
Elevate Web Builder 2 Manual

Table Of Contents

Chapter 1 - Getting Started 1

1.1 System Requirements 1

1.2 General Architecture 2

1.3 Application Structure 4

1.4 Compiling Applications 6

1.5 Component Library 8

1.6 Visual Applications 10

1.7 Control Interfaces 14

1.8 Icon Library 18

1.9 Accessing Help 21

1.10 Example Applications 26

Chapter 2 - Using the IDE 37

2.1 Introduction 37

2.2 Creating a New Project 39

2.3 Adding to an Existing Project 42

2.4 Modifying Project Options 45

2.5 Compiling a Project 55

2.6 Deploying a Project 57

2.7 Running a Project 58

2.8 Saving a Project 60

2.9 Viewing Project Forms and Databases 61

2.10 Viewing Project Units 62

2.11 Using the Object Inspector 63

2.12 Using the Form and Database Designers 66

2.13 Using the Code Editor 70

2.14 Using the Project Manager 78

2.15 Using the Database Manager 83

2.16 Viewing Messages 91

2.17 Modifying Environment Options 93

Table of Contents

Preface

2.18 Creating a New Component 109

2.19 Adding a Component to the Component Library 110

2.20 Removing a Component from the Component Library 112

2.21 Rebuilding the Component Library 114

2.22 Creating a New Control Interface 115

2.23 Modifying a Control Interface 116

2.24 Using the Control Interface Editor 117

2.25 Opening the Icon Library 123

Chapter 3 - Using Visual Controls 125

3.1 Standard Controls 125

3.2 Creating and Showing Forms 128

3.3 Showing Message Dialogs 131

3.4 Showing Progress Dialogs 133

3.5 Using HTML Forms 134

3.6 Layout Management 136

Chapter 4 - Using Server Requests 149

4.1 Server Request Architecture 149

4.2 Executing a Server Request 153

Chapter 5 - Using Local Storage 157

5.1 Introduction 157

5.2 Saving Data To Local Storage 158

5.3 Loading Data from Local Storage 159

5.4 Detecting Local Storage Changes 160

Chapter 6 - Using Databases 163

6.1 Database Architecture 163

6.2 Creating and Using Databases 166

6.3 Creating and Loading DataSets 168

6.4 Navigating DataSets 173

6.5 Searching and Sorting DataSets 176

6.6 Updating DataSets 178

6.7 Transactions 182

6.8 Responding to DataSet Changes 186

6.9 Binding Controls to DataSets 189

6.10 Calculated Columns 191

Table of Contents

Preface

6.11 API Reference 192

6.12 JSON Reference 194

Chapter 7 - Using the Web Server 201

7.1 Starting the Web Server 201

7.2 Configuring the Web Server 203

7.3 Multiple Web Server Instances 223

7.4 Web Server Request Handling 225

7.5 Creating Web Server Modules 228

Chapter 8 - Language Reference 231

8.1 Introduction 231

8.2 Defines 235

8.3 Types 237

8.4 Operators 240

8.5 Statements 242

8.6 Units 249

8.7 Constant Declarations 254

8.8 Type Declarations 255

8.9 Variable Declarations 257

8.10 Function and Procedure Declarations 258

8.11 Function and Procedure Implementations 259

8.12 Enumerations 261

8.13 Arrays 262

8.14 Classes 265

8.15 Variables (In Classes) 268

8.16 Methods 270

8.17 Properties 277

8.18 Events 282

8.19 Scope 286

8.20 Casting Types 290

8.21 Exception Handling 292

8.22 External Interfaces 296

8.23 Debugging 299

8.24 Asynchronous Calls 301

Chapter 9 - Function and Procedure Reference 303

Table of Contents

Preface

9.1 Abs 303

9.2 ArcCos 304

9.3 ArcSin 305

9.4 ArcTan 306

9.5 ArcTan2 307

9.6 Assigned 308

9.7 BoolToStr 309

9.8 Ceil 310

9.9 Chr 311

9.10 CompareStr 312

9.11 CompareText 313

9.12 Copy 314

9.13 Cos 315

9.14 CreateActiveXObject 316

9.15 CreateObject 317

9.16 Date 318

9.17 DateTimeToStr 319

9.18 DateTimeToISOStr 320

9.19 DateToStr 321

9.20 DayOf 322

9.21 Dec 323

9.22 Degrees 324

9.23 Delete 325

9.24 DoubleToStr 326

9.25 EncodeDate 327

9.26 EncodeDateTime 328

9.27 EncodeTime 329

9.28 Exp 330

9.29 FloatToStr 331

9.30 Floor 332

9.31 HideProgress 333

9.32 HourOf 334

9.33 Inc 335

9.34 Insert 336

Table of Contents

Preface

9.35 IntToHex 337

9.36 IntToStr 338

9.37 ISOStrToDateTime 339

9.38 Join 340

9.39 Length 341

9.40 Ln 342

9.41 LocaleCompareStr 343

9.42 LocaleCompareText 344

9.43 LocaleLowerCase 345

9.44 LocaleSameStr 346

9.45 LocaleSameText 347

9.46 LocaleUpperCase 348

9.47 LowerCase 349

9.48 Max 350

9.49 MessageDlg 351

9.50 Min 353

9.51 MinuteOf 354

9.52 MonthOf 355

9.53 MSecondOf 356

9.54 Now 357

9.55 Ord 358

9.56 Pad 359

9.57 Pi 360

9.58 ParseXML 361

9.59 Pos 362

9.60 Power 363

9.61 Radians 364

9.62 Random 365

9.63 Round 366

9.64 QuotedStr 367

9.65 SameStr 368

9.66 SameText 369

9.67 SecondOf 370

9.68 SerializeXML 371

Table of Contents

Preface

9.69 SetLength 372

9.70 ShowMessage 373

9.71 ShowProgress 374

9.72 Sin 375

9.73 Split 376

9.74 Sqrt 377

9.75 StrReplace 378

9.76 StrToBool 379

9.77 StrToDate 380

9.78 StrToDateTime 381

9.79 StrToDouble 382

9.80 StrToFloat 383

9.81 StrToInt 384

9.82 StrToTime 385

9.83 Tan 386

9.84 Time 387

9.85 TimeToStr 388

9.86 TimeZoneOffset 389

9.87 Trim 390

9.88 Trunc 391

9.89 UpperCase 392

9.90 WeekDayOf 393

9.91 YearOf 394

Chapter 10 - Component Reference 395

10.1 TAbstractList Component 395

10.2 TAddress Component 399

10.3 TAlertLabel Component 413

10.4 TAlertLabelControl Component 448

10.5 TAnimatedIcon Component 450

10.6 TAnimation Component 475

10.7 TAnimations Component 482

10.8 TApplication Component 490

10.9 TAudio Component 510

10.10 TAudioElement Component 572

Table of Contents

Preface

10.11 TAutoSize Component 573

10.12 TBackground Component 577

10.13 TBackgroundImage Component 583

10.14 TBalloonLabel Component 596

10.15 TBalloonLabelControl Component 628

10.16 TBasicPanel Component 629

10.17 TBasicPanelControl Component 663

10.18 TBindableColumnControl Component 664

10.19 TBindableControl Component 665

10.20 TBlobValue Component 666

10.21 TBodyElement Component 667

10.22 TBooleanValue Component 668

10.23 TBorder Component 669

10.24 TBorderSide Component 675

10.25 TBoundingAttribute Component 682

10.26 TBrowser Component 688

10.27 TButton Component 714

10.28 TButtonComboBox Component 746

10.29 TButtonComboControl Component 793

10.30 TButtonControl Component 794

10.31 TButtonInputControl Component 795

10.32 TCalendar Component 796

10.33 TCalendarControl Component 834

10.34 TCanvasElement Component 839

10.35 TCanvasGradient Component 888

10.36 TCanvasPattern Component 899

10.37 TCanvasPoint Component 903

10.38 TCanvasRect Component 911

10.39 TCaptionBarControl Component 931

10.40 TCheckBox Component 932

10.41 TCollection Component 969

10.42 TCollectionItem Component 985

10.43 TComponent Component 992

10.44 TConstraint Component 1004

Table of Contents

Preface

10.45 TConstraints Component 1008

10.46 TContentLayout Component 1012

10.47 TControl Component 1019

10.48 TCookies Component 1071

10.49 TCorner Component 1080

10.50 TCorners Component 1084

10.51 TDatabase Component 1090

10.52 TDataColumn Component 1121

10.53 TDataColumns Component 1143

10.54 TDataRow Component 1145

10.55 TDataSet Component 1146

10.56 TDataSetController Component 1222

10.57 TDataSetToolBar Component 1228

10.58 TDataSetToolBarButton Component 1245

10.59 TDataSetToolBarButtons Component 1246

10.60 TDataValue Component 1257

10.61 TDataValues Component 1272

10.62 TDateEditComboBox Component 1282

10.63 TDateTimeValue Component 1330

10.64 TDateValue Component 1331

10.65 TDialog Component 1332

10.66 TDialogButton Component 1366

10.67 TDialogCaptionBar Component 1370

10.68 TDialogClient Component 1380

10.69 TDialogControl Component 1384

10.70 TDialogEditComboBox Component 1385

10.71 TDivElement Component 1425

10.72 TDropDownButtonControl Component 1426

10.73 TDropDownEditControl Component 1429

10.74 TEdit Component 1432

10.75 TEditComboBox Component 1472

10.76 TEditComboControl Component 1522

10.77 TEditControl Component 1523

10.78 TElement Component 1528

Table of Contents

Preface

10.79 TElementAttribute Component 1630

10.80 TElementProperties Component 1634

10.81 TElements Component 1662

10.82 TFileComboBox Component 1670

10.83 TFileInputElement Component 1704

10.84 TFill Component 1707

10.85 TFloatValue Component 1712

10.86 TFont Component 1713

10.87 TFontIcon Component 1721

10.88 TFontStyle Component 1725

10.89 TForm Component 1731

10.90 TFormat Component 1768

10.91 TFormatSettings Component 1773

10.92 TFormControl Component 1794

10.93 TFormElement Component 1800

10.94 TFrameElement Component 1807

10.95 TGradient Component 1814

10.96 TGradientColorStop Component 1822

10.97 TGradientColorStops Component 1826

10.98 TGrid Component 1833

10.99 TGridCell Component 1882

10.100 TGridColumn Component 1887

10.101 TGridControl Component 1929

10.102 TGridHeader Component 1983

10.103 TGridRow Component 1990

10.104 TGridRows Component 1996

10.105 TGroupPanel Component 2002

10.106 TGroupPanelControl Component 2035

10.107 THeaderPanel Component 2036

10.108 THeaderPanelControl Component 2068

10.109 THiddenInputElement Component 2069

10.110 THTMLForm Component 2070

10.111 THTMLFormControl Component 2101

10.112 THTMLLabel Component 2104

Table of Contents

Preface

10.113 THTMLLabelControl Component 2135

10.114 TIcon Component 2136

10.115 TIconAnimation Component 2158

10.116 TIconButton Component 2161

10.117 TIconControl Component 2186

10.118 TIconLibrary Component 2187

10.119 TIconProperties Component 2190

10.120 TImage Component 2199

10.121 TImageElement Component 2237

10.122 TInputControl Component 2240

10.123 TInputElement Component 2243

10.124 TInsetShadow Component 2255

10.125 TIntegerValue Component 2256

10.126 TInterface Component 2257

10.127 TInterfaceController Component 2261

10.128 TInterfaceManager Component 2264

10.129 TInterfaces Component 2298

10.130 TInterfaceState Component 2305

10.131 TInterfaceStates Component 2308

10.132 TLabel Component 2317

10.133 TLabelControl Component 2351

10.134 TLayout Component 2352

10.135 TLink Component 2359

10.136 TLinkControl Component 2394

10.137 TLinkElement Component 2395

10.138 TListBox Component 2399

10.139 TListControl Component 2449

10.140 TLocation Component 2453

10.141 TLocationServices Component 2465

10.142 TMap Component 2477

10.143 TMapControl Component 2497

10.144 TMapLocation Component 2498

10.145 TMapLocations Component 2507

10.146 TMapOption Component 2509

Table of Contents

Preface

10.147 TMapOptions Component 2511

10.148 TMapTypeControlMapTypes Component 2536

10.149 TMapTypeControlOptions Component 2541

10.150 TMargins Component 2545

10.151 TMediaControl Component 2546

10.152 TMediaElement Component 2550

10.153 TMenu Component 2571

10.154 TMenuBar Component 2593

10.155 TMenuBarItem Component 2614

10.156 TMenuBarSeparatorItem Component 2637

10.157 TMenuControl Component 2640

10.158 TMenuItem Component 2651

10.159 TMenuItemControl Component 2674

10.160 TMenuSeparatorItem Component 2679

10.161 TMessageDialog Component 2682

10.162 TModalOverlay Component 2720

10.163 TMultiLineEdit Component 2723

10.164 TMultiLineEditControl Component 2769

10.165 TObjectElement Component 2770

10.166 TObjectList Component 2773

10.167 TOutsetShadow Component 2799

10.168 TOverviewMapControlOptions Component 2800

10.169 TPadding Component 2802

10.170 TPage Component 2803

10.171 TPagePanel Component 2834

10.172 TPagePanelControl Component 2853

10.173 TPaint Component 2867

10.174 TPanControlOptions Component 2888

10.175 TPanel Component 2890

10.176 TPanelCaptionBar Component 2935

10.177 TPanelClient Component 2946

10.178 TPanelControl Component 2950

10.179 TParser Component 2952

10.180 TPasswordEdit Component 2980

Table of Contents

Preface

10.181 TPasswordInputElement Component 3017

10.182 TPersistent Component 3018

10.183 TPersistentStorage Component 3019

10.184 TPlugin Component 3028

10.185 TPoint Component 3052

10.186 TProgressBar Component 3060

10.187 TProgressBarIndicator Component 3087

10.188 TProgressDialog Component 3091

10.189 TRadioButton Component 3119

10.190 TReader Component 3155

10.191 TRect Component 3186

10.192 TRepeatControl Component 3207

10.193 TRotateControlOptions Component 3208

10.194 TScript Component 3210

10.195 TScrollableControl Component 3214

10.196 TScrollPanel Component 3215

10.197 TScrollPanelClient Component 3250

10.198 TScrollPanelControl Component 3254

10.199 TServerRequest Component 3255

10.200 TServerRequestQueue Component 3280

10.201 TSet Component 3288

10.202 TShadow Component 3305

10.203 TSizeGrip Component 3313

10.204 TSizeGripControl Component 3332

10.205 TSizer Component 3333

10.206 TSizerControl Component 3358

10.207 TSlideShow Component 3359

10.208 TSlideShowControl Component 3392

10.209 TStateButtonControl Component 3396

10.210 TStreetViewControlOptions Component 3397

10.211 TStringBuilder Component 3399

10.212 TStringList Component 3408

10.213 TStrings Component 3414

10.214 TStringValue Component 3432

Table of Contents

Preface

10.215 TSurface Component 3433

10.216 TTab Component 3446

10.217 TTextAreaElement Component 3452

10.218 TTextInputElement Component 3453

10.219 TTimer Component 3455

10.220 TTimeValue Component 3459

10.221 TToolBar Component 3460

10.222 TToolBarButton Component 3476

10.223 TToolBarControl Component 3493

10.224 TVideo Component 3502

10.225 TVideoElement Component 3567

10.226 TViewport Component 3571

10.227 TWebControl Component 3582

10.228 TWebElement Component 3584

10.229 TWriter Component 3591

10.230 TZoomControlOptions Component 3622

Chapter 11 - Type Reference 3625

11.1 TAlertOrientation Type 3625

11.2 TAnimatedIconDirection Type 3626

11.3 TAnimationCompleteEvent Type 3627

11.4 TAnimationStyle Type 3628

11.5 TAuthenticationMethod Type 3631

11.6 TAutoCompleteType Type 3632

11.7 TBackgroundImageAnimateDirection Type 3633

11.8 TBackgroundImagePositionType Type 3634

11.9 TBackgroundImageRepeatStyle Type 3635

11.10 TBackgroundImageSizeType Type 3636

11.11 TBackgroundOrientationType Type 3637

11.12 TBalloonOrientation Type 3638

11.13 TBooleanArray Type 3639

11.14 TBorderStyle Type 3640

11.15 TCalendarView Type 3641

11.16 TCanPlayMedia Type 3642

11.17 TCanvasPoints Type 3643

Table of Contents

Preface

11.18 TCaption Type 3644

11.19 TCharArray Type 3645

11.20 TClass Type 3646

11.21 TClickEvent Type 3647

11.22 TCloseQueryEvent Type 3648

11.23 TCollectionItemClass Type 3649

11.24 TCollectionItemName Type 3650

11.25 TColor Type 3651

11.26 TComponentClass Type 3652

11.27 TComponentName Type 3653

11.28 TCompositeOperation Type 3654

11.29 TContent Type 3656

11.30 TContentAlignment Type 3657

11.31 TContentDirection Type 3658

11.32 TContentPosition Type 3659

11.33 TContentSize Type 3660

11.34 TControlClass Type 3661

11.35 TCursor Type 3662

11.36 TDatabaseClass Type 3664

11.37 TDatabaseErrorEvent Type 3665

11.38 TDatabaseEvent Type 3666

11.39 TDataColumnTextEvent Type 3667

11.40 TDataRowEvent Type 3668

11.41 TDataSetErrorEvent Type 3669

11.42 TDataSetEvent Type 3670

11.43 TDataSetState Type 3671

11.44 TDataType Type 3672

11.45 TDateTimeFormat Type 3673

11.46 TDrawStyle Type 3674

11.47 TDropDownPosition Type 3675

11.48 TElementClass Type 3676

11.49 TErrorEvent Type 3677

11.50 TFillType Type 3678

11.51 TFormControlClass Type 3679

Table of Contents

Preface

11.52 TGenericFontFamily Type 3680

11.53 TGradientType Type 3681

11.54 TGridColumnCellEvent Type 3682

11.55 TGridColumnCompareEvent Type 3683

11.56 TGridColumnControlType Type 3684

11.57 TGridHeaderClickEvent Type 3685

11.58 THTMLFormEncoding Type 3686

11.59 THTMLFormMethod Type 3687

11.60 TIntegerArray Type 3688

11.61 TInterfaceAnimationEvent Type 3689

11.62 TInterfaceControllerClass Type 3690

11.63 TInterfaceErrorEvent Type 3691

11.64 TInterfaceIdleEvent Type 3692

11.65 TInterfaceTimeoutEvent Type 3693

11.66 TInterfaceTimerEvent Type 3694

11.67 TInterfaceViewportResizeEvent Type 3695

11.68 TInterfaceViewportScrollEvent Type 3696

11.69 TKeyDownEvent Type 3697

11.70 TKeyPressEvent Type 3698

11.71 TKeyUpEvent Type 3699

11.72 TLayoutConsumption Type 3700

11.73 TLayoutOverflow Type 3701

11.74 TLayoutPosition Type 3702

11.75 TLayoutStretch Type 3704

11.76 TLineCapStyle Type 3705

11.77 TLineJoinStyle Type 3706

11.78 TLocationError Type 3707

11.79 TMapControlPosition Type 3708

11.80 TMapTilt Type 3709

11.81 TMapType Type 3710

11.82 TMapTypeControlStyle Type 3711

11.83 TMediaNetworkState Type 3712

11.84 TMediaPreload Type 3713

11.85 TMediaReadyState Type 3714

Table of Contents

Preface

11.86 TModalResult Type 3715

11.87 TMouseDownEvent Type 3716

11.88 TMouseMoveEvent Type 3717

11.89 TMouseUpEvent Type 3718

11.90 TMouseWheelEvent Type 3719

11.91 TMsgDlgBtn Type 3720

11.92 TMsgDlgBtns Type 3721

11.93 TMsgDlgResultEvent Type 3722

11.94 TMsgDlgType Type 3723

11.95 TNotifyEvent Type 3724

11.96 TObjectsArray Type 3725

11.97 TOverflowType Type 3726

11.98 TPageChangeEvent Type 3727

11.99 TPatternRepeatStyle Type 3728

11.100 TRequestMethod Type 3729

11.101 TScrollBars Type 3730

11.102 TScrollSupport Type 3731

11.103 TSelectionState Type 3732

11.104 TServerRequestEvent Type 3733

11.105 TServerRequestProgressEvent Type 3734

11.106 TServerRequestURL Type 3735

11.107 TSizerOrientation Type 3736

11.108 TSlideEvent Type 3737

11.109 TSortDirection Type 3738

11.110 TStorageChangeEvent Type 3739

11.111 TStringsArray Type 3740

11.112 TTextAlignment Type 3741

11.113 TTextBaseLine Type 3742

11.114 TTextInputType Type 3743

11.115 TTouchEvent Type 3744

11.116 TTouchScrollEvent Type 3745

11.117 TWebElementEvent Type 3746

11.118 TZoomControlStyle Type 3747

Table of Contents

Preface

Chapter 1
Getting Started

1.1 System Requirements

IDE Requirements

The Elevate Web Builder IDE requires the following:

Windows Vista or higher
1024x768 or higher display resolution (widescreen display highly recommended)
32-bit color display adapter
1GB of installed memory
128MB of disk space
Internet Explorer 9 or higher

Runtime Browser Compatibility

Applications created with Elevate Web Builder work with the following browsers:

Browser Minimum Version Required

Internet Explorer
(Microsoft)

9

FireFox
(Mozilla)

5

Chrome
(Google)

10

Safari
(Apple)

5

Opera
(Opera Software)

11

Mobile Browsers

Most mobile devices today use the WebKit web browser engine as the engine for their web browser. This
is the case with both Android and iOS devices. Elevate Web Builder applications will work properly with
any device that uses the WebKit web browser engine. Some other devices may use embedded versions of
the Opera web browser engine, and Elevate Web Builder applications will work properly with those
devices as well.

Getting Started

Page 1

1.2 General Architecture

Elevate Web Builder allows developers to easily create rich, fully-functional web browser applications that
use 100% standard browser technologies and don't require any external browser plugins or layers.

At run-time, an Elevate Web Builder application has the following architecture:

Elevate Web Builder's IDE/compiler only produces web browser applications, and does not produce the
web server application. However, included with the product is the Elevate Web Builder Web Server, which
is the same internal web server used in the IDE for running applications. You can create native web server
application modules using Embarcadero RAD Studio and Delphi by using the Elevate Web Builder Web
Server. Please see the following topics for more information on the Elevate Web Builder Web Server:

Starting the Web Server
Configuring the Web Server
Web Server Request Handling
Creating Web Server Modules

You are required to create a web server application if you want to accept requests from the web browser
application, such as those used for loading datasets, committing transactions, or executing custom
requests to the web server application. Please see the Database Architecture and Server Request
Architecture topics for more information on how databases and server requests work in Elevate Web
Builder applications.

Getting Started

Page 2

Core Language

Elevate Web Builder uses an Object Pascal language dialect for its source code that is very close to the
Object Pascal language used by the RAD Studio and Delphi development environments from
Embarcadero Technologies. Object Pascal was chosen as the language because it is a very easy language
to learn due to its very English-like keywords, and because it is highly-structured and strongly-typed,
making compiled applications highly-resistant to easily-avoided run-time type or class definition errors.
For more information on the language in Elevate Web Builder, please see the Language Reference section
of the manual.

Integrated Development Environment (IDE)

The IDE in Elevate Web Builder is also modeled after the RAD Studio and Delphi IDEs from Embarcadero
Technologies, and is specifically designed to facilitate rapid application development (RAD). Rapid
application development is a development process that allows a developer to quickly proceed from an
application design to a fully-functional application by tightly integrating the design portion of application
development with the coding/compilation/deployment portion of development. Please see the Using the
IDE topic for more information on the layout and usage of the IDE.

Getting Started

Page 3

1.3 Application Structure

An Elevate Web Builder application is structured as follows:

An application can be either visual or non-visual. The main difference between visual projects and non-
visual projects is the way that the IDE generates code in the project source file as forms/source units are
added and removed from the project.

The project source file (.wbp) looks like the following for a visual application:

Project Source File

The project source file (.wbp) looks like the following for a non-visual application:

Getting Started

Page 4

The IDE and compiler use the contains clause in the project source file to determine which source units
are part of the actual project (as opposed to simply being referenced in a source unit that is part of the
project). This is important for several dialogs in the IDE that present a list of source units or forms for
selection, as well as the Project Manager.

Note
 By default, the IDE does not create a contains clause for non-visual projects because non-visual
projects don't have any additional project units when first created. However, you can add units to
the project using the project manager, and they will appear in the contains clause of the project
source file.

Project Configuration File

The project configuration file (.wbc) is an .ini file with the same root name as the project source file that
contains the project settings for the current project. If it does not exist, then it is automatically created by
the IDE. The settings stored in this file include:

IDE layout settings (open windows, panel positions/sizes)
Compilation settings (search paths, output paths, compression)
External files (JavaScript, images)
Deployment settings (FTP settings, copy settings)

Form Files

Forms are associated with a specific source unit by the existence of a .wbf form file with the same root
name as the .wbs source unit. Form files are JSON files that contain information about all components
contained within a form and all non-default published property values assigned to the components.

Control Interface Files

Control interfaces are associated with an application or the component library via this compiler directive:

{$INTERFACE <ControlInterfaceFileNameRoot>}

Control interfaces are JSON files that contain information about the various visual states of a control
interface class. Each state is represented by one or more UI elements that correspond to the UI elements
created by a control class. Please see the Control Interfaces topic for more information on the architecture
of control interfaces.

Getting Started

Page 5

1.4 Compiling Applications

When you compile an application, the Elevate Web Builder uses the project's compiler search paths along
with the component library search paths to determine where to look for units and control interface files.
Please see the Modifying the Project Options and Modifying Environment Options topics for more
information on modifying these search paths.

Elevate Web Builder compiles the application source code (Object Pascal) into a 100% JavaScript
application that will run in any modern browser. During compilation of an application, the compiler emits
the following files:

The HTML loader file contains all of the control interface files, form files, and database files in special tags
in the header of the file.

An Elevate Web Builder application is typically loaded in a web browser via a URL that includes the HTML
loader file for the application. Once the loader file is loaded in the web browser, the following steps occur:

The HTML loader file loads the application's .js (JavaScript) file, which causes the browser to compile
the JavaScript and prepare the execution environment.

A special JavaScript loader function is called that initializes the application and starts execution.

Any control interfaces are loaded from the special tags in the HTML loader file.

Any auto-create forms and/or databases are created. During creation, the associated form or
database files are loaded from the special tags in the HTML loader file.

If the web browser navigates away from the current URL, or if the web browser refreshes the current
URL, then a special JavaScript unloader function is called that cleans up all allocated resources and
terminates the application.

Elevate Web Builder applications are designed to be loaded and then stay loaded until they are exited.
They are not "page-oriented" like many web application or general web sites. You can, however, display
HTML pages within an application by using the TBrowser control that is provided as part of the
component library.

The JavaScript file that is emitted by the compiler can be compressed, making the size of the resultant
application much smaller. As a side-effect of the compression, the resultant JavaScript source code is also
heavily obfuscated and virtually unreadable, which is desirable for many applications that wish to protect
their source code. Please see the Modifying the Project Options topic for more information on
compression.

Getting Started

Page 6

Getting Started

Page 7

1.5 Component Library

Elevate Web Builder includes a complete component library for use with both your visual and non-visual
web applications. The component library is a separate design-time application that is automatically
loaded and compiled by the IDE during startup. You can add and remove components from the library in
the IDE, and those changes will persist for any subsequent IDE usage. You can also rebuild the component
library at any time, which is useful for situations where an existing component or control is modified, and
you wish to have those changes reflected immediately at design-time.

Note
 The component library is the foundation for all design-time visual designers: you cannot work with
visual application projects and forms unless the component library has been successfully loaded
and compiled.

The TComponent class is the base class for all components and contains all core functionality for
component ownership and notification. It inherits from the TPersistent class, so any TComponent-
descendant class can automatically load itself from a JSON input string.

The locations of the component library source units are automatically included in the compiler search path
during the compilation of projects, but after the project's defined compiler search paths. Please see the
Modifying Environment Options topic for more information on modifying the component library search
paths used by the compiler.

The following source units make up the core of the runtime and component library:

Source Unit Description

WebDOM This source unit contains all external declarations for the web
browser DOM (Document Object Model) classes, functions,
procedures, and variables. You can use this unit to manipulate
the browser DOM directly at run-time.

WebDesign This source unit contains just a few class declarations for use
with the design-time environment in the IDE.

WebCore This source unit contains core functions/procedures and
classes. It does not contain any visual controls so it can be
used in non-visual applications.

WebUI This source unit contains the interface manager and all of the
base UI functionality for both design-time and run-time.

WebCtrls This source unit contains the base controls and functionality.

WebForms This source unit contains the application, surface, and core
form/dialog controls.

WebData This source unit contains the database and dataset
components.

WebHTTP This source unit contains the server request components.

Getting Started

Page 8

In addition to these units, there are many other units that make up the rest of the component library.
Please see the Component Reference section of this manual for detailed documentation about the units,
classes, and types in the Elevate Web Builder component library.

Getting Started

Page 9

1.6 Visual Applications

The interface of a visual Elevate Web Builder application has the following structure:

A visual application uses a global instance of the TInterfaceManager class called InterfaceManager to
manage all aspects of the user interface. The TInterfaceManager class and all related classes, types, and
functions/procedures are declared in the WebUI unit included with the standard component library. All
interface elements are represented by instances of the TElement class (or a descendant class).

At design-time, the root element managed by the interface manager represents the base element for the
active form instance in the form designer. At run-time, the root element is the base element for the global
instance of the application surface. The application surface wraps the body element in the browser tree of
elements, and is the ancestor container for all controls at run-time.

Note
 At run-time, all elements are wrappers around browser elements. Except for the body element,
these browser elements are owned by the TElement class instances of the corresponding interface
elements.

Controls and Interface Elements

In Elevate Web Builder, controls are simply wrappers around a base element that is the container for all

Getting Started

Page 10

elements that are created and owned by the control itself, or assigned as child elements:

Many controls never use more than the base element, while others such as grid controls require many
elements in order to provide the necessary functionality in the control.

Controls create both their base element and any other owned elements by calling the TInterfaceManager
CreateElement method. Controls, and the elements that they own or parent, can be moved to different
parts of the user interface tree of elements by modifying the TControl Parent property.

Because controls are simply wrappers around interface elements, it is up to the control class to determine
what aspects of the owned element(s) is/are exposed at design-time and at run-time via properties. For
example, a container control may wish to expose the background property of the base element so that the
developer can modify the background of the control.

Core Application Components

A visual Elevate Web Builder application has the following structure in the web browser:

Getting Started

Page 11

The visual application functionality in Elevate Web Builder contains several core components, all residing
in the WebForms and WebCtrls units in the standard component library.

TControl
The TControl component is the base class for all controls and forms. It contains all core functionality for
control iteration, dimension and layout management, and display control. You can find the TControl
component in the WebCtrls unit.

TApplication
An instance of the TApplication component is automatically created when the WebForms unit is initialized,
and is available as the global Application variable (also in the WebForms unit). The TApplication
component allows the developer to manage the browser surface via the Surface property, as well as
various aspects of the application such as the application title and the properties of the browser viewport.

TSurface
An instance of the TSurface component is automatically created by, and as part of, the global TApplication
instance and, as noted above, is available via the TApplication Surface property. You can access the active
form via the ActiveForm property.

TForm
The TForm component encapsulates a form in an Elevate Web Builder visual application. Forms are the
container controls in which all other visual controls reside. Forms can be designated as auto-create in a
project and the IDE will automatically add the appropriate code to the program source of the project for
creating the forms at application start. The first form in the list of auto-create forms is considered the main
form of the application. The TForm class can be found in the WebForms unit.

