevate Web Builder visual application. Dialogs differ
from normal forms in that they contain additional interface elements such as a caption bar and a close

button. Also, dialogs are normally shown modally using the TFormControl ShowModal method, although
this is not a requirement. The TDialog class can also be found in the WebForms unit.

Page 13

Getting Started

1.7 Control Interfaces

Control interfaces are JSON files that are used to describe the visual appearance of a control. You can
create and modify control interfaces using the Control Interface Editor. The structure of a control interface
is as follows:

Control Interface File (.whbi)

Elevate Web Builder

I;\ Control Interface Structure
B | - Interface Class
W)
—!— —f- S — ... Element
Base = Element
State Normal | B Elr_':'nl'nt
Child
‘ - Element .. *
| ties:
Y - E'Ihl l::l > ... Properties
Base Element
State Hot } = fdig ApplyProporties
Element AitoSize
i } Child Background
- Element - Baorder
Constraints
Content
+ Cormers
Child Cursor
' ™ Eilement | ™ Font
State Base) Format
Focused | = Element Helght
——F Child oL
_. nse A0OW
- Element Layout
Margins
Mame
- Dipacity
. Child - OutsetShadow
Hata Element Padding
State | Pushed | g iy — Width
1
LS 4 Child
- Element »..
Y

As mentioned in the Application Structure topic, control interfaces are included in a source unit via the
$INTERFACE compiler directive and, as mentioned in the Compiling Applications topic, control interfaces
are automatically stored in the application's HTML loader file by the compiler, and are automatically
loaded at application startup by the global TinterfaceManager instance called InterfaceManager in the
WebUI unit.

Note

The name of a control interface file will not necessarily correspond to the interface class name
defined within the file. The standard control interface files shipped with Elevate Web Builder use the
same name for both, but this is only a convention and not a requirement.

TControl Interface Functionality

Page 14

Getting Started

As discussed in the Visual Applications topic, every TControl descendant class will create one or more
TElement class instances to handle the various interface elements in the control. By default, the TControl
class automatically creates an element with the name "Base". All element instances should have a unique
name within the context of a control class.

Note

There are several standard interface element names defined in the interface section of the
WebCtrls unit that should be used with any controls, if possible. For example, controls should
normally always call any client element "Client". This isn't a requirement, but it does help keep any
3rd party controls standardized.

In addition, every TControl descendant class is always in a particular interface state, represented by the
protected TControl InterfaceState property. Each TControl can modify its InterfaceState property to affect
the layout and display properties of the element instances in the control. By default, the base TControl
class automatically handles most interface state changes. The standard interface states, and how they are
triggered, are detailed below:

Interface State Trigger Condition

Normal This is the default state for controls, and is triggered during
control initialization.

Disabled Triggered when the TControl Disabled property is set to True.

Hot Triggered when the mouse is moved over the bounds of the
control.

Focused Triggered when the control obtains focus.

Pushed Triggered when the left mouse button is pressed within the

bounds of the control.

Minimized Triggered when the control (normally a container control) is
minimized.
ReadOnly Triggered when the TBindableControl ReadOnly property

(protected) is set to True.

Error Triggered when the TBindableControl Error property
(protected) is set to True.

There are several other control-specific states that are used by the standard component library
component classes. A control developer is free to use any interface state name that they wish, but the
standard interface states should not be used for purposes other than their intended use.

How Control Interfaces are Applied to a Control

Internally, control interfaces are applied to the interface elements of controls using the TinterfaceManager
Applylnterface method. This method uses several key pieces of information to determine how to apply an
interface to a control and the interface elements that it owns:

@ The interface class name
@ A specified interface state

Page 15

Getting Started

@ The interface element names

When a control assigns a new value to the protected TControl InterfaceState property and the TControl
class calls the TInterfaceManager ApplyInterface method, the method will look up the control interface
class name in the list of available control interface class names loaded into the interface manager.

The control interface class name is provided by the TControl GetinterfaceClassName method:

function GetInterfaceClassName: String; virtual;

It can be used to return any string that represents the control interface class name that the control wants
to apply when the interface state changes. Normally, the value returned here is simply the class name for
the control. For example, the TEdit control GetInterfaceClassName method implementation looks like this:

function TEdit.GetInterfaceClassName: String;
begin

Result:=TEdit.ClassName;
end;

However, you are not forced to use the control's class name as the interface class name. Sometimes it
might be necessary to use the control's class name combined with other string values to create a dynamic
interface class name. For example, the TScrollBar class uses the orientation of the scroll bar to compute a
dynamic interface class name:

function TScrollBar.GetInterfaceClassName: String;

begin
case FOrientation of
soVertical:
Result:=TScrollBar.ClassName+VERTICAL_CLASS_NAME;
soHorizontal:
Result:=TScrollBar.ClassName+HORIZONTAL CLASS NAME;
else
Result:="";
end;
end;

Once the control interface class name is found by the interface manager, the control interface states are
searched for the value assigned to the InterfaceState property. If a matching state is found in the control
interface, then the properties of the various elements in the control interface state are applied to the
element instances contained within the control class instance whose interface state is being changed. This
property application process is also done by matching the names of the elements in the control interface
to the names of the element instances in the control class instance.

Page 16

Getting Started

Note

If an interface state is specified that does not exist, then nothing occurs and the visual appearance
of the control will not change. If one or more element names in the control interface state do not
match the names of the element instances created by the control class instance, then the properties
of those elements will not be applied.

If an interface state is being assigned to a control class instance for the first time (InterfaceState property
is blank), then the interface manager will simply assign all properties of the control interface elements to
the matching element instances contained within the control class instance. If an interface state has
already been assigned to the control class instance, then the interface manager will only apply the
properties specified via the control interface element's ApplyProperties property. The ApplyProperties
property of a control interface element is a set of Boolean values that mirror the control interface element
properties. If a property is set to True in the ApplyProperties property, then it will be assigned to the
element instance when the interface state is applied.

Note

If you specify that a property should be applied in any state, then you should normally also specify
that the property should be applied in all other states in the control interface. Failure to do this will
result in certain properties becoming "sticky" and not reverting to a known state as the interface
state of the control changes. For example, suppose that you have created a TBorderButton control
that you want to show a different color border when the mouse hovers over the control and the
interface state changes to "Hot". In such a case, you'll need to be sure that the
ApplyProperties.Border property is set to True for the Base element defined in all states in the
control interface, including the standard Normal state.

Customizing Control Interfaces

Elevate Web Builder ships with a complete set of standard control interfaces located in the \interfaces
subdirectory under the main installation directory. Because the compiler uses the standard project and
component library search paths to find both source units and control interfaces, you can make copies of
the standard control interfaces, place them in a new directory, and then modify the project's compiler
search paths so that the new directory is included. Please see the Modifying Project Options topic for
more information on modifying the project's compiler search paths. After that point, any modifications to
the control interfaces in this new directory will be used instead of the standard control interfaces. Please
see the Modifying a Control Interface topic for more information on how to modify control interfaces
using the control interface editor.

By default, the Automatically load custom control interfaces in project search paths option in the
Environment Options dialog is enabled. This means that the IDE will automatically load any custom
control interface files located in the project's compiler search paths whenever a project is opened in the
IDE. When checking to see if a control interface has been customized, the IDE compares the path of the
default control interface file used with the component library (based upon the Library Search Paths setting
on the Component Library page) with the path of any control interfaces with the same file name present
in the project's compiler search paths. If a match is found, then the control interface file found in the
project's compiler search paths is loaded into the IDE and used with the project's form designers. After the
project is closed, the default control interfaces are reloaded.

Page 17

Getting Started

1.8 Icon Library

Icons are small, rectangular images/symbols that are referenced and displayed using controls such as the
Tlcon component. Elevate Web Builder uses a special control interface class called TlconLibrary to embed
icons in a visual application. The TlconLibrary control interface is stored in the TlconLibrary.wbi interface
file included with the standard control interfaces provided with Elevate Web Builder. The default
TlconLibrary control interface contains several default icons. You can use them as templates for any
additional icons by specifying their name as the icon (state) to copy when adding a new icon (state). You
can make a copy of the TlconLibrary.wbi interface file and place it in your project source directory in order
to customize the icons for your application. Please see the Opening the Icon Library for more information
on how to save a copy of the default TlconLibrary control interface so that it can be customized.

Supported Icon Types

Elevate Web Builder supports two different kinds of icons in the icon library: raster image icons (PNG) and
font icons. All icons used in the Elevate Web Builder component library use font icons. Font icons are
preferable to image icons because font icons are vectors, not raster images. This means that they can be
resized without losing any clarity, which is very important with very high display resolutions such as those
used with the Retina displays available on Apple devices. Raster images, on the other hand, tend to look
blurry as the image pixels are stretched and compressed to fit the current scale of the browser and the
underlying display resolution. Even if you aren't targeting high-resolution displays, you will want your
icons to look crisp and clear if the user zooms in/out using the built-in scaling available in most browsers.
Another important consideration is that font icons are much smaller, overall, than the equivalent raster
images. Finally, the fill color of font icons can be changed like any other font, whereas the colors of raster
images are fixed. However, raster images allow for multiple colors in icons, which is not something that is
currently supported with font icons.

Icon Fonts

Elevate Web Builder ships with an icon font called EWBIcons in both OpenType format and WOFF (web
font) format. The OpenType version of the EWBIcons icon font is automatically installed during the Elevate
Web Builder installation, and both formats are available in the \fonts subdirectory under the main
installation directory.

The EWBIcons icon font is a timmed-down version of the fantastic open source icon font called Font
Awesome available here:

Font Awesome

With the EWBIcons icon font, the social media and brand icons were stripped from the original Font
Awesome font in order to conserve space, and a few icons were added to support dataset toolbar
navigation icons and the Elevate Web Builder "tool" logo icon. Because of this, the font name had to be
changed from "FontAwesome" to "EWBIcons" in order to avoid any conflicts.

By default, all projects will include the EWBIcons icon font during compilation, and will embed it in the

HTML loader file for the application. This can be behavior can be changed via the Compilation page of the
Project Options for each project.

Defining Icons

Page 18

Getting Started

Icons are represented in the states of the control interface, with the name of the icon corresponding to the
state name. There are no limits to how many icons (states) one can define in the control interface.
However, there are some rules that must be followed in order to allow the icons to appear correctly. The
following lists the rules for both image icons and font icons:

Image Icons

@ The base element for each icon (state) must be named "lcon".

@ The "lcon" element's ApplyProperties Background property should be set to True.

@ The icon image should be assigned using the "Icon" element's Background Image Name property.

@ The icon image itself should be sized according to your needs, but as a rule do not use icons larger
than 256x256 pixels. The one exception to this rule is when defining an animated icon. Defining
animated icons is discussed below.

@ The icon image should normally be positioned as ptCenterCenter using the "lcon" element's
background image PositionType property. The one exception to this rule is when defining an

animated icon. Defining animated icons is discussed below.

@ The icon image should be set to not repeat by setting the "lcon" element's background image
RepeatStyle property to rsNone.

Font Ilcons

@ The base element for each icon (state) must be named "lcon".
@ The icon's base "lcon" element should have a child element named "Fontlcon".

@ The "Fontlcon" element's ApplyProperties AutoSize, Content, Font, FontColor, FontSize, Layout, and
Padding properties should be set to True.

@ The "Fontlcon" element's AutoSize property should be set to True.

@ The "Fontlcon" element's Font Name property should be set to "EWBIcon", or the name of another
icon font that you wish to use.

@ The "Fontlcon" element's Font Color and Size properties should be set according to your needs. The
Font Style property is not normally used with font icons.

@ The "Fontlcon" element's Layout Position property should normally be set to IpCenter, but you can
use any layout that you wish for the font icon.

@ The "Fontlcon" element's Padding property can be used to adjust the padding around the font icon.
This is useful in cases where the font icon is getting cut off due to leading/trailing measurement

issues with the font.

Defining Animated Icons

Animated icons are image icons whose background image isn't a small square or rectangle, but is instead
a single image containing many different animation frames oriented in a single horizontal or vertical

Page 19

Getting Started

direction. These icons are referenced and displayed using controls such as the TAnimatedlcon component.
In addition to the above rules for normal icons, there are also some rules that must be followed in order
to allow animated icons to appear correctly:

@ Contrary to normal icons, an animated icon image should always be positioned as ptSpecified
using the "lcon" element's background image PositionType property.

Controls such as the TAnimatedlcon control use the background image's BeginAnimation method to
animate the background image's Left or Top property (depending upon the orientation passed to the
method), and the CancelAnimation method to stop any background image animation.

Loading Icons from Code

At both design-time and run-time, a global instance of the TlconLibrary class called IconLibrary is created
that manages this special icon library control interface. The TlconLibrary class and the global IconLibrary
instance can be found in the WebUI unit. Controls like the Tlcon control use this global instance to
retrieve the list of available icons using the GetlconNames method, as well as apply an icon to one or
more of its owned interface elements using the Applylcon method.

Page 20

Getting Started

1.9 Accessing Help

Elevate Web Builder includes a complete online manual in the IDE that provides language and component
references, as well as tutorials and information on how to use the product to create great web browser

applications.
Accessing the Online Manual

Use the following steps to access this manual in the IDE:

@ Click on the Help option in the main menu. The Help menu will open:

H Elevate Web Builder 2 Manual

1 Install Example Applications...

]

About... B

Tl = i | Wi-Lnana | Thi

@ Click on the Online Manual option in the Help menu. This will cause the help browser page to
open in the IDE.

Context-Sensitive Help in the Object Inspector

Use the following steps in order to obtain context sensitive help in the object inspector:

Page 21

Getting Started

@ Click on the desired property in the object inspector and hit the F1 key.

Cursor criuto
DataColumn CustomerlD
DataSet Customer
DisplayCOrder 4
Enabled True
= Font (TFont)
Height 34
Hint
InputType tiNone
Layout

| & Object Inspector [|
|IDEdit: TEdit q
Properties | Events
Alignment caleft
AlwaysOnTop False
AutoComplete acDefault
[Constraints (TConstraints)

@ The help browser will open with all matching keywords highlighted. The topic that corresponds to
the first matching keyword will be displayed in the help browser.

0] Index

TControl.Layout Property

Look For

Control.Layout Property

TContral.GetControlMames Method »
TControl.Height Property

TControl Hide Method

TControl.Hint Property
TControlIndexOfControl Method
TControlInUpdate Prope

TControl LayoutOrder Property

Elevate Web Builder 2 Manual » Component Refere

property Layout: ILayout

Usage

Specifies the layout for the control,

Context-Sensitive Help in the Form and Database Designers

Use the following steps in order to obtain context sensitive help in the form and database designers:

Page 22

Getting Started

@ Click on the desired control or component in the form or database designer and hit the F1 key.

\% Data-Bound Controls Example

B L]] r 1|

iD= r Customer
| o |
MName

@ The help browser will open with all matching keywords highlighted. The topic that corresponds to
the first matching keyword will be displayed in the help browser.

0] Index
TEdit
Look For: Elevate Web Builder 2 Manual » Component Refere
[TEdit Class
TDimensions. Top Property - Unit: WebEdits
TDivElerment Class
TDrawstyle Type Inherits From TEditControl

TDropDownButtonControl Class

TDFGEDUW”EditCD”tF‘?' Class The TEdit compaonent represents an edit

TEdit.Alignrment Property

TEdit.AutoComplete Property Properties
TEdit.DataColumn Property :
TEdit.DataSet Property Alignment

TEdit.Enabled Property

Antnnmnlata

Context-Sensitive Help in the Code Editor

Use the following steps in order to obtain context sensitive help in the code editor:

Page 23

Getting Started

@ Click on the desired keyword or identifier in the code editor and hit the F1 key.

onit Main;

interface

const

type

Iconl: TIcon;
Label>: TLabel;

uses WeblCore, WebUI, WebForms,
WebBtns, WebEdits, WebBrwsr, WebIlbrs, W

THainForm = class tTEf:rm}
Customer: TDataSet;
HeaderPanell: THeaderPanel;

WebCtrls, WebD

ROW STOBAGE ¥EY = "EWE DataBound Bows';

CustomerPanel: TBasicPanel;
SaveLocalCheckBox: TCheckBox;

ol i e e T e e AT H i e e TN i e T e i e e W T W e =

@ The help browser will open with all matching keywords highlighted. The topic that corresponds to
the first matching keyword will be displayed in the help browser.

,!'-_J- Index

Look For:

TForm

TFontStyle Class
TFontStyle.Bold Property
TFontStyleltalic Property
TFontStyle.SetToDefault Method
TFontStyle Strikeout Property

TFuntSEle.Underline Proieﬁ

TFerm.Background Property
TForm.Border Property
TForm.Corners Property
TForm.InsetShadow Property
TFerm.OnClick Event

Using the Help Browser

TForm

Elevate Web Builder 2 Manual = Component Refere

Unit: WebForms

Inherits From TFormControl

The TForm component represents the ba
Properties

Background

Border

The help browser navigation toolbar can be found at the bottom of the help browser window:

Ela |

The navigation buttons are:

Page 24

Getting Started

= Displays the contents tree on the left-hand side of the help browser.

i | Displays the keywords index on the left-hand side of the help browser.

Allows you to navigate backward and forward from the current topic to the previous topic or next
topic viewed.

In addition you can use the following toolbar buttons:

| Searches for text within the current topic.

® Prints the current topic to the desired output device.

Page 25

Getting Started

1.10 Example Applications

Elevate Web Builder includes several example applications, which are detailed below. By default, these
example applications are installed into the \examples subdirectory under the main installation directory
for Elevate Web Builder. However, you should not try to load or compile the example projects from this
location. This is because Elevate Web Builder is normally installed under the \Program Files directory
structure under Windows, which will cause the Elevate Web Builder compiler to encounter errors when
trying to create the proper output directories and files during the emitting phase of compilation. Rather,
you should use the following steps to install the example applications in the documents folder for the
current user account:

@ Click on the Help option in the main menu. The Help menu will open:

Help

. M Elevate Web Builder 2 Manual r

1 Install Example Applications..,

About... B

[t | [T TR T | (v Y]

@ Click on the Install Example Applications.. option in the Help menu. This will start the process of
copying the example applications to the following folder for the current user account:

My Documents\Elevate Web Builder 2\Projects

Note

All of these example applications require that the internal web server in the IDE is started and
running, or you will get errors when trying to run them in the IDE (or from any browser). Also, do
not attempt to run any of the example applications directly from the file system in the IDE (or from
any browser) or you will also get errors. Please see the Running a Project topic for more information
on running projects in Elevate Web Builder.

In addition, all of the example projects use the default control interfaces. Please see the Control Interfaces
topic for more information on how control interfaces work.

HTML Form Submittal Example

Page 26

Getting Started

* HTML Form Submistal Exampls

After installation, the formsubmit.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\formsubmit folder. It illustrates the HTML form submittal functionality discussed in the
Using HTML Forms topic in this manual.

Controls Layout Example

Liyinst Dt | | Pt gudivmmenl ot | Sewmot Sl | © nemargtio: klog

After installation, the layout.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\layout subdirectory. It illustrates how to use the control Layout Management to affect
control positioning and sizing.

Responsive Layout Example

Page 27

Getting Started

* Responsive Layout Example

After installation, the responsive.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\responsive subdirectory. It illustrates how to use the control Layout Management to

build a responsive application that automatically adjusts its interface as the size of the browser window
changes.

Responsive Panels Example

"i Resmprorvass Panels Dlaregile

After installation, the panels.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\panels subdirectory. It illustrates how to use the control Layout Management to create
a flow layout for panels in a scrollable container.

Data-Bound Controls Example

Page 28

Getting Started

wd, Dats-Bound Controls Exanple

H L | ¥ L] L o - F

After installation, the databound.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\databound subdirectory. It illustrates the database functionality discussed in the
Creating and Loading DataSets, Navigating DataSets, Searching and Sorting DataSets, Updating DataSets,
Responding to DataSet Changes, and Binding Controls to DataSets topics in this manual. This project uses
the "ExampleData" database that is automatically added to the Database Manager when the example
applications are installed.

Master-Detail Database Example

ok, blasier-Betal Gatabase Eaample

After installation, the masterdetail.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\masterdetail subdirectory. It illustrates the database functionality discussed in the
Creating and Using Databases, Creating and Loading DataSets, Navigating DataSets, Searching and
Sorting DataSets, Updating DataSets, Responding to DataSet Changes, and Binding Controls to DataSets
topics in this manual. This project uses the "ExampleData" database that is automatically added to the
Database Manager when the example applications are installed.

Transactions Example

Page 29

Getting Started

"‘ Tranascticem Erample
¥ H + - e

After installation, the transactions.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\transactions subdirectory. It illustrates the dataset and database transaction
functionality discussed in the Creating and Loading DataSets, Navigating DataSets, Searching and Sorting
DataSets, Updating DataSets, Responding to DataSet Changes, Binding Controls to DataSets, and
Transactions topics in this manual. This project uses the "ExampleDatabase" database that is automatically
added to the Database Manager when the example applications are installed.

Multimedia Example

o, Multimedis Compls

After installation, the multimedia.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\multimedia subdirectory. It illustrates the dataset functionality as well as how to use the
TAudio control to play audio files. This example project uses the "ExampleDatabase" database that is
automatically added to the Database Manager when the example applications are installed.

This example application includes the relevant database tables, but the audio track BLOB fields are empty
due to their size and the number of tracks. If you wish to see this example application live, you can do so
here:

Elevate Web Builder 2 Multimedia Example

Google Maps Example

Page 30

Getting Started

o}, Google Maps Exanpile

After installation, the maps.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\maps subdirectory. It illustrates how to use the TMap control to perform geocoding
and mapping using the Google Maps API, as well as how to use the TLocationServices component to
obtain the current location from the browser.

Painting Example

"" Painting Lxarmpie

After installation, the paint.wbp example project will be located in the My Documents\Elevate Web Builder
2\Projects\paint subdirectory. It illustrates how to use the TPaint control and its TCanvasElement
functionality to perform drawing operations.

Slideshow Example

Page 31

Getting Started

After installation, the slideshow.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\slideshow subdirectory. It illustrates how to use the TSlideshow control to show a
slideshow of images. This example project uses the "ExampleData" database that is automatically added
to the Database Manager when the example applications are installed.

Animation Example

s, At Fringls

After installation, the animation.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\animation subdirectory. It illustrates how to use the Animations properties of controls
to perform animation operations.

Object Persistence Example

Page 32

Getting Started

After installation, the persistence.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\persistence subdirectory. It illustrates how to use the persistence functionality to
load/save published properties to/from TPersistent descendant classes.

Login Client Example

* Login Client Example

After installation, the loginclient.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\loginclient subdirectory. It illustrates how to authenticate a user ID and password using
the TServerRequest component and a web server module project (see next).

Login Module Example

After installation, the loginmodule.dpr example Delphi project will be located in the My
Documents\Elevate Web Builder 2\Projects\loginmodule subdirectory. Unlike the other client projects
mentioned above, the loginmodule.dpr example project is a server-side Delphi project that shows how to
create a web server module for authenticating a login using a user ID and password. Please see the
Creating Web Server Modules topic for more information on downloading the Elevate Web Builder 2

Page 33

Getting Started

Modules installation for your version of Embarcadero RAD Studio and Delphi. This download must be
installed before you can begin creating web server modules for use with Elevate Web Builder applications.

In addition, a pre-compiled copy (loginmodule.dll) of the loginmodule example project will be located in
the \bin\loginmodule\win32 subdirectory under the main installation directory, and this pre-compiled
web server module will be added to the IDE during the example installation so that it can be used with the
Login Client example project above.

PDF Client Example

Feriormance of Br Trae Concusreney Control Algorithms

¥ Erirfyees mod Hchsal & Cery

After installation, the pdfclient.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\pdfclient subdirectory. It illustrates how to dynamically request and load PDF files from
the Elevate Web Builder Web Server using the TServerRequest component, the TPlugin control, and a web
server module project (see next).

PDF Module Example

After installation, the pdfmodule.dpr example Delphi project will be located in the My Documents\Elevate
Web Builder 2\Projects\pdfmodule subdirectory. Unlike the other client projects mentioned above, the
pdfmodule.dpr example project is a server-side Delphi project that shows how to create a web server
module for loading PDF files from a server directory. Please see the Creating Web Server Modules topic
for more information on downloading the Elevate Web Builder 2 Modules installation for your version of
Embarcadero RAD Studio and Delphi. This download must be installed before you can begin creating web
server modules for use with Elevate Web Builder applications.

In addition, a pre-compiled copy (pdfmodule.dll) of the pdfmodule example project will be located in the
\bin\pdfmodule\win32 subdirectory under the main installation directory, and this pre-compiled web

server module will be added to the IDE during the example installation so that it can be used with the PDF
Client example project above.

Database Module Client Example

Page 34

Getting Started

After installation, the databaseclient.wbp example project will be located in the My Documents\Elevate
Web Builder 2\Projects\databaseclient subdirectory. It illustrates how to load datasets from the Elevate
Web Builder Web Server using a database module project (see next).

Database Module Example

After installation, the databasemodule.dpr example Delphi project will be located in the My
Documents\Elevate Web Builder 2\Projects\databasemodule subdirectory. Unlike the other client projects
mentioned above, the databasemodule.dpr example project is a server-side Delphi project that shows
how to create a database module for loading a dataset from an ElevateDB database and demonstrates the
usage of the TEWBDatabaseAdapter and TEWBDataSetAdapter components for generating/consuming
JSON from TDataSet-descendant component instances in Embarcadero RAD Studio and Delphi. Please see
the Creating Web Server Modules topic for more information on downloading the Elevate Web Builder 2
Modules installation for your version of Embarcadero RAD Studio and Delphi. This download must be
installed before you can begin creating web server modules for use with Elevate Web Builder applications.

In addition, a pre-compiled copy (databasemodule.dll) of the databasemodule example project will be
located in the \bin\databasemodule\win32 subdirectory under the main installation directory, and this
pre-compiled database module will be added to the IDE during the example installation so that it can be
used with the Database Module Client example project above.

Page 35

Using the IDE

This page intentionally left blank

Page 36

Using the IDE

Chapter 2
Using the IDE

2.1 Introduction

The Elevate Web Builder IDE is comprised of several distinct parts, each with their own specific
functionality as it relates to the development process. The various parts of the IDE are illustrated below:

o Pt = i | b =
1 Main Menu = ™
. E e [ey e e e e S L L LT
and Toolbar ™ | . - e Palotte
—r— —— |l Ol — —— i | o e — e —
----- o ~ Farm
-:I..- h- .._-.-. - Designer and
) - b, Data-Bound Contecks Code Editor -
o ek Project
Manager
Object
Inspeckor
et a—
-a
Database
Manager

Mossage
Window

The main menu and toolbar provide options for:

@ Creating new visual or non-visual projects

@ Creating new forms, databases, and source units in a project

@ Adding existing forms, databases, and source units to an existing project

= Modifying project options

@ Compiling, deploying, and running projects

@ Saving and closing projects

= Viewing units and forms

@ Adding components to, removing components from, and rebuilding the component library
= Creating new control interfaces and modifying existing control interfaces

Page 37

Using the IDE

Eile Edit View Project Bun [Debug Library Environment Page Help

GEE R EEE W 3O =] 6 Stal
[
Internal Web Server v| = | -
i- - R e T R | -~ LR TR -i [P I T oamd b
Note

The Debug option on the main menu is not enabled at this time and is not functional. It will be
used to enable debugging of design-time code at a later time.

The middle page control of the IDE is reserved for all open source units, forms, and databases. Each

source unit, form, and database is docked to a page in the page control and presented using the form or
database designer and code editor.

Note

Source units that aren't associated with a form or database only use the code editor, and not the
form or database designer.

Control interfaces are also docked to the middle page control when opened, and are presented using the
interface editor. Control interfaces are not associated with a specific project, but open control interfaces
are saved with open projects so that they are re-opened whenever the project is re-opened.

Page 38

2.2 Creating a New Project

Use the following steps to create a new application project in the IDE:

@ Click on the File option in the main menu. The File menu will open:

File | Edit View Project Run Debug Library |

Mew

Open.., Ctri+0

[

Open Project...

=4 OpenInterface...

Reopen k|

Save

Close
Clo=e All
Exit

T

Project Ctrl+M
Unit
Form

Database |

Interface

Using the IDE

@ Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,

select the Project option.

@ A dialog will be displayed that will allow you select the type of project that you would like to create,

either visual or non-visual:

Please Select the Project Type

=

(]

[| Visual Project with Form Support]

‘ - Mon-Visual Project ‘

Cancel

Select the desired project type, and the new project will be opened in the IDE.

Page 39

Using the IDE

= If you selected a visual project type, you will then be prompted to select the type of form class to
use as the ancestor of the main form for the visual project:

I-IP‘-IEW Form @

-

Please select the ancestor form class for this new form instance:

TForm - J

Ok J| Cancel |

If you're unsure as to which form class to use, just use the default TForm class.

Visual Projects vs. Non-Visual Projects

The main difference between visual projects and non-visual projects is the way that the IDE generates
code in the project source file as forms/source units are added and removed from the project.

Use the following steps to access the project source file:

@ Click on the Project option in the main menu. The Project menu will open:

Eun Debug Library
g Add to Project... |

Rermaowve from Project...

| View Source |

| = - B

* @ Compile Ctrl+F9
; il Deploy...
i=| Options...

s

@ Click on the View Source option in the Project menu to open the project source file in the code
editor.

For visual projects, the project source file's contains clause is updated to include the name of the source
units included in the project, as well as the application startup code for the TApplication component that
is used with visual applications. In addition, any forms that are marked as auto-create forms in the Project
Options are automatically created here. You can see how this looks in the following image:

Page 40

Using the IDE

project Projectl:

Contains contains Unitl:

clause
uses WebForms, WebCtrla:
begin
Application.Title := '';
Application Application.LoadProgress := False:
Startup Code Application.CreateForm (TForml) ;
b) Application.Run('Formi');
end.
Note

You'll notice that the IDE automatically inserts the WebForms, and WebCtrls units into the uses
clause. These units are necessary to support the generated application startup code, and should
never be removed.

For non-visual projects, the project source file's uses clause is updated to include the name of the source
units included in the project only. You can see how this looks in the following image:

project Projectl:
Uses clause | uses WebCore;

begin Project
end. code

The user code would be added in the begin..end block.

Note
You'll notice that the IDE automatically inserts the WebCore unit into the uses clause. This unit is
necessary, and should never be removed.

Page 41

Using the IDE

2.3 Adding to an Existing Project

You can easily add new forms, databases, and units to an existing project in Elevate Web Builder.
Adding a Form to a Project

Use the following steps to add a new form to an existing project:

@ Click on the File option in the main menu. The File menu will open:

[Eile] Edit View Project Run Debug Library ¢

Mew | Project Ctri+N
B Open. cuk0 | [T Unit I
L Open Project... :==| Form
= OpenInterface... | 2] Database |
fienpen 4 Wi Interface
Save tri4 . 'I
Save As..
Save Project As...
Ik Save All Shift+ Ctrl+5
Close
Close All
Exit

@ Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,
select the Form option.

@ You will then be prompted to select the type of form class to use as the ancestor of the form for the
visual project:

I-IP‘-IEW Form @

-

Please zelect the ancestor form class for this new form instance:

TForm - J

Ok J| Cancel]

If you're unsure as to which form class to use, just use the default TForm class.

= A new form will now appear in the form designer. Please see Using the Form and Database
Designers. for more information on how to use the form designer.

Page 42

Note

Using the IDE

The Form option is only available from the New sub-menu when a visual project is active. You
cannot add new forms to non-visual projects.

Adding a Database to a Project

Use the following steps to add a new database to an existing project:

@ Click on the File option in the main menu. The File menu will open:

(Eile] Edit View Project Run Debug Library E

Mew

= Gpen... Ctrl+ 0 L)
Open Project..,
&+ OpenInterface...

Recpen ¢

C

MAVE

Project Ctrl+M
Unit

fa

Form

Database

Interface

Save As..,

Save Project As...
led Save All Shift+Ctrl+5
Close
Close All
Exit
|

@ Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,

select the Database option.

= You will then be prompted to select the type of database class to use as the ancestor of the

database for the visual project:

o

Mew Database Instance

Please select the ancestor class for this new database instance

-,

===

TDatabase

5

8] J| Cancel]

If you're unsure as to which database class to use, just use the default TDatabase class.

Page 43

Using the IDE

@ A new database will now appear in the database designer. Please see Using the Form and Database
Designers. for more information on how to use the database designer.

Note
The Database option is only available from the New sub-menu when a visual project is active. You
cannot add new databases to non-visual projects.

Adding a Source Unit to a Project

Use the following steps to add a new source unit to an existing project:

@ Click on the File option in the main menu. The File menu will open:

[Eile| Edit View Project Run Debug Library E

Mew | Project Ctri+N
[Open. Ctri+ O Of Unit i
g Open Project... :=| |‘Form
= OpenInterface... | 2| Database
Regpen ; | Interface
Save tri+ 1] |
Save As...
Save Project As...
kd Save All Shift+Ctrl+5
Close
Close All
Exit

@ Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,
select the Unit option.

@ A new source unit will now appear in the code editor. Please see the Using the Code Editor topic for
more information on using the code editor.

Page 44

Using the IDE

2.4 Modifying Project Options

The project options for a project include:

@ General application options (title, icon, whether to show load progress)
@ Auto-creation of forms and databases in visual applications

@ Compilation options (search paths, output paths, output compression)
@ External Files
= Deployment options

Use the following steps to modify the project options for a project:

@ Click on the Project option in the main menu. The Project menu will open:

ﬁun Debug Library

|4 Addto Project.. [

| o Remove from Project...

%] Wiew Source J
ﬁl & Compile Ctri+F2 !_|
; el Deplay.. |
_| f Options... :
Frcs T B

@ Click on the Options option in the Project menu to open the Project Options dialog.

' Project Options for DataBound =

Application | Application ||| Forms and Databases | (| Compilation | ||] External Files | P B

- |Forms and Databases

#| Compilatian 1 0 ska-Bound Controls Example

| | Bdternal Fries

i Deployment -
fcon lcon.aco

Preview | g

u" Show load progress

l 0K J Cancel

Page 45

Using the IDE

Application

For visual applications, the Application page provides options for specifying the title of the application,
the icon to display in the browser window for the application, and whether or not to show load progress.

L Application || ~| Forms and Databases | @ Compilation | ||} External Files | L) 2 "._.

Title Data-Bound Controls Example

Icon Iconiico B

Preview i &

[¥] Show load progress

Page 46

Option

Title

Icon

Show load progress

Forms and Databases

Using the IDE

Description

The application title is the descriptive name for the
application and, in most modern browsers, will appear in the
caption bar of the browser window.

The application icon is a 16x16 or 32x32 Windows icon file
that is displayed in the browser window next to the
application title. This icon is commonly known as a "favicon"
(short for "favorite icon") because the icon is also used to help
identify the application in "favorites" or "bookmarks" in the
browser.

You can type in the file name directly, or use the browse
button (...) to select the icon file using a common Windows
file dialog. After a valid file name has been specified or
selected, a preview of the icon file will be shown in the
Preview area.

Note
You do not have to specify an icon for an application.
It is completely optional.

If checked, this option will turn on the load progress dialog
for the application. This dialog is shown while all forms
marked as auto-create are being created. See the Forms
section below for more information on determining which
forms will be auto-created.

For visual applications, the Forms and Databases page allows you to specify which forms and databases in
the project should be auto-created, and which forms and databases should not be auto-created. The first
form in the list of auto-create forms and databases is automatically designated as the main form of the
application, but you can select a different auto-create form as the main form using the combo box at the

top of the page.

Page 47

Using the IDE

Lo} Appticat'ronl L=/ Forms and Databases | | Compilation | ||} External Files | (&8 "

Wain Form I MainForm = |

Auto-Create Forms and Databases Available Forms and Databases

MainForm

v 2 v a

All updates to the main form and/or the auto-create forms and databases list will be reflected in the
project source file. The following shows the project source file that corresponds to the auto-create forms
and databases list above:

project Projectl:

containsg Unitl, Unit2, Unit3;

nses WebForms, WebCtrls:

begin
Application.Title (= '';
Application.LoadProgress = False:;

Application.CreateForm (TForml) ;
Application.CreateForm (TForms?) ;
Application.CreateDatabase (TExampleDatabase) ;
Application.Bun ('Formi') ;

end.

Page 48

Option

Main Form

Auto-Create Forms and Databases

Available Forms and Databases

Warning

Using the IDE

Description

The main form is set to the first form that is designated as
auto-create, or blank if no forms are designated as auto-
create. You can select a different main form by using this
combo box.

The IDE can be configured, via the Environment Options
dialog, to automatically add any new forms and databases
created or added to a project to this list. If you don't want a
form or database to be automatically created, you can move
the form or database to the available list box by dragging and
dropping the desired form or database into the Available
Forms list box. You can select multiple forms and databases
to drag and drop by holding down the Ctrl key and selecting
the forms and databases using the mouse.

This list box shows all forms and databases that are part of
the project, but aren't marked as auto-create.

If you try to show or hide a form that has not been created yet, and is not set as auto-create, you
will get a run-time error in the web browser. Likewise, a similar run-time error will occur if you try to
access any components on a form or database that haven't been created yet, such as trying to

access a dataset in a database.

Compilation

The Compilation page allows you to configure the compilation options for both visual and non-visual

projects.

Page 49

Using the IDE

i Application [—| Forms and Datahasesi @ Compilation !__ External F”E"_‘.-.I._; 2

Search Paths
Output Path output

Output Loader databound.html

Show [¥|Hints [V] Warnings
[¥] Compress Qutput

Icon Font M\products'sourcel ewb2\fonts\ EWBlcons, otf D

[¥] Embed in loader

1]

Script databound.js

Option

Search Paths

Output Path

Output Loader
Output Script

Show Hints/Warnings

Page 50

Description

In many cases you will not need to include any additional
compilation search paths for a project. By default, the
compiler will look in the project source folder and the
component library search paths for any referenced units.
Please see the Modifying Environment Options topic for more
information on modifying the component library search
paths. However, in certain cases you may want to include
additional search paths for common library source units or
custom control interfaces that are used between multiple
projects, and this is where you would do so. When specifying
more than one search path, be sure to separate multiple
paths with a semicolon ().

This path specifies the output path where the application
HTML (.html) loader file and application JavaScript (,js) source
file will be emitted. This path is relative to the main project
source folder. If you specify an absolute path here, the IDE
will automatically convert it to a relative path when the
Project Options dialog is closed by clicking on the OK button.

This file name specifies the emitted output name of the
application HTML (html) loader file.

This file name specifies the emitted output name of the
application JavaScript (js) file.

Make sure these check boxes are selected (default) in order to
see all hints and warnings from the compiler about unused
variables and other compilation conditions that you may
need to know about.

Using the IDE

Compressed Output When this check box is selected, the compiler will emit the
HTML and JavaScript for the application in a highly-
compressed and obfuscated form. This normally can reduce
the size of the resulting HTML and JavaScript files by 50% or
more.

Icon Font This file name specifies the icon font file to use for the
embedded icons used with Elevate Web Builder. The icon font
file name can use absolute or relative paths, but it is
recommended that you use an absolute path in the file name
so that there isn't any issue with the compiler finding the icon
font file. By default, the icon font file is set to the default icon
font file EWBIcons located in the \fonts subdirectory under
the main installation directory. Please see the Icon Library
topic for more information on using icon fonts with Elevate
Web Builder.

Embed in loader This check box controls whether the specified icon font file
name is embedded directly in the HTML loader file created
when compiling an application, or whether a link to the icon
font file name is used instead. By default, the icon font file will
be embedded in the HTML loader file. Please see the
Compiling Applications topic for more information on
compiling projects with Elevate Web Builder.

External Files

The External Files page allows you to configure which external files (external Javascript, images, etc.) you
want to include with your project.

| Application I _—| Forms and Databases ! |@| Compilation | ||| Bxternal Files I;] [
Mame Type
i
Addi, | | Remove

When you include an external file with your project, the compiler will copy the source file to the output

Page 51

Using the IDE

path for the project and, if necessary, emit a reference to this source file in the HTML loader file that is also
emitted into the output path during compilation. Some external files such as external Javascript source
code require a link to the file in the emitted HTML loader file. Please see the External Interfaces topic for
more information on interfacing external JavaScript source code in your application source code.

Deployment

The Deployment page allows you to configure how your project should be deployed when the Deploy
option is selected from the main menu or main toolbar. There are two deployment methods currently
available for a project:

Method Description

Copy This is the default method and only requires a destination
path name to use for the destination of the copy operation.

FTP This deployment method will use the File Transfer Protocol
(FTP) to copy all output files for the application to the
specified destination path on the specified FTP server.

Warning

During deployment, the IDE will try to create any output directories that are required, so you
should make sure that you have the proper user privileges for the destination path for either
deployment method.

Deploying When an Application is Run
Use the Deploy On Run check box to select whether the application should automatically deployed before
itis run in the IDE. This is useful for applications that are being run from an external web server and need

to be deployed to the external web server prior to being run. This option is ignored when an application is
run from the internal web server that is embedded in the IDE.

Copy

Page 52

Using the IDE

=| Forms and Databases | @ Compilation | K External Fiia| \&l Deployment |_‘_iL|

Deployrment Method IC-“PY- "_'_] [T Deplay an Run

Destination Path

(=]

Option Description

Destination Path This is the path where all application output files will be
copied. The default value is blank (*"), and you must specify a
path or the deployment will fail with an error.

FTP

-=| Forms and Databases | @ Compilation | I External Fiia| \&l Deployment |_4_iL|

Deployrment Method IF[P -_r_] [7] Deploy on Run
FTP Server Host Mame or IP Address Port
ftp.elevatesoft.com 2

User Name test]

Password esesssssesss

’ Test Connection...

Destination Path

JSdatabound

Page 53

Using the IDE

Option

FTP Server Host Name or IP Address

Port

User Name

Password

Destination Path

Description

This option specifies the host name (domain name) or IP
address (XXX XXX.XXX) of the FTP server where the
application output files should be deployed.

This is the port number on which the FTP server is listening.
The default port for FTP servers is port 21.

This is the user name to use when logging in to the FTP
server. If the FTP server does not require a user name and
password, then leave this option blank (the default).

This is the password to use when logging in to the FTP server.
If the FTP server does not require a user name and password,
then leave this option blank (the default).

This is the path where all application output files will be
copied. The default value is blank (""), and this indicates to
copy all application output files to the root directory of the
FTP server.

The Test Connection button can be used to verify that you configured the FTP server and login options
correctly. If you have done so properly, then you will see a message dialog affirming the fact that the IDE
was able to successfully connect and login to the specified FTP server. If there is an error making the
connection or logging in with the specified user name and password, then you will see a message dialog
with the appropriate error message that indicates the problem.

Page 54

Using the IDE

2.5 Compiling a Project

When a project is compiled, Elevate Web Builder performs the following steps:

@ The project source file is compiled.

@ All source units referenced in the project source file are compiled. In each source unit, all referenced
source units are compiled, and this continues until all referenced source units are compiled.

@ After all referenced source units are compiled, the application is emitted. During the emitting phase,
the compiler creates a single loader HTML (Hyper-Text Markup Language) file with the same root
name as the project, and a single JS (JavaScript) file with the same root name as the project.

The following illustrates the compiled output of an Elevate Web Builder application:

HTHML Loader File {.html)

; loads | 1
JavaScript Application File {.js)

Elevate Web Builder Runtime Application Structure

By default, all output files are emitted in an "output" folder located within the same folder as the project.
Please see the Modifying Project Options topic for more information on modifying the compilation output
folders.

Use the following steps to compile a project:

@ Click on the Project option in the main menu. The Project menu will open:

ﬁun Debug Library

g Addto Project.., |

= Remove from Project...

5] View Source |
¢

& Compile Ctri+F39 |
;___, Deploy...
J =] Cptions...
Frcs

@ Click on the Compile option in the Project menu to compile the current project. If there are any
hints, warnings, or errors during compilation, they will appear in the Messages panel at the bottom
of the IDE. If any errors are present, the compilation will fail and the application output files will not
be emitted.

You can also use the keyboard to compile an application by holding down the Ctrl key and hitting the F9
key.

Page 55

Using the IDE

Page 56

Using the IDE

2.6 Deploying a Project

A project can be deployed using a straight copy method (default), or by using a connection to an FTP
server. Please see the Modifying Project Options topic for more information on selecting the deployment
method, and to generally configure the deployment.

Note

The last compiled version of a project is what will be copied to the destination path when a project
is deployed. It is always wise to make sure to compile a project before deploying in order to ensure
that the most recent version of the application is properly copied.

Use the following steps to deploy a project:
@ Click on the Project option in the main menu. The Project menu will open:
Bun [Debug Library

g Addto Project., |

| = Remove from Project...

E:_J View Source]
-r. & Compile Ctrl+F2 _i
;__; Deploy...
j = | Options...

VST

@ Click on the Deploy option in the Project menu to deploy the current project. During deployment,
information about each application file being copied will appear in the Messages panel at the
bottom of the IDE. In addition, a progress dialog will be displayed that shows the total progress of
the application deployment, as well as the progress of the current file being copied:

i Deploy Applicetion @

Copying files to: /databound (ftp.elevatesaft.com)...

Copying Mi\products\sourcehewb\ databound\output\databound.js.

F =
Cancel

Page 57

Using the IDE

2.7 Running a Project

It is possible to run projects directly in the IDE for testing purposes. The IDE uses an embedded version of
the Internet Explorer web browser to run the application.

Note
Elevate Web Builder requires that Internet Explorer 9 or higher be installed in order to properly run

applications in the IDE.

Use the following steps to run a project:

@ Use the web server combo box to select the web server that you want to run the project from:

Internal Web Sercer - =1

By default, the internal web server embedded in the IDE is automatically set as the default web
server. You can add external web servers by using the External Web Servers tab in the
Environment Options dialog.

To the right of the web server combo box are two buttons that can be used to start and stop the
selected web server. These options only work with the internal web server embedded in the IDE and
are unavailable for any external web servers.

Note
If the internal web server is selected, but is not started, then the local file system will be used

to run the application. We recommend that you not run the application from the local file
system unless the application doesn't contain any databases and doesn't execute any server
requests. Attempting to run an application that uses these features from the local file system
will result in numerous runtime errors.

@ Click on the Run option in the main menu. The Run menu will open:

Bun | Debug Librany

Run Fa i

Parameters...

Feset

Page 58

Using the IDE

@ Click on the Run option in the Run menu to run the current project. The IDE will automatically
compile the application before running it. If there are any hints, warnings, or errors during
compilation, they will appear in the Messages panel at the bottom of the IDE. If any errors are
present, the compilation will fail, the application output files will not be emitted, and the application
will not run.

If deployment has been configured for the application via the Deployment tab in the Project
Options dialog and the Deploy On Run option has been selected, then the application will be
automatically deployed after it has been successfully compiled and before it is actually run in the
web browser in the IDE. If there are any errors during deployment, or if the deployment is cancelled,
then the application will not run. The Deploy On Run option is ignored when the selected web
server is the internal web server.

Note

If you are running the application from an external web server, then it is very important that
you configure the deployment for the application, being sure to select the Deploy On Run
option and then ensure that the deployment settings are accurate for the external web server.
Failure to do so will result in an outdated version of the application running from the external
web server.

You can also use the keyboard to run an application in the IDE by hitting the F9 key.

Specifying Run Parameters

You can specify parameters to be used with the URL used to run the application by using the Parameters
option on the Run menu. URL parameters are specified in the following format:

?paraml=paramvaluel¶m2=paramvalue2¶m3=paramvalue3

You can also specify an anchor to be used with the URL used to run the application:

t#tanchorl

Note
If specifying both parameters and an anchor, the anchor should be placed after the parameters.

Page 59

Using the IDE

2.8 Saving a Project

Saving Projects

Use the following steps to save a project:

@ Click on the File option in the main menu. The File menu will open:

Eile | Edit Miew Project BRu
[Mew L |

L Dpen... Ctri+0

4 Open Project...

== OpenInterface... —

Reopen L

|=—! Save Ctrl+5]
Save As..,
Save Project As.. —

kd Save All Shift+ Ctrl+5 .t
c

Close -
Close All to
Exit

@ Click on the Save All option in the File menu to save all modified source unit and form files, as well
as the project itself.

Page 60

2.9 Viewing Project Forms and Databases

Use the following steps to view a listing of all forms and databases in a project:

@ Click on the View option in the main menu. The View menu will open:

{ |
LT

g L&

@ Click on the Forms and Databases option in the View menu to open the Project Forms and

Welcome Page F&
Project Manager Cirl+Alt+F11
Database Manager

Units... Ctrl+F12

Forms and Databases... Shift+F12

Toggle Designer/Unit
Object Inspector F11

Messages
i I I

Databases dialog:

Project Run Debug Library E

‘.'l

-

s Project Forms and Databases

| Forml (Unitl . whs)

QK

|| Concel |

Note

Using the IDE

Source units that don't have associated form or database files will not appear in the Project Forms
and Databases dialog.

Page 61

Using the IDE

2.10 Viewing Project Units

Use the following steps to view a listing of all source units in a project:

Page 62

@ Click on the View option in the main menu. The View menu will open:

View | Project Bun Debug Library E

< & Welcome Page F&
w‘ =] Project Manager Ctri+Alt+F11
;f | & | Database Manager

§2] Units... Ctrl+F12
i .= Forms and Databases... Shift+F12
| Toggle Designer/Unit

,,s_ & | Object Inspector F11

Messages

e

@ Click on the Units option in the View menu to open the Project Units dialog:

P

G Project Units

(L] Unitl (Unitl.wbs)

oK

J | Cancel

iy

Using the IDE

2.11 Using the Object Inspector

The object inspector allows you to modify various properties of each user interface component on a form,
giving you complete control over how each component looks and behaves. It is also used to modify the
properties of non-visual components that don't actually have any visual presence on a form at run-time
but are placed on a form at design-time, such as datasets, timers, and server requests.

| | & | Object Inspector |

MainForm: TForm b ‘

Properties E,.-;t?i
AlwaysOnTop False lE‘

Background (TBackground)

[+ Border (TBorder)

[# Constraints (TConstraints)

F Corners (TCorners)
Cursor criuto
Height 600

[InsetShadow (TInsetShadow)

H Layout (TLayout)

Left]

[* Margins (TMargins)
Mame MainForm
Opacity 100

F QutsetShadow (TOutsetShadow)

[* Padding (TPadding)
ScrollBars chMone
Top]

Visible True
Width &a0
Note

The object inspector will only show properties for the currently-selected components on the active
form. It will be blank if a form is not active, such as when you are editing a source unit that does
not have an associated form, or if there isn't a project open in the IDE. Also, if you have selected
more than one component on the active form, the object inspector will only show the properties

that are common to all selected components.

The object inspector consists of a component selection combo box and two pages that represent the
properties and events of a component. You can switch between the two by clicking on the appropriate tab
at the top of the object inspector.

By default, the object inspector is visible in the IDE. If the object inspector is closed, you can open it by
hitting the F11 key, or by using the Object Inspector option on the View menu:

Page 63

Using the IDE

View | Project Bun Debug Library [

{ & Welcome Page Fo

Project Manager Ctrl+AR+F11

Database Manager

1 0] Units... Ctrl+F12
Forms and Databases... Shift+F12
Teggle Designer/Unit

m_1
[Pe|

Object Inspector F11

Messages

Modifying Properties

To modify any property of a component, make sure that the Properties page is the active page in the
object inspector, click on the desired property value, and type in the new value. If applicable, the property
may have a special property editor in the form of a drop-down list or dialog that is accessible using a
button to the right of the property value. The following is an example of the TStrings property editor for

the TMultiLineEdit Lines property:

e

W Strings Editor
(4
"ClagsName™: "IForm",
"Wame": "Forml™,
"Propertieg™: |
"TapTs ;
"Left™: 0O,

"Height™: 937,
"Widch": 851,
"Background™: |
EAELTA "Color™: 4294309365 1 },

" wan

CaptionBar™: ["Name™:
"Caption™: "Form 1™,
"Font™: { "Color™: 4294309365 },
"MinimizeButton™: ["Name™: "™ }.
"RestoreButton™: ["Hame™: "" },
"CloaeButton™: { "Name™: "™ } 1;

"Layout™: f "Pogition™: 7.},
"CutsetShadow™: | "Color™:
"Controla™: [

L] 11

| Load... || Save,, || Clear |

1877721600, "Hor

o

z0Efset™: &, "VertOfEf:

3

(0] J| Cancel ‘

Double-clicking on the property value will also automatically launch the applicable property editor.
Properties that represent collections, such as the TDataSet Columns property, will cause an applicable

collection editor to be launched below the object inspector:

Page 64

Using the IDE

: = Colurans Editor

L e

[CustomerlD -
CompanyMame '
Addressl
Address2
City
StateProvince
ZipPostalCode
Country

m

Terms
Motes
Contact -

Basic information about each property can be found at the bottom of the object inspector.
Modifying Event Handlers

To add, modify, or delete an event handler for a specific component event, make sure that the Events
page is the active page in the object inspector, and then click on the desired event. To add a new event
handler, or modify an existing event handler, double-click on the event handler name. This will activate
the code editor and position you directly on the appropriate event handler code block. If you are adding a
new event handler, then the event handler code block will be empty.

Note
If you do not add any code or comments to the new event handler, then it will automatically be
removed by the IDE the next time that the source unit and form is saved.

To delete an existing event handler, but keep the event handler code present in the source unit, clear out
the event handler name from the event by selecting the entire name and hitting the Delete key. To delete
an existing event handler (including the event handler code in the source unit), double-click on the event
handler. This will activate the code editor and position you directly on the appropriate event handler code
block. Delete all code between the starting begin and end keywords of the event handler code block. The
next time the source unit and form is saved, the event handler will automatically be removed by the IDE.

For more information on using the code editor, please see the Code Editor topic.
Context-Sensitive Help

You can get context-sensitive help on any property or event in the object inspector by clicking on the
desired property or event and hitting the F1 key. For more information on using the help browser, please
see the Accessing Help topic.

Page 65

Using the IDE

2.12 Using the Form and Database Designers

One of the first phases of web application development is the design of the user interface and database
view(s) for the application. This is accomplished in the IDE by using the WYSIWYG (What You See Is What
You Get) form and database designers.

The form and database designers have the following layout:

L. | { =

Toolbar for Alignment,
Layering, Tab Order, and
Control Interfaces

Active
Form/Database

ll::ll._iILfII." Button lfor - -
Form/Database
Designer and Code Informational
Editar Panels
Pow=0.0 Se: 547, 450

The unit of measure used by the designers is the pixel, and the resolution is always assumed to be 96
pixels per inch. All modern web browsers use a virtual resolution of 96 pixels per inch, regardless of the
actual resolution on the client machine's display. The web browser automatically handles the translation
between the virtual resolution and the display resolution of the client machine.

By default, the designers show a grid to aid with component placement and alignment, and the grid
guides (dots) are spaced apart at 8 pixel intervals. Please see the Modifying Environment Options topic for
more information on modifying the designer grid properties.

Adding a Component to a Form

The component palette is available at the top of the main IDE window, and reflects all installed
components in the component library, organized by their installation category:

| Standard | Graphics_ﬁ Indicators_ﬁ Multimedia-i-tnntainers-l Menus i TuulBars._E Bmwser_I- Da

] s we ow T o DT e PR mmt W TR

Page 66

Using the IDE

The component palette is used to add both non-visual components and visual controls on to the form
and database designers for use with your forms and databases. Non-visual components are represented
visually at design-time, but are actually non-visual components at runtime.

Note
The database designer only allows for non-visual components to be placed on the designer
surface, and the visual size of the database instance in the designer is exclusively a design-time

property.

To see more information about a particular component, hover the mouse over the component icon. The
IDE will display the name of the component and the unit in which it resides in a tooltip window.

To add a non-visual component or visual control to the active form or database in the designer, click on
the desired component/control on the component palette, and then click on the active form or database's
client area. A form's client area is the area inside of the borders and caption bar (if present), whereas the
database's client area is the database's entire designer space.

Selecting a Component

To select a single component in the form and database designers, click on the desired component with
the left mouse button. To select more than one component, hold down the Shift key while clicking on the
desired components with the left mouse button. Selecting multiple components is desirable when one
wants to resize or align multiple components at the same time to ensure that their placement or size is
uniform, or when one wants to copy and paste a group of controls or components.

Note
Any time you hover the mouse over any component on the active form or database, tooltip
information will be displayed about the component, including the name and position/size.

You can also use the mouse to directly select a group of components using a lasso:

@ |If the group of components are placed on the form or database itself, you can click and hold down
the left mouse button to begin the selection. Then, while keeping the left mouse button down,
move the mouse to lasso the desired component(s).

@ If the group of components are placed on a sub-container (such as a panel), you can click and hold
down the left mouse button, while also pressing the Ctrl key, to begin the selection. Then, while
keeping the left mouse button and Ctrl key down, move the mouse to lasso the desired

component(s).

Resizing a Component

Once a component has been placed on the active form or database's client area, you will see that the
component will have designer handles on all four sides and corners of the component:

Page 67

Using the IDE

Customer

These designer handles can be used to change the origin and size of a component on the form or
database. To accomplish this, click on a designer handle with the left mouse button, hold the left mouse
button down, and drag the designer handle in the desired direction. You can also use the keyboard to
resize a component by holding down the Shift key while using the up, down, right, and left arrow keys to
resize the component on a pixel-by-pixel basis.

Note

Certain components may have constraints on how tall/wide they can be, and non-visual
components cannot be resized at all. In such cases, attempts to resize the component will result in
the component size not exceeding the constraints imposed by the type of component. Also, you
cannot use the left mouse button to resize components when multiple components are selected. In
such cases, you can only use the keyboard to do so (Shift+Arrow Keys).

Moving a Component

To move a component, click on the component with the left mouse button, hold the mouse button down,
and drag the component to the desired location on the form or database. You can also use the keyboard
to move a component by holding down the Ctrl key while using the up, down, right, and left arrow keys to
move the component on a pixel-by-pixel basis. Both of these techniques also work when multiple
components are selected.

Component Layout and Alignment

The layout toolbar on the form and database designers can be used to adjust the alignment, layering
(send to back/bring to front), and tab ordering of components on the active form or database:

BE | e s oS)| oo o &

Each layout toolbar button has tooltip help that explains the purpose of the button.

Deleting a Component

To delete a component, select the desired component in the form or database designer and hit the Delete
key. This will also work when multiple components are selected.

Page 68

Using the IDE

Warning

Undo functionality is currently not available for the form and database designers, so any
modifications or deletions of components cannot be undone. Please be careful when deleting
components to ensure that one does not lose a lot of hard work. If you do accidentally delete a
component from a form or database, you can fix the issue by simply closing the form or database
without saving the modifications, and then re-opening the form or database. However, this
depends upon how much other work has been done to the form or database since the last save
point, so it is wise to save your modifications on a regular basis.

Default Event Handlers

If you double-click on a component in the form and database designers, a new event handler will be
created for the default event property for the component. For most visual or bindable controls, the default
event property is the OnClick or OnChange event. Please see the Events topic in the Language Reference
for more information on default events.

Toggling Between the Code Editor and Designer

In order to toggle between the code editor and the designer, hit the F12 key, click on the toggle button at
the bottom left-hand corner of the code editor and designer, or use the Toggle Designer/Unit option on
the View menu:

Project Run Debug Library E

| (@] Welcome Page B |

Project Manager Ctri+Alt+F11

L3

;f Database Manager

1 Units.. Ctrl+F12 .E
"\ [= Forms and Databases.., Shift+F12 |
| Toggle Designer/Unit 2 |l
_Ei |&] ObjectInspector F11

5i == Messages I
abirre TS RTFTATITAE [

Context-Sensitive Help

You can get context-sensitive help on any component in the form and database designers by selecting the
desired component and hitting the F1 key. For more information on using the help browser, please see
the Accessing Help topic.

Page 69

Using the IDE

2.13 Using the Code Editor

While the form and database designers handle the user interface design of the application, the code
editor is where the actual functionality behind a form or database is implemented. The code editor has the
following layout:

unit Maing #
interface

oaes Weblore, Webll, Webforma, Weblrrla, Weblate, WebConrs, WebPagea, Weblabels,
Webfzns, WebFdits, WebBrwsr, WebTlbzs, Weblcoans, WebBMITE;

const
ROW- JIORAGE REY = "IWO_Datal

Eypa Saurce
Code
THainForm = class (TForm)
Coscomer: TDataIar:

HeaderPanell: THesderPanel:

CostomerPanel: TRasjcPanel;
SavelLacalCheckBax: TCheckBowx:
CoatomerToolBar: ThacaSecToolBar:

Pagefanall: TPagePansl;
ConcacciPage: TRage:
Labell: TLabel:

ConcactHameEdit: TEdiz;

abeld: TLabel:

ConcaccFaxfdic: TEdim:

e TImage;
Togale Button for |

Fari/ Database ont THUTn:
Designer and Code o Informaticnal
Editor Panels !

Int 112 Cokl Insert

TRage;

Warning
Although all Unicode characters are supported in the code editor, certain double-wide characters
in languages such as Chinese and Japanese cannot be displayed/edited properly at this time.

Automatic Code Updates

All component additions, modifications, and deletions are automatically reflected in the code editor by
the IDE. For example, the following is the code editor showing the source unit of a new form:

Page 70

Using the IDE

hnit Uniti;

interface

uses WeblCore, WebUI, WebForms, WebCtrrls;
type

TForml = class (TForm)
private

{ Private declarabtions }
public

{ Public declaratbions }
end;

VAr
Forml: TEorml;

implementation

end.

The following is the same source unit in the code editor after adding a TButton component.

Page 71

Using the IDE

anit Unitl;

interface

uses WeblCore, WebUI, WebForms, WebCtrls, WebBtns;
type

TForml = class (TForm)
Buttonl: TButton;

VAr
Forml: TEorml;

inplementation

end.

As you can see, the IDE automatically updated the source unit to include the proper declaration for the
newly-added TButton component called Button1. If you then double-click on the Button1 component in
the form designer, the source unit will look like the following:

Page 72

Using the IDE

anit Unitl;

interface

uses WeblCore, WebUI, WebForms, WebCtrls, WebBtns;

type
TForml = class (TForm)
Buttonl: TButton;
procedore ButtonlClick(Sender: TObject) ;
private
{ Private declarabtions }
public
{ Pehlie declarabions j}
end;
var

Forml: TEorml;
inplementation

procedore TForml.ButtonlClick([Sender: TObject) ;
begin

end;

end.

Again, the IDE has automatically updated the source unit to include an empty event handler for the
TButton OnClick event. If you add code to the empty event handler, this code will then be executed when
the button is clicked. For example, let's add a call to the ShowMessage procedure to display a message to
the user:

Page 73

Using the IDE

anit Unitl;

interface

uses WeblCore, WebUI, WebForms, WebCtrls, WebBtns;

type
TForml = class (TForm)
Buttonl: TButton;
procedore ButtonlClick(Sender: TObject) ;
private
{ Private declarabtions }
public
{ Public declaratbions }
end;
var

Forml: TForml:;
inplementation
procedore TForml.ButtonlClick([Sender: TObject) ;
begin

ShowMeszage ('The button was clicked'):

end;

end.

If you do not define any code or comments between the begin and end keywords that define the event
handler code block, the IDE will automatically remove the event handler completely from the source unit
the next time the source unit and form is saved.

Toggling Between the Code Editor and Designer

There are three ways to toggle between the code editor and the designer:

@ Hitting the F12 key

@ Clicking on the toggle button at the bottom left-hand corner of the code editor and designer

Page 74

Using

= Using the Toggle Form/Unit option on the View menu:

View | Project Run Debug Library E

&| Welcome Page

g 2| Database Manager

]' 0} | Units...

F&
Project Manager Chrl+Alt+FI11

Ctrl+F12 |,

Forms and Databaszes... Shift+F12

1 Toggle Designer/Unit
g & OhbjectInspector

5 Messages
FlaTal gt T TEFITATATIA AR

Key Mappings

Fiz2

F11

The following key mappings are active in the code editor. Unless indicated otherwise, holding down the
Shift key while pressing any of the keys that move the cursor position will cause any source code between
the original and the final cursor position to be selected.

Keys

Up Arrow
Down Arrow
Page Up
Page Down
Home

End

Left Arrow

Right Arrow

Enter

Insert

Shift-Insert

Delete

Shift-Delete

Action

Moves the cursor to the previous line in the source code.
Moves the cursor to the next line in the source code.

Moves the cursor to the previous page in the source code.
Moves the cursor to the next page in the source code.
Moves the cursor to the start of the current source code line.
Moves the cursor to the end of the current source code line.

Moves the cursor to the previous character on the current
source code line.

Moves the cursor to the next character on the current source
code line, or to the next line if at the end of the current
source code line.

Inserts a new line at the current cursor position.
Toggles the insert/overwrite mode for the keyboard.

Pastes the source code contents of the clipboard, if any, into
the current cursor position.

Deletes the character at the cursor position.

Copies the currently-selected source code to the clipboard
and deletes the source code from the source code (“cut”
operation).

the IDE

Page 75

Using the IDE

Backspace

Tab

Shift-Tab

Ctrl-Home
Ctrl-End
Ctrl-Page Up
Ctrl-Page Down
Ctrl-Left Arrow

Ctrl-Right Arrow

Ctrl-Up Arrow
Ctrl-Right Arrow
Ctrl-Enter

Ctrl-/

Ctrl-Insert

Ctrl-Backspace

Ctrl-A
Ctrl-C

Page 76

Deletes the character right before the cursor position. If the
cursor is at the start of a source code line, then the current
source code line is moved to the end of the previous source
code line (if present).

Inserts <tab size> spaces at the current cursor position, if the
keyboard is in insert mode, or moves the current cursor
position by <tab size> spaces if the keyboard is in overwrite
mode. Please see the Modifying Environment Options topic
for more information on modifying the tab size used by the
code editor.

Removes <tab size> spaces working back from the current
cursor position, if the keyboard is in insert mode, or moves
the current cursor position to the left by <tab size> spaces if
the keyboard is in overwrite mode. Please see the Modifying
Environment Options topic for more information on
modifying the tab size used by the code editor.

Moves the cursor to the first source code line.
Moves the cursor to the last source code line.
Moves the cursor to the first visible line on the current page.
Moves the cursor to the last visible line on the current page.

Moves the cursor to the start of the previous token in the
source code.

Moves the cursor to the start of the next token in the source
code.

Scrolls the code editor window up by one line.
Scrolls the code editor window down by one line.

Opens the unit name or control interface name at the cursor
position. If text is selected, then the selected text will be used
first for searching for a valid unit name or control interface. If
no text is selected, or the selected text does not represent a
valid unit or control interface name, then the editor will parse
the current token and use it instead.

Comments and un-comments (toggle) the current source
code line.

Copies the currently-selected source code to the clipboard.

Deletes the token right on, or right before, the current cursor
position. If the cursor is at the start of a source code ling, then
the current source code line is moved to the end of the
previous source code line (if present).

Selects all source code in the code editor.

Copies the currently-selected source code to the clipboard.

Ctrl-I

Ctrl-N
Ctrl-T
Ctrl-U

Ctrl-V

Ctrl-X

Ctrl-Y

Shift-Ctrl-Y

Ctrl-Z

Shift-Ctrl-Z
Shift-Ctrl-Down Arrow

Shift-Ctrl-Up Arrow

Context-Sensitive Help

Using the IDE

Indents the current source code line by <tab size> spaces.
Please see the Modifying Environment Options topic for more
information on modifying the tab size used by the code
editor.

Inserts a new line at the current cursor position.
Deletes the token at the current cursor position.

Un-indents the current source code line by <tab size> spaces.
Please see the Modifying Environment Options topic for more
information on modifying the tab size used by the code
editor.

Pastes the source code contents of the clipboard, if any, into
the current cursor position.

Copies the currently-selected source code to the clipboard
and deletes the source code from the source code ("cut"
operation).

Deletes the current source code line.

Deletes the source code from the current cursor position to
the end of the current source code line.

Reverses the last edit or find operation performed on the
source code ("undo" operation).

Replays the last edit or find operation on the source code that
was reversed ("redo" operation).

Moves the cursor from the class definition of a method to the
implementation of the method.

Moves the cursor from the implementation of a method to its
class definition.

You can get context-sensitive help on any keyword or identifier in the code editor by positioning the
cursor over the desired keyword or identifier and hitting the F1 key. For more information on using the
help browser, please see the Accessing Help topic.

Page 77

Using the IDE

2.14 Using the Project Manager

The project manager provides a quick and easy-to-use interface to the contents of a project, including all
source units (code-behind units for forms and databases, and code-only units) and external files like
images or Javascript source files.

|_ Project Manager i |

— L =z

4| FormSubmit
.'4._____ Units
=] Main
. .= Results
3 +« | EBxternal Files
Note

Simply adding an external JavaScript source file to a project is insufficient for actually referencing
such external code from within an Elevate Web Builder application. You must also define an
external interface to the classes, functions, procedures, and variables that you wish to reference in
your application code. For more information on defining external interfaces, please see the External
Interfaces topic.

By default, the project manager is visible in the IDE. If the project manager is closed, you can open it by
holding down the Ctrl and Alt keys and hitting the F11 key, or by using the Project Manager option on the
View menu:

View | Project BRumn Debug Library E
{ {2 Welcome Page Fé

Project Manager Ctrl+Alt+F11

g .= | Database Manager
f (o] Units.. Ctrl+F12 ,;
.= Forms and Databases... Shift+F12 I
Teggle Designer/Unit
g (&| ObjectlInspector F11
— Messages

Adding an Existing Source Unit to a Project

Use the following steps to add an existing source unit to a project using the project manager:

Page 78

Using the IDE

@ Click on the Units node of the project contents tree.

|- | Project Manager b |

T | =

4| FormSubmit
4 {0 Units
-5 Main
i.[=] Results

..... | External Files

@ Click on the Add button in the project manager toolbar:

=)
= A Windows file open dialog will appear. Navigate to, and select, the existing source unit that you
wish to add to the project. Click on the Open button in the Windows file open dialog to complete

adding the source unit to the project.

Removing a Source Unit from a Project

Use the following steps to remove a source unit from a project using the project manager:

@ Click on the name of the source unit that you wish to remove:

_- Project Manager
= O | &
4| FormSubmit
a1 Units
¢ L] Main
. L4=| Results
t.d | External Files

@ Click on the Remove button in the project manager toolbar:

@ A confirmation dialog will be displayed, asking you to confirm the removal of the source unit from
the project. Click on the Yes button to continue, or the No button to cancel the removal.

Note

Removing a source unit from a project does not delete the actual source unit file on disk. It only
removes the reference to the source unit from the project source file (wbp) so that it will not be
considered part of the project anymore.

Page 79

Using the IDE

Adding an Existing External File to a Project

Use the following steps to add an existing external JavaScript file to a project using the project manager:

@ Click on the External Files node of the project contents tree.

[-—| Project Manager

i E R &

all 7 Fu:urm;’iuhmit
4| Units

: _ Results
il | External Files |

@ Click on the Add button in the project manager toolbar:

= The Add External File dialog will appear:

Add External File

Type |JavaScript - @ Local " Resource

File []

| Cancel |

Select the type of external file to add using the Type combo box. If the file is a local file (the default),
then leave the Local radio button selected and specify the local file name using the File edit control
and/or the file selection button to the right of the edit control. If the file is an http resource, then
select the Resource radio button and specify the URL for the resource using the File edit control.
Click the OK button when you are done specifying the external file to add.

Note

When adding an external local file, Elevate Web Builder will automatically convert any
absolute path specified for the external file to a path that is relative to the current project
directory.

If you select Font as the type of external file to add, the Add External File dialog will change to look
like the following:

Page 80

Using the IDE

Add External File

Type |Font - @ Local 7 Resource

File [e]

Font Name |[#i=igerses

Properties [|Bold

[Falic

This additional information is necessary to ensure that the proper font linking information is added
to the project's HTML loader file during compilation, and to ensure that the proper font is selected
at runtime. Use the Font Name combo box to select or enter the name of the font that should be
used at runtime, and the Bold and Italic check boxes to specify if the font is a bold or italic version
of the font.

Removing an External File from a Project

Use the following steps to remove an external file from a project using the project manager:

@ Click on the name of the external file that you wish to remove:

|| Project Manager

- = | |
Ly L | | &=

4. | FormSubmit
4 Units
—| Main
: _ Results
4] External Files

@ Click on the Remove button in the project manager toolbar:

@ A confirmation dialog will be displayed, asking you to confirm the removal of the external file from
the project. Click on the Yes button to continue, or the No button to cancel the removal.

Page 81

Using the IDE

Note

Removing an external file from a project does not delete the actual external file on disk. It only
removes the reference to the external file from the project configuration file (wbc) so that it will no
longer be considered part of the project.

Opening the Project Folder

You can quickly open the project folder for browsing in the operating system by using the project folder
toolbar button in the project manager.

To open the project folder:

@ Click on the Project Folder button in the project manager toolbar:

Quick Compiler Settings for a Project

You can toggle certain compilation settings quickly by using the project compiler options toolbar in the
project manager.

To toggle the compressed output compilation setting:

@ Click on the Compressed Output button in the project manager toolbar:

Page 82

Using the IDE

2.15 Using the Database Manager

The database manager provides a quick and easy-to-use interface to the databases and datasets defined
in the IDE. The databases and datasets that are defined in the database manager are only available to the
internal web server embedded in the IDE, and are a way of automating the usage of databases and
datasets across multiple projects. The outer nodes in the database manager represent the defined
databases, with all datasets within a given database defined as child nodes of each database node.

_ Databaze Manager 3 |
!

CHe e | L

i

CustomerCrders -
Customerltemns
Products
MasterDetail
[Custorner
| CustomerOrders

By default, the database manager is visible in the IDE. If the database manager is closed, you can open it
by using the Database Manager option on the View menu:

Miew | Project Run Debug Library E
{ [&] Welcome Page F&

F =

Project Manager Ctri+Alt+F11

e | 2| D[atabase Manager
j Lol Units... Ctri+F12 _._q
= Forms and Databases... Shift+F12 L
j Toggle Designer/Umit 1
g (& ObjectInspector F11
= Messages

Using Databases and DataSets in Projects

A database defined in the database manager can be used to create a database in a project by dragging
the database from the database manager and dropping it into the project manager for the currently-
opened project. When the database is dropped on or within the Units node of the project manager, a
new TDatabase (or descendant) instance will be created for the project, along with an associated unit, and
all of the defined datasets for the database will automatically be created as TDataSet instances in the new
database instance.

A dataset defined in the database manager can be used to create a new dataset in the project by
dragging the dataset from the database manager and dropping it on an open form or database designer

Page 83

Using the IDE

in the currently-opened project. When the dataset is dropped on the form or database designer, a
TDataSet instance will be created as a component of the form or database and all of the columns in the
dataset will automatically be created in the new TDataSet instance.

Adding a New Database

Use the following steps to add a new database using the database manager:

@ Click on the Add Database button in the database manager toolbar:

e

@ The database editor dialog will appear. Please refer to the next section for information on defining
the database.

Defining a Database

The database editor dialog consists of 2 pages:

= General - the database engine/server type, the name of the database, and the description.

la Adelitig Mew Database (=X

£ General | B Connection Properties

Type | ElevateDB -
n

descngplion

Lancel

Currently, the following database engines are supported:
ElevateDB

DBISAM
ADO (includes OLEDB/ODBC)

Page 84

Using the IDE

@ Connection Properties - the name/location of the database and other configuration properties
essential to establishing a proper connection to the desired database. The options on this page are
specific to the database engine selected on the first page.

) Addin

3| Om

Fa
Lo

Lo
Lo
b Lo
Lo
Lo

Lo

Loda

Lo

g Mew Database

neral| 2 Connechion Properties

CharacterSet
DatabaseMame

reeBufferFlush
calBackupEdtension
1€ at :Ic‘:_|'.: stensmon
alCataloghlame
alConfigistension
calC ?n‘-g“'."lrmr ry
calCont g Same
calConfigPath
calEncry phionPassword
callargeFileSuppont
call ockExtension
Zall L':‘;i.- ategonies
callogExtension
calbaad oghileSize

calsignature

csUnicode

False

EDBBkg
ERBCat
DEDstsbhate

EDECEHg

EDBEConfig

elevatesoft

False

EDBLck

i Jrl‘

ormation leWarning, leErros]
EDBLog

'G

Test Connection..,

Lancel

%=

Once the connection properties are set, you can use the Test Connection button to verify that
everything is set properly. Please see your database engine manual/documentation for more

information on the proper value for each property setting.

= Once you have properly set the connection properties and successfully tested the connection to the
database, click on the OK button to close the database dialog and save the database.

Editing an Existing Database

To edit an existing database using the database manager, simply double-click on the desired database in
the list of databases in the database manager. The database editor dialog will then appear, and you can

use it to modify the database accordingly.

Removing a Database

Use the following steps to remove a database using the database manager:

Page 85

Using the IDE

@ Click on the name of the database that you wish to remove:

|_ Database Manager _ |

!

= o &

= DataBound -

.;--E Crders

» L2 SlideShow
Albums
Tracks
Transactions

| AW |

Results

Parameters

@ Click on the Remove Database button in the database manager toolbar:

@ A confirmation dialog will be displayed, asking you to confirm the removal of the database. Click on
the Yes button to continue, or the No button to cancel the removal.

Adding a New DataSet

Use the following steps to add a new dataset using the database manager:

= Be sure that you have selected an existing database in the database manager by clicking on the
desired existing database:

|_ Datzbase Manager _ |

2 ¥ & D
Customer #
CustomerCrders

Customerlterns

Products

MastgrDetaiI

7] Customer

...l CustomerOrders

1 |

Ll ems

4

@ Click on the Add DataSet button in the database manager toolbar:

s

= The dataset editor dialog will appear. Please refer to the next section for information on defining
the dataset.

Page 86

Using the IDE

Defining a DataSet

The dataset editor dialog consists of 3 pages:

= General - the name of the dataset and the description.

Page 87

Using the IDE

Page 88

i Adeitsy Mew DistaSet el
Gereal Fow Source Previes
@ lable product b

Row Source - the actual source of the dataset rows can be an actual table name from the selected
database, or it can be an SQL SELECT statement.

| Feae ;P.-|_|||1-_'||_ff| yne= Default Value ! for named PaTAMETETs |_[I'I faultValue 1s opiona Paramcted

1 Contaif Spaiel

Discannected | QK ! Cancel

Elevate Web Builder uses a special parameter naming syntax for queries, and does not use the
native parameter functionality in the target database engine. This is done because some database
engines do not support named parameters, or do not support parameter type discovery or
enumeration. When the dataset rows are requested from the internal web server embedded in the
IDE, it automatically populates the named parameters in the query by using the URL "name=value'
parameters passed with the dataset rows request. These parameters can be specified in the
application via the TDataSet Params property.

Using the IDE

@ Preview - use the preview page to make sure that the dataset is returning the correct rows. Any
default values for parameters defined on the Row Source page are applied for the preview, so if you
have not defined any default parameter values you may see zero rows displayed.

{al Adding Mew Diatatet

ProductiD
OV-BATTERY-12PK
QV-BATTERY-4PE

CASH-REGISTER
FLASH-USE-16GE
FLASH-1FhB-32GR
FLASH-USB-8G8
LABEL-MAKER
PEM-BP-1ZPE
PHOME-HEADSET

PROJECTOR-HD
SCAMNMNER-5F
SHREDDER-SF-CC
158-CARD- READER

Dataset opened

" General | o Soustce

CALCULATOR-BUSIMESS

PHOME-SYSTEM-4HS

Prewnew

[Fescription
12-pack of 9-volt battenes
4

It batteries

Barsaniess caloulato

Cash regusier with therrmal printer
16GE USE ftach drree

12GE USH flach divve

BGE LISE ash denve

Label maler - plasthe labels

12- pack of ballpgint pens

Hands-free phone headset

4 -handset phone system with main base

1080p HD Projector

Shest-feed paper seanmer

Shept-feed, cross-cut dhradder with ban

USE maonetic stno card reader

=

T

Cancel

Editing an Existing DataSet

To edit an existing dataset using the database manager, simply double-click on the desired dataset in the
list of datasets in the database manager. The dataset editor dialog will then appear, and you can use it to

modify the dataset accordingly.

Removing a DataSet

Use the following steps to remove a dataset using the database manager:

@ Click on the name of the dataset that you wish to remove:

| = | Database Manager

L

Products

| Items

7| Orders

Customerltems
MasterDetail

°| Customer
[| CustomerOrders

Products |

Page 89

Using the IDE

@ Click on the Remove DataSet button in the database manager toolbar:

= A confirmation dialog will be displayed, asking you to confirm the removal of the dataset. Click on
the Yes button to continue, or the No button to cancel the removal.

Page 90

2.16 Viewing Messages

Using the IDE

The messages view provides status information for compilation, as well as logging of debug messages
sent from a web application. You can find out more information on sending debug messages to the IDE in
the Debugging topic.

Wrage

By default, the messages panel is visible in the IDE. If the messages panel is closed, you can open it by

using the Messages option on the View menu:

View | Project Run Debug Library E

|2

v

m
|

Welcome Page F&
Project Manager Cirl+AR+F11
Database Manager

Units... Ctrl+F12
Forms and Databases... Shift+F12

Toggle Designer/Unit
Ohbject Inspector Fi1

Messages

Compilation Messages

There are three types of messages that may appear during compilation of an application:

=1

Page 91

Using the IDE

Message Type Description

Error This message indicates that an error has occurred during
compilation. You can double-click on the error to go to the
source unit line responsible for the error. Compilation errors
are fatal, and prevent the compiler from successfully emitting
an application.

Warning This message indicates that the compiler is warning that there
is source code present that may cause run-time errors if not
corrected. An example of this would be a reference to an
uninitialized variable. You can double-click on the error to go
to the source unit line responsible for the warning.
Compilation warnings are not fatal, but one should always
make sure to change the source code to remove such
warnings in order to ensure that the compiled application is
as reliable as possible.

Hint This message indicates that the compiler has a hint regarding
the compilation. An example of this would be a variable that
is declared but never actually referenced. You can double-
click on the hint to go to the source unit line responsible for
the hint. Compilation hints are not fatal and can be safely
ignored.

After the compilation of an application has successfully completed, or has failed, you will also see a status
message summarizing the result of the compilation, including messages indicating which output files
were emitted, and their location.

Deployment Messages

During deployment of an application, the copying of all application files is logged in the messages panel,
one line per file.

Design-Time Execution Messages

In rare cases, component library code that contains one or more bugs may cause an exception at design-
time. In such a case, you'll see a runtime error message appear in the messages panel. Double-clicking on
the runtime error message will display a debug dialog that will show you the complete error message
along with a call stack trace up until the point of the exception.

HTML Form Submittal Messages

If you use the special form submittal URL (http://localhost/formsubmit) to submit an HTML form, the
results of the submittal will be echoed back to the messages panel. Double-clicking on the form submittal
results will display a debug dialog that will show you the complete set of form values received by the web
server. This works with both the internal web server and any external EWB Web Server. Please see the
Using HTML Forms topic for more information.

Page 92

Using the IDE

2.17 Modifying Environment Options

The Environment Options dialog allows you to configure the following aspects of the Elevate Web Builder
IDE:

@ The project options settings

@ The code editor settings

@ The code editor display settings

@ The designer settings

@ The component library settings

@ The internal web server settings

@ The web server modules added to the internal web server
@ The external web servers added to the IDE

@ The help files added to the IDE

Use the following steps to modify the environment options for the IDE:

@ Click on the Environment option in the main menu. The Environment menu will open:

Options...

@ Click on the Options option in the Environment menu to open the Environment Options dialog.

el —m]
Emviranment Optsons |t
Prabact DM Project Options Editor Edaor Display Desgner t Component Libvary | o Interna | ¢
Editor
Editor Deplay
Agtomatically save before project compilation
Ay
=2 S| Saveliestore non-pdopect il vweth piopect
S Internal Web Server Modules N . »
o | Ftermatically Boad custom contiad interfaces in piopeCl Searg] patns
oy Eternal Web Sereers
[Herp
lefaylt sncestor fomm class for new fonm instances
TForm -
Diefacilt ane estor database class for new database mstances
|Database =
of | Aatomatically sdd new forms and datstoses to auto-crested forms and databases
oK Canced
. o
Project Options

The Project Options page provides options for modifying the project options settings.

Page 93

Using the IDE

i=| Project Options | L] Editer | [Editor Display I |~ Designer I #. Component Library | i Interna * | " |

[Automatically save before project compilation
Save/restore non-project files with project

[¥] Automatically load custor control interfaces in project search paths

Default ancestor form class for new form instances

’Tme T]

Default ancestor database class for new database instances

| TDatabase v

Automatically add new forms and databases to auto-created forms and databases

Page 94

Option
Automatically save before project

compilation

Save/restore non-project files with
project

Automatically load custom control
interfaces in project search paths

Default ancestor form class for new form
instances

Default ancestor database class for new
database instances

Automatically add new forms and
databases to auto-created forms and
databases

Editor

Using the IDE

Description

Select this check box to make sure that the IDE automatically
saves all modified units and project files before compiling the
currently-loaded project. This option is selected, by default.

Select this check box to have the IDE automatically save and
restore any units that are open in the IDE, but are not actually
part of the currently-loaded project. This option also applies
to control interfaces that are open in the IDE and is selected,
by default.

Select this check box to have the IDE automatically load any
custom control interface files located in the project's compiler
search paths whenever a project is opened in the IDE. When
checking to see if a control interface has been customized, the
IDE compares the path of the default control interface file
used with the component library (based upon the Library
Search Paths setting on the Component Library page) with the
path of any control interfaces with the same file name present
in the project's compiler search paths. If a match is found,
then the control interface file found in the project's compiler
search paths is loaded into the IDE and used with the project's
form designers. After the project is closed, the default control
interfaces are reloaded. This check box is selected, by default.

Specifies the default ancestor form class for the new form
class selection dialog that is displayed when creating a new
form in the IDE. The default ancestor form class is the TForm
class.

Specifies the default ancestor database class for the new
database class selection dialog that is displayed when creating
a new database in the IDE. The default ancestor database class
is the TDatabase class.

Select this check box to make sure that any newly-create
forms and databases are automatically added to the list of
auto-created forms and databases for the application. This
option is selected, by default.

The Editor page provides options for modifying the code editor settings.

Page 95

Using the IDE

[Project Gptiuns_| (] Editer | Editor Display I = Dﬁi_gnerl e Cumpqnent-l.ibmwl = Interna

i i

Tab Size E_IE—-I spaces

Allow the cursor in white space
["]Find text at cursor

[Find wrap around

Prompt to reload external modifications

Page 96

Option
Tab Size

Allow the cursor in white space

Find text at cursor

Find wrap around

Prompt to reload external modifications

Editor Display

Using the IDE

Description

The number of spaces between each tab position. The default
is 3 spaces.

Select this check box in order to allow the cursor to be
positioned in white space areas in the code editor. By default,
if you move to an area of the code editor that is white space,
the cursor will be moved to the next closest source code to
the white space. The definition of "white space" in this context
is the area of the code editor where there is no source code
present.

Select this check box to have the code editor populate the
Find or Replace search text box with the current word under
the cursor when searching or replacing text in the code editor.
By default, the last searched text will appear in the Find or
Replace search text box.

Select this check box to have the code editor wrap around to
the start/end of the source when searching or replacing text in
the code editor. The direction in which the searching or
replacing wraps is determined by the direction of the search
or replace operation. By default, the code editor will stop
when reaching the start/end of the source during a search or
replace operation.

Select this check box to have the code editor prompt the user
when any source loaded in the code editor is modified by an
external application. The prompt will ask the user to confirm
whether they wish to load the modified source into the code
editor. By default, the code editor will prompt the user when
any source is changed by an external application.

The Editor Display page provides options for modifying the code editor settings.

Page 97

Using the IDE

[| Project Options | (L] Editor| 4z Editor Display |[=] Designer I #. Component Library | = Interna ‘ =]

Font ’ Courier Mew

v‘ Size 10 : points

Element |[ETET S

Line Indicator

fﬁnc:.i_;. i. on Cr:m_nt‘l‘ r:n‘i' en: 5 t ring;

var
Normal Text I: Integer
Selected Text begin
Errors g -
Enabled Breakpoints A s
Disabled Breakpeoints &
Debug Line
Comments - .
Keywords begin
Data Types {$IFDEF Directive)
fé:lentiﬁers wh Result :=Result+IntTo
% -:unstlztnts o {SENDIF}
Foreground || Hawy end:
end;
Background [] Button Face -
| Bold | Italic Underline < [v |

Option Description

Font Use this combo box to select the fixed-width font to use for all
text in the code editor. The default code editor font is the
"Courier New" font.

Size The size of the fixed-width font, in points. The default size is
10 points.

Element Use this list box to select the various text elements present in
the code editor and modify their visual properties such as
their foreground and background colors and the style of the
text.

Designer

The Designer page provides options for modifying the designer settings.

Page 98

Using the IDE

*

[¥] Display grid on designer surface [¥] Snap to grid

Grid Color .cIDDdgerEIue - Custom..

Grid Size 8 = ¥ B = pixels

Selection Point Active Color .cIDndgerEIue - | Custom... |

Selection Point Inactive Color .cIGra:,,r - Custom.. |

Selection Point Visible Size 6 = pixels

Selection Point Mouse Size 10 = pixels

Option Description

Display grid on designer surface Select this check box to enable the display of an alignment
grid on the designer surface. The default state is checked.

Snap controls to grid Select this check box to cause the designer to automatically
align any controls/elements to the grid when they are
inserted, resized, or moved. The default state is checked.

Grid Color Select the color of the alignment grid. The default is
cIDodgerBlue.

Grid Size The number of pixels between each grid point in the
alignment grid, both on the horizontal (X) and vertical (Y) axes.
The default grid size is 8 pixels by 8 pixels.

Selection Point Active Color Select the color of selection points when the designer is active.
The default is clDodgerBlue.

Selection Point Inactive Color Select the color of selection points when the designer is not
active. The default is clGray.

Selection Point Visible Size Use this edit to specify the visible size of selection points. The
default size is 6 pixels (square).

Selection Point Mouse Size Use this edit to specify the size of the area in which the mouse
can operate on the selection points. If you are visually-
impaired, then you may want to increase these values to make
working with the selection points easier. The default is 10
pixels (square).

Page 99

Using the IDE

Component Library

The Component Library page provides options for modifying the component library settings.

= Project Options | || Editor | _: Editor Display I = Dﬂig.ner| #. Component Library | =i Intemag:‘.i k|

Search Paths M‘ap ruduv:ts‘-; SOUTC e‘-; ﬁﬁl\liﬁramm:‘;pmaudsﬁ snurce;‘-. ew.bi‘-;inter%aces; I-"-.:1-:‘-‘pruc B

[Validate standard components at startup

Page 100

Using the IDE

Option Description

Search Paths The component library search paths are used to specify where
the component library source unit files are located. These
search paths ensure that the compiler can always find the
component units, and any referenced control interfaces,
installed into the component library, as well as any core units
that are necessary for all Elevate Web Builder applications. The
component library search paths are initially configured during
installation. If you wish to add additional paths to the
component library search paths, then this is where you would
do so. When specifying more than one search path, be sure to
separate multiple paths with a semicolon (;).

Note

These search paths are global to both applications and
the component library, but the project's search paths
always take precedence over these search paths.

Validate standard components at startup = Select this check box to have the IDE check for the existence
of the standard Elevate Web Builder components during
startup. If any of the standard components are missing, or not
found in their default location, then the user will be asked to
confirm adding the missing standard components. By default,
the IDE will always validate the standard components during
startup.

Internal Web Server

The Internal Web Server page provides options for modifying the internal web server settings.

Page 101

Using the IDE

: Editor- Lz Edi:tnr[}isplal.r_. :_Designerii Component Li.brar‘;.r-i = Internal Web Server i__:_ Int; o

[¥] Automatically start when Elevate Web Builder starts
Listen on Port 80

[Databases Resource Mame databases
Database Modules Resource Mame databasemodules

Modules Resource Mame modules

Option

Auto-Start

Listen on Port

Databases Resource Name

Database Modules Resource Name

Modules Resource Name

Internal Web Server Modules

Page 102

Description

Select this check box to specify that the internal web server
should be automatically started when the IDE is started. The
default is checked.

Use this edit to specify the port number that the internal web
server should listen on. The default is port 80.

Specifies the resource name to use for the automatic database
handling built into the internal web server. The default value is
'databases’. Please see the Creating and Loading DataSets
topic for more information on how this resource name is used
in database requests.

Specifies the resource name to use for any database
modulesadded to the internal web server (see next). The
default value is 'databasemodules'. Please see the Creating
and Loading DataSets topic for more information on how this
resource name is used in database requests.

Specifies the resource name to use for the modules added to
the internal web server. The default value is 'modules'. Please
see the Creating Web Server Modules topic for more
information on how this resource name is used in module
requests.

Using the IDE

The Internal Web Server Modules page provides options for adding and removing modules (*.dll) that
were created using Embarcadero RAD Studio and Delphi and an Elevate Web Builder Module template
project from the repository in the RAD Studio IDE. Adding modules to the internal web server allows the

modules to be used to respond to requests and provide content to the Elevate Web Builder application
running in the IDE.

. Designer | #u Component Library | Internal Web Server s Internal Web Server Modules I R En]

File Description Version

| EM\prﬂducts\suu rcE‘.ieu;.;'Ei’;-;E&L:-mud-L.l-l.é‘.tE&F-mud-l_.r-l.... 1000

vy productshsource’ ewh2' databaserncdulet data... 1.0.0.0

M\ products\source\ewb2\ leginmodule\loginm... 1.0.0.0
Add... | | Rermove

Adding a Module

In order to add a module, complete the following steps:

@ Click on the Add button

Page 103

Using the IDE

@ The Add Module dialog will appear.

[Add Module

File | |

Description Version

Cancel |

In the dialog, specify the file name of the module (.dll) that you wish to add to the internal web
server. You can type in the file name directly, or use the browse button (...) to select the module
using a common Windows file dialog. If you use the browse button, the module description and
version will be populated from the module after the file is selected. The description and version are
read directly from the .dll's version information.

@ Click on the OK button. If the specified file is a valid Elevate Web Builder module, then the module
will be added to the internal web server. If the specified file is not a valid module file, then an error
message will be displayed indicating any issues with the module file.

Removing a Module
In order to remove a module, complete the following steps:

@ Select an existing module from the list of modules.

@ Click on the Remove button.

Note

If you remove a module that is used by Elevate Web Builder applications, then you will experience
errors in these applications when they try to execute requests that reference these modules in the
URL for the request.

Please see the Creating Web Server Modules topic for more information how the modules work.

External Web Servers

The External Web Servers page provides options for adding external web servers for use in the IDE. Once
an external web server is added, it can be selected as the target web server when running applications.
Please see the Running a Project topic for more information on running applications.

Page 104

Using the IDE

| = Internal Web Server fﬁ Internal Web Server Modules | -H_-H External Web Servers Hekpl EF
Mame Description
| = EWB HTTP EWB HTTP Web Server
= Sub-Folder Sub-Folder Test
= Custom DataSet External EWE Web Server using a custom dataSet module
= Local Apache Local Apache Web Server
= Ubuntu Apache Ubuntu Apache Web Server
| Add. || GEdit. || Remove |

Adding an External Web Server

In order to add an external web server, complete the following steps:

@ Click on the Add button.