Getting Started

Page 12

TDialog
The TDialog component encapsulates a dialog in an Elevate Web Builder visual application. Dialogs differ
from normal forms in that they contain additional interface elements such as a caption bar and a close
button. Also, dialogs are normally shown modally using the TFormControl ShowModal method, although
this is not a requirement. The TDialog class can also be found in the WebForms unit.

Getting Started

Page 13

1.7 Control Interfaces

Control interfaces are JSON files that are used to describe the visual appearance of a control. You can
create and modify control interfaces using the Control Interface Editor. The structure of a control interface
is as follows:

As mentioned in the Application Structure topic, control interfaces are included in a source unit via the
$INTERFACE compiler directive and, as mentioned in the Compiling Applications topic, control interfaces
are automatically stored in the application's HTML loader file by the compiler, and are automatically
loaded at application startup by the global TInterfaceManager instance called InterfaceManager in the
WebUI unit.

Note
 The name of a control interface file will not necessarily correspond to the interface class name
defined within the file. The standard control interface files shipped with Elevate Web Builder use the
same name for both, but this is only a convention and not a requirement.

TControl Interface Functionality

Getting Started

Page 14

As discussed in the Visual Applications topic, every TControl descendant class will create one or more
TElement class instances to handle the various interface elements in the control. By default, the TControl
class automatically creates an element with the name "Base". All element instances should have a unique
name within the context of a control class.

Note
 There are several standard interface element names defined in the interface section of the
WebCtrls unit that should be used with any controls, if possible. For example, controls should
normally always call any client element "Client". This isn't a requirement, but it does help keep any
3rd party controls standardized.

In addition, every TControl descendant class is always in a particular interface state, represented by the
protected TControl InterfaceState property. Each TControl can modify its InterfaceState property to affect
the layout and display properties of the element instances in the control. By default, the base TControl
class automatically handles most interface state changes. The standard interface states, and how they are
triggered, are detailed below:

Interface State Trigger Condition

Normal This is the default state for controls, and is triggered during
control initialization.

Disabled Triggered when the TControl Disabled property is set to True.

Hot Triggered when the mouse is moved over the bounds of the
control.

Focused Triggered when the control obtains focus.

Pushed Triggered when the left mouse button is pressed within the
bounds of the control.

Minimized Triggered when the control (normally a container control) is
minimized.

ReadOnly Triggered when the TBindableControl ReadOnly property
(protected) is set to True.

Error Triggered when the TBindableControl Error property
(protected) is set to True.

There are several other control-specific states that are used by the standard component library
component classes. A control developer is free to use any interface state name that they wish, but the
standard interface states should not be used for purposes other than their intended use.

How Control Interfaces are Applied to a Control

Internally, control interfaces are applied to the interface elements of controls using the TInterfaceManager
ApplyInterface method. This method uses several key pieces of information to determine how to apply an
interface to a control and the interface elements that it owns:

The interface class name
A specified interface state

Getting Started

Page 15

The interface element names

When a control assigns a new value to the protected TControl InterfaceState property and the TControl
class calls the TInterfaceManager ApplyInterface method, the method will look up the control interface
class name in the list of available control interface class names loaded into the interface manager.

The control interface class name is provided by the TControl GetInterfaceClassName method:

function GetInterfaceClassName: String; virtual;

It can be used to return any string that represents the control interface class name that the control wants
to apply when the interface state changes. Normally, the value returned here is simply the class name for
the control. For example, the TEdit control GetInterfaceClassName method implementation looks like this:

function TEdit.GetInterfaceClassName: String;
begin
 Result:=TEdit.ClassName;
end;

However, you are not forced to use the control's class name as the interface class name. Sometimes it
might be necessary to use the control's class name combined with other string values to create a dynamic
interface class name. For example, the TScrollBar class uses the orientation of the scroll bar to compute a
dynamic interface class name:

function TScrollBar.GetInterfaceClassName: String;
begin
 case FOrientation of
 soVertical:
 Result:=TScrollBar.ClassName+VERTICAL_CLASS_NAME;
 soHorizontal:
 Result:=TScrollBar.ClassName+HORIZONTAL_CLASS_NAME;
 else
 Result:='';
 end;
end;

Once the control interface class name is found by the interface manager, the control interface states are
searched for the value assigned to the InterfaceState property. If a matching state is found in the control
interface, then the properties of the various elements in the control interface state are applied to the
element instances contained within the control class instance whose interface state is being changed. This
property application process is also done by matching the names of the elements in the control interface
to the names of the element instances in the control class instance.

Getting Started

Page 16

Note
 If an interface state is specified that does not exist, then nothing occurs and the visual appearance
of the control will not change. If one or more element names in the control interface state do not
match the names of the element instances created by the control class instance, then the properties
of those elements will not be applied.

If an interface state is being assigned to a control class instance for the first time (InterfaceState property
is blank), then the interface manager will simply assign all properties of the control interface elements to
the matching element instances contained within the control class instance. If an interface state has
already been assigned to the control class instance, then the interface manager will only apply the
properties specified via the control interface element's ApplyProperties property. The ApplyProperties
property of a control interface element is a set of Boolean values that mirror the control interface element
properties. If a property is set to True in the ApplyProperties property, then it will be assigned to the
element instance when the interface state is applied.

Note
 If you specify that a property should be applied in any state, then you should normally also specify
that the property should be applied in all other states in the control interface. Failure to do this will
result in certain properties becoming "sticky" and not reverting to a known state as the interface
state of the control changes. For example, suppose that you have created a TBorderButton control
that you want to show a different color border when the mouse hovers over the control and the
interface state changes to "Hot". In such a case, you'll need to be sure that the
ApplyProperties.Border property is set to True for the Base element defined in all states in the
control interface, including the standard Normal state.

Customizing Control Interfaces

Elevate Web Builder ships with a complete set of standard control interfaces located in the \interfaces
subdirectory under the main installation directory. Because the compiler uses the standard project and
component library search paths to find both source units and control interfaces, you can make copies of
the standard control interfaces, place them in a new directory, and then modify the project's compiler
search paths so that the new directory is included. Please see the Modifying Project Options topic for
more information on modifying the project's compiler search paths. After that point, any modifications to
the control interfaces in this new directory will be used instead of the standard control interfaces. Please
see the Modifying a Control Interface topic for more information on how to modify control interfaces
using the control interface editor.

By default, the Automatically load custom control interfaces in project search paths option in the
Environment Options dialog is enabled. This means that the IDE will automatically load any custom
control interface files located in the project's compiler search paths whenever a project is opened in the
IDE. When checking to see if a control interface has been customized, the IDE compares the path of the
default control interface file used with the component library (based upon the Library Search Paths setting
on the Component Library page) with the path of any control interfaces with the same file name present
in the project's compiler search paths. If a match is found, then the control interface file found in the
project's compiler search paths is loaded into the IDE and used with the project's form designers. After the
project is closed, the default control interfaces are reloaded.

Getting Started

Page 17

1.8 Icon Library

Icons are small, rectangular images/symbols that are referenced and displayed using controls such as the
TIcon component. Elevate Web Builder uses a special control interface class called TIconLibrary to embed
icons in a visual application. The TIconLibrary control interface is stored in the TIconLibrary.wbi interface
file included with the standard control interfaces provided with Elevate Web Builder. The default
TIconLibrary control interface contains several default icons. You can use them as templates for any
additional icons by specifying their name as the icon (state) to copy when adding a new icon (state). You
can make a copy of the TIconLibrary.wbi interface file and place it in your project source directory in order
to customize the icons for your application. Please see the Opening the Icon Library for more information
on how to save a copy of the default TIconLibrary control interface so that it can be customized.

Supported Icon Types

Elevate Web Builder supports two different kinds of icons in the icon library: raster image icons (PNG) and
font icons. All icons used in the Elevate Web Builder component library use font icons. Font icons are
preferable to image icons because font icons are vectors, not raster images. This means that they can be
resized without losing any clarity, which is very important with very high display resolutions such as those
used with the Retina displays available on Apple devices. Raster images, on the other hand, tend to look
blurry as the image pixels are stretched and compressed to fit the current scale of the browser and the
underlying display resolution. Even if you aren't targeting high-resolution displays, you will want your
icons to look crisp and clear if the user zooms in/out using the built-in scaling available in most browsers.
Another important consideration is that font icons are much smaller, overall, than the equivalent raster
images. Finally, the fill color of font icons can be changed like any other font, whereas the colors of raster
images are fixed. However, raster images allow for multiple colors in icons, which is not something that is
currently supported with font icons.

Icon Fonts

Elevate Web Builder ships with an icon font called EWBIcons in both OpenType format and WOFF (web
font) format. The OpenType version of the EWBIcons icon font is automatically installed during the Elevate
Web Builder installation, and both formats are available in the \fonts subdirectory under the main
installation directory.

The EWBIcons icon font is a trimmed-down version of the fantastic open source icon font called Font
Awesome available here:

Font Awesome

With the EWBIcons icon font, the social media and brand icons were stripped from the original Font
Awesome font in order to conserve space, and a few icons were added to support dataset toolbar
navigation icons and the Elevate Web Builder "tool" logo icon. Because of this, the font name had to be
changed from "FontAwesome" to "EWBIcons" in order to avoid any conflicts.

By default, all projects will include the EWBIcons icon font during compilation, and will embed it in the
HTML loader file for the application. This can be behavior can be changed via the Compilation page of the
Project Options for each project.

Defining Icons

Getting Started

Page 18

Icons are represented in the states of the control interface, with the name of the icon corresponding to the
state name. There are no limits to how many icons (states) one can define in the control interface.
However, there are some rules that must be followed in order to allow the icons to appear correctly. The
following lists the rules for both image icons and font icons:

Image Icons

The base element for each icon (state) must be named "Icon".

The "Icon" element's ApplyProperties Background property should be set to True.

The icon image should be assigned using the "Icon" element's Background Image Name property.

The icon image itself should be sized according to your needs, but as a rule do not use icons larger
than 256x256 pixels. The one exception to this rule is when defining an animated icon. Defining
animated icons is discussed below.

The icon image should normally be positioned as ptCenterCenter using the "Icon" element's
background image PositionType property. The one exception to this rule is when defining an
animated icon. Defining animated icons is discussed below.

The icon image should be set to not repeat by setting the "Icon" element's background image
RepeatStyle property to rsNone.

Font Icons

The base element for each icon (state) must be named "Icon".

The icon's base "Icon" element should have a child element named "FontIcon".

The "FontIcon" element's ApplyProperties AutoSize, Content, Font, FontColor, FontSize, Layout, and
Padding properties should be set to True.

The "FontIcon" element's AutoSize property should be set to True.

The "FontIcon" element's Font Name property should be set to "EWBIcon", or the name of another
icon font that you wish to use.

The "FontIcon" element's Font Color and Size properties should be set according to your needs. The
Font Style property is not normally used with font icons.

The "FontIcon" element's Layout Position property should normally be set to lpCenter, but you can
use any layout that you wish for the font icon.

The "FontIcon" element's Padding property can be used to adjust the padding around the font icon.
This is useful in cases where the font icon is getting cut off due to leading/trailing measurement
issues with the font.

Defining Animated Icons

Animated icons are image icons whose background image isn't a small square or rectangle, but is instead
a single image containing many different animation frames oriented in a single horizontal or vertical

Getting Started

Page 19

direction. These icons are referenced and displayed using controls such as the TAnimatedIcon component.
In addition to the above rules for normal icons, there are also some rules that must be followed in order
to allow animated icons to appear correctly:

Contrary to normal icons, an animated icon image should always be positioned as ptSpecified
using the "Icon" element's background image PositionType property.

Controls such as the TAnimatedIcon control use the background image's BeginAnimation method to
animate the background image's Left or Top property (depending upon the orientation passed to the
method), and the CancelAnimation method to stop any background image animation.

Loading Icons from Code

At both design-time and run-time, a global instance of the TIconLibrary class called IconLibrary is created
that manages this special icon library control interface. The TIconLibrary class and the global IconLibrary
instance can be found in the WebUI unit. Controls like the TIcon control use this global instance to
retrieve the list of available icons using the GetIconNames method, as well as apply an icon to one or
more of its owned interface elements using the ApplyIcon method.

Getting Started

Page 20

1.9 Accessing Help

Elevate Web Builder includes a complete online manual in the IDE that provides language and component
references, as well as tutorials and information on how to use the product to create great web browser
applications.

Accessing the Online Manual

Use the following steps to access this manual in the IDE:

Click on the Help option in the main menu. The Help menu will open:

Click on the Online Manual option in the Help menu. This will cause the help browser page to
open in the IDE.

Context-Sensitive Help in the Object Inspector

Use the following steps in order to obtain context sensitive help in the object inspector:

Getting Started

Page 21

Click on the desired property in the object inspector and hit the F1 key.

The help browser will open with all matching keywords highlighted. The topic that corresponds to
the first matching keyword will be displayed in the help browser.

Context-Sensitive Help in the Form and Database Designers

Use the following steps in order to obtain context sensitive help in the form and database designers:

Getting Started

Page 22

Click on the desired control or component in the form or database designer and hit the F1 key.

The help browser will open with all matching keywords highlighted. The topic that corresponds to
the first matching keyword will be displayed in the help browser.

Context-Sensitive Help in the Code Editor

Use the following steps in order to obtain context sensitive help in the code editor:

Getting Started

Page 23

Click on the desired keyword or identifier in the code editor and hit the F1 key.

The help browser will open with all matching keywords highlighted. The topic that corresponds to
the first matching keyword will be displayed in the help browser.

Using the Help Browser

The help browser navigation toolbar can be found at the bottom of the help browser window:

The navigation buttons are:

Getting Started

Page 24

 Displays the contents tree on the left-hand side of the help browser.

 Displays the keywords index on the left-hand side of the help browser.

 Allows you to navigate backward and forward from the current topic to the previous topic or next
topic viewed.

In addition you can use the following toolbar buttons:

 Searches for text within the current topic.

 Prints the current topic to the desired output device.

Getting Started

Page 25

1.10 Example Applications

Elevate Web Builder includes several example applications, which are detailed below. By default, these
example applications are installed into the \examples subdirectory under the main installation directory
for Elevate Web Builder. However, you should not try to load or compile the example projects from this
location. This is because Elevate Web Builder is normally installed under the \Program Files directory
structure under Windows, which will cause the Elevate Web Builder compiler to encounter errors when
trying to create the proper output directories and files during the emitting phase of compilation. Rather,
you should use the following steps to install the example applications in the documents folder for the
current user account:

Click on the Help option in the main menu. The Help menu will open:

Click on the Install Example Applications.. option in the Help menu. This will start the process of
copying the example applications to the following folder for the current user account:

My Documents\Elevate Web Builder 2\Projects

Note
 All of these example applications require that the internal web server in the IDE is started and
running, or you will get errors when trying to run them in the IDE (or from any browser). Also, do
not attempt to run any of the example applications directly from the file system in the IDE (or from
any browser) or you will also get errors. Please see the Running a Project topic for more information
on running projects in Elevate Web Builder.

In addition, all of the example projects use the default control interfaces. Please see the Control Interfaces
topic for more information on how control interfaces work.

HTML Form Submittal Example

Getting Started

Page 26

After installation, the formsubmit.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\formsubmit folder. It illustrates the HTML form submittal functionality discussed in the
Using HTML Forms topic in this manual.

Controls Layout Example

After installation, the layout.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\layout subdirectory. It illustrates how to use the control Layout Management to affect
control positioning and sizing.

Responsive Layout Example

Getting Started

Page 27

After installation, the responsive.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\responsive subdirectory. It illustrates how to use the control Layout Management to
build a responsive application that automatically adjusts its interface as the size of the browser window
changes.

Responsive Panels Example

After installation, the panels.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\panels subdirectory. It illustrates how to use the control Layout Management to create
a flow layout for panels in a scrollable container.

Data-Bound Controls Example

Getting Started

Page 28

After installation, the databound.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\databound subdirectory. It illustrates the database functionality discussed in the
Creating and Loading DataSets, Navigating DataSets, Searching and Sorting DataSets, Updating DataSets,
Responding to DataSet Changes, and Binding Controls to DataSets topics in this manual. This project uses
the "ExampleData" database that is automatically added to the Database Manager when the example
applications are installed.

Master-Detail Database Example

After installation, the masterdetail.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\masterdetail subdirectory. It illustrates the database functionality discussed in the
Creating and Using Databases, Creating and Loading DataSets, Navigating DataSets, Searching and
Sorting DataSets, Updating DataSets, Responding to DataSet Changes, and Binding Controls to DataSets
topics in this manual. This project uses the "ExampleData" database that is automatically added to the
Database Manager when the example applications are installed.

Transactions Example

Getting Started

Page 29

After installation, the transactions.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\transactions subdirectory. It illustrates the dataset and database transaction
functionality discussed in the Creating and Loading DataSets, Navigating DataSets, Searching and Sorting
DataSets, Updating DataSets, Responding to DataSet Changes, Binding Controls to DataSets, and
Transactions topics in this manual. This project uses the "ExampleDatabase" database that is automatically
added to the Database Manager when the example applications are installed.

Multimedia Example

After installation, the multimedia.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\multimedia subdirectory. It illustrates the dataset functionality as well as how to use the
TAudio control to play audio files. This example project uses the "ExampleDatabase" database that is
automatically added to the Database Manager when the example applications are installed.

This example application includes the relevant database tables, but the audio track BLOB fields are empty
due to their size and the number of tracks. If you wish to see this example application live, you can do so
here:

Elevate Web Builder 2 Multimedia Example

Google Maps Example

Getting Started

Page 30

After installation, the maps.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\maps subdirectory. It illustrates how to use the TMap control to perform geocoding
and mapping using the Google Maps API, as well as how to use the TLocationServices component to
obtain the current location from the browser.

Painting Example

After installation, the paint.wbp example project will be located in the My Documents\Elevate Web Builder
2\Projects\paint subdirectory. It illustrates how to use the TPaint control and its TCanvasElement
functionality to perform drawing operations.

Slideshow Example

Getting Started

Page 31

After installation, the slideshow.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\slideshow subdirectory. It illustrates how to use the TSlideshow control to show a
slideshow of images. This example project uses the "ExampleData" database that is automatically added
to the Database Manager when the example applications are installed.

Animation Example

After installation, the animation.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\animation subdirectory. It illustrates how to use the Animations properties of controls
to perform animation operations.

Object Persistence Example

Getting Started

Page 32

After installation, the persistence.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\persistence subdirectory. It illustrates how to use the persistence functionality to
load/save published properties to/from TPersistent descendant classes.

Login Client Example

After installation, the loginclient.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\loginclient subdirectory. It illustrates how to authenticate a user ID and password using
the TServerRequest component and a web server module project (see next).

Login Module Example

After installation, the loginmodule.dpr example Delphi project will be located in the My
Documents\Elevate Web Builder 2\Projects\loginmodule subdirectory. Unlike the other client projects
mentioned above, the loginmodule.dpr example project is a server-side Delphi project that shows how to
create a web server module for authenticating a login using a user ID and password. Please see the
Creating Web Server Modules topic for more information on downloading the Elevate Web Builder 2

Getting Started

Page 33

Modules installation for your version of Embarcadero RAD Studio and Delphi. This download must be
installed before you can begin creating web server modules for use with Elevate Web Builder applications.

In addition, a pre-compiled copy (loginmodule.dll) of the loginmodule example project will be located in
the \bin\loginmodule\win32 subdirectory under the main installation directory, and this pre-compiled
web server module will be added to the IDE during the example installation so that it can be used with the
Login Client example project above.

PDF Client Example

After installation, the pdfclient.wbp example project will be located in the My Documents\Elevate Web
Builder 2\Projects\pdfclient subdirectory. It illustrates how to dynamically request and load PDF files from
the Elevate Web Builder Web Server using the TServerRequest component, the TPlugin control, and a web
server module project (see next).

PDF Module Example

After installation, the pdfmodule.dpr example Delphi project will be located in the My Documents\Elevate
Web Builder 2\Projects\pdfmodule subdirectory. Unlike the other client projects mentioned above, the
pdfmodule.dpr example project is a server-side Delphi project that shows how to create a web server
module for loading PDF files from a server directory. Please see the Creating Web Server Modules topic
for more information on downloading the Elevate Web Builder 2 Modules installation for your version of
Embarcadero RAD Studio and Delphi. This download must be installed before you can begin creating web
server modules for use with Elevate Web Builder applications.

In addition, a pre-compiled copy (pdfmodule.dll) of the pdfmodule example project will be located in the
\bin\pdfmodule\win32 subdirectory under the main installation directory, and this pre-compiled web
server module will be added to the IDE during the example installation so that it can be used with the PDF
Client example project above.

Database Module Client Example

Getting Started

Page 34

After installation, the databaseclient.wbp example project will be located in the My Documents\Elevate
Web Builder 2\Projects\databaseclient subdirectory. It illustrates how to load datasets from the Elevate
Web Builder Web Server using a database module project (see next).

Database Module Example

After installation, the databasemodule.dpr example Delphi project will be located in the My
Documents\Elevate Web Builder 2\Projects\databasemodule subdirectory. Unlike the other client projects
mentioned above, the databasemodule.dpr example project is a server-side Delphi project that shows
how to create a database module for loading a dataset from an ElevateDB database and demonstrates the
usage of the TEWBDatabaseAdapter and TEWBDataSetAdapter components for generating/consuming
JSON from TDataSet-descendant component instances in Embarcadero RAD Studio and Delphi. Please see
the Creating Web Server Modules topic for more information on downloading the Elevate Web Builder 2
Modules installation for your version of Embarcadero RAD Studio and Delphi. This download must be
installed before you can begin creating web server modules for use with Elevate Web Builder applications.

In addition, a pre-compiled copy (databasemodule.dll) of the databasemodule example project will be
located in the \bin\databasemodule\win32 subdirectory under the main installation directory, and this
pre-compiled database module will be added to the IDE during the example installation so that it can be
used with the Database Module Client example project above.

Getting Started

Page 35

This page intentionally left blank

Using the IDE

Page 36

Chapter 2
Using the IDE

2.1 Introduction

The Elevate Web Builder IDE is comprised of several distinct parts, each with their own specific
functionality as it relates to the development process. The various parts of the IDE are illustrated below:

The main menu and toolbar provide options for:

Creating new visual or non-visual projects
Creating new forms, databases, and source units in a project
Adding existing forms, databases, and source units to an existing project
Modifying project options
Compiling, deploying, and running projects
Saving and closing projects
Viewing units and forms
Adding components to, removing components from, and rebuilding the component library
Creating new control interfaces and modifying existing control interfaces

Using the IDE

Page 37

Note
 The Debug option on the main menu is not enabled at this time and is not functional. It will be
used to enable debugging of design-time code at a later time.

The middle page control of the IDE is reserved for all open source units, forms, and databases. Each
source unit, form, and database is docked to a page in the page control and presented using the form or
database designer and code editor.

Note
 Source units that aren't associated with a form or database only use the code editor, and not the
form or database designer.

Control interfaces are also docked to the middle page control when opened, and are presented using the
interface editor. Control interfaces are not associated with a specific project, but open control interfaces
are saved with open projects so that they are re-opened whenever the project is re-opened.

Using the IDE

Page 38

2.2 Creating a New Project

Use the following steps to create a new application project in the IDE:

Click on the File option in the main menu. The File menu will open:

Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,
select the Project option.

A dialog will be displayed that will allow you select the type of project that you would like to create,
either visual or non-visual:

Select the desired project type, and the new project will be opened in the IDE.

Using the IDE

Page 39

If you selected a visual project type, you will then be prompted to select the type of form class to
use as the ancestor of the main form for the visual project:

If you're unsure as to which form class to use, just use the default TForm class.

Visual Projects vs. Non-Visual Projects

The main difference between visual projects and non-visual projects is the way that the IDE generates
code in the project source file as forms/source units are added and removed from the project.

Use the following steps to access the project source file:

Click on the Project option in the main menu. The Project menu will open:

Click on the View Source option in the Project menu to open the project source file in the code
editor.

For visual projects, the project source file's contains clause is updated to include the name of the source
units included in the project, as well as the application startup code for the TApplication component that
is used with visual applications. In addition, any forms that are marked as auto-create forms in the Project
Options are automatically created here. You can see how this looks in the following image:

Using the IDE

Page 40

Note
 You'll notice that the IDE automatically inserts the WebForms, and WebCtrls units into the uses
clause. These units are necessary to support the generated application startup code, and should
never be removed.

For non-visual projects, the project source file's uses clause is updated to include the name of the source
units included in the project only. You can see how this looks in the following image:

The user code would be added in the begin..end block.

Note
 You'll notice that the IDE automatically inserts the WebCore unit into the uses clause. This unit is
necessary, and should never be removed.

Using the IDE

Page 41

2.3 Adding to an Existing Project

You can easily add new forms, databases, and units to an existing project in Elevate Web Builder.

Adding a Form to a Project

Use the following steps to add a new form to an existing project:

Click on the File option in the main menu. The File menu will open:

Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,
select the Form option.

You will then be prompted to select the type of form class to use as the ancestor of the form for the
visual project:

If you're unsure as to which form class to use, just use the default TForm class.

A new form will now appear in the form designer. Please see Using the Form and Database
Designers. for more information on how to use the form designer.

Using the IDE

Page 42

Note
 The Form option is only available from the New sub-menu when a visual project is active. You
cannot add new forms to non-visual projects.

Adding a Database to a Project

Use the following steps to add a new database to an existing project:

Click on the File option in the main menu. The File menu will open:

Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,
select the Database option.

You will then be prompted to select the type of database class to use as the ancestor of the
database for the visual project:

If you're unsure as to which database class to use, just use the default TDatabase class.

Using the IDE

Page 43

A new database will now appear in the database designer. Please see Using the Form and Database
Designers. for more information on how to use the database designer.

Note
 The Database option is only available from the New sub-menu when a visual project is active. You
cannot add new databases to non-visual projects.

Adding a Source Unit to a Project

Use the following steps to add a new source unit to an existing project:

Click on the File option in the main menu. The File menu will open:

Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,
select the Unit option.

A new source unit will now appear in the code editor. Please see the Using the Code Editor topic for
more information on using the code editor.

Using the IDE

Page 44

2.4 Modifying Project Options

The project options for a project include:

General application options (title, icon, whether to show load progress)
Auto-creation of forms and databases in visual applications
Compilation options (search paths, output paths, output compression)
External Files
Deployment options

Use the following steps to modify the project options for a project:

Click on the Project option in the main menu. The Project menu will open:

Click on the Options option in the Project menu to open the Project Options dialog.

Using the IDE

Page 45

Application

For visual applications, the Application page provides options for specifying the title of the application,
the icon to display in the browser window for the application, and whether or not to show load progress.

Using the IDE

Page 46

Option Description

Title The application title is the descriptive name for the
application and, in most modern browsers, will appear in the
caption bar of the browser window.

Icon The application icon is a 16x16 or 32x32 Windows icon file
that is displayed in the browser window next to the
application title. This icon is commonly known as a "favicon"
(short for "favorite icon") because the icon is also used to help
identify the application in "favorites" or "bookmarks" in the
browser.

You can type in the file name directly, or use the browse
button (...) to select the icon file using a common Windows
file dialog. After a valid file name has been specified or
selected, a preview of the icon file will be shown in the
Preview area.

Note
 You do not have to specify an icon for an application.
It is completely optional.

Show load progress If checked, this option will turn on the load progress dialog
for the application. This dialog is shown while all forms
marked as auto-create are being created. See the Forms
section below for more information on determining which
forms will be auto-created.

Forms and Databases

For visual applications, the Forms and Databases page allows you to specify which forms and databases in
the project should be auto-created, and which forms and databases should not be auto-created. The first
form in the list of auto-create forms and databases is automatically designated as the main form of the
application, but you can select a different auto-create form as the main form using the combo box at the
top of the page.

Using the IDE

Page 47

All updates to the main form and/or the auto-create forms and databases list will be reflected in the
project source file. The following shows the project source file that corresponds to the auto-create forms
and databases list above:

Using the IDE

Page 48

Option Description

Main Form The main form is set to the first form that is designated as
auto-create, or blank if no forms are designated as auto-
create. You can select a different main form by using this
combo box.

Auto-Create Forms and Databases The IDE can be configured, via the Environment Options
dialog, to automatically add any new forms and databases
created or added to a project to this list. If you don't want a
form or database to be automatically created, you can move
the form or database to the available list box by dragging and
dropping the desired form or database into the Available
Forms list box. You can select multiple forms and databases
to drag and drop by holding down the Ctrl key and selecting
the forms and databases using the mouse.

Available Forms and Databases This list box shows all forms and databases that are part of
the project, but aren't marked as auto-create.

Warning
 If you try to show or hide a form that has not been created yet, and is not set as auto-create, you
will get a run-time error in the web browser. Likewise, a similar run-time error will occur if you try to
access any components on a form or database that haven't been created yet, such as trying to
access a dataset in a database.

Compilation

The Compilation page allows you to configure the compilation options for both visual and non-visual
projects.

Using the IDE

Page 49

Option Description

Search Paths In many cases you will not need to include any additional
compilation search paths for a project. By default, the
compiler will look in the project source folder and the
component library search paths for any referenced units.
Please see the Modifying Environment Options topic for more
information on modifying the component library search
paths. However, in certain cases you may want to include
additional search paths for common library source units or
custom control interfaces that are used between multiple
projects, and this is where you would do so. When specifying
more than one search path, be sure to separate multiple
paths with a semicolon (;).

Output Path This path specifies the output path where the application
HTML (.html) loader file and application JavaScript (.js) source
file will be emitted. This path is relative to the main project
source folder. If you specify an absolute path here, the IDE
will automatically convert it to a relative path when the
Project Options dialog is closed by clicking on the OK button.

Output Loader This file name specifies the emitted output name of the
application HTML (.html) loader file.

Output Script This file name specifies the emitted output name of the
application JavaScript (.js) file.

Show Hints/Warnings Make sure these check boxes are selected (default) in order to
see all hints and warnings from the compiler about unused
variables and other compilation conditions that you may
need to know about.

Using the IDE

Page 50

Compressed Output When this check box is selected, the compiler will emit the
HTML and JavaScript for the application in a highly-
compressed and obfuscated form. This normally can reduce
the size of the resulting HTML and JavaScript files by 50% or
more.

Icon Font This file name specifies the icon font file to use for the
embedded icons used with Elevate Web Builder. The icon font
file name can use absolute or relative paths, but it is
recommended that you use an absolute path in the file name
so that there isn't any issue with the compiler finding the icon
font file. By default, the icon font file is set to the default icon
font file EWBIcons located in the \fonts subdirectory under
the main installation directory. Please see the Icon Library
topic for more information on using icon fonts with Elevate
Web Builder.

Embed in loader This check box controls whether the specified icon font file
name is embedded directly in the HTML loader file created
when compiling an application, or whether a link to the icon
font file name is used instead. By default, the icon font file will
be embedded in the HTML loader file. Please see the
Compiling Applications topic for more information on
compiling projects with Elevate Web Builder.

External Files

The External Files page allows you to configure which external files (external Javascript, images, etc.) you
want to include with your project.

When you include an external file with your project, the compiler will copy the source file to the output

Using the IDE

Page 51

path for the project and, if necessary, emit a reference to this source file in the HTML loader file that is also
emitted into the output path during compilation. Some external files such as external Javascript source
code require a link to the file in the emitted HTML loader file. Please see the External Interfaces topic for
more information on interfacing external JavaScript source code in your application source code.