@ The Add External Web Server dialog will appear.

Mame
Description .
URL http:// Port 80

Page 105

Using the IDE

@ |n this dialog, specify the name of the external web server that you wish to add to the IDE. This will

be used to uniquely identify the external web server.

Next, specify the short description of the external web server. This will be used in the web server
selection combo box in the IDE.

Next, specify the URL of the external web server. This will be used by the web browser in the IDE to
load an application from the external web server when is it is the currently-selected web server.

Finally, specify the port on which the external web server will listen for requests from the web
browser in the IDE. The default port is 80, which is the standard web server port (HTTP protocol).

@ Click on the OK button. If all information for the external web server is specified correctly, then the

external web server will be added to the IDE for use with your projects. If the specified external web
server information is missing or invalid, then an error message will be displayed indicating any issues
with the information.

Editing an External Web Server

In order to edit an external web server that is already added, complete the following steps:

@ Select an existing external web server from the list of web servers.
@ Click on the Edit button.

@ The Edit External Web Server dialog will appear.

'Edit External Web Server

Mame EWEBHTTP

DL LBEWE HTTP Web Server

URL http://localhost Port 8080

CHE l | Cancel

@ Modify the external web server information as required.

@ Click on the OK button. If all information for the external web server is specified correctly, then the

external web server will be added to the IDE for use with your projects. If the specified external web
server information is missing or invalid, then an error message will be displayed indicating any issues
with the information.

Removing an External Web Server

In order to remove an external web server, complete the following steps:

Page 106

Using the IDE
@ Select an existing external web server from the list of web servers.
@ Click on the Remove button.
Help
The Help page provides options for adding and removing help files (*.wbh). By default, the help for Elevate

Web Builder is added automatically during the IDE startup process, so normally you will not need to add

any additional help files. However, if you install any 3rd party components into the IDE, they may come
with online help to use with the components, and that help can be added here.

Note

The default Elevate Web Builder help file is always shown in the list of added help files, but it cannot
be removed.

| = Internal Web Sencer ::'__ Internal Web Server Modules | 22 External Web Sewers% ﬁ Help ‘ 2]

File MName Title
ﬁ M‘-‘prudum\help‘-‘ewﬂwbh ewhE .E.lE".fa.tE ‘-ni"u-"e-t.tuEr—u-i.Ir.j.erHE f-";'Tanua-I"
1+
.
Add... | | Remove

Adding Help

In order to add a help, complete the following steps:

@ Click on the Add button.

Page 107

Using the IDE

@ The Add Help dialog will appear.

[Add Help

File | ™
Mame

Title

o] Cancel]

@ In this dialog, specify the file name of the help file (wbh) that you wish to add to the IDE in the edit
control. You can type in the file name directly, or use the browse button (...) to select the help file
using a common Windows file dialog. If you use the browse button, the help file name and title will
be populated from the help file after the file is selected.

@ Click on the OK button. If the specified file is a valid Elevate Web Builder help file, then the help file
will be added to the IDE for use from the Help menu. If the specified file is not a valid help file, then
an error message will be displayed indicating any issues with the help file.

Removing Help
In order to remove a help file, complete the following steps:

@ Select an existing help file from the list of help files.

@ Click on the Remove button.
Please see the Accessing Help topic for more information on accessing the help in the IDE.

Page 108

Using the IDE

2.18 Creating a New Component

Use the following steps to create a new component in the IDE:

@ Click on the Library option in the main menu. The Library menu will open.

@ Click on the New Component option in the Library menu:

T

I Environment Page

Mew Component...

[
i Add Component...
“© p
=
gﬁ

Remove Component...
Build... "

— &% Openlcon Library =

&l TT N

@ The New Component dialog will now appear:

P =

Mew Component

Component Mame |

Ancestor Component |TAr1imatedIcur1 "|

O | Cancel

@ In this dialog, specify the class name of the component that you wish to create in the first edit
control. By convention, any class name in Elevate Web Builder should be prefixed with a capital "T".

Next, select the ancestor component class name for the new component by using the combo box
provided.

@ Click on the OK button. A new source unit containing the skeleton code for the new component

class will now appear in the code editor. Please see the Using the Code Editor topic for more
information on using the code editor.

Page 109

Using the IDE

2.19 Adding a Component to the Component Library

Use the following steps to add a new component to the component library:

Page 110

@ Click on the Library option in the main menu. The Library menu will open.

@ Click on the Add Component option in the Library menu:

Environment Page L

Mew Component...

&
Add Component...

© p

"]

&

Rermove Compeonent...
Build... P

Open lcon Library
] I 3 L = 2

@ The Add Component dialog will now appear:

Add a Component to the Library

Mame

Unit File

Category Standard

Icon File

Preview

-

| Cancel

Using the IDE

@ In this dialog, specify the class name of the component that you wish to add to the component
library in the first edit control.

Next, specify the source unit file where the class name is declared. At least one of the declared
classes in the source unit should match the specified class name. If not, an error will occur when the
component library is rebuilt. You can type in the file name directly, or use the browse button (...) to
select the source unit using a common Windows file dialog.

Next, select an existing component palette category in which to place the component, or type in a
new category in which to place the component using the combo box provided.

Next, select an icon file to use to represent the component on the component palette. The icon file
should be a 16 by 16 pixel PNG, JPEG, or GIF image file. You can type in the file name directly, or
use the browse button (...) to select the icon file using a common Windows file dialog. After a valid
file name has been specified or selected, a preview of the icon file will be shown in the Preview area.

Note

This step is optional, if you don't specify an icon file, or if the specified icon file is invalid,
Elevate Web Builder will use a default, generic icon for the component on the component
palette.

@ Click on the OK button.

@ If there is a project open in the IDE, then you will see the following dialog appear:

P i

Confirm

i | The IDE must close the cpen project before rebuilding

"B the component library, but the project will automatically
be re-opened after a successful build of the component
library,

Would you like to continue 7

| Yes] | Mo

Click on the Yes button to continue with rebuilding the component library.

@ The component library will now automatically be rebuilt and, if there were no errors during the
compilation of the component library, the component just added will now appear on the
component palette in the specified category. If there were one or more errors during the
compilation of the component library, then you should correct the error(s) in the applicable source
unit(s), and rebuild the component library manually. To see how to manually rebuild the component
library, please see the Rebuilding the Component Library topic.

Page 111

Using the IDE

2.20 Removing a Component from the Component Library

Use the following steps to remove an existing component from the component library:

@ Click on the Library option in the main menu. The Library menu will open.
@ Click on the Remove Component option in the Library menu:

Library | Environment Page E

Mew Component...

Add Component...

Remowve Component...

YT

Build.. A

|
[mi
i

Openlcon Library _
o O O = = . L=

@ The Remove Component dialog will now appear:

pr

Remove a Component from the Library =

Category | Standard *l

Select Components to Rermnove

[TLabel -
[C] TButton : |
[= TDialogButton

[l v TCheckBox

[7] » TRadicButten

I TEdit

| # TPasswordEdit b
m | r

m

O @

& [|

Remove Empty Category

QK Cancel

Page 112

Using the IDE

@ In this dialog, select the category where the component that you wish to remove is installed.

Next, click on the check box next to any or all component(s) that you wish to remove from the
component library.

Next, click on the Remove Empty Category check box in order to also remove the selected category.
Note
The Remove Empty Category check box is only enabled if the selected category will be
empty after removing the selected component(s).
@ Click on the OK button.

@ If there is a project open in the IDE, then you will see the following dialog appear:

r'[“crnﬁrm ﬁ

i | The IDE must close the cpen project before rebuilding

"B the component library, but the project will automatically
be re-opened after a successful build of the component
library,

Would you like to continue 7

| Yes] | Mo

Click on the Yes button to continue with rebuilding the component library.

@ The component library will now automatically be rebuilt and, if there were no errors during the
compilation of the component library, the selected component(s) will be removed from the selected
category on the component palette. If there were one or more errors during the compilation of the
component library, then you should correct the error(s) in the applicable source unit(s), and rebuild
the component library manually. To see how to manually rebuild the component library, please see
the Rebuilding the Component Library topic.

Note

You should not normally encounter compilation errors when removing components from the
component library. However, it is possible that one or more source units used in the
component library have been modified since the last time the component library was rebuilt,
and those modifications may have introduced compilation errors.

Page 113

Using the IDE

2.21 Rebuilding the Component Library

Use the following steps to rebuild the component library:

@ Click on the Library option in the main menu. The Library menu will open.

@ Click on the Build option in the Library menu:

Environment Page L

Mew Component...

&
ﬂ Add Component...
L]
&

Remove Compeonent...
Build... W

Open lcon Library
] I 3 L = 2

@ The following dialog will now appear:

Confirm
|0| Are you sure that you want to build the component
S [ibrary ¥

Mote: The IDE must close the open project before
proceeding, but the project will automatically be
re-opened after a successful build of the component
library

L Yes || Mo

@ Click on the Yes button to continue with rebuilding the component library.

@ The component library will now automatically be rebuilt and, if there were no errors during the
compilation of the component library, any changes to the source units and/or control interfaces
used in the component library will be reflected in any open form and database designers. If there
were one or more errors during the compilation of the component library, then you should correct
the error(s) in the applicable source unit(s), and rebuild the component library again.

Page 114

Using the IDE

2.22 Creating a New Control Interface

Use the following steps to create a new control interface in the IDE:

@ Click on the File option in the main menu. The File menu will open:

File | Edit View Project Run Debug Library E

Mew || Project Ctrl+N
£ Open.. Ctrl+0 | (0] Unit |

| Open Project... (=] ‘Form

= Openlnterface.. & Interface
Reopen kS {
Save b+ vJ
Save As..,
Save Project As...

bk Save All Shift+Ctrl+5 | £

ckground)
Close rder)
Close All nstraints)
: rmers)
Exit
H I to
|

@ Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,
select the Interface option.

@ A new control interface will now appear in the Control Interface Editor.

Page 115

Using the IDE

2.23 Modifying a Control Interface

Use the following steps to modify an existing control interface in the IDE:

@ Click on the File option in the main menu. The File menu will open:

File | Edit View Project Bu
Mew r
Open... Ctrl+0
Open Project...

H]

Open Interface... —

Reopen k

Save As..,
Save Project As... -
d Save All Shift+Cirl+5 |

Cloze

ch
re
Cloze All f
re
ite

Exit
@ Click on the Open Interface option in the File menu. A Windows file open dialog will appear.
Navigate to, and select, the existing control interface that you wish to modify. Click on the Open

button in the Windows file open dialog to complete opening the control interface.

@ The existing control interface will now appear in the Control Interface Editor.

Page 116

Using the IDE

2.24 Using the Control Interface Editor

The control interface editor is used for creating new control interfaces or editing existing control
interfaces. It has the following layout:

Interface Class Name

Element
Trterface Clasg Klarme F__: - Ins Dl."l.'.'tuf
LI |_'} " G 1 " |l I i Elernent
v - Toolbar for Baae ®.
YT b Alignment and s
Hict - | Layering -
o AwayiOnTep Fabie =
! = ApphyProperses TElermentProperin
Dralited Elemant
& Lo . Autae Falsg
RnsdCrity Designer A Backgmand TBackgicund
i * Hedder TEcher
- 8 Comdtramis TCerrtrmnty
Interface Contesi
States = Comiers TCennen
Curssr LA
= Fonk TEang
= Forrmat TFonmat
Height H]

Herit
tiinsetShadow TingetShadow

Layout TLayout
= Margins TMergins
Hame Baze
Opacity E00
E QutsetShadow TOwisetShadow
& Padding TPad-dng
Visible True
Wadth 183

Enecifies whethes the element should shwwys be
| omtop of any other dlements in Lhe samse

Informational Fer

Panels

Poz: 0, 0 e 193, M

The unit of measure used by the interface designer is the pixel, and the resolution is always assumed to be
96 pixels per inch.

By default, the interface designer shows a grid to aid with component placement and alignment, and the
grid guides (dots) are spaced apart at 8 pixel intervals. Please see the Modifying Environment Options
topic for more information on modifying the interface designer grid properties.

Note

If you haven't already, please make sure to read the Control Interfaces topic before proceeding. It
explains the structure of control interface and many of the control interface concepts that are used
in the control interface editor.

Specifying the Interface Class Name

Use the Interface Class Name combo box to select an existing control class name for a control included in

Page 117

Using the IDE

the component library, or type in a new interface class name. The interface class name normally
corresponds to an existing control class name, but does not always do so. However, as discussed in the
Control Interfaces topic, the specified interface class name should correspond to a value returned by the
protected TControl GetInterfaceClassName method for one or more controls in the component library.

Note
If the interface class name does not correspond to any interface class names used by any controls
in the component library, then the interface will effectively be ignored by the component library.

Adding a New Interface State

Control interfaces consist of one or more interface states. The default state is, by convention, named
"Normal" and defined as the first interface state in the list of interface states.

Use the following steps to add a new interface state to the control interface:
@ Click on the Add State toolbar button:
o

= The New Interface State dialog will now appear:

r'P‘\Ifrl.w.r Interface State

Mame |

Copy l v|

| Cancel |

= In this dialog, specify the name of the interface state that you wish to create in the first edit control.
Optionally, next, select an existing interface state to copy by using the combo box provided.

@ Click on the OK button. A new interface state with the specified name will now appear in the list of
defined interface states, and this interface state will be the selected interface state. If you copied an
existing interface state, then the copied interface elements will appear in the middle element
designer. If you did not copy an existing interface state, then a default "Base" element will appear in

the element designer.

Removing an Existing Interface State

Use the following steps to remove an existing interface state from the control interface:

Page 118

Using the IDE

@ Click on the Remove State toolbar button:

@ A dialog similar to the following will now appear:

Confirm
|0| Are you sure that you want to delete the "Error” interface
W ctate ¥

The name of the specifed interface state will reflect the interface state being removed. Click Yes to
remove the selected interface state, or No to cancel the removal of the interface state.

Moving an Interface State

You can use drag and drop operations with the mouse to move an interface state to a different position in
the list of defined interface states. Simply click on the desired interface state with the left mouse button,
hold the left mouse button down, and drag the interface state to the desired new position.

Element Inspector

The element inspector is located on the right-hand side of the control interface editor, and allows you to
modify the properties of the currently-selected element in the element designer. It consists of an element
selection combo box and a list of the properties of an element:

| Elernent |
IInput ']
_F'rnpertiesm
AlwaysOnTop False =
ApplyProperties TElementProperties
AutoSize True
i Background TBackground
[Border TBorder
* Constraints TConstraints
Content Text
F Corners TCorners
Cursor criuto

1

Displaylndex 0
= Font TFont

Color ciElevateDarkGray El

GenericFamily gfSansSerif

Mame Segoe LI

Page 119

Using the IDE

To modify any property of an element, click on the desired property value, and type in the new value. If
applicable, the property may have a special property editor in the form of a drop-down list or dialog that
is accessible using a button to the right of the property value. Double-clicking on the property value will
also automatically launch the applicable property editor.

You can get context-sensitive help on any property in the element inspector by clicking on the desired
property and hitting the F1 key. For more information on using the help browser, please see the Accessing
Help topic.

Adding a New Element to an Interface State

Control interface states consist of one or more interface elements. The default element is, by convention,
named "Base" and defined as the base container element for the interface state.

Use the following steps to add a new element to an interface state:

@ Click on the Add Element toolbar button:

i

@ Click on the client area of an element in the element designer. The client area of an element is the
area inside of the borders for the element.

Selecting an Element

To select a single element in the element designer, click on the desired element with the left mouse
button. To select more than one element, hold down the Shift key while clicking on the desired elements
with the left mouse button. Selecting multiple elements is desirable when one wants to resize or align
multiple elements at the same time to ensure that their placement or size is uniform, or when one wants
to copy and paste a group of elements.

Note
Any time you hover the mouse over any element, tooltip information will be displayed about the
element, including the name and position/size.

You can also use the mouse to directly select a group of elements using a lasso:

@ If the group of elements are placed on the base element itself, then you can click and hold down
the left mouse button to begin the selection. Then, while keeping the left mouse button down,
move the mouse to lasso the desired element(s).

= If the group of elements are placed on a child element, then you can click and hold down the left
mouse button, while also pressing the Ctrl key, to begin the selection. Then, while keeping the left

mouse button and Ctrl key down, move the mouse to lasso the desired element(s).

Resizing an Element

Once an element has been placed on the active element's client area, you will see that the element will
have designer handles on all four sides and corners of the element:

Page 120

Using the IDE

1 L] []
=38 1
1 | 1

These designer handles can be used to change the origin and size of an element. To accomplish this, click
on a designer handle with the left mouse button, hold the left mouse button down, and drag the designer
handle in the desired direction. You can also use the keyboard to resize an element by holding down the
Shift key while using the up, down, right, and left arrow keys to resize the element on a pixel-by-pixel
basis.

Note

Certain elements may have constraints on how tall/wide they can be. In such cases, attempts to
resize the element will result in the element size not exceeding the specified constraints. Also, you
cannot use the left mouse button to resize elements when multiple elements are selected. In such
cases, you can only use the keyboard to do so (Shift+Arrow Keys).

Moving an Element

To move an element, click on the element with the left mouse button, hold the mouse button down, and
drag the element to the desired location. You can also use the keyboard to move an element by holding
down the Ctrl key while using the up, down, right, and left arrow keys to move the element on a pixel-by-
pixel basis. Both of these techniques also work when multiple elements are selected.

Element Layout and Alignment

The layout toolbar on the element designer can be used to adjust the alignment and layering (send to
back/bring to front) of elements:

Each layout toolbar button has tooltip help that explains the purpose of the button.
Deleting an Element

To delete an element, select the desired element in the element designer and hit the Delete key or click on
the Remove Element toolbar button:

This will also work when multiple elements are selected.

Page 121

Using the IDE

Page 122

Warning

Undo functionality is currently not available for the element designer, so any modifications or
deletions of elements cannot be undone. Please be careful when deleting elements to ensure that
one does not lose a lot of hard work. If you do accidentally delete an element, you can fix the issue
by simply closing the interface without saving the modifications, and then re-opening the interface.
However, this depends upon how much other work has been done to the interface since the last
save point, so it is wise to save your modifications on a regular basis.

Using the IDE

2.25 Opening the Icon Library

Use the following steps to open the icon library:

@ Click on the Library option in the main menu. The Library menu will open.
@ Click on the Open Icon Library option in the Library menu:

Library | Environment Page E

Mew Cormponent...
Add Component...

Remowve Component...

EN 1Y

Build... ¥

-l =% Openlcon Library
T T T L 1

@ The icon library will now be opened in the Control Interface Editor.

Note

The icon library that is opened is dependent upon the active project and whether there exists a
customized version of the icon library in one of the active project's search paths. If there are no
customized icon libraries in the search paths for the active project, then the default icon library that
ships with Elevate Web Builder will be opened.

If you want to customize the icon library that ships with Elevate Web Builder for the active project, simply
use the File/Save As menu option to save the default icon library interface file in a different
folder/directory. You should always use the default interface file name "TlconLibrary.wbi", even for
customized icon libraries. If you do not use the correct interface file name, then the customized icon
library will be ignored.

Page 123

Using Visual Controls

This page intentionally left blank

Page 124

Using Visual Controls

Chapter 3

Using Visual Controls

3.1 Standard Controls

The following are the visual controls in the standard component library included with Elevate Web Builder.
They are grouped and ordered by the category in which they are installed and displayed on the

component palette in the IDE.

Standard

The standard controls are those commonly used for the display and editing of data, and most of them are
capable of being bound to a dataset. Please see the Binding Controls to DataSets topic for more

information.

Control

N TLabel

L] THTMLLabel

ke TBalloonLabel

E TAlertLabel

L1 TButton

L= TDialogButton

E: TlconButton

[l TCheckBox

& TRadioButton

I TEdit

=1 TPasswordEdit

T TMultiLineEdit

(=1 TListBox

B TCalendar

= TButtonComboBox
E TEditComboBox

@ TDateEditComboBox
E TDialogEditComboBox
E TFileComboBox

|:| TGrid

Description

Label control

HTML label control

Balloon label control

Alert label control

Button control

Dialog button control

Icon button control

Check box control

Radio button control

Single-line edit control
Single-line password edit control
Multi-line edit control

List box control

Calendar control

Button combo box control
Editable combo box control
Editable date combo box control
Editable dialog combo box control
File upload combo box control

Grid control

Page 125

Using Visual Controls

Graphics

Graphic controls are used for displaying images or providing a canvas for drawing/painting operations:

Control Description

[E] Timage Image control

Bl ticon Icon control

ﬂ TAnimatedlcon Animated icon control

B TPaint Painting control with canvas
TSlideShow Slide-show control
Indicators

Indicator controls show progress and other types of graphic information:

Control Description
@ TProgressBar Progress bar control
Multimedia

Multimedia controls allow the playback of both audio and video:

Control Description

El TAudio Audio playback control
E TVideo Video playback control
Containers

Container controls are used to group together controls within a parent control:

Control Description

L] THeaderPanel Header panel control

[TScrollPanel Scrollable panel control

|| TBasicPanel Basic panel control

™ 1GroupPanel Group panel control with caption
I:I TPanel Panel control with caption bar
[] TPagePanel Paged panel control

“ TSizer Sizer control

Page 126

Menus

Menu controls are used for displaying a list of focusable and selectable menu items:

Control Description

E TMenu Menu control

e TMenuBar Menu bar control
ToolBars

Toolbar controls are groups of non-focusable buttons contained within a parent control:

Control Description

L1 TToolBar Toolbar control

| TDataSetToolBar Dataset toolbar control
Browser

Browser controls are encapsulations of various types of legacy browser functionality:

Control Description

i__d THTMLForm HTML form control

TLink Link control

(=] TBrowser HTML document display control
TPlugin Plugin control

(L] ™™ap Google Maps control

Using Visual Controls

Page 127

Using Visual Controls

3.2 Creating and Showing Forms

Before using any form classes, you must first create an instance of the form class, which you can do at
design-time or at run-time:

Creating a Form at Design-Time

The easiest way to create a form is by using the IDE to create a new form. When a form is created at
design-time in the IDE, it is automatically designated as an auto-create form in the application project,
which means that the form will automatically be created during application startup. The first form in the
list of auto-create forms is considered the main form of the application, and will also be shown at
application startup. For example, the following shows the main program source of an application that has
several auto-create forms:

project FormSubmit;
contains Main, Results;
uses WebForms, WebCtrls;

begin
Application.Title := 'HTML Form Submittal Example’;
Application.CreateForm(TMainForm);
Application.CreateForm(TResultsDialog);
Application.Run;

end.

Because the TMainForm form class is the first form class in the list of auto-create forms, it is considered
the main form of the application and will automatically be shown when the Application Run method is
executed.

Please see the Adding to an Existing Project topic for more information on adding a new form to a
project.

Creating a Form at Run-Time

You can also create a form instance at run-time using code. This is useful for forms that are not used very
often and for which having them auto-created would be a waste of memory. The following is an example
of creating a form and showing it (modally) at run-time:

uses ProgFrm;

procedure TMainForm.LaunchButtonClick(Sender: TObject);
begin
ProgressForm:=TProgressForm.Create(nil);
ProgressForm.ShowModal;
end;

Page 128

Using Visual Controls

Note
In the above example the ProgressForm variable is declared in the interface section of the
TProgressForm's unit (ProgFrm).

Showing and Hiding a Form

The TForm Show and ShowModal methods will show a form in a non-modal and modal fashion,
respectively. See below for more information on modal forms.

Showing a form will also cause the form to be brought to the front of the visual stacking order via the
BringToFront method.

To hide a form, call the TForm Hide method, which simply toggles the visibility of the form. In order to
close the form and trigger the TForm OnCloseQuery and OnClose events, call the Close method instead.

Hiding or closing a form will also cause the form to be sent to the back of the visual stacking order via the
SendToBack method.

Modal Forms

When a form is shown modally, the application displays a modal overlay over the entire surface and all
other forms that prevents any keyboard or mouse input for any form other than the current modal form.

You can use the Application.Surface.ModalOverlay.CloseOnClick property to enable/disable the ability to
close all visible modal forms by simply clicking on the modal overlay.

Modal forms behave very differently in a web browser environment than in a Windows desktop
environment, requiring modal dialogs/forms be coded differently. To use the above example again, this is
what the example would look like in a traditional Windows desktop application when using a product like
Delphi:

uses ProgFrm;

procedure TMainForm.LaunchButtonClick(Sender: TObject);

begin
ProgressForm:=TProgressForm.Create(nil);
try
ProgressForm.ShowModal;
finally
ProgressForm.Free;
end;
end;

If you were to run the above code in a web browser, you would probably see a slight flicker as the form
was shown and then immediately freed. This is because the ShowModal method, or any method in the
JavaScript execution environment, does not cause the code execution to yield. Thus, the ShowModal
method is called, and then the Free method is called right after the form is shown.

Because of the lack of the ability to yield execution, such forms must be closed/freed using a technique
involving creating an event handler for the TForm OnClose event from the calling form and assigning that

Page 129

Using Visual Controls

event handler to the OnClose event of the form that needs to be responded to. The following example
shows how this would be done:

uses ProgFrm;

procedure TMainForm.ProgressFormClose(Sender: TObject);
begin

ProgressForm.Free;
end;

procedure TMainForm.LaunchButtonClick(Sender: TObject);

begin
ProgressForm:=TProgressForm.Create(nil);
ProgressForm.OnClose:=ProgressFormClose;
ProgressForm.ShowModal;

end;

This is quite a departure from the way that the OnClose event handler is used in desktop applications.
With desktop applications, the form's OnClose event is normally assigned an event handler that is defined
within the form being closed. If one simply remembers that the TForm OnClose event is a "special" event
in this regard, then the concept will be easier to remember and implement properly in one's applications.

Form Events

The TForm OnCreate event is fired while a form is being created and is an ideal place to perform any
initialization processing for the form.

The TForm OnCloseQuery event is fired when an attempt to close (hide) the form occurs. To prevent the
close from occurring, return False as the result in an event handler for this event.

The TForm OnClose event is fired after the form is closed (hidden).

The TForm OnDestroy event is fired before a form is destroyed, and is an ideal place to dispose of any
resources that need to be disposed of before the form is destroyed.

Page 130

Using Visual Controls

3.3 Showing Message Dialogs

Message dialogs are critical in a visual application for displaying important messages such as errors or
warnings to users, as well as asking the user to answer important questions that determine the overall
flow of processing. There are two procedures that provide the message dialog functionality in Elevate
Web Builder:

= ShowMessage - This procedure simply displays a message to the user using a modal dialog
containing the message and a single OK button.

@ MessageDlg - This procedure displays a message to the user using a modal dialog containing the
message and any number of user-configured buttons.

The ShowMessage procedure is the simplest to use when you only want to display a message to the user
and do not need to ask the user to provide any further information. The following example shows how
you would show such a message dialog:

function CheckTrial: Boolean;
begin
if IsTrialVersion and (TrialDaysLeft > @) then
begin
ShowMessage('You are using a trial version and have '+
IntToStr(TrialDaysLeft)' evaluation days '+
"left until your trial version expires.');
Result:=True;
end
else
begin
ShowMessage('Your trial version has unfortunately expired.');
Result:=False;
end;
end;

The MessageDlIg procedure is more versatile, but also slightly more complicated. It allows you to specify
various attributes of the modal dialog used to display the message such as the dialog caption, the type of
dialog (determines the icon used for the dialog), which buttons to display on the dialog, and whether or
not to display a dialog close button. The following example shows how you would use this procedure to
ask the user to confirm the deletion of a customer order in a dataset:

procedure TMasterDetailForm.CheckDelete(DlgResult: TModalResult);
begin
if (DlgResult=mrYes) then

begin

Database.StartTransaction;

CustomerOrders.Delete;

Database.Commit;

end;
end;

procedure TMasterDetailForm.DeleteOrderButtonClick(Sender: TObject);
begin
MessageDlg('Are you sure that you want to delete the '+
CustomerOrders.Columns['OrderID'].AsString+"' order placed on '+

Page 131

Using Visual Controls

CustomerOrders.Columns['OrderDate’].AsString+' ?', 'Please
Confirm',
mtConfirmation, [mbYes,mbNo],mbNo,CheckDelete, True);
end;

Note

The MessageDlg procedure is overloaded and has two different versions. The first does not include
the default button parameter after the array of button types, whereas the second version (shown
above) does include the default button parameter.

As discussed in the previous Creating and Showing Forms topic, modal forms require some special event
handler logic in order to execute code when the modal form is closed. This is especially true with message
dialogs, which are always shown modally, and is why the MessageDlg procedure accepts a method
reference as a parameter. The method reference should point to a method that matches the following

type:

TMsgDlgResultEvent = procedure (DlgResult: TModalResult) of object;

When the modal message dialog form is closed, the event handler will be called and the type of button
that the user clicked in the message dialog will be passed as the first parameter.

Note

The TModalResult message dialog result type is different from the button types (TMsgDIgBtn type)
that are passed as an array parameter to the MessageDlg procedure. The two types are similar, but
there are additional results such as mrNone, which indicates that the user closed the dialog without
clicking on any button at all.

Page 132

Using Visual Controls

3.4 Showing Progress Dialogs

Progress dialogs are critical in a visual application for displaying progress while the application is
executing code or the application is waiting on an event handler to complete, such as an event handler for
the TServerRequest OnComplete event. There are two procedures that provide the progress dialog
functionality in Elevate Web Builder:

@ ShowProgress - This procedure simply displays an animated icon and a message to the user using a
modal dialog containing the message.

@ HideProgress - This procedure hides any active progress dialog.

Warning

The ShowProgress and HideProgress procedures are reference-counted, so you should always
ensure that you call the HideProgress procedure as many times as you call the ShowProgress
procedure

The following example shows how you would show such a progress dialog:

procedure TMainForm.LoadCustomers;

begin
ShowProgress('Loading customers...');
Customer.AfterLoad:=CustomerAfterLoad;
Customer.OnLoadError:=CustomerLoadError;
Database.LoadRows (Customer);

end;

procedure TMainForm.CustomerAfterLoad(Sender: TObject);
begin

HideProgress;
end;

procedure TMainForm.CustomerLoadError(Sender: TObject; const ErrorMsg:
String);
begin
HideProgress;
MessageDlg(ErrorMsg, 'Error Loading Customers',mtError,[mbOk]);
end;

Page 133

Using Visual Controls

3.5 Using HTML Forms

HTML forms in Elevate Web Builder are represented by the THTMLForm component. HTML forms are the
legacy way of allowing a user to input information into various controls on a form and have that
information sent to the web server using an HTTP POST request. The THTMLForm component is a simple
container control, which gives you the option of having multiple sub-forms within the same visual form,
each with its own ability to submit information independently of the other.

Input Controls

The following standard controls can be used to input information that can be sent as part of the form
submittal process:

Control Description

= TEdit Single-line edit control

E=1 TPasswordEdit Single-line password edit control

] TMultiLineEdit Multi-line edit control

[l TCheckBox Check box control

& TRadioButton Radio button control

E TListBox List box control

B TCalendar Calendar control

ﬂ TButtonComboBox Button combo box control

E TEditComboBox Editable combo box control

& TDateEditComboBox Editable date combo box control

= TDialogEditComboBox Editable dialog combo box control

E TFileComboBox File upload combo box control
Note

These are only the standard controls included with Elevate Web Builder's standard component
library, so this list does not include any installed 3rd party controls that may also allow usage with
an HTML form.

Submitting the Input Information

In order to actually submit the input information as an HTTP POST request to the web server, complete
the following steps:

@ Make sure that the THTMLForm's Encoding property is set to feMultiPartFormData. You can use
other encoding types, but this is the default and supports the most common type of form
submission, including submitting files using the TFileComboBox control.

Page 134

Using Visual Controls

@ Make sure that the THTMLForm's Method property is set to fmPost. This is the default value, so
you'll probably never need to change this property.

@ Make sure that the THTMLForm's URL property is set to the desired URL.

@ Call the THTMLForm's Submit method to perform the submission. When the HTML form is
submitted, all input controls contained within the HTML form are included, and the names used for
the HTML form variables that are submitted are the same as the Name property of the included
controls.

Testing Form Submittals

The internal web server embedded in the IDE includes support for echoing back any HTML form variables
submitted using the Submit method. Just be sure to use the following URL for the THTMLForm's URL

property:

http://localhost/formsubmit

Note

The above URL assumes that the internal web server is listening on the standard port 80. Please
see the Modifying Environment Options topic for more information on configuring the internal web
server.

Redirecting Form Submittal Output

By default, the THTMLForm Submit method will direct any response from the web server to a special
hidden frame that Elevate Web Builder includes to suppress any output from the submittal. This is done to
prevent the web browser from navigating away from the Elevate Web Builder application itself. If you
want to display the output from the HTML form submittal process, or track when the submittal is
completed, you can use the THTMLForm's Output property to do so. This property allows you to specify a
TBrowser control that will receive the web server response to the HTML form submittal. In addition, you
can assign an event handler to the TBrowser OnLoad event to determine when the web server response
has been loaded into the frame encapsulated by the TBrowser control.

Page 135

Using Visual Controls

3.6 Layout Management

The layout management functionality in Elevate Web Builder handles all aspects of the layout of controls
at design-time and run-time. Layout management is available for all controls in the component library,
including the application surface and forms.

Control Layout Properties

Each control in an Elevate Web Builder application possesses several key properties that control the layout
of the control:

Left, Top, Width, and Height

The TControl Left, Top, Width, and Height properties specify the defined position and dimensions of the
control. These property values serve as the basis for the layout of the control, but can be modified by
other layout properties such as the Layout and Constraints properties (see below).

Layout Order

The TControl LayoutOrder property of a control specifies the integer position of the control relative to any
and all other child controls within the same container control. The layout order, as its name implies,
determines how controls are positioned, relative to one another, by the layout functionality.

Layout

The TControl Layout property of a control is a class instance property that specifies several key aspects of
the layout for the control via the following properties:

Layout Property Purpose

Position Specifies the type of positioning, if any, to use for the control
within the layout rectangle of its container control.

Stretch Specifies a stretch direction, if any, to apply to the control.

Consumption Specifies the direction in which the control consumes space
and modifies the layout rectangle for its container control, if
at all.

Reset Allows a control to reset the layout rectangle for its container.

Overflow Allows a control to specify the direction in which a layout

rectangle should automatically be adjusted when the
control's dimensions exceed one of the sides of the layout
rectangle.

Note
Please see the section entitled Layout Rectangle below for more information on the concept of the
layout rectangle.

Page 136

Using Visual Controls

Constraints

The TControl Constraints property of a control specifies any minimum and maximum constraints on the
width and height of the control.

Margins
The TControl Margins property of a control specifies any margins for the control.
Padding and Borders

The padding and borders of a control vary depending upon the control class. Some control classes expose
one or both of these properties, while others do not. However, these properties do affect the layout of any
child controls contained within a container control by reducing the size of the layout rectangle for the
container control.

Layout Rectangle

In order to understand how the layout management works in Elevate Web Builder, it is important to
understand the concept of the layout rectangle. The layout rectangle represents the area of a container
control in which the layout of a child control is taking place. The layout rectangle is not a static area: each
child control may consume space in the layout rectangle in a specific direction, thus reducing its size, and
the layout rectangle can be segmented into different areas via reset points. The layout rectangle is
initialized to the client rectangle for the container control. The client rectangle is defined as the bounding
rectangle of a container control, minus the width of any borders or padding defined for the container
control.

To illustrate the concept of the layout rectangle in its most basic form, let's place a single TBasicPanel
control instance on a form (TForm-descendant instance). In this case, the form instance is the container
control and the TBasicPanel instance is the child control. Because the form instance does not have any
borders or padding defined, the client rectangle, and subsequently, the layout rectangle, is the same size
as the form instance's bounding rectangle.

Page 137

Using Visual Controls

[] [| |
Form
Basic Panel
| L}
" | | L]
1
' Layout Rectangle (in Blue)

i 600 x 450

We'll specify that the Layout.Position property of the TBasicPanel should be IpCenter:

DisplayOrder]
Height 208
[# InsetShadow (MInsetShadow)
= Layout (TLayout)
Consumpticn lcMeone
Positicn |E|
Reset False
Stretch IsMeone
LayoutOrder]

The resulting layout looks like this:

Page 138

Using Visual Controls

Form

Basic Panel
(Layout.Position = IpCenter)

| Layout Rectangle {in Blue)
| 600 x 450

As you can see, the layout functionality used the layout rectangle of the form instance to center the
defined dimensions of the TBasicPanel control instance. In this case, the layout rectangle was used for
positioning only.

Consuming Space in the Layout Rectangle

To illustrate how space consumption affects the layout rectangle, let's place two TButton control instances
on a form (default width of 80 pixels). Again, the form instance is the container control and the TButton

instances are the child controls, and the initial layout rectangle is the same as the client rectangle of the
form instance.

Page 139

Using Visual Controls

Form

L1 |
LI I8 L]
[L | =
Buttons

Layout Rectangle (in Blue)
600 x 450 |

We'll specify that the Layout.Position property of both TButton instances should be IpTopLeft, the
Layout.Consumption property should be IcRight, and the Margins.Left and Margins.Top properties should
be set to 20 pixels for proper spacing:

(TS

=l Layout (TLayout)
Consumption IcRight |z|
Positicn lpToplLeft
Reset False
Stretch IsMone

The resulting layout looks like this:

Page 140

Consumption

Using Visual Controls

}
w B -
1 " B
Buttons
Width = 80

Layout.Position = IpTopLeft
Layout.Consumption = IcRight
Margins.Left = 20
Margins.Top = 20

Form

New Layout Rectangle (in Blue)
400 x 450

The layout functionality reduced the width of the layout rectangle by the width of each button (80 pixels)

combined with the left margin of each button (20 pixels), for a total reduction of 200 pixels.

In most cases a form would not consist of just two buttons, so let's continue with the layout by placing a

TPagePanel control instance on the form.

Page 141

Using Visual Controls

Form
Buttons |--m "
Width = 80
Layout.Position = IpTopLeft

Layout.Consumption = IcRight + |
Margins.Left = 20
Margins.Top = 20

]]

Page Panel
o+ : - il ;
Layout Rectangle (in Blue) [

400 = 450

We want the TPagePanel instance to use the rest of the available space on the form below the two
TButton instances, so let's specify that the Layout.Position property of the TPagePanel instance should be
IpTopLeft, the Layout.Stretch property should be IsBottomRight, and the Margins.Left, Margins.Top,
Margins.Right, and Margins.Bottom properties should be set to 20 pixels for proper spacing:

P r—
= Layout (TLayout)
Consumption lcMene
Position lpTopleft |E|
Reset False
Stretch lsBottomRight
LayoutOrder 2

The resulting layout looks like this:

Page 142

Using Visual Controls

Form

Buttons
Width = 80
Layout.Position = IpTopLeft
Layout.Consumption = IcRight
Margins.Left = 20
Margins.Top = 20

Page Panel
Layout.Position = IpTopLeft
Layout.Stretch = IsBottomRight
Margins.Left = 20
Margins.Top = 20
Margins.Right = 20
Margins.Bottom = 20

Layout Rectangle (in Blue)
400 x 450

As you can see, this is not exactly what we wanted, and the TPagePanel instance is to the right of the
buttons instead of below the buttons.

To fix this, we only need to change two properties for the second TButton instance: we need to specify
that the Layout.Consumption property should be lcBottom and that the Layout.Reset button should be
True:

=l Layout (TLayout)
Consumption lcBottom
Position lpTopleft
Reset True |E|
Stretch IsMene
LayoutOrder 1

Changing these two properties in this manner does two things:

|t changes the consumption direction towards the bottom of the layout rectangle, which is where
we want the TPagePanel instance to be placed.

7 It resets the layout rectangle back to the last reset point. Since this is the only control whose
Layout.Reset property is set to True, this means that the last reset point is the original layout
rectangle for the form. The reset of the layout rectangle will occur before the control consumes any
space.

Page 143

Using Visual Controls

The resulting layout looks like this:

Button 2
Width = 80
Height = 34

Layout. Position = IpTopLeft
Layout.Consumption = lcBottom
Layoul.Reset = True
Margins.Left = 20

Margins.Tap = 20
Consumption e P

—
: £ : é Consumption Form
r a2 i a
Button 1
Width = 80 _
Height = 34 T

Layout.Position = IpToplLeft
Layout.Consumption = icRight
Margins.Left = 20
Margins.Top = 20

Page Panel
Layout.Position = IpTopLeft
Layout.5tretch = |sBottomRight
Margins.Left = 20
Margins.Top = 20
Margins.Right = 20
Margins.Bottom = 20

Mew Layout Rectangle (in Blue) |
600 x 396 |

With these changes, the layout functionality reduced the height of the layout rectangle by the height of
the second button (34 pixels) combined with the top margin of the second button (20 pixels), for a total
reduction of 54 pixels.

Note

You'll also notice that we did not specify the Layout.Consumption property for the TPagePanel
instance. This is because consumption only affects the positioning of controls that come after the
current control in the layout order. Since the TPagePanel instance is the last control placed on the

form, there is no point in specifying the Layout.Consumption property.

Reset Points

Reset points are useful for situations where you have a series of controls consuming space in one direction
according to their layout order, but wish to change the consumption direction after the last control in the
series. Reset points are set by setting a control's Layout.Reset property to True. As mentioned above, when
a reset point is encountered the layout rectangle is set to the layout rectangle of the last reset point. This
reset point layout rectangle represents the layout rectangle after any space consumption took place for

Page 144

Using Visual Controls

the control setting the reset point. If there were no prior reset points, then the layout rectangle is set to
the client rectangle of the container control.

The following layout shows how you can use multiple reset points to arrange several series of controls
without needing to use special container controls:

Consumption

| Consumption Form

r
Consumption | 3
[] i 1]

<l -
. |

Consumption

* = Reset Point

The numbers represent the LayoutOrder property value for the control, and the asterisks (*) represent
where a control has its Layout.Reset property set to True. The controls at the top left all have their
Layout.Position properties set to IpTopLeft, and the controls at the bottom right all have their
Layout.Position properties set to IpBottomRight. The control in the middle has its Layout.Position
property set to IpTopLeft, and its Layout.Stretch property to IsBottomRight.

Constraints and Stretching

The defined constraints for a control are always in effect, and any attempts to modify the dimensions of
the control in a way that violates these constraints will result in the modification being adjusted so that it
adheres to the applicable constraint. This makes constraints very useful when combined with the
Layout.Stretch property options. For example, in many of the example applications included with Elevate
Web Builder, you will see code like this:

procedure TMainForm.MainFormCreate(Sender: TObject);
begin

Page 145

Using Visual Controls

Application.ViewPort.OverflowY:=otAuto;
with Application.Surface do
begin
Constraints.Min.Height:=(Self.Height+40);
Background.Fill.Color:=clElevateFillGray;
end;
end;

Note

By default, the TSurface control interface is defined so that the application surface's
Layout.Position property is IpTopLeft and the application surface's Layout.Stretch property is
[sBottomRight.

This code specifies that any time the application surface vertically overflows the browser viewport, a
vertical scrollbar should be shown in the browser. In addition, it sets the minimum size of the application's
surface to 40 pixels taller than the main form. Combined with the fact that the surface is set to stretch to
fill the entire browser viewport, these two settings enable the following behaviors:

@ |If the browser viewport is larger than the minimum surface height, the application surface will
stretch to fill the browser viewport.

@ If the browser viewport is smaller than the minimum surface height, the surface will remain the
minimum height and the browser viewport will display a vertical scrollbar.

Layout Overflow and Responsive Layouts

The Layout.Overflow property of a control can be used to create responsive layouts by giving the
developer the ability to specify how the current layout rectangle should be adjusted when the dimensions
of the control exceed the left, top, right, or bottom bounds of the current layout rectangle. The layout
management uses the Overflow property to determine which direction the prior (based upon the layout
order) control's Consumption property should be temporarily adjusted in order to prevent the current
control's dimensions from exceeding the bounds of the current layout rectangle. When an overflow
condition occurs, the Reset property for the prior control is temporarily set to True, resetting the current
layout rectangle to the layout rectangle of the last reset point, and the Consumption property for the prior
control is temporarily modified according to the following rules:

Overflow Consumption
loTop IcTop

loLeft IcLeft

loRight IcRight
loBottom IcBottom

This provides the developer the ability to specify an initial desired layout with positioning, stretching,
consumption, margins, constraints, and reset points, but still allow the layout to adjust within a container
control that may dynamically resize while the application is executing.

Page 146

Using Visual Controls

Note

It is important that you specify an Overflow property that makes sense for a given layout. For
example, if the container control is a scrollable control, can be resized horizontally and vertically,
but can only scroll vertically, then it would make no sense to specify an Overflow property value of
loLeft or loRight. The same logic applies to a scrollable container control that can be resized
horizontally and vertically, but can only scroll horizontally. With such a contaner control, it would
make no sense to specify an Overflow property value of loTop or loBottom.

Page 147

Using Server Requests

This page intentionally left blank

Page 148

Using Server Requests

Chapter 4

Using Server Requests

4.1 Server Request Architecture

Elevate Web Builder produces web applications that are loaded once into a web browser. Such an
application is different from a traditional web site with a collection of individual web pages that are
navigated to using traditional URL links. In fact, navigating to a different URL in an Elevate Web Builder
application will actually cause the application to be unloaded in the web browser, which is not the desired
result for most situations.

Given this architecture, there needs to be a way for such an application to communicate with the web
server in order to exchange data or content without causing an actual navigation or page load in the web
browser. The name for this type of communication in modern web browsers is called AJAX, which stands
for "Asynchronous JavaScript and XML". While AJAX was primarily designed to be used with XML data, it
can be used with any type of textual content or data. Though AJAX can also be used in a synchronous, as
opposed to asynchronous, manner, Elevate Web Builder always uses AJAX functionality in an
asynchronous manner. What this means is that when a web server request is executed, the application will
continue to execute and respond to user input while the request is being executed, and an event will be
triggered when the request completes successfully or encounters an error.

When to Use Server Requests

It is important to understand when a server request should be used and, even more importantly, when
one shouldn't be used. The following are cases where you should not use a server request:

@ If you only need to load and display an image, use a Timage control instead.

= If you only need to send some values from input controls on a form to the web server, use the
HTML Forms functionality instead.

= If you are using databases, then use the built-in database handling that is provided.

HTTP Server Requests

AJAX web server requests are basically equivalent to the requests that are made by a web browser on your
behalf when navigating URL links in a web page. These requests use the HTTP protocol which determines
how the request and its response from the web server are formatted. A typical HTTP request looks like
this:

GET /testproject.html HTTP/1.1

Accept: text/html

Accept-Encoding: gzip, deflate

Accept-Language: en-us

Cache-Control: max-age=0

Connection: keep-alive

Host: localhost

If-Modified-Since: Thu, 16 Aug 2012 18:35:21 GMT

Page 149

Using Server Requests

User-Agent: Mozilla/5.90

Every HTTP request begins with a method name, followed by a URL and the version of the HTTP protocol
being used by the web browser. Please see the following link for a complete definition of the various HTTP
methods:

Method Definitions
Elevate Web Builder supports the GET, HEAD, POST, PUT, and DELETE methods in web server requests.

After the initial request line is one carriage return/line feed pair (0x0D and OxOA), followed by the request
headers. All request headers use a format of:

<Header Name>: <Header Value>

Please see the following link for a complete definition of all standard HTTP headers:
Header Field Definitions

After the request headers are two carriage return/line feed pairs. If the request does not send any
additional content, as would be the case with a POST request, then the request will not contain any
additional data. If there is additional content, then the additional content will be sent after the two
carriage return/line feed pairs. In addition, a "Content-Length" request header must be specified in the
request headers that indicates the size, in characters, of the additional content.