Deployment

The Deployment page allows you to configure how your project should be deployed when the Deploy
option is selected from the main menu or main toolbar. There are two deployment methods currently
available for a project:

Method Description

Copy This is the default method and only requires a destination
path name to use for the destination of the copy operation.

FTP This deployment method will use the File Transfer Protocol
(FTP) to copy all output files for the application to the
specified destination path on the specified FTP server.

Warning
 During deployment, the IDE will try to create any output directories that are required, so you
should make sure that you have the proper user privileges for the destination path for either
deployment method.

Deploying When an Application is Run

Use the Deploy On Run check box to select whether the application should automatically deployed before
it is run in the IDE. This is useful for applications that are being run from an external web server and need
to be deployed to the external web server prior to being run. This option is ignored when an application is
run from the internal web server that is embedded in the IDE.

Copy

Using the IDE

Page 52

Option Description

Destination Path This is the path where all application output files will be
copied. The default value is blank (""), and you must specify a
path or the deployment will fail with an error.

FTP

Using the IDE

Page 53

Option Description

FTP Server Host Name or IP Address This option specifies the host name (domain name) or IP
address (XXX.XXX.XXX) of the FTP server where the
application output files should be deployed.

Port This is the port number on which the FTP server is listening.
The default port for FTP servers is port 21.

User Name This is the user name to use when logging in to the FTP
server. If the FTP server does not require a user name and
password, then leave this option blank (the default).

Password This is the password to use when logging in to the FTP server.
If the FTP server does not require a user name and password,
then leave this option blank (the default).

Destination Path This is the path where all application output files will be
copied. The default value is blank (""), and this indicates to
copy all application output files to the root directory of the
FTP server.

The Test Connection button can be used to verify that you configured the FTP server and login options
correctly. If you have done so properly, then you will see a message dialog affirming the fact that the IDE
was able to successfully connect and login to the specified FTP server. If there is an error making the
connection or logging in with the specified user name and password, then you will see a message dialog
with the appropriate error message that indicates the problem.

Using the IDE

Page 54

2.5 Compiling a Project

When a project is compiled, Elevate Web Builder performs the following steps:

The project source file is compiled.

All source units referenced in the project source file are compiled. In each source unit, all referenced
source units are compiled, and this continues until all referenced source units are compiled.

After all referenced source units are compiled, the application is emitted. During the emitting phase,
the compiler creates a single loader HTML (Hyper-Text Markup Language) file with the same root
name as the project, and a single JS (JavaScript) file with the same root name as the project.

The following illustrates the compiled output of an Elevate Web Builder application:

By default, all output files are emitted in an "output" folder located within the same folder as the project.
Please see the Modifying Project Options topic for more information on modifying the compilation output
folders.

Use the following steps to compile a project:

Click on the Project option in the main menu. The Project menu will open:

Click on the Compile option in the Project menu to compile the current project. If there are any
hints, warnings, or errors during compilation, they will appear in the Messages panel at the bottom
of the IDE. If any errors are present, the compilation will fail and the application output files will not
be emitted.

You can also use the keyboard to compile an application by holding down the Ctrl key and hitting the F9
key.

Using the IDE

Page 55

Using the IDE

Page 56

2.6 Deploying a Project

A project can be deployed using a straight copy method (default), or by using a connection to an FTP
server. Please see the Modifying Project Options topic for more information on selecting the deployment
method, and to generally configure the deployment.

Note
 The last compiled version of a project is what will be copied to the destination path when a project
is deployed. It is always wise to make sure to compile a project before deploying in order to ensure
that the most recent version of the application is properly copied.

Use the following steps to deploy a project:

Click on the Project option in the main menu. The Project menu will open:

Click on the Deploy option in the Project menu to deploy the current project. During deployment,
information about each application file being copied will appear in the Messages panel at the
bottom of the IDE. In addition, a progress dialog will be displayed that shows the total progress of
the application deployment, as well as the progress of the current file being copied:

Using the IDE

Page 57

2.7 Running a Project

It is possible to run projects directly in the IDE for testing purposes. The IDE uses an embedded version of
the Internet Explorer web browser to run the application.

Note
 Elevate Web Builder requires that Internet Explorer 9 or higher be installed in order to properly run
applications in the IDE.

Use the following steps to run a project:

Use the web server combo box to select the web server that you want to run the project from:

By default, the internal web server embedded in the IDE is automatically set as the default web
server. You can add external web servers by using the External Web Servers tab in the
Environment Options dialog.

To the right of the web server combo box are two buttons that can be used to start and stop the
selected web server. These options only work with the internal web server embedded in the IDE and
are unavailable for any external web servers.

Note
 If the internal web server is selected, but is not started, then the local file system will be used
to run the application. We recommend that you not run the application from the local file
system unless the application doesn't contain any databases and doesn't execute any server
requests. Attempting to run an application that uses these features from the local file system
will result in numerous runtime errors.

Click on the Run option in the main menu. The Run menu will open:

Using the IDE

Page 58

Click on the Run option in the Run menu to run the current project. The IDE will automatically
compile the application before running it. If there are any hints, warnings, or errors during
compilation, they will appear in the Messages panel at the bottom of the IDE. If any errors are
present, the compilation will fail, the application output files will not be emitted, and the application
will not run.

If deployment has been configured for the application via the Deployment tab in the Project
Options dialog and the Deploy On Run option has been selected, then the application will be
automatically deployed after it has been successfully compiled and before it is actually run in the
web browser in the IDE. If there are any errors during deployment, or if the deployment is cancelled,
then the application will not run. The Deploy On Run option is ignored when the selected web
server is the internal web server.

Note
 If you are running the application from an external web server, then it is very important that
you configure the deployment for the application, being sure to select the Deploy On Run
option and then ensure that the deployment settings are accurate for the external web server.
Failure to do so will result in an outdated version of the application running from the external
web server.

You can also use the keyboard to run an application in the IDE by hitting the F9 key.

Specifying Run Parameters

You can specify parameters to be used with the URL used to run the application by using the Parameters
option on the Run menu. URL parameters are specified in the following format:

?param1=paramvalue1¶m2=paramvalue2¶m3=paramvalue3

You can also specify an anchor to be used with the URL used to run the application:

#anchor1

Note
 If specifying both parameters and an anchor, the anchor should be placed after the parameters.

Using the IDE

Page 59

2.8 Saving a Project

Saving Projects

Use the following steps to save a project:

Click on the File option in the main menu. The File menu will open:

Click on the Save All option in the File menu to save all modified source unit and form files, as well
as the project itself.

Using the IDE

Page 60

2.9 Viewing Project Forms and Databases

Use the following steps to view a listing of all forms and databases in a project:

Click on the View option in the main menu. The View menu will open:

Click on the Forms and Databases option in the View menu to open the Project Forms and
Databases dialog:

Note
 Source units that don't have associated form or database files will not appear in the Project Forms
and Databases dialog.

Using the IDE

Page 61

2.10 Viewing Project Units

Use the following steps to view a listing of all source units in a project:

Click on the View option in the main menu. The View menu will open:

Click on the Units option in the View menu to open the Project Units dialog:

Using the IDE

Page 62

2.11 Using the Object Inspector

The object inspector allows you to modify various properties of each user interface component on a form,
giving you complete control over how each component looks and behaves. It is also used to modify the
properties of non-visual components that don't actually have any visual presence on a form at run-time
but are placed on a form at design-time, such as datasets, timers, and server requests.

Note
 The object inspector will only show properties for the currently-selected components on the active
form. It will be blank if a form is not active, such as when you are editing a source unit that does
not have an associated form, or if there isn't a project open in the IDE. Also, if you have selected
more than one component on the active form, the object inspector will only show the properties
that are common to all selected components.

The object inspector consists of a component selection combo box and two pages that represent the
properties and events of a component. You can switch between the two by clicking on the appropriate tab
at the top of the object inspector.

By default, the object inspector is visible in the IDE. If the object inspector is closed, you can open it by
hitting the F11 key, or by using the Object Inspector option on the View menu:

Using the IDE

Page 63

Modifying Properties

To modify any property of a component, make sure that the Properties page is the active page in the
object inspector, click on the desired property value, and type in the new value. If applicable, the property
may have a special property editor in the form of a drop-down list or dialog that is accessible using a
button to the right of the property value. The following is an example of the TStrings property editor for
the TMultiLineEdit Lines property:

Double-clicking on the property value will also automatically launch the applicable property editor.
Properties that represent collections, such as the TDataSet Columns property, will cause an applicable
collection editor to be launched below the object inspector:

Using the IDE

Page 64

Basic information about each property can be found at the bottom of the object inspector.

Modifying Event Handlers

To add, modify, or delete an event handler for a specific component event, make sure that the Events
page is the active page in the object inspector, and then click on the desired event. To add a new event
handler, or modify an existing event handler, double-click on the event handler name. This will activate
the code editor and position you directly on the appropriate event handler code block. If you are adding a
new event handler, then the event handler code block will be empty.

Note
 If you do not add any code or comments to the new event handler, then it will automatically be
removed by the IDE the next time that the source unit and form is saved.

To delete an existing event handler, but keep the event handler code present in the source unit, clear out
the event handler name from the event by selecting the entire name and hitting the Delete key. To delete
an existing event handler (including the event handler code in the source unit), double-click on the event
handler. This will activate the code editor and position you directly on the appropriate event handler code
block. Delete all code between the starting begin and end keywords of the event handler code block. The
next time the source unit and form is saved, the event handler will automatically be removed by the IDE.

For more information on using the code editor, please see the Code Editor topic.

Context-Sensitive Help

You can get context-sensitive help on any property or event in the object inspector by clicking on the
desired property or event and hitting the F1 key. For more information on using the help browser, please
see the Accessing Help topic.

Using the IDE

Page 65

2.12 Using the Form and Database Designers

One of the first phases of web application development is the design of the user interface and database
view(s) for the application. This is accomplished in the IDE by using the WYSIWYG (What You See Is What
You Get) form and database designers.

The form and database designers have the following layout:

The unit of measure used by the designers is the pixel, and the resolution is always assumed to be 96
pixels per inch. All modern web browsers use a virtual resolution of 96 pixels per inch, regardless of the
actual resolution on the client machine's display. The web browser automatically handles the translation
between the virtual resolution and the display resolution of the client machine.

By default, the designers show a grid to aid with component placement and alignment, and the grid
guides (dots) are spaced apart at 8 pixel intervals. Please see the Modifying Environment Options topic for
more information on modifying the designer grid properties.

Adding a Component to a Form

The component palette is available at the top of the main IDE window, and reflects all installed
components in the component library, organized by their installation category:

Using the IDE

Page 66

The component palette is used to add both non-visual components and visual controls on to the form
and database designers for use with your forms and databases. Non-visual components are represented
visually at design-time, but are actually non-visual components at runtime.

Note
 The database designer only allows for non-visual components to be placed on the designer
surface, and the visual size of the database instance in the designer is exclusively a design-time
property.

To see more information about a particular component, hover the mouse over the component icon. The
IDE will display the name of the component and the unit in which it resides in a tooltip window.

To add a non-visual component or visual control to the active form or database in the designer, click on
the desired component/control on the component palette, and then click on the active form or database's
client area. A form's client area is the area inside of the borders and caption bar (if present), whereas the
database's client area is the database's entire designer space.

Selecting a Component

To select a single component in the form and database designers, click on the desired component with
the left mouse button. To select more than one component, hold down the Shift key while clicking on the
desired components with the left mouse button. Selecting multiple components is desirable when one
wants to resize or align multiple components at the same time to ensure that their placement or size is
uniform, or when one wants to copy and paste a group of controls or components.

Note
 Any time you hover the mouse over any component on the active form or database, tooltip
information will be displayed about the component, including the name and position/size.

You can also use the mouse to directly select a group of components using a lasso:

If the group of components are placed on the form or database itself, you can click and hold down
the left mouse button to begin the selection. Then, while keeping the left mouse button down,
move the mouse to lasso the desired component(s).

If the group of components are placed on a sub-container (such as a panel), you can click and hold
down the left mouse button, while also pressing the Ctrl key, to begin the selection. Then, while
keeping the left mouse button and Ctrl key down, move the mouse to lasso the desired
component(s).

Resizing a Component

Once a component has been placed on the active form or database's client area, you will see that the
component will have designer handles on all four sides and corners of the component:

Using the IDE

Page 67

These designer handles can be used to change the origin and size of a component on the form or
database. To accomplish this, click on a designer handle with the left mouse button, hold the left mouse
button down, and drag the designer handle in the desired direction. You can also use the keyboard to
resize a component by holding down the Shift key while using the up, down, right, and left arrow keys to
resize the component on a pixel-by-pixel basis.

Note
 Certain components may have constraints on how tall/wide they can be, and non-visual
components cannot be resized at all. In such cases, attempts to resize the component will result in
the component size not exceeding the constraints imposed by the type of component. Also, you
cannot use the left mouse button to resize components when multiple components are selected. In
such cases, you can only use the keyboard to do so (Shift+Arrow Keys).

Moving a Component

To move a component, click on the component with the left mouse button, hold the mouse button down,
and drag the component to the desired location on the form or database. You can also use the keyboard
to move a component by holding down the Ctrl key while using the up, down, right, and left arrow keys to
move the component on a pixel-by-pixel basis. Both of these techniques also work when multiple
components are selected.

Component Layout and Alignment

The layout toolbar on the form and database designers can be used to adjust the alignment, layering
(send to back/bring to front), and tab ordering of components on the active form or database:

Each layout toolbar button has tooltip help that explains the purpose of the button.

Deleting a Component

To delete a component, select the desired component in the form or database designer and hit the Delete
key. This will also work when multiple components are selected.

Using the IDE

Page 68

Warning
 Undo functionality is currently not available for the form and database designers, so any
modifications or deletions of components cannot be undone. Please be careful when deleting
components to ensure that one does not lose a lot of hard work. If you do accidentally delete a
component from a form or database, you can fix the issue by simply closing the form or database
without saving the modifications, and then re-opening the form or database. However, this
depends upon how much other work has been done to the form or database since the last save
point, so it is wise to save your modifications on a regular basis.

Default Event Handlers

If you double-click on a component in the form and database designers, a new event handler will be
created for the default event property for the component. For most visual or bindable controls, the default
event property is the OnClick or OnChange event. Please see the Events topic in the Language Reference
for more information on default events.

Toggling Between the Code Editor and Designer

In order to toggle between the code editor and the designer, hit the F12 key, click on the toggle button at
the bottom left-hand corner of the code editor and designer, or use the Toggle Designer/Unit option on
the View menu:

Context-Sensitive Help

You can get context-sensitive help on any component in the form and database designers by selecting the
desired component and hitting the F1 key. For more information on using the help browser, please see
the Accessing Help topic.

Using the IDE

Page 69

2.13 Using the Code Editor

While the form and database designers handle the user interface design of the application, the code
editor is where the actual functionality behind a form or database is implemented. The code editor has the
following layout:

Warning
 Although all Unicode characters are supported in the code editor, certain double-wide characters
in languages such as Chinese and Japanese cannot be displayed/edited properly at this time.

Automatic Code Updates

All component additions, modifications, and deletions are automatically reflected in the code editor by
the IDE. For example, the following is the code editor showing the source unit of a new form:

Using the IDE

Page 70

The following is the same source unit in the code editor after adding a TButton component.

Using the IDE

Page 71

As you can see, the IDE automatically updated the source unit to include the proper declaration for the
newly-added TButton component called Button1. If you then double-click on the Button1 component in
the form designer, the source unit will look like the following:

Using the IDE

Page 72

Again, the IDE has automatically updated the source unit to include an empty event handler for the
TButton OnClick event. If you add code to the empty event handler, this code will then be executed when
the button is clicked. For example, let's add a call to the ShowMessage procedure to display a message to
the user:

Using the IDE

Page 73

If you do not define any code or comments between the begin and end keywords that define the event
handler code block, the IDE will automatically remove the event handler completely from the source unit
the next time the source unit and form is saved.

Toggling Between the Code Editor and Designer

There are three ways to toggle between the code editor and the designer:

Hitting the F12 key

Clicking on the toggle button at the bottom left-hand corner of the code editor and designer

Using the IDE

Page 74

Using the Toggle Form/Unit option on the View menu:

Key Mappings

The following key mappings are active in the code editor. Unless indicated otherwise, holding down the
Shift key while pressing any of the keys that move the cursor position will cause any source code between
the original and the final cursor position to be selected.

Keys Action

Up Arrow Moves the cursor to the previous line in the source code.

Down Arrow Moves the cursor to the next line in the source code.

Page Up Moves the cursor to the previous page in the source code.

Page Down Moves the cursor to the next page in the source code.

Home Moves the cursor to the start of the current source code line.

End Moves the cursor to the end of the current source code line.

Left Arrow Moves the cursor to the previous character on the current
source code line.

Right Arrow Moves the cursor to the next character on the current source
code line, or to the next line if at the end of the current
source code line.

Enter Inserts a new line at the current cursor position.

Insert Toggles the insert/overwrite mode for the keyboard.

Shift-Insert Pastes the source code contents of the clipboard, if any, into
the current cursor position.

Delete Deletes the character at the cursor position.

Shift-Delete Copies the currently-selected source code to the clipboard
and deletes the source code from the source code ("cut"
operation).

Using the IDE

Page 75

Backspace Deletes the character right before the cursor position. If the
cursor is at the start of a source code line, then the current
source code line is moved to the end of the previous source
code line (if present).

Tab Inserts <tab size> spaces at the current cursor position, if the
keyboard is in insert mode, or moves the current cursor
position by <tab size> spaces if the keyboard is in overwrite
mode. Please see the Modifying Environment Options topic
for more information on modifying the tab size used by the
code editor.

Shift-Tab Removes <tab size> spaces working back from the current
cursor position, if the keyboard is in insert mode, or moves
the current cursor position to the left by <tab size> spaces if
the keyboard is in overwrite mode. Please see the Modifying
Environment Options topic for more information on
modifying the tab size used by the code editor.

Ctrl-Home Moves the cursor to the first source code line.

Ctrl-End Moves the cursor to the last source code line.

Ctrl-Page Up Moves the cursor to the first visible line on the current page.

Ctrl-Page Down Moves the cursor to the last visible line on the current page.

Ctrl-Left Arrow Moves the cursor to the start of the previous token in the
source code.

Ctrl-Right Arrow Moves the cursor to the start of the next token in the source
code.

Ctrl-Up Arrow Scrolls the code editor window up by one line.

Ctrl-Right Arrow Scrolls the code editor window down by one line.

Ctrl-Enter Opens the unit name or control interface name at the cursor
position. If text is selected, then the selected text will be used
first for searching for a valid unit name or control interface. If
no text is selected, or the selected text does not represent a
valid unit or control interface name, then the editor will parse
the current token and use it instead.

Ctrl-/ Comments and un-comments (toggle) the current source
code line.

Ctrl-Insert Copies the currently-selected source code to the clipboard.

Ctrl-Backspace Deletes the token right on, or right before, the current cursor
position. If the cursor is at the start of a source code line, then
the current source code line is moved to the end of the
previous source code line (if present).

Ctrl-A Selects all source code in the code editor.

Ctrl-C Copies the currently-selected source code to the clipboard.

Using the IDE

Page 76

Ctrl-I Indents the current source code line by <tab size> spaces.
Please see the Modifying Environment Options topic for more
information on modifying the tab size used by the code
editor.

Ctrl-N Inserts a new line at the current cursor position.

Ctrl-T Deletes the token at the current cursor position.

Ctrl-U Un-indents the current source code line by <tab size> spaces.
Please see the Modifying Environment Options topic for more
information on modifying the tab size used by the code
editor.

Ctrl-V Pastes the source code contents of the clipboard, if any, into
the current cursor position.

Ctrl-X Copies the currently-selected source code to the clipboard
and deletes the source code from the source code ("cut"
operation).

Ctrl-Y Deletes the current source code line.

Shift-Ctrl-Y Deletes the source code from the current cursor position to
the end of the current source code line.

Ctrl-Z Reverses the last edit or find operation performed on the
source code ("undo" operation).

Shift-Ctrl-Z Replays the last edit or find operation on the source code that
was reversed ("redo" operation).

Shift-Ctrl-Down Arrow Moves the cursor from the class definition of a method to the
implementation of the method.

Shift-Ctrl-Up Arrow Moves the cursor from the implementation of a method to its
class definition.

Context-Sensitive Help

You can get context-sensitive help on any keyword or identifier in the code editor by positioning the
cursor over the desired keyword or identifier and hitting the F1 key. For more information on using the
help browser, please see the Accessing Help topic.

Using the IDE

Page 77

2.14 Using the Project Manager

The project manager provides a quick and easy-to-use interface to the contents of a project, including all
source units (code-behind units for forms and databases, and code-only units) and external files like
images or Javascript source files.

Note
 Simply adding an external JavaScript source file to a project is insufficient for actually referencing
such external code from within an Elevate Web Builder application. You must also define an
external interface to the classes, functions, procedures, and variables that you wish to reference in
your application code. For more information on defining external interfaces, please see the External
Interfaces topic.

By default, the project manager is visible in the IDE. If the project manager is closed, you can open it by
holding down the Ctrl and Alt keys and hitting the F11 key, or by using the Project Manager option on the
View menu:

Adding an Existing Source Unit to a Project

Use the following steps to add an existing source unit to a project using the project manager:

Using the IDE

Page 78

Click on the Units node of the project contents tree.

Click on the Add button in the project manager toolbar:

A Windows file open dialog will appear. Navigate to, and select, the existing source unit that you
wish to add to the project. Click on the Open button in the Windows file open dialog to complete
adding the source unit to the project.

Removing a Source Unit from a Project

Use the following steps to remove a source unit from a project using the project manager:

Click on the name of the source unit that you wish to remove:

Click on the Remove button in the project manager toolbar:

A confirmation dialog will be displayed, asking you to confirm the removal of the source unit from
the project. Click on the Yes button to continue, or the No button to cancel the removal.

Note
 Removing a source unit from a project does not delete the actual source unit file on disk. It only
removes the reference to the source unit from the project source file (.wbp) so that it will not be
considered part of the project anymore.

Using the IDE

Page 79

Adding an Existing External File to a Project

Use the following steps to add an existing external JavaScript file to a project using the project manager:

Click on the External Files node of the project contents tree.

Click on the Add button in the project manager toolbar:

The Add External File dialog will appear:

Select the type of external file to add using the Type combo box. If the file is a local file (the default),
then leave the Local radio button selected and specify the local file name using the File edit control
and/or the file selection button to the right of the edit control. If the file is an http resource, then
select the Resource radio button and specify the URL for the resource using the File edit control.
Click the OK button when you are done specifying the external file to add.

Note
 When adding an external local file, Elevate Web Builder will automatically convert any
absolute path specified for the external file to a path that is relative to the current project
directory.

If you select Font as the type of external file to add, the Add External File dialog will change to look
like the following:

Using the IDE

Page 80

This additional information is necessary to ensure that the proper font linking information is added
to the project's HTML loader file during compilation, and to ensure that the proper font is selected
at runtime. Use the Font Name combo box to select or enter the name of the font that should be
used at runtime, and the Bold and Italic check boxes to specify if the font is a bold or italic version
of the font.

Removing an External File from a Project

Use the following steps to remove an external file from a project using the project manager:

Click on the name of the external file that you wish to remove:

Click on the Remove button in the project manager toolbar:

A confirmation dialog will be displayed, asking you to confirm the removal of the external file from
the project. Click on the Yes button to continue, or the No button to cancel the removal.

Using the IDE

Page 81

Note
 Removing an external file from a project does not delete the actual external file on disk. It only
removes the reference to the external file from the project configuration file (.wbc) so that it will no
longer be considered part of the project.

Opening the Project Folder

You can quickly open the project folder for browsing in the operating system by using the project folder
toolbar button in the project manager.

To open the project folder:

Click on the Project Folder button in the project manager toolbar:

Quick Compiler Settings for a Project

You can toggle certain compilation settings quickly by using the project compiler options toolbar in the
project manager.

To toggle the compressed output compilation setting:

Click on the Compressed Output button in the project manager toolbar:

Using the IDE

Page 82

2.15 Using the Database Manager

The database manager provides a quick and easy-to-use interface to the databases and datasets defined
in the IDE. The databases and datasets that are defined in the database manager are only available to the
internal web server embedded in the IDE, and are a way of automating the usage of databases and
datasets across multiple projects. The outer nodes in the database manager represent the defined
databases, with all datasets within a given database defined as child nodes of each database node.

By default, the database manager is visible in the IDE. If the database manager is closed, you can open it
by using the Database Manager option on the View menu:

Using Databases and DataSets in Projects

A database defined in the database manager can be used to create a database in a project by dragging
the database from the database manager and dropping it into the project manager for the currently-
opened project. When the database is dropped on or within the Units node of the project manager, a
new TDatabase (or descendant) instance will be created for the project, along with an associated unit, and
all of the defined datasets for the database will automatically be created as TDataSet instances in the new
database instance.

A dataset defined in the database manager can be used to create a new dataset in the project by
dragging the dataset from the database manager and dropping it on an open form or database designer

Using the IDE

Page 83

in the currently-opened project. When the dataset is dropped on the form or database designer, a
TDataSet instance will be created as a component of the form or database and all of the columns in the
dataset will automatically be created in the new TDataSet instance.

Adding a New Database

Use the following steps to add a new database using the database manager:

Click on the Add Database button in the database manager toolbar:

The database editor dialog will appear. Please refer to the next section for information on defining
the database.

Defining a Database

The database editor dialog consists of 2 pages:

General - the database engine/server type, the name of the database, and the description.

Currently, the following database engines are supported:

ElevateDB
DBISAM
ADO (includes OLEDB/ODBC)

Using the IDE

Page 84

Connection Properties - the name/location of the database and other configuration properties
essential to establishing a proper connection to the desired database. The options on this page are
specific to the database engine selected on the first page.

Once the connection properties are set, you can use the Test Connection button to verify that
everything is set properly. Please see your database engine manual/documentation for more
information on the proper value for each property setting.

Once you have properly set the connection properties and successfully tested the connection to the
database, click on the OK button to close the database dialog and save the database.

Editing an Existing Database

To edit an existing database using the database manager, simply double-click on the desired database in
the list of databases in the database manager. The database editor dialog will then appear, and you can
use it to modify the database accordingly.

Removing a Database

Use the following steps to remove a database using the database manager:

Using the IDE

Page 85

Click on the name of the database that you wish to remove:

Click on the Remove Database button in the database manager toolbar:

A confirmation dialog will be displayed, asking you to confirm the removal of the database. Click on
the Yes button to continue, or the No button to cancel the removal.

Adding a New DataSet

Use the following steps to add a new dataset using the database manager:

Be sure that you have selected an existing database in the database manager by clicking on the
desired existing database:

Click on the Add DataSet button in the database manager toolbar:

The dataset editor dialog will appear. Please refer to the next section for information on defining
the dataset.

Using the IDE

Page 86

Defining a DataSet

The dataset editor dialog consists of 3 pages:

General - the name of the dataset and the description.

Using the IDE

Page 87

Row Source - the actual source of the dataset rows can be an actual table name from the selected
database, or it can be an SQL SELECT statement.

Elevate Web Builder uses a special parameter naming syntax for queries, and does not use the
native parameter functionality in the target database engine. This is done because some database
engines do not support named parameters, or do not support parameter type discovery or
enumeration. When the dataset rows are requested from the internal web server embedded in the
IDE, it automatically populates the named parameters in the query by using the URL "name=value"
parameters passed with the dataset rows request. These parameters can be specified in the
application via the TDataSet Params property.

Using the IDE

Page 88

Preview - use the preview page to make sure that the dataset is returning the correct rows. Any
default values for parameters defined on the Row Source page are applied for the preview, so if you
have not defined any default parameter values you may see zero rows displayed.

Editing an Existing DataSet

To edit an existing dataset using the database manager, simply double-click on the desired dataset in the
list of datasets in the database manager. The dataset editor dialog will then appear, and you can use it to
modify the dataset accordingly.

Removing a DataSet

Use the following steps to remove a dataset using the database manager:

Click on the name of the dataset that you wish to remove:

Using the IDE

Page 89

Click on the Remove DataSet button in the database manager toolbar:

A confirmation dialog will be displayed, asking you to confirm the removal of the dataset. Click on
the Yes button to continue, or the No button to cancel the removal.

Using the IDE

Page 90

2.16 Viewing Messages

The messages view provides status information for compilation, as well as logging of debug messages
sent from a web application. You can find out more information on sending debug messages to the IDE in
the Debugging topic.

By default, the messages panel is visible in the IDE. If the messages panel is closed, you can open it by
using the Messages option on the View menu:

Compilation Messages

There are three types of messages that may appear during compilation of an application:

Using the IDE

Page 91

Message Type Description

Error This message indicates that an error has occurred during
compilation. You can double-click on the error to go to the
source unit line responsible for the error. Compilation errors
are fatal, and prevent the compiler from successfully emitting
an application.

Warning This message indicates that the compiler is warning that there
is source code present that may cause run-time errors if not
corrected. An example of this would be a reference to an
uninitialized variable. You can double-click on the error to go
to the source unit line responsible for the warning.
Compilation warnings are not fatal, but one should always
make sure to change the source code to remove such
warnings in order to ensure that the compiled application is
as reliable as possible.

Hint This message indicates that the compiler has a hint regarding
the compilation. An example of this would be a variable that
is declared but never actually referenced. You can double-
click on the hint to go to the source unit line responsible for
the hint. Compilation hints are not fatal and can be safely
ignored.

After the compilation of an application has successfully completed, or has failed, you will also see a status
message summarizing the result of the compilation, including messages indicating which output files
were emitted, and their location.

Deployment Messages

During deployment of an application, the copying of all application files is logged in the messages panel,
one line per file.

Design-Time Execution Messages

In rare cases, component library code that contains one or more bugs may cause an exception at design-
time. In such a case, you'll see a runtime error message appear in the messages panel. Double-clicking on
the runtime error message will display a debug dialog that will show you the complete error message
along with a call stack trace up until the point of the exception.

HTML Form Submittal Messages

If you use the special form submittal URL (http://localhost/formsubmit) to submit an HTML form, the
results of the submittal will be echoed back to the messages panel. Double-clicking on the form submittal
results will display a debug dialog that will show you the complete set of form values received by the web
server. This works with both the internal web server and any external EWB Web Server. Please see the
Using HTML Forms topic for more information.

Using the IDE

Page 92

2.17 Modifying Environment Options

The Environment Options dialog allows you to configure the following aspects of the Elevate Web Builder
IDE:

The project options settings
The code editor settings
The code editor display settings
The designer settings
The component library settings
The internal web server settings
The web server modules added to the internal web server
The external web servers added to the IDE
The help files added to the IDE

Use the following steps to modify the environment options for the IDE:

Click on the Environment option in the main menu. The Environment menu will open:

Click on the Options option in the Environment menu to open the Environment Options dialog.

Project Options

The Project Options page provides options for modifying the project options settings.

Using the IDE

Page 93

Using the IDE

Page 94

Option Description

Automatically save before project
compilation

Select this check box to make sure that the IDE automatically
saves all modified units and project files before compiling the
currently-loaded project. This option is selected, by default.

Save/restore non-project files with
project

Select this check box to have the IDE automatically save and
restore any units that are open in the IDE, but are not actually
part of the currently-loaded project. This option also applies
to control interfaces that are open in the IDE and is selected,
by default.

Automatically load custom control
interfaces in project search paths

Select this check box to have the IDE automatically load any
custom control interface files located in the project's compiler
search paths whenever a project is opened in the IDE. When
checking to see if a control interface has been customized, the
IDE compares the path of the default control interface file
used with the component library (based upon the Library
Search Paths setting on the Component Library page) with the
path of any control interfaces with the same file name present
in the project's compiler search paths. If a match is found,
then the control interface file found in the project's compiler
search paths is loaded into the IDE and used with the project's
form designers. After the project is closed, the default control
interfaces are reloaded. This check box is selected, by default.

Default ancestor form class for new form
instances

Specifies the default ancestor form class for the new form
class selection dialog that is displayed when creating a new
form in the IDE. The default ancestor form class is the TForm
class.

Default ancestor database class for new
database instances

Specifies the default ancestor database class for the new
database class selection dialog that is displayed when creating
a new database in the IDE. The default ancestor database class
is the TDatabase class.

Automatically add new forms and
databases to auto-created forms and
databases

Select this check box to make sure that any newly-create
forms and databases are automatically added to the list of
auto-created forms and databases for the application. This
option is selected, by default.

Editor

The Editor page provides options for modifying the code editor settings.

Using the IDE

Page 95

Using the IDE

Page 96

Option Description

Tab Size The number of spaces between each tab position. The default
is 3 spaces.

Allow the cursor in white space Select this check box in order to allow the cursor to be
positioned in white space areas in the code editor. By default,
if you move to an area of the code editor that is white space,
the cursor will be moved to the next closest source code to
the white space. The definition of "white space" in this context
is the area of the code editor where there is no source code
present.

Find text at cursor Select this check box to have the code editor populate the
Find or Replace search text box with the current word under
the cursor when searching or replacing text in the code editor.
By default, the last searched text will appear in the Find or
Replace search text box.

Find wrap around Select this check box to have the code editor wrap around to
the start/end of the source when searching or replacing text in
the code editor. The direction in which the searching or
replacing wraps is determined by the direction of the search
or replace operation. By default, the code editor will stop
when reaching the start/end of the source during a search or
replace operation.

Prompt to reload external modifications Select this check box to have the code editor prompt the user
when any source loaded in the code editor is modified by an
external application. The prompt will ask the user to confirm
whether they wish to load the modified source into the code
editor. By default, the code editor will prompt the user when
any source is changed by an external application.

Editor Display

The Editor Display page provides options for modifying the code editor settings.

Using the IDE

Page 97

Option Description

Font Use this combo box to select the fixed-width font to use for all
text in the code editor. The default code editor font is the
"Courier New" font.

Size The size of the fixed-width font, in points. The default size is
10 points.

Element Use this list box to select the various text elements present in
the code editor and modify their visual properties such as
their foreground and background colors and the style of the
text.

Designer

The Designer page provides options for modifying the designer settings.

Using the IDE

Page 98

Option Description

Display grid on designer surface Select this check box to enable the display of an alignment
grid on the designer surface. The default state is checked.

Snap controls to grid Select this check box to cause the designer to automatically
align any controls/elements to the grid when they are
inserted, resized, or moved. The default state is checked.

Grid Color Select the color of the alignment grid. The default is
clDodgerBlue.

Grid Size The number of pixels between each grid point in the
alignment grid, both on the horizontal (X) and vertical (Y) axes.
The default grid size is 8 pixels by 8 pixels.

Selection Point Active Color Select the color of selection points when the designer is active.
The default is clDodgerBlue.

Selection Point Inactive Color Select the color of selection points when the designer is not
active. The default is clGray.

Selection Point Visible Size Use this edit to specify the visible size of selection points. The
default size is 6 pixels (square).

Selection Point Mouse Size Use this edit to specify the size of the area in which the mouse
can operate on the selection points. If you are visually-
impaired, then you may want to increase these values to make
working with the selection points easier. The default is 10
pixels (square).

Using the IDE

Page 99

Component Library

The Component Library page provides options for modifying the component library settings.

Using the IDE

Page 100

Option Description

Search Paths The component library search paths are used to specify where
the component library source unit files are located. These
search paths ensure that the compiler can always find the
component units, and any referenced control interfaces,
installed into the component library, as well as any core units
that are necessary for all Elevate Web Builder applications. The
component library search paths are initially configured during
installation. If you wish to add additional paths to the
component library search paths, then this is where you would
do so. When specifying more than one search path, be sure to
separate multiple paths with a semicolon (;).

Note
 These search paths are global to both applications and
the component library, but the project's search paths
always take precedence over these search paths.

Validate standard components at startup Select this check box to have the IDE check for the existence
of the standard Elevate Web Builder components during
startup. If any of the standard components are missing, or not
found in their default location, then the user will be asked to
confirm adding the missing standard components. By default,
the IDE will always validate the standard components during
startup.

Internal Web Server

The Internal Web Server page provides options for modifying the internal web server settings.

Using the IDE

Page 101

Option Description

Auto-Start Select this check box to specify that the internal web server
should be automatically started when the IDE is started. The
default is checked.

Listen on Port Use this edit to specify the port number that the internal web
server should listen on. The default is port 80.

Databases Resource Name Specifies the resource name to use for the automatic database
handling built into the internal web server. The default value is
'databases'. Please see the Creating and Loading DataSets
topic for more information on how this resource name is used
in database requests.

Database Modules Resource Name Specifies the resource name to use for any database
modulesadded to the internal web server (see next). The
default value is 'databasemodules'. Please see the Creating
and Loading DataSets topic for more information on how this
resource name is used in database requests.

Modules Resource Name Specifies the resource name to use for the modules added to
the internal web server. The default value is 'modules'. Please
see the Creating Web Server Modules topic for more
information on how this resource name is used in module
requests.

Internal Web Server Modules

Using the IDE

Page 102

The Internal Web Server Modules page provides options for adding and removing modules (*.dll) that
were created using Embarcadero RAD Studio and Delphi and an Elevate Web Builder Module template
project from the repository in the RAD Studio IDE. Adding modules to the internal web server allows the
modules to be used to respond to requests and provide content to the Elevate Web Builder application
running in the IDE.

Adding a Module

In order to add a module, complete the following steps:

Click on the Add button

Using the IDE

Page 103

The Add Module dialog will appear.

In the dialog, specify the file name of the module (.dll) that you wish to add to the internal web
server. You can type in the file name directly, or use the browse button (...) to select the module
using a common Windows file dialog. If you use the browse button, the module description and
version will be populated from the module after the file is selected. The description and version are
read directly from the .dll's version information.

Click on the OK button. If the specified file is a valid Elevate Web Builder module, then the module
will be added to the internal web server. If the specified file is not a valid module file, then an error
message will be displayed indicating any issues with the module file.

Removing a Module

In order to remove a module, complete the following steps:

Select an existing module from the list of modules.

Click on the Remove button.

Note
 If you remove a module that is used by Elevate Web Builder applications, then you will experience
errors in these applications when they try to execute requests that reference these modules in the
URL for the request.

Please see the Creating Web Server Modules topic for more information how the modules work.

External Web Servers

The External Web Servers page provides options for adding external web servers for use in the IDE. Once
an external web server is added, it can be selected as the target web server when running applications.
Please see the Running a Project topic for more information on running applications.

Using the IDE

Page 104

Adding an External Web Server

In order to add an external web server, complete the following steps:

Click on the Add button.

The Add External Web Server dialog will appear.

Using the IDE

Page 105

In this dialog, specify the name of the external web server that you wish to add to the IDE. This will
be used to uniquely identify the external web server.

Next, specify the short description of the external web server. This will be used in the web server
selection combo box in the IDE.

Next, specify the URL of the external web server. This will be used by the web browser in the IDE to
load an application from the external web server when is it is the currently-selected web server.

Finally, specify the port on which the external web server will listen for requests from the web
browser in the IDE. The default port is 80, which is the standard web server port (HTTP protocol).

Click on the OK button. If all information for the external web server is specified correctly, then the
external web server will be added to the IDE for use with your projects. If the specified external web
server information is missing or invalid, then an error message will be displayed indicating any issues
with the information.

Editing an External Web Server

In order to edit an external web server that is already added, complete the following steps:

Select an existing external web server from the list of web servers.

Click on the Edit button.

The Edit External Web Server dialog will appear.

Modify the external web server information as required.

Click on the OK button. If all information for the external web server is specified correctly, then the
external web server will be added to the IDE for use with your projects. If the specified external web
server information is missing or invalid, then an error message will be displayed indicating any issues
with the information.

Removing an External Web Server

In order to remove an external web server, complete the following steps:

Using the IDE

Page 106

Select an existing external web server from the list of web servers.

Click on the Remove button.

Help

The Help page provides options for adding and removing help files (*.wbh). By default, the help for Elevate
Web Builder is added automatically during the IDE startup process, so normally you will not need to add
any additional help files. However, if you install any 3rd party components into the IDE, they may come
with online help to use with the components, and that help can be added here.

Note
 The default Elevate Web Builder help file is always shown in the list of added help files, but it cannot
be removed.

Adding Help

In order to add a help, complete the following steps:

Click on the Add button.

Using the IDE

Page 107

The Add Help dialog will appear.

In this dialog, specify the file name of the help file (.wbh) that you wish to add to the IDE in the edit
control. You can type in the file name directly, or use the browse button (...) to select the help file
using a common Windows file dialog. If you use the browse button, the help file name and title will
be populated from the help file after the file is selected.

Click on the OK button. If the specified file is a valid Elevate Web Builder help file, then the help file
will be added to the IDE for use from the Help menu. If the specified file is not a valid help file, then
an error message will be displayed indicating any issues with the help file.

Removing Help

In order to remove a help file, complete the following steps:

Select an existing help file from the list of help files.

Click on the Remove button.
Please see the Accessing Help topic for more information on accessing the help in the IDE.

Using the IDE

Page 108

2.18 Creating a New Component

Use the following steps to create a new component in the IDE:

Click on the Library option in the main menu. The Library menu will open.

Click on the New Component option in the Library menu:

The New Component dialog will now appear:

In this dialog, specify the class name of the component that you wish to create in the first edit
control. By convention, any class name in Elevate Web Builder should be prefixed with a capital "T".

Next, select the ancestor component class name for the new component by using the combo box
provided.

Click on the OK button. A new source unit containing the skeleton code for the new component
class will now appear in the code editor. Please see the Using the Code Editor topic for more
information on using the code editor.

Using the IDE

Page 109

2.19 Adding a Component to the Component Library

Use the following steps to add a new component to the component library:

Click on the Library option in the main menu. The Library menu will open.

Click on the Add Component option in the Library menu:

The Add Component dialog will now appear:

Using the IDE

Page 110

In this dialog, specify the class name of the component that you wish to add to the component
library in the first edit control.

Next, specify the source unit file where the class name is declared. At least one of the declared
classes in the source unit should match the specified class name. If not, an error will occur when the
component library is rebuilt. You can type in the file name directly, or use the browse button (...) to
select the source unit using a common Windows file dialog.

Next, select an existing component palette category in which to place the component, or type in a
new category in which to place the component using the combo box provided.

Next, select an icon file to use to represent the component on the component palette. The icon file
should be a 16 by 16 pixel PNG, JPEG, or GIF image file. You can type in the file name directly, or
use the browse button (...) to select the icon file using a common Windows file dialog. After a valid
file name has been specified or selected, a preview of the icon file will be shown in the Preview area.

Note
 This step is optional, if you don't specify an icon file, or if the specified icon file is invalid,
Elevate Web Builder will use a default, generic icon for the component on the component
palette.

Click on the OK button.

If there is a project open in the IDE, then you will see the following dialog appear:

Click on the Yes button to continue with rebuilding the component library.

The component library will now automatically be rebuilt and, if there were no errors during the
compilation of the component library, the component just added will now appear on the
component palette in the specified category. If there were one or more errors during the
compilation of the component library, then you should correct the error(s) in the applicable source
unit(s), and rebuild the component library manually. To see how to manually rebuild the component
library, please see the Rebuilding the Component Library topic.

Using the IDE

Page 111

2.20 Removing a Component from the Component Library

Use the following steps to remove an existing component from the component library:

Click on the Library option in the main menu. The Library menu will open.

Click on the Remove Component option in the Library menu:

The Remove Component dialog will now appear:

Using the IDE

Page 112

In this dialog, select the category where the component that you wish to remove is installed.

Next, click on the check box next to any or all component(s) that you wish to remove from the
component library.

Next, click on the Remove Empty Category check box in order to also remove the selected category.

Note
 The Remove Empty Category check box is only enabled if the selected category will be
empty after removing the selected component(s).

Click on the OK button.

If there is a project open in the IDE, then you will see the following dialog appear:

Click on the Yes button to continue with rebuilding the component library.

The component library will now automatically be rebuilt and, if there were no errors during the
compilation of the component library, the selected component(s) will be removed from the selected
category on the component palette. If there were one or more errors during the compilation of the
component library, then you should correct the error(s) in the applicable source unit(s), and rebuild
the component library manually. To see how to manually rebuild the component library, please see
the Rebuilding the Component Library topic.

Note
 You should not normally encounter compilation errors when removing components from the
component library. However, it is possible that one or more source units used in the
component library have been modified since the last time the component library was rebuilt,
and those modifications may have introduced compilation errors.

Using the IDE

Page 113

2.21 Rebuilding the Component Library

Use the following steps to rebuild the component library:

Click on the Library option in the main menu. The Library menu will open.

Click on the Build option in the Library menu:

The following dialog will now appear:

Click on the Yes button to continue with rebuilding the component library.

The component library will now automatically be rebuilt and, if there were no errors during the
compilation of the component library, any changes to the source units and/or control interfaces
used in the component library will be reflected in any open form and database designers. If there
were one or more errors during the compilation of the component library, then you should correct
the error(s) in the applicable source unit(s), and rebuild the component library again.

Using the IDE

Page 114

2.22 Creating a New Control Interface

Use the following steps to create a new control interface in the IDE:

Click on the File option in the main menu. The File menu will open:

Click on the New option in the File menu to open the New sub-menu. From the New sub-menu,
select the Interface option.

A new control interface will now appear in the Control Interface Editor.

Using the IDE

Page 115

2.23 Modifying a Control Interface

Use the following steps to modify an existing control interface in the IDE:

Click on the File option in the main menu. The File menu will open:

Click on the Open Interface option in the File menu. A Windows file open dialog will appear.
Navigate to, and select, the existing control interface that you wish to modify. Click on the Open
button in the Windows file open dialog to complete opening the control interface.

The existing control interface will now appear in the Control Interface Editor.

Using the IDE

Page 116

2.24 Using the Control Interface Editor

The control interface editor is used for creating new control interfaces or editing existing control
interfaces. It has the following layout:

The unit of measure used by the interface designer is the pixel, and the resolution is always assumed to be
96 pixels per inch.

By default, the interface designer shows a grid to aid with component placement and alignment, and the
grid guides (dots) are spaced apart at 8 pixel intervals. Please see the Modifying Environment Options
topic for more information on modifying the interface designer grid properties.

Note
 If you haven't already, please make sure to read the Control Interfaces topic before proceeding. It
explains the structure of control interface and many of the control interface concepts that are used
in the control interface editor.

Specifying the Interface Class Name

Use the Interface Class Name combo box to select an existing control class name for a control included in

Using the IDE

Page 117

the component library, or type in a new interface class name. The interface class name normally
corresponds to an existing control class name, but does not always do so. However, as discussed in the
Control Interfaces topic, the specified interface class name should correspond to a value returned by the
protected TControl GetInterfaceClassName method for one or more controls in the component library.

Note
 If the interface class name does not correspond to any interface class names used by any controls
in the component library, then the interface will effectively be ignored by the component library.

Adding a New Interface State

Control interfaces consist of one or more interface states. The default state is, by convention, named
"Normal" and defined as the first interface state in the list of interface states.

Use the following steps to add a new interface state to the control interface:

Click on the Add State toolbar button:

The New Interface State dialog will now appear:

In this dialog, specify the name of the interface state that you wish to create in the first edit control.

Optionally, next, select an existing interface state to copy by using the combo box provided.

Click on the OK button. A new interface state with the specified name will now appear in the list of
defined interface states, and this interface state will be the selected interface state. If you copied an
existing interface state, then the copied interface elements will appear in the middle element
designer. If you did not copy an existing interface state, then a default "Base" element will appear in
the element designer.

Removing an Existing Interface State

Use the following steps to remove an existing interface state from the control interface:

Using the IDE

Page 118

Click on the Remove State toolbar button:

A dialog similar to the following will now appear:

The name of the specifed interface state will reflect the interface state being removed. Click Yes to
remove the selected interface state, or No to cancel the removal of the interface state.

Moving an Interface State

You can use drag and drop operations with the mouse to move an interface state to a different position in
the list of defined interface states. Simply click on the desired interface state with the left mouse button,
hold the left mouse button down, and drag the interface state to the desired new position.

Element Inspector

The element inspector is located on the right-hand side of the control interface editor, and allows you to
modify the properties of the currently-selected element in the element designer. It consists of an element
selection combo box and a list of the properties of an element:

Using the IDE

Page 119

To modify any property of an element, click on the desired property value, and type in the new value. If
applicable, the property may have a special property editor in the form of a drop-down list or dialog that
is accessible using a button to the right of the property value. Double-clicking on the property value will
also automatically launch the applicable property editor.

You can get context-sensitive help on any property in the element inspector by clicking on the desired
property and hitting the F1 key. For more information on using the help browser, please see the Accessing
Help topic.

Adding a New Element to an Interface State

Control interface states consist of one or more interface elements. The default element is, by convention,
named "Base" and defined as the base container element for the interface state.

Use the following steps to add a new element to an interface state:

Click on the Add Element toolbar button:

Click on the client area of an element in the element designer. The client area of an element is the
area inside of the borders for the element.

Selecting an Element

To select a single element in the element designer, click on the desired element with the left mouse
button. To select more than one element, hold down the Shift key while clicking on the desired elements
with the left mouse button. Selecting multiple elements is desirable when one wants to resize or align
multiple elements at the same time to ensure that their placement or size is uniform, or when one wants
to copy and paste a group of elements.

Note
 Any time you hover the mouse over any element, tooltip information will be displayed about the
element, including the name and position/size.

You can also use the mouse to directly select a group of elements using a lasso:

If the group of elements are placed on the base element itself, then you can click and hold down
the left mouse button to begin the selection. Then, while keeping the left mouse button down,
move the mouse to lasso the desired element(s).

If the group of elements are placed on a child element, then you can click and hold down the left
mouse button, while also pressing the Ctrl key, to begin the selection. Then, while keeping the left
mouse button and Ctrl key down, move the mouse to lasso the desired element(s).

Resizing an Element

Once an element has been placed on the active element's client area, you will see that the element will
have designer handles on all four sides and corners of the element:

Using the IDE

Page 120

These designer handles can be used to change the origin and size of an element. To accomplish this, click
on a designer handle with the left mouse button, hold the left mouse button down, and drag the designer
handle in the desired direction. You can also use the keyboard to resize an element by holding down the
Shift key while using the up, down, right, and left arrow keys to resize the element on a pixel-by-pixel
basis.

Note
 Certain elements may have constraints on how tall/wide they can be. In such cases, attempts to
resize the element will result in the element size not exceeding the specified constraints. Also, you
cannot use the left mouse button to resize elements when multiple elements are selected. In such
cases, you can only use the keyboard to do so (Shift+Arrow Keys).

Moving an Element

To move an element, click on the element with the left mouse button, hold the mouse button down, and
drag the element to the desired location. You can also use the keyboard to move an element by holding
down the Ctrl key while using the up, down, right, and left arrow keys to move the element on a pixel-by-
pixel basis. Both of these techniques also work when multiple elements are selected.

Element Layout and Alignment

The layout toolbar on the element designer can be used to adjust the alignment and layering (send to
back/bring to front) of elements:

Each layout toolbar button has tooltip help that explains the purpose of the button.

Deleting an Element

To delete an element, select the desired element in the element designer and hit the Delete key or click on
the Remove Element toolbar button:

This will also work when multiple elements are selected.

Using the IDE

Page 121

Warning
 Undo functionality is currently not available for the element designer, so any modifications or
deletions of elements cannot be undone. Please be careful when deleting elements to ensure that
one does not lose a lot of hard work. If you do accidentally delete an element, you can fix the issue
by simply closing the interface without saving the modifications, and then re-opening the interface.
However, this depends upon how much other work has been done to the interface since the last
save point, so it is wise to save your modifications on a regular basis.

Using the IDE

Page 122

2.25 Opening the Icon Library

Use the following steps to open the icon library:

Click on the Library option in the main menu. The Library menu will open.

Click on the Open Icon Library option in the Library menu:

The icon library will now be opened in the Control Interface Editor.

Note
 The icon library that is opened is dependent upon the active project and whether there exists a
customized version of the icon library in one of the active project's search paths. If there are no
customized icon libraries in the search paths for the active project, then the default icon library that
ships with Elevate Web Builder will be opened.

If you want to customize the icon library that ships with Elevate Web Builder for the active project, simply
use the File/Save As menu option to save the default icon library interface file in a different
folder/directory. You should always use the default interface file name "TIconLibrary.wbi", even for
customized icon libraries. If you do not use the correct interface file name, then the customized icon
library will be ignored.

Using the IDE

Page 123

This page intentionally left blank

Using Visual Controls

Page 124

Chapter 3
Using Visual Controls

3.1 Standard Controls

The following are the visual controls in the standard component library included with Elevate Web Builder.
They are grouped and ordered by the category in which they are installed and displayed on the
component palette in the IDE.

Standard

The standard controls are those commonly used for the display and editing of data, and most of them are
capable of being bound to a dataset. Please see the Binding Controls to DataSets topic for more
information.

Control Description

 TLabel Label control

 THTMLLabel HTML label control

 TBalloonLabel Balloon label control

 TAlertLabel Alert label control

 TButton Button control

 TDialogButton Dialog button control

 TIconButton Icon button control

 TCheckBox Check box control

 TRadioButton Radio button control

 TEdit Single-line edit control

 TPasswordEdit Single-line password edit control

 TMultiLineEdit Multi-line edit control

 TListBox List box control

 TCalendar Calendar control

 TButtonComboBox Button combo box control

 TEditComboBox Editable combo box control

 TDateEditComboBox Editable date combo box control

 TDialogEditComboBox Editable dialog combo box control

 TFileComboBox File upload combo box control

 TGrid Grid control

Using Visual Controls

Page 125

Graphics

Graphic controls are used for displaying images or providing a canvas for drawing/painting operations:

Control Description

 TImage Image control

 TIcon Icon control

 TAnimatedIcon Animated icon control

 TPaint Painting control with canvas

 TSlideShow Slide-show control

Indicators

Indicator controls show progress and other types of graphic information:

Control Description

 TProgressBar Progress bar control

Multimedia

Multimedia controls allow the playback of both audio and video:

Control Description

 TAudio Audio playback control

 TVideo Video playback control

Containers

Container controls are used to group together controls within a parent control:

Control Description

 THeaderPanel Header panel control

 TScrollPanel Scrollable panel control

 TBasicPanel Basic panel control

 TGroupPanel Group panel control with caption

 TPanel Panel control with caption bar

 TPagePanel Paged panel control

 TSizer Sizer control

Using Visual Controls

Page 126

Menus

Menu controls are used for displaying a list of focusable and selectable menu items:

Control Description

 TMenu Menu control

 TMenuBar Menu bar control

ToolBars

Toolbar controls are groups of non-focusable buttons contained within a parent control:

Control Description

 TToolBar Toolbar control

 TDataSetToolBar Dataset toolbar control

Browser

Browser controls are encapsulations of various types of legacy browser functionality:

Control Description

 THTMLForm HTML form control

 TLink Link control

 TBrowser HTML document display control

 TPlugin Plugin control

 TMap Google Maps control

Using Visual Controls

Page 127

3.2 Creating and Showing Forms

Before using any form classes, you must first create an instance of the form class, which you can do at
design-time or at run-time:

Creating a Form at Design-Time

The easiest way to create a form is by using the IDE to create a new form. When a form is created at
design-time in the IDE, it is automatically designated as an auto-create form in the application project,
which means that the form will automatically be created during application startup. The first form in the
list of auto-create forms is considered the main form of the application, and will also be shown at
application startup. For example, the following shows the main program source of an application that has
several auto-create forms:

project FormSubmit;

contains Main, Results;

uses WebForms, WebCtrls;

begin
 Application.Title := 'HTML Form Submittal Example';
 Application.CreateForm(TMainForm);
 Application.CreateForm(TResultsDialog);
 Application.Run;
end.

Because the TMainForm form class is the first form class in the list of auto-create forms, it is considered
the main form of the application and will automatically be shown when the Application Run method is
executed.

Please see the Adding to an Existing Project topic for more information on adding a new form to a
project.

Creating a Form at Run-Time

You can also create a form instance at run-time using code. This is useful for forms that are not used very
often and for which having them auto-created would be a waste of memory. The following is an example
of creating a form and showing it (modally) at run-time:

uses ProgFrm;

procedure TMainForm.LaunchButtonClick(Sender: TObject);
begin
 ProgressForm:=TProgressForm.Create(nil);
 ProgressForm.ShowModal;
end;

Using Visual Controls

Page 128

Note
 In the above example the ProgressForm variable is declared in the interface section of the
TProgressForm's unit (ProgFrm).

Showing and Hiding a Form

The TForm Show and ShowModal methods will show a form in a non-modal and modal fashion,
respectively. See below for more information on modal forms.

Showing a form will also cause the form to be brought to the front of the visual stacking order via the
BringToFront method.

To hide a form, call the TForm Hide method, which simply toggles the visibility of the form. In order to
close the form and trigger the TForm OnCloseQuery and OnClose events, call the Close method instead.

Hiding or closing a form will also cause the form to be sent to the back of the visual stacking order via the
SendToBack method.

Modal Forms

When a form is shown modally, the application displays a modal overlay over the entire surface and all
other forms that prevents any keyboard or mouse input for any form other than the current modal form.

You can use the Application.Surface.ModalOverlay.CloseOnClick property to enable/disable the ability to
close all visible modal forms by simply clicking on the modal overlay.

Modal forms behave very differently in a web browser environment than in a Windows desktop
environment, requiring modal dialogs/forms be coded differently. To use the above example again, this is
what the example would look like in a traditional Windows desktop application when using a product like
Delphi:

uses ProgFrm;

procedure TMainForm.LaunchButtonClick(Sender: TObject);
begin
 ProgressForm:=TProgressForm.Create(nil);
 try
 ProgressForm.ShowModal;
 finally
 ProgressForm.Free;
 end;
end;

If you were to run the above code in a web browser, you would probably see a slight flicker as the form
was shown and then immediately freed. This is because the ShowModal method, or any method in the
JavaScript execution environment, does not cause the code execution to yield. Thus, the ShowModal
method is called, and then the Free method is called right after the form is shown.

Because of the lack of the ability to yield execution, such forms must be closed/freed using a technique
involving creating an event handler for the TForm OnClose event from the calling form and assigning that

Using Visual Controls

Page 129

event handler to the OnClose event of the form that needs to be responded to. The following example
shows how this would be done:

uses ProgFrm;

procedure TMainForm.ProgressFormClose(Sender: TObject);
begin
 ProgressForm.Free;
end;

procedure TMainForm.LaunchButtonClick(Sender: TObject);
begin
 ProgressForm:=TProgressForm.Create(nil);
 ProgressForm.OnClose:=ProgressFormClose;
 ProgressForm.ShowModal;
end;

This is quite a departure from the way that the OnClose event handler is used in desktop applications.
With desktop applications, the form's OnClose event is normally assigned an event handler that is defined
within the form being closed. If one simply remembers that the TForm OnClose event is a "special" event
in this regard, then the concept will be easier to remember and implement properly in one's applications.

Form Events

The TForm OnCreate event is fired while a form is being created and is an ideal place to perform any
initialization processing for the form.

The TForm OnCloseQuery event is fired when an attempt to close (hide) the form occurs. To prevent the
close from occurring, return False as the result in an event handler for this event.

The TForm OnClose event is fired after the form is closed (hidden).

The TForm OnDestroy event is fired before a form is destroyed, and is an ideal place to dispose of any
resources that need to be disposed of before the form is destroyed.

Using Visual Controls

Page 130

3.3 Showing Message Dialogs

Message dialogs are critical in a visual application for displaying important messages such as errors or
warnings to users, as well as asking the user to answer important questions that determine the overall
flow of processing. There are two procedures that provide the message dialog functionality in Elevate
Web Builder:

ShowMessage - This procedure simply displays a message to the user using a modal dialog
containing the message and a single OK button.

MessageDlg - This procedure displays a message to the user using a modal dialog containing the
message and any number of user-configured buttons.

The ShowMessage procedure is the simplest to use when you only want to display a message to the user
and do not need to ask the user to provide any further information. The following example shows how
you would show such a message dialog:

function CheckTrial: Boolean;
begin
 if IsTrialVersion and (TrialDaysLeft > 0) then
 begin
 ShowMessage('You are using a trial version and have '+
 IntToStr(TrialDaysLeft)' evaluation days '+
 'left until your trial version expires.');
 Result:=True;
 end
 else
 begin
 ShowMessage('Your trial version has unfortunately expired.');
 Result:=False;
 end;
end;

The MessageDlg procedure is more versatile, but also slightly more complicated. It allows you to specify
various attributes of the modal dialog used to display the message such as the dialog caption, the type of
dialog (determines the icon used for the dialog), which buttons to display on the dialog, and whether or
not to display a dialog close button. The following example shows how you would use this procedure to
ask the user to confirm the deletion of a customer order in a dataset:

procedure TMasterDetailForm.CheckDelete(DlgResult: TModalResult);
begin
 if (DlgResult=mrYes) then
 begin
 Database.StartTransaction;
 CustomerOrders.Delete;
 Database.Commit;
 end;
end;

procedure TMasterDetailForm.DeleteOrderButtonClick(Sender: TObject);
begin
 MessageDlg('Are you sure that you want to delete the '+
 CustomerOrders.Columns['OrderID'].AsString+' order placed on '+

Using Visual Controls

Page 131

 CustomerOrders.Columns['OrderDate'].AsString+' ?','Please
 Confirm',
 mtConfirmation,[mbYes,mbNo],mbNo,CheckDelete,True);
end;

Note
 The MessageDlg procedure is overloaded and has two different versions. The first does not include
the default button parameter after the array of button types, whereas the second version (shown
above) does include the default button parameter.

As discussed in the previous Creating and Showing Forms topic, modal forms require some special event
handler logic in order to execute code when the modal form is closed. This is especially true with message
dialogs, which are always shown modally, and is why the MessageDlg procedure accepts a method
reference as a parameter. The method reference should point to a method that matches the following
type:

TMsgDlgResultEvent = procedure (DlgResult: TModalResult) of object;

When the modal message dialog form is closed, the event handler will be called and the type of button
that the user clicked in the message dialog will be passed as the first parameter.

Note
 The TModalResult message dialog result type is different from the button types (TMsgDlgBtn type)
that are passed as an array parameter to the MessageDlg procedure. The two types are similar, but
there are additional results such as mrNone, which indicates that the user closed the dialog without
clicking on any button at all.

Using Visual Controls

Page 132

3.4 Showing Progress Dialogs

Progress dialogs are critical in a visual application for displaying progress while the application is
executing code or the application is waiting on an event handler to complete, such as an event handler for
the TServerRequest OnComplete event. There are two procedures that provide the progress dialog
functionality in Elevate Web Builder:

ShowProgress - This procedure simply displays an animated icon and a message to the user using a
modal dialog containing the message.

HideProgress - This procedure hides any active progress dialog.

Warning
 The ShowProgress and HideProgress procedures are reference-counted, so you should always
ensure that you call the HideProgress procedure as many times as you call the ShowProgress
procedure.