Warning
If you do not specify a content length header, then the most likely result is that the web server will
simply ignore the content, return an error code, or both.

For example, suppose that you want to send the following text content to a web server in a POST request:

The quick brown fox jumps over the lazy dog

The length of the text is 43 characters, so the POST request would look like this:

POST /postcontent HTTP/1.1

Accept: text/html

Accept-Encoding: gzip, deflate
Accept-Language: en-us

Cache-Control: max-age=0

Connection: keep-alive

Host: localhost

User-Agent: Mozilla/5.0

Content-Type: text/plain; charset=utf-8
Content-Length: 43

Page 150

Using Server Requests

The quick brown fox jumps over the lazy dog

Note

At this point it is probably a good idea to point out that you do not have to format web server
requests like this in order to use the server request functionality in Elevate Web Builder. However, it
is important that you understand how such requests are formatted in order to properly add custom
headers or content to web server requests, as well as to properly read and parse response content
returned from the web server.

HTTP Server Responses

The format of responses from a web server are very similar to the format of the requests. A typical HTTP
response from a web server looks like this:

HTTP/1.1 200 OK

Date: Thu, 17 Aug 2012 01:52:46 GMT
From: admin@elevatesoft.com

Server: Elevate Web Builder Web Server
Connection: Keep-Alive

Cache-Control: no-cache

Content-Type: text/plain; charset=utf-8
Content-Length: 139

NameEdit=Tim Young
EmailEdit=timyoung@elevatesoft.com
CommentsEdit=Comments
RememberMeCheckBox=False

Note

The response content is not necessarily representative of the content that may be returned by any
web server request, and is only used to represent the response content as a simple key-value
example.

Every HTTP response begins with the version of the HTTP protocol being used by the web server, followed
by a numeric response code and a textual status message. Please see the following link for a complete
definition of the various HTTP response codes:

Status Code and Reason Phrase

In both an Elevate Web Builder application, and an Elevate Web Builder web server module, there are
defined constants that represent the common HTTP status codes. In an Elevate Web Builder application,
you will find these constants in the WebHTTP unit, which contains the TServerRequest and
TServerRequestQueue components (see below) and is part of the standard component library. In an
Elevate Web Builder web server module, you will find these constants in the ewbhttpcommon unit, which
is distributed as a .dcu (Delphi compiled unit) with the Elevate Web Builder Modules installlation.

The constants are defined as follows:

Page 151

Using Server Requests

HTTP_NONE = ;

HTTP_CONTINUE = 100;

HTTP_OK = 200;
HTTP_MOVED_PERMANENTLY = 301;
HTTP_FOUND = 302;
HTTP_SEE_OTHER = 303;
HTTP_NOT_MODIFIED = 304;
HTTP_MOVED_TEMPORARILY = 307;
HTTP_BAD_REQUEST = 400;
HTTP_NOT_FOUND = 404;
HTTP_NO_LENGTH = 411;
HTTP_INTERNAL_ERROR = 500;
HTTP_NOT_IMPLEMENTED = 501;
HTTP_SERVICE_UNAVAILABLE = 503;

Core Components

In Elevate Web Builder, the components that encapsulate the AJAX functionality in the web browser are:

TServerRequest

TServerRequest components can be dropped directly onto a visual form at design-time in a visual project,
or created at run-time in both visual and non-visual projects. The TServerRequest component
encapsulates a single web server request. The Method property specifies the HTTP method (default rmGet)
and the URL property specifies the URL for the request. Although the web browser will automatically
populate all required request headers, you can specify additional request headers using the
RequestHeaders property. You can use the Execute method to actually execute the request.

TServerRequestQueue

TServerRequestQueue components can be dropped directly on a visual form at design-time in a visual
project, or created at run-time in both visual and non-visual projects. The TServerRequestQueue
component implements a queue of server requests in order to force serialization of the server requests so
that requests are executed in the order in which they are added to the queue. For example, the TDatabase
component uses an internal TServerRequestQueue component to ensure that dataset load requests, as
well as transaction commit requests, are executed in the order that they are requested.

Page 152

Using Server Requests

4.2 Executing a Server Request

The most common use for the TServerRequest component is to receive/send content to/from the web
server. Elevate Web Builder does just that for loading the columns and rows for datasets, as well as
committing database transactions and sending inserts, updates, and deletes to the web server. Datasets
use the JSON format for exchanging data with the web server, but server requests do not impose any
restriction on the format of the content that is sent or returned from the web server other than the fact
that it must be textual (or encoded in a textual format, as is the case with Base64 encoding).

Use the following steps to execute a server request using a TServerRequest component:

= Make sure that the TServerRequest Method property is set to the desired value. The default value is
rmGet.

@ Assign the proper URL to the TServerRequest URL property.

Warning

If the origin (protocol, host, and port) specified in the URL is different than the origin for the
application, then you will need to set the TServerRequest CrossOriginCredentials property to
true in order to have any HTTP cookies and/or authentication headers sent to the web server
that is servicing the HTTP requests for the URL.

@ Assign any URL parameters to the TServerRequest Params property. The Params property is a
TStringList object instance with an equals (=) name/value separator. Each parameter should be
specified in the name=value format as a separate string in the list.

Note

URL parameters are automatically appended directly to the URL by the TServerRequest
component when the Execute method is called, so do not add them directly to the URL
property. You can use the RequestURL property to retrieve the full URL that will be sent to
the destination web server when the server request is executed.

@ Assign any custom request headers to the TServerRequest RequestHeaders property. The
RequestHeaders property is a TStringList object instance with a colon (:) name/value separator. Each
header should be specified in the following format as a separate string in the list:

Name: Value

@ Create and assign an event handler to the TServerRequest OnComplete event. This will ensure that
you can determine when the request is complete.

@ Call the TServerRequest Execute method to initiate the web server request.

TServerRequest Example

Page 153

Using Server Requests

For example, suppose that you wanted to retrieve customer data from the web server in the following
key-value format:

ID=100

Name=ACME Manufacturing, Inc.
Contact=Bob Smith
Address1=100 Main Street
Address2=

City=Bedford Falls

State=NY

ZipPostal=11178

To do so, you would use code like the following:

procedure TMyForm.MyFormCreate(Sender: TObject);
begin

MyRequest:=TServerRequest.Create(nil);

end;

procedure TMyForm.MyFormDestroy(Sender: TObject);
begin

MyRequest.Free;

end;

procedure TMyForm.RequestComplete(Request: TServerRequest);
begin
if (Request.StatusCode=HTTP_OK) then
ShowMessage('The value of the customer ID is '+
Request.ResponseContent.Values['ID'])

else
raise EError.Create('Response Error: '+Request.StatusText);
end;

procedure TMyForm.GetCustomerClick(Sender: TObject);
begin
MyRequest.URL:="/customer';
MyRequest.Params.Add('method=info");
MyRequest.ResponseContent.LineSeparator:=#10;
MyRequest.OnComplete:=RequestComplete;
MyRequest.Execute;
end;

TServerRequestQueue Example

To use the TServerRequestQueue component instead of the TServerRequest component, you would use
the following code:

procedure TMyForm.MyFormCreate(Sender: TObject);
begin
MyRequestQueue:=TServerRequestQueue.Create(nil);
end;

procedure TMyForm.MyFormDestroy(Sender: TObject);

Page 154

Using Server Requests

begin
MyRequestQueue.Free;
end;

procedure TMyForm.RequestComplete(Request: TServerRequest);
begin
if (Request.StatusCode=HTTP_OK) then
ShowMessage('The value of the customer ID is '+
Request.ResponseContent.Values['ID'])

else
raise EError.Create('Response Error: '+Request.StatusText);
end;

procedure TMyForm.GetCustomerClick(Sender: TObject);
var
TempRequest: TServerRequest;
begin
TempRequest:=MyRequestQueue.GetNewRequest;
TempRequest.URL:="'/customer';
TempRequest.Params.Add('method=info");
TempRequest.ResponseContent.LineSeparator:=#10;
TempRequest.OnComplete:=RequestComplete;
MyRequestQueue.AddRequest(TempRequest);
end;

Note

If the request results in a status code other than HTTP_OK class of status codes (200-299), then the
request queue will automatically stop executing requests until the request is retried or cancelled.
This is also the case if the OnComplete event handler raises an exception. You can call the
ExecuteRequests method to retry the requests from the last request that failed, or call the
CancelRequest to cancel the last request that failed and continue with the next queued request.

Cancelling a Server Request

Sometimes it is necessary to cancel a pending server request, and this can be done by calling
TServerRequest Cancel method. If you're using a TServerRequestQueue component, then you can call the
CancelRequest or CancelAllIRequests methods to cancel one or more queued requests.

Page 155

Using Local Storage

This page intentionally left blank

Page 156

Using Local Storage

Chapter 5
Using Local Storage

5.1 Introduction

Modern browsers provide a local data store to browser applications for storing and retrieving strings by a
key. This local data store is normally not very large (typically, around 5-10MB), and the user can customize
the maximum available storage size in the browser, so don't rely on using local storage for storing large
amounts of data. However, it can be useful for storing user preferences and interim data that needs to be
persisted until the data is saved to a web server application.

Elevate Web Builder surfaces the local storage via the TPersistentStorage component class, and
automatically creates two instances of the TPersistentStorage class at application startup:

Storage Type Instance Variable Name
Per-Session SessionStorage
Local LocalStorage

The SessionStorage and LocalStorage variables are declared in the WebComps unit.

The SessionStorage instance represents only per-session storage, meaning that once the application has
been unloaded, any strings stored in this data store will be permanently deleted.

The LocalStorage instance represents browser-wide storage, and persists across instances of the
application.

Note

The local data store is segmented by origin, which means that each unique protocol, host, and port
has its own data store to use. So, if you loaded your application from
http://www.mysite.com/myapp, you would see a different data store than if you loaded your
application from https://www.mysite.com/myapp. In contrast, you would see the same data store if
you loaded your application from http://www.mysite.com/myapp and
http://www.mysite/myotherapp.

Page 157

Using Local Storage

5.2 Saving Data To Local Storage

You can use the TPersistentStorage Set method to save a string to a specific key in local storage. The
following example shows how to use a form method to store a user's display preferences in local (not per-
session) storage so that they are present whenever the application is run:

uses WebCore, WebComps;

procedure TForml.FormlCreate(Sender: TObject);
begin

DisplayPrefs:=TStringlList.Create;

end;

procedure TForml.FormlDestroy(Sender: TObject);
begin

DisplayPrefs.Free;

DisplayPrefs:=nil;
end;

procedure TForml.InitDisplayPrefs;
begin
with DisplayPrefs do

begin
Clear;
Values['ShowMainMenu']:="True';
Values['ShowToolBar']:="True";
end;

end;

procedure TForml.SaveDisplayPrefs;

begin
LocalStorage.Set('DisplayPrefs',DisplayPrefs.Text);

end;

procedure TForml.LoadDisplayPrefs;
begin
if LocalStorage.Exists('DisplayPrefs') then
DisplayPrefs.Text:=LocalStorage['DisplayPrefs’']
else
InitDisplayPrefs;
end;

Note
The above code is not complete and is only a cut-down example to illustrate the specific local
storage concepts discussed here.

Page 158

Using Local Storage

5.3 Loading Data from Local Storage

You can use the TPersistentStorage Exists method to determine if a particular key exists in local storage,
and the TPersistentStorage Items property to access a string by its key. The following example shows how
to use a form method to check for a user's display preferences in local (not per-session) storage, and then
load them if they exist, or initialize them if they don't:

uses WebCore, WebComps;

procedure TForml.FormlCreate(Sender: TObject);
begin

DisplayPrefs:=TStringlList.Create;
end;

procedure TForml.FormlDestroy(Sender: TObject);
begin
DisplayPrefs.Free;
DisplayPrefs:=nil;
end;

procedure TForml.InitDisplayPrefs;
begin
with DisplayPrefs do

begin
Clear;
Values['ShowMainMenu']:="True';
Values['ShowToolBar']:="True";
end;

end;

procedure TForml.SaveDisplayPrefs;

begin
LocalStorage.Set('DisplayPrefs',DisplayPrefs.Text);

end;

procedure TForml.LoadDisplayPrefs;
begin
if LocalStorage.Exists('DisplayPrefs') then
DisplayPrefs.Text:=LocalStorage['DisplayPrefs’']
else
InitDisplayPrefs;
end;

Note
The above code is not complete and is only a cut-down example to illustrate the specific local
storage concepts discussed here.

Page 159

Using Local Storage

5.4 Detecting Local Storage Changes

You can assign an event handler to the TPersistentStorage OnChange event to detect when another
session modifies any data saved in local (not per-session) storage. The following example shows how to
assign a form method (event handler) to the OnChange event for the global LocalStorage instance of the
TPersistentStorage class to detect when any other session modifies a user's display preferences in local
(not per-session) storage:

uses WebCore, WebComps;

procedure TForml.StorageChange(Sender: TObject; const Key: String;
const NewValue: String; const OldValue: String;

const URL: String);

begin
if (Key=""') or (Key='DisplayPrefs') then
LoadDisplayPrefs;
end;

procedure TForml.FormlCreate(Sender: TObject);
begin
DisplayPrefs:=TStringlList.Create;
LocalStorage.OnChange:=StorageChange;
end;

procedure TForml.FormlDestroy(Sender: TObject);
begin
LocalStorage.OnChange:=nil;
DisplayPrefs.Free;
DisplayPrefs:=nil;
end;

procedure TForml.InitDisplayPrefs;
begin
with DisplayPrefs do

begin
Clear;
Values['ShowMainMenu']:="True';
Values['ShowToolBar']:="'True';
end;

end;

procedure TForml.SaveDisplayPrefs;

begin
LocalStorage.Set('DisplayPrefs',DisplayPrefs.Text);

end;

procedure TForml.LoadDisplayPrefs;
begin
if LocalStorage.Exists('DisplayPrefs') then
DisplayPrefs.Text:=LocalStorage['DisplayPrefs’]
else
InitDisplayPrefs;
end;

Page 160

Using Local Storage

Note
The above code is not complete and is only a cut-down example to illustrate the specific local
storage concepts discussed here.

Page 161

Using Databases

This page intentionally left blank

Page 162

Using Databases

Chapter 6

Using Databases

6.1 Database Architecture

Elevate Web Builder includes extensive database functionality for easily loading data from the web server
and then updating the data on the web server using transactions.

The Elevate Web Builder database functionality has the following architecture:

TDatabase

ISON Transaction
Data

Transactions —

=| wWebServer
Application

Internat or
Intranct

-AI_J

JSOMN Column
and Row Data

ThataSet

Elevate Web Builder Application
Elevate Web Builder Database Architecture
The database functionality is virtual and handled in-memory in the Elevate Web Builder client application
using a disconnected database architecture. Database access is stateless and all updates to the actual
database via the web server are performed optimistically. All database requests/responses use the JSON
format for any associated data. Please see the JSON Reference for more information on the schema for

the JSON data.

There can be one or more databases (TDatabase instances) in an application, and within each database
can be one or more owned datasets (TDataSet instances).

Core Concepts

There are three core concepts in the Elevate Web Builder database functionality:

Page 163

Using Databases

@ Loading DataSet Columns - Normally the dataset columns are loaded/defined at design-time in
the Elevate Web Builder IDE, but it is possible to dynamically load the columns for a dataset at run-
time. The column information comes from the web server application in JSON format and includes
basic things such as column name, data type, length, and scale.

@ Loading DataSet Rows - The dataset rows must be loaded at run-time, and come from the web
server application in JSON format. When the rows are loaded, you can specify that the rows be
appended to the existing rows in the dataset, or completely replace the current rows in the dataset.

@ Transactions - By default, transactions are automatically started and committed/rolled back as rows
are inserted/saved, updated/saved, and deleted in any datasets contained within a database.
Nested transactions are supported, so only the outermost commit operation actually results in
communications with the web server application. The automatic transaction handling can be turned
off (see the TDatabase component below).

You can find the JSON formats used for all of the above in the JSON Reference topic.

Note

Elevate Web Builder requires that any table that you wish to update, or any table containing
content stored in BLOB columns that you wish to load (such as images), must have a primary key
defined. Elevate Web Builder uses the primary key to uniquely identify each row.

Core Components

The database functionality contains several core components, all residing in the WebData unit in the
Elevate Web Builder component library.

TDatabase

A global TDatabase component instance is auto-created at application startup for both visual and non-
visual projects, and is simply called Database. This singleton instance of the TDatabase component is
used to keep track of all datasets dropped directly on forms and provides methods for iterating over such
datasets.

In addition to this default singleton database instance, you can add explicit TDatabase instances to a
visual project by dragging and dropping a database defined in the Database Manager into the Project
Manager for the currently-opened project. When the database is dropped on or within the Units node of
the project manager, a new TDatabase (or descendant) instance will be created for the project, along with
an associated unit, and all of the defined datasets for the database will automatically be created as
TDataSet instances in the new database instance.

The TDatabase AutoTransactions property is used to control whether transactions are automatically
handled by the database instances. Please see the Transactions topic for more information on how the
AutoTransactions property affects transaction handling.

TDataSet
TDataSet components can either be dropped directly on a form or database at design-time in a visual
project, or created at run-time in both visual and non-visual projects. The Columns property contains the

column definitions for the dataset.

The columns for a dataset can be defined manually at design-time or load at run-time using the

Page 164

Using Databases

TDatabase LoadColumns method (via the TDatabase instance that contains the TDataSet instance) or the
TDataSet LoadColumns method. The primary difference between the two is that the TDatabase
LoadColumns method transparently handles the server request to the web server for retrieving the
columns in JSON format, whereas the TDataSet LoadColumns method simply accepts a JSON string
containing the columns, and leaves the details of where the JSON originated up to the caller.

Rows must be loaded from the web server application at run-time using the TDatabase LoadRows method
(via the TDatabase instance that contains the TDataSet instance) or the TDataSet LoadRows method. The
primary difference between the two is that the TDatabase LoadRows method transparently handles the
server request to the web server for retrieving the row data in JSON format, whereas the TDataSet
LoadRows method simply accepts a JSON string containing the row data, and leaves the details of where
the JSON originated up to the caller.

You can navigate the rows in a TDataSet component by using the First, Prior, Next, and Last methods.

The TDataSet component also allows you to Insert, Update, and Delete rows, as well as Find and Sort
rows.

Page 165

Using Databases

6.2 Creating and Using Databases

Before using the TDatabase component, you must first create an instance of the component, which you
can do at design-time or at run-time. A global TDatabase instance called Database is automatically
created at application startup and is used as the default database for any datasets that are created without
being specifically associated with a database. Please see the Creating and Loading DataSets topic for more
information on how datasets are associated with databases at creation time.

Creating a Database at Design-Time

The easiest way to create a database is by using the Database Manager in the IDE to define a database
and its contained datasets. Once a database has been defined under a database in the database manager,
you can easily add the database to an existing application by dragging the database from the database
manager and dropping it into the project manager for the currently-opened project. When the database is
dropped on or within the Units node of the project manager, a new TDatabase (or descendant) instance
will be created for the project, along with an associated unit, and all of the defined datasets for the
database will automatically be created as TDataSet instances in the new database instance.

At design-time, TDatabase instances act (and are stored) like forms but are actually just containers that
allow non-visual components like TDataSet instances to be dropped on to the database designer surface.
The database designer only allows for non-visual components to be placed on the designer surface, and
the visual size of the database instance in the designer is exclusively a design-time property. Please see
the Using the Form and Database Designers topic for more information on how to use the database
designer.

Authenticating Requests

You can use the TDatabase UserName and Password properties to specify a user name and password to
be used with any database requests to the web server. The TDatabase AuthenticationMethod property
controls how the authentication information is sent to the web server.

If the AuthenticationMethod property is set to amHeaders (the default), then the user name and password

are added as custom headers to the web server request as follows:

X-EWBUser: <User Name>
X-EWBPassword: <Password>

If the AuthenticationMethod property is set to amParameters, then the user name and password are
added as parameters to the web server request as follows:

<Database Resource URL>&user=<User Name>&password=<Password>

Page 166

Using Databases

Warning

Elevate Web Builder uses the AJAX functionality in browsers to perform database requests, and this
functionality is limited in its ability to perform authentication via native browser methods.
Therefore, you should always use secure connections (https) to the web server with any database
requests. This is especially true if using the parameter-based authentication, but is also true if you
are using datasets with BLOB columns that will require authentication information in their load URL
parameters. Please see the JSON Reference topic for more information on BLOB loading.

Database Request Queue

Each TDatabase instance contains a request queue that is used for all database requests to the web server.
Elevate Web Builder automatically handles building and sending all databases requests as the database
functionality is used in all TDatabase and TDataSet instances. However, if an error occurs during any
database request, the request queue is paused and all queued database requests, including the request
that failed, are effectively stalled. You can use the TDatabase NumPendingRequests property to determine
how many pending requests are present in the request queue, and the TDatabase RetryPendingRequests
and CancelPendingRequests methods to retry or cancel any pending requests in the database request
queue.

Please see the Executing a Server Request topic for more information on how web server requests are
executed.

Transactions

By default, each TDatabase instance automatically handles transactions without requiring them to be
manually started/committed/rolled back. This behavior is controlled via the TDatabase AutoTransactions
property. Please see the Transactions topic for more information on how database transactions work in
Elevate Web Builder.

Database Parameters

You can use the TDatabase Params property to specify database-specific parameters that will be passed as
URL parameters with all database requests originating from the database. This is useful for situations
where you want to tag all database requests with application-specific information, such as session IDs or
tokens. The Params property is a string list (TStrings) of "name=value" pairs that represents the database
URL parameters.

Page 167

Using Databases

6.3 Creating and Loading DataSets

Before using the TDataSet component, you must first create an instance of the component, which you can
do at design-time or at run-time.

Creating a DataSet at Design-Time

The easiest way to create a dataset is by using the Database Manager in the IDE to define a database and
its contained datasets. Once a dataset has been defined under a database in the database manager, you
can easily add the dataset to an existing application by simply dragging it from the database manager
and dropping it on a form or database. The relevant property information, including the column
definitions, will automatically be populated for the dataset. A database defined in the database manager
can be used to create a database in a project by dragging the database from the database manager and
dropping it into the project manager for the currently-opened project. When the database is dropped on
or within the Units node of the project manager, a new TDatabase (or descendant) instance will be
created for the project, along with an associated unit, and all of the defined datasets for the database will
automatically be created as TDataSet instances in the new database instance.

If you do not wish to use the database manager to create a dataset, you can also create a new dataset by
dragging a TDataSet component from the component palette and dropping it on a form or database.
Please see the Using the Form and Database Designers topic for more information on the required steps
to complete this action. Once you have dropped the TDataSet component on a form or database, you can
manually define the columns in the dataset by double-clicking on the TDataSet's Columns property. This
will launch the Columns Editor directly under the object inspector, and you can then use the Columns
Editor to add, edit, or delete the columns in the dataset.

Creating a DataSet at Run-Time

In cases where visual forms and databases are not being used, such as with a non-visual project orin a
library procedure/function, you can create a dataset instance at run-time using code. The following is an
example of creating a dataset, opening it, and populating it with some rows at run-time:

function CreateStatesDataSet: TDataSet;
begin

Result:=TDataSet.Create(nil);

with Result.Columns.Add do
begin
Name:="Abbrev';
DataType:=dtString;
Length:=2;
end;

with Result do
begin
Open;
Insert;
Columns['Abbrev'].AsString:="CA"';
Save;
Insert;
Columns['Abbrev'].AsString:
Save;
Insert;
Columns['Abbrev'].AsString:

FL';

NY';

Page 168

Using Databases

Save;
end;
end;

Datasets are associated with a given database by being created with the database as the (sole) owner
parameter. As you can see in the above example, the dataset is created with a nil owner parameter, which
will cause this dataset instance to be associated with the global Database TDatabase instance.

Loading a DataSet at Run-Time

As seen in the above example, you can add rows directly at run-time without ever having to communicate
with the web server in order to request data. However, most applications will need to load rows into a
dataset from a database by using the web server application as middleware for serving up the necessary
rows. There are two different ways to load rows into a dataset at run-time: the TDatabase LoadRows
method or the TDataSet LoadRows method.

TDatabase LoadRows Method

The TDatabase LoadRows method is the easiest way to load the rows into a dataset because it
automatically handles the actual server request to the web server. The TDatabase component uses the
following properties to construct the GET request to the web server for the rows:

= TDatabase BaseURL
This property defaults to 'databases’, but can be changed to any value that you wish. Please note
that it is best to use a relative URL path here so that all requests will be made relative to the URL
from which the application was loaded. If you're accessing a database module then, by default, you
should set this property to 'databasemodules/<module name>', where <module name> is the
name of the database module that you wish to access. Please see the Creating Web Server Modules
for more information on creating database modules to handle database requests.

@ TDatabase DatabaseName
This property defaults to the same value as the TDatabase component's Name property, but is
automatically populated for you if you use the drag-and-drop method of creating a TDatabase at
design-time. This property can be changed to any value that you wish, and is simply used to identify
the database via a URL parameter used for the web server request.

@ TDatabase Params
This property is a string list (TStrings) of "name=value" pairs that represents the URL parameters for
all web server requests for the database. These parameters are strictly application-specific and are
not used by by the TDatabase component.

@ TDataSet DataSetName
This property defaults to the same value as the TDataSet component's Name property, but is
automatically populated for you if you use the drag-and-drop method of creating a TDataSet at
design-time. This property can be changed to any value that you wish, and is simply used to identify
the dataset via a URL parameter used for the web server request.

@ TDataSet Params
This property is a string list (TStrings) of "name=value" pairs that represents the URL parameters for
the web server request. If the dataset that is being loaded is a query that requires parameters, then
you should make sure to specify them using this property.

Page 169

Using Databases

As an example, consider a database and dataset that is defined as the following in the database manager
in the IDE:

Database Name: Production
DataSet Name: CustomerOrders
Row Source:

SELECT * FROM custord
WHERE CustomerID={CustomerID="ADF'}

Base Table: custord

Assuming that a dataset instance called "CustomerOrders" was created at design-time by dragging and
dropping the dataset from the database manager on to a form called "MasterDetailForm", the following
code is all that would be needed to load the dataset:

procedure TMasterDetailForm.LoadOrders;
begin
CustomerOrders.Params.Clear;

CustomerOrders.Params.Add('CustomerID="+QuotedStr(Customer.Columns['CustomerI
D'].AsString));
Database.DatabaseName:="'Production'; // Uses the default global Database
TDatabase instance
Database.LoadRows (CustomerOrders);
end;

Note

You should always use single quotes around all string parameters. Failure to do so will result in the
dataset load not working correctly. Use the QuotedStr function to ensure that any string
parameters are properly quoted.

In the above example, the relative URL that will be used for the web server GET request would be:

databases?method=rows&database=Production&dataset=CustomerOrders&CustomerID="
ADF'

If the application was loaded from 'http://localhost’, then the complete URL used for the web server GET
request would be:

http://localhost/databases?method=rows&database=Production&dataset=CustomeroOr
ders&CustomerID="ADF'

If aren't using the global Database TDatabase instance and, instead, have created a TDatabase instance in

Page 170

Using Databases

the application, then the code is only slightly different. Assuming that a database instance called
"Production” and a dataset instance called "CustomerOrders" was created at design-time by dragging and
dropping the database from the database manager on to the project manager, the following code is all
that would be needed to load the dataset:

procedure TProduction.LlLoadOrders;
begin
CustomerOrders.Params.Clear;

CustomerOrders.Params.Add('CustomerID="+QuotedStr(Customer.Columns[‘'Customerl
D'].AsString));
LoadRows (CustomerOrders);
end;

In the above example, the URL used for the web server GET request would be exactly the same as before
when the global Database TDatabase instance was used instead of a specific TDatabase instance.

After the request is successfully executed, the TDatabase LoadRows method automatically opens the
dataset using the TDataSet Open method before also automatically calling the TDataSet LoadRows
method.

TDataSet LoadRows Method

The TDataSet LoadRows method directly accepts the dataset rows as a JSON-formatted string. This means
that this method is more useful for situations where the dataset rows are stored in memory or local
storage and need to be directly loaded from one of those locations. It is recommended that you always
use the TDatabase LoadRows method for loading rows from a web server.

Note

The LoadRows method requires that the dataset be open prior to being called. Use the Open
method to open the dataset.

Tracking Load Operations

The TDataSet BeforeLoad event is fired before the dataset load actually begins. To prevent the load from
occurring, return False as the result in an event handler for this event.

If a dataset load request was sent to the web server and was not successful due to an exception or the
web server application returning an HTTP result code other than 200 (OK), the OnLoadError event will be
fired and will include the error message. If an event handler is not defined for the OnLoadError event, then
an exception will be raised with the error message. If a load fails for any reason, then the load request is
placed in a pending requests queue. This is also true for transaction commits. This queue ensures that the
database requests can be retried and, when retried, are sent to the web server in the order in which they
occurred. You can see if there are any pending database requests by examining the TDatabase
NumPendingRequests property. If the NumPendingRequests property is greater than 0, then there are
commit and/or dataset load requests that need to be retried at some point. Use the TDatabase
RetryPendingRequests method to retry any pending database requests, and the TDatabase
CancelPendingRequests method to cancel any pending database requests.

Page 171

Using Databases

The TDataSet AfterLoad event is fired after the dataset load completes successfully. If there were any
errors during the load process, then this event handler will not get called.

Page 172

Using Databases

6.4 Navigating DataSets

The TDataSet component provides several methods for navigating the rows present in the underlying
dataset, as well as properties for obtaining information about the current row position and reading data
from the current row.

Moving the Row Pointer

To move the row pointer to a different position in the dataset, use the TDataSet First, Prior, Next, Last,
MoveTo, and MoveBy methods. Use the TDataSet BOF, EOF, and RowNo properties to obtain information
about the current row position.

The following example navigates from the beginning of a dataset to the end, appending each order ID to
a string:

var
OrderIDs: String=""';
begin
with CustomerOrders do
begin
First;
while (not EOF) do
begin
if (OrderIDs="") then
OrderIDs:=Columns['OrderID'].AsString
else
OrderIDs:=0OrderIDs+', '+Columns['OrderID'].AsString;
Next;
end;
end;
end;

Bookmark Operations

Sometimes it is necessary to save the current row pointer, perform some operations that may or may not
move the row pointer, and then return to the saved row pointer. The TDataSet SaveBookmark,
GotoBookmark, and FreeBookmark methods provide the bookmark functionality for datasets. Bookmarks
include a non-volatile row ID and BOF/EOF information so that a row pointer can be restored even when
the active sort has been changed. The only case when a row pointer cannot be restored is when the row
represented by the bookmark has been deleted.

Note

Bookmarks are automatically pushed and popped from an internal bookmark stack for the dataset,
so nested calls to SaveBookmark and GotoBookmark/FreeBookmark will automatically work
properly as long as the number of GotoBookmark/FreeBookmark calls matches the number of
SaveBookmark calls. Also, GotoBookmark and FreeBookmark are mutually-exclusive: both methods
free the active bookmark, but only the GotoBookmark method actually tries to navigate to the
active bookmark before freeing it.

Page 173

Using Databases

The following example saves the current row pointer as a bookmark, updates a column in all of the rows,
and then restores the row pointer by calling GotoBookmark:

procedure TOrderEntryDlg.UpdateLineNumbers;
begin
with CustomerItems do
begin
DisableControls;
try
SaveBookmark;
try
First;
while (not EOF) do
begin
Update;
Columns['LineNo"'].AsInteger:=RowNo;
Save;
Next;
end;
finally
GotoBookmark;
end;
finally
EnableControls;
end;
end;
end;

Reading Column Values

The TDataSet Columns property allows you to read the column values for the current row. You can access
a column in the Columns property by its index or by its name via the TDataColumns Column property.
However, since the Column property is the default property for the TDataColumns object, you can omit it
when referencing the Columns property. The following example loops through all columns in a dataset
and appends their name to a string:

var
I: Integer;
ColumnNames: String="";
begin
with CustomerOrders do
begin
for I:=0 to Columns.Count-1 do
begin
if (ColumnNames='") then
ColumnNames:=Columns[I].Name
else
ColumnNames:=ColumnNames+"', '+Columns[I].Name
end;
end;
end;

Each TDataColumn object present in the TDataSet Columns property has several As* properties that allow
you to access the data in the column for the current row as a particular type. Type conversions are

Page 174

Using Databases

performed automatically wherever necessary. However, certain type conversions are impossible and will, if
attempted, cause an exception to be raised. For example, the following code will cause an exception to be
raised because the OrderDate column, which has a type of dtDate, cannot be converted to a Boolean
value:

begin
with CustomerOrders do
Result:=Columns['OrderDate'].AsBoolean;
end;

To determine if a column is Null, you can use the TDataColumn Null property.
Tracking Navigation Operations

The TDataSet BeforeScroll event is fired before the dataset's row pointer moves during navigation. To
prevent the navigation from occurring, return False as the result in an event handler for this event.

The TDataSet AfterScroll event is fired after the dataset's row pointer is moved.

The following TDataSet property assignments cause the BeforeScroll and AfterScroll events to be
triggered:

RowlD
RowNo

The following TDataSet methods cause the BeforeScroll and AfterScroll events to be triggered:

First

Prior

Next

Last

MoveBy
MoveTo

Find

Sort
GotoBookmark

Page 175

Using Databases

6.5 Searching and Sorting DataSets

The TDataSet component provides several methods for searching and sorting the rows present in the
underlying dataset, as well as properties for obtaining information about the active sort.

Sorting the Rows

To sort the rows in a dataset, use the Sort method. To specify the columns to sort, assign the desired value
to the TDataColumn SortDirection property in the order that reflects the column order of the desired sort.
Use the TDataSet SortCaselnsensitive property to specify that the sort should be case-insensitive, and the
SortLocalelnsensitive property to specify that the sort should be locale-insensitive. The default value for
both properties is False.

The following example sorts the Products dataset based upon descending list price:

begin
with Products do
begin
Columns['ListPrice'].SortDirection:=sdDescending;
Sort;
end;
end;

Once a sort has been established, the TDataSet Sorted will return True and the dataset will automatically
keep the rows sorted accordingly as rows are inserted, updated, or deleted. The TDataColumn Sortindex
property can be examined to determine where a column resides in the active sort. To clear an existing
sort, simply assign a value of sdNone to the SortDirection property of all sorted columns.

Searching for a Row

The TDataSet InitFind and Find methods allow you to search the rows in the dataset for a particular set of
column values. The first step to executing a search is to call the InitFind method, which puts the dataset in
the "Find" state, which is represented by the TDataSet State property. Once the dataset is in the "Find"
state, you can assign values to the columns in the dataset and then call the Find method to execute the
actual search. If there is a sort active on the dataset, then it will be used for satisfying the Find operation if
the modified columns and the Caselnsensitive parameter to the Find method match the active sort. For
example, the following example sorts the Products dataset by the ProductID column and then executes a
case-insensitive Find operation on the ProductID column for the '‘PEN-BP-12PK' product ID:

begin
with Products do
begin
Columns['ProductID'].SortDirection:=sdAscending;
SortCaselnsensitive:=True;
Sort;
InitFind;
Columns['ProductID'].AsString:="PEN-BP-12PK";
if Find(False,True) then
Result:=True
else

Page 176

Using Databases

Result:=False;
end;
end;

To perform a search for the row with the column values that are nearest to the specified Find values,
simply pass True as the first parameter to the Find method.

Note

The TDataSet component determines which columns participate in the Find operation, and
subsequently which columns need to match the active sort, based upon which columns have been
modified since the InitFind method was called. In order to perform a nearest value search, the

modified columns and the Caselnsensitive Find parameter (the second) must match the active sort.

Page 177

Using Databases

6.6 Updating DataSets

The TDataSet component provides several methods for inserting, updating, and deleting rows in the
underlying dataset, as well as properties for reading both the current and old column values from the
current row.

Inserting New Rows

Inserting a new row in a dataset is a three-step process. First, use the TDataSet Insert method to put the
dataset into the insert state. This will:

= Fire the Beforelnsert event handler, if one is defined. To prevent the insert from occurring, return

False as the result in the event handler.

= If the OwnerDatabase's AutoTransactions property is True (the default), then start a new transaction

and then create a new row. If the Append flag (default False) is passed to the Insert method, then
the new row will be appended to the end of the dataset, otherwise the new row will be inserted at
the current row pointer in the dataset.

@ Fire the Onlnitrow event handler, if one is defined. The OnInitRow event handler allows the

application to assign values to the columns in the new row without causing any of the columns, or
the row, to be flagged as modified. This is a good place to assign default values for columns.

@ Change the TDataSet State property to dsinsert once the dataset is in the insert state.

@ Fire the Afterlnsert event handler, if one is defined.

Once the dataset is in the insert state, you can use the Columns property to read or assign new values to
the various columns in the row using the TDataColumn As* properties. When a column is assigned a new
value, its Modified property is set to True.

When all column modifications have been made, use the Save method to complete the insert. This will:

Page 178

@ Fire the BeforeSave event handler, if one is defined. To prevent the save from occurring, return False

as the result in the event handler.

@ Save the row in the dataset, logging the insert if a transaction is in progress. At this point, the

Modified property for the columns in the row will be reset to False.

@ Fire the AfterSave event handler, if one is defined.

Using Databases

@ Update any active sort and change the TDataSet State property to dsBrowse to reflect that the
dataset is now in the browse state.

Note

With no active sort, rows are always sorted by their actual insertion order, so even if the
Insert method was called without the Append flag, the newly-inserted row will move to the
end of the dataset after the Save method completes.

@ If the OwnerDatabase's AutoTransactions property is True (the default), then commit the active
transaction.

If you want to cancel the insert operation, you can use the TDataSet Cancel method. This will:

@ Fire the BeforeCancel event handler, if one is defined. To prevent the cancel from occurring, return
False as the result in the event handler.

@ Discard the row. The row pointer will return to the row pointer that was active prior to the Insert
method being called.

@ Fire the AfterCancel event handler, if one is defined.

@ Change the TDataSet State property to dsBrowse to reflect that the dataset is now in the browse
state.

@ If the OwnerDatabase's AutoTransactions property is True (the default), then roll back the active
transaction.

The following example inserts a new product into the Products dataset:

begin

with Products do

end;

begin

Products.Insert; // Required to avoid conflict with Insert system
function

Columns['ProductID'].AsString:="PHONE-HEADSET";

Columns|['Description’].AsString:="Hands-free phone handset’;
Columns['ListPrice'].AsFloat:=15.00;

Columns['Shipping'].AsFloat:=2.00;

Save;

end;

Updating Existing Rows

Updating an existing row in a dataset is a three-step process. First, use the TDataSet Update method to
put the dataset into the update state. This will:

@ Fire the BeforeUpdate event handler, if one is defined. To prevent the update from occurring, return
False as the result in the event handler.

Page 179

Using Databases

@ If the OwnerDatabase's AutoTransactions property is True (the default), then start a new transaction.
@ Change the TDataSet State property to dsUpdate once the dataset is in the update state.

@ Fire the AfterUpdate event handler, if one is defined.

Once the dataset is in the update state, you can use the Columns property to read or assign new values to
the various columns in the row using the TDataColumn As* properties. When a column is assigned a new
value, its Modified property is set to True. You can use the TDataColumn OldValue property to access the
value of any column before any new assignments were made to the row.

When all column modifications have been made, use the Save method to complete the update. This will:

@ Fire the BeforeSave event handler, if one is defined. To prevent the save from occurring, return False
as the result in the event handler.

@ Save the row in the dataset, logging the update if a transaction is in progress. At this point, the
Modified property for the columns in the row will be reset to False.

@ Fire the AfterSave event handler, if one is defined.

@ Update any active sort and change the TDataSet State property to dsBrowse to reflect that the
dataset is now in the browse state.

Note
If any of the columns modified during the update are part of the active sort, then the row
will automatically move to the correct position in the active sort.

If you want to cancel the update operation, you can use the TDataSet Cancel method. This will:

@ Fire the BeforeCancel event handler, if one is defined. To prevent the cancel from occurring, return
False as the result in the event handler.

@ Discard any modifications to the row. The row pointer will stay in the same location.
@ Fire the AfterCancel event handler, if one is defined.

@ Change the TDataSet State property to dsBrowse to reflect that the dataset is now in the browse
state.

@ If the OwnerDatabase's AutoTransactions property is True (the default), then roll back the active
transaction.

The following example finds a product in the Products dataset and updates its shipping cost:

begin
with Products do
begin
InitFind;
Columns['ProductID'].AsString:="PHONE-HEADSET";
if Find(False,True) then
begin

Page 180

Using Databases

Update;
Columns['Shipping'].AsFloat:=1.80;
Save;
end;
end;
end;

Deleting Existing Rows

Deleting an existing row in a dataset can be done by calling the TDataSet Delete method. This will:

= Fire the BeforeDelete event handler, if one is defined. To prevent the delete from occurring, return
False as the result in the event handler.

= If the OwnerDatabase's AutoTransactions property is True (the default), then start a new transaction
and delete the existing row.

@ Fire the AfterDelete event handler, if one is defined.

The following example finds a product in the Products dataset and deletes it:

begin
with Products do
begin
InitFind;
Columns['ProductID'].AsString:="FLASH-USB-16GB";
if Find(False,True) then
Delete;

end;

end;

Page 181

Using Databases

6.7 Transactions

While datasets can be updated without using transactions, doing so causes all updates to be completely
bound to the dataset in the Elevate Web Builder application and unable to ever leave that context (apart
from being saved to local storage). Using transactions allows all updates to a dataset to be logged so that
the updates can then be sent to the web server application and reflected in an actual database. This is
especially important when a dataset is being loaded from a table or query result set present in a database
accessible from the web server application.

All transaction properties, methods, and events are contained with the TDatabase component in the
WebData unit. The AutoTransactions property is True, by default, and controls whether transactions are
automatically started and committed/rolled back as the datasets are updated. Please see the Updating
DataSets topic to see how the automatic transactions interact with the various dataset insert, update, and
delete operations. The methods for starting, committing, and rolling back transactions are the
StartTransaction, Commit, and Rollback methods. Transactions in Elevate Web Builder can be nested, so
the TDatabase InTransaction and TransactionLevel properties reflect whether a transaction is active and at
what level, respectively. If the TransactionLevel property is -1, then no transactions are active.

Starting a Transaction

Use the TDatabase StartTransaction method to start a transaction. This will increment the current
transaction level. All row inserts, updates, and deletes taking place in any owned datasets will be
automatically logged as part of the current transaction.

Committing a Transaction

Use the Commit method to commit the current transaction. This will:

“ Fire the BeforeCommit event handler, if one is defined. To prevent the commit from occurring,
return False as the result in the event handler.

@ If the current transaction level, as reflected by the TDatabase TransactionLevel property, is O, create
a web server POST request and send it to the web server application, with the transaction data
included as the POST content in JSON format. To see the JSON format used for the transactions,
please see the JSON Reference topic.

@ If the current transaction level is greater than 0, then append all operations in the current
transaction to the next lower transaction.

@ Decrement the current transaction level. If the transaction level is -1, then the TDatabase
InTransaction property is set to False.

Page 182

Using Databases

= If a POST request was not sent to the web server because the current transaction being committed
was nested, then immediately fire the AfterCommit event handler, if one is defined.

= If a POST request was sent to the web server and was not successful due to an exception or the web
server application returning an HTTP result code other than 200 (OK), the OnCommitError event will
be fired and will include the error message. If an event handler is not defined for the
OnCommitError event, then an exception will be raised with the error message. If a commit fails for
any reason, then the transaction being committed is placed in a pending requests queue. This is
also true for general database requests such as load requests. This queue ensures that the database
requests can be retried and, when retried, are sent to the web server in the order in which they
occurred. You can see if there are any pending database requests by examining the TDatabase
NumPendingRequests property. If the NumPendingRequests property is greater than 0, then there
are commit and/or dataset load requests that need to be retried at some point. Use the TDatabase
RetryPendingRequests method to retry any pending database requests, and the TDatabase
CancelPendingRequests method to cancel any pending database requests.

@ If a POST request was sent to the web server and was successful, then fire the AfterCommit event
handler, if one is defined.

Commit POST Requests

The TDatabase component uses the following properties to construct the POST request to the web server
when committing a transaction:

@ TDatabase BaseURL
This property defaults to 'datasets’, but can be changed to any value that you wish. Please note that
it is best to use a relative URL path here so that all requests will be made relative to the URL from
which the application was loaded.

@ TDatabase DatabaseName
This property defaults to the same value as the TDatabase component's Name property, but is
automatically populated for you if you use the drag-and-drop method of creating a TDatabase at
design-time. This property can be changed to any value that you wish, and is simply used to identify
the database via a URL parameter used for the web server request.

@ TDatabase Params
This property is a string list (TStrings) of "name=value" pairs that represents the URL parameters for
all web server requests for the database. These parameters are strictly application-specific and are
not used by by the TDatabase component.
As an example, consider a typical transaction commit. In such a case, the relative URL that will be used for

the web server POST request would be:

databases?method=commit&database=Production

If the application was loaded from 'http://localhost’, then the complete URL used for the web server POST
request would be:

http://localhost/databases?method=commit&database=Production

Page 183

Using Databases

Now consider a transaction commit where the BaseURL property is set to 'databases/transact.php'. In such
a case, the relative URL that will be used for the web server POST request would be:

databases/transact.php?method=commit&database=Production

If the application was loaded from 'http://localhost’, then the complete URL used for the web server POST
request would be:

http://localhost/databases/transact.php?method=commit&database=Production

Rolling Back a Transaction

Use the Rollback method to roll back the current transaction. This will:

= Fire the BeforeRollback event handler, if one is defined. To prevent the rollback from occurring,
return False as the result in the event handler.

@ Undo all operations that have taken place in the current transaction. If there are any exceptions
during this process, the OnRollbackError event will be fired and will include the error message. If an
event handler is not defined for the OnRollbackError event, then an exception will be raised with the
error message.

Note
It is highly unlikely that an exception will ever be raised when a transaction is being rolled
back, but it is possible that a catastrophic browser error could cause such an exception.

@ Decrement the current transaction level. If the transaction level is -1, then the TDatabase
InTransaction property is set to False.

@ Fire the AfterRollback event handler, if one is defined.

The following example starts a transaction, deletes all rows, and then commits the transaction.:

begin
Database.StartTransaction;
with Products do
begin
while (RowCount > @) do
Delete;
end;
Database.Commit;
end;

Page 184

Using Databases

Note
If you attempt to call the TDatabase Commit or Rollback methods when there are no active
transactions (InTransaction property is False), then an exception will be raised.

Page 185

Using Databases

6.8 Responding to DataSet Changes

It is important that one be able to respond to various changes to dataset columns and rows, both for
updating control states and for implementing concepts such as master-detail linkages. The TDataSet
OnStateChange event is used to track when the TDataSet State changes. The TDataSet OnRowChanged
event is used to track when the active row in the dataset changes, or when a column in the active row
changes.

State Changes

Define an event handler for the TDataSet OnStateChange event in order to track when the dataset state
changes. The following list details the TDataSet methods that cause the dataset state to change, along
with the state after the method completes:

Method After State

Open dsBrowse

Close dsClosed
CheckBrowseMode dsBrowse (if result is True)
InitFind dsFind

Find dsBrowse

Insert dsinsert

Update dsUpdate

Save dsBrowse

Cancel dsBrowse

The following example shows an OnStateChange event handler that displays the state of a dataset called
"Vendors" in a label on the current form:

procedure TMyForm.VendorsStateChange(Sender: TObject);
begin
case Vendors.State of
dsClosed:
VendorStatelLabel.Caption:="'Closed’;
dsBrowse:
VendorStatelLabel.Caption:="Browse';
dsInsert:
VendorStatelLabel.Caption:="Insert"';
dsUpdate:
VendorStatelLabel.Caption:="Update';
dsFind:
VendorStatelLabel.Caption:="'Find"';
end;
end;

Row Changes

Page 186

Using Databases

Define an event handler for the TDataSet OnRowChanged event in order to track when the active row in
the dataset changes. The OnRowChanged event is fired when any column in the active row is changed
due to a modification, or when the active row changes due to the row pointer moving. If the
OnRowChanged event was fired in response to a column modification, then the Column parameter in the
event handler will contain an instance of the TDataColumn that was modified. If the OnRowChanged
event was fired in response to the entire active row changing, then the Column parameter will be nil.

The following TDataColumn properties and methods will cause the OnRowChanged event to fire with a
non-nil Column parameter:

AsString
AsBoolean
AsInteger
AsFloat
AsDate
AsTime
AsDateTime
Clear

The following TDataSet properties and methods will cause the OnRowChanged event to fire with a nil
Column parameter:

RowlID
LoadRows

Sort
EnableControls
First

Prior

Next

Last

MoveBy
MoveTo
GotoBookmark
InitFind

Find

Insert

Save

Cancel

Delete

The following TDatabase properties and methods will cause the OnRowChanged event to fire with a nil
Column parameter:

LoadRows
Rollback

Responding to row changes is important for updating related controls in the user interface. The following
example shows an OnRowChanged event handler that responds to row changes by calling methods that
update both buttons and labels:

procedure TMasterDetailForm.CustomerOrdersRowChanged(Sender: TObject;

Page 187

Using Databases

Column: TDataColumn);
begin
if (Column=nil) then
begin
UpdateOrderButtons;
UpdateOrderLabels;
end;
end;

Responding to row changes is also important for concepts such as master-detail links. The following
example shows an OnRowChanged event handler that responds to row changes for loading a detail
dataset as the master row changes:

procedure TMasterDetailForm.LoadOrders;
begin
CustomerOrders.Params.Clear;
CustomerOrders.Params.Add('CustomerID="""+
Customer.Columns['CustomerID'].AsString+
S
Database.LoadRows (CustomerOrders);
end;

procedure TMasterDetailForm.CustomerRowChanged(Sender: TObject;
Column: TDataColumn);
begin
if (Column=nil) then

begin

UpdateCustomerButtons;

LoadOrders;

end;
end;

Page 188

Using Databases

6.9 Binding Controls to DataSets

The controls in the Elevate Web Builder component library can be used in both an unbound and bound
fashion. A control is considered bound when it is explicitly attached to a dataset and one or more columns
in the dataset. Most controls bind to a specific dataset column, while certain controls like the TGrid control
can bind to multiple dataset columns.

Once a control is bound to a dataset, it will automatically update its contents in response to changes in
the dataset. For example, if you insert a new row in the dataset using the TDataSet Insert method, then the
control will automatically repopulate with the value from the new row.

Binding to a DataSet

To bind a control to a specific dataset, assign an existing TDataSet instance to the DataSet property of the
control. This can be done at design-time or run-time.

Note
If the TDataSet instance that is assigned to the DataSet property is deleted, the control will
automatically assign a value of nil to the DataSet property and the control will become unbound.

However, simply assigning the DataSet property is insufficient for binding a control to a dataset - you
must also specify which column in the dataset to bind to. For most controls, this is done by assigning a
column name to the DataColumn property. For the TGrid component, you must assign a column name to
the DataColumn property of each TGridColumn in the grid that you wish to be bound to the dataset.

Note
The TGrid component allows you to to mix bound and un-bound columns within the same grid
control.

Auto-Editing of Bound Controls

The value of the TDataSet AutoEdit property determines whether modifications to the contents of bound
controls are allowed when the dataset is not in an editable state (TDataSet State property is dsinsert or
dsUpdate). If the AutoEdit property is True, then any modification to a bound control will cause the
attached dataset to insert a new row if the dataset is empty, or begin updating the current row if the
dataset is not empty. If the AutoEdit property is False, then bound controls are effectively read-only until
either a new row is inserted or an existing row is updated in the dataset.

Note

The TGrid control has two properties that can still enable a user to insert or delete rows in a bound
grid. They are the Allowlnserts and AllowDeletes properties, respectively. Be sure to set these
properties to False if you do not want to allow a user to automatically insert or delete rows by using
keystrokes in the grid.

Page 189

Using Databases

Auto-Editing and Read-Only Columns

Dataset columns can be defined as calculated or read-only using the TDataColumn Calculated and
ReadOnly properties, respectively. Any controls bound to a calculated or read-only column will not be
editable, and will behave as though the dataset's AutoEdit property is set to False.

Page 190

Using Databases

6.10 Calculated Columns

As discussed in the Creating and Loading DataSets topic, dataset columns are normally defined
automatically when dragging a dataset from the IDE's Database Manager and dropping the dataset on a
form or database designer, or they can be loaded at runtime from the web server via the TDataSet
LoadColumns method.

However, in some cases you may want to define columns that derive their contents from a calculation. In
Elevate Web Builder, these are, of course, called calculated columns. Creating a calculated column is very
simple:

@ Create the column as you normally would, using the Add method of the TDataSet Columns.

@ Set the new column's Calculated property to True.

@ Define an event handler for the TDataSet OnCalculateRow event that executes the calculation code
and assigns a value to the new calculated column.

Whenever a column in a row is updated, the OnCalculateRow event handler will be triggered so that any
calculated columns can be re-computed for that row.

Any editable controls bound to a calculated column will automatically be read-only.

The following is an example of creating a calculated column that shows concatenated information from
two other columns in the dataset:

procedure TForml.FormlCreate(Sender: TObject);
begin
with Albums.Columns.Add do
begin
Name:="ArtistYear';
DataType:=dtString;
Length:=60;
Calculated:=True;
end;
Albums.OnCalculateRow:=AlbumsCalculateRow;
end;

procedure TForml.AlbumsCalculateRow(Sender: TObject; Column: TDataColumn);
begin
Albums.Columns['ArtistYear'].AsString:=Albums.Columns['Artist'].AsString+
' ('"+Albums.Columns['Year'].AsString+')";
end;

Note
Do not attempt to programmatically modify a calculated column outside of an OnCalculateRow

event handler. Attempting to do so will result in an error. Also, you cannot modify non-calculated
columns in an OnCalculateRow event handler.

Page 191

Using Databases

6.11 APl Reference

Elevate Web Builder uses a defined server request API for handling database operations between an
application and the web server. Both the internal web server in the IDE and the included external Elevate
Web Builder Web Server include support for this APl. However, for other web servers the APl support
must be coded via a layer in the web server application, whether it is coded using PHP, Ruby, ASP.NET, or
any other type of web server language or scripting environment. This reference will assist you in building
such a layer in your web server application.

Elevate Web Builder uses three types of API calls for the database functionality:

@ DataSet columns
@ DataSet rows
@ Transactions

DataSet Columns

Dataset columns are requested from the web server using an HTTP GET request when the TDataSet
LoadColumns method is called from the application. The GET request URL will have the following format:

<Database Resource Name>?method=columns&database=<Database
Name>&dataset=<DataSet Name>[<Custom Parameters>]

where <Database Resource Name> is the base resource name for the database API (the default is
'databases'’), <Database Name> is the name of the database, <DataSet Name> is the name of the dataset,
and <Custom Parameters> are any additional custom parameters sent along with the base parameters. If
the client application is using URL authentication parameters (the default is to use HTTP headers), then
there may be additional user and password parameters/values included in the complete URL. Please see
the Creating and Using Databases topic for more information on specifying the authentication method for
database requests.

The response from a dataset columns request will indicate an HTTP status code of 200 (OK) along with the
JSON column data as the included response content, or a non-200 error status code.

Please see the JSON Reference topic for more information on the structure of the JSON column data
returned.

DataSet Rows

Dataset rows are requested from the web server using an HTTP GET request when the TDataSet LoadRows
or the TDatabase LoadRows method is called from the application. The GET request URL will have the
following format:

<Database Resource Name>?method=rows&database=<Database
Name>&dataset=<DataSet Name>[<Custom Parameters>]

Page 192

Using Databases

where <Database Resource Name> is the base resource name for the database API (the default is
'databases'’), <Database Name> is the name of the database, <DataSet Name> is the name of the dataset,
and <Custom Parameters> are any additional custom parameters sent along with the base parameters. If
the client application is using URL authentication parameters (the default is to use HTTP headers), then
there may be additional user and password parameters/values included in the complete URL. Please see
the Creating and Using Databases topic for more information on specifying the authentication method for
database requests.

The response from a dataset rows request will indicate an HTTP status code of 200 (OK) along with the
JSON row data as the included response content, or a non-200 error status code.

Please see the JSON Reference topic for more information on the structure of the JSON row data returned.

Transactions

Transaction operations are sent to the web server using an HTTP POST request when the TDatabase
Commit method is called from the application, and the current TransactionLevel is 0. The POST request
URL will have the following format:

<Database Resource Name>?method=commit&database=<Database Name>[<Custom
Parameters>]

where <Database Resource Name> is the base resource name for the database API (the default is
‘databases'), <Database Name> is the name of the database, and <Custom Parameters> are any
additional custom parameters sent along with the base parameters. If the client application is using URL
authentication parameters (the default is to use HTTP headers), then there may be additional user and
password parameters/values included in the complete URL. Please see the Creating and Using Databases
topic for more information on specifying the authentication method for database requests.

The response from a database commit request will indicate an HTTP status code of 200 (OK) or a non-200
error status code.

Please see the JSON Reference topic for more information on the structure of the JSON transaction data
that should be included in the request content.

Page 193

Using Databases

6.12 JSON Reference

Elevate Web Builder uses the JSON (JavaScript Object Notation) format for handling database operations
between an application and the web server. Both the internal web server in the IDE and the included
external Elevate Web Builder Web Server include support for providing JSON column and row data for
any datasets in databases defined in the Database Manager, as well as accepting transactional JSON data
for inserts, updates, and deletes. However, for other web servers the JSON must be generated and
consumed via a layer in the web server application, whether it is coded using PHP, Ruby, ASP.NET, or any
other type of web server language or scripting environment. This reference will assist you in building such
a layer in your web server application.

For more general information on JSON, please see the following link:
JSON Reference

Elevate Web Builder uses three types of JSON formats for the database functionality:

@ DataSet columns
@ DataSet rows
@ Transactions

DataSet Columns

Dataset columns are requested from the web server using an HTTP GET request when the TDataSet
LoadColumns method is called from the application. The JSON returned by the web server should have
the following format:

{ columns: [<Column>, <Column>, <Column>, ...] }
(... denotes more columns)
<Column> = { name: <Name>, type: <Type>, length: <Length>, scale: <Scale>}

String (Example: "Customer No")

<Name>
<Type> = Integer with a value of @ through 8 (see below)
<Length> = Integer or null (Example: 20)

<Scale> = Integer or null (Example: 2)

Column Types

The following details the various column types and how they should be specified:

Page 194

Using Databases

Column Type Description

0 Unknown type - will cause an error when the columns are
loaded

1 String - requires a column length for fixed-length columns,

null for variable-length columns

Boolean

Integer

Float - can have a column scale specified
Date

Time

Date/Time

0o N oo v bW

BLOB

BLOB Column Types

In Elevate Web Builder datasets, BLOB columns are handled as String columns with a null length, and
usually contain a URL that is used to dynamically load the BLOB data into a TImage, TAudio, or TVideo
control. However, if a BLOB column is actually a CLOB (Character Large Object) column, then it will/should
be defined and handled as an actual string, and not a URL.

Elevate Web Builder also supports the use of an additional String column for BLOB columns that indicates
the MIME type of the BLOB column data. Such a column should be named:

<BLOB Column Name>_ContentType

If Elevate Web Builder finds a column with this name, it will use the contents of the column as the
response Content-Type header when returning the BLOB data for BLOB column load requests. This is
especially necessary for binary formats that cannot be detected by the browser automatically.

See the BLOB Column Data section below for more information on handling BLOB column data.
Example JSON

The following is an example of the JSON for a products table:

"columns": [

"name": "ProductID","type": 1,"length": 30,"scale": null },
"name": "Description","type": 1,"length": 60,"scale": null },
"name": "ListPrice","type": 4,"length": null,"scale": 2 },

"name": "Shipping","type": 4,"length": null,"scale": 2 }
}

— S

DataSet Rows

Page 195

Using Databases

Dataset rows are requested from the web server using an HTTP GET request when the TDataSet LoadRows
method or the TDatabase LoadRows method is called from the application. The JSON returned by the
web server should have the following format:

{ rows: [<Row>, <Row>, <Row>, ...] }

(... denotes more rows)

<Row> = { <Column Name>: <Column Data>, <Column Name>: <Column Data>, ... }
(... denotes more column data)

<Column Name> = String (Example: "Customer No")

<Column Data> = Valid column data or null (see below)

Column Data

The following details the various column types and how the column data should be formatted for each:

Column Type Description

String Enclose non-null values in double quotes.

BLOB

Boolean Specify true or false literals for non-null values.

Integer Specify any valid integer value (positive or negative) for non-
null values.

Float Specify any valid floating-point value for non-null values. If

not null, the incoming value must use the period (.) decimal
separator if it contains fractional digits.

Date Specify any valid integer value (positive or negative) for non-
Time null values. If not null, the incoming value represents the
Date/Time number of milliseconds since midnight on January 1, 1970,

and can be negative for time values

BLOB Column Data

As mentioned above in the BLOB Column Types section, BLOB columns that are actually binary and not
CLOB columns will/should be sent to the Elevate Web Builder application from the web server application
as URLs that provide a link to the BLOB data. These links will be passed back to the web server application
from the Elevate Web Builder application unchanged, so they can also contain information such as
authentication. By default, the internal web server in the IDE, as well as the Elevate Web Builder Web
Server, generate the URLs in the following format:

’method=1oad&database=<Database Name>&dataset=<DataSet Name>&column=<Column
Name>&row=<Primary Key Values>[&user=<User Name>&password=<Password>]

Page 196

Using Databases

The user and password parameters are only included when the original dataset rows request was
authenticated. Except for public data, one should always use authentication for database requests. For
more information, please see the Creating and Loading DataSets topic.

Warning

Elevate Web Builder uses the AJAX functionality in browsers to perform database requests, and this
functionality is limited in its ability to perform authentication via native browser methods.
Therefore, you should always use secure connections (https) to the web server with any database
requests. This is especially true if using BLOB columns that will require authentication information
in their URL parameters.

Example JSON

The following is an example of the JSON for a products table:

"rows": [

"ProductID": "9V-BATTERY-12PK",
"Description": "12-pack of 9-volt batteries",
"ListPrice": 20, "Shipping": 2 },
"ProductID": "9V-BATTERY-4PK",

"Description": "4-pack of 9-volt batteries",

"ListPrice": 4.5, "Shipping": 1.5 },

"ProductID": "CALCULATOR-BUSINESS",
"Description”: "Business calculator",
"ListPrice": 10, "Shipping": 1 },

"ProductID": "CASH-REGISTER",

"Description”: "Cash register with thermal printer",
"ListPrice": 170, "Shipping": 10 },
"ProductID": "FLASH-USB-16GB",

"Description”: "16GB USB flash drive",
"ListPrice": 15, "Shipping": 0.5 },
"ProductID": "FLASH-USB-32GB",

"Description”: "32GB USB flash drive",
"ListPrice": 25, "Shipping": 0.5 },
"ProductID": "FLASH-USB-8GB",

"Description”: "8GB USB flash drive",
"ListPrice": 10, "Shipping": 0.5 },
"ProductID": "LABEL-MAKER",

"Description”: "Label maker - plastic labels",
"ListPrice": 35, "Shipping": 2 },

"ProductID": "PEN-BP-12PK",

"Description": "12-pack of ballpoint pens",
"ListPrice": 12, "Shipping": 0.6 },
"ProductID": "PHONE-HEADSET",

"Description”: "Hands-free phone headset",
"ListPrice": 15, "Shipping": 2 },

"ProductID": "PHONE-SYSTEM-4HS",
"Description”: "4-handset phone system with main base",
"ListPrice": 120, "Shipping": 4 },
"ProductID": "PROJECTOR-HD",

"Description”: "1080p HD Projector",
"ListPrice": 850, "Shipping": 56 },
"ProductID": "SCANNER-SF",

"Description": "Sheet-feed paper scanner",
"ListPrice": 150, "Shipping": 7 },
"ProductID": "SHREDDER-SF-CC",

"Description”: "Sheet-feed, cross-cut shredder with bin",

Page 197

Using Databases

"ListPrice": 8, "Shipping": 10 },
{ "ProductID": "USB-CARD-READER",

"Description"”: "USB magnetic strip card reader",
"ListPrice": 25, "Shipping": 2 }
11}
Transactions

Transaction operations are sent to the web server using an HTTP POST request when the TDatabase
Commit method is called from the application, and the current TransactionLevel is 0. The JSON sent to the
web server will have the following format:

{ operations: [<Operation>, <Operation>, <Operation>, ...] }
(... denotes more operations)

<Operation> = { dataset: <DataSet Name>, operation: <Operation Type>,
beforerow: <Row>, afterrow: <Row> }

<DataSet Name> = String (Example: "Customers")
<Operation Type> = Integer with a value of © through 3 (see below)

<Row> = null or { <Column Name>: <Column Data>,
<Column Name>: <Column Data>, ... }

(... denotes more column data)
<Column Name> = String (Example: "Customer No")

<Column Data> = Valid column data or null (see above)

Operation Types

The following details the various operation types and how the row data will be formatted for each:

Operation Type Description

1 Insert - the beforerow value will be null and the afterrow
value will contain the row data for the inserted row.

2 Update - the beforerow value will contain the row data for the
row before the update, and the afterrow value will contain the
row data for the row after the update (modified values only).

3 Delete - the beforerow value will contain the row data for the
row before the deletion, and the afterrow value will be null.

Example JSON

The following is an example of the transactional JSON for order and items tables:

{ "operations": [

Page 198

Using Databases

{ "dataset": "CustomerOrders",

"operation": 1,

"beforerow": null,

"afterrow": { "CustomerID": "DM", "OrderID": "DM-201275-134324404",
"OrderDate": 1341460800000,
"PONumber": null, "Terms": "Net 30",
"ShippingTotal”: ©.00, "PurchaseTotal": 0.00,
"OrderTotal”: ©0.00, "AmountPaid": ©.00, "BalanceDue": 0.00,
"SpecialInstructions": null }

s
{ "dataset": "CustomerItems",

"operation": 1,

"beforerow": null,

"afterrow": { "OrderID": "DM-201275-134324404", "LineNo": 1,
"ProductID": "SCANNER-SF", "Quantity": 1,
"PurchasePrice": 150.00, "Shipping": 7.00,
"PurchaseTotal": 150.00, "ShippingTotal”: 7.00 }

s
{ "dataset": "CustomerItems",

"operation": 1,

"beforerow": null,

"afterrow": { "OrderID": "DM-201275-134324404", "LineNo": 2,
"ProductID": "FLASH-USB-32GB", "Quantity": 10,
"PurchasePrice": 25.00, "Shipping": 0.50,
"PurchaseTotal": 250.00, "ShippingTotal”: 5.00 }

s
{ "dataset": "CustomerOrders",
"operation": 2,
"beforerow": { "CustomerID": "DM", "OrderID": "DM-201275-134324404",
"OrderDate": 1341460800000,
"PONumber": null, "Terms": "Net 30",
"ShippingTotal”: ©.00, "PurchaseTotal": 0.00,
"OrderTotal"”: 0.00, "AmountPaid": ©.00, "BalanceDue": 0.00,
"SpecialInstructions”: null },

"afterrow": { "PONumber": "210054", "ShippingTotal": 12.00,
"PurchaseTotal": 400.00,"OrderTotal": 412.00,
"BalanceDue": 412.00 }

¥
11

Page 199

Using the Web Server

This page intentionally left blank

Page 200

Using the Web Server

Chapter 7
Using the Web Server

7.1 Starting the Web Server

Elevate Web Builder includes an external, deployable web server along with the IDE and compiler. The
Elevate Web Builder Web Server runs on Windows XP or higher as a normal application or Windows
service, and automatically supports Elevate Web Builder application database requests. In addition, you
can use Embarcadero RAD Studio and Delphi to create native server modules that can be added to the
web server in order to handle requests from an Elevate Web Builder application (or any web browser or
web browser application).

The web server executable is called ewbsrvr.exe and can found in the \bin\ewbsrvr sub-directory under
the main installation directory.

Installing the Web Server as a Service

If you wish to run the web server as a Windows service you must install it as a service by running the web
server with the /install command-line switch set. For example, to install the web server as a service using
the Run command window under Windows you would specify the following command:

ewbsrvr.exe /install

To uninstall the web server as a Windows service you must run the web server with the /uninstall
command-line switch set. For example, to uninstall the web server as a service using the Run command
window under Windows you would specify the following command:

ewbsrvr.exe /uninstall

If you wish to install the web server so that it does not interact with the desktop at all, which is required in
instances where the current user will be logged out of the system, then you should use the /nointeract
flag along with the /install command-line switch:

ewbsrvr.exe /install /nointeract

This will install the service as a non-interactive service and the web server will not display a user interface
when it is started.

Finally, by default the service will display a "Service installed" dialog box when the service is installed

successfully. This is sometimes not desired during installations, and in these cases you can use the /silent
command-line switch to suppress the dialog box:

Page 201

Using the Web Server

ewbsrvr.exe /install /silent

Starting the Web Server

The main difference between starting the web server as a normal application and starting the web server
as a Windows service is that the normal application can be started just like any other application in one of
three ways: the Run dialog, the command-line, or a Start Menu program link or desktop link. The service,
however, must be started via the Services dialog or by using the NET START command-line command.

Starting the Web Server as a Normal Application

You can start the web server as a normal application by clicking on the link for the "Elevate Web Builder 2
Web Server".

Elevate Web Builder 2

u Elevate Web Builder 2 Web Server
) Elevate Web Builder 2

2 License Agreement

2 Release Information

Elasata Wiah Buildar Radiilec far BAM S

Starting the Web Server as a Service

To start the web server as a Windows service, you can use the NET START command from the command-
line:

net start ewbsrvr

Note
In order to start the web server as a Windows service the server must have already been installed
as a service using the /install command-line switch (see above).

Page 202

Using the Web Server

7.2 Configuring the Web Server

You can configure the web server by completing the following steps.

1. Start the web server (ewbsrvr.exe) as an application by clicking on the link for the "Elevate Web Builder 2
Web Server".

Elevate Web Builder 2

u Elevate Web Builder 2 Web Server
kJ Elevate Web Builder 2

2 License Agreement

2 | Release Infarmation
Fleirata Weh Ruildar Madiiler far RAM G

2. Access the web server configuration options:

a. In the system tray, right-click on the web server icon to bring up the server menu, and click on the Restore
option on the server menu.

' Restore

g B Close

b. Using the main toolbar, click on the Stop Server button.

[-}
-|'||-:i

¢. Using the main toolbar, click on the Configure Server button to open the Server Configuration Dialog.

4 : ,._;i’|._
= = =

d. Use the information below under the Server Configuration Dialog heading to configure the web server
according to your needs. When done configuring the server, click on the OK button to save the changes.

e. Using the main toolbar, click on the Start Server button.

o H| K

f. Click on the close button in the upper-right-hand corner of the web server window to close the server
window.

Page 203

Using the Web Server

. :
plication) '

|
Server Configuration Dialog

The Server Configuration dialog allows you to configure the following aspects of the web server

@ The server name, description, and hosted domain

@ The IP address, port, and timeout settings for connections

= The authorization information for incoming connections

@ The content folder, default document, cross-origin resource sharing, and resource names
@ The databases and datasets defined for the web server

@ The modules added to the web server

| Configise Serier

[~ r— & Sercet | g Connecions | & Authoraatons | & Content | £ Databases | < Modules
¥ Lonnechiond

{ Authonzaticns

Content xr:
- Karne EWESFVR
& Databhases
g
== Module Deserigstian

Ehevate Web Busider Web Senoet
Diorrusiny

0K . Cancel

Server

The Server page provides options for modifying the general web server settings.

Page 204

Using the Web Server

= Server . = Connections | 5 Authorizations | @ Content | = Databases :.:_. Mcrdula!
Mame EWBSEVE
Drescription
Elevate Web Builder Web Server -
Domain
Option Description
Name Identifies the web server. This value is not used for named server

instances (see below Multiple Server Instances for more
information on named server instances). The default value is
‘ewbsrvr'

Description Used in conjunction with the name to give more information
about the web server to clients once they have connected to the
web server. The default value is 'Elevate Web Builder 2 Web
Server'.

Domain Identifies the domain that is being hosted by the web server.
The default value is "', meaning that any domain can be hosted
by the web server. If a value is provided, then it will be used to
limit connections to the web server to those that pass the same
value (case-insensitive) in the Host header along with each HTTP
request.

Connections

The Connections page provides options for modifying the connection settings for the web server.

Page 205

Using the Web Server

= Server H Connections | % Aythorizations | @ Content | = Databases | - Modules
(|]

Listen on IP Address Port 8080

Maximum Request Size 16777216 bytes

Connection Timeout 30 SECS

Thread Cache Size 30 I— -

Ld

|4

Page 206

Option
IP Address

Port

Maximum Request Size

Connection Timeout

Thread Cache Size

Authorizations

Using the Web Server

Description

Specifies the IP address that the web server should bind to when
listening for incoming connections from clients. The default
value is blank (""), which specifies that the web server should
bind to all available IP addresses.

Specifies the port that the web server should bind to when
listening for incoming connections from clients. The default
value is 80.

Specifies the maximum size of any incoming request from a
client. Clients will often send content as part of HTTP POST
requests, and this setting acts as a governor to prevent a client
from intentionally or unintentionally crashing the web server by
exhausting all available memory. The default value is 16,777,216
bytes, or 16MB.

Specifies how long the web server should wait for a request
from a connection before it terminates the connection. This is
done to keep the number of concurrent connections to a
minimum, while still allowing for multiple web browser requests
on the same connection. The default value is 30 seconds.

Specifies the number of threads that the web server should
actively cache for connections. When a thread is terminated in
the server it will be added to this thread cache until the number
of threads cached reaches this value. This allows the web server
to re-use the threads from the cache instead of having to
constantly create/destroy the threads as needed, which can
improve the performance of the web server if there are many
connections and disconnections occurring. The default value is
10.

The Authorizations page provides options for modifying the authorization information for the web server.

Page 207

Using the Web Server

| u SEF‘-"EfI H_ Connections ,%‘, Authorizations |!|_ Content |$ Databases ﬂgﬂ Modules

Administrator Mame A gministratar

Password esssssssss

Ermail Address

Authorized IP Addresses

b

Blocked IP Addresses

Page 208

Option

Administrator Name

Administrator Password

Administrator Email

Authorized IP Addresses

Blocked IP Addresses

Using the Web Server

Description

Specifies the administrator's name. The default value is
‘Administrator".

Note

The administrator name and password are not used
currently, but will be in the future for remote
administration of the web server.

Specifies the administrator's password. The default value is
'‘EWBDefault'.

Note

The administrator name and password are not used
currently, but will be in the future for remote
administration of the web server.

Specifies the administrator's email address, which is used in web
server response headers to indicate the point of contact for the
organization in case of errors, etc. The default value is ".

Specifies which IP addresses are authorized to access the web
server. This is commonly referred to as a "white list". There is no
limit to the number of addresses that can be specified, and the
IP address entries may contain the asterisk (*) wildcard character
to represent any portion of an address.

Note

Due to the way that .ini file entries must be specified,
multiple addresses must be separated with the literal
value "<#CR#> <#LF#>" (without the quotes) instead of
actual line feeds.

Specifies which IP addresses are not allowed to access the web
server. This is commonly referred to as a "black list". There is no
limit to the number of addresses that can be specified, and the
IP address entries may contain the asterisk (*) wildcard character
to represent any portion of an address.

Note

Due to the way that .ini file entries must be specified,
multiple addresses must be separated with the literal
value "<#CR#> <#LF#>" (without the quotes) instead of
actual line feeds.

Page 209

Using the Web Server

Content

The Content page provides options for modifying the content settings for the web server.

. Server | = Connections | & Authorizationsi /@ Content | — Databases = Moduhu|

Content Folder mi\produ cts\source), mﬁékd stabound\ output D
Default Document
[¥] Enable Cross-Origin Resource Sharing

Databases Resource Mame datasets
Database Modules Resource Name customdatasets

Modules Resource Mame modules

Page 210

Option

Content Folder

Default Document

Enable Cross-Origin Resource Sharing

Databases Resource Name

Database Modules Resource Name

Modules Resource Name

Databases

Using the Web Server

Description

Specifies the path that the web server should use for all static
content, including Elevate Web Builder applications (*js, *.html)
and any other external files such as images. The default value is

Specifies the default document file name to use if a URL
requested by a client does not include a file name. For example,
if the client makes a request to the URL
"http://www.mydomain.com", then this value will be appended
to the URL (prefixed with a slash) and the combined URL will be
used instead. The default value is "

Specifies that the web server will allow and handle cross-origin
resource sharing. This feature allows the web server to serve
static and database content in response to requests from origins
(domain name and port number) that are different than that of
the web server. Normally, web browsers don't permit such cross-
origin requests unless the web server specifically allows them.
The default value is False.

For a good discussion of Cross-Origin Resource Sharing, please
visit the following link:

HTTP access control (CORS)

Note

The Elevate Web Builder Web Server supports both
simple and preflighted requests, but does not support
requests with credentials at this time.

Specifies the resource name to use for the automatic database
handling built into the web server. The default value is
'databases'. Please see the Web Server Request Handling topic
for more information on how this resource name is used in
database requests.

Specifies the resource name to use for any database modules
added to the web server (see next). The default value is
‘databasemodules’. Please see the Web Server Request Handling
topic for more information on how this resource name is used in
database requests.

Specifies the resource name to use for any web server modules
added to the web server. The default value is 'modules'. Please
see the Web Server Request Handling topic for more
information on how this resource name is used in module
requests.

Page 211

Using the Web Server

The Databases page provides options for modifying the defined databases and datasets used by the web
server.

| = Sen.-'erl = Connections | Authorizatiom:l @ Content| = Databases |,3,'i_.'.5I Modules

Database Mame Description
| & ExampleData Data for all Database/DataSet Example Projects

| Add... || Edita || e |

DataSet Mame Description

|7 SlideShow
[Tracks

ool -
|£ - Transactions

| Add.. || Edit.., || Beaae |

Adding a New Database

Use the following steps to add a new database:

@ Click on the Add button under the list of databases.

@ The database editor dialog will appear. Please refer to the next section for information on defining the
database.

Defining a Database

The database editor dialog consists of 2 pages:

Page 212

Using the Web Server

= General - the database engine/server type, the name of the database, and the description.

| B General Li_g Connection Properties

Type |ElevateDs -

Mame

Descnption

'!Jh- [_ Cancel

Currently, the following database engines are supported:

ElevateDB
DBISAM
ADO (includes OLEDB/ODBC)

Page 213

Using the Web Server

= Connection Properties - the name/location of the database and other configuration properties
essential to establishing a proper connection to the desired database. The options on this page are
specific to the database engine selected on the first page.

— — —

I Adding New Database =5

il General] £ Connechion Properties

CharacterSet csUnicode [w] &
Dratabaseblame

ForceBufferFlush False

LocalBackupEdenaon FDBBkp =
I-::.:I"'.1I.~|-:'._|'.:¢I-.-||.|:-|| EDBCat i
LocalCataloghlame EDEDstshave

LocalConbigistension EDRECEg

LocalConbigMemory False

LocalConf ,J"-].:.n'r EDECo nfig
LacalConfigPath
LocalEncryphonPassword ehevatesct
LocalLargeFileSupport False
Locall ockEstension EDBLck

t Locall ogCategorien klnformation be\Warning, leErros]
LocallogExtension EDBE:

¥
Localblaxd ogFileSze it

Localsignature

Test Connection..,

Lancel

Once the connection properties are set, you can use the Test Connection button to verify that everything
is set properly. Please see your database engine manual/documentation for more information on the
proper value for each property setting.

= Once you have properly set the connection properties and successfully tested the connection to the
database, click on the OK button to close the database dialog and save the database.

Editing an Existing Database

To edit an existing database, simply double-click on the desired database in the list of databases. The
database editor dialog will then appear, and you can use it to modify the database accordingly.

Removing a Database

Use the following steps to remove a database:
@ Click on the name of the database that you wish to remove.
@ Click on the Remove button under the list of databases.

= A confirmation dialog will be displayed, asking you to confirm the removal of the database. Click on the
Yes button to continue, or the No button to cancel the removal.

Importing Databases from the IDE

Page 214

Using the Web Server

In order to import databases from the Elevate Web Builder IDE, both the IDE and the web server must be
running on the same machine. The import process currently only imports the database definitions directly

from the IDE's .ini file.

Warning

Importing the databases from the IDE will cause all existing databases defined for the web server to be
replaced with those from the IDE. Please make sure that this is the desired outcome before proceeding.

To begin the import process, simply click on the Import button under the list of databases.

Adding a New DataSet

Use the following steps to add a new dataset:

= Be sure that you have selected an existing database by clicking on the desired existing database.

@ Click on the Add button under the list of datasets for the currently-selected database.

= The dataset editor dialog will appear. Please refer to the next section for information on defining the

dataset.

Defining a DataSet

The dataset editor dialog consists of 3 pages:

@ General - the name of the dataset and the description.

I

| "Ry hiciding New Dataset

General Roiw Sowrce

Mame Products

Description

Discannected

T Preview

[4 Cancel

Page 215

Using the Web Server

= Row Source - the actual source of the dataset rows can be an actual table name from the selected
database, or it can be an SQL SELECT statement.

F

) Adding Mew Datuatet

Gereral Row Source Preview
@ lable product
Que
Ll ;I"'.u_un-;h_-’.’; me= Defaulty’

naimEs CafRat ConT

Base Table

[:'li'.l\.r nmected

plue) for named patamelers |_[I'I FauliValue 15 opison

Cancel

Elevate Web Builder uses a special parameter naming syntax for queries, and does not use the native
parameter functionality in the target database engine. This is done because some database engines do
not support named parameters, or do not support parameter type discovery or enumeration. When the
dataset rows are requested from the internal web server embedded in the IDE, it automatically
populates the named parameters in the query by using the URL "name=value" parameters passed with
the dataset rows request. These parameters can be specified in the application via the TDataSet Params

property.

Page 216

Using the Web Server

= Preview - use the preview page to make sure that the dataset is returning the correct rows. Any default
values for parameters defined on the Row Source page are applied for the preview, so if you have not
defined any default parameter values you may see zero rows displayed.

I

) Adding Mew Datuatet

General : Row Source
Prsductll
F9V-BATTERY-12PK
OV-BATTERY-APE
CALCULATOR-BUSINESS
ASKH-REGISTER

£
FLASH-USE-T6GE
f

PEN-BP-12PE
PHONE-HEADSET

PHOME-SYSTEM-4HS

SHRE R-5F-CC
LIS8-CARD- READER

Dataset opened

Presanew

Descnplaon Lrstl =

12-pack of 3-volt battemnes

12 -pack of ballgoint pens

Hands-Free phone headset

4-handset phone system with main base
1080p HD Projector

sheet-teed paper scanmer

Sheet-feed, crocs-cut shradder with ban
USE maonetic stno card reades

Cancel

oK |

Editing an Existing DataSet

To edit an existing dataset, simply double-click on the desired dataset in the list of datasets. The dataset editor
dialog will then appear, and you can use it to modify the dataset accordingly.

Removing a DataSet

Use the following steps to remove a dataset:

@ Click on the name of the dataset that you wish to remove.

@ Click on the Remove button under the list of datasets for the currently-selected database.

= A confirmation dialog will be displayed, asking you to confirm the removal of the dataset. Click on the
Yes button to continue, or the No button to cancel the removal.

Modules

The Modules page provides options for adding and removing modules (*.dll) that were created using
Embarcadero RAD Studio and Delphi and an Elevate Web Builder Module template project from the repository
in the RAD Studio IDE. Adding modules to the web server allows the modules to be used to respond to
requests and provide content to the Elevate Web Builder application running in the web browser.

Page 217

Using the Web Server

k= Server | = Connections | == Authorizations | @ Content | = Databases a:a Modules
File Description Yersion
.Ej.l;'ﬂ.:.‘-?pru&hﬁs’:asuu rce’:ieu;.;'ﬁl.{d;‘.ab.asem ﬂ&ulé‘;‘.ﬂ ata... 1000 |
My productshsource’ ewb 2 pdfmodul el pdfmodul... 1.0.00
1.0.0.0

M\ products\sourcel ewb2\loginmedule\loginmo...

Add... | | Remowve

Adding a Module
In order to add a module, complete the following steps:

@ Click on the Add button

= The Add Module dialog will appear.

"Add Module

File

Version

(]

In the dialog, specify the file name of the module (.dll) that you wish to add to the web server. You can
type in the file name directly, or use the browse button (...) to select the module using a common
Windows file dialog. If you use the browse button, the module description and version will be populated
from the module after the file is selected. The description and version are read directly from the .dll's

Description

version information.

Page 218

Using the Web Server

@ Click on the OK button. If the specified file is a valid Elevate Web Builder module, then the module will
be added to the web server. If the specified file is not a valid module file, then an error message will be
displayed indicating any issues with the module file.

Removing a Module

In order to remove a module, complete the following steps:

@ Select an existing module from the list of modules.

@ Click on the Remove button.

Note
If you remove a module that is used by Elevate Web Builder applications, then you will experience
errors in these applications when they try to execute requests that reference these modules in the URL

for the request.

Please see the Creating Web Server Modules topic for more information how the modules work.
Configuration Reference

The web server stores its configuration information in an .ini file that is, by default, located in the following
directory under Windows XP/2003 Server:

C:\Documents and Settings\All Users\Application Data\Elevate Software\Elevate
Web Builder 2 Web Server

in the following directory under Windows Vista or higher (including Windows 7 and Server 2008):

C:\ProgramData\Elevate Software\Elevate Web Builder 2 Web Server

The name of the .ini configuration file is determined by the name of the application. For example, for the
ewbsrvr.exe application, the name of the .ini file would be ewbsrvr.ini.

Note
If the web server finds an .ini with the proper name in the same directory as the server .exe, it will use it
instead of the .ini file in the common application data directory for Windows.

All of the configuration entries in the web server .ini configuration files are stored under a section called
"Server".

Page 219

Using the Web Server

Note

Please see the Multiple Server Instances topic for how multiple server instances can change this

naming slightly.

Each of the individual configuration entries in this section are as follows:

Configuration Entry

No User Interface

Server Name

Server Description

Domain

IP Address

Port

Max Request Size

Timeout

Thread Cache Size

Page 220

Description

Specifies that the server will run without a user interface. This is
useful in situations where you don't want the server to display
an interface or an icon in the system tray, such as when running
the server as a Windows service. The default value is O (False).
Setting this entry to 1 (True) will turn off the server Ul.

Identifies the web server. This configuration item is not used for
named server instances (see below Multiple Server Instances for
more information on named server instances). The default value
is ‘ewbsrvr'.

Used in conjunction with the "Server Name" configuration entry
to give more information about the web server to external
clients once they have connected to the web server. The default
value is 'Elevate Web Builder Web Server'.

Identifies the domain that is being hosted by the web server.
The default value is "', meaning that any domain can be hosted
by the web server. If a value is provided, then it will be used to
limit connections to the web server to those that pass the same
value (case-insensitive) in the Host header along with each HTTP
request.

Specifies the IP address that the web server should bind to when
listening for incoming connections from web browsers. The
default value is blank (**), which specifies that the web server
should bind to all available IP addresses.

Specifies the port that the web server should bind to when
listening for incoming connections from web browsers. The
default value is 80.

Specifies the maximum size of any incoming request from a
client. Clients will often send content as part of HTTP POST
requests, and this setting acts as a governor to prevent a client
from intentionally or unintentionally crashing the web server by
exhausting all available memory. The default value is 16,777,216
bytes, or 16MB.

Specifies how long the web server should wait for a request
from a connection before it terminates the connection. This is
done to keep the number of concurrent connections to a
minimum, while still allowing for multiple web browser requests
on the same connection. The default value is 30 seconds.

Specifies the number of threads that the web server should
actively cache for connections. When a thread is terminated in

Admin Name

Admin Password

Admin Email

Authorized Addresses

Blocked Addresses

Using the Web Server

the server it will be added to this thread cache until the number
of threads cached reaches this value. This allows the web server
to re-use the threads from the cache instead of having to
constantly create/destroy the threads as needed, which can
improve the performance of the web server if there are many
connections and disconnections occurring. The default value is
10.

Specifies the administrator's name. The default value is
‘Administrator’.

Note

The administrator name and password are not used
currently, but will be in the future for remote
administration of the web server.

Specifies the administrator's password. The default value is
‘EWBDefault'.

Note

The administrator name and password are not used
currently, but will be in the future for remote
administration of the web server.

Specifies the administrator's email address, which is used in web
server response headers to indicate the point of contact for the
organization in case of errors, etc. The default value is ".

Specifies which IP addresses are authorized to access the web
server. This is commonly referred to as a "white list". There is no
limit to the number of addresses that can be specified, and the
IP address entries may contain the asterisk (*) wildcard character
to represent any portion of an address.

Note

Due to the way that .ini file entries must be specified,
multiple addresses must be separated with the literal
value "<#CR#> <#LF#>" (without the quotes) instead of
actual line feeds.

Specifies which IP addresses are not allowed to access the web
server. This is commonly referred to as a "black list". There is no
limit to the number of addresses that can be specified, and the
IP address entries may contain the asterisk (*) wildcard character
to represent any portion of an address.

Page 221

Using the Web Server

Content Folder

Default Document

Enable Cross Origin Resources

Databases Resource Name

Database Modules Resource Name

Modules Resource Name

Page 222

Note

Due to the way that .ini file entries must be specified,
multiple addresses must be separated with the literal
value "<#CR#> <#LF#>" (without the quotes) instead of
actual line feeds.

Specifies the path that the web server should use for all static
content, including Elevate Web Builder applications (*js, *.html)
and external files like images. The default value is ".

Specifies the default document file name to use if a URL
requested by a client does not include a file name. For example,
if the client makes a request to the URL
"http://www.mydomain.com”, then this value will be appended
to the URL (prefixed with a slash) and the combined URL will be
used instead. The default value is ".

Specifies that the web server will allow and handle cross-origin
resource sharing. This feature allows the web server to serve
static and database content in response to requests from origins
(domain name and port number) that are different than that of
the static and database content. Normally, web browsers don't
permit such cross-origin requests unless the web server
specifically allows them. The default value is False.

Specifies the resource name to use for the automatic database
handling built into the web server. The default value is
'databases'. Please see the Web Server Request Handling topic
for more information on how this resource name is used in
database requests.

Specifies the resource name to use for any database modules
added to the web server (see next). The default value is
‘databasemodules'. Please see the Web Server Request Handling
topic for more information on how this resource name is used in
database requests.

Specifies the resource name to use for any web server modules
added to the web server. The default value is 'modules’. Please
see the Web Server Request Handling topic for more
information on how this resource name is used in module
requests.

Using the Web Server

7.3 Multiple Web Server Instances

Multiple instances of the web server can be run on the same physical machine through named server
instances. Named server instances are simply instances of the web server that were executed using two
special command-line switches:

ewbsrvr.exe /name=<Server Instance Name> /desc=<Server Instance Description>

Named server instances use the passed name and description to provide the name of the web server
instance, as well as the description. The name parameter is also used to determine which section of the
ewbsrvr.ini file is used for configuration purposes. Instead of just the normal "Server" section being used
in the ewbsrvr.ini file, the section is named using the provided server name. For example, if the named
server instance is called "MyServer", then the section in the ewbsrvr.ini file where the configuration is
stored will be the following:

[Server_MyServer]

Note

This also applies to the defined datasets and modules in the ewbsrvr.ini file. Each named server
instance will have its own datasets and modules. Please see the Configuring the Web Server topic
for more information on configuring the web server.

The description parameter, if also specified, is immediately written to the named server instance section of
the ewbsrvr.ini file. All other configuration options described above in the Configuration Reference must
be modified using the Server Configuration Dialog in the web server. You can run the web server as a
normal application in order to modify the configuration of a named server instance. For example, to
modify the MyServer configuration you would use the following from the command-line:

ewbsrvr.exe /name=MyServer"

In order to use a named server instance as a Windows service, the /name parameter must be specified
during the installation of the service. For example, if the named server instance is called "MyServer", then
the service installation would be accomplished using the following from the command-line:

ewbsrvr.exe /install /name=MyServer /desc="My Server"

When you want to start the named server instance as a service, you would simply just use the following
from the command-line:

Page 223

Using the Web Server

net start MyServer

The following example shows how you would install two web server named server instances as Windows
services, and then start them:

Page 224

ewbsrvr.exe /install /name=MyFirstServer /desc="My First Server"
ewbsrvr.exe /install /name=MySecondServer /desc="My Second Server"
net start MyFirstServer

net start MySecondServer

Warning

You will need to verify that the port being used by each named server instance is unique, or one or
more named server instances will not start due to a port conflict. As mentioned above, you can use
the web server run as a normal application to modify the configuration of any named server
instance.

Using the Web Server

7.4 Web Server Request Handling

As discussed in the Server Request Architecture topic, HTTP requests are usually HEAD, GET, or POST
requests, but can also be PUT or DELETE requests with defined REST interfaces. In addition, there are
certain types of HTTP requests that are automatically handled by the web server.

Note
All URL comparisons performed in the web server are case-insensitive.

HEAD and GET Requests

With any HTTP HEAD or GET request, the web server does the following:

@ It first checks the URL to see if the request is for static content such as an HTML, JavaScript, image,
etc. file. The content folder specified in the web server configuration is used as the root folder for
this check. If a file is found in the location specified by the URL, relative to the content folder, and
the request is an HTTP GET request, then the file is sent to the client via the HTTP response headers
and content. If the request is an HTTP HEAD request, then only the HTTP response headers are sent
and not the file content.

@ |f the URL is not that of static content, it will then be checked to see if it is an Elevate Web Builder
database request. A database request is any request that uses the following URL structure:

http://<Domain Name>/<Databases Resource Name>?method=<Method
Name>&database=<Database Name>[&dataset=<DataSet Name>] or

https://<Domain Name>/<Databases Resource Name>?method=<Method
Name>&database=<Database Name>[&dataset=<DataSet Name>]

If the URL matches this pattern, then the web server will automatically handle such a request and
return a proper response to the client.

Note
Database requests are never HTTP HEAD requests, only GET or POST requests.

@ If the URL is not that of static content or a database request, then it is then checked to see if it is an
Elevate Web Builder server module request. A module request is any request that uses one of the
following URL structures:

Normal Module

http://<Domain Name>/<Modules Resource Name>/<Module Name> or
https://<Domain Name>/<Modules Resource Name>/<Module Name>

Page 225

Using the Web Server

Database Module

http://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>

or
https://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>

Note

The <Module Resource Name> and <Database Module Resource Name> components of
the URL are the default resource names for modules and database modules defined in the
Elevate Web Builder Web Server, but can be changed in the web server configuration. If
you've changed the default modules resource name of 'modules’, then please replace any
subsequent references to the default 'modules' resource name in the following examples with
the resource name that you're using instead. The same holds true for the default database
modules resource name of 'databasemodules'. Please see the Configuring the Web Server
topic for more information.

If the URL matches this pattern, then the web server will automatically instantiate a module for use
with the request and pass the request information to the module. Please see your product-specific
module manual for information on how to handle such a request in a module and return a
response.

POST Requests

With any HTTP POST request, the web server does the following:

@ The URL is checked to see if it is an Elevate Web Builder database request. A database request is any
request that uses the following URL structure:

http://<Domain Name>/<Databases Resource Name>?method=<Method
Name>&database=<Database Name> or

https://<Domain Name>/<Databases Resource Name>?method=<Method
Name>&database=<Database Name>

If the URL matches this pattern, then the web server will automatically handle such a request and
return a proper response to the client.