The following example shows how you would show such a progress dialog:

procedure TMainForm.LoadCustomers;
begin
 ShowProgress('Loading customers...');
 Customer.AfterLoad:=CustomerAfterLoad;
 Customer.OnLoadError:=CustomerLoadError;
 Database.LoadRows(Customer);
end;

procedure TMainForm.CustomerAfterLoad(Sender: TObject);
begin
 HideProgress;
end;

procedure TMainForm.CustomerLoadError(Sender: TObject; const ErrorMsg:
 String);
begin
 HideProgress;
 MessageDlg(ErrorMsg,'Error Loading Customers',mtError,[mbOk]);
end;

Using Visual Controls

Page 133

3.5 Using HTML Forms

HTML forms in Elevate Web Builder are represented by the THTMLForm component. HTML forms are the
legacy way of allowing a user to input information into various controls on a form and have that
information sent to the web server using an HTTP POST request. The THTMLForm component is a simple
container control, which gives you the option of having multiple sub-forms within the same visual form,
each with its own ability to submit information independently of the other.

Input Controls

The following standard controls can be used to input information that can be sent as part of the form
submittal process:

Control Description

 TEdit Single-line edit control

 TPasswordEdit Single-line password edit control

 TMultiLineEdit Multi-line edit control

 TCheckBox Check box control

 TRadioButton Radio button control

 TListBox List box control

 TCalendar Calendar control

 TButtonComboBox Button combo box control

 TEditComboBox Editable combo box control

 TDateEditComboBox Editable date combo box control

 TDialogEditComboBox Editable dialog combo box control

 TFileComboBox File upload combo box control

Note
 These are only the standard controls included with Elevate Web Builder's standard component
library, so this list does not include any installed 3rd party controls that may also allow usage with
an HTML form.

Submitting the Input Information

In order to actually submit the input information as an HTTP POST request to the web server, complete
the following steps:

Make sure that the THTMLForm's Encoding property is set to feMultiPartFormData. You can use
other encoding types, but this is the default and supports the most common type of form
submission, including submitting files using the TFileComboBox control.

Using Visual Controls

Page 134

Make sure that the THTMLForm's Method property is set to fmPost. This is the default value, so
you'll probably never need to change this property.

Make sure that the THTMLForm's URL property is set to the desired URL.

Call the THTMLForm's Submit method to perform the submission. When the HTML form is
submitted, all input controls contained within the HTML form are included, and the names used for
the HTML form variables that are submitted are the same as the Name property of the included
controls.

Testing Form Submittals

The internal web server embedded in the IDE includes support for echoing back any HTML form variables
submitted using the Submit method. Just be sure to use the following URL for the THTMLForm's URL
property:

http://localhost/formsubmit

Note
 The above URL assumes that the internal web server is listening on the standard port 80. Please
see the Modifying Environment Options topic for more information on configuring the internal web
server.

Redirecting Form Submittal Output

By default, the THTMLForm Submit method will direct any response from the web server to a special
hidden frame that Elevate Web Builder includes to suppress any output from the submittal. This is done to
prevent the web browser from navigating away from the Elevate Web Builder application itself. If you
want to display the output from the HTML form submittal process, or track when the submittal is
completed, you can use the THTMLForm's Output property to do so. This property allows you to specify a
TBrowser control that will receive the web server response to the HTML form submittal. In addition, you
can assign an event handler to the TBrowser OnLoad event to determine when the web server response
has been loaded into the frame encapsulated by the TBrowser control.

Using Visual Controls

Page 135

3.6 Layout Management

The layout management functionality in Elevate Web Builder handles all aspects of the layout of controls
at design-time and run-time. Layout management is available for all controls in the component library,
including the application surface and forms.

Control Layout Properties

Each control in an Elevate Web Builder application possesses several key properties that control the layout
of the control:

Left, Top, Width, and Height

The TControl Left, Top, Width, and Height properties specify the defined position and dimensions of the
control. These property values serve as the basis for the layout of the control, but can be modified by
other layout properties such as the Layout and Constraints properties (see below).

Layout Order

The TControl LayoutOrder property of a control specifies the integer position of the control relative to any
and all other child controls within the same container control. The layout order, as its name implies,
determines how controls are positioned, relative to one another, by the layout functionality.

Layout

The TControl Layout property of a control is a class instance property that specifies several key aspects of
the layout for the control via the following properties:

Layout Property Purpose

Position Specifies the type of positioning, if any, to use for the control
within the layout rectangle of its container control.

Stretch Specifies a stretch direction, if any, to apply to the control.

Consumption Specifies the direction in which the control consumes space
and modifies the layout rectangle for its container control, if
at all.

Reset Allows a control to reset the layout rectangle for its container.

Overflow Allows a control to specify the direction in which a layout
rectangle should automatically be adjusted when the
control's dimensions exceed one of the sides of the layout
rectangle.

Note
 Please see the section entitled Layout Rectangle below for more information on the concept of the
layout rectangle.

Using Visual Controls

Page 136

Constraints

The TControl Constraints property of a control specifies any minimum and maximum constraints on the
width and height of the control.

Margins

The TControl Margins property of a control specifies any margins for the control.

Padding and Borders

The padding and borders of a control vary depending upon the control class. Some control classes expose
one or both of these properties, while others do not. However, these properties do affect the layout of any
child controls contained within a container control by reducing the size of the layout rectangle for the
container control.

Layout Rectangle

In order to understand how the layout management works in Elevate Web Builder, it is important to
understand the concept of the layout rectangle. The layout rectangle represents the area of a container
control in which the layout of a child control is taking place. The layout rectangle is not a static area: each
child control may consume space in the layout rectangle in a specific direction, thus reducing its size, and
the layout rectangle can be segmented into different areas via reset points. The layout rectangle is
initialized to the client rectangle for the container control. The client rectangle is defined as the bounding
rectangle of a container control, minus the width of any borders or padding defined for the container
control.

To illustrate the concept of the layout rectangle in its most basic form, let's place a single TBasicPanel
control instance on a form (TForm-descendant instance). In this case, the form instance is the container
control and the TBasicPanel instance is the child control. Because the form instance does not have any
borders or padding defined, the client rectangle, and subsequently, the layout rectangle, is the same size
as the form instance's bounding rectangle.

Using Visual Controls

Page 137

We'll specify that the Layout.Position property of the TBasicPanel should be lpCenter:

The resulting layout looks like this:

Using Visual Controls

Page 138

As you can see, the layout functionality used the layout rectangle of the form instance to center the
defined dimensions of the TBasicPanel control instance. In this case, the layout rectangle was used for
positioning only.

Consuming Space in the Layout Rectangle

To illustrate how space consumption affects the layout rectangle, let's place two TButton control instances
on a form (default width of 80 pixels). Again, the form instance is the container control and the TButton
instances are the child controls, and the initial layout rectangle is the same as the client rectangle of the
form instance.

Using Visual Controls

Page 139

We'll specify that the Layout.Position property of both TButton instances should be lpTopLeft, the
Layout.Consumption property should be lcRight, and the Margins.Left and Margins.Top properties should
be set to 20 pixels for proper spacing:

The resulting layout looks like this:

Using Visual Controls

Page 140

The layout functionality reduced the width of the layout rectangle by the width of each button (80 pixels)
combined with the left margin of each button (20 pixels), for a total reduction of 200 pixels.

In most cases a form would not consist of just two buttons, so let's continue with the layout by placing a
TPagePanel control instance on the form.

Using Visual Controls

Page 141

We want the TPagePanel instance to use the rest of the available space on the form below the two
TButton instances, so let's specify that the Layout.Position property of the TPagePanel instance should be
lpTopLeft, the Layout.Stretch property should be lsBottomRight, and the Margins.Left, Margins.Top,
Margins.Right, and Margins.Bottom properties should be set to 20 pixels for proper spacing:

The resulting layout looks like this:

Using Visual Controls

Page 142

As you can see, this is not exactly what we wanted, and the TPagePanel instance is to the right of the
buttons instead of below the buttons.

To fix this, we only need to change two properties for the second TButton instance: we need to specify
that the Layout.Consumption property should be lcBottom and that the Layout.Reset button should be
True:

Changing these two properties in this manner does two things:

It changes the consumption direction towards the bottom of the layout rectangle, which is where
we want the TPagePanel instance to be placed.

It resets the layout rectangle back to the last reset point. Since this is the only control whose
Layout.Reset property is set to True, this means that the last reset point is the original layout
rectangle for the form. The reset of the layout rectangle will occur before the control consumes any
space.

Using Visual Controls

Page 143

The resulting layout looks like this:

With these changes, the layout functionality reduced the height of the layout rectangle by the height of
the second button (34 pixels) combined with the top margin of the second button (20 pixels), for a total
reduction of 54 pixels.

Note
 You'll also notice that we did not specify the Layout.Consumption property for the TPagePanel
instance. This is because consumption only affects the positioning of controls that come after the
current control in the layout order. Since the TPagePanel instance is the last control placed on the
form, there is no point in specifying the Layout.Consumption property.

Reset Points

Reset points are useful for situations where you have a series of controls consuming space in one direction
according to their layout order, but wish to change the consumption direction after the last control in the
series. Reset points are set by setting a control's Layout.Reset property to True. As mentioned above, when
a reset point is encountered the layout rectangle is set to the layout rectangle of the last reset point. This
reset point layout rectangle represents the layout rectangle after any space consumption took place for

Using Visual Controls

Page 144

the control setting the reset point. If there were no prior reset points, then the layout rectangle is set to
the client rectangle of the container control.

The following layout shows how you can use multiple reset points to arrange several series of controls
without needing to use special container controls:

The numbers represent the LayoutOrder property value for the control, and the asterisks (*) represent
where a control has its Layout.Reset property set to True. The controls at the top left all have their
Layout.Position properties set to lpTopLeft, and the controls at the bottom right all have their
Layout.Position properties set to lpBottomRight. The control in the middle has its Layout.Position
property set to lpTopLeft, and its Layout.Stretch property to lsBottomRight.

Constraints and Stretching

The defined constraints for a control are always in effect, and any attempts to modify the dimensions of
the control in a way that violates these constraints will result in the modification being adjusted so that it
adheres to the applicable constraint. This makes constraints very useful when combined with the
Layout.Stretch property options. For example, in many of the example applications included with Elevate
Web Builder, you will see code like this:

procedure TMainForm.MainFormCreate(Sender: TObject);
begin

Using Visual Controls

Page 145

 Application.ViewPort.OverflowY:=otAuto;
 with Application.Surface do
 begin
 Constraints.Min.Height:=(Self.Height+40);
 Background.Fill.Color:=clElevateFillGray;
 end;
end;

Note
 By default, the TSurface control interface is defined so that the application surface's
Layout.Position property is lpTopLeft and the application surface's Layout.Stretch property is
lsBottomRight.

This code specifies that any time the application surface vertically overflows the browser viewport, a
vertical scrollbar should be shown in the browser. In addition, it sets the minimum size of the application's
surface to 40 pixels taller than the main form. Combined with the fact that the surface is set to stretch to
fill the entire browser viewport, these two settings enable the following behaviors:

If the browser viewport is larger than the minimum surface height, the application surface will
stretch to fill the browser viewport.

If the browser viewport is smaller than the minimum surface height, the surface will remain the
minimum height and the browser viewport will display a vertical scrollbar.

Layout Overflow and Responsive Layouts

The Layout.Overflow property of a control can be used to create responsive layouts by giving the
developer the ability to specify how the current layout rectangle should be adjusted when the dimensions
of the control exceed the left, top, right, or bottom bounds of the current layout rectangle. The layout
management uses the Overflow property to determine which direction the prior (based upon the layout
order) control's Consumption property should be temporarily adjusted in order to prevent the current
control's dimensions from exceeding the bounds of the current layout rectangle. When an overflow
condition occurs, the Reset property for the prior control is temporarily set to True, resetting the current
layout rectangle to the layout rectangle of the last reset point, and the Consumption property for the prior
control is temporarily modified according to the following rules:

Overflow Consumption

loTop lcTop

loLeft lcLeft

loRight lcRight

loBottom lcBottom

This provides the developer the ability to specify an initial desired layout with positioning, stretching,
consumption, margins, constraints, and reset points, but still allow the layout to adjust within a container
control that may dynamically resize while the application is executing.

Using Visual Controls

Page 146

Note
 It is important that you specify an Overflow property that makes sense for a given layout. For
example, if the container control is a scrollable control, can be resized horizontally and vertically,
but can only scroll vertically, then it would make no sense to specify an Overflow property value of
loLeft or loRight. The same logic applies to a scrollable container control that can be resized
horizontally and vertically, but can only scroll horizontally. With such a contaner control, it would
make no sense to specify an Overflow property value of loTop or loBottom.

Using Visual Controls

Page 147

This page intentionally left blank

Using Server Requests

Page 148

Chapter 4
Using Server Requests

4.1 Server Request Architecture

Elevate Web Builder produces web applications that are loaded once into a web browser. Such an
application is different from a traditional web site with a collection of individual web pages that are
navigated to using traditional URL links. In fact, navigating to a different URL in an Elevate Web Builder
application will actually cause the application to be unloaded in the web browser, which is not the desired
result for most situations.

Given this architecture, there needs to be a way for such an application to communicate with the web
server in order to exchange data or content without causing an actual navigation or page load in the web
browser. The name for this type of communication in modern web browsers is called AJAX, which stands
for "Asynchronous JavaScript and XML". While AJAX was primarily designed to be used with XML data, it
can be used with any type of textual content or data. Though AJAX can also be used in a synchronous, as
opposed to asynchronous, manner, Elevate Web Builder always uses AJAX functionality in an
asynchronous manner. What this means is that when a web server request is executed, the application will
continue to execute and respond to user input while the request is being executed, and an event will be
triggered when the request completes successfully or encounters an error.

When to Use Server Requests

It is important to understand when a server request should be used and, even more importantly, when
one shouldn't be used. The following are cases where you should not use a server request:

If you only need to load and display an image, use a TImage control instead.

If you only need to send some values from input controls on a form to the web server, use the
HTML Forms functionality instead.

If you are using databases, then use the built-in database handling that is provided.

HTTP Server Requests

AJAX web server requests are basically equivalent to the requests that are made by a web browser on your
behalf when navigating URL links in a web page. These requests use the HTTP protocol which determines
how the request and its response from the web server are formatted. A typical HTTP request looks like
this:

GET /testproject.html HTTP/1.1
Accept: text/html
Accept-Encoding: gzip, deflate
Accept-Language: en-us
Cache-Control: max-age=0
Connection: keep-alive
Host: localhost
If-Modified-Since: Thu, 16 Aug 2012 18:35:21 GMT

Using Server Requests

Page 149

User-Agent: Mozilla/5.0

Every HTTP request begins with a method name, followed by a URL and the version of the HTTP protocol
being used by the web browser. Please see the following link for a complete definition of the various HTTP
methods:

Method Definitions

Elevate Web Builder supports the GET, HEAD, POST, PUT, and DELETE methods in web server requests.

After the initial request line is one carriage return/line feed pair (0x0D and OxOA), followed by the request
headers. All request headers use a format of:

<Header Name>: <Header Value>

Please see the following link for a complete definition of all standard HTTP headers:

Header Field Definitions

After the request headers are two carriage return/line feed pairs. If the request does not send any
additional content, as would be the case with a POST request, then the request will not contain any
additional data. If there is additional content, then the additional content will be sent after the two
carriage return/line feed pairs. In addition, a "Content-Length" request header must be specified in the
request headers that indicates the size, in characters, of the additional content.

Warning
 If you do not specify a content length header, then the most likely result is that the web server will
simply ignore the content, return an error code, or both.

For example, suppose that you want to send the following text content to a web server in a POST request:

The quick brown fox jumps over the lazy dog

The length of the text is 43 characters, so the POST request would look like this:

POST /postcontent HTTP/1.1
Accept: text/html
Accept-Encoding: gzip, deflate
Accept-Language: en-us
Cache-Control: max-age=0
Connection: keep-alive
Host: localhost
User-Agent: Mozilla/5.0
Content-Type: text/plain; charset=utf-8
Content-Length: 43

Using Server Requests

Page 150

The quick brown fox jumps over the lazy dog

Note
 At this point it is probably a good idea to point out that you do not have to format web server
requests like this in order to use the server request functionality in Elevate Web Builder. However, it
is important that you understand how such requests are formatted in order to properly add custom
headers or content to web server requests, as well as to properly read and parse response content
returned from the web server.

HTTP Server Responses

The format of responses from a web server are very similar to the format of the requests. A typical HTTP
response from a web server looks like this:

HTTP/1.1 200 OK
Date: Thu, 17 Aug 2012 01:52:46 GMT
From: admin@elevatesoft.com
Server: Elevate Web Builder Web Server
Connection: Keep-Alive
Cache-Control: no-cache
Content-Type: text/plain; charset=utf-8
Content-Length: 139

NameEdit=Tim Young
EmailEdit=timyoung@elevatesoft.com
CommentsEdit=Comments
RememberMeCheckBox=False

Note
 The response content is not necessarily representative of the content that may be returned by any
web server request, and is only used to represent the response content as a simple key-value
example.

Every HTTP response begins with the version of the HTTP protocol being used by the web server, followed
by a numeric response code and a textual status message. Please see the following link for a complete
definition of the various HTTP response codes:

Status Code and Reason Phrase

In both an Elevate Web Builder application, and an Elevate Web Builder web server module, there are
defined constants that represent the common HTTP status codes. In an Elevate Web Builder application,
you will find these constants in the WebHTTP unit, which contains the TServerRequest and
TServerRequestQueue components (see below) and is part of the standard component library. In an
Elevate Web Builder web server module, you will find these constants in the ewbhttpcommon unit, which
is distributed as a .dcu (Delphi compiled unit) with the Elevate Web Builder Modules installlation.

The constants are defined as follows:

Using Server Requests

Page 151

 HTTP_NONE = 0;
 HTTP_CONTINUE = 100;
 HTTP_OK = 200;
 HTTP_MOVED_PERMANENTLY = 301;
 HTTP_FOUND = 302;
 HTTP_SEE_OTHER = 303;
 HTTP_NOT_MODIFIED = 304;
 HTTP_MOVED_TEMPORARILY = 307;
 HTTP_BAD_REQUEST = 400;
 HTTP_NOT_FOUND = 404;
 HTTP_NO_LENGTH = 411;
 HTTP_INTERNAL_ERROR = 500;
 HTTP_NOT_IMPLEMENTED = 501;
 HTTP_SERVICE_UNAVAILABLE = 503;

Core Components

In Elevate Web Builder, the components that encapsulate the AJAX functionality in the web browser are:

TServerRequest
TServerRequest components can be dropped directly onto a visual form at design-time in a visual project,
or created at run-time in both visual and non-visual projects. The TServerRequest component
encapsulates a single web server request. The Method property specifies the HTTP method (default rmGet)
and the URL property specifies the URL for the request. Although the web browser will automatically
populate all required request headers, you can specify additional request headers using the
RequestHeaders property. You can use the Execute method to actually execute the request.

TServerRequestQueue
TServerRequestQueue components can be dropped directly on a visual form at design-time in a visual
project, or created at run-time in both visual and non-visual projects. The TServerRequestQueue
component implements a queue of server requests in order to force serialization of the server requests so
that requests are executed in the order in which they are added to the queue. For example, the TDatabase
component uses an internal TServerRequestQueue component to ensure that dataset load requests, as
well as transaction commit requests, are executed in the order that they are requested.

Using Server Requests

Page 152

4.2 Executing a Server Request

The most common use for the TServerRequest component is to receive/send content to/from the web
server. Elevate Web Builder does just that for loading the columns and rows for datasets, as well as
committing database transactions and sending inserts, updates, and deletes to the web server. Datasets
use the JSON format for exchanging data with the web server, but server requests do not impose any
restriction on the format of the content that is sent or returned from the web server other than the fact
that it must be textual (or encoded in a textual format, as is the case with Base64 encoding).

Use the following steps to execute a server request using a TServerRequest component:

Make sure that the TServerRequest Method property is set to the desired value. The default value is
rmGet.

Assign the proper URL to the TServerRequest URL property.

Warning
 If the origin (protocol, host, and port) specified in the URL is different than the origin for the
application, then you will need to set the TServerRequest CrossOriginCredentials property to
true in order to have any HTTP cookies and/or authentication headers sent to the web server
that is servicing the HTTP requests for the URL.

Assign any URL parameters to the TServerRequest Params property. The Params property is a
TStringList object instance with an equals (=) name/value separator. Each parameter should be
specified in the name=value format as a separate string in the list.

Note
 URL parameters are automatically appended directly to the URL by the TServerRequest
component when the Execute method is called, so do not add them directly to the URL
property. You can use the RequestURL property to retrieve the full URL that will be sent to
the destination web server when the server request is executed.

Assign any custom request headers to the TServerRequest RequestHeaders property. The
RequestHeaders property is a TStringList object instance with a colon (:) name/value separator. Each
header should be specified in the following format as a separate string in the list:

Name: Value

Create and assign an event handler to the TServerRequest OnComplete event. This will ensure that
you can determine when the request is complete.

Call the TServerRequest Execute method to initiate the web server request.

TServerRequest Example

Using Server Requests

Page 153

For example, suppose that you wanted to retrieve customer data from the web server in the following
key-value format:

ID=100
Name=ACME Manufacturing, Inc.
Contact=Bob Smith
Address1=100 Main Street
Address2=
City=Bedford Falls
State=NY
ZipPostal=11178

To do so, you would use code like the following:

procedure TMyForm.MyFormCreate(Sender: TObject);
begin
 MyRequest:=TServerRequest.Create(nil);
end;

procedure TMyForm.MyFormDestroy(Sender: TObject);
begin
 MyRequest.Free;
end;

procedure TMyForm.RequestComplete(Request: TServerRequest);
begin
 if (Request.StatusCode=HTTP_OK) then
 ShowMessage('The value of the customer ID is '+
 Request.ResponseContent.Values['ID'])
 else
 raise EError.Create('Response Error: '+Request.StatusText);
end;

procedure TMyForm.GetCustomerClick(Sender: TObject);
begin
 MyRequest.URL:='/customer';
 MyRequest.Params.Add('method=info');
 MyRequest.ResponseContent.LineSeparator:=#10;
 MyRequest.OnComplete:=RequestComplete;
 MyRequest.Execute;
end;

TServerRequestQueue Example

To use the TServerRequestQueue component instead of the TServerRequest component, you would use
the following code:

procedure TMyForm.MyFormCreate(Sender: TObject);
begin
 MyRequestQueue:=TServerRequestQueue.Create(nil);
end;

procedure TMyForm.MyFormDestroy(Sender: TObject);

Using Server Requests

Page 154

begin
 MyRequestQueue.Free;
end;

procedure TMyForm.RequestComplete(Request: TServerRequest);
begin
 if (Request.StatusCode=HTTP_OK) then
 ShowMessage('The value of the customer ID is '+
 Request.ResponseContent.Values['ID'])
 else
 raise EError.Create('Response Error: '+Request.StatusText);
end;

procedure TMyForm.GetCustomerClick(Sender: TObject);
var
 TempRequest: TServerRequest;
begin
 TempRequest:=MyRequestQueue.GetNewRequest;
 TempRequest.URL:='/customer';
 TempRequest.Params.Add('method=info');
 TempRequest.ResponseContent.LineSeparator:=#10;
 TempRequest.OnComplete:=RequestComplete;
 MyRequestQueue.AddRequest(TempRequest);
end;

Note
 If the request results in a status code other than HTTP_OK class of status codes (200-299), then the
request queue will automatically stop executing requests until the request is retried or cancelled.
This is also the case if the OnComplete event handler raises an exception. You can call the
ExecuteRequests method to retry the requests from the last request that failed, or call the
CancelRequest to cancel the last request that failed and continue with the next queued request.

Cancelling a Server Request

Sometimes it is necessary to cancel a pending server request, and this can be done by calling
TServerRequest Cancel method. If you're using a TServerRequestQueue component, then you can call the
CancelRequest or CancelAllRequests methods to cancel one or more queued requests.

Using Server Requests

Page 155

This page intentionally left blank

Using Local Storage

Page 156

Chapter 5
Using Local Storage

5.1 Introduction

Modern browsers provide a local data store to browser applications for storing and retrieving strings by a
key. This local data store is normally not very large (typically, around 5-10MB), and the user can customize
the maximum available storage size in the browser, so don't rely on using local storage for storing large
amounts of data. However, it can be useful for storing user preferences and interim data that needs to be
persisted until the data is saved to a web server application.

Warning
 Please be very careful about storing sensitive information in local storage. It is not secure, and uses
the normal browser cache. On a private machine/device, this may not be an issue. But do not
assume that the user is always using a private machine/device, and present them with an option to
operate without storing such information.

Elevate Web Builder surfaces the local storage via the TPersistentStorage component class, and
automatically creates two instances of the TPersistentStorage class at application startup:

Storage Type Instance Variable Name

Per-Session SessionStorage

Local LocalStorage

The SessionStorage and LocalStorage variables are declared in the WebComps unit.

The SessionStorage instance represents only per-session storage, meaning that once the application has
been unloaded, any strings stored in this data store will be permanently deleted.

The LocalStorage instance represents browser-wide storage, and persists across instances of the
application.

Note
 The local data store is segmented by origin, which means that each unique protocol, host, and port
has its own data store to use. So, if you loaded your application from
http://www.mysite.com/myapp, you would see a different data store than if you loaded your
application from https://www.mysite.com/myapp. In contrast, you would see the same data store if
you loaded your application from http://www.mysite.com/myapp and
http://www.mysite/myotherapp.

Using Local Storage

Page 157

5.2 Saving Data To Local Storage

You can use the TPersistentStorage Set method to save a string to a specific key in local storage. The
following example shows how to use a form method to store a user's display preferences in local (not per-
session) storage so that they are present whenever the application is run:

uses WebCore, WebComps;

procedure TForm1.Form1Create(Sender: TObject);
begin
 DisplayPrefs:=TStringList.Create;
end;

procedure TForm1.Form1Destroy(Sender: TObject);
begin
 DisplayPrefs.Free;
 DisplayPrefs:=nil;
end;

procedure TForm1.InitDisplayPrefs;
begin
 with DisplayPrefs do
 begin
 Clear;
 Values['ShowMainMenu']:='True';
 Values['ShowToolBar']:='True';
 end;
end;

procedure TForm1.SaveDisplayPrefs;
begin
 LocalStorage.Set('DisplayPrefs',DisplayPrefs.Text);
end;

procedure TForm1.LoadDisplayPrefs;
begin
 if LocalStorage.Exists('DisplayPrefs') then
 DisplayPrefs.Text:=LocalStorage['DisplayPrefs']
 else
 InitDisplayPrefs;
end;

Note
 The above code is not complete and is only a cut-down example to illustrate the specific local
storage concepts discussed here.

Using Local Storage

Page 158

5.3 Loading Data from Local Storage

You can use the TPersistentStorage Exists method to determine if a particular key exists in local storage,
and the TPersistentStorage Items property to access a string by its key. The following example shows how
to use a form method to check for a user's display preferences in local (not per-session) storage, and then
load them if they exist, or initialize them if they don't:

uses WebCore, WebComps;

procedure TForm1.Form1Create(Sender: TObject);
begin
 DisplayPrefs:=TStringList.Create;
end;

procedure TForm1.Form1Destroy(Sender: TObject);
begin
 DisplayPrefs.Free;
 DisplayPrefs:=nil;
end;

procedure TForm1.InitDisplayPrefs;
begin
 with DisplayPrefs do
 begin
 Clear;
 Values['ShowMainMenu']:='True';
 Values['ShowToolBar']:='True';
 end;
end;

procedure TForm1.SaveDisplayPrefs;
begin
 LocalStorage.Set('DisplayPrefs',DisplayPrefs.Text);
end;

procedure TForm1.LoadDisplayPrefs;
begin
 if LocalStorage.Exists('DisplayPrefs') then
 DisplayPrefs.Text:=LocalStorage['DisplayPrefs']
 else
 InitDisplayPrefs;
end;

Note
 The above code is not complete and is only a cut-down example to illustrate the specific local
storage concepts discussed here.

Using Local Storage

Page 159

5.4 Detecting Local Storage Changes

You can assign an event handler to the TPersistentStorage OnChange event to detect when another
session modifies any data saved in local (not per-session) storage. The following example shows how to
assign a form method (event handler) to the OnChange event for the global LocalStorage instance of the
TPersistentStorage class to detect when any other session modifies a user's display preferences in local
(not per-session) storage:

uses WebCore, WebComps;

procedure TForm1.StorageChange(Sender: TObject; const Key: String;
 const NewValue: String; const OldValue: String;

 const URL: String);
begin
 if (Key='') or (Key='DisplayPrefs') then
 LoadDisplayPrefs;
end;

procedure TForm1.Form1Create(Sender: TObject);
begin
 DisplayPrefs:=TStringList.Create;
 LocalStorage.OnChange:=StorageChange;
end;

procedure TForm1.Form1Destroy(Sender: TObject);
begin
 LocalStorage.OnChange:=nil;
 DisplayPrefs.Free;
 DisplayPrefs:=nil;
end;

procedure TForm1.InitDisplayPrefs;
begin
 with DisplayPrefs do
 begin
 Clear;
 Values['ShowMainMenu']:='True';
 Values['ShowToolBar']:='True';
 end;
end;

procedure TForm1.SaveDisplayPrefs;
begin
 LocalStorage.Set('DisplayPrefs',DisplayPrefs.Text);
end;

procedure TForm1.LoadDisplayPrefs;
begin
 if LocalStorage.Exists('DisplayPrefs') then
 DisplayPrefs.Text:=LocalStorage['DisplayPrefs']
 else
 InitDisplayPrefs;
end;

Using Local Storage

Page 160

Note
 The above code is not complete and is only a cut-down example to illustrate the specific local
storage concepts discussed here.

Using Local Storage

Page 161

This page intentionally left blank

Using Databases

Page 162

Chapter 6
Using Databases

6.1 Database Architecture

Elevate Web Builder includes extensive database functionality for easily loading data from the web server
and then updating the data on the web server using transactions.

The Elevate Web Builder database functionality has the following architecture:

The database functionality is virtual and handled in-memory in the Elevate Web Builder client application
using a disconnected database architecture. Database access is stateless and all updates to the actual
database via the web server are performed optimistically. All database requests/responses use the JSON
format for any associated data. Please see the JSON Reference for more information on the schema for
the JSON data.

There can be one or more databases (TDatabase instances) in an application, and within each database
can be one or more owned datasets (TDataSet instances).

Core Concepts

There are three core concepts in the Elevate Web Builder database functionality:

Using Databases

Page 163

Loading DataSet Columns - Normally the dataset columns are loaded/defined at design-time in
the Elevate Web Builder IDE, but it is possible to dynamically load the columns for a dataset at run-
time. The column information comes from the web server application in JSON format and includes
basic things such as column name, data type, length, and scale.

Loading DataSet Rows - The dataset rows must be loaded at run-time, and come from the web
server application in JSON format. When the rows are loaded, you can specify that the rows be
appended to the existing rows in the dataset, or completely replace the current rows in the dataset.

Transactions - By default, transactions are automatically started and committed/rolled back as rows
are inserted/saved, updated/saved, and deleted in any datasets contained within a database.
Nested transactions are supported, so only the outermost commit operation actually results in
communications with the web server application. The automatic transaction handling can be turned
off (see the TDatabase component below).

You can find the JSON formats used for all of the above in the JSON Reference topic.

Note
 Elevate Web Builder requires that any table that you wish to update, or any table containing
content stored in BLOB columns that you wish to load (such as images), must have a primary key
defined. Elevate Web Builder uses the primary key to uniquely identify each row.

Core Components

The database functionality contains several core components, all residing in the WebData unit in the
Elevate Web Builder component library.

TDatabase
A global TDatabase component instance is auto-created at application startup for both visual and non-
visual projects, and is simply called Database. This singleton instance of the TDatabase component is
used to keep track of all datasets dropped directly on forms and provides methods for iterating over such
datasets.

In addition to this default singleton database instance, you can add explicit TDatabase instances to a
visual project by dragging and dropping a database defined in the Database Manager into the Project
Manager for the currently-opened project. When the database is dropped on or within the Units node of
the project manager, a new TDatabase (or descendant) instance will be created for the project, along with
an associated unit, and all of the defined datasets for the database will automatically be created as
TDataSet instances in the new database instance.

The TDatabase AutoTransactions property is used to control whether transactions are automatically
handled by the database instances. Please see the Transactions topic for more information on how the
AutoTransactions property affects transaction handling.

TDataSet
TDataSet components can either be dropped directly on a form or database at design-time in a visual
project, or created at run-time in both visual and non-visual projects. The Columns property contains the
column definitions for the dataset.

The columns for a dataset can be defined manually at design-time or load at run-time using the

Using Databases

Page 164

TDatabase LoadColumns method (via the TDatabase instance that contains the TDataSet instance) or the
TDataSet LoadColumns method. The primary difference between the two is that the TDatabase
LoadColumns method transparently handles the server request to the web server for retrieving the
columns in JSON format, whereas the TDataSet LoadColumns method simply accepts a JSON string
containing the columns, and leaves the details of where the JSON originated up to the caller.

Rows must be loaded from the web server application at run-time using the TDatabase LoadRows method
(via the TDatabase instance that contains the TDataSet instance) or the TDataSet LoadRows method. The
primary difference between the two is that the TDatabase LoadRows method transparently handles the
server request to the web server for retrieving the row data in JSON format, whereas the TDataSet
LoadRows method simply accepts a JSON string containing the row data, and leaves the details of where
the JSON originated up to the caller.

You can navigate the rows in a TDataSet component by using the First, Prior, Next, and Last methods.

The TDataSet component also allows you to Insert, Update, and Delete rows, as well as Find and Sort
rows.

Using Databases

Page 165

6.2 Creating and Using Databases

Before using the TDatabase component, you must first create an instance of the component, which you
can do at design-time or at run-time. A global TDatabase instance called Database is automatically
created at application startup and is used as the default database for any datasets that are created without
being specifically associated with a database. Please see the Creating and Loading DataSets topic for more
information on how datasets are associated with databases at creation time.

Creating a Database at Design-Time

The easiest way to create a database is by using the Database Manager in the IDE to define a database
and its contained datasets. Once a database has been defined under a database in the database manager,
you can easily add the database to an existing application by dragging the database from the database
manager and dropping it into the project manager for the currently-opened project. When the database is
dropped on or within the Units node of the project manager, a new TDatabase (or descendant) instance
will be created for the project, along with an associated unit, and all of the defined datasets for the
database will automatically be created as TDataSet instances in the new database instance.

At design-time, TDatabase instances act (and are stored) like forms but are actually just containers that
allow non-visual components like TDataSet instances to be dropped on to the database designer surface.
The database designer only allows for non-visual components to be placed on the designer surface, and
the visual size of the database instance in the designer is exclusively a design-time property. Please see
the Using the Form and Database Designers topic for more information on how to use the database
designer.

Authenticating Requests

You can use the TDatabase UserName and Password properties to specify a user name and password to
be used with any database requests to the web server. The TDatabase AuthenticationMethod property
controls how the authentication information is sent to the web server.

If the AuthenticationMethod property is set to amHeaders (the default), then the user name and password
are added as custom headers to the web server request as follows:

X-EWBUser: <User Name>
X-EWBPassword: <Password>

If the AuthenticationMethod property is set to amParameters, then the user name and password are
added as parameters to the web server request as follows:

<Database Resource URL>&user=<User Name>&password=<Password>

Using Databases

Page 166

Warning
 Elevate Web Builder uses the AJAX functionality in browsers to perform database requests, and this
functionality is limited in its ability to perform authentication via native browser methods.
Therefore, you should always use secure connections (https) to the web server with any database
requests. This is especially true if using the parameter-based authentication, but is also true if you
are using datasets with BLOB columns that will require authentication information in their load URL
parameters. Please see the JSON Reference topic for more information on BLOB loading.

Database Request Queue

Each TDatabase instance contains a request queue that is used for all database requests to the web server.
Elevate Web Builder automatically handles building and sending all databases requests as the database
functionality is used in all TDatabase and TDataSet instances. However, if an error occurs during any
database request, the request queue is paused and all queued database requests, including the request
that failed, are effectively stalled. You can use the TDatabase NumPendingRequests property to determine
how many pending requests are present in the request queue, and the TDatabase RetryPendingRequests
and CancelPendingRequests methods to retry or cancel any pending requests in the database request
queue.

Please see the Executing a Server Request topic for more information on how web server requests are
executed.

Transactions

By default, each TDatabase instance automatically handles transactions without requiring them to be
manually started/committed/rolled back. This behavior is controlled via the TDatabase AutoTransactions
property. Please see the Transactions topic for more information on how database transactions work in
Elevate Web Builder.

Database Parameters

You can use the TDatabase Params property to specify database-specific parameters that will be passed as
URL parameters with all database requests originating from the database. This is useful for situations
where you want to tag all database requests with application-specific information, such as session IDs or
tokens. The Params property is a string list (TStrings) of "name=value" pairs that represents the database
URL parameters.

Using Databases

Page 167

6.3 Creating and Loading DataSets

Before using the TDataSet component, you must first create an instance of the component, which you can
do at design-time or at run-time.

Creating a DataSet at Design-Time

The easiest way to create a dataset is by using the Database Manager in the IDE to define a database and
its contained datasets. Once a dataset has been defined under a database in the database manager, you
can easily add the dataset to an existing application by simply dragging it from the database manager
and dropping it on a form or database. The relevant property information, including the column
definitions, will automatically be populated for the dataset. A database defined in the database manager
can be used to create a database in a project by dragging the database from the database manager and
dropping it into the project manager for the currently-opened project. When the database is dropped on
or within the Units node of the project manager, a new TDatabase (or descendant) instance will be
created for the project, along with an associated unit, and all of the defined datasets for the database will
automatically be created as TDataSet instances in the new database instance.

If you do not wish to use the database manager to create a dataset, you can also create a new dataset by
dragging a TDataSet component from the component palette and dropping it on a form or database.
Please see the Using the Form and Database Designers topic for more information on the required steps
to complete this action. Once you have dropped the TDataSet component on a form or database, you can
manually define the columns in the dataset by double-clicking on the TDataSet's Columns property. This
will launch the Columns Editor directly under the object inspector, and you can then use the Columns
Editor to add, edit, or delete the columns in the dataset.

Creating a DataSet at Run-Time

In cases where visual forms and databases are not being used, such as with a non-visual project or in a
library procedure/function, you can create a dataset instance at run-time using code. The following is an
example of creating a dataset, opening it, and populating it with some rows at run-time:

function CreateStatesDataSet: TDataSet;
begin
 Result:=TDataSet.Create(nil);
 with Result.Columns.Add do
 begin
 Name:='Abbrev';
 DataType:=dtString;
 Length:=2;
 end;
 with Result do
 begin
 Open;
 Insert;
 Columns['Abbrev'].AsString:='CA';
 Save;
 Insert;
 Columns['Abbrev'].AsString:='FL';
 Save;
 Insert;
 Columns['Abbrev'].AsString:='NY';

Using Databases

Page 168

 Save;
 end;
end;

Datasets are associated with a given database by being created with the database as the (sole) owner
parameter. As you can see in the above example, the dataset is created with a nil owner parameter, which
will cause this dataset instance to be associated with the global Database TDatabase instance.

Loading a DataSet at Run-Time

As seen in the above example, you can add rows directly at run-time without ever having to communicate
with the web server in order to request data. However, most applications will need to load rows into a
dataset from a database by using the web server application as middleware for serving up the necessary
rows. There are two different ways to load rows into a dataset at run-time: the TDatabase LoadRows
method or the TDataSet LoadRows method.

TDatabase LoadRows Method

The TDatabase LoadRows method is the easiest way to load the rows into a dataset because it
automatically handles the actual server request to the web server. The TDatabase component uses the
following properties to construct the GET request to the web server for the rows:

TDatabase BaseURL
This property defaults to 'databases', but can be changed to any value that you wish. Please note
that it is best to use a relative URL path here so that all requests will be made relative to the URL
from which the application was loaded. If you're accessing a database module then, by default, you
should set this property to 'databasemodules/<module name>', where <module name> is the
name of the database module that you wish to access. Please see the Creating Web Server Modules
for more information on creating database modules to handle database requests.

TDatabase DatabaseName
This property defaults to the same value as the TDatabase component's Name property, but is
automatically populated for you if you use the drag-and-drop method of creating a TDatabase at
design-time. This property can be changed to any value that you wish, and is simply used to identify
the database via a URL parameter used for the web server request.

TDatabase Params
This property is a string list (TStrings) of "name=value" pairs that represents the URL parameters for
all web server requests for the database. These parameters are strictly application-specific and are
not used by by the TDatabase component.

TDataSet DataSetName
This property defaults to the same value as the TDataSet component's Name property, but is
automatically populated for you if you use the drag-and-drop method of creating a TDataSet at
design-time. This property can be changed to any value that you wish, and is simply used to identify
the dataset via a URL parameter used for the web server request.

TDataSet Params
This property is a string list (TStrings) of "name=value" pairs that represents the URL parameters for
the web server request. If the dataset that is being loaded is a query that requires parameters, then
you should make sure to specify them using this property.

Using Databases

Page 169

As an example, consider a database and dataset that is defined as the following in the database manager
in the IDE:

Database Name: Production

DataSet Name: CustomerOrders

Row Source:

SELECT * FROM custord
WHERE CustomerID={CustomerID='ADF'}

Base Table: custord

Assuming that a dataset instance called "CustomerOrders" was created at design-time by dragging and
dropping the dataset from the database manager on to a form called "MasterDetailForm", the following
code is all that would be needed to load the dataset:

procedure TMasterDetailForm.LoadOrders;
begin
 CustomerOrders.Params.Clear;

 CustomerOrders.Params.Add('CustomerID='+QuotedStr(Customer.Columns['CustomerI
 D'].AsString));
 Database.DatabaseName:='Production'; // Uses the default global Database
 TDatabase instance
 Database.LoadRows(CustomerOrders);
end;

Note
 You should always use single quotes around all string parameters. Failure to do so will result in the
dataset load not working correctly. Use the QuotedStr function to ensure that any string
parameters are properly quoted.

In the above example, the relative URL that will be used for the web server GET request would be:

databases?method=rows&database=Production&dataset=CustomerOrders&CustomerID='
 ADF'

If the application was loaded from 'http://localhost', then the complete URL used for the web server GET
request would be:

http://localhost/databases?method=rows&database=Production&dataset=CustomerOr
 ders&CustomerID='ADF'

If aren't using the global Database TDatabase instance and, instead, have created a TDatabase instance in

Using Databases

Page 170

the application, then the code is only slightly different. Assuming that a database instance called
"Production" and a dataset instance called "CustomerOrders" was created at design-time by dragging and
dropping the database from the database manager on to the project manager, the following code is all
that would be needed to load the dataset:

procedure TProduction.LoadOrders;
begin
 CustomerOrders.Params.Clear;

 CustomerOrders.Params.Add('CustomerID='+QuotedStr(Customer.Columns['CustomerI
 D'].AsString));
 LoadRows(CustomerOrders);
end;

In the above example, the URL used for the web server GET request would be exactly the same as before
when the global Database TDatabase instance was used instead of a specific TDatabase instance.

After the request is successfully executed, the TDatabase LoadRows method automatically opens the
dataset using the TDataSet Open method before also automatically calling the TDataSet LoadRows
method.

TDataSet LoadRows Method

The TDataSet LoadRows method directly accepts the dataset rows as a JSON-formatted string. This means
that this method is more useful for situations where the dataset rows are stored in memory or local
storage and need to be directly loaded from one of those locations. It is recommended that you always
use the TDatabase LoadRows method for loading rows from a web server.

Note
 The LoadRows method requires that the dataset be open prior to being called. Use the Open
method to open the dataset.

Tracking Load Operations

The TDataSet BeforeLoad event is fired before the dataset load actually begins. To prevent the load from
occurring, return False as the result in an event handler for this event.

If a dataset load request was sent to the web server and was not successful due to an exception or the
web server application returning an HTTP result code other than 200 (OK), the OnLoadError event will be
fired and will include the error message. If an event handler is not defined for the OnLoadError event, then
an exception will be raised with the error message. If a load fails for any reason, then the load request is
placed in a pending requests queue. This is also true for transaction commits. This queue ensures that the
database requests can be retried and, when retried, are sent to the web server in the order in which they
occurred. You can see if there are any pending database requests by examining the TDatabase
NumPendingRequests property. If the NumPendingRequests property is greater than 0, then there are
commit and/or dataset load requests that need to be retried at some point. Use the TDatabase
RetryPendingRequests method to retry any pending database requests, and the TDatabase
CancelPendingRequests method to cancel any pending database requests.

Using Databases

Page 171

The TDataSet AfterLoad event is fired after the dataset load completes successfully. If there were any
errors during the load process, then this event handler will not get called.

Using Databases

Page 172

6.4 Navigating DataSets

The TDataSet component provides several methods for navigating the rows present in the underlying
dataset, as well as properties for obtaining information about the current row position and reading data
from the current row.

Moving the Row Pointer

To move the row pointer to a different position in the dataset, use the TDataSet First, Prior, Next, Last,
MoveTo, and MoveBy methods. Use the TDataSet BOF, EOF, and RowNo properties to obtain information
about the current row position.

The following example navigates from the beginning of a dataset to the end, appending each order ID to
a string:

var
 OrderIDs: String='';
begin
 with CustomerOrders do
 begin
 First;
 while (not EOF) do
 begin
 if (OrderIDs='') then
 OrderIDs:=Columns['OrderID'].AsString
 else
 OrderIDs:=OrderIDs+', '+Columns['OrderID'].AsString;
 Next;
 end;
 end;
end;

Bookmark Operations

Sometimes it is necessary to save the current row pointer, perform some operations that may or may not
move the row pointer, and then return to the saved row pointer. The TDataSet SaveBookmark,
GotoBookmark, and FreeBookmark methods provide the bookmark functionality for datasets. Bookmarks
include a non-volatile row ID and BOF/EOF information so that a row pointer can be restored even when
the active sort has been changed. The only case when a row pointer cannot be restored is when the row
represented by the bookmark has been deleted.

Note
 Bookmarks are automatically pushed and popped from an internal bookmark stack for the dataset,
so nested calls to SaveBookmark and GotoBookmark/FreeBookmark will automatically work
properly as long as the number of GotoBookmark/FreeBookmark calls matches the number of
SaveBookmark calls. Also, GotoBookmark and FreeBookmark are mutually-exclusive: both methods
free the active bookmark, but only the GotoBookmark method actually tries to navigate to the
active bookmark before freeing it.

Using Databases

Page 173

The following example saves the current row pointer as a bookmark, updates a column in all of the rows,
and then restores the row pointer by calling GotoBookmark:

procedure TOrderEntryDlg.UpdateLineNumbers;
begin
 with CustomerItems do
 begin
 DisableControls;
 try
 SaveBookmark;
 try
 First;
 while (not EOF) do
 begin
 Update;
 Columns['LineNo'].AsInteger:=RowNo;
 Save;
 Next;
 end;
 finally
 GotoBookmark;
 end;
 finally
 EnableControls;
 end;
 end;
end;

Reading Column Values

The TDataSet Columns property allows you to read the column values for the current row. You can access
a column in the Columns property by its index or by its name via the TDataColumns Column property.
However, since the Column property is the default property for the TDataColumns object, you can omit it
when referencing the Columns property. The following example loops through all columns in a dataset
and appends their name to a string:

var
 I: Integer;
 ColumnNames: String='';
begin
 with CustomerOrders do
 begin
 for I:=0 to Columns.Count-1 do
 begin
 if (ColumnNames='') then
 ColumnNames:=Columns[I].Name
 else
 ColumnNames:=ColumnNames+','+Columns[I].Name
 end;
 end;
end;

Each TDataColumn object present in the TDataSet Columns property has several As* properties that allow
you to access the data in the column for the current row as a particular type. Type conversions are

Using Databases

Page 174

performed automatically wherever necessary. However, certain type conversions are impossible and will, if
attempted, cause an exception to be raised. For example, the following code will cause an exception to be
raised because the OrderDate column, which has a type of dtDate, cannot be converted to a Boolean
value:

begin
 with CustomerOrders do
 Result:=Columns['OrderDate'].AsBoolean;
end;

To determine if a column is Null, you can use the TDataColumn Null property.

Tracking Navigation Operations

The TDataSet BeforeScroll event is fired before the dataset's row pointer moves during navigation. To
prevent the navigation from occurring, return False as the result in an event handler for this event.

The TDataSet AfterScroll event is fired after the dataset's row pointer is moved.

The following TDataSet property assignments cause the BeforeScroll and AfterScroll events to be
triggered:

 RowID
 RowNo

The following TDataSet methods cause the BeforeScroll and AfterScroll events to be triggered:

 First
 Prior
 Next
 Last
 MoveBy
 MoveTo
 Find
 Sort
 GotoBookmark

Using Databases

Page 175

6.5 Searching and Sorting DataSets

The TDataSet component provides several methods for searching and sorting the rows present in the
underlying dataset, as well as properties for obtaining information about the active sort.

Sorting the Rows

To sort the rows in a dataset, use the Sort method. To specify the columns to sort, assign the desired value
to the TDataColumn SortDirection property in the order that reflects the column order of the desired sort.
Use the TDataSet SortCaseInsensitive property to specify that the sort should be case-insensitive, and the
SortLocaleInsensitive property to specify that the sort should be locale-insensitive. The default value for
both properties is False.

The following example sorts the Products dataset based upon descending list price:

begin
 with Products do
 begin
 Columns['ListPrice'].SortDirection:=sdDescending;
 Sort;
 end;
end;

Once a sort has been established, the TDataSet Sorted will return True and the dataset will automatically
keep the rows sorted accordingly as rows are inserted, updated, or deleted. The TDataColumn SortIndex
property can be examined to determine where a column resides in the active sort. To clear an existing
sort, simply assign a value of sdNone to the SortDirection property of all sorted columns.

Searching for a Row

The TDataSet InitFind and Find methods allow you to search the rows in the dataset for a particular set of
column values. The first step to executing a search is to call the InitFind method, which puts the dataset in
the "Find" state, which is represented by the TDataSet State property. Once the dataset is in the "Find"
state, you can assign values to the columns in the dataset and then call the Find method to execute the
actual search. If there is a sort active on the dataset, then it will be used for satisfying the Find operation if
the modified columns and the CaseInsensitive parameter to the Find method match the active sort. For
example, the following example sorts the Products dataset by the ProductID column and then executes a
case-insensitive Find operation on the ProductID column for the 'PEN-BP-12PK' product ID:

begin
 with Products do
 begin
 Columns['ProductID'].SortDirection:=sdAscending;
 SortCaseInsensitive:=True;
 Sort;
 InitFind;
 Columns['ProductID'].AsString:='PEN-BP-12PK';
 if Find(False,True) then
 Result:=True
 else

Using Databases

Page 176

 Result:=False;
 end;
end;

To perform a search for the row with the column values that are nearest to the specified Find values,
simply pass True as the first parameter to the Find method.

Note
 The TDataSet component determines which columns participate in the Find operation, and
subsequently which columns need to match the active sort, based upon which columns have been
modified since the InitFind method was called. In order to perform a nearest value search, the
modified columns and the CaseInsensitive Find parameter (the second) must match the active sort.

Using Databases

Page 177

6.6 Updating DataSets

The TDataSet component provides several methods for inserting, updating, and deleting rows in the
underlying dataset, as well as properties for reading both the current and old column values from the
current row.

Inserting New Rows

Inserting a new row in a dataset is a three-step process. First, use the TDataSet Insert method to put the
dataset into the insert state. This will:

Fire the BeforeInsert event handler, if one is defined. To prevent the insert from occurring, return
False as the result in the event handler.

If the OwnerDatabase's AutoTransactions property is True (the default), then start a new transaction
and then create a new row. If the Append flag (default False) is passed to the Insert method, then
the new row will be appended to the end of the dataset, otherwise the new row will be inserted at
the current row pointer in the dataset.

Fire the OnInitrow event handler, if one is defined. The OnInitRow event handler allows the
application to assign values to the columns in the new row without causing any of the columns, or
the row, to be flagged as modified. This is a good place to assign default values for columns.

Change the TDataSet State property to dsInsert once the dataset is in the insert state.

Fire the AfterInsert event handler, if one is defined.

Once the dataset is in the insert state, you can use the Columns property to read or assign new values to
the various columns in the row using the TDataColumn As* properties. When a column is assigned a new
value, its Modified property is set to True.

When all column modifications have been made, use the Save method to complete the insert. This will:

Fire the BeforeSave event handler, if one is defined. To prevent the save from occurring, return False
as the result in the event handler.

Save the row in the dataset, logging the insert if a transaction is in progress. At this point, the
Modified property for the columns in the row will be reset to False.

Fire the AfterSave event handler, if one is defined.

Using Databases

Page 178

Update any active sort and change the TDataSet State property to dsBrowse to reflect that the
dataset is now in the browse state.

Note
 With no active sort, rows are always sorted by their actual insertion order, so even if the
Insert method was called without the Append flag, the newly-inserted row will move to the
end of the dataset after the Save method completes.

If the OwnerDatabase's AutoTransactions property is True (the default), then commit the active
transaction.

If you want to cancel the insert operation, you can use the TDataSet Cancel method. This will:

Fire the BeforeCancel event handler, if one is defined. To prevent the cancel from occurring, return
False as the result in the event handler.

Discard the row. The row pointer will return to the row pointer that was active prior to the Insert
method being called.

Fire the AfterCancel event handler, if one is defined.

Change the TDataSet State property to dsBrowse to reflect that the dataset is now in the browse
state.

If the OwnerDatabase's AutoTransactions property is True (the default), then roll back the active
transaction.

The following example inserts a new product into the Products dataset:

begin
 with Products do
 begin
 Products.Insert; // Required to avoid conflict with Insert system
 function
 Columns['ProductID'].AsString:='PHONE-HEADSET';
 Columns['Description'].AsString:='Hands-free phone handset';
 Columns['ListPrice'].AsFloat:=15.00;
 Columns['Shipping'].AsFloat:=2.00;
 Save;
 end;
end;

Updating Existing Rows

Updating an existing row in a dataset is a three-step process. First, use the TDataSet Update method to
put the dataset into the update state. This will:

Fire the BeforeUpdate event handler, if one is defined. To prevent the update from occurring, return
False as the result in the event handler.

Using Databases

Page 179

If the OwnerDatabase's AutoTransactions property is True (the default), then start a new transaction.

Change the TDataSet State property to dsUpdate once the dataset is in the update state.

Fire the AfterUpdate event handler, if one is defined.

Once the dataset is in the update state, you can use the Columns property to read or assign new values to
the various columns in the row using the TDataColumn As* properties. When a column is assigned a new
value, its Modified property is set to True. You can use the TDataColumn OldValue property to access the
value of any column before any new assignments were made to the row.

When all column modifications have been made, use the Save method to complete the update. This will:

Fire the BeforeSave event handler, if one is defined. To prevent the save from occurring, return False
as the result in the event handler.

Save the row in the dataset, logging the update if a transaction is in progress. At this point, the
Modified property for the columns in the row will be reset to False.

Fire the AfterSave event handler, if one is defined.

Update any active sort and change the TDataSet State property to dsBrowse to reflect that the
dataset is now in the browse state.

Note
 If any of the columns modified during the update are part of the active sort, then the row
will automatically move to the correct position in the active sort.

If you want to cancel the update operation, you can use the TDataSet Cancel method. This will:

Fire the BeforeCancel event handler, if one is defined. To prevent the cancel from occurring, return
False as the result in the event handler.

Discard any modifications to the row. The row pointer will stay in the same location.

Fire the AfterCancel event handler, if one is defined.

Change the TDataSet State property to dsBrowse to reflect that the dataset is now in the browse
state.

If the OwnerDatabase's AutoTransactions property is True (the default), then roll back the active
transaction.

The following example finds a product in the Products dataset and updates its shipping cost:

begin
 with Products do
 begin
 InitFind;
 Columns['ProductID'].AsString:='PHONE-HEADSET';
 if Find(False,True) then
 begin

Using Databases

Page 180

 Update;
 Columns['Shipping'].AsFloat:=1.80;
 Save;
 end;
 end;
end;

Deleting Existing Rows

Deleting an existing row in a dataset can be done by calling the TDataSet Delete method. This will:

Fire the BeforeDelete event handler, if one is defined. To prevent the delete from occurring, return
False as the result in the event handler.

If the OwnerDatabase's AutoTransactions property is True (the default), then start a new transaction
and delete the existing row.

Fire the AfterDelete event handler, if one is defined.

The following example finds a product in the Products dataset and deletes it:

begin
 with Products do
 begin
 InitFind;
 Columns['ProductID'].AsString:='FLASH-USB-16GB';
 if Find(False,True) then
 Delete;
 end;
end;

Using Databases

Page 181

6.7 Transactions

While datasets can be updated without using transactions, doing so causes all updates to be completely
bound to the dataset in the Elevate Web Builder application and unable to ever leave that context (apart
from being saved to local storage). Using transactions allows all updates to a dataset to be logged so that
the updates can then be sent to the web server application and reflected in an actual database. This is
especially important when a dataset is being loaded from a table or query result set present in a database
accessible from the web server application.

All transaction properties, methods, and events are contained with the TDatabase component in the
WebData unit. The AutoTransactions property is True, by default, and controls whether transactions are
automatically started and committed/rolled back as the datasets are updated. Please see the Updating
DataSets topic to see how the automatic transactions interact with the various dataset insert, update, and
delete operations. The methods for starting, committing, and rolling back transactions are the
StartTransaction, Commit, and Rollback methods. Transactions in Elevate Web Builder can be nested, so
the TDatabase InTransaction and TransactionLevel properties reflect whether a transaction is active and at
what level, respectively. If the TransactionLevel property is -1, then no transactions are active.

Starting a Transaction

Use the TDatabase StartTransaction method to start a transaction. This will increment the current
transaction level. All row inserts, updates, and deletes taking place in any owned datasets will be
automatically logged as part of the current transaction.

Warning
 If you attempt to close a dataset using the TDataSet Close method while there are operations
logged for the current transaction, an exception will be raised.

Committing a Transaction

Use the Commit method to commit the current transaction. This will:

Fire the BeforeCommit event handler, if one is defined. To prevent the commit from occurring,
return False as the result in the event handler.

If the current transaction level, as reflected by the TDatabase TransactionLevel property, is 0, create
a web server POST request and send it to the web server application, with the transaction data
included as the POST content in JSON format. To see the JSON format used for the transactions,
please see the JSON Reference topic.

If the current transaction level is greater than 0, then append all operations in the current
transaction to the next lower transaction.

Decrement the current transaction level. If the transaction level is -1, then the TDatabase
InTransaction property is set to False.

Using Databases

Page 182

If a POST request was not sent to the web server because the current transaction being committed
was nested, then immediately fire the AfterCommit event handler, if one is defined.

If a POST request was sent to the web server and was not successful due to an exception or the web
server application returning an HTTP result code other than 200 (OK), the OnCommitError event will
be fired and will include the error message. If an event handler is not defined for the
OnCommitError event, then an exception will be raised with the error message. If a commit fails for
any reason, then the transaction being committed is placed in a pending requests queue. This is
also true for general database requests such as load requests. This queue ensures that the database
requests can be retried and, when retried, are sent to the web server in the order in which they
occurred. You can see if there are any pending database requests by examining the TDatabase
NumPendingRequests property. If the NumPendingRequests property is greater than 0, then there
are commit and/or dataset load requests that need to be retried at some point. Use the TDatabase
RetryPendingRequests method to retry any pending database requests, and the TDatabase
CancelPendingRequests method to cancel any pending database requests.

If a POST request was sent to the web server and was successful, then fire the AfterCommit event
handler, if one is defined.

Commit POST Requests

The TDatabase component uses the following properties to construct the POST request to the web server
when committing a transaction:

TDatabase BaseURL
This property defaults to 'datasets', but can be changed to any value that you wish. Please note that
it is best to use a relative URL path here so that all requests will be made relative to the URL from
which the application was loaded.

TDatabase DatabaseName
This property defaults to the same value as the TDatabase component's Name property, but is
automatically populated for you if you use the drag-and-drop method of creating a TDatabase at
design-time. This property can be changed to any value that you wish, and is simply used to identify
the database via a URL parameter used for the web server request.

TDatabase Params
This property is a string list (TStrings) of "name=value" pairs that represents the URL parameters for
all web server requests for the database. These parameters are strictly application-specific and are
not used by by the TDatabase component.

As an example, consider a typical transaction commit. In such a case, the relative URL that will be used for
the web server POST request would be:

databases?method=commit&database=Production

If the application was loaded from 'http://localhost', then the complete URL used for the web server POST
request would be:

http://localhost/databases?method=commit&database=Production

Using Databases

Page 183

Now consider a transaction commit where the BaseURL property is set to 'databases/transact.php'. In such
a case, the relative URL that will be used for the web server POST request would be:

databases/transact.php?method=commit&database=Production

If the application was loaded from 'http://localhost', then the complete URL used for the web server POST
request would be:

http://localhost/databases/transact.php?method=commit&database=Production

Rolling Back a Transaction

Use the Rollback method to roll back the current transaction. This will:

Fire the BeforeRollback event handler, if one is defined. To prevent the rollback from occurring,
return False as the result in the event handler.

Undo all operations that have taken place in the current transaction. If there are any exceptions
during this process, the OnRollbackError event will be fired and will include the error message. If an
event handler is not defined for the OnRollbackError event, then an exception will be raised with the
error message.

Note
 It is highly unlikely that an exception will ever be raised when a transaction is being rolled
back, but it is possible that a catastrophic browser error could cause such an exception.

Decrement the current transaction level. If the transaction level is -1, then the TDatabase
InTransaction property is set to False.

Fire the AfterRollback event handler, if one is defined.

The following example starts a transaction, deletes all rows, and then commits the transaction.:

begin
 Database.StartTransaction;
 with Products do
 begin
 while (RowCount > 0) do
 Delete;
 end;
 Database.Commit;
end;

Using Databases

Page 184

Note
 If you attempt to call the TDatabase Commit or Rollback methods when there are no active
transactions (InTransaction property is False), then an exception will be raised.

Using Databases

Page 185

6.8 Responding to DataSet Changes

It is important that one be able to respond to various changes to dataset columns and rows, both for
updating control states and for implementing concepts such as master-detail linkages. The TDataSet
OnStateChange event is used to track when the TDataSet State changes. The TDataSet OnRowChanged
event is used to track when the active row in the dataset changes, or when a column in the active row
changes.