Note
Database POST requests are always transactions, which is why the dataset name is not

specified in the URL.

Page 226

Using the Web Server

= If the URL is not that of a database request, then it is then checked to see if it is an Elevate Web
Builder server module request. A module request is any request that uses one of the following URL
structures:

Normal Module

http://<Domain Name>/<Modules Resource Name>/<Module Name> or
https://<Domain Name>/<Modules Resource Name>/<Module Name>

Database Module

http://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>
or
https://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>

If the URL matches this pattern, the web server will then automatically instantiate a module for use
with the request and pass the request information to the module. Please see your product-specific
module manual for information on how to handle such a request in a module and return a
response.

PUT and DELETE Requests

With any HTTP PUT or DELETE request, the web server does the following:

@ The URL is checked to see if it is an Elevate Web Builder server module request. A module request is
any request that uses one of the following URL structures:

Normal Module

http://<Domain Name>/<Modules Resource Name>/<Module Name> or
https://<Domain Name>/<Modules Resource Name>/<Module Name>

Database Module

http://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>
or
https://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>

If the URL matches this pattern, the web server will then automatically instantiate a module for use
with the request and pass the request information to the module. Please see your product-specific
module manual for information on how to handle such a request in a module and return a
response.

Page 227

Using the Web Server

7.5 Creating Web Server Modules

The Elevate Web Builder Web Server allows modules created using Embarcadero RAD Studio and Delphi
to be added to the web server and used to handle dynamic requests to the web server. This allows the
developer to offload computationally-intensive or database-intensive work to the natively-compiled web
server modules, and then use simple server requests in the front-end Elevate Web Builder applications to
make requests to the modules and receive back responses along with the relevant data/content.

The web server module functionality has the following architecture:

Module URLS
hittp:f / <Doamain= /modules/ < MaduleName:

Elevate Web Bulilder ==

Weob Servar <ModuleMame.dl]= u
e
ﬁ -h\l_ zModuleName. dil= i "i
Internet or Requests =58 -
Intranct -
=MaoduleName. dll> u
A

<ModuleName.dll= u

Elevate Web Bullder Modules

l___..m_h_,;" k=32

Responscs

Elevate Web Builder Modules Architecture

Note

While modules are actually DLLs with a .dIl extension, module names are specified in URLs without
any extension.

Creating Modules

For information on creating modules, please refer to the product-specific Elevate Web Builder 2 Modules
Manual that accompanies the product installation. You can download and install the Elevate Web Builder
2 Modules product for your specific product using the following link:

Elevate Web Builder Downloads
Modules can only be created using Embarcadero RAD Studio and Delphi XE or higher. This is because the

web server is using Unicode strings for all functionality and requires that the compiler used to create the
modules use Unicode strings as the default string type. In addition, much of the support code that is used

Page 228

Using the Web Server

with the modules was developed using Delphi XE and contains references to code that is only present in
Delphi XE or higher.

Adding Modules to the Web Server
For information on adding modules to the web server, please see the Configuring the Web Server topic.

Database Modules

Database modules are exactly the same as normal modules, but are referenced using a different resource
name so that they can be kept logically separate from other modules. Please see the Content section of
the Configuring the Web Server topic for information on configuring the database modules resource
name in the web server. While structurally the same as a normal module, a database module always
includes functionality for generating JSON data for loading datasets and consuming JSON data for
database transactions. The majority of this code is already implemented for you via database and dataset
adapter components that are made available with each Elevate Web Builder 2 Modules installation for
Delphi XE or higher. These adapter components allow the developer to access/update a wider variety of
data sources than what is currently possible with the built-in database functionality in the web server.
However, the fact that a database module handles various database requests does not preclude it from
also handling normal server requests. You can handle any normal requests before passing any database
requests on to the database adapter for automatic handling.

Note

For more information on how to code a database module, please see the database module
example installed in the \examples\databasemodule subdirectory along with the Elevate Web
Builder 2 Modules download for the version of RAD Studio and Delphi that you are using.

Page 229

Language Reference

This page intentionally left blank

Page 230

Language Reference

Chapter 8

Language Reference

8.1 Introduction

Elevate Web Builder uses an Object Pascal dialect for its core language that is very close to the Object
Pascal language used by Embarcadero RAD Studio and Delphi. Object Pascal was chosen as the language
because it is a very easy language to learn due to its very English-like keywords, and because it is
structured and strongly-typed, allowing the resultant compiled applications to avoid run-time errors that
can cause problems for un-typed languages like JavaScript (the target code of the compiler).

The following are the rules governing the basic structure of the language.
Character Set

Elevate Web Builder uses the Unicode character set for all language elements. Please see the Literals and
Identifiers sections below for information on the restrictons to the allowed characters for both.

Warning

Although all Unicode characters are supported, certain double-wide characters in languages such
as Chinese and Japanese cannot be displayed/edited properly in the Elevate Web Builder IDE and
code editor.

Case-Sensitivity

Elevate Web Builder's language is not case-sensitive. Identifiers and other language keywords are always
compared without considering case.

Whitespace and Line Breaks

Elevate Web Builder ignores any spaces or non-printable characters such as tabs or line feeds between
identifiers or literals. Within string literals, any such characters are assumed to be included as part of the
string itself. For example, the following code will cause the string literal to include a carriage return and
line feed:

var
MyStringVariable: String;
begin
MyStringVariable:='This is a string literal with a
carriage return and line feed included’;
end;

Statement Terminator

Page 231

Language Reference

The semicolon () is the code statement terminator character in Elevate Web Builder. It is used to indicate
the ending of a statement, even if the statement spans more than one physical line:

begin
if True then
ShowMessage('It''s true !!1!1")
else
ShowMessage('It''s false !!1");
end;

In the above case, the extra line breaks are for formatting purposes only. However, you should always
strive to format your code according to established formatting rules for the Object Pascal language, and
such line breaks are very important for readability of your code.

Comments

Elevate Web Builder supports both single-line comments using two slashes (//) or multi-line comments
using left and right braces ({}):

begin
// This piece of code needs some work
if (not True) then
BlowUpTheApplication
else
begin
{ Whew, we avoided blowing up the application,
so let's continue on a more reasonable path }
HandleTheSpecialCase;
end;
end;

Literals

Literal values are specified as follows:

Page 232

Value Type
Numbers
Boolean
Strings
Characters

Arrays

Class Instances/Methods

Identifiers

Language Reference

Example

100
1200.42
-39.00

True
false

‘This is a string literal'
‘This is a '+' concatentated '+' string literal'

a
#27

['This''is','a",'string’,'array’, 'literal']
[100,2,45]

nil

An identifier is the name of any system-declared or user-declared object in an Elevate Web Builder
application, such as units, constants, types, variables, or procedures/functions. Identifiers may begin with
an underscore () or a letter (a-z, A-Z), and may contain an underscore, a letter, or a digit (0-9).

Reserved Words

The following are the list of reserved words in Elevate Web Builder. These words should not be used as

identifiers:

abstract
and
array

as

async
begin
break
case
class
const

constructor

contains
continue
default
destructor
div

do
downto
else

end
except
exit
external

finalization

finally
for

Page 233

Language Reference

function
if
implementation
inherited
initialization
interface
is

mod

not
object

of

on

or

out
override
private
procedure
program
property
protected
public
raise
read
record
repeat
shl

shr

then

to

try

type

unit
until
uses

var
virtual
while
with
write

xor

Syntax Diagrams

In the language reference syntax diagrams, angle brackets (<>) represent a language element and
brackets ([]) represent an optional language element.

Page 234

Language Reference

8.2 Defines

Elevate Web Builder supports basic compiler define functionality. Compiler defines are symbols used to
conditionally include or exclude code in the compilation process, and can be tested at compile-time to
make such a determination. Compiler defines are taken into account during the parsing phase of the
compilation process.

Note

Elevate Web Builder defines a special DESIGN symbol automatically during compilation. If the code
is being compiled for design-time use in the component library, then the DESIGN symbol will be
defined. If the code is being compiled for run-time use, then the DESIGN symbol will not be
defined. Component developers can test for this special DESIGN symbol to determine whether or
not the code is being compiled for use at design-time. The standard component library included
with Elevate Web Builder tests for this symbol in many different places.

Defining Symbols

You can create a compiler define using the following syntax:

{$DEFINE <Symbol>}

Once a symbol has been defined, it will be effective for the remaining code in the current unit, including
any units that are referenced after the symbol was defined. Defining a symbol that is already defined does
nothing.

Warning
Compiler defines are not nested. If a symbol is re-defined (it was already defined), and then un-
defined, the result will be that the symbol will be undefined.

Un-Defining Symbols
You can remove a compiler define using the following syntax:

{$UNDEF <Symbol>}

Testing for Defined Symbols

To test whether a symbol has been defined, you can use the following syntax:

{$IFDEF <Symbol>}

Page 235

Language Reference

// Include this code if the symbol is defined

[{$ELSE}]
// Include this code if the symbol is not defined (optional)
{$ENDIF}

To test whether a symbol has not been defined, you can use the following syntax:

{$IFNDEF <Symbol>}
// Include this code if the symbol is not defined

[{$ELSE}]
// Include this code if the symbol is defined (optional)
{$ENDIF}

An IFDEF or IFNDEF test must always be terminated with an ENDIF. The ELSE conditional branch is
optional.

Example

The following is code from the standard component library that tests for the special DESIGN symbol to
determine whether to use the WebDesign (IDE run-time) or the WebDOM (browser run-time) unit:

{$IFDEF DESIGN}

uses WebDesign, WebCore;
{$ELSE}

uses WebDOM, WebCore;
{$ENDIF}

Page 236

Language Reference

8.3 Types

Elevate Web Builder supports most basic Object Pascal types, and these types are detailed below.

Exact Numeric Types

Exact numeric types are used when you wish to store a numeric value in its exact representation without
accumulating rounding errors.

Type Description

Integer A 52-bit, signed integer value

Exact numeric literals use the minus (-) as the negative sign character, the plus (+) as the positive sign
character, and scientific notation is not supported. In addition, hexadecimal literals can be specified by
prefacing the hexadecimal value with the dollar sign ($).

The following are examples of exact numeric literals:

var

MyInteger: Integer;
begin

MyInteger := 100; // Assign 100 to the Integer variable

MyInteger := $64; // Assign 100 as hexadecimal to the Integer variable
end;

Approximate Numeric Types

Approximate numeric types are used when you wish to store a numeric value in an approximate
representation with a floating decimal point. Using approximate numeric types can cause rounding errors
due to the fact that certain numbers such as 0.33 cannot be accurately represented using floating-point
precision.

Type Description
Double A 64-bit, floating-point numeric value with a maximum

precision of 16 digits.

Approximate numeric literals use the period (.) as the decimal point character, the minus (-) as the
negative sign character, the plus (+) as the positive sign character, and scientific notation is supported via
E (e or E) as the exponent character followed by a plus (+) or minus (-) character and the actual exponent
value.

The following are examples of approximate numeric literals:

var
MyDouble: Double;

Page 237

Language Reference

begin
MyDouble := -100.25; // Assign -100.25 to the Double variable
end;

String/Character Types

String types are used when you wish to store a character string of any length up to 2GB. String types
always use the Unicode character set for the characters that comprise the string. Character types store a
single character, and also use the Unicode character set.

Type Description
String A string value with a variable number of characters.
Char A single character.

String literals use the single quote (') character to identify themselves as such. Any single quotes enclosed
inside of the literal must be escaped by prefacing them with another single quote. In addition, single
character constants may be specified using their literal value or by prefacing their ordinal character set
position with the pound sign (#) character. To reference a specific character in a string, use the left and
right brackets ([]) with the 1-based integer position of the character being referenced.

Note

Strings in Elevate Web Builder are immutable, meaning that they cannot be modified in-place by
assigning new character values at specific positions in the string. They must always be copied and
then assigned to a new string in order to be modified.

The following are examples of string/character literals:

var
MyString: String;
MyCharacter: Char;
begin
MyString := 'This is a test'; // Assign "This is a test"
// to the String variable
MyString := #13+#10; // Assign a carriage return and
// linefeed to the String variable
MyCharacter := MyString[2]; // Assign the second character
// from the String variable to
// the Char variable
end;

Date/Time Types

Date/time types are used when you wish to store a date, time, or date/time value. Date/time types are
actually just integers, so they can be manipulated just like the Integer type.

Page 238

Language Reference

Type Description

DateTime A date/time value containing the number of milliseconds
since midnight on January 1, 1970.

Since date/time types are just integers, there isn't any literal representation of a date/time type.

Boolean Types

Boolean types are used to represent the values of True or False.

Type Description

Boolean A logical true/false value.

Boolean literals are expressed as the literals True and False (case-insensitive) or 1 and 0 for True and False,
respectively.

The following are examples of boolean literals:

var

MyBoolean: Boolean;
begin

MyBoolean := False; // Assign False to the Boolean variable
end;

Page 239

Language Reference

8.4 Operators

Elevate Web Builder supports most Object Pascal operators, and these operators are detailed below.
Boolean Operators

The following are the boolean operators in Elevate Web Builder, ordered by their operator precedence:

Operator Description

not Flips a boolean expression so that True becomes False, or
vice-versa.

and Returns True if both the left and right boolean expressions are
True.

or Returns True if either the left or right boolean expression is
True.

Comparison Operators

The following are the comparison operators in Elevate Web Builder, ordered by their operator precedence:

Operator Description

= Returns True if both the left and right expressions are equal.

<> Returns True if both the left and right expressions are not
equal.

> Returns True if the left expression is greater than the right
expression.

>= Returns True if the left expression is greater than or equal to

the right expression.

< Returns True if the left expression is less than the right
expression.
<= Returns True if the left expression is less than or equal to the

right expression.

is Returns True if the left expression is an instance of the class
type specified in the right expression.

Arithmetic Operators

The following are the arithmetic operators in Elevate Web Builder, ordered by their operator precedence:

Page 240

Language Reference

Operator Description

not Returns an integer that represents the inverse of all bits in the
right integer expression.

or Returns an integer that represents all set bits in the left and
right integer expressions.

xor Returns an integer that represents all set bits in either the left
or right, but not both, integer expressions.

and Returns an integer that represents all bits that are set in both
the left and right integer expressions.

* Multiplies the left numeric expression by the right numeric
expression.

/ Divides the left numeric expression by the right numeric
expression.

div Divides the left integer expression by the right integer
expression.

- Subtracts the right numeric expression from the left numeric

expression.

+ Adds the right numeric expression to the left numeric
expression.

mod Returns the remainder derived from dividing the left numeric

expression by the right numeric expression.

shl Returns the left integer expression shifted to the left by the
number of bits specified by the right integer expression.

shr Returns the left integer expression shifted to the right by the
number of bits specified by the right integer expression.

String Operators

The following are the string operators in Elevate Web Builder, ordered by their operator precedence:

Operator Description
+ Concatenates the right string expression to the left string
expression.

Page 241

Language Reference

8.5 Statements

Elevate Web Builder supports most Object Pascal statements, and these statements are detailed below.
Please see the Function and Procedure Implementations topic for information on how statements are
actually used in function and procedure code blocks.

Assignment Statement

<Variable> := <Type-Compatible Expression>;

The assignment statement uses the assignment operator (:=) to assign a value from a type-compatible
expression on right-hand side of the assignment operator to the variable on the left-hand side of the
operator.

The following example illustrates the use of the assignment statement:
var

MyInteger: Integer;
MyString: String;

begin
MyInteger := (100 * MyIntegerConstant);
MyString := 'This is a test’;
end;
If Statement

if <Boolean Expression> then
<Code Block>

[else if <Boolean Expression>
<Code Block>]

[else
<Code Block>];

The if statement is used to provide conditional execution based upon one or more Boolean expressions.
When any of the Boolean expressions specified in the if or else if clauses evaluates to True, then the block
of statements is executed. The else clause is used to specify that the if none of the Boolean expressions
evaluate to True, then the statement block specified for the else clause should be executed.

The following example illustrates the use of the if statement:

var
MyBoolean: Boolean;
begin
MyBoolean:=False;
if MyBoolean then
ShowMessage('This will never execute')

Page 242

Language Reference

else
ShowMessage('This will always execute');
end;

Case Statement

case <Expression> of

<Expression>[, <Expression}:
<Code Block>;

[<Expression>[, <Expression}:
<Code Block>;]

[else
<Code Block>;]

end;

The case statement is used to provide conditional execution based upon one or more expression
comparisons. The expression directly after the case clause is compared against each expression specified
before the colon (). If any of the expression comparisons are equal, then the block of statements directly
after the colon is executed. The else clause is used to specify that if none of the expression comparisons
are equal, then the statement block specified for the else clause should be executed.

The following example illustrates the use of the case statement:

var
MyString: String;
begin
MyString:="'Hello World";
case MyString of
'Hello':
ShowMessage('Hello");
'World':
ShowMessage('World');
else
ShowMessage('None of the above');
end;
end;

While Statement

while <Boolean Expression> do
<Code Block>;

The while statement is used to provide a looping construct based upon a Boolean expression comparison.
The Boolean expression directly after the while clause is compared before every execution of the block of
statements. If the Boolean expression evaluates to False, then the loop is terminated and execution will
continue on the statement after the block of statements that belong to the while statement.

The following example illustrates the use of the while statement:

Page 243

Language Reference

var
MyBoolean: Boolean;
begin
MyBoolean:=True;
while MyBoolean do
begin
ShowMessage('Still looping...");
if MyBoolean then
MyBoolean:=False;
end;
end;

Repeat Statement

repeat
<Code Block>;
until <Boolean Expression>;

The repeat statement is used to provide a looping construct based upon a Boolean expression
comparison. The Boolean expression directly after the util clause is compared after every execution of the
block of statements. If the Boolean expression evaluates to True, then the loop is terminated and
execution will continue on the statement after the block of statements that belong to the repeat
statement.

The following example illustrates the use of the repeat statement:

var
MyBoolean: Boolean;
begin
MyBoolean:=False;
repeat
begin
ShowMessage('Still looping...");
if (not MyBoolean) then
MyBoolean:=True;
end;
until MyBoolean;
end;

For Statement

for <Integer Value Assignment> to|downto <Integer Expression> do
<Code Block>;

The for statement is used to provide a looping construct based upon an incrementing or decrementing
integer value comparison. The loop is seeded with an an integer value assignment that is an assignment
statement without a semicolon statement terminator (;). If the to clause is used, then the integer value will
be incremented by one for every iteration of the loop, and if the downto clause is used, then the integer
value will be decremented by one for every interation of the loop. The integer expression after the to or

Page 244

Language Reference

downto clause serves as the terminator for the loop. Once the integer value is equal to the value of the
specified integer expression, the loop is terminated and execution will continue on the statement after the
block of statements that belong to the for statement.

The following example illustrates the use of the for statement:

var
MyInteger: Integer;
MyString: String='Hello world';

begin
for MyInteger:=1 to Length(MyString) do
ShowMessage('Character is '+MyString[MyInteger]+'...");
end;

Break Statement

break;

The break statement is used to unconditionally break out of any looping statement (while, repeat, or for).
Any time a break statement is encountered, the loop is terminated and execution will continue on the
statement after the block of statements that belong to the looping statement.

The following example illustrates the use of the break statement:

var
MyInteger: Integer;
MyString: String='Hello world';

begin
for MyInteger:=1 to Length(MyString) do
begin
ShowMessage('Character is '+MyString[MyInteger]+'...");
if MyString[MyInteger]='w' then
break;

end;

end;

Continue Statement

continue;

The continue statement is used to unconditionally stop executing any and all remaining statements in the
block of statements for a looping statement (while, repeat, or for) and return to the top of the looping
statement.

The following example illustrates the use of the continue statement:

Page 245

Language Reference

var
MyBoolean: Boolean;
begin
MyBoolean:=True;
while MyBoolean do
begin
ShowMessage('Still looping...forever');
continue;
if MyBoolean then
MyBoolean:=False;
end;
end;

Exit Statement

exit;

The exit statement is used to unconditionally stop executing any and all remaining statements in a
function or procedure, and leave the function or procedure.

With Statement

with <Class Instance> do
<Code Block>;

The with statement is used to introduce a class instance into the scope of the block of statements
specified after the do clause. This is useful when one needs to reference several different properties or
methods of the class instance and would like to avoid repeatedly typing the same class instance reference.

The following example illustrates the use of the with statement:

var
MyInstance: TMyClass;
begin
MyInstance:=TMyClass.Create;
with MyInstance do
begin
MyIntegerProperty:=100;
MyStringProperty:='Hello world';
end;
MyInstance.Free;
end;

Code Blocks

One or more statements in succession is referred to as a code block. If more than one statement is
included in a code block, then the code block must be expressed with the begin and end keywords:

Page 246

Language Reference

begin
<Statement>;
[<Statement>];
end;

For example, the following for loop can be expressed without the begin and end keywords because its
code block only consists of a single statement:

var

MyInteger: Integer;

MyString: String='Hello world';

MyOtherString: String="";
begin

for MyInteger:=1 to Length(MyString) do

MyOtherString := MyOtherString + MyString[MyInteger];

end;

Code blocks can be nested as many levels deep as necessary.

Statement Termination

One of the most confusing aspects of the Object Pascal language used by Elevate Web Builder is how to
decide when to terminate a statement. Normally, all statements must be terminated with the statement
terminator character (;) when the statements are used by themselves. For example, the following
assignment statement is terminated in a normal fashion because it is used by itself in a code block:

var
MyString: String;
begin
MyString := 'This is a test';
end;

However, when a statement is embedded within another container statement, such as an if statement, the
statement terminator may not be needed. For example, the same assignment statement used above
would look like this when used in an if statement:

var
MyString: String;
begin
if MyParameter then
MyString := 'This is a test'
else
MyString := 'This is not a test';
end;

The first assignment statement does not require a statement terminator because it is considered part of
the if statement, whereas the second assignment statement has a statement terminator because it is used
in the else clause of the if statement.

Page 247

Language Reference

The exception to this rule occurs when a statement is used within a code block. Statements always require
a statement terminator when used in a code block.

Page 248

Language Reference

8.6 Units

The Elevate Web Builder language uses the source unit as the basis for all code in an application. As
discussed in the General Architecture topic, every application has the following basic structure:

Project Source File {.whp)

B, T .
™ — ;
uses/contains 28 I_i SINTERTACE - u I
X = clause
[u clause - |
Source Unit File {.whs) Interface File (.whi)

if exists > BS) [ifexists L ii‘

Source Unit File {whs) Source Form File (. wbf}
A N A
Project Configuration File {.wbc) Included External Files
{optianal) {optional)

Elevate Web Builder Application Structure
Every source unit in an application has the following structure:

unit Tmitl;

interface Unit Interface Section
Constant, Type, Class, Function/Procedure, and
Variable Declarations

1mplementation
Unit Implementation Section

Constant, Type, Class, Function/Procedure, and
Variable Declarations and Implementations
initialization

Unit Initialization Code Block

finalization

Unit Finalization Code Block

el .

Elevate Web Builder Source Unit Structure

Every source unit must begin with the keyword unit followed by the name of the unit (without file
extension) and the statement terminator (). In addition, every source unit must end with the end keyword

Page 249

Language Reference

followed by a period (.).

The interface and implementation section keywords are also required. The initialization and finalization
code blocks are both optional, and one can be specified without the other.

Project Source File

The project source ((wbp) of an application uses a format similar to a normal unit, but with some key
changes:

project Projectl:
contains Unicl;

nses WebForms, WeblCtrls;
begin

Project Source Code Block
end.

Elevate Web Builder Project Source Structure

The key changes are:

@ The project source file begins with the project keyword instead of the unit keyword.

@ The project source file has a contains clause. The contains clause is just like a uses clause but also

determines which units are considered project units, as opposed to simply units referenced by the
project. The IDE uses this information to determine which units should be shown as part of the
project in the Project Manager.

= The project source file only contains a single uses clause.

@ The project source file does not contain interface, implementation, initialization, and finalization

sections. You can add constant, type, class, function/procedure, and variable declarations between
the uses clause and the main code block, but this is strictly optional.

@ The project source file contains a single code block (begin..end) that is the first code to be executed

when the application starts.

Interface and Implementation Sections

The interface and implementation sections are very similar in structure. The main differences are in the
scope (visibility) of each section (private or public) and whether the section can only contain declarations
and not implementation code:

Page 250

Language Reference

= All declarations and code in the implementation section are private to the source unit and cannot
be referenced by other souce units. All declarations in the interface section are public to both the
current source unit and other source units. For example, if you were to declare the TMyClass class in
the implementation section of UnitA, then even if UnitB included a UnitA reference in its uses clause
(interface or implementation, it doesn't matter), the TMyClass class declaration would still not be
"visible" to UnitB. Please see the Scope topic for more information.

@ The interface section can only contain declarations, whereas the implementation section can also
include implementation code for functions, procedures, and methods of classes (functions and
procedures declared in classes).

Both the interface and implementation sections have the following elements in common:

nnit Urici:

interface

nses Unich, Unich: Unit References
const
MyCenatant = 100: | Constant Declarations
type
class THyObject class (TOBject) Type Declarations
private
FMembherVariable: String:
procedore SerMemberVariable (const Value: Scring):
protected
procedore ProtectedProcedure (Value: Scolean):
Pl i
property MemberPropertyv: String read MMemberVariable
write SetMemherVariable:
end;
procedure MyPr dure (Value: Integer): Function/Procedure
function My Integer): Boolean; Declarations
var
MyGlobalVariahle: Scrimg; Variable Declarations

implementation

Elevate Web Builder Unit Section Structure

Note

None of the various section elements are required. In fact, one can have a valid source unit that
includes nothing but the unit name, the interface and implementation clauses, and the end
keyword. It would be of little use, but it would still be valid.

Uses Clause

The uses clause is a comma-separated list of source unit names (*.wbs, but specified without the file
extension). This clause tells the compiler which source units are being referenced by the code in the
interface or implementation sections.

Page 251

Language Reference

Const Clause

The const clause is used to declare constants. Please see the Constant Declarations topic for more
information on declaring constants. You can declare as many constants as you wish within the same const
clause.

Type Clause

The type clause is used to declare types. Please see the Type Declarations topic for more information on
declaring types. You can declare as many types and classes as you wish within the same type clause.

Var Clause

The var clause is used to declare global variables. Please see the Variable Declarations topic for more
information on declaring variables. You can declare as many variables as you wish within the same var
clause.

Function and Procedure Declarations

You can include function and procedure declarations anywhere in an interface or implementation section.
However, normally one would only include a function or procedure declaration in the interface section.
Since a function or procedure is actually implemented in the implementation section, there is no purpose
to declaring the function or procedure there twice. Please see the Function and Procedure Declarations
topic for more information on declaring functions and procedures.

Initialization and Finalization Sections

The initialization and finalization sections are used to add code blocks for initializing variables in a unit at
application startup and for freeing any resources acquired during execution at application shutdown. For
example, in the Elevate Web Builder component library, an instance of the TApplication component is
automatically created and freed in the initialization and finalization code blocks of the WebForms unit:

initialization
Application:=TApplication.Create(nil);
finalization
Application.Free;
Application:=nil;
end.

The order in which the initialization and finalization code blocks are executed is determined by the order
of the unit references in the uses clause of the project source file, as well as the order of the unit
references in the uses clauses of the interface and implementation sections of each referenced unit.

The initialization order is as follows:

@ The units in the project source file's uses clause are initialized in the order in which they are
specified.

Page 252

Language Reference

@ The units in each referenced unit's uses clause are initialized in the order in which they are specified.
The units in the uses clause in the interface section of the source unit are initialized first, followed by
the units in the uses clause in the implementation section of the source unit.

@ After all referenced units have been initialized, the initialization code block for the current unit is
executed.

The finalization order is the reverse of the above:

@ The units in the project source file's uses clause are finalized in the reverse order in which they are
specified.

@ The finalization code block for the current unit is executed.
@ The units in each referenced unit's uses clause are finalized in the reverse order in which they are

specified. The units in the uses clause in the implementation section of the source unit are finalized
first, followed by the units in the uses clause in the interface section of the source unit.

Page 253

Language Reference

8.7 Constant Declarations

Constant declarations must be in the following format:

<Constant Declaration>;
[<Constant Declaration>;]

<Constant Declaration> =

<Constant Name> = <Expression>
The <Constant Name> element must follow the rules for identifiers covered in the Introduction topic, and
each constant declaration must be terminated with a semicolon statement terminator ().
The <Expression> element can be any valid expression that does not contain any variable, function, or

procedure references. In other words, the expression can only contain other constant references, or literal
expressions. Examples of literal expressions can also be found in the Introduction topic.

Page 254

Language Reference

8.8 Type Declarations

Type declarations must be in the following format:

<Type Declaration> | <Function/Procedure Type Declaration> | <Method Type
Declaration> | <Class Declaration>;

[<Type Declaration> | <Function/Procedure Type Declaration> | <Method Type
Declaration> | <Class Declarations;]

<Type Declaration> =
<Synonym Type Name> = [type] <Type Name>;
<Function/Procedure Type Declaration> =

<Function/Procedure Type Name> = function|procedure ([<Parameters>])[:
<Type Name>];

<Method Type Declaration> =

<Method Type Name> = function|procedure ([<Parameters>])[: <Type Name>] of
object;

<Class Declaration> =

<Class Name> = class [(<Ancestor Class Name>)]
[<Private Class Members>]
[<Protected Class Members>]
[<Public Class Members>]
end;

The <Synonym Type Name>, <Type Name>, <Method Type Name>, <Class Name>, and <Ancestor Class
Name> elements must follow the rules for identifiers covered in the Introduction topic, and each type or
class declaration must be terminated with a semicolon statement terminator ().

A synonym type declaration is useful for situations where one wants to use a specific name for a generic
type such as an Integer, String, or Boolean. For example, in the Elevate Web Builder component library,
the following type declaration can be found in the WebUI source unit:

TColor = type Integer;

The optional type keyword found before the Integer type name above is used to specify that the declared
type (TColor) should be considered unique for design-time type distinction purposes, and essentially
creates a new Integer type called TColor. The Elevate Web Builder IDE design-time environment uses this
information to determine which property editors to show for certain types.

Page 255

Language Reference

Note

The synonym type retains type compatibility with the type name that it is associated with. For
example, with the above declaration the compiler will still allow you to use an Integer in any
expression where a TColor type is required.

A function/procedure type declaration is used to declare a function/procedure reference type.
Function/procedure references point to a function/procedure implementation, and are used to treat
functions/procedures as data. The Elevate Web Builder compiler automatically figures out when a
function/procedure reference is being assigned to a variable declared with such a reference type, and
when a variable that is declared with such a reference type is being used to call the function/procedure
reference contained in the variable. You can only assign references to functions/procedures that have the
same signature as the target variable's function/procedure reference type. For example, this assignment is
not valid:

type
TFuncRef = function (Value: Integer): Integer; // Returns Integer

implementation

function DoSomething(Value: Integer): Boolean; // Returns Boolean
begin

Result:=(Value=100);
end;

procedure DoSomethingElse;

var
FuncRef: TFuncRef;

begin
FuncRef:=DoSomething; // This will cause a compiler error !!!!]
ShowMessage (IntToStr(FuncRef(100)));

end;

A method type declaration is used to declare a method reference type. A method reference type is like a
function/procedure reference type, except that it also includes the class instance to be used when calling
the method contained within a variable declared with a method reference type. For more information on
method reference type declarations, please see the Events topic.

A class declaration can include an ancestor class name, if applicable. If one is declaraing a class that

inherits from the base TObject class, then the ancestor class name does not need to be specified. For more
information on class declarations, please see the Classes topic.

Page 256

Language Reference

8.9 Variable Declarations

Variable declarations must be in the following format:

<Variable Declaration>;
[«<variable Declaration>;]

<Variable Declaration> =

<Variable Name> [,<Variable Name>]: <Type Name> = <Default Expression>

The <Variable Name> and <Type Name> elements must follow the rules for identifiers covered in the
Introduction topic, and each variable declaration must be terminated with a semicolon statement
terminator ().

The <Default Expression> element can be any valid expression that does not contain any variable,
function, or procedure references. In other words, the expression can only contain other constant
references, or literal expressions. Examples of literal expressions can also be found in the Introduction
topic. The <Default Expression> element is used to initialize the variable to a specific value. This is useful
in ensuring that a variable is not in an uninitialized state when it is referenced in code.

Warning

If you don't set a default expression for a variable declaration and do not assign a value to the
variable, then the value of the variable is undetermined. You should always make sure that such
global variable declarations are initialized properly through a default expression or assignment.
This does not, however, apply to variables declared within a class. Please see the Variables topic for
more information on declaring variables in a class.

Page 257

Language Reference

8.10 Function and Procedure Declarations

Function and procedure declarations must be in the following format:

<Function Declaration> | <Procedure Declaration>;
[<Function Declaration> | <Procedure Declaration>;]

<Function Declaration> =

function <Function Name> [<Parameters>]: <Type Name>
<Procedure Declaration> =

procedure <Procedure Name> [<Parameters>]
<Parameters> =

(<Parameter Declaration>[; <Parameter Declaration>])
<Parameter Declaration> =

[const] <Parameter Name> [,<Parameter Name>]: <Type Name>

The <Function Name>, <Procedure Name>, <Parameter Name>, and <Type Name> elements must
follow the rules for identifiers covered in the Introduction topic, and each function or procedure
declaration must be terminated with a semicolon statement terminator ().

The only difference between a function and procedure is that a function returns a result value, whereas a
procedure does not. This means that a function can be used in an expression like a variable or constant,
but a procedure can only be used like a statement.

Please see the Function and Procedure Implementations topic for more information on implementing
functions and procedures.

Page 258

Language Reference

8.11 Function and Procedure Implementations

Functions and procedures constitute the actual functionality of an Elevate Web Builder unit. The
implementation of functions and procedures is done in the implementation section of a unit:

onit

interfacs
Function
Declaration

funotion HyFunetion{censt MyParamescer

1mplementation

Function HyFunction {censt MyParameter: Sooing) @ Stoindg;

begin Function
Implementation

Function/Procedure Implementation

The implementation of a function or procedure consists of a variable declaration block, if necessary,
followed by a code block:

procedure MyProcedure;
var
MyVariable: String;
MyOtherVariable: Integer;
begin
// Code block
end;

Note

The implementation of a function/procedure repeats the same declaration of the function or
procedure name followed by the parameters (if present) and return type (for functions). If the
implementation does not use the exact same declaration, then the compiler will issue an error.

The variable declarations follow the same declaration rules as the var clause in a unit. Please see the
Variable Declarations topic for more information.

A code block in Elevate Web Builder consists of a begin keyword followed by a series of statements and
an end keyword. The code block that is used in a function or procedure implementation is always
terminated with a statement terminator (;). However, code blocks can be nested within other statements,
such as conditional if statements. In such cases, please refer to the documentation on the statement to
determine if a statement terminator is necessary after the end keyword at the end of a code block.

Returning Results From a Function

Page 259

Language Reference

In Elevate Web Builder, procedures do not return a result, whereas functions do. Every function has an
implicit Result variable that can be assigned a value that is returned as the result of the function:

function MyFunction(const MyParameter: String): String;
begin

Result := 'The parameter value is
end;

+ MyParameter;

The type of the Result variable is determined by the type declaration for the function's return value.

Page 260

Language Reference

8.12 Enumerations

An enumeration is a collection of symbols used to represent a specific set of values. An enumeration must
be declared as a specific type and, because they are typed, enumerations offer the additional benefit of
preventing improper symbolic values that aren't part of the enumeration from being used anywhere that
the enumeration type is required.

An enumeration is declared as follows:

<EnumerationName> = (<Member Name>[,<Member Name>]);

For example, the following enumeration type declaration is from the WebUI unit in the Elevate Web
Builder component library and specifies the various cursor types that can be used in a Ul element:

TCursor = (crAuto,crCrossHair,crDefault,crHelp,crMove,crPointer,
crProgress,crSizeNESW, crSizeNS, crSizeNWSE, crSizelE,
crText,criait);

Note
Internally, enumerations are handled as integers by the compiler, and you can cast enumerations
as integers and integers as enumerations.

Page 261

Language Reference

8.13 Arrays

An array is a collection of values, all of the same type. The values in an array are referred to as the array's
elements. Arrays in Elevate Web Builder are dynamic, meaning that their length is not specified during
their declaration and can be increased or decreased at run-time, as necessary.

Array Declarations

Arrays are declared by prefacing the type name of the array with the keywords array of:

array of <Type Name>

For example, to declare a Boolean array variable, one would use the following declaration:

var
MyBooleanArray: array of Boolean;

Please see the Variable Declarations topic for more information on declaring variables.

Getting and Setting the Length of an Array

To get the length of an array, use the Length function. Likewise, use the SetLength function to set the
length of an array:

var
MyArray: array of Integer;
begin
SetLength(MyArray,10);
ShowMessage(Length(MyArray)); // Displays the value 10
end;

Referencing an Array Element

Each element in an array can be accessed via its 0-based ordinal position. Square brackets directly after
the array variable or parameter name are used to reference an element in an array. For example, to access
the 3rd element in an array, one would use the following construct:

MyArray[2]

Page 262

Language Reference

Warning

If you try to access an element that does not exist because it is beyond the length of the array, you
will cause a run-time error. Also, you must declare an array variable with a default value (see
below), or use the SetLength function to set the length of an array, before attempting to reference
any of the array elements. Failure to do so will result in a run-time error.

Array Constants

Just like any other variable, array variables can be initialized to a default value by specifiying an array
constant as the default value in the variable declaration. This is done by enclosing a comma-delimited list
of array elements in square brackets ([]):

[<Element> ,<Element>...]

In the following example the MyBooleanArray variable will be initialized to an array of Boolean elements
that has a length of 3 and consists of elements that are True, False, and True, respectively:

var
MyBooleanArray: array of Boolean = [True, False, True];

In addition to variable defaults, array constants can be used to pass array values to the parameters of
functions or procedures. For example, if we want to call a procedure declared as follows:

function ListStrings(Value: array of String): String;

var
I: Integer;
begin
Result := '';
for I := 0 to Length(Value) - 1 do
begin
if (I > @) then
Result := Result + ', ';
Result := Result + Value[I];
end;
end;

We could do so by simply passing a constant array to it, as follows:

ShowMessage(ListStrings(['These', 'are', 'some’, 'words']);

Page 263

Language Reference

Note
The values specified for the elements in an array constant must be type-compatible with the
declared type of the array.

Page 264

Language Reference

8.14 Classes

The Object Pascal language used by Elevate Web Builder is an object-oriented language that allows one
to define classes that represent objects with their own data (variables and properties) and behaviors
(functions and procedures).

Note
Functions and procedures that are declared in a class are referred to as "methods". For the rest of
this topic the term "methods" will be used to represent the functions and procedures declared in a
class.

Classes are useful because they offer:

@ Encapsulation: Both data and behaviors are combined into one logical construct, and data that is
internal to the class can be hidden so that only the class itself can access it. Also, properties can be
defined that offer a specific interface to the data contained in a class, thus avoiding exposing
internal data directly or requiring that all access to the data be done through methods.

= Inheritance: Classes can descend from other classes and inherit the functionality of the ancestor
class in the process, thus forming what is termed a "class hierarchy". There is no limit to the depth
of such a hierarchy. In addition, the functionality of ancestor class(es) can be overridden in
descendant classes in order to supplement or completely replace the base functionality.

TVehicle

Inherits

Erom TAutomobile

TBus

Class Hierarchy Example

Elevate Web Builder only supports single inheritance. This means that each class can only descend from

Page 265

Language Reference

one class, and there is only one single path between an ancestor class and a descendant class.

Class Declarations

Before a class can be used, it must be declared in the type section of a unit. A class declaration consists of
the following:

<Class Name> = class [(<Ancestor Class Name>)]
[<Private Class Members>]
[<Protected Class Members>]
[<Public Class Members>]
[<Published Class Members>]
end;

Note
To keep with the traditional coding style of Object Pascal, all <Class Name> specifications in
Elevate Web Builder should normally begin with a "T" prefix (stands for "Type").

If you do not specify an <Ancestor Class Name>, then the class will inherit from the system-defined
TObject class (see below).

The private, protected, public, and published designations specify the scope of the class members. The
scope of the class members determine their visibility to descendant class declarations, as well as any code
that uses an instance of the class. In addition, the published scope determines which properties are visible
at design-time in the IDE and which properties are streamable using the persistence functionality in the
component library. Please see the Scope topic for more information on the various class member scope
designations.

TObject

As expected, any class hierarchy must start with a base class. In Elevate Web Builder, that class is the
TObject class. The declaration for the base TObject class is as follows:

external system TObject = class

public
constructor Create; virtual;
destructor Destroy; virtual;
class procedure Free;
class function ClassType: TClass;
class function ClassName: String;
class function ClassParent: TClass;

end;

The Create method is the class constructor and the Destroy method is the class destructor. The
constructor method is called when a class instance is created, and the destructor method is called when a
class instance is freed. Please see the Methods topic for more information on constructors and
destructors.

Page 266

Language Reference

The ClassType method is a class method that returns the class type as a result. This method is useful in
situations where you need to interrogate the class type of either a class or a class instance.

The ClassName method is a class method that returns the class name as a result. The Elevate Web Builder
component library uses this method a lot in order to link control classes to specific interfaces.

The ClassParent method is a class method that returns the parent class type as a result. This information
can be used to determine the ancestry of a class.

Note

The above Class* methods are class methods, which means that they are static methods that can
operate on both classes and class instances. Please see the Methods topic for more information on
class methods.

Class Members

The class members in a class declaration are the various variables, properties, methods, and events that
define the data and behaviors of the class. Class members can be declared in any order within a specific
scope in a class declaration.

Please use the following links to get more information on each type of class member:
Variables
Methods

Properties
Events

Page 267

Language Reference

8.15 Variables (In Classes)

Variables are declared in a class just like they are declared in a unit or function/procedure. Please see the
Variable Declarations topic for more information.

Note

As a code convention, variable declarations in classes are normally prefaced with an "F" to
distinguish them from other variables and properties. The "F" stands for "Field", but this manual will
refer to them as variables and not "fields".

If you don't set a default expression for a variable declaration in a class declaration, then the variable will
be automatically initialized to the appropriate value for the type when an instance of the class is created:

Type Initial Value
String "

Char #0

Integer 0

Double

Enumerated Type Lowest Member Value
Boolean False
DateTime 0

Object nil

Array

Method

Class Variables

Class variables are special types of variables that are sometimes referred to as "static" variables. They can
be referenced from class instances and also directly from class references where no instance of the class
exist, and are useful for storing data that doesn't change between instances of a class. Class variables can
only be modified by class methods or class properties. Please see the Methods and Properties topics for
more information on class methods and properties.

Class variables are declared by prefacing a variable declaration with the class keyword. For example, the
following class declaration includes a class variable that keeps track of how many instances of the class
have been created:

TMyClass = class
private
class FCreateCount: Integer;
public
constructor Create; override;
class property CreateCount: Integer read FCreateCount;
end;

Page 268

Language Reference

implementation

constructor TMyClass.Create;
begin
inherited Create;
Inc(FCreateCount);
end;

The CreateCount class property above, and subsequently the FCreateCount class variable, could be
accessed in two different ways. The first way is by referring to the CreateCount class property for an
instance of the TMyClass class:

procedure ShowCreateCount;

var
TempInstance: TMyClass;
begin
TempInstance:=TMyClass.Create;
try
window.alert(IntToStr(TempInstance.CreateCount)); // window class is
in WebDOM unit
finally
TempInstance.Free;
end;
end;

The second way is by using a direct class reference:

procedure ShowCreateCount;

begin
window.alert(IntToStr(TMyClass.CreateCount));

end;

The second way is easiest when you don't have an instance of the class available.
One of the most significant benefits of class variables is that only one instance of each class variable ever
exists, thus saving memory. They are also very useful for implementing singleton instances of classes and

implementing namespaces for code that otherwise would use normal functions and procedures declared
outside of a class.

Page 269

Language Reference

8.16 Methods

Methods are simply functions and procedures that are declared as part of a class declaration. They are
declared in the same way as functions and procedures that are declared in a unit. Please see the Function
and Procedure Declarations topic for more information on the proper syntax. However, methods offer
three additional keywords: virtual, abstract, and override.

Virtual Methods

The virtual keyword allows you to specify whether or not a method can be overridden by descendant
classes. Virtual methods form the basis of inheritance in an object-oriented language because they allow
the developer to supplement or replace existing functionality in an ancestor class with functionality that is
more specific to the current class. For example, consider the following example class declarations and
implementations:

interface

TVehicle = class

protected

function GetNumWheels: Integer; virtual;
public

property NumWheels: Integer read GetNumWheels;
end;

TTruck = class(TVehicle)
protected
function GetNumWheels: Integer; override;
end;

implementation

function TVehicle.GetNumWheels: Integer;
begin

Result := 4;
end;

function TTruck.GetNumWheels: Integer;
begin

Result := 10;
end;

As you can see, the default value returned from the GetNumWheels method is 4. But, because the
GetNumWheels method is virtual, descendant classes like the TTruck class can override the method to
provide a different result that is accurate for the type of vehicle being represented by the class.

Note

A virtual method does not have to be present in the immediate ancestor class in order for it to be
overridden. You can override any virtual method that exists in any ancestor class, no matter how
far removed it is from the class being declared. Also, once a method is declared as virtual, it is
always virtual and capable of being overridden by a descendant class.

Page 270

Language Reference

In addition, you can use the abstract keyword to specify that the virtual method isn't actually
implemented in the current class, but rather must be implemented by descendant classes. Using the
above example, the base TVehicle class could be declared and implemented as follows instead:

interface

TVehicle = class

protected

function GetNumWheels: Integer; virtual; abstract;
public

property NumWheels: Integer read GetNumWheels;
end;

TTruck = class(TVehicle)
protected
function GetNumWheels: Integer; override;
end;

implementation

function TTruck.GetNumWheels: Integer;
begin

Result := 10;
end;

Note
Any classes that contain abstract methods cannot be created directly. Any attempt to do so will
cause a compiler error.

If you want to augment, or add to, the functionality present in the virtual method of an ancestor class,
then you can use the inherited keyword in the implementation of the descendant class method to do so.
For example, in this class hierarchy the TCar class defines a GetAvailableColors method that returns a
comma-delimited list of the default colors that a car is available in for the car manufacturer. The
descendant TPython class that represents a sports car overrides the GetAvailableColors method to specify
additional colors that the sports car is available in:

interface

TCar = class

protected

function GetAvailableColors: String; virtual;
public

property AvailableColors: String read GetAvailableColors;
end;

TPython = class(TCar)
protected
function GetAvailableColors: String; override;
end;
implementation

function TCar.GetAvailableColors: String;

Page 271

Language Reference

begin
Result := 'Red, Black, White';
end;

function TPython.GetAvailableColors: String;
begin

Result := inherited GetAvailableColors + ', Silver';
end;

Overloaded Methods

Overloaded methods are methods that have more than one declaration in a class and each declaration
has the same name but different parameters. This is very useful for situations where a method may need
to be called using different parameters. For example, consider the following class declaration:

TCustomers = class
public
procedure Delete(ID: Integer);
procedure Delete(const Name: String);
end;

In this example, the TCustomers class has overloaded the Delete method so that it can be called with
either an integer customer ID or a string customer name.