State Changes

Define an event handler for the TDataSet OnStateChange event in order to track when the dataset state
changes. The following list details the TDataSet methods that cause the dataset state to change, along
with the state after the method completes:

Method After State

Open dsBrowse

Close dsClosed

CheckBrowseMode dsBrowse (if result is True)

InitFind dsFind

Find dsBrowse

Insert dsInsert

Update dsUpdate

Save dsBrowse

Cancel dsBrowse

The following example shows an OnStateChange event handler that displays the state of a dataset called
"Vendors" in a label on the current form:

procedure TMyForm.VendorsStateChange(Sender: TObject);
begin
 case Vendors.State of
 dsClosed:
 VendorStateLabel.Caption:='Closed';
 dsBrowse:
 VendorStateLabel.Caption:='Browse';
 dsInsert:
 VendorStateLabel.Caption:='Insert';
 dsUpdate:
 VendorStateLabel.Caption:='Update';
 dsFind:
 VendorStateLabel.Caption:='Find';
 end;
end;

Row Changes

Using Databases

Page 186

Define an event handler for the TDataSet OnRowChanged event in order to track when the active row in
the dataset changes. The OnRowChanged event is fired when any column in the active row is changed
due to a modification, or when the active row changes due to the row pointer moving. If the
OnRowChanged event was fired in response to a column modification, then the Column parameter in the
event handler will contain an instance of the TDataColumn that was modified. If the OnRowChanged
event was fired in response to the entire active row changing, then the Column parameter will be nil.

The following TDataColumn properties and methods will cause the OnRowChanged event to fire with a
non-nil Column parameter:

 AsString
 AsBoolean
 AsInteger
 AsFloat
 AsDate
 AsTime
 AsDateTime
 Clear

The following TDataSet properties and methods will cause the OnRowChanged event to fire with a nil
Column parameter:

 RowID
 LoadRows
 Sort
 EnableControls
 First
 Prior
 Next
 Last
 MoveBy
 MoveTo
 GotoBookmark
 InitFind
 Find
 Insert
 Save
 Cancel
 Delete

The following TDatabase properties and methods will cause the OnRowChanged event to fire with a nil
Column parameter:

 LoadRows
 Rollback

Responding to row changes is important for updating related controls in the user interface. The following
example shows an OnRowChanged event handler that responds to row changes by calling methods that
update both buttons and labels:

procedure TMasterDetailForm.CustomerOrdersRowChanged(Sender: TObject;

Using Databases

Page 187

 Column: TDataColumn);
begin
 if (Column=nil) then
 begin
 UpdateOrderButtons;
 UpdateOrderLabels;
 end;
end;

Responding to row changes is also important for concepts such as master-detail links. The following
example shows an OnRowChanged event handler that responds to row changes for loading a detail
dataset as the master row changes:

procedure TMasterDetailForm.LoadOrders;
begin
 CustomerOrders.Params.Clear;
 CustomerOrders.Params.Add('CustomerID='''+
 Customer.Columns['CustomerID'].AsString+
 '''');
 Database.LoadRows(CustomerOrders);
end;

procedure TMasterDetailForm.CustomerRowChanged(Sender: TObject;
 Column: TDataColumn);
begin
 if (Column=nil) then
 begin
 UpdateCustomerButtons;
 LoadOrders;
 end;
end;

Using Databases

Page 188

6.9 Binding Controls to DataSets

The controls in the Elevate Web Builder component library can be used in both an unbound and bound
fashion. A control is considered bound when it is explicitly attached to a dataset and one or more columns
in the dataset. Most controls bind to a specific dataset column, while certain controls like the TGrid control
can bind to multiple dataset columns.

Once a control is bound to a dataset, it will automatically update its contents in response to changes in
the dataset. For example, if you insert a new row in the dataset using the TDataSet Insert method, then the
control will automatically repopulate with the value from the new row.

Binding to a DataSet

To bind a control to a specific dataset, assign an existing TDataSet instance to the DataSet property of the
control. This can be done at design-time or run-time.

Note
 If the TDataSet instance that is assigned to the DataSet property is deleted, the control will
automatically assign a value of nil to the DataSet property and the control will become unbound.

However, simply assigning the DataSet property is insufficient for binding a control to a dataset - you
must also specify which column in the dataset to bind to. For most controls, this is done by assigning a
column name to the DataColumn property. For the TGrid component, you must assign a column name to
the DataColumn property of each TGridColumn in the grid that you wish to be bound to the dataset.

Note
 The TGrid component allows you to to mix bound and un-bound columns within the same grid
control.

Auto-Editing of Bound Controls

The value of the TDataSet AutoEdit property determines whether modifications to the contents of bound
controls are allowed when the dataset is not in an editable state (TDataSet State property is dsInsert or
dsUpdate). If the AutoEdit property is True, then any modification to a bound control will cause the
attached dataset to insert a new row if the dataset is empty, or begin updating the current row if the
dataset is not empty. If the AutoEdit property is False, then bound controls are effectively read-only until
either a new row is inserted or an existing row is updated in the dataset.

Note
 The TGrid control has two properties that can still enable a user to insert or delete rows in a bound
grid. They are the AllowInserts and AllowDeletes properties, respectively. Be sure to set these
properties to False if you do not want to allow a user to automatically insert or delete rows by using
keystrokes in the grid.

Using Databases

Page 189

Auto-Editing and Read-Only Columns

Dataset columns can be defined as calculated or read-only using the TDataColumn Calculated and
ReadOnly properties, respectively. Any controls bound to a calculated or read-only column will not be
editable, and will behave as though the dataset's AutoEdit property is set to False.

Using Databases

Page 190

6.10 Calculated Columns

As discussed in the Creating and Loading DataSets topic, dataset columns are normally defined
automatically when dragging a dataset from the IDE's Database Manager and dropping the dataset on a
form or database designer, or they can be loaded at runtime from the web server via the TDataSet
LoadColumns method.

However, in some cases you may want to define columns that derive their contents from a calculation. In
Elevate Web Builder, these are, of course, called calculated columns. Creating a calculated column is very
simple:

Create the column as you normally would, using the Add method of the TDataSet Columns.

Set the new column's Calculated property to True.

Define an event handler for the TDataSet OnCalculateRow event that executes the calculation code
and assigns a value to the new calculated column.

Whenever a column in a row is updated, the OnCalculateRow event handler will be triggered so that any
calculated columns can be re-computed for that row.

Any editable controls bound to a calculated column will automatically be read-only.

The following is an example of creating a calculated column that shows concatenated information from
two other columns in the dataset:

procedure TForm1.Form1Create(Sender: TObject);
begin
 with Albums.Columns.Add do
 begin
 Name:='ArtistYear';
 DataType:=dtString;
 Length:=60;
 Calculated:=True;
 end;
 Albums.OnCalculateRow:=AlbumsCalculateRow;
end;

procedure TForm1.AlbumsCalculateRow(Sender: TObject; Column: TDataColumn);
begin
 Albums.Columns['ArtistYear'].AsString:=Albums.Columns['Artist'].AsString+
 ' ('+Albums.Columns['Year'].AsString+')';
end;

Note
 Do not attempt to programmatically modify a calculated column outside of an OnCalculateRow
event handler. Attempting to do so will result in an error. Also, you cannot modify non-calculated
columns in an OnCalculateRow event handler.

Using Databases

Page 191

6.11 API Reference

Elevate Web Builder uses a defined server request API for handling database operations between an
application and the web server. Both the internal web server in the IDE and the included external Elevate
Web Builder Web Server include support for this API. However, for other web servers the API support
must be coded via a layer in the web server application, whether it is coded using PHP, Ruby, ASP.NET, or
any other type of web server language or scripting environment. This reference will assist you in building
such a layer in your web server application.

Elevate Web Builder uses three types of API calls for the database functionality:

DataSet columns
DataSet rows
Transactions

DataSet Columns

Dataset columns are requested from the web server using an HTTP GET request when the TDataSet
LoadColumns method is called from the application. The GET request URL will have the following format:

<Database Resource Name>?method=columns&database=<Database
 Name>&dataset=<DataSet Name>[<Custom Parameters>]

where <Database Resource Name> is the base resource name for the database API (the default is
'databases'), <Database Name> is the name of the database, <DataSet Name> is the name of the dataset,
and <Custom Parameters> are any additional custom parameters sent along with the base parameters. If
the client application is using URL authentication parameters (the default is to use HTTP headers), then
there may be additional user and password parameters/values included in the complete URL. Please see
the Creating and Using Databases topic for more information on specifying the authentication method for
database requests.

The response from a dataset columns request will indicate an HTTP status code of 200 (OK) along with the
JSON column data as the included response content, or a non-200 error status code.

Please see the JSON Reference topic for more information on the structure of the JSON column data
returned.

DataSet Rows

Dataset rows are requested from the web server using an HTTP GET request when the TDataSet LoadRows
or the TDatabase LoadRows method is called from the application. The GET request URL will have the
following format:

<Database Resource Name>?method=rows&database=<Database
 Name>&dataset=<DataSet Name>[<Custom Parameters>]

Using Databases

Page 192

where <Database Resource Name> is the base resource name for the database API (the default is
'databases'), <Database Name> is the name of the database, <DataSet Name> is the name of the dataset,
and <Custom Parameters> are any additional custom parameters sent along with the base parameters. If
the client application is using URL authentication parameters (the default is to use HTTP headers), then
there may be additional user and password parameters/values included in the complete URL. Please see
the Creating and Using Databases topic for more information on specifying the authentication method for
database requests.

The response from a dataset rows request will indicate an HTTP status code of 200 (OK) along with the
JSON row data as the included response content, or a non-200 error status code.

Please see the JSON Reference topic for more information on the structure of the JSON row data returned.

Transactions

Transaction operations are sent to the web server using an HTTP POST request when the TDatabase
Commit method is called from the application, and the current TransactionLevel is 0. The POST request
URL will have the following format:

<Database Resource Name>?method=commit&database=<Database Name>[<Custom
 Parameters>]

where <Database Resource Name> is the base resource name for the database API (the default is
'databases'), <Database Name> is the name of the database, and <Custom Parameters> are any
additional custom parameters sent along with the base parameters. If the client application is using URL
authentication parameters (the default is to use HTTP headers), then there may be additional user and
password parameters/values included in the complete URL. Please see the Creating and Using Databases
topic for more information on specifying the authentication method for database requests.

The response from a database commit request will indicate an HTTP status code of 200 (OK) or a non-200
error status code.

Please see the JSON Reference topic for more information on the structure of the JSON transaction data
that should be included in the request content.

Using Databases

Page 193

6.12 JSON Reference

Elevate Web Builder uses the JSON (JavaScript Object Notation) format for handling database operations
between an application and the web server. Both the internal web server in the IDE and the included
external Elevate Web Builder Web Server include support for providing JSON column and row data for
any datasets in databases defined in the Database Manager, as well as accepting transactional JSON data
for inserts, updates, and deletes. However, for other web servers the JSON must be generated and
consumed via a layer in the web server application, whether it is coded using PHP, Ruby, ASP.NET, or any
other type of web server language or scripting environment. This reference will assist you in building such
a layer in your web server application.

For more general information on JSON, please see the following link:

JSON Reference

Elevate Web Builder uses three types of JSON formats for the database functionality:

DataSet columns
DataSet rows
Transactions

DataSet Columns

Dataset columns are requested from the web server using an HTTP GET request when the TDataSet
LoadColumns method is called from the application. The JSON returned by the web server should have
the following format:

{ columns: [<Column>, <Column>, <Column>, ...] }

(... denotes more columns)

<Column> = { name: <Name>, type: <Type>, length: <Length>, scale: <Scale>}

<Name> = String (Example: "Customer No")

<Type> = Integer with a value of 0 through 8 (see below)

<Length> = Integer or null (Example: 20)

<Scale> = Integer or null (Example: 2)

Column Types

The following details the various column types and how they should be specified:

Using Databases

Page 194

Column Type Description

0 Unknown type - will cause an error when the columns are
loaded

1 String - requires a column length for fixed-length columns,
null for variable-length columns

2 Boolean

3 Integer

4 Float - can have a column scale specified

5 Date

6 Time

7 Date/Time

8 BLOB

BLOB Column Types

In Elevate Web Builder datasets, BLOB columns are handled as String columns with a null length, and
usually contain a URL that is used to dynamically load the BLOB data into a TImage, TAudio, or TVideo
control. However, if a BLOB column is actually a CLOB (Character Large Object) column, then it will/should
be defined and handled as an actual string, and not a URL.

Elevate Web Builder also supports the use of an additional String column for BLOB columns that indicates
the MIME type of the BLOB column data. Such a column should be named:

<BLOB Column Name>_ContentType

If Elevate Web Builder finds a column with this name, it will use the contents of the column as the
response Content-Type header when returning the BLOB data for BLOB column load requests. This is
especially necessary for binary formats that cannot be detected by the browser automatically.

See the BLOB Column Data section below for more information on handling BLOB column data.

Example JSON

The following is an example of the JSON for a products table:

{ "columns": [
{ "name": "ProductID","type": 1,"length": 30,"scale": null },
{ "name": "Description","type": 1,"length": 60,"scale": null },
{ "name": "ListPrice","type": 4,"length": null,"scale": 2 },
{ "name": "Shipping","type": 4,"length": null,"scale": 2 }
] }

DataSet Rows

Using Databases

Page 195

Dataset rows are requested from the web server using an HTTP GET request when the TDataSet LoadRows
method or the TDatabase LoadRows method is called from the application. The JSON returned by the
web server should have the following format:

{ rows: [<Row>, <Row>, <Row>, ...] }

(... denotes more rows)

<Row> = { <Column Name>: <Column Data>, <Column Name>: <Column Data>, ... }

(... denotes more column data)

<Column Name> = String (Example: "Customer No")

<Column Data> = Valid column data or null (see below)

Column Data

The following details the various column types and how the column data should be formatted for each:

Column Type Description

String
BLOB

Enclose non-null values in double quotes.

Boolean Specify true or false literals for non-null values.

Integer Specify any valid integer value (positive or negative) for non-
null values.

Float Specify any valid floating-point value for non-null values. If
not null, the incoming value must use the period (.) decimal
separator if it contains fractional digits.

Date
Time
Date/Time

Specify any valid integer value (positive or negative) for non-
null values. If not null, the incoming value represents the
number of milliseconds since midnight on January 1, 1970,
and can be negative for time values

BLOB Column Data

As mentioned above in the BLOB Column Types section, BLOB columns that are actually binary and not
CLOB columns will/should be sent to the Elevate Web Builder application from the web server application
as URLs that provide a link to the BLOB data. These links will be passed back to the web server application
from the Elevate Web Builder application unchanged, so they can also contain information such as
authentication. By default, the internal web server in the IDE, as well as the Elevate Web Builder Web
Server, generate the URLs in the following format:

?method=load&database=<Database Name>&dataset=<DataSet Name>&column=<Column
 Name>&row=<Primary Key Values>[&user=<User Name>&password=<Password>]

Using Databases

Page 196

The user and password parameters are only included when the original dataset rows request was
authenticated. Except for public data, one should always use authentication for database requests. For
more information, please see the Creating and Loading DataSets topic.

Warning
 Elevate Web Builder uses the AJAX functionality in browsers to perform database requests, and this
functionality is limited in its ability to perform authentication via native browser methods.
Therefore, you should always use secure connections (https) to the web server with any database
requests. This is especially true if using BLOB columns that will require authentication information
in their URL parameters.

Example JSON

The following is an example of the JSON for a products table:

{ "rows": [
{ "ProductID": "9V-BATTERY-12PK",
 "Description": "12-pack of 9-volt batteries",
 "ListPrice": 20, "Shipping": 2 },
{ "ProductID": "9V-BATTERY-4PK",
 "Description": "4-pack of 9-volt batteries",
 "ListPrice": 4.5, "Shipping": 1.5 },
{ "ProductID": "CALCULATOR-BUSINESS",
 "Description": "Business calculator",
 "ListPrice": 10, "Shipping": 1 },
{ "ProductID": "CASH-REGISTER",
 "Description": "Cash register with thermal printer",
 "ListPrice": 170, "Shipping": 10 },
{ "ProductID": "FLASH-USB-16GB",
 "Description": "16GB USB flash drive",
 "ListPrice": 15, "Shipping": 0.5 },
{ "ProductID": "FLASH-USB-32GB",
 "Description": "32GB USB flash drive",
 "ListPrice": 25, "Shipping": 0.5 },
{ "ProductID": "FLASH-USB-8GB",
 "Description": "8GB USB flash drive",
 "ListPrice": 10, "Shipping": 0.5 },
{ "ProductID": "LABEL-MAKER",
 "Description": "Label maker - plastic labels",
 "ListPrice": 35, "Shipping": 2 },
{ "ProductID": "PEN-BP-12PK",
 "Description": "12-pack of ballpoint pens",
 "ListPrice": 12, "Shipping": 0.6 },
{ "ProductID": "PHONE-HEADSET",
 "Description": "Hands-free phone headset",
 "ListPrice": 15, "Shipping": 2 },
{ "ProductID": "PHONE-SYSTEM-4HS",
 "Description": "4-handset phone system with main base",
 "ListPrice": 120, "Shipping": 4 },
{ "ProductID": "PROJECTOR-HD",
 "Description": "1080p HD Projector",
 "ListPrice": 850, "Shipping": 56 },
{ "ProductID": "SCANNER-SF",
 "Description": "Sheet-feed paper scanner",
 "ListPrice": 150, "Shipping": 7 },
{ "ProductID": "SHREDDER-SF-CC",
 "Description": "Sheet-feed, cross-cut shredder with bin",

Using Databases

Page 197

 "ListPrice": 8, "Shipping": 10 },
{ "ProductID": "USB-CARD-READER",
 "Description": "USB magnetic strip card reader",
 "ListPrice": 25, "Shipping": 2 }
] }

Transactions

Transaction operations are sent to the web server using an HTTP POST request when the TDatabase
Commit method is called from the application, and the current TransactionLevel is 0. The JSON sent to the
web server will have the following format:

{ operations: [<Operation>, <Operation>, <Operation>, ...] }

(... denotes more operations)

<Operation> = { dataset: <DataSet Name>, operation: <Operation Type>,
 beforerow: <Row>, afterrow: <Row> }

<DataSet Name> = String (Example: "Customers")

<Operation Type> = Integer with a value of 0 through 3 (see below)

<Row> = null or { <Column Name>: <Column Data>,
 <Column Name>: <Column Data>, ... }

(... denotes more column data)

<Column Name> = String (Example: "Customer No")

<Column Data> = Valid column data or null (see above)

Operation Types

The following details the various operation types and how the row data will be formatted for each:

Operation Type Description

1 Insert - the beforerow value will be null and the afterrow
value will contain the row data for the inserted row.

2 Update - the beforerow value will contain the row data for the
row before the update, and the afterrow value will contain the
row data for the row after the update (modified values only).

3 Delete - the beforerow value will contain the row data for the
row before the deletion, and the afterrow value will be null.

Example JSON

The following is an example of the transactional JSON for order and items tables:

{ "operations": [

Using Databases

Page 198

{ "dataset": "CustomerOrders",
 "operation": 1,
 "beforerow": null,
 "afterrow": { "CustomerID": "DM", "OrderID": "DM-201275-134324404",
 "OrderDate": 1341460800000,
 "PONumber": null, "Terms": "Net 30",
 "ShippingTotal": 0.00, "PurchaseTotal": 0.00,
 "OrderTotal": 0.00, "AmountPaid": 0.00, "BalanceDue": 0.00,
 "SpecialInstructions": null }
},
{ "dataset": "CustomerItems",
 "operation": 1,
 "beforerow": null,
 "afterrow": { "OrderID": "DM-201275-134324404", "LineNo": 1,
 "ProductID": "SCANNER-SF", "Quantity": 1,
 "PurchasePrice": 150.00, "Shipping": 7.00,
 "PurchaseTotal": 150.00, "ShippingTotal": 7.00 }
},
{ "dataset": "CustomerItems",
 "operation": 1,
 "beforerow": null,
 "afterrow": { "OrderID": "DM-201275-134324404", "LineNo": 2,
 "ProductID": "FLASH-USB-32GB", "Quantity": 10,
 "PurchasePrice": 25.00, "Shipping": 0.50,
 "PurchaseTotal": 250.00, "ShippingTotal": 5.00 }
},
{ "dataset": "CustomerOrders",
 "operation": 2,
 "beforerow": { "CustomerID": "DM", "OrderID": "DM-201275-134324404",
 "OrderDate": 1341460800000,
 "PONumber": null, "Terms": "Net 30",
 "ShippingTotal": 0.00, "PurchaseTotal": 0.00,
 "OrderTotal": 0.00, "AmountPaid": 0.00, "BalanceDue": 0.00,
 "SpecialInstructions": null },
 "afterrow": { "PONumber": "210054", "ShippingTotal": 12.00,
 "PurchaseTotal": 400.00,"OrderTotal": 412.00,
 "BalanceDue": 412.00 }
}
] }

Using Databases

Page 199

This page intentionally left blank

Using the Web Server

Page 200

Chapter 7
Using the Web Server

7.1 Starting the Web Server

Elevate Web Builder includes an external, deployable web server along with the IDE and compiler. The
Elevate Web Builder Web Server runs on Windows XP or higher as a normal application or Windows
service, and automatically supports Elevate Web Builder application database requests. In addition, you
can use Embarcadero RAD Studio and Delphi to create native server modules that can be added to the
web server in order to handle requests from an Elevate Web Builder application (or any web browser or
web browser application).

The web server executable is called ewbsrvr.exe and can found in the \bin\ewbsrvr sub-directory under
the main installation directory.

Installing the Web Server as a Service

If you wish to run the web server as a Windows service you must install it as a service by running the web
server with the /install command-line switch set. For example, to install the web server as a service using
the Run command window under Windows you would specify the following command:

ewbsrvr.exe /install

To uninstall the web server as a Windows service you must run the web server with the /uninstall
command-line switch set. For example, to uninstall the web server as a service using the Run command
window under Windows you would specify the following command:

ewbsrvr.exe /uninstall

If you wish to install the web server so that it does not interact with the desktop at all, which is required in
instances where the current user will be logged out of the system, then you should use the /nointeract
flag along with the /install command-line switch:

ewbsrvr.exe /install /nointeract

This will install the service as a non-interactive service and the web server will not display a user interface
when it is started.

Finally, by default the service will display a "Service installed" dialog box when the service is installed
successfully. This is sometimes not desired during installations, and in these cases you can use the /silent
command-line switch to suppress the dialog box:

Using the Web Server

Page 201

ewbsrvr.exe /install /silent

Starting the Web Server

The main difference between starting the web server as a normal application and starting the web server
as a Windows service is that the normal application can be started just like any other application in one of
three ways: the Run dialog, the command-line, or a Start Menu program link or desktop link. The service,
however, must be started via the Services dialog or by using the NET START command-line command.

Starting the Web Server as a Normal Application

You can start the web server as a normal application by clicking on the link for the "Elevate Web Builder 2
Web Server".

Starting the Web Server as a Service

To start the web server as a Windows service, you can use the NET START command from the command-
line:

net start ewbsrvr

Note
 In order to start the web server as a Windows service the server must have already been installed
as a service using the /install command-line switch (see above).

Using the Web Server

Page 202

7.2 Configuring the Web Server

You can configure the web server by completing the following steps.

1. Start the web server (ewbsrvr.exe) as an application by clicking on the link for the "Elevate Web Builder 2
Web Server".

2. Access the web server configuration options:

a. In the system tray, right-click on the web server icon to bring up the server menu, and click on the Restore
option on the server menu.

b. Using the main toolbar, click on the Stop Server button.

c. Using the main toolbar, click on the Configure Server button to open the Server Configuration Dialog.

d. Use the information below under the Server Configuration Dialog heading to configure the web server
according to your needs. When done configuring the server, click on the OK button to save the changes.

e. Using the main toolbar, click on the Start Server button.

f. Click on the close button in the upper-right-hand corner of the web server window to close the server
window.

Using the Web Server

Page 203

Server Configuration Dialog

The Server Configuration dialog allows you to configure the following aspects of the web server:

The server name, description, and hosted domain
The IP address, port, and timeout settings for connections
The authorization information for incoming connections
The content folder, default document, cross-origin resource sharing, and resource names
The databases and datasets defined for the web server
The modules added to the web server

Server

The Server page provides options for modifying the general web server settings.

Using the Web Server

Page 204

Option Description

Name Identifies the web server. This value is not used for named server
instances (see below Multiple Server Instances for more
information on named server instances). The default value is
'ewbsrvr'

Description Used in conjunction with the name to give more information
about the web server to clients once they have connected to the
web server. The default value is 'Elevate Web Builder 2 Web
Server'.

Domain Identifies the domain that is being hosted by the web server.
The default value is '', meaning that any domain can be hosted
by the web server. If a value is provided, then it will be used to
limit connections to the web server to those that pass the same
value (case-insensitive) in the Host header along with each HTTP
request.

Connections

The Connections page provides options for modifying the connection settings for the web server.

Using the Web Server

Page 205

Using the Web Server

Page 206

Option Description

IP Address Specifies the IP address that the web server should bind to when
listening for incoming connections from clients. The default
value is blank (""), which specifies that the web server should
bind to all available IP addresses.

Port Specifies the port that the web server should bind to when
listening for incoming connections from clients. The default
value is 80.

Maximum Request Size Specifies the maximum size of any incoming request from a
client. Clients will often send content as part of HTTP POST
requests, and this setting acts as a governor to prevent a client
from intentionally or unintentionally crashing the web server by
exhausting all available memory. The default value is 16,777,216
bytes, or 16MB.

Connection Timeout Specifies how long the web server should wait for a request
from a connection before it terminates the connection. This is
done to keep the number of concurrent connections to a
minimum, while still allowing for multiple web browser requests
on the same connection. The default value is 30 seconds.

Thread Cache Size Specifies the number of threads that the web server should
actively cache for connections. When a thread is terminated in
the server it will be added to this thread cache until the number
of threads cached reaches this value. This allows the web server
to re-use the threads from the cache instead of having to
constantly create/destroy the threads as needed, which can
improve the performance of the web server if there are many
connections and disconnections occurring. The default value is
10.

Authorizations

The Authorizations page provides options for modifying the authorization information for the web server.

Using the Web Server

Page 207

Using the Web Server

Page 208

Option Description

Administrator Name Specifies the administrator's name. The default value is
'Administrator'.

Note
 The administrator name and password are not used
currently, but will be in the future for remote
administration of the web server.

Administrator Password Specifies the administrator's password. The default value is
'EWBDefault'.

Note
 The administrator name and password are not used
currently, but will be in the future for remote
administration of the web server.

Administrator Email Specifies the administrator's email address, which is used in web
server response headers to indicate the point of contact for the
organization in case of errors, etc. The default value is ''.

Authorized IP Addresses Specifies which IP addresses are authorized to access the web
server. This is commonly referred to as a "white list". There is no
limit to the number of addresses that can be specified, and the
IP address entries may contain the asterisk (*) wildcard character
to represent any portion of an address.

Note
 Due to the way that .ini file entries must be specified,
multiple addresses must be separated with the literal
value "<#CR#><#LF#>" (without the quotes) instead of
actual line feeds.

Blocked IP Addresses Specifies which IP addresses are not allowed to access the web
server. This is commonly referred to as a "black list". There is no
limit to the number of addresses that can be specified, and the
IP address entries may contain the asterisk (*) wildcard character
to represent any portion of an address.

Note
 Due to the way that .ini file entries must be specified,
multiple addresses must be separated with the literal
value "<#CR#><#LF#>" (without the quotes) instead of
actual line feeds.

Using the Web Server

Page 209

Content

The Content page provides options for modifying the content settings for the web server.

Using the Web Server

Page 210

Option Description

Content Folder Specifies the path that the web server should use for all static
content, including Elevate Web Builder applications (*.js, *.html)
and any other external files such as images. The default value is
''.

Default Document Specifies the default document file name to use if a URL
requested by a client does not include a file name. For example,
if the client makes a request to the URL
"http://www.mydomain.com", then this value will be appended
to the URL (prefixed with a slash) and the combined URL will be
used instead. The default value is ''.

Enable Cross-Origin Resource Sharing Specifies that the web server will allow and handle cross-origin
resource sharing. This feature allows the web server to serve
static and database content in response to requests from origins
(domain name and port number) that are different than that of
the web server. Normally, web browsers don't permit such cross-
origin requests unless the web server specifically allows them.
The default value is False.

For a good discussion of Cross-Origin Resource Sharing, please
visit the following link:

HTTP access control (CORS)

Note
 The Elevate Web Builder Web Server supports both
simple and preflighted requests, but does not support
requests with credentials at this time.

Databases Resource Name Specifies the resource name to use for the automatic database
handling built into the web server. The default value is
'databases'. Please see the Web Server Request Handling topic
for more information on how this resource name is used in
database requests.

Database Modules Resource Name Specifies the resource name to use for any database modules
added to the web server (see next). The default value is
'databasemodules'. Please see the Web Server Request Handling
topic for more information on how this resource name is used in
database requests.

Modules Resource Name Specifies the resource name to use for any web server modules
added to the web server. The default value is 'modules'. Please
see the Web Server Request Handling topic for more
information on how this resource name is used in module
requests.

Databases

Using the Web Server

Page 211

The Databases page provides options for modifying the defined databases and datasets used by the web
server.

Adding a New Database

Use the following steps to add a new database:

Click on the Add button under the list of databases.

The database editor dialog will appear. Please refer to the next section for information on defining the
database.

Defining a Database

The database editor dialog consists of 2 pages:

Using the Web Server

Page 212

General - the database engine/server type, the name of the database, and the description.

Currently, the following database engines are supported:

ElevateDB
DBISAM
ADO (includes OLEDB/ODBC)

Using the Web Server

Page 213

Connection Properties - the name/location of the database and other configuration properties
essential to establishing a proper connection to the desired database. The options on this page are
specific to the database engine selected on the first page.

Once the connection properties are set, you can use the Test Connection button to verify that everything
is set properly. Please see your database engine manual/documentation for more information on the
proper value for each property setting.

Once you have properly set the connection properties and successfully tested the connection to the
database, click on the OK button to close the database dialog and save the database.

Editing an Existing Database

To edit an existing database, simply double-click on the desired database in the list of databases. The
database editor dialog will then appear, and you can use it to modify the database accordingly.

Removing a Database

Use the following steps to remove a database:

Click on the name of the database that you wish to remove.

Click on the Remove button under the list of databases.

A confirmation dialog will be displayed, asking you to confirm the removal of the database. Click on the
Yes button to continue, or the No button to cancel the removal.

Importing Databases from the IDE

Using the Web Server

Page 214

In order to import databases from the Elevate Web Builder IDE, both the IDE and the web server must be
running on the same machine. The import process currently only imports the database definitions directly
from the IDE's .ini file.

Warning
 Importing the databases from the IDE will cause all existing databases defined for the web server to be
replaced with those from the IDE. Please make sure that this is the desired outcome before proceeding.

To begin the import process, simply click on the Import button under the list of databases.

Adding a New DataSet

Use the following steps to add a new dataset:

Be sure that you have selected an existing database by clicking on the desired existing database.

Click on the Add button under the list of datasets for the currently-selected database.

The dataset editor dialog will appear. Please refer to the next section for information on defining the
dataset.

Defining a DataSet

The dataset editor dialog consists of 3 pages:

General - the name of the dataset and the description.

Using the Web Server

Page 215

Row Source - the actual source of the dataset rows can be an actual table name from the selected
database, or it can be an SQL SELECT statement.

Elevate Web Builder uses a special parameter naming syntax for queries, and does not use the native
parameter functionality in the target database engine. This is done because some database engines do
not support named parameters, or do not support parameter type discovery or enumeration. When the
dataset rows are requested from the internal web server embedded in the IDE, it automatically
populates the named parameters in the query by using the URL "name=value" parameters passed with
the dataset rows request. These parameters can be specified in the application via the TDataSet Params
property.