Although default parameters are usually easier, overloaded methods can also be used to implement
optional parameters. For example, the following class allows its Add method to be called with an ID, a

name, or both:

TCustomers = class
public
procedure Add(ID: Integer);
procedure Add(ID: Integer; const Name: String);
procedure Add(const Name: String);
end;

Note

Other variants of Object Pascal require that you use the overload keyword to indicate that a
method is overloaded. Elevate Web Builder does not use the overloaded keyword because it is
unnecessary. The compiler knows if two methods have the same declaration, and will issue an error
if they do. The compiler also knows how to find the proper method declaration, or whether one
exists at all, by how the method is called. Finally, if an overloaded method has one or more
declared versions that aren't actually called, the compiler knows this and will not emit the method

during compilation.

Class Methods

Class methods are special types of methods that are sometimes referred to as "static" methods. They are

Page 272

Language Reference

callable from class instances and also directly from class references where no instance of the class exists,
and are useful for implementing functions and procedures that should be encapsulated within the context
of a class, but don't need to access class instance variables, properties, or methods. Class methods can,
however, access any class variables or class properties that are also declared in the same class. Please see
the Variables and Properties topics for more information on class variables and properties.

Class methods are declared by prefacing a method declaration with the class keyword. For example, the
following class declaration includes a class variable that keeps track of how many instances of the class
have been created along with a class method that returns the creation count:

TMyClass = class
private
class FCreateCount: Integer;
public
constructor Create; override;
class function GetCreateCount: Integer;
end;

implementation

constructor TMyClass.Create;
begin
inherited Create;
Inc(FCreateCount);
end;

The GetCreateCount class method above could be accessed in two different ways. The first way is by
referring to the GetCreateCount class method for an instance of the TMyClass class:

procedure ShowCreateCount;

var
TempInstance: TMyClass;
begin
TempInstance:=TMyClass.Create;
try
window.alert(IntToStr(TempInstance.GetCreateCount)); // window class
is in WebDOM unit
finally
TempInstance.Free;
end;
end;

The second way is by using a direct class reference:

procedure ShowCreateCount;

begin
window.alert(IntToStr(TMyClass.GetCreateCount));

end;

The second way is easiest when you don't have an instance of the class available.

Class methods are very useful for implementing factory classes that create instances, implementing

Page 273

Language Reference

singleton instances of classes, and implementing namespaces for code that otherwise would use normal
functions and procedures declared outside of a class.

Constructors and Destructors

Constructors and destructors are special methods that handle the process of creating a class instance and
destroying it. Because Elevate Web Builder compiles into JavaScript, these methods aren't explicilty
allocating and deallocating memory. However, they are still crucial to ensuring that resources are properly
allocated and initialized during the creation of class instances, and that resources are properly disposed of
during the destruction of class instances. The base TObject class declaration contains both a constructor
called Create and a destructor called Destroy.

Note

Constructors and destructors are completely optional. If a class declaration doesn't contain a
constructor and/or destructor, then the ancestor class's constructor and/or destructor is used
instead. If the ancestor class doesn't contain a constructor and/or destructor, then it's ancestor class
is used and so on, until the base TObject class is reached by the compiler.

Constructors

Constructors are declared by prefacing a method declaration with the keyword constructor. Constructors
must be declared as a procedure called Create with no result type declaration due to the fact the result is
implicitly an instance of the class in which the declaration exists. Trying to declare a constructor with a
different name or with a result type will cause a compiler error. If the declared constructor does not accept
any parameters, then it must also be declared as an override of the base TObject Create constructor.
Constructors can be overloaded, so it is possible to declare different constructors with different
parameters. Finally, all constructors must be declared in the public scope of the class declaration and
cannot be declared in any other scope.

Warning
Do not call constructors on instances of classes. Constructors are class, or static, methods, and
should only be called on a class type itself in order to create an instance of the class.

The following is an example of a class that declares both an override of the base TObject Create
constructor, as well as creates its own overloaded constructor:

interface

TCustomer = class
private
FID: Integer;
FName: String;
public
property ID: Integer read FID write FID;
property Name: String read FName write FName;
end;

TCustomers = class
private

Page 274

FCustomers: TObjectlList;

Language Reference

// TObjectList class is declared

// in the WebCore unit
procedure CreateDemoCustomers(Value: Integer);

function GetNumCustomers: Integer;

function GetCustomer(ID: Integer): TCustomer;
function GetCustomer(const Name: String): TCustomer;

public
constructor Create; override;

constructor Create(NumDemoCustomers: Integer);

property NumCustomers: Integer read GetNumCustomers;

property Customer[ID: Integer]: TCustomer read GetCustomer; default;
property Customer[const Name: String]: TCustomer read GetCustomer;

default;
end;

implementation

constructor TCustomers.Create;
begin
inherited Create;
FCustomers:=TObjectList.Create;
end;

constructor TCustomers.Create(NumDemoCustomers:

begin
Create;
CreateCustomers(NumDemoCustomers);
end;

procedure TCustomers.CreateDemoCustomers(Value:

var
I: Integer;
TempCustomer: TCustomer;
begin
for I:=0 to Value-1 do
begin
TempCustomer:=TCustomer.Create;
with TempCustomer do
begin
ID:=I;
Name:="'Demo Customer #'+IntToStr(I);
end;
FCustomers.Add(TempCustomer);
end;
end;

function TCustomers.GetNumCustomers:
begin

Result:=FCustomers.Count;
end;

Integer;

Integer);

Integer);

function TCustomers.GetCustomer(ID: Integer): TCustomer;

var
I: Integer;
begin
Result:=nil;
for I:=0 to FCustomers.Count-1 do
begin
if (TCustomer(FCustomers[I]).ID=ID) then
begin
Result:=TCustomer (FCustomers[I]);
Break;
end;
end;

Page 275

Language Reference

end;

function TCustomers.GetCustomer(const Name: String): TCustomer;
var
I: Integer;
begin
Result:=nil;
for I:=0 to FCustomers.Count-1 do
begin
if SameStr(TCustomer(FCustomers[I]).Name,Name) then
begin
Result:=TCustomer(FCustomers[I]);
Break;
end;
end;
end;

Note
The above class declaration includes default array properties. Please see the Properties topic for
more information on default array properties.

Destructors

A destructor is declared by prefacing a method declaration with the keyword destructor. There can be
only one destructor per class and it must be declared as a procedure called Destroy that overrides the
base TObject Destroy destructor and has no parameters. Trying to declare a destructor with a different
name or with parameters will cause a compiler error. Finally, the destructor must be declared in the public
scope of the class declaration and cannot be declared in any other scope.

The above example for constructors is an example of a class with an overridden Destroy destructor.
Free Method
Do not call the Destroy method above directly, use the TObject Free method instead. The Free method

performs an extra crucial step that the Destroy method does not: the Free method checks to see if the
calling instance variable is already nil, and only calls the Destroy method if the instance variable is not nil.

Note
The only exception to the above rule is when calling the inherited Destroy method from within an
ancestor class's Destroy method. That is a perfectly valid way to call the Destroy method directly.

Self
Use the special Self keyword in order to reference the current class instance from within a method. This is
useful for situations where local variable or parameter names may conflict with a specific variable, method,

or property name of the class in which the method resides, and so those identifiers need to be prefixed
with the Self keyword.

Page 276

Language Reference

8.17 Properties

Properties are one of the fundamental ways that Object Pascal provides encapsulation in classes. You can
have properties directly reference variables or you can also use methods to control the reading and/or
writing of variables. This helps to further hide the implementation details of a class and provide an easy-
to-use class interface.

A property is declared as follows:

property <Property Name>: <Type Name> read <Variable Name>|<Method Name>
[write <Variable Name>|<Method Name>]
[default <Default Expression>]
[description <Description>]
[;default];

All properties must specify a variable or method name in the read clause, but the write clause is optional.
If the write clause is not specified, then the property is implicitly read-only and cannot be assigned a
value.

The following example shows a simple class with two read/write property declarations that directly
reference variables:

interface

TCustomer = class
private
FID: Integer;
FName: String;
public
property ID: Integer read FID write FID;
property Name: String read FName write FName;
end;

The following example shows the same class, but modified to track modifications to any of the variables:

interface

TCustomer = class
private
FID: Integer;
FName: String;
FModified: Boolean;
procedure SetID(Value: Integer);
procedure SetName(const Value: String);
public
property ID: Integer read FID write SetID;
property Name: String read FName write SetName;
property Modified: Boolean read FModified;
end;

implementation

Page 277

Language Reference

procedure TCustomer.SetID(Value: Integer);
begin
if (vValue <> FID) then

begin

FID:=Value;

FModified:=True;

end;
end;

procedure TCustomer.SetName(const Value: String);
begin
if (not SameStr(Value,FID)) then

begin

FName:=Value;

FModified:=True;

end;
end;

The default clause specifies the default value for a property, and is optional. This default value is used to
determine if the property should be streamed or not. If a default value is not provided for a property, and
the property is published, then it will always be streamed when an instance of the owner class is streamed.

The description clause specifies the description for a property, and is also optional. This description
appears in the Elevate Web Builder IDE's Object Inspector when the property is declared in the published
scope, or is promoted to the published scope in an ancestor class.

The terminating default clause is different from the default value clause above. It is used to specify default
array properties and default event properties. See below for more information on default array properties.
A default event property is used by the Elevate Web Builer IDE to determine which event handler should
be created when a developer double-clicks on a control in the form designer.

Array Properties

There is one special type of property that is a fairly powerful construct, and that is the array property. An
array property is declared as follows:

property <Property Name>[[const] <Parameter Name>: <Type Name>]: <Type Name>
read <Array Variable Name>|<Method Name>
[write <Array Variable Name>|<Method Name>]; [default;]

An array property acts like an array but does not necessarily use an array variable for the read and/or write
clauses of the property. Such a property can use methods instead of array variables, with the read clause
requiring a method that accepts an identical single parameter that matches the array property parameter
declaration and a write clause requiring a method that accepts the same parameter name and type and an
additional parameter that can have any name that you wish, but whose type must match the type of the

property.

Note
If you specify an array variable in the read or write clause, then the array property parameter must
be an Integer type to reflect the ordinal index into the array.

Page 278

Language Reference

For example, the following read-only property declares an array property that uses a method to return a
specific class instance from an internal list:

TCustomers = class
private
FCustomers: TObjectList;
function GetCustomer(ID: Integer): TCustomer;
public
property Customer[ID: Integer]: TCustomer read GetCustomer;
end;

You would reference the Customer array property as follows:

var
TempCustomers: TCustomers;
begin
TempCustomers:=TCustomers.Create(10);
try
window.alert(TempCustomers.Customer[2].Name);
finally
TempCustomers.Free;
end;
end;

Array properties make it very easy to hide the internal implementation of lists.

Default Array Properties

The above array property example illustrates a common problem with array properties used with classes
that encapsulate lists: they tend to bloat the code by requiring the name of the array property to be
specified. This is where default array properties are very useful. A default array property has the same
declaration as a normal array property, but includes the default keyword after the declaration. To
continue with the above example, let's change it to a default array property:

TCustomers = class
private
FCustomers: TObjectList;
function GetCustomer(ID: Integer): TCustomer;
public
property Customer[ID: Integer]: TCustomer read GetCustomer; default;
end;

You would reference the Customer default array property as follows:

var
TempCustomers: TCustomers;

begin
TempCustomers:=TCustomers.Create(10);
try

Page 279

Language Reference

window.alert(TempCustomers[2].Name);
finally
TempCustomers.Free;
end;
end;

Notice that since the Customer property is marked as the default array property, you no longer need to
specify its name, only the instance variable name of the containing Customers class.

Overloaded Array Properties

One final interesting feature of array properties is that they can be overloaded so that you can have
multiple such properties with the same name, but with different declarations. This is especially useful
when you want to allow access to a list via different search types. For example, here is the above example
with the Customer default array property overloaded with an additional declaration that uses a name
parameter for retrieving a customer instead of an ID:

TCustomers = class

private
FCustomers: TObjectList;
function GetCustomer(ID: Integer): TCustomer;
function GetCustomer(const Name: String): TCustomer;

public
property Customer[ID: Integer]: TCustomer read GetCustomer; default;
property Customer[const Name: String]: TCustomer read GetCustomer;
default;

end;

You could then reference the Customer default array property in both ways:

var
TempCustomers: TCustomers;
begin
TempCustomers:=TCustomers.Create(10);
try
window.alert(TempCustomers[2].Name);
window.alert(IntToStr(TempCustomers['Demo Customer #2'].ID));
finally
TempCustomers.Free;
end;
end;

Class Properties

Class properties are special types of properties that are sometimes referred to as "static" properties. They
can be referenced from class instances and also directly from class references where no instance of the
class exists, and are useful for implementing properties that should be encapsulated within the context of
a class, but don't need to access class instance variables, properties, or methods. Class properties can,
however, access any class variables or class methods that are also declared in the same class. Please see
the Variables and Methods topics for more information on class variables and methods.

Page 280

Language Reference

Class properties are declared by prefacing a property declaration with the class keyword. For example, the
following class declaration includes a class variable that keeps track of how many instances of the class
have been created along with a class property that returns the creation count:

TMyClass = class
private
class FCreateCount: Integer;
public
constructor Create; override;
class property CreateCount: Integer read FCreateCount;
end;

implementation

constructor TMyClass.Create;
begin
inherited Create;
Inc(FCreateCount);
end;

The CreateCount class property above could be accessed in two different ways. The first way is by
referring to the CreateCount class property for an instance of the TMyClass class:

procedure ShowCreateCount;

var
TempInstance: TMyClass;
begin
TempInstance:=TMyClass.Create;
try
window.alert(IntToStr(TempInstance.CreateCount)); // window class is
in WebDOM unit
finally
TempInstance.Free;
end;
end;

The second way is by using a direct class reference:

procedure ShowCreateCount;

begin
window.alert(IntToStr(TMyClass.CreateCount));

end;

The second way is easiest when you don't have an instance of the class available.

Page 281

Language Reference

8.18 Events

Events are declared just like properties in classes, but read/write a method reference instead of a string,
integer, etc. value. A method reference is similar to a class instance reference, but instead of referring to a
class instance it refers to a method. Method references are useful because they can be called just like a
normal method, but can also be assigned to variables and passed as parameters to other methods,
procedures, or functions. This allows you to assign specific behaviors to the event properties of a class,
swap such behaviors in and out with other behaviors, or assign no behavior at all.

Before an event can be declared, the event's method reference type must be declared. A method
reference type is declared as follows:

<Type Name> = function/procedure ([<Parameters>])[: Type Name>] of object;

The procedure or function declaration is identical to a normal procedure or function prototype, except
that a procedure or function name is not specified.

For example, consider the following method reference type and class/event declarations:

interface
TStartEvent = procedure (StartingVehicle: TVehicle) of object;

TVehicle = class
private
FOnStart: TStartEvent;
public
property OnStart: TStartEvent read FOnStart write FOnStart;
procedure Start;
end;

implementation
procedure TVehicle.Start;
begin

if Assigned(FOnStart) then

FOnStart(Self);
end;

Defining Event Handlers

Once an event is declared as a property in a class, it is still not very useful until the event is assigned an
actual method reference. This type of method reference is referred to as an event handler. For example,
the following code creates an instance of the TVehicle class and assigns an OnStart event handler:

interface

TGarage = class
private

Page 282

FVehicle: TVehicle;
protected

procedure DoVehicleStart(StartingVehicle:

public
constructor Create; override;
destructor Destroy; override;
end;

implementation

constructor TGarage.Create;

begin
inherited Create;
FVehicle:=TVehicle.Create;
FVehicle.OnStart:=DoVehicleStart;
FVehicle.Start;

end;

destructor TGarage.Destroy;
begin

FVehicle.Free;

inherited Destroy;
end;

TVehicle);

procedure TGarage.DoVehicleStart(StartingVehicle: TVehicle);

begin
window.alert('Vehicle has been started');
end;

Note

Language Reference

Event handlers are always called from the context of the class that contains the event handler. So,
in the above example when the DoVehicleStart event handler is called, it will be called from the

context of a TGarage class instance.

TGarage = class

private

FVehicle: TVehicle;
protected

procedure DoVehicleStart;
public

constructor Create; override;
destructor Destroy; override;
end;

constructor TGarage.Create;
begin
inherited Create;

This would result in a compiler error on the source line where the event handler is assigned:

Method reference assignments and parameters must be type-compatible with the declared type of the
target variable or parameter. To illustrate this concept, suppose that the above DoVehicleStart event
handler was declared as follows:

Page 283

Language Reference

FVehicle:=TVehicle.Create;
FVehicle.OnStart:=DoVehicleStart; // Compiler error here !!!
FVehicle.Start;

end;

The reason for the compiler error is simple: the TStartEvent type of the OnStart event is declared with a
TVehicle parameter, and the DoVehicleStart method is not declared with any parameters.

Clearing Event Handlers

Just as you can attach a behavior to the event property of a class in the form of an event handler, you can
also remove that behavior by assigning nil to the event property:

constructor TGarage.Create;
begin
inherited Create;
FVehicle:=TVehicle.Create;
FVehicle.OnStart:=DoVehicleStart;
FVehicle.Start;
FVehicle.OnStart:=nil; // Clear event handler
end;

Warning

Because the method reference variables that are used with event properties can be nil, you should
always check for this before trying to call such method reference variables. The best way to do so is
by using the Assigned function, as illustrated in the TVehicle.Start method implementation:

procedure TVehicle.Start;
begin
if Assigned(FOnStart) then
FOnStart(Self);
end;

Default Events

Components and controls that will be used in the component library can have a default event property. A
default event property is the event handler that will be created if the user double-clicks on a component
or control in the Form Designer. For example, the following TVehicle class has been slightly modified from
the above example. It is now a descendant of the TComponent class so that it can be installed into the
component library, and now defines the OnStart event as the default event in the published section of the
class:

interface
TStartEvent = procedure (StartingVehicle: TVehicle) of object;

TVehicle = class(TComponent)

Page 284

Language Reference

private
FOnStart: TStartEvent;
public
procedure Start;
published
property OnStart: TStartEvent read FOnStart write FOnStart; default;
end;

implementation

procedure TVehicle.Start;
begin
if Assigned(FOnStart) then
FOnStart(Self);
end;

A default event is only used in the form designer if the event property is published. Please see the Scope
topic for more information on published properties.

Page 285

Language Reference

8.19 Scope

The scope (visibility) of a constant, type/class, or function/procedure declaration is determined by where it
appears in a unit, class, or function/procedure.

Unit Scope

The scope of declarations in a unit are determined by whether they are declared in the interface or
implementation section of a unit:

@ Any declaration in the interface section of a unit is visible to all other declarations or
function/procedure implementations in either the interface or implementation sections of the same
unit, as well as being visible to the same sections in any units that reference the unit. The interface
section of a unit is essentially "public" to everything.

= Any declaration in the implementation section of a unit is visible to all other declarations in the
same implementation section only.

Public to this
unit and all
other units

intarface

implementation i
Private to

this unit

end.

Unit Interface/Implementation Scope

The visibility of type and class declarations is determined in top-to-bottom fashion within an interface or
implementation section of a unit. For example, if the TClassA class descends from the TClassB class, but
TClassB is declared before TClassA in the same unit section, the compiler will issue an error . This is
because the compiler cannot "see" the TClassA declaration at the point of the TClassB declaration:

interface

type

TClassB = class(TClassA) // Compiler error here, TClassA class

end;

// doesn't exist yet

TClassA = class

private

FMemberVariable: String;

public

property MemberProperty: String read FMemberVariable;

end;

Page 286

Language Reference

Function/Procedure Implementation Scope

The implementations of functions and procedures only have one level of scope, and that is the scope of
any parameters or local variables, as well as the special Result variable for functions. Parameters and local
variables can only be referenced within the function/procedure in which they are declared.

Parameters

fonotion MyFunction|const MyParamecer: Strimg): String? | are private to
.] this function
MiVarisble: Berings | Variables are
begin private l‘.D this
function
and;

Function/Procedure Scope

Class methods (functions or procedures declared as part of a class) add an additional level of scope that is
evaluated after any local variables or parameters. Class methods can access any member variables,
properties, or methods that are declared anywhere within the same class in which the referencing method
is declared. Class methods can also access any public or protected member variables, properties, or
methods that are declared within any ancestor classes of the class in which the referencing method is
declared.

Note

In order to specifically reference the current instance of a class from within a class method, use the
special Self keyword.

See below for more information about the various levels of scope (private, protected, public, published)
within a class declaration:

interface
type

TClassA = class
private
FMemberVariable: String;
protected
procedure DoSomethingMethod;
public
property MemberProperty: String read FMemberVariable;
end;

TClassB = class(TClassA)
public
procedure DoSomethingElseMethod;
end;

implementation

{ TClassA Implementation }

Page 287

Language Reference

procedure TClassA.DoSomethingMethod;

begin
FMemberVariable := 'Test'; // Can access this variable because it is also
// declared within the TClassA declaration
end;

{ TClassB Implementation }

procedure TClassB.DoSomethingElseMethod;
begin
DoSomethingMethod; // Can access this protected method because it is
// declared within the ancestor TClassA declaration
end;

There is one exception to the normal scoping rules of a function/procedure, and that is the with
statement. The with statement can introduce an object instance as a new level of scope that overrides the
normal scope of any local variables, parameters, or class variables/properties/methods.

Class Scope

A class declaration can have up to four different levels of scope for any member variables, properties, or

methods:

Scope Description

Private Any member variables, properties, or methods declared in
this scope are only visible to the properties or methods of the
same class declaration.

Protected Any member variables, properties, or methods declared in
this scope are only visible to the properties or methods of the
same class declaration, or any descendant class declarations.

Public Any member variables, properties, or methods declared in
this scope are visible everywhere, subject to the scoping rules
of the referencing declaration or code block.

Published Same as Public, but in addition, all properties declared in this

scope are streamable and will appear in the Elevate Web
Builder IDE's Object Inspector.

Naming Conflicts and Scope

In certain cases, the scoping rules are used by the compiler to resolve naming conflicts. For example, if the
implementation of a method uses a local variable that uses the same name as a member variable of the
class in which the method is declared, the local variable scope will take precedence:

interface

type
TMyClass = class

private
MyVariable: String;

Page 288

Language Reference

procedure MyMethod;
end;

implementation

procedure TMyClass.MyMethod;

var
MyVariable: String; // This declaration overrides the scope of the class
begin
MyVariable := 'Test'; // This will be assigned to the local
// MyVariable variable
Self.MyVariable := 'Test'; // This will be assigned to the MyVariable
member
// variable of the TMyClass class
end;

Certain naming conflicts are impossible because the compiler will not permit them. For example, you
cannot give a local variable the same name as a parameter in the same function/procedure declaration,
nor can you name a local variable the special "Result" variable name used for returning results from
functions.

Page 289

Language Reference

8.20 Casting Types

Casting is the process of converting a target value of one type to another type in order to use the value in
a different type context. This is accomplished by enclosing the target value with the target type name and
parentheses:

<Type Name>(<Target Value>)

There are type compatibility rules that determine whether a particular cast operation is valid, and invalid
cast attempts will result in a compiler error. The following table details the various types and their valid
target cast types:

Source Type Valid Target Types
Integer Integer

Boolean

Double

DateTime

Enumeration

Double Double
String String
Char
Char Char
String
DateTime DateTime
Integer
Boolean Boolean
Integer
Enumeration Enumeration
Integer
Class Instance Any same class type or ancestor class type
Class Type

Casting is particularly useful for functions or procedures that accept a parameter of a base class type, but
need to act on the various descendant class types in specific ways. For example, the following code shows
how one would use the is operator to determine if the parameter is of the TComponent type and, if so,
displays its name:

procedure DisplayName(Value: TObject);
begin
if (Value is TComponent) then
window.alert(TComponent(Value).Name);
end;

Page 290

Language Reference

Page 291

Language Reference

8.21 Exception Handling

Exceptions are special classes in Elevate Web Builder that represent an error that has been raised by code
in the application, or by the web browser itself. All exceptions descend from the base Exception class
defined in the WebCore unit. At design-time, exceptions are handled by the execution engine in the IDE.
At run-time, the Exception class is mapped to the base Error class present in the standard JavaScript run-
time.

Warning

While you can create new exception classes that descend from the base Exception class for design-
time usage, you cannot do so for run-time usage. Some of the modern web browser
implementations of JavaScript do not properly deal with exception class descendants in terms of
reporting the proper error message and source line number of the error.

Raising Exceptions

You can raise an exception at any time by using the raise statement. The raise statement requires an
Exception class (or descendant) instance as its only argument:

raise <Exception Class Instance>;

Once an exception is raised, execution stops immediately and the process of unwinding the call stack and
triggering exception handlers begins.

The following example shows how to raise an exception that indicates that a parameter was not assigned
a valid positive value:

function AddValues(A,B: Integer): Integer;
begin
if (A < @) then
raise Exception.Create('First parameter '+IntToStr(A)+' cannot be
negative');
if (B < @) then
raise Exception.Create('Second parameter '+IntToStr(A)+' cannot be
negative');
Result:=(A+B);
end;

Handling Exceptions

Once an exception has been raised, either by the design-time or run-time execution environment, or the
application code, execution immediately stops and the call stack is unwound, with any exception-handling
blocks executed as necessary during this process.

Exceptions can be handled by using a try..except code block. The syntax of a try..except code block is:

Page 292

Language Reference

try

<Statements>
except

<Exception-handling statements>
end;

A try..except code block catches any exceptions that occur with the try and except keywords, preventing
them from escaping the current function or procedure and unwinding the call stack.

You can access the current exception from inside the except portion of the try..except code block by using
the on statement, which uses the following syntax:

on <ExceptionInstanceVariable>: <ExceptionClass> do
<Statements>

on <ExceptionClass> do
<Statements>

There are two different variations of the on statement:

@ The first variation specifies a local variable name followed by a colon and an exception class name.
This is the most useful type of on statement because it allows you to capture the existing exception
in a local variable. This is important when you want to examine the error Message or log it for later
examination. The exception class name is used to filter which exception classes are handled by the
on statement. However, you should always use the Exception class here due to the fact that the base
Exception class is the only recommended exception class to use (see above).

@ The second variation specifies an exception class name only. This variation is not particularly useful
due to the fact that the base Exception class is the only recommended exception class to use (see
above).

The following is an example of using the on statement to log an error message to the Messages panel in
the IDE using the LogOutput method:

begin
try
// Statements that raise exception
except
on E: Exception do
LogOutput(E.Message);
end;
end;

Please see the Debugging topic for more information on the LogOutput method.
Re-Raising Exceptions

You can re-raise an existing exception by using the raise statement without any arguments. Having the

Page 293

Language Reference

ability to re-raise exceptions is useful in situations where you want to do something with an exception,
such as log its associated message, before allowing the call stack to proceed unwinding.

Note
Re-raising exceptions can only be done from within the except portion of a try..except code block,
and an attempt to do so outside of this context will cause a compiler error.

The following example expands upon the above example by also re-raising the exception after logging
the error message:

begin
try
// Statements that raise exception
except
on E: Exception do
LogOutput (E.Message);
raise;
end;
end;

Ensuring Code Execution After Exceptions

It is often necessary to ensure that certain statements execute, regardless of whether an exception is

raised or not. This is accomplished by using a try..finally code block. The syntax of a try..finally code block
is:

try
<Statements>
finally
<Statements>
end;

Any statements specified within the finally portion of the try..finally code block will always be executed,
which is useful for situations where class instances, or other types of resources, have been allocated and
need to be disposed of.

The following example shows the method of a class that toggles an internal Boolean variable in the class,
and must ensure that the variable is toggled again before the method exits:

procedure TMyClass.Execute;

begin
FExecuting:=True;
try
// Executing
finally
FExecuting:=False;
end;
end;

Page 294

Language Reference

Note

A try.finally code block also applies to the exit statement. If an exit statement is specified inside of
a try..finally code block, the finally portion of the code block will be executed before the function or
procedure actually exits.

Visual Application Exceptions

If an exception is not handled at run-time with a try..except code block in a visual application, the
exception will result in an Elevate Web Builder message dialog appearing with the error message and
source line number. If you do not want this to occur, you can define a TApplication OnError event handler
for the global Application instance that is automatically created for visual applications. Returning True
from this event handler will indicate to the web browser that the error was handled and will prevent the
browser from displaying an error dialog.

Page 295

Language Reference

8.22 External Interfaces

Sometimes it is necessary to make calls from an application to external code such as 3rd party JavaScript
code or the built-in classes available as part of the web browser's DOM (Document Object Model) class
hierarchy. The DOM is the core framework in a modern web browser that allows any JavaScript code to
create and manipulate elements in an HTML or XML document, as well as parts of the web browser itself.
Elevate Web Builder includes a fairly complete external interface to the DOM in the WebDOM unit that is
part of the runtime code included with the product.

The Elevate Web Builder compiler requires that an external interface be declared for any external DOM
classes or JavaScript code before such classes or code can be used in an application. External interfaces
are only interfaces and do not include any type of implementation. Using external interfaces will ensure
that the benefits of compile-time type checking are applied to external code as well as the Object Pascal
code in the application, thus allowing for more reliable applications.

Please see the Modifying Project Options and Using the Project Manager topics for more information on
including external JavaScript source files with an application.

External Declarations

You must include the WebDOM unit in the uses clause of the interface section of the unit in which any
external class declarations are included. The WebDOM unit is necessary for obtaining certain base class
declarations.

Any constant, variable, type, class, procedure, or function can be declared as external. For example, the
DOM in the web browser includes a global variable called "window" that is an instance of the Window
DOM class. Elevate Web Builder represents both in the WebDOM unit as follows:

interface

external TWindow emit Window = class
public
{ Properties }
property closed: Boolean read;
property defaultStatus: String read write;
property document: TDocument read;
property event: TEvent read; // IE-only
property frames: TWindowList read;
property history: THistory read;
property innerHeight: Integer read; // Supported by IE9 or higher
property innerWidth: Integer read; // Supported by IE9 or higher
property localStorage: TStorage read;
property location: TLocation read;
property name: String read write;
property navigator: TNavigator read;
property opener: TWindow read;
property orientation: Integer read; // Mobile platforms only
property outerHeight: Integer read; // Not supported by IE
property outerWidth: Integer read; // Not supported by IE
property pageXOffset: Integer read; // Not supported by IE
property pageYOffset: Integer read; // Not supported by IE
property parent: TWindow read;
property screen: TScreen read;
property screenLeft: Integer read; // IE-only

Page 296

property
property
property
property
property
property
property
{ Events
property
property
property
property
property
property
{ Methods
procedure
TEventHandle

procedure
procedure
procedure
procedure
procedure
procedure
function

procedure
procedure

screenTop: Integer read; // IE-only

screenX: Integer read; // Not supported by IE
screenY: Integer read; // Not supported by IE
sessionStorage: TStorage read;

status: String read write;

top: TWindow read;

window: TWindow read;
¥
onblur: TEventHandler read write;

onerror: TErrorEventHandler read write;
onfocus: TEventHandler read write;
onload: TEventHandler read write;
onresize: TEventHandler read write;
onunload: TEventHandler read write;

}

addEventListener(const type: String; listener:
r;
useCapture: Boolean);

alert(const message: String);

blur;

cancelAnimationFrame(animationId: Integer);
clearInterval(intervalld: Integer);
clearTimeout(timeoutId: Integer);

close;
confirm(const question: String): Boolean;
detachEvent(const type: String; handler: TEventHandler);
focus;

function getComputedStyle(elt: TDOMElement; const pseudoElt:

String): TCS
procedure
procedure

S2Properties;
moveBy(dx, dy: Integer);
moveTo(x, y: Integer);

function open(const url: String; const name: String='"'; const

features: St

procedure

function

procedure
TEventHandle

function

procedure

procedure

procedure

procedure

function
Integer;

function
Integer;
end;

var

ring="";
replace: Boolean=False): TWindow;

print;
prompt(const message: String; default: String): String;

removeEventListener(const type: String; listener:

r;

useCapture: Boolean);

requestAnimationFrame(callback: TAnimationHandler): Integer;

resizeBy(dw, dh: Integer);

resizeTo(w, h: Integer);

scrollBy(dx, dy: Integer);

scrollTo(x, y: Integer);
setInterval(code: TIntervalHandler; intervalld: Integer):

setTimeout(code: TIntervalHandler; intervalld: Integer):

external window: TWindow;

Language Reference

Page 297

Language Reference

Warning

Because JavaScript is case-sensitive, all external declarations are case-sensitive and must match
the required case of the external Javascript declarations for the same entities. This only applies to
the external declarations. All Object Pascal code that calls the external code can still use any case
desired, and the compiler will automatically make sure that the proper case is used in the emitted
code for the application.

The rules and exceptions for external declarations are:

= External class declarations cannot contain private or protected members, only public members.

@ External class instances do not necessarily follow the same instantiation rules regarding member
variables. Non-external classes are guaranteed to have all of their member variables initialized to
appropriate values, but this is not necessarily true for external classes.

@ External classes can still be created with the Create method and freed with the Free method, but
internally the compiler will emit slightly different code than it does for non-external classes.

= External classes can only inherit from other external classes, and non-external classes can only
inherit from non-external classes.

@ The read and write clauses for properties in external class declarations do not refer to any member
variables or methods.

7 You can use the emit clause to control the class name/namespace used when the compiler emits
references to the class when creating new instances. This is useful when instantiating JavaScript

objects that are nested within namespaces. For example, Google Maps integration requires the
following emit clause:

external TGoogleMapOptions emit google.maps.MapOptions = class

Page 298

Language Reference

8.23 Debugging

There are currently two ways to debug Elevate Web Builder applications at runtime in a web browser: by
using a runtime function to log debug messages to the Messages panel in the IDE, and by using the built-
in debugging facilities in the web browser of your choosing. You can use the debug message option with
the embedded web browser in the IDE, but not the debugging facilities.

LogOutput Procedure

For simple debugging needs, make sure that the internal web server is the selected web server in the IDE
and that the internal web server is running (see Running a Project). Then, include the WebHTTP unit in the
uses clause of the unit that you wish to debug. Finally, call the LogOutput procedure where necessary,
passing any debug messages to the procedure as a single String parameter:

procedure LogOutput(const Msg: String;
const LogURL: String=DEFAULT_LOG_URL);

By default, the LogOutput procedure will send all debug output to the internal web server by using the
following URL:

http://localhost/log

Any messages passed to the LogOutput method will automatically appear in the Messages panel in the
IDE.

Note

This also applies to applications that are run in an external browser session. As long as the
application is accessed via a localhost URL and is being loaded from the internal web server
running in the IDE, all debug output will get routed to the Messages panel in the IDE.

If you are running the application in an external browser session on a completely different machine or
device, then be sure to include the second parameter to the LogOutput procedure. This parameter should
include the IP address/host name of the machine running the Elevate Web Builder IDE. For example, if you
were running the application in a Chrome browser on an Android tablet, and the Elevate Web Builder IDE
was running on the same LAN at IP address 192.168.0.2, then you would use the following value for the
second LogOutput parameter:

http://192.168.0.2/1og
Web Browser Debuggers

For more complex debugging needs, make sure that the Compress Output option is not checked on the

Page 299

Language Reference

Compilation page of the project options for your project, compile the project, and then run the
application in an external web browser session with the web browser's debugger enabled. With Internet
Explorer, FireFox, and Chrome, you can access the debugger by using the F12 key to open the developer
tools panel while in the browser. The one major downside to this type of debugging is that you must
debug the emitted JavaScript code, and not the Object Pascal code. Fortunately, though, the two are very
similar in content and layout, and so the emitted JavaScript code is usually fairly easy to debug.

Note

In general, it should not be necessary to debug your code using the web browser debugging
facilities. If you find yourself doing so often, please let us know and we'll use this information to
help better plan our future implementation of a built-in debugger.

Page 300

Language Reference

8.24 Asynchronous Calls

Elevate Web Builder supports asynchronous procedure/function calls using the special async keyword.
Asynchronous calls allow the developer to queue a procedure/function call in the browser so that it is run
as part of the message queue processing for the main Ul thread in the browser. Asynchronous calls are
available only at runtime, and will cause a component library compilation error if used in any design-time
code.

How Asynchronous Calls Are Executed

Because asynchronous calls are added to the message queue for the main Ul thread in the browser, they
are executed in a first-in, first-out (FIFO) manner. This means that there may be a delay between when the
asynchronous call is made and when the call is actually executed. Also, asynchronous calls are emitted by
the compiler as Javascript closures. Closures are functions that are dynamically created and capture the
entire run-time scope of their parent execution context. Whenever a closure is actually executed, it will do
so using the same scope that was present when the closure was created. Closures are ideal for
asynchronous calls, because they need to capture the state of all variables and parameters so that they are
available when the call is actually executed.

Executing an Asynchronous Call

To make an asynchronous procedure/function call, simply preface the call with the async keyword. For
example,

procedure TForml.ButtonlClick(Sender: TObject);
begin

async CreatePanel(0);
end;

will queue up a call to the CreatePanel procedure so that it will run in the next round of message
processing in the browser. Because the compiler will emit a closure for this call, the value of any local
variables or parameters will be properly captured, even if the parent method that is calling the
function/procedure has finished executing.

Mixing Synchronous/Asynchronous Calls

Because the main Ul thread in the browser is used for executing all code, any synchronous code will
execute before any asynchronous calls that are queued in the message queue. This is important to
understand because it determines how you should combine synchronous and asynchronous calls to
achieve the desired outcome.

For example, suppose that you want to create a large number of panels in a container, and want to show a
progress dialog while the panels are created. To do this, you would normally do something like this:

procedure TForml.CreatePanels;
var
I: Integer;

Page 301

Language Reference

begin
for I:=1 to 100 do
TPanel.Create(Self);
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin
ShowProgress('Creating panels...");
CreatePanels;
HideProgress;
end;

However, if you were to execute the above code in the browser, you will see that the panels are created,
but the progress dialog will never show. This is because the Ul updates for the ShowProgress call will not
be executed until any other currently-executing code has completed. In this case, this is the CreatePanels
and HideProgress calls, so the ShowProgress Ul updates will get merged with the HideProgress Ul
updates, and the progress dialog will never get shown (or will be shown/hidden so fast that you won't see
it).

The key to fixing this problem is to allow the Ul to update incrementally while we create the panels, and
we'll use asynchronous calls to do so:

procedure TForml.CreatePanel(I: Integer);
begin
TPanel.Create(Self);
Inc(I);
if (I < 100) then
async CreatePanel(I)
else
async HideProgress;
end;

procedure TForml.ButtonlClick(Sender: TObject);
begin

ShowProgress('Creating panels...');

async CreatePanel(0);
end;

We don't want to use an asynchronous call to ShowProgress because we want it to be executed
immediately so that it is the first Ul update to occur. However, we do want to queue each CreatePanel call
and the HideProgress call because doing so will force them to execute in-order after any Ul updates from
the ShowProgress call, as well as allow the Ul to update during each panel creation.

Page 302

Function and Procedure Reference

Chapter 9

Function and Procedure Reference

9.1 Abs

Unit: Internal

function Abs(Value: Double): Double

function Abs(Value: Integer): Integer

The Abs function returns the absolute value of the input parameter. The return value is the same type as
the input parameter.

Examples

>
] .II.

Abs(-10); // X is 10
Abs(160); // X is 100

Page 303

Function and Procedure Reference

9.2 ArcCos

Unit: Internal

function ArcCos(Value: Double): Double

function ArcCos(Value: Integer): Double

The ArcCos function returns the arccosine, or inverse cosine, of the input parameter, which must be
between -1 and 1. The return value is a Double value between 0 and Pi radians.

Examples

X := ArcCos(0.23290); // X is 1.335737700525506

Page 304

Function and Procedure Reference

9.3 ArcSin

Unit: Internal

function ArcSin(Value: Double): Double

function ArcSin(Value: Integer): Double

The ArcSin function returns the arcsine of the input parameter, which must be between -1 and 1. The
return value is a Double value between -Pi/2 and Pi/2 radians.

Examples

X := ArcSin(0.23290); // X is 0.23505862626939056

Page 305

Function and Procedure Reference

9.4 ArcTan

Unit: Internal

function ArcTan(Value: Double): Double

function ArcTan(Value: Integer): Double

The ArcTan function returns the arc tangent of the input parameter. The return value is a Double value
between -Pi/2 and Pi/2 radians.

Examples

X := ArcTan(@.23290); // X is 0.22882093498523032

Page 306

Function and Procedure Reference

9.5 ArcTan2

Unit: Internal

function ArcTan2(Y, X: Double): Double

function ArcTan2(Y, X: Integer): Double
The ArcTan2 function returns a value between -Pi and Pi radians that specifies the counter-clockwise
angle between the positive X axis and the point represented by the X and Y input parameters.

Examples

X := ArcTan2(100,3000); // X is ©.033320995878247196

Page 307

Function and Procedure Reference

9.6 Assigned

Unit: Internal

function Assigned(Value: TObject): Boolean

function Assigned(Value: function of object): Boolean
function Assigned(Value: procedure of object): Boolean
function Assigned(const Value: String): Boolean

function Assigned(const Value: array of <Type>): Boolean

Examples

The Assigned function returns whether the input parameter is nil or has been assigned a value. The input
parameter must be an object instance, method reference (function or procedure of object), string, or array
variable. The return value is a Boolean value.

Examples

var
MyObject: TObject;

begin
X := Assigned(MyObject); // X is False
MyObject := TObject.Create;
X := Assigned(MyObject); // X is True

end;
var
MyString: String;
begin
X := Assigned(MyString); // X is False
MyString := 'This is a test';
X := Assigned(MyString); // X is True
end;

Page 308

Function and Procedure Reference

9.7 BoolToStr

Unit: WebCore

function BoolToStr(Value: Boolean): String

The BoolToStr function returns 'True' if the input parameter is true, and 'False' if the input parameter is
False. The return value is a String value.

Examples

X := BoolToStr(True); // X is 'True’

Page 309

Function and Procedure Reference

9.8 Ceil

Unit: Internal

function Ceil(Value: Double): Integer

function Ceil(Value: Integer): Integer

The Ceil function returns the closest integer that is greater than or equal to the value of the input
parameter. The return value is an Integer.

Examples

X
n

Ceil(-10.4); // X is -10
= Ceil(15.98); // X is 16

>
|

Page 310

Function and Procedure Reference

9.9 Chr

Unit: Internal

function Chr(Value: Integer): Char

The Chr function returns the character representation of the Unicode code point input parameter. The
return value is a Char.

Examples

X := Chr(220); // X is '0’

Page 311

Function and Procedure Reference

9.10 CompareStr

Unit: Internal

function CompareStr(const A, B: String): Integer

The CompareStr function compares the A input parameter string with the B input parameter string with
case-sensitivity. The comparison is locale-insensitive. The return value is an Integer value of -1 if Ais less
than B, 0 if Ais equal to B, and 1 if A is greater than B.

Examples

X := CompareStr('Absolute', 'Baseball'); // X is -1

Page 312

Function and Procedure Reference

9.11 CompareText

Unit: Internal

function CompareText(const A, B: String): Integer

The CompareText function compares the A input parameter string with the B input parameter string

without case-sensitivity. The comparison is locale-insensitive. The return value is an Integer value of -1 if A
is less than B, 0 if A is equal to B, and 1 if A is greater than B.

Examples

X := CompareText('Absolute', 'ABSOLUTE'); // X is ©

Page 313

Function and Procedure Reference

9.12 Copy

Unit: Internal

function Copy(const Value: String; Index: Integer;
Count: Integer): String

function Copy(const Value: String; Index: Integer): String
function Copy(const Value: String): String

function Copy(const Value: array of <Type>; Index: Integer;
Count: Integer): array of <Type>

function Copy(const Value: array of <Type>; Index: Integer): array of <Type>

function Copy(const Value: array of <Type>): array of <Type>

The Copy function returns a portion of the Value string or array input parameter. The optional Index input
parameter specifies where to start the copy, and the optional Count input parameter specifies the length
to copy. If the Count input parameter is not specified, then the copy will proceed until the end of the
Value input parameter. If neither the Index or Count input parameters are specified, then an exact copy of
the Value input parameter will be returned.

Note
Please remember that indexes into String values are 1-based, whereas indexes into arrays are 0-
based. For more information on these types, please see the Types topic.

Examples

X := Copy('abcdef', 4, 3); // X is 'def’
:= Copy('abcdef', 2); // X is 'bcdef'
Copy([10,20,30,40], ©, 3); // X is [10,20,30]

< X
.||. .||

Page 314

Function and Procedure Reference
9.13 Cos
Unit: Internal

function Cos(Value: Double): Double

function Cos(Value: Integer): Double

The Cos function returns the cosine of the input parameter, which is an angle specified in radians. To

convert an angle from degrees to radians, use the Radians function. The return value is a Double value
between -1 and 1.

Examples

X := C0s(0.23290); // X is 0.9730011668494914

Page 315

Function and Procedure Reference

9.14 CreateActiveXObject

Unit: Internal

function CreateActiveXObject: <External Object Instance>

The CreateActiveXObject function creates an external ActiveX object instance (Internet Explorer only) and
returns it as the result.

Note
You must always cast the result of this function to the desired external class in order to be able to
use the resulting instance in your code.

Examples

var
TempDocument: TDocument;

begin
// Must always cast the result to the desired class
TempDocument:=TDocument(CreateActiveXObject('Microsoft.XMLDOM"));
TempDocument.LoadXML(Value);

end;

Page 316

Function and Procedure Reference

9.15 CreateObject

Unit: Internal

function CreateObject(const ObjectLiteral: String): <External Object
Instance>

The CreateObject function creates an external object instance from a JavaScript object literal and returns
it as the result. This function can be especially useful with JS APIs that require that you create object
instances using object literals.

Note

You must always cast the result of this function to the desired external class in order to be able to
reference any properties or methods of the new external class instance from within Elevate Web
Builder code.

Warning

This function internaly uses the JavaScript eval function in order to create the object. Be very
careful about passing object literal strings that have been derived from an external source to this
function.

Examples
type
external TMyExternalObject emit MyJSAPI.MyExternalObject = class
public
property Name: String read write;
end;
var
TempObject: TMyExternalObject;
begin
TempObject:=TMyExternalObject(CreateObject('{ name: ''My External Object''
¥
end;

Page 317

Function and Procedure Reference

9.16 Date

Unit: Internal

function Date: DateTime

The Date function returns the current date. The return value is a DateTime value.

Examples

X := DateToStr(Date); // X is '2/13/2012'

Page 318

Function and Procedure Reference

9.17 DateTimeToStr

Unit: WebCore

function DateTimeToStr(Value: DateTime; UTC: Boolean=False): String

The DateTimeToStr function returns a formatted local or UTC date and time string for the DateTime input
parameter. The format of the string is determined by the TFormatSettings ShortDateFormat and
ShortTimeFormat properties. The return value is a String value.

Examples

bg
W

StrToDateTime('2/13/2012 12:10 PM');
DateTimeToStr(A); // X is '2/13/2012 12:10 PM'

>
Il

Page 319

Function and Procedure Reference

9.18 DateTimeTolSOStr

Unit: Internal

function DateTimeToISOStr(Value: DateTime): String

The DateTimeTolSOStr function returns an ISO-8601-formatted date-time string value for the date-time
input parameter. The return value is a String value.

Examples

X := DateTimeToISOStr(StrToDateTime('8/15/2015 12:40 PM')); // X is
'2015-08-15T16:40:00.0007Z"

Page 320

Function and Procedure Reference

9.19 DateToStr

Unit: WebCore

function DateToStr(Value: DateTime; UTC: Boolean=False): String;

The DateToStr function returns a formatted local or UTC date string for the DateTime input parameter.
The format of the string is determined by the TFormatSettings ShortDateFormat property. The return
value is a String value.

Examples

bg
W

StrToDateTime('2/13/2012");
DateToStr(A); // X is '2/13/2012'

>
Il

Page 321

Function and Procedure Reference

9.20 DayOf

Unit: Internal

function DayOf(Value: DateTime; UTC: Boolean=False): Integer

The DayOf function returns the day number of the input parameter in local or UTC time. The return value
is an Integer value.

Examples

X := DayOf(Date); // X is 13 (assuming a date of ©2/13/2012)

Page 322

Function and Procedure Reference

9.21 Dec

Unit: Internal

procedure Dec(var Value: Integer)

procedure Dec(var Value: Integer; By: Integer)

The Dec procedure decrements the Integer input parameter by 1, or by the By input parameter, if
specified.

Examples

X 1= 10;
Dec(X);
Y := IntToStr(X) // Y is '9'

Page 323

Function and Procedure Reference

9.22 Degrees

Unit: Internal

function Degrees(Value: Double): Double

function Degrees(Value: Integer): Double

The Degrees function converts the input parameter, which is an angle specified in radians, to degrees. The
return value is a Double value.

Examples

X := Degrees(92.398); // X is 5294.01543544978

Page 324

Function and Procedure Reference

9.23 Delete

Unit: Internal

procedure Delete(const Value: array of <Type>; Index: Integer;
Count: Integer)

procedure Delete(const Value: array of <Type>; Index: Integer)

The Delete procedure deletes a portion of the Value array input parameter. The optional Index input
parameter specifies where to start the deletion, and the optional Count input parameter specifies the

number of array elements to delete. If the Count input parameter is not specified, then the deletion will
proceed until the end of the Value input parameter.

Note

This procedure cannot be used with strings in Elevate Web Builder. Strings are immutable in
JavaScript, and therefore cannot be modified in-place using procedures such as this. For more
information on these types, please see the Types topic.

Examples

X := [10,20,30,40];
Delete(X, 2, 2); // X is [10,20] after the Delete call

Page 325

Function and Procedure Reference

9.24 DoubleToStr

Unit: Internal

function DoubleToStr(Value: Double; Decimals: Integer=-1): String

The DoubleToStr function returns a formatted string for the Double input parameter. The decimal
separator used in the formatted string is always a period (.). The return value is a String value. You can use
the optional Decimals parameter to specify that the return value is formatted to a specific number of
decimal places.

Examples
A := StrToDouble('1200.548");
X := DoubleToStr(A); // X is '1200.548'
A := StrToDouble('1200.548");
X := DoubleToStr(A, 1); // X is '1200.5'

Page 326

Function and Procedure Reference

9.25 EncodeDate

Unit: Internal

function EncodeDate(Year: Integer; Month: Integer; Day: Integer;
UTC: Boolean=False): Integer

The EncodeDate function returns the local or UTC date from the year, month, and day input parameters.
The return value is a DateTime value.

Examples

X := DateToStr(EncodeDate(2012,2,13)); // X is '2/13/2012'

Page 327

Function and Procedure Reference

9.26 EncodeDateTime

Unit: Internal

function EncodeDateTime(Year: Integer; Month: Integer; Day: Integer;
Hour: Integer; Minute: Integer; Second: Integer;
MSecond: Integer; UTC: Boolean=False): Integer

The EncodeDateTime function returns the local or UTC date and time from the year, month, day, hour,
minute, second, and millisecond input parameters. The return value is a DateTime value.

Examples

X := DateTimeToStr(EncodeDateTime(2012,2,13,12,10,0,0)); // X is '2/13/2012
// 12:10 PM'

Page 328

Function and Procedure Reference

9.27 EncodeTime

Unit: Internal

function EncodeTime(Hour: Integer; Minute: Integer; Second: Integer; MSecond:
Integer;
UTC: Boolean=False): Integer

The EncodeTime function returns the local or UTC time from the hour, minute, second, and millisecond
input parameters. The return value is a DateTime value.

Examples

X := TimeToStr(EncodeTime(12,10,0,0)); // X is '12:10 PM'

Page 329

Function and Procedure Reference

9.28 Exp

Unit: Internal

function Exp(Value: Double): Double

function Exp(Value: Integer): Double

The Exp function returns e raised to the power specified by the input parameter, where e is the base of
the natural logarithm. The return value is a Double value.

Examples

X := Exp(@.523); // X is 1.6870813093472114

Page 330

Function and Procedure Reference

9.29 FloatToStr

Unit: WebCore

function FloatToStr(Value: Double; Decimals: Integer=-1): String

The FloatToStr function returns a formatted string for the Double input parameter. The decimal separator
used in the formatted string is determined by the TFormatSettings DecimalSeparator property. The
optional Decimals input parameter determines the number of decimal places used in the formatted string.
The return value is a String value.

Examples
A := StrToFloat('1200.548"');
X := FloatToStr(A); // X is '1200.548'
A := StrToFloat('1200.548"');
X := FloatToStr(A,2); // X is '1200.55'

Page 331

Function and Procedure Reference

9.30 Floor

Unit: Internal

function Floor(Value: Double): Integer

function Floor(Value: Integer): Integer

The Floor function returns the closest integer that is less than or equal to the value of the input
parameter. The return value is an Integer.

Examples

X
n

Floor(-10.4); // X is -11
Floor(15.98); // X is 15

X
n

Page 332

Function and Procedure Reference

9.31 HideProgress

Unit: WebForms

procedure HideProgress

The HideProgress procedure decrements the global progress reference count, and if the reference count

is 0, hides the active progress dialog. The ShowProgress procedure shows a progress dialog and
increments the progress reference count.

Examples

HideProgress;

Page 333

Function and Procedure Reference

9.32 HourOf

Unit: Internal

function HourOf(Value: DateTime; UTC: Boolean=False): Integer

The HourOf function returns the hour number of the input parameter in local or UTC time. The return
value is an Integer value between 0 (midnight) and 23 (11:00 PM).

Examples

X := HourOf(Time); // X is 12 (assuming a time of 12:10 PM)

Page 334

Function and Procedure Reference

9.33 Inc

Unit: Internal

procedure Inc(var Value: Integer)

procedure Inc(var Value: Integer; By: Integer)

The Inc procedure increments the Integer input parameter by 1, or by the By input parameter, if specified.

Examples

X :=1;
Inc(X);
Y := IntToStr(X) // Y is '2'

Page 335

Function and Procedure Reference

9.34 Insert

Unit: Internal

procedure Insert(Value: <Type>; const Array: array of <Type>;
Index: Integer)

procedure Insert(const Value: array of <Type>; const Array: array of <Type>;
Index: Integer)

The Insert procedure inserts a new value (or array of values) into the Array input parameter. The Index
input parameter specifies where the insertion will take place. The Value input parameter must be type-
compatible with the Array input parameter that it is being inserted into.

Note

This procedure cannot be used with strings in Elevate Web Builder. Strings are immutable in
JavaScript, and therefore cannot be modified in-place using procedures such as this. For more
information on these types, please see the Types topic.

Examples

X := [10,20,30,40];
Insert(35, X, 3); // X is [10,20,30,35,40] after the Insert call

X := [10,20,30,40];
Y := [21,22,23,24,25];
Insert(Y, X, 2); // X is [10,20,21,22,23,24,25,30,40] after the Insert call

Page 336

Function and Procedure Reference

9.35 IntToHex

Unit: Internal

function IntToHex(Value: Integer; Digits: Integer): String

The IntToHex function returns a formatted hexadecimal string for the Integer input parameter. The Digits
input parameter indicates the minimum length of the String return value.

Examples

X := IntToHex(1052); // X is '@41C’

Page 337

Function and Procedure Reference

9.36 IntToStr

Unit: Internal

function IntToStr(Value: Integer): String

The IntegerToStr function returns a formatted string for the Integer input parameter. The return value is a
String value.

Examples

X := IntToStr(-102); // X is '-102'

Page 338

Function and Procedure Reference

9.37 ISOStrToDateTime

Unit: Internal

function ISOStrToDateTime(const Value: String): DateTime

The ISOStrToDateTime function returns a date-time value for the ISO-8601-formatted date-time string
input parameter. The return value is a DateTime value.

Examples

X := DateTimeToStr(ISOStrToDateTime('2015-08-15T16:40:31.601Z2"')); // X is
'8/15/2015 12:40 PM'

Page 339

Function and Procedure Reference

9.38 Join

Unit: Internal

function Join(const Array: array of String; const Separator: String): String

function Join(const Array: array of String): String

The Join function builds a new string from the elements in the Array string array input parameter. The
Separator input parameter is optional. If the Separator input parameter is specified, then the return value
is a String value that contains all string elements from the array separated by the Separator input
parameter. If the Separator input parameter is not specified, then the return value is a String value that
contains all string elements from the array.

Examples

X := Join(['Hello,','my','name',"'is","'Jim"'], " '); // X is 'Hello, my name
is Jim'

Page 340

Function and Procedure Reference

9.39 Length

Unit: Internal

function Length(const Value: String): Integer

function Length(const Value: array of <Type>): Integer

The Length function returns the length of the String or array input parameter. The return value is an
Integer value.

Examples

X := Length('How long is this string'); // X is 23

Page 341

Function and Procedure Reference

9.40 Ln

Unit: Internal

function Ln(Value: Double): Double

function Ln(Value: Integer): Double

The Ln function returns the natural logarithm of the input parameter, which must be greater than 0. The
return value is a Double value.

Examples

X := Ln(@.523); // X is -0.6481738149172141

Page 342

Function and Procedure Reference

9.41 LocaleCompareStr

Unit: Internal

function LocaleCompareStr(const A, B: String): Integer

The LocaleCompareStr function compares the A input parameter string with the B input parameter string
with case-sensitivity. The comparison uses the browser's current locale setting to compare the two strings.
The return value is an Integer value of -1 if A is less than B, 0 if A is equal to B, and 1 if A is greater than B.

Examples

X := LocaleCompareStr('Absolute', 'Baseball'); // X is -1

Page 343

Function and Procedure Reference

9.42 LocaleCompareText

Unit: Internal

function LocaleCompareText(const A, B: String): Integer

The LocaleCompareText function compares the A input parameter string with the B input parameter
string without case-sensitivity. The comparison uses the browser's current locale setting to compare the

two strings. The return value is an Integer value of -1 if Ais less than B, 0 if Ais equal to B, and 1 if Ais
greater than B.

Examples

X := LocaleCompareText('Absolute', 'ABSOLUTE'); // X is @

Page 344

Function and Procedure Reference
9.43 LocaleLowerCase
Unit: Internal

function LocalelLowerCase(const Value: String): String

The LocaleLowerCase function returns the Value input parameter with all characters converted to their

lower-case representation. The browser's current locale setting is used to perform this conversion. The
return value is a String value.

Examples

X := LocalelLowerCase('Hello World'); // X is 'hello world'

Page 345

Function and Procedure Reference

9.44 LocaleSameStr

Unit: Internal

function LocaleSameStr(const A, B: String): Boolean

The LocaleSameStr function compares the A input parameter string with the B input parameter string
with case-sensitivity. The comparison uses the browser's current locale setting to compare the two strings.
The return value is a Boolean value of True if A is equal to B, and False if A is not equal to B.

Examples

X := LocaleSameStr('Absolute', 'Baseball'); // X is False

Page 346

Function and Procedure Reference
9.45 LocaleSameText
Unit: Internal

function LocaleSameText(const A, B: String): Boolean

The LocaleSameText function compares the A input parameter string with the B input parameter string
without case-sensitivity. The comparison uses the browser's current locale setting to compare the two
strings. The return value is a Boolean value of True if A is equal to B, and False if A is not equal to B.

Examples

X := LocaleSameStr('Absolute', 'ABSOLUTE'); // X is True

Page 347

Function and Procedure Reference
9.46 LocaleUpperCase
Unit: Internal
function LocaleUpperCase(const Value: String): String

The LocaleUpperCase function returns the Value input parameter with all characters converted to their

upper-case representation. The browser's current locale setting is used to perform this conversion. The
return value is a String value.

Examples

X := LocaleUpperCase('Hello World'); // X is 'HELLO WORLD'

Page 348

Function and Procedure Reference

9.47 LowerCase

Unit: Internal

function LowerCase(const Value: String): String

The LowerCase function returns the Value input parameter with all characters converted to their lower-

case representation. The browser's current locale setting is not used to perform this conversion. The return
value is a String value.

Examples

X := LowerCase('Hello World'); // X is 'hello world’

Page 349

Function and Procedure Reference

9.48 Max

Unit: Internal

function Max(A,B: Integer): Integer

function Max(A,B: Double): Double

The Max function returns the greater of the two input parameters. If A is greater than B, then A is

returned. If B is greater than A, then B is returned. The return value is the same type as the input
parameters.

Examples

X := Max(100,2); // X is 100

Page 350

Function and Procedure Reference

9.49 MessageDlg

Unit: WebForms

procedure MessageDlg(const Msg: String;
const DlgCaption: String;
DlgType: TMsgDlgType;
const Buttons: TMsgDlgBtns;
MsgDlgResult: TMsgDlgResultEvent=nil;
CloseButton: Boolean=False;
OverlayColor: TColor=clBlack;
OverlayOpacity: Double=20;
AnimationStyle: TAnimationStyle=asNone;
AnimationDuration: Integer=0)

procedure MessageDlg(const Msg: String;
const DlgCaption: String;
DlgType: TMsgDlgType;
const Buttons: TMsgDlgBtns;
DefaultButton: TMsgDlgBtn;
MsgDlgResult: TMsgDlgResultEvent=nil;
CloseButton: Boolean=False;
OverlayColor: TColor=clBlack;
OverlayOpacity: Double=20;
AnimationStyle: TAnimationStyle=asNone;
AnimationDuration: Integer=0)

The MessageDlg procedure shows a modal message dialog.

The Msg parameter indicates the message to show.

The DlgCaption parameter indicates the caption of the dialog.

The DIgType parameter indicates the type of dialog to show.

The Buttons parameter indicates the array of button types to use on the dialog.

The DefaultButton parameter indicates which button should have focus when the dialog is first shown.

The MsgDIgResult parameter is a method reference that represents the event handler that will be called
when the message dialog is closed.

The CloseButton parameter indicates whether the message dialog should contain a close button.

The OverlayColor parameter indicates the color to use for the shadow overlay effect that is used over the
application desktop to indicate that a modal form is in effect.

The OverlayOpacity parameter indicates the percentage of opacity to use for the shadow overlay effect
that is used over the application desktop to indicate that a modal form is in effect.

The AnimationStyle and AnimationDuration parameters indicate the type/duration of animation to use
when showing the message dialog.

Page 351

Function and Procedure Reference

Examples

MessageDlg('Are you sure that you want to delete this record?’,
'Please Confirm',mtConfirmation, [mbYes,mbNo],mbNo,CheckDelete,
True);

Page 352

Function and Procedure Reference

9.50 Min

Unit: Internal

function Min(A,B: Integer): Integer

function Min(A,B: Double): Double
The Min function returns the lesser of the two input parameters. If A is less than B, then A is returned. If B
is less than A, then B is returned. The return value is the same type as the input parameters.

Examples

X := Min(100,2); // X is 2

Page 353

Function and Procedure Reference

9.51 MinuteOf

Unit: Internal

function MinuteOf(Value: DateTime; UTC: Boolean=False): Integer

The MinuteOf function returns the minute number of the input parameter in local or UTC time. The return
value is an Integer value between 0 and 59.

Examples

X := MinuteOf(Time); // X is 1@ (assuming a time of 12:10 PM)

Page 354

Function and Procedure Reference

9.52 MonthOf

Unit: Internal

function MonthOf(Value: DateTime; UTC: Boolean=False): Integer
The MonthOf function returns the month number of the input parameter in local or UTC time. The return
value is an Integer value.

Examples

X := MonthOf(Date); // X is 2 (assuming a date of ©2/13/2012)

Page 355

Function and Procedure Reference

9.53 MSecondOf

Unit: Internal

function MSecondOf(Value: DateTime; UTC: Boolean=False): Integer

The MSecondOf function returns the millisecond number of the input parameter in local or UTC time. The
return value is an Integer value between 0 and 59.

Examples

X := MSecondOf(Time); // X is 247 (assuming a time of 12:10:20.247 PM)

Page 356

Function and Procedure Reference

9.54 Now

Unit: Internal

function Now: DateTime

The Now function returns the current date and time. The return value is a DateTime value.

Examples

X := DateTimeToStr(Now); // X is '2/13/2012 12:10 PM'

Page 357

Function and Procedure Reference

9.55 Ord

Unit: Internal

function Ord(Value: Char): Integer

function Ord(Value: Boolean): Integer

The Ord function returns the Unicode code point for a Char input parameter, O for a False Boolean input
parameter, and 1 for a True Boolean input parameter. The return value is an Integer.

Examples

X
n

ord('U"); // X is 220

>
Il

Ord(True); // X is 1

Page 358

Function and Procedure Reference

9.56 Pad

Unit: WebCore

function Pad(const Value: String; PadlLen: Integer;
PadChar: Char="' "): String

The Pad function returns the Value input parameter padded to the length specified by the PadlLen input
parameter. The optional PadChar input parameter specifies the character to be used for padding the
Value input parameter, and defaults to a space (' ') character. The return value is a String value.

Note
The padding is inserted on the left side of the string.

Examples

X := Pad('100', 10); // X is ' 100"

Page 359

Function and Procedure Reference

9.57 Pi

Unit: Internal

function Pi: Double

The Pi function returns the mathematical constant pi, or the ratio of the circumference of a circle to its
diameter. The return value is a Double value that is approximately 3.141592653589793.

Examples

X := Pi; // X is 3.141592653589793

Page 360

Function and Procedure Reference

9.58 ParseXML

Unit: WebCore

function ParseXML(const Value: String): TDocument

The ParseXML function parses the XML string input parameter and returns a TDocument class instance.

Note
Please refer to the WebDOM unit source code for the declaration of the TNode, TDocument, and
TNodelist classes and their various properties.

Examples

var
TempXML: String;
TempDocument: TDocument;
TempNodes: TNodelist;

begin
TempXML := '<a><c><username>testuser</username></c>";
TempDocument := ParseXML(TempXML);
TempNodes :=TempDocument.getElementsByTagName('username');
ShowMessage(IntToStr(TempNodes.length)); // Number of nodes
ShowMessage(TempNodes[0@].firstChild.nodeValue); // Get text node
TempXML := SerializeXML(TempDocument);
ShowMessage (TempXML) ;

end;

Page 361

Function and Procedure Reference

9.59 Pos

Unit: Internal

function Pos(const SearchValue: String; const Value: String;
Index: Integer=1): Integer

The Pos function returns the position of the SearchValue input parameter in the Value input parameter.
The optional Index parameter specifies the starting index of the search and, if not specified, the search will
start at the first character of the Value input parameter. The return value is an Integer value of 0 if the
SearchValue input parameter was not found, or the index of the SearchValue if it was found.

Examples

X := Pos(' ', 'Whereisthe spaceinthisstring'); // X is 11

Page 362

Function and Procedure Reference

9.60 Power

Unit: Internal

function Power(X, Y: Double): Double

function Power(X, Y: Integer): Double

The Power function returns the X input parameter raised to the power specified by the Y input parameter.
The return value is a Double value.

Examples

X := Power(0.523, 4); // X is 0.07481811384100001

Page 363

Function and Procedure Reference

9.61 Radians

Unit: Internal

function Radians(Value: Double): Double

function Radians(Value: Integer): Double

The Radians function converts the input parameter, which is an angle specified in degrees, to radians. The
return value is a Double value.

Examples

X := Radians(5294.01543544978); // X is 92.398

Page 364

Function and Procedure Reference

9.62 Random

Unit: Internal

function Random(AFrom: Integer=0; ATo=<MaxInt>): Integer

The Random function returns a pseudorandom number greater than or equal to the AFrom parameter, if
provided, and less than or equal to the ATo parameter, if provided. The default AFrom paramter value is 0,
and the default ATo parameter value is the maximum integer value. At runtime, the maximum integer

value is 9007199254740991, and at design-time the maximum integer value is 9223372036854775807.
The return value is an Integer value.

Examples

X
n

Random; // X is 7534176611 (pseudorandom value)
Random(©,1000); // X is 269 (pseudorandom value)

X
n

Page 365

Function and Procedure Reference

9.63 Round

Unit: Internal

function Round(Value: Double): Integer

function Round(Value: Integer): Integer

The Round function returns the closest integer to the value of the input parameter using the "round half
up" method. The return value is an Integer.

Examples

X
n

Round(-10.4); // X is -10
Round(15.5); // X is 16

X
n

Page 366

Function and Procedure Reference

9.64 QuotedStr

Unit: WebCore

function QuotedStr(const Value: String;
QuoteChar: Char=SINGLE_QUOTE): String

The QuotedStr function adds the specified quote character to the start and end of the input parameter. In
addition, any characters in the input parameter that match the specified quote character are escaped so
that they are properly interpreted as embedded quote characters. The return value is the transformed
input parameter.

Examples

<
I

:= "Absolute';
X := Quotedstr(Y); // X is 'Absolute’

<
W

Tt s
Quotedstr(Y); // X is 'Its''s'

>
Il

Page 367

Function and Procedure Reference

9.65 SameStr

Unit: Internal

function SameStr(const A, B: String): Boolean

The SameStr function compares the A input parameter string with the B input parameter string with case-

sensitivity. The comparison is locale-insensitive. The return value is a Boolean value of True if A is equal to
B, and False if A is not equal to B.

Examples

X := SameStr('Absolute', 'Baseball'); // X is False

Page 368

Function and Procedure Reference
9.66 SameText
Unit: Internal

function SameText(const A, B: String): Boolean

The SameText function compares the A input parameter string with the B input parameter string without
case-sensitivity. The comparison is locale-insensitive. The return value is a Boolean value of True if A is
equal to B, and False if A is not equal to B.

Examples

X := SameStr('Absolute', 'ABSOLUTE'); // X is True

Page 369

Function and Procedure Reference

9.67 SecondOf

Unit: Internal

function SecondOf(Value: DateTime; UTC: Boolean=False): Integer

The SecondOf function returns the second number of the input parameter in local or UTC time. The return
value is an Integer value between 0 and 59.

Examples

X := SecondOf(Time); // X is 20 (assuming a time of 12:10:20 PM)

Page 370

Function and Procedure Reference

9.68 SerializeXML

Unit: WebCore

function SerializeXML(Document: TDocument): String

The SerializeXML function converts the XML nodes present in the TDocument instance parameter into a
string. The return value is a String value.

Note
Please refer to the WebDOM unit source code for the declaration of the TNode, TDocument, and
TNodelist classes and their various properties.

Examples

var
TempXML: String;
TempDocument: TDocument;
TempNodes: TNodelist;

begin
TempXML := '<a><c><username>testuser</username></c>";
TempDocument := ParseXML(TempXML);
TempNodes :=TempDocument.getElementsByTagName('username');
ShowMessage(IntToStr(TempNodes.length)); // Number of nodes
ShowMessage(TempNodes[0].firstChild.nodeValue); // Get text node
TempXML := SerializeXML(TempDocument);
ShowMessage (TempXML) ;

end;

Page 371

Function and Procedure Reference

9.69 SetLength

Unit: Internal

procedure SetLength(var Value: array of <Type>)

The SetLength procedure sets the length of the Value array input parameter. If extending the length of an
array, all new elements are automatically set to nil for string, object, or method arrays, NaN (not a
number) for numeric (Integer or Double) arrays, and False for boolean arrays.

Warning
Arrays that are declared but not assigned a value are nil (Assigned function returns False) and not
initialized. The SetLength procedure is one way of initializing them, even if they are initialized to a

length of 0.
Examples
var
X: array of String;
I: Integer;
begin
SetLength(X, 10); // X now has a length of 10, but each element is still
nil
for I := 0 to Length(X)-1 do
X[I] := ""; // 1Initialize each array element with an empty string
end;

Page 372

Function and Procedure Reference

9.70 ShowMessage

Unit: WebForms

procedure ShowMessage(const Msg: String;
const DlgCaption: String='";
AnimationStyle: TAnimationStyle=asNone;
AnimationDuration: Integer=0)

The ShowMessage procedure shows a simple modal message dialog. The Msg parameter indicates the
message to show. The DlgCaption parameter is optional and indicates the caption of the dialog. The
AnimationStyle and AnimationDuration parameters are optional, and indicate the type/duration of
animation to use when showing the message dialog.

Examples

ShowMessage('An error has occurred !','Error');

ShowMessage('Hello world !','Hi !',asQuadEaseOut,500);

Page 373

Function and Procedure Reference

9.71 ShowProgress

Unit: WebForms

procedure ShowProgress(const Msg: String;

AnimationStyle: TAnimationStyle=asNone;
AnimationDuration: Integer=0)

The ShowProgress procedure shows a modal progress dialog and increments the global progress
reference count. The HideProgress procedure decrements the reference count and hides any active
progress dialog. The AnimationStyle and AnimationDuration parameters are optional, and indicate the
type/duration of animation to use when showing the progress dialog.

Examples

ShowProgress('Loading customers...");

Page 374

Function and Procedure Reference
9.72 Sin
Unit: Internal

function Sin(Value: Double): Double

function Sin(Value: Integer): Double

The Sin function returns the sine of the input parameter, which is an angle specified in radians. To convert

an angle from degrees to radians, use the Radians function. The return value is a Double value between -1
and 1.

Examples

X := Sin(@.23290); // X is 0.2308001934780994

Page 375

Function and Procedure Reference

9.73 Split

Unit: Internal

function Split(const Value: String; const Separator: String): array of String

function Split(const Value: String; const Separator: String;
MaxLength: Integer): array of String

The Split function builds a new string array by splitting the Value input parameter using the Separator
input parameter. The optional MaxLength input parameter specifies the maximum length of the string
array. The return value is an array of String values that does not include the specified Separator string.

Examples

X := Split('Hello, my name is Jim', ' '); // X is ['Hello,','my', 'name','is’,
'Jim']

Page 376

Function and Procedure Reference

9.74 Sqrt

Unit: Internal

function Sqrt(Value: Double): Double

function Sqrt(Value: Integer): Double

The Sqrt function returns the square root of the input parameter. The return value is a Double value.

Examples

X := Sqrt(154); // X is 12.409673645990857

Page 377

Function and Procedure Reference

9.75 StrReplace

Unit: WebCore

function StrReplace(const Value: String; const SearchValue: String;
const ReplaceValue: String;
ReplaceAll: Boolean=False;
CaseInsensitive: Boolean=False): String

The StrReplace function searches for the SearchValue input parameter in the Value input parameter and
replaces it with the ReplaceValue input parameter. If the optional ReplaceAll input parameter is True, then
all occurrences of the SearchValue input parameter are replaced with the ReplaceValue input parameter. If
the optional Caselnsensitive input parameter is True, then the search for the SearchValue input parameter
will be case-insensitive. The return value is the modified String value.

Examples

X := StrReplace('abcdefghijk', 'd', ' ', True, True); // X is 'abc efghijk'

Page 378

Function and Procedure Reference

9.76 StrToBool

Unit: WebCore

function StrToBool(const Value: String): Boolean

The StrToBool function returns True if the input parameter is ‘True' (case-insensitive), and False if the
input parameter is 'False' (case-insensitive also). The return value is a Boolean value.

Examples

X := StrToBool('True'); // X is True

Page 379

Function and Procedure Reference

9.77 StrToDate

Unit: WebCore

function StrToDate(const Value: String; UTC: Boolean=False): DateTime

The StrToDate function converts the formatted local or UTC date string input parameter into its native
value. The required format of the string is determined by the TFormatSettings ShortDateFormat property.
The return value is a DateTime value.

Examples

bg
W

StrToDate('2/13/2012");
DateToStr(A); // X is '2/13/2012'

>
Il

Page 380

Function and Procedure Reference

9.78 StrToDateTime

Unit: WebCore
function StrToDateTime(const Value: String; UTC: Boolean=False): DateTime

The StrToDateTime function converts the formatted local or UTC date and time string input parameter
into its native value. The required format of the string is determined by the TFormatSettings
ShortDateFormat and ShortTimeFormat properties. The return value is a DateTime value.

Examples

bg
W

StrToDateTime('2/13/2012 12:10 PM');
DateTimeToStr(A); // X is '2/13/2012 12:10 PM'

>
Il

Page 381

Function and Procedure Reference

9.79 StrToDouble

Unit: Internal

function StrToDouble(const Value: String): Double

The StrToDouble function converts the formatted string input parameter into its native value. The

decimal separator used in the formatted string is always required to be a period (). The return value is a
Double value.

Examples

A := StrToDouble('1200.548'); // X is 1200.548

Page 382

Function and Procedure Reference

9.80 StrToFloat

Unit: Internal

function StrToFloat(const Value: String): Double

The StrToFloat function converts the formatted string input parameter into its native value. The decimal
separator used in the formatted string is always a period (.). The return value is a Double value.

Examples

>
i

:= StrToFloat('1200.548");
X := FloatToStr(A); // X is '1200.548'

Page 383

Function and Procedure Reference

9.81 StrTolint

Unit: Internal

function StrToInt(const Value: String): Int

The StrTolnt function converts the formatted string input parameter into its native value. The return value
is an Integer value.

Examples

X := StrToInt('-102'); // X is -102

Page 384

Function and Procedure Reference

9.82 StrToTime

Unit: WebCore
function StrToTime(const Value: String; UTC: Boolean=False): DateTime

The StrToTime function converts the formatted local or UTC time string input parameter into its native
value. The required format of the string is determined by the TFormatSettings ShortTimeFormat
properties. The return value is a DateTime value.

Examples

bg
W

StrToTime('12:10 PM");
TimeToStr(A); // X is '12:10 PM'

>
Il

Page 385

Function and Procedure Reference

9.83 Tan

Unit: Internal

function Tan(Value: Double): Double

function Tan(Value: Integer): Double

The Tan function returns the tangent of the input parameter, which is an angle specified in radians. To
convert an angle from degrees to radians, use the Radians function. The return value is a Double value.

Examples

X := Tan(0.23290); // X is ©.23720443648121617

Page 386

Function and Procedure Reference

9.84 Time

Unit: Internal

function Time: DateTime

The Time function returns the current time. The return value is a DateTime value.

Examples

X := TimeToStr(Time); // X is '12:1@ PM'

Page 387

Function and Procedure Reference

9.85 TimeToStr

Unit: WebCore

function TimeToStr(Value: DateTime; UTC: Boolean=False): String

The TimeToStr function returns a formatted local or UTC time string for the DateTime input parameter.
The format of the string is determined by the TFormatSettings ShortTimeFormat properties. The return
value is a String value.

Examples

bg
W

StrToTime('12:10 PM");
TimeToStr(A); // X is '12:10 PM'

>
Il

Page 388

Function and Procedure Reference

9.86 TimeZoneOffset

Unit: Internal

function TimeZoneOffset(Value: DateTime): Integer

The TimeZoneOffset function returns the time zone offset for the input parameter. The return value is an
Integer value that represents the time zone offset expressed in minutes.

Examples

X := TimeZoneOffset(Now); // X is 240 (4 hours) for US EST during
// daylight savings time (summer)

Page 389

Function and Procedure Reference

9.87 Trim

Unit: WebCore

function Trim(const Value: String): String

function Trim(const Value: String; TrimChar: Char): String

The Trim function returns the Value input parameter with both leading and trailing "space" characters
removed. The first version of this function trims all leading and trailing characters that are less than or
equal to the space (#32) character from the string. The second version of this function allows the

developer to specify the character that should be trimmed from the Value parameter. The return value is a
String value.

Examples

X := Trim(' Hello World '); // X is 'Hello World'

Page 390

Function and Procedure Reference

9.88 Trunc

Unit: WebCore

function Trunc(Value: Double): Integer

function Trunc(Value: Integer): Integer

The Trunc function returns the closest (towards 0) integer from the value of the input parameter. The
return value is an Integer.

Examples

X
n

Trunc(-10.4); // X is -10
Trunc(15.98); // X is 15

X
n

Page 391

Function and Procedure Reference

9.89 UpperCase

Unit: Internal

function UpperCase(const Value: String): String

The UpperCase function returns the Value input parameter with all characters converted to their upper-

case representation. The browser's current locale setting is not used to perform this conversion. The return
value is a String value.

Examples

X := UpperCase('Hello World'); // X is 'HELLO WORLD'

Page 392

Function and Procedure Reference

9.90 WeekDayOf

Unit: Internal
function WeekDayOf(Value: DateTime; UTC: Boolean=False): Integer

The WeekDayOf function returns the week day number of the input parameter in local or UTC time. This

function is ISO 8601-compliant, meaning that the week days of Monday through Sunday are represented
by the values 1 through 7, respectively. The return value is an Integer value.

Examples

X := WeekDayOf(Date); // X is 1 (Monday, assuming a date of ©2/13/2012)

Page 393

Function and Procedure Reference

9.91 YearOf

Unit: Internal

function YearOf(Value: DateTime; UTC: Boolean=False): Integer

The YearOf function returns the year number of the input parameter in local or UTC time. The return value
is an Integer value.

Examples

X := YearOf(Date); // X is 2012 (assuming a date of 02/13/2012)

Page 394

Component Reference

Chapter 10

Component Reference

10.1 TAbstractList Component

Unit: WebCore

Inherits From TPersistent

This class represents an abstract list and is used as the ancestor class for the TObjectList and TStrings
classes. It provides the functionality for tracking changes to the list as well as dealing with batch updates

to the list.

Properties Methods Events
BeginUpdate OnChanged
EndUpdate

Page 395

Component Reference

TAbstractList.BeginUpdate Method

procedure BeginUpdate

Use this method to begin a batch update to the list. Batch updates are useful in situations where many
changes need to be made to the list, and triggering the OnChanged event on every change would result
in performance issues. This method is reference-counted and every time it is called, an internal counter is
incremented. Every time the EndUpdate method is called, the counter is decremented. Once the counter
reaches zero, the OnChanged event will be triggered.

Page 396

Component Reference

TAbstractList.EndUpdate Method

procedure EndUpdate

Use this method to end a batch update to the list. Batch updates are useful in situations where many
changes need to be made to the list, and triggering the OnChanged event on every change would result
in performance issues. This method is reference-counted and every time it is called, an internal counter is
decremented. Every time the BeginUpdate method is called, the counter is incremented. Once the counter

reaches zero, the OnChanged event will be triggered.

Page 397

Component Reference

TAbstractList.OnChanged Event

property OnChanged: TNotifyEvent

This event is triggered whenever the list is modified in any way. If a batch update is in effect via the
BeginUpdate and EndUpdate methods, then this event is only triggered once the EndUpdate call is made.

If multiple calls to BeginUpdate and EndUpdate are nested, then this event is only triggered once the last
matching EndUpdate call is made.

Page 398

Component Reference

10.2 TAddress Component

Unit: WebComps
Inherits From TObject

The TAddress class encapsulates the address bar (location) functionality in the web browser.

Note
The component library includes a global instance variable of this class called Address in the
WebComps unit that should be used instead of creating new instances of the class.

Warning

The methods of this class, as well as assignments to the various properties, can cause the browser
to navigate to a new resource location, and this will cause the current application to be unloaded.
The sole exception are any assignments to the Anchor property. Changes to the Anchor property
will not cause the current application to be unloaded.

Properties Methods Events

Anchor Assign OnAnchorChange
Host Create

HostName Reload

Params Replace

Path

Port

Protocol

URL

Page 399

Component Reference

TAddress.Anchor Property

property Anchor: String

Specifies the anchor (#) portion for the address. If the specified anchor is different than the anchor in the
current address, then the browser will trigger the event handler assigned to the OnAnchorChange event
property of the global Address instance. The assigned event handler can then take specific action based

upon the change.

Page 400

Component Reference

TAddress.Host Property

property Host: String

Specifies the host (host name and port) portion for the address. If the specified host is different than the
host in the current address, then the browser will unload the current application and load the resource
specified by the new composed address.

Page 401

Component Reference

TAddress.HostName Property

property HostName: String

Specifies the host name (www.mysite.com) portion for the address. If the specified host name is different
than the host name in the current address, then the browser will unload the current application and load
the resource specified by the new composed address.

Page 402

Component Reference

TAddress.Params Property

property Params: String

Specifies the query parameters (?param1=1008¶m2=200) portion for the address. If the specified
query parameters are different than the query parameters in the current address, then the browser will
unload the current application and load the resource specified by the new composed address.

Page 403

Component Reference

TAddress.Path Property

property Path: String

Specifies the path portion for the address. If the specified path is different than the path in the current
address, then the browser will unload the current application and load the resource specified by the new
composed address.

Page 404

Component Reference

TAddress.Port Property

property Port: String

Specifies the port (:80, :8080, etc.) portion for the address. If the specified port is different than the port in
the current address, then the browser will unload the current application and load the resource specified
by the new composed address.

Page 405

Component Reference

TAddress.Protocol Property

property Protocol: String

Specifies the protocol (normally http: or https:) portion for the address. If the specified protocol is
different than the protocol in the current address, then the browser will unload the current application
and load the resource specified by the new composed address.

Page 406

Component Reference

TAddress.URL Property

property URL: String

Specifies the complete address. If the specified address is different than the current address, then the
browser will unload the current application and load the resource specified by the new address.

Page 407

Component Reference

TAddress.Assign Method

procedure Assign(const AURL: String)

Use this method to load the resource specified by the AURL parameter. Using this method will result in a
new history entry for the resource in the browser's navigation history.

Page 408

Component Reference

TAddress.Create Method

constructor Create

Use this method to create a new instance of the TAddress class.

Page 409

Component Reference

TAddress.Reload Method

procedure Reload(Force: Boolean=False)

Use this method to reload the resource for the current address. By default, the browser will attempt to
reload the resource from its cache. Setting the Force parameter to True will cause the browser to ignore its
cached and reload the resource from its source (web server, file system, etc.).

Page 410

Component Reference

TAddress.Replace Method

procedure Replace(const AURL: String)

Use this method to load the resource specified by the AURL parameter. Using this method will result in
the history entry for the current address being replaced in the browser's navigation history with the
address of the resource.

Page 411

Component Reference

TAddress.OnAnchorChange Event

property OnAnchorChange: TNotifyEvent

This event is triggered whenever the anchor (#) portion of the current address changes. This is useful for
navigating in your application using the browser's address bar and forward/back buttons.

Page 412

Component Reference

10.3 TAlertLabel Component

Unit: WebLabels
Inherits From TAlertLabelControl
The TAlertLabel component represents a label control that can be used to display alerts that, by default,

appear at the top of the client area of their container, with customizations such as the orientation of the
caption and whether or not to show a close button.

Properties Methods Events

AllowClose OnAnimationComplete

AutoHeight OnAnimationsComplete

Background OnClick

Border OnClose

Caption OnCloseQuery

Corners OnDblClick

Cursor OnHide

DataColumn OnMouseDown

DataSet OnMouseEnter

Font OnMouseleave

Format OnMouseMove

Hint OnMouseUp

Opacity OnMove

Orientation OnShow

Padding OnSize
OnTouchCancel
OnTouchEnd
OnTouchMove
OnTouchStart

Page 413

Component Reference

TAlertLabel.AllowClose Property

property AllowClose: Boolean

Specifies whether the close button should be shown.

Page 414

Component Reference

TAlertLabel.AutoHeight Property

property AutoHeight: Boolean

Specifies whether the height of the alert label should be automatically set based upon the Caption, Font,
and Format properties.

Page 415

Component Reference

TAlertLabel.Background Property

property Background: TBackground

Specifies the background of the control.

Page 416

Component Reference

TAlertLabel.Border Property

property Border: TBorder

Specifies the border for the control.

Page 417

Component Reference

TAlertLabel.Caption Property

property Caption: TCaption

Specifies the text to be shown in the alert label control. The text can contain line feeds. The default value is

Page 418

Component Reference

TAlertLabel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Page 419

Component Reference

TAlertLabel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Page 420

Component Reference

TAlertLabel.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is "

Page 421

Component Reference

TAlertLabel.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Page 422

Component Reference

TAlertLabel.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Page 423

Component Reference

TAlertLabel.Format Property

property Format: TFormat

Specifies the content formatting to use for the control's Caption.

Page 424

Component Reference

TAlertLabel.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ".

Page 425

Component Reference

TAlertLabel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Page 426

Component Reference

TAlertLabel.Orientation Property

property Orientation: TAlertOrientation

Specifies the orientation of the alert label caption.

Page 427

Component Reference

TAlertLabel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Page 428

Component Reference

TAlertLabel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Page 429

Component Reference

TAlertLabel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Page 430

Component Reference

TAlertLabel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Page 431

Component Reference

TAlertLabel.OnClose Event

property OnClose: TNotifyEvent

This event is triggered when the label is closed by the user via the close button, or when the Close
method is called.

Page 432

Component Reference

TAlertLabel.OnCloseQuery Event

property OnCloseQuery: TCloseQueryEvent

This event is triggered when the label is closed by the user via the close button, or when the Close
method is called. Return True to allow the close to continue, or False to prevent the label from closing.

Page 433

Component Reference

TAlertLabel.OnDbIClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Page 434

Component Reference

TAlertLabel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Page 435

Component Reference

TAlertLabel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Page 436

Component Reference

TAlertLabel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Page 437

Component Reference

TAlertLabel.OnMouselLeave Event

property OnMouselLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Page 438

Component Reference

TAlertLabel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Page 439

Component Reference

TAlertLabel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Page 440

Component Reference

TAlertLabel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Page 441

Component Reference

TAlertLabel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Page 442

Component Reference

TAlertLabel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Page 443

Component Reference

TAlertLabel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Page 444

Component Reference

TAlertLabel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Page 445

Component Reference

TAlertLabel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Page 446

Component Reference

TAlertLabel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Page 447

Component Reference

10.4 TAlertLabelControl Component

Unit: WebLabels
Inherits From TBindableColumnControl
The TAlertLabelControl control is the base class for alert label controls, and contains all of the label

functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized alert label controls.

Properties Methods Events

Close

Page 448

Component Reference

TAlertLabelControl.Close Method

procedure Close

Use this method to close the label. When this method is called, the OnCloseQuery event is triggered,
followed by the OnClose event. If the OnCloseQuery event handler returns True, then the label will be
hidden before the OnClose event is triggered.

Page 449

Component Reference

10.5 TAnimatedlcon Component

Unit: Weblcons
Inherits From TlconControl

The TAnimatedlcon component represents an animated icon control. An animated icon control displays a
special type of icon, referenced by the Icon property, that contains a series of animation frames as a single
background image. These animation frames can be oriented horizontally or vertically, and the Direction
property allows you to specify the direction.

Properties Methods Events

Cursor StartAnimating OnAnimationComplete

Direction StopAnimating OnAnimationsComplete

Hint OnClick

Icon OnDblClick

Opacity OnHide
OnMouseDown
OnMouseEnter
OnMouseleave
OnMouseMove
OnMouseUp
OnMove
OnShow
OnSize
OnTouchCancel
OnTouchEnd
OnTouchMove
OnTouchStart

Page 450

Component Reference

TAnimatedlcon.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Page 451

Component Reference

TAnimatedlcon.Direction Property

property Direction: TAnimatedIconDirection

Specifies the direction in which the animation frames in the icon are oriented.

Page 452

Component Reference

TAnimatedlcon.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ".

Page 453

Component Reference

TAnimatedlcon.lcon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Page 454

Component Reference

TAnimatedlcon.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Page 455

Component Reference

TAnimatedlcon.StartAnimating Method

procedure StartAnimating

Use this method to begin animating the icon specified in the Icon property.

Page 456

Component Reference

TAnimatedlcon.StopAnimating Method

procedure StopAnimating

Use this method to stop animating the icon specified in the Icon property.

Page 457

Component Reference

TAnimatedlcon.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Page 458

Component Reference

TAnimatedlcon.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Page 459

Component Reference

TAnimatedlcon.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Page 460

Component Reference

TAnimatedlcon.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Page 461

Component Reference

TAnimatedicon.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Page 462

Component Reference

TAnimatedicon.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Page 463

Component Reference

TAnimatedlicon.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Page 464

Component Reference

TAnimatedlcon.OnMouselLeave Event

property OnMouselLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Page 465

Component Reference

TAnimatedicon.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Page 466

Component Reference

TAnimatedicon.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Page 467

Component Reference

TAnimatedicon.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Page 468

Component Reference

TAnimatedicon.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Page 469

Component Reference

TAnimatedlcon.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Page 470

Component Reference

TAnimatedlicon.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Page 471

Component Reference

TAnimatedicon.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Page 472

Component Reference

TAnimatedlcon.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Page 473

Component Reference

TAnimatedlicon.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Page 474

Component Reference

10.6 TAnimation Component

Unit: WebUI
Inherits From TElementAttribute

The TAnimation class represents the properties of an animation. The animation properties include the
style of the animation and the duration, in milliseconds, of the animation.

Properties Methods Events
Duration Cancel

Running SetToDefault

Style Start

Page 475

Component Reference

TAnimation.Duration Property

property Duration: Integer

Specifies how long, in milliseconds, the animation should take to execute.

Page 476

Component Reference

TAnimation.Running Property

property Running: Boolean

Specifies if the animation is currently running.

Page 477

Component Reference

TAnimation.Style Property

property Style: TAnimationStyle

Specifies the style of the animation, which controls how the animation transforms a given Ul
element/control property. Currently, the supported styles include all of the standard easing
transformations (including linear).

Page 478

Component Reference

TAnimation.Cancel Method

procedure Cancel

Use this method to cancel an animation.

Warning
Do not directly call this method. It is used internally by the interface manager.

Page 479

Component Reference

TAnimation.SetToDefault Method

procedure SetToDefault

Use this method to reset the animation's properties to their default values.

Page 480

Component Reference

TAnimation.Start Method

procedure Start(EndValue: Integer)

Use this method to start an animation.

Warning
Do not directly call this method. It is used internally by the interface manager.

Page 481

Component Reference

10.7 TAnimations Component

Unit: WebUI

Inherits From TElementAttribute

The TAnimations class represents the properties that can be animationed for a Ul element or control.
These properties currently include the Left, Top, Width, Height, Opacity, and Visible properties.

Note
When an animation is specified for a property, then that animation is applied whenever the

property changes.

Properties Methods Events
Height SetToDefault

Left

Opacity

Top

Visible

Width

Page 482

Component Reference

TAnimations.Height Property

property Height: TAnimation

Specifies the animation properties for the Height property.

Page 483

Component Reference

TAnimations.Left Property

property Left: TAnimation

Specifies the animation properties for the Left property.

Page 484

Component Reference

TAnimations.Opacity Property

property Opacity: TAnimation

Specifies the animation properties for the Opacity property.

Page 485

Component Reference

TAnimations.Top Property

property Top: TAnimation

Specifies the animation properties for the Top property.

Page 486

Component Reference

TAnimations.Visible Property

property Visible: TAnimation

Specifies the animation properties for the Visible property.

Page 487

Component Reference

TAnimations.Width Property

property Width: TAnimation

Specifies the animation properties for the Width property.

Page 488

Component Reference

TAnimations.SetToDefault Method

procedure SetToDefault

Use this method to reset all animation properties to their default values.

Page 489

Component Reference

10.8 TApplication Component

Unit: WebForms
Inherits From TComponent

The TApplication component represents a visual application and provides properties and methods for
dealing with the application surface, forms, and global error handling. An instance of the TApplication
component called Application is automatically created by the component library at application startup,
so further instances of the TApplication component should not be created.

Properties Methods Events
AutoFocus CreateDatabase OnError
IdleTimeout CreateForm Onldle

InertiaScrollDuration Run

InertiaScrollStyle
InertiaScrollThreshhold
IsAndroid

IsIOS
IsWindowsPhone
LoadProgress
MainForm

Surface

Title
TouchScrollThreshhold

Viewport

Page 490

Component Reference

TApplication.AutoFocus Property

property AutoFocus: Boolean

Specifies whether an application should automatically set focus to focusable controls when showing
forms, as well as restoring focus to the last-focused control when hiding forms. This property is set to
True, by default, with desktop browsers, and to False, by default, with mobile browsers on Android and

iOS.

Page 491

Component Reference

TApplication.ldleTimeout Property

property IdleTimeout: Integer

Specifies the time, in seconds, that the application should wait on user input (keypresses, m