Using the Web Server

Page 216

Preview - use the preview page to make sure that the dataset is returning the correct rows. Any default
values for parameters defined on the Row Source page are applied for the preview, so if you have not
defined any default parameter values you may see zero rows displayed.

Editing an Existing DataSet

To edit an existing dataset, simply double-click on the desired dataset in the list of datasets. The dataset editor
dialog will then appear, and you can use it to modify the dataset accordingly.

Removing a DataSet

Use the following steps to remove a dataset:

Click on the name of the dataset that you wish to remove.

Click on the Remove button under the list of datasets for the currently-selected database.

A confirmation dialog will be displayed, asking you to confirm the removal of the dataset. Click on the
Yes button to continue, or the No button to cancel the removal.

Modules

The Modules page provides options for adding and removing modules (*.dll) that were created using
Embarcadero RAD Studio and Delphi and an Elevate Web Builder Module template project from the repository
in the RAD Studio IDE. Adding modules to the web server allows the modules to be used to respond to
requests and provide content to the Elevate Web Builder application running in the web browser.

Using the Web Server

Page 217

Adding a Module

In order to add a module, complete the following steps:

Click on the Add button

The Add Module dialog will appear.

In the dialog, specify the file name of the module (.dll) that you wish to add to the web server. You can
type in the file name directly, or use the browse button (...) to select the module using a common
Windows file dialog. If you use the browse button, the module description and version will be populated
from the module after the file is selected. The description and version are read directly from the .dll's
version information.

Using the Web Server

Page 218

Click on the OK button. If the specified file is a valid Elevate Web Builder module, then the module will
be added to the web server. If the specified file is not a valid module file, then an error message will be
displayed indicating any issues with the module file.

Removing a Module

In order to remove a module, complete the following steps:

Select an existing module from the list of modules.

Click on the Remove button.

Note
 If you remove a module that is used by Elevate Web Builder applications, then you will experience
errors in these applications when they try to execute requests that reference these modules in the URL
for the request.

Please see the Creating Web Server Modules topic for more information how the modules work.

Configuration Reference

The web server stores its configuration information in an .ini file that is, by default, located in the following
directory under Windows XP/2003 Server:

C:\Documents and Settings\All Users\Application Data\Elevate Software\Elevate
 Web Builder 2 Web Server

in the following directory under Windows Vista or higher (including Windows 7 and Server 2008):

C:\ProgramData\Elevate Software\Elevate Web Builder 2 Web Server

The name of the .ini configuration file is determined by the name of the application. For example, for the
ewbsrvr.exe application, the name of the .ini file would be ewbsrvr.ini.

Note
 If the web server finds an .ini with the proper name in the same directory as the server .exe, it will use it
instead of the .ini file in the common application data directory for Windows.

All of the configuration entries in the web server .ini configuration files are stored under a section called
"Server".

Using the Web Server

Page 219

Note
 Please see the Multiple Server Instances topic for how multiple server instances can change this
naming slightly.

Each of the individual configuration entries in this section are as follows:

Configuration Entry Description

No User Interface Specifies that the server will run without a user interface. This is
useful in situations where you don't want the server to display
an interface or an icon in the system tray, such as when running
the server as a Windows service. The default value is 0 (False).
Setting this entry to 1 (True) will turn off the server UI.

Server Name Identifies the web server. This configuration item is not used for
named server instances (see below Multiple Server Instances for
more information on named server instances). The default value
is 'ewbsrvr'.

Server Description Used in conjunction with the "Server Name" configuration entry
to give more information about the web server to external
clients once they have connected to the web server. The default
value is 'Elevate Web Builder Web Server'.

Domain Identifies the domain that is being hosted by the web server.
The default value is '', meaning that any domain can be hosted
by the web server. If a value is provided, then it will be used to
limit connections to the web server to those that pass the same
value (case-insensitive) in the Host header along with each HTTP
request.

IP Address Specifies the IP address that the web server should bind to when
listening for incoming connections from web browsers. The
default value is blank (""), which specifies that the web server
should bind to all available IP addresses.

Port Specifies the port that the web server should bind to when
listening for incoming connections from web browsers. The
default value is 80.

Max Request Size Specifies the maximum size of any incoming request from a
client. Clients will often send content as part of HTTP POST
requests, and this setting acts as a governor to prevent a client
from intentionally or unintentionally crashing the web server by
exhausting all available memory. The default value is 16,777,216
bytes, or 16MB.

Timeout Specifies how long the web server should wait for a request
from a connection before it terminates the connection. This is
done to keep the number of concurrent connections to a
minimum, while still allowing for multiple web browser requests
on the same connection. The default value is 30 seconds.

Thread Cache Size Specifies the number of threads that the web server should
actively cache for connections. When a thread is terminated in

Using the Web Server

Page 220

the server it will be added to this thread cache until the number
of threads cached reaches this value. This allows the web server
to re-use the threads from the cache instead of having to
constantly create/destroy the threads as needed, which can
improve the performance of the web server if there are many
connections and disconnections occurring. The default value is
10.

Admin Name Specifies the administrator's name. The default value is
'Administrator'.

Note
 The administrator name and password are not used
currently, but will be in the future for remote
administration of the web server.

Admin Password Specifies the administrator's password. The default value is
'EWBDefault'.

Note
 The administrator name and password are not used
currently, but will be in the future for remote
administration of the web server.

Admin Email Specifies the administrator's email address, which is used in web
server response headers to indicate the point of contact for the
organization in case of errors, etc. The default value is ''.

Authorized Addresses Specifies which IP addresses are authorized to access the web
server. This is commonly referred to as a "white list". There is no
limit to the number of addresses that can be specified, and the
IP address entries may contain the asterisk (*) wildcard character
to represent any portion of an address.

Note
 Due to the way that .ini file entries must be specified,
multiple addresses must be separated with the literal
value "<#CR#><#LF#>" (without the quotes) instead of
actual line feeds.

Blocked Addresses Specifies which IP addresses are not allowed to access the web
server. This is commonly referred to as a "black list". There is no
limit to the number of addresses that can be specified, and the
IP address entries may contain the asterisk (*) wildcard character
to represent any portion of an address.

Using the Web Server

Page 221

Note
 Due to the way that .ini file entries must be specified,
multiple addresses must be separated with the literal
value "<#CR#><#LF#>" (without the quotes) instead of
actual line feeds.

Content Folder Specifies the path that the web server should use for all static
content, including Elevate Web Builder applications (*.js, *.html)
and external files like images. The default value is ''.

Default Document Specifies the default document file name to use if a URL
requested by a client does not include a file name. For example,
if the client makes a request to the URL
"http://www.mydomain.com", then this value will be appended
to the URL (prefixed with a slash) and the combined URL will be
used instead. The default value is ''.

Enable Cross Origin Resources Specifies that the web server will allow and handle cross-origin
resource sharing. This feature allows the web server to serve
static and database content in response to requests from origins
(domain name and port number) that are different than that of
the static and database content. Normally, web browsers don't
permit such cross-origin requests unless the web server
specifically allows them. The default value is False.

Databases Resource Name Specifies the resource name to use for the automatic database
handling built into the web server. The default value is
'databases'. Please see the Web Server Request Handling topic
for more information on how this resource name is used in
database requests.

Database Modules Resource Name Specifies the resource name to use for any database modules
added to the web server (see next). The default value is
'databasemodules'. Please see the Web Server Request Handling
topic for more information on how this resource name is used in
database requests.

Modules Resource Name Specifies the resource name to use for any web server modules
added to the web server. The default value is 'modules'. Please
see the Web Server Request Handling topic for more
information on how this resource name is used in module
requests.

Using the Web Server

Page 222

7.3 Multiple Web Server Instances

Multiple instances of the web server can be run on the same physical machine through named server
instances. Named server instances are simply instances of the web server that were executed using two
special command-line switches:

ewbsrvr.exe /name=<Server Instance Name> /desc=<Server Instance Description>

Named server instances use the passed name and description to provide the name of the web server
instance, as well as the description. The name parameter is also used to determine which section of the
ewbsrvr.ini file is used for configuration purposes. Instead of just the normal "Server" section being used
in the ewbsrvr.ini file, the section is named using the provided server name. For example, if the named
server instance is called "MyServer", then the section in the ewbsrvr.ini file where the configuration is
stored will be the following:

[Server_MyServer]

Note
 This also applies to the defined datasets and modules in the ewbsrvr.ini file. Each named server
instance will have its own datasets and modules. Please see the Configuring the Web Server topic
for more information on configuring the web server.

The description parameter, if also specified, is immediately written to the named server instance section of
the ewbsrvr.ini file. All other configuration options described above in the Configuration Reference must
be modified using the Server Configuration Dialog in the web server. You can run the web server as a
normal application in order to modify the configuration of a named server instance. For example, to
modify the MyServer configuration you would use the following from the command-line:

ewbsrvr.exe /name=MyServer"

In order to use a named server instance as a Windows service, the /name parameter must be specified
during the installation of the service. For example, if the named server instance is called "MyServer", then
the service installation would be accomplished using the following from the command-line:

ewbsrvr.exe /install /name=MyServer /desc="My Server"

When you want to start the named server instance as a service, you would simply just use the following
from the command-line:

Using the Web Server

Page 223

net start MyServer

The following example shows how you would install two web server named server instances as Windows
services, and then start them:

ewbsrvr.exe /install /name=MyFirstServer /desc="My First Server"

ewbsrvr.exe /install /name=MySecondServer /desc="My Second Server"

net start MyFirstServer

net start MySecondServer

Warning
 You will need to verify that the port being used by each named server instance is unique, or one or
more named server instances will not start due to a port conflict. As mentioned above, you can use
the web server run as a normal application to modify the configuration of any named server
instance.

Using the Web Server

Page 224

7.4 Web Server Request Handling

As discussed in the Server Request Architecture topic, HTTP requests are usually HEAD, GET, or POST
requests, but can also be PUT or DELETE requests with defined REST interfaces. In addition, there are
certain types of HTTP requests that are automatically handled by the web server.

Note
 All URL comparisons performed in the web server are case-insensitive.

HEAD and GET Requests

With any HTTP HEAD or GET request, the web server does the following:

It first checks the URL to see if the request is for static content such as an HTML, JavaScript, image,
etc. file. The content folder specified in the web server configuration is used as the root folder for
this check. If a file is found in the location specified by the URL, relative to the content folder, and
the request is an HTTP GET request, then the file is sent to the client via the HTTP response headers
and content. If the request is an HTTP HEAD request, then only the HTTP response headers are sent
and not the file content.

If the URL is not that of static content, it will then be checked to see if it is an Elevate Web Builder
database request. A database request is any request that uses the following URL structure:

http://<Domain Name>/<Databases Resource Name>?method=<Method
 Name>&database=<Database Name>[&dataset=<DataSet Name>] or
https://<Domain Name>/<Databases Resource Name>?method=<Method
 Name>&database=<Database Name>[&dataset=<DataSet Name>]

If the URL matches this pattern, then the web server will automatically handle such a request and
return a proper response to the client.

Note
 Database requests are never HTTP HEAD requests, only GET or POST requests.

If the URL is not that of static content or a database request, then it is then checked to see if it is an
Elevate Web Builder server module request. A module request is any request that uses one of the
following URL structures:

Normal Module

http://<Domain Name>/<Modules Resource Name>/<Module Name> or
https://<Domain Name>/<Modules Resource Name>/<Module Name>

Using the Web Server

Page 225

Database Module

http://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>
 or
https://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>

Note
 The <Module Resource Name> and <Database Module Resource Name> components of
the URL are the default resource names for modules and database modules defined in the
Elevate Web Builder Web Server, but can be changed in the web server configuration. If
you've changed the default modules resource name of 'modules', then please replace any
subsequent references to the default 'modules' resource name in the following examples with
the resource name that you're using instead. The same holds true for the default database
modules resource name of 'databasemodules'. Please see the Configuring the Web Server
topic for more information.

If the URL matches this pattern, then the web server will automatically instantiate a module for use
with the request and pass the request information to the module. Please see your product-specific
module manual for information on how to handle such a request in a module and return a
response.

POST Requests

With any HTTP POST request, the web server does the following:

The URL is checked to see if it is an Elevate Web Builder database request. A database request is any
request that uses the following URL structure:

http://<Domain Name>/<Databases Resource Name>?method=<Method
 Name>&database=<Database Name> or
https://<Domain Name>/<Databases Resource Name>?method=<Method
 Name>&database=<Database Name>

If the URL matches this pattern, then the web server will automatically handle such a request and
return a proper response to the client.

Note
 Database POST requests are always transactions, which is why the dataset name is not
specified in the URL.

Using the Web Server

Page 226

If the URL is not that of a database request, then it is then checked to see if it is an Elevate Web
Builder server module request. A module request is any request that uses one of the following URL
structures:

Normal Module

http://<Domain Name>/<Modules Resource Name>/<Module Name> or
https://<Domain Name>/<Modules Resource Name>/<Module Name>

Database Module

http://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>
 or
https://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>

If the URL matches this pattern, the web server will then automatically instantiate a module for use
with the request and pass the request information to the module. Please see your product-specific
module manual for information on how to handle such a request in a module and return a
response.

PUT and DELETE Requests

With any HTTP PUT or DELETE request, the web server does the following:

The URL is checked to see if it is an Elevate Web Builder server module request. A module request is
any request that uses one of the following URL structures:

Normal Module

http://<Domain Name>/<Modules Resource Name>/<Module Name> or
https://<Domain Name>/<Modules Resource Name>/<Module Name>

Database Module

http://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>
 or
https://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>

If the URL matches this pattern, the web server will then automatically instantiate a module for use
with the request and pass the request information to the module. Please see your product-specific
module manual for information on how to handle such a request in a module and return a
response.

Using the Web Server

Page 227

7.5 Creating Web Server Modules

The Elevate Web Builder Web Server allows modules created using Embarcadero RAD Studio and Delphi
to be added to the web server and used to handle dynamic requests to the web server. This allows the
developer to offload computationally-intensive or database-intensive work to the natively-compiled web
server modules, and then use simple server requests in the front-end Elevate Web Builder applications to
make requests to the modules and receive back responses along with the relevant data/content.

The web server module functionality has the following architecture:

Note
 While modules are actually DLLs with a .dll extension, module names are specified in URLs without
any extension.

Creating Modules

For information on creating modules, please refer to the product-specific Elevate Web Builder 2 Modules
Manual that accompanies the product installation. You can download and install the Elevate Web Builder
2 Modules product for your specific product using the following link:

Elevate Web Builder Downloads

Modules can only be created using Embarcadero RAD Studio and Delphi XE or higher. This is because the
web server is using Unicode strings for all functionality and requires that the compiler used to create the
modules use Unicode strings as the default string type. In addition, much of the support code that is used

Using the Web Server

Page 228

with the modules was developed using Delphi XE and contains references to code that is only present in
Delphi XE or higher.

Adding Modules to the Web Server

For information on adding modules to the web server, please see the Configuring the Web Server topic.

Database Modules

Database modules are exactly the same as normal modules, but are referenced using a different resource
name so that they can be kept logically separate from other modules. Please see the Content section of
the Configuring the Web Server topic for information on configuring the database modules resource
name in the web server. While structurally the same as a normal module, a database module always
includes functionality for generating JSON data for loading datasets and consuming JSON data for
database transactions. The majority of this code is already implemented for you via database and dataset
adapter components that are made available with each Elevate Web Builder 2 Modules installation for
Delphi XE or higher. These adapter components allow the developer to access/update a wider variety of
data sources than what is currently possible with the built-in database functionality in the web server.
However, the fact that a database module handles various database requests does not preclude it from
also handling normal server requests. You can handle any normal requests before passing any database
requests on to the database adapter for automatic handling.

Note
 For more information on how to code a database module, please see the database module
example installed in the \examples\databasemodule subdirectory along with the Elevate Web
Builder 2 Modules download for the version of RAD Studio and Delphi that you are using.

Using the Web Server

Page 229

This page intentionally left blank

Language Reference

Page 230

Chapter 8
Language Reference

8.1 Introduction

Elevate Web Builder uses an Object Pascal dialect for its core language that is very close to the Object
Pascal language used by Embarcadero RAD Studio and Delphi. Object Pascal was chosen as the language
because it is a very easy language to learn due to its very English-like keywords, and because it is
structured and strongly-typed, allowing the resultant compiled applications to avoid run-time errors that
can cause problems for un-typed languages like JavaScript (the target code of the compiler).

The following are the rules governing the basic structure of the language.

Character Set

Elevate Web Builder uses the Unicode character set for all language elements. Please see the Literals and
Identifiers sections below for information on the restrictons to the allowed characters for both.

Warning
 Although all Unicode characters are supported, certain double-wide characters in languages such
as Chinese and Japanese cannot be displayed/edited properly in the Elevate Web Builder IDE and
code editor.

Case-Sensitivity

Elevate Web Builder's language is not case-sensitive. Identifiers and other language keywords are always
compared without considering case.

Whitespace and Line Breaks

Elevate Web Builder ignores any spaces or non-printable characters such as tabs or line feeds between
identifiers or literals. Within string literals, any such characters are assumed to be included as part of the
string itself. For example, the following code will cause the string literal to include a carriage return and
line feed:

var
 MyStringVariable: String;
begin
 MyStringVariable:='This is a string literal with a
 carriage return and line feed included';
end;

Statement Terminator

Language Reference

Page 231

The semicolon (;) is the code statement terminator character in Elevate Web Builder. It is used to indicate
the ending of a statement, even if the statement spans more than one physical line:

begin
 if True then
 ShowMessage('It''s true !!!')
 else
 ShowMessage('It''s false !!!');
end;

In the above case, the extra line breaks are for formatting purposes only. However, you should always
strive to format your code according to established formatting rules for the Object Pascal language, and
such line breaks are very important for readability of your code.

Comments

Elevate Web Builder supports both single-line comments using two slashes (//) or multi-line comments
using left and right braces ({}):

begin
 // This piece of code needs some work
 if (not True) then
 BlowUpTheApplication
 else
 begin
 { Whew, we avoided blowing up the application,
 so let's continue on a more reasonable path }
 HandleTheSpecialCase;
 end;
end;

Literals

Literal values are specified as follows:

Language Reference

Page 232

Value Type Example

Numbers 100
1200.42
-39.00

Boolean True
false

Strings 'This is a string literal'
'This is a '+' concatentated '+' string literal'

Characters 'a'
#27

Arrays ['This','is','a','string','array','literal']
[100,2,45]

Class Instances/Methods nil

Identifiers

An identifier is the name of any system-declared or user-declared object in an Elevate Web Builder
application, such as units, constants, types, variables, or procedures/functions. Identifiers may begin with
an underscore (_) or a letter (a-z, A-Z), and may contain an underscore, a letter, or a digit (0-9).

Reserved Words

The following are the list of reserved words in Elevate Web Builder. These words should not be used as
identifiers:

abstract
and
array
as
async
begin
break
case
class
const
constructor
contains
continue
default
destructor
div
do
downto
else
end
except
exit
external
finalization
finally
for

Language Reference

Page 233

function
if
implementation
inherited
initialization
interface
is
mod
not
object
of
on
or
out
override
private
procedure
program
property
protected
public
raise
read
record
repeat
shl
shr
then
to
try
type
unit
until
uses
var
virtual
while
with
write
xor

Syntax Diagrams

In the language reference syntax diagrams, angle brackets (<>) represent a language element and
brackets ([]) represent an optional language element.

Language Reference

Page 234

8.2 Defines

Elevate Web Builder supports basic compiler define functionality. Compiler defines are symbols used to
conditionally include or exclude code in the compilation process, and can be tested at compile-time to
make such a determination. Compiler defines are taken into account during the parsing phase of the
compilation process.

Note
 Elevate Web Builder defines a special DESIGN symbol automatically during compilation. If the code
is being compiled for design-time use in the component library, then the DESIGN symbol will be
defined. If the code is being compiled for run-time use, then the DESIGN symbol will not be
defined. Component developers can test for this special DESIGN symbol to determine whether or
not the code is being compiled for use at design-time. The standard component library included
with Elevate Web Builder tests for this symbol in many different places.

Defining Symbols

You can create a compiler define using the following syntax:

{$DEFINE <Symbol>}

Once a symbol has been defined, it will be effective for the remaining code in the current unit, including
any units that are referenced after the symbol was defined. Defining a symbol that is already defined does
nothing.

Warning
 Compiler defines are not nested. If a symbol is re-defined (it was already defined), and then un-
defined, the result will be that the symbol will be undefined.

Un-Defining Symbols

You can remove a compiler define using the following syntax:

{$UNDEF <Symbol>}

Testing for Defined Symbols

To test whether a symbol has been defined, you can use the following syntax:

{$IFDEF <Symbol>}

Language Reference

Page 235

// Include this code if the symbol is defined
[{$ELSE}]
// Include this code if the symbol is not defined (optional)
{$ENDIF}

To test whether a symbol has not been defined, you can use the following syntax:

{$IFNDEF <Symbol>}
// Include this code if the symbol is not defined
[{$ELSE}]
// Include this code if the symbol is defined (optional)
{$ENDIF}

An IFDEF or IFNDEF test must always be terminated with an ENDIF. The ELSE conditional branch is
optional.

Example

The following is code from the standard component library that tests for the special DESIGN symbol to
determine whether to use the WebDesign (IDE run-time) or the WebDOM (browser run-time) unit:

{$IFDEF DESIGN}
uses WebDesign, WebCore;
{$ELSE}
uses WebDOM, WebCore;
{$ENDIF}

Language Reference

Page 236

8.3 Types

Elevate Web Builder supports most basic Object Pascal types, and these types are detailed below.

Exact Numeric Types

Exact numeric types are used when you wish to store a numeric value in its exact representation without
accumulating rounding errors.

Type Description

Integer A 52-bit, signed integer value

Exact numeric literals use the minus (-) as the negative sign character, the plus (+) as the positive sign
character, and scientific notation is not supported. In addition, hexadecimal literals can be specified by
prefacing the hexadecimal value with the dollar sign ($).

The following are examples of exact numeric literals:

var
 MyInteger: Integer;
begin
 MyInteger := 100; // Assign 100 to the Integer variable
 MyInteger := $64; // Assign 100 as hexadecimal to the Integer variable
end;

Approximate Numeric Types

Approximate numeric types are used when you wish to store a numeric value in an approximate
representation with a floating decimal point. Using approximate numeric types can cause rounding errors
due to the fact that certain numbers such as 0.33 cannot be accurately represented using floating-point
precision.

Type Description

Double A 64-bit, floating-point numeric value with a maximum
precision of 16 digits.

Approximate numeric literals use the period (.) as the decimal point character, the minus (-) as the
negative sign character, the plus (+) as the positive sign character, and scientific notation is supported via
E (e or E) as the exponent character followed by a plus (+) or minus (-) character and the actual exponent
value.

The following are examples of approximate numeric literals:

var
 MyDouble: Double;

Language Reference

Page 237

begin
 MyDouble := -100.25; // Assign -100.25 to the Double variable
end;

String/Character Types

String types are used when you wish to store a character string of any length up to 2GB. String types
always use the Unicode character set for the characters that comprise the string. Character types store a
single character, and also use the Unicode character set.

Type Description

String A string value with a variable number of characters.

Char A single character.

String literals use the single quote (') character to identify themselves as such. Any single quotes enclosed
inside of the literal must be escaped by prefacing them with another single quote. In addition, single
character constants may be specified using their literal value or by prefacing their ordinal character set
position with the pound sign (#) character. To reference a specific character in a string, use the left and
right brackets ([]) with the 1-based integer position of the character being referenced.

Note
 Strings in Elevate Web Builder are immutable, meaning that they cannot be modified in-place by
assigning new character values at specific positions in the string. They must always be copied and
then assigned to a new string in order to be modified.

The following are examples of string/character literals:

var
 MyString: String;
 MyCharacter: Char;
begin
 MyString := 'This is a test'; // Assign "This is a test"
 // to the String variable
 MyString := #13+#10; // Assign a carriage return and
 // linefeed to the String variable
 MyCharacter := MyString[2]; // Assign the second character
 // from the String variable to
 // the Char variable
end;

Date/Time Types

Date/time types are used when you wish to store a date, time, or date/time value. Date/time types are
actually just integers, so they can be manipulated just like the Integer type.

Language Reference

Page 238

Type Description

DateTime A date/time value containing the number of milliseconds
since midnight on January 1, 1970.

Since date/time types are just integers, there isn't any literal representation of a date/time type.

Boolean Types

Boolean types are used to represent the values of True or False.

Type Description

Boolean A logical true/false value.

Boolean literals are expressed as the literals True and False (case-insensitive) or 1 and 0 for True and False,
respectively.

The following are examples of boolean literals:

var
 MyBoolean: Boolean;
begin
 MyBoolean := False; // Assign False to the Boolean variable
end;

Language Reference

Page 239

8.4 Operators

Elevate Web Builder supports most Object Pascal operators, and these operators are detailed below.

Boolean Operators

The following are the boolean operators in Elevate Web Builder, ordered by their operator precedence:

Operator Description

not Flips a boolean expression so that True becomes False, or
vice-versa.

and Returns True if both the left and right boolean expressions are
True.

or Returns True if either the left or right boolean expression is
True.

Comparison Operators

The following are the comparison operators in Elevate Web Builder, ordered by their operator precedence:

Operator Description

= Returns True if both the left and right expressions are equal.

<> Returns True if both the left and right expressions are not
equal.

> Returns True if the left expression is greater than the right
expression.

>= Returns True if the left expression is greater than or equal to
the right expression.

< Returns True if the left expression is less than the right
expression.

<= Returns True if the left expression is less than or equal to the
right expression.

is Returns True if the left expression is an instance of the class
type specified in the right expression.

Arithmetic Operators

The following are the arithmetic operators in Elevate Web Builder, ordered by their operator precedence:

Language Reference

Page 240

Operator Description

not Returns an integer that represents the inverse of all bits in the
right integer expression.

or Returns an integer that represents all set bits in the left and
right integer expressions.

xor Returns an integer that represents all set bits in either the left
or right, but not both, integer expressions.

and Returns an integer that represents all bits that are set in both
the left and right integer expressions.

* Multiplies the left numeric expression by the right numeric
expression.

/ Divides the left numeric expression by the right numeric
expression.

div Divides the left integer expression by the right integer
expression.

- Subtracts the right numeric expression from the left numeric
expression.

+ Adds the right numeric expression to the left numeric
expression.

mod Returns the remainder derived from dividing the left numeric
expression by the right numeric expression.

shl Returns the left integer expression shifted to the left by the
number of bits specified by the right integer expression.

shr Returns the left integer expression shifted to the right by the
number of bits specified by the right integer expression.

String Operators

The following are the string operators in Elevate Web Builder, ordered by their operator precedence:

Operator Description

+ Concatenates the right string expression to the left string
expression.

Language Reference

Page 241

8.5 Statements

Elevate Web Builder supports most Object Pascal statements, and these statements are detailed below.
Please see the Function and Procedure Implementations topic for information on how statements are
actually used in function and procedure code blocks.

Assignment Statement

<Variable> := <Type-Compatible Expression>;

The assignment statement uses the assignment operator (:=) to assign a value from a type-compatible
expression on right-hand side of the assignment operator to the variable on the left-hand side of the
operator.

The following example illustrates the use of the assignment statement:

var
 MyInteger: Integer;
 MyString: String;
begin
 MyInteger := (100 * MyIntegerConstant);
 MyString := 'This is a test';
end;

If Statement

if <Boolean Expression> then
 <Code Block>
[else if <Boolean Expression>
 <Code Block>]
[else
 <Code Block>];

The if statement is used to provide conditional execution based upon one or more Boolean expressions.
When any of the Boolean expressions specified in the if or else if clauses evaluates to True, then the block
of statements is executed. The else clause is used to specify that the if none of the Boolean expressions
evaluate to True, then the statement block specified for the else clause should be executed.

The following example illustrates the use of the if statement:

var
 MyBoolean: Boolean;
begin
 MyBoolean:=False;
 if MyBoolean then
 ShowMessage('This will never execute')

Language Reference

Page 242

 else
 ShowMessage('This will always execute');
end;

Case Statement

case <Expression> of
 <Expression>[, <Expression}:
 <Code Block>;
 [<Expression>[, <Expression}:
 <Code Block>;]
 [else
 <Code Block>;]
 end;

The case statement is used to provide conditional execution based upon one or more expression
comparisons. The expression directly after the case clause is compared against each expression specified
before the colon (:). If any of the expression comparisons are equal, then the block of statements directly
after the colon is executed. The else clause is used to specify that if none of the expression comparisons
are equal, then the statement block specified for the else clause should be executed.

The following example illustrates the use of the case statement:

var
 MyString: String;
begin
 MyString:='Hello World';
 case MyString of
 'Hello':
 ShowMessage('Hello');
 'World':
 ShowMessage('World');
 else
 ShowMessage('None of the above');
 end;
end;

While Statement

while <Boolean Expression> do
 <Code Block>;

The while statement is used to provide a looping construct based upon a Boolean expression comparison.
The Boolean expression directly after the while clause is compared before every execution of the block of
statements. If the Boolean expression evaluates to False, then the loop is terminated and execution will
continue on the statement after the block of statements that belong to the while statement.

The following example illustrates the use of the while statement:

Language Reference

Page 243

var
 MyBoolean: Boolean;
begin
 MyBoolean:=True;
 while MyBoolean do
 begin
 ShowMessage('Still looping...');
 if MyBoolean then
 MyBoolean:=False;
 end;
end;

Repeat Statement

repeat
 <Code Block>;
until <Boolean Expression>;

The repeat statement is used to provide a looping construct based upon a Boolean expression
comparison. The Boolean expression directly after the util clause is compared after every execution of the
block of statements. If the Boolean expression evaluates to True, then the loop is terminated and
execution will continue on the statement after the block of statements that belong to the repeat
statement.

The following example illustrates the use of the repeat statement:

var
 MyBoolean: Boolean;
begin
 MyBoolean:=False;
 repeat
 begin
 ShowMessage('Still looping...');
 if (not MyBoolean) then
 MyBoolean:=True;
 end;
 until MyBoolean;
end;

For Statement

for <Integer Value Assignment> to|downto <Integer Expression> do
 <Code Block>;

The for statement is used to provide a looping construct based upon an incrementing or decrementing
integer value comparison. The loop is seeded with an an integer value assignment that is an assignment
statement without a semicolon statement terminator (;). If the to clause is used, then the integer value will
be incremented by one for every iteration of the loop, and if the downto clause is used, then the integer
value will be decremented by one for every interation of the loop. The integer expression after the to or

Language Reference

Page 244

downto clause serves as the terminator for the loop. Once the integer value is equal to the value of the
specified integer expression, the loop is terminated and execution will continue on the statement after the
block of statements that belong to the for statement.

The following example illustrates the use of the for statement:

var
 MyInteger: Integer;
 MyString: String='Hello world';
begin
 for MyInteger:=1 to Length(MyString) do
 ShowMessage('Character is '+MyString[MyInteger]+'...');
end;

Break Statement

break;

The break statement is used to unconditionally break out of any looping statement (while, repeat, or for).
Any time a break statement is encountered, the loop is terminated and execution will continue on the
statement after the block of statements that belong to the looping statement.

The following example illustrates the use of the break statement:

var
 MyInteger: Integer;
 MyString: String='Hello world';
begin
 for MyInteger:=1 to Length(MyString) do
 begin
 ShowMessage('Character is '+MyString[MyInteger]+'...');
 if MyString[MyInteger]='w' then
 break;
 end;
end;

Continue Statement

continue;

The continue statement is used to unconditionally stop executing any and all remaining statements in the
block of statements for a looping statement (while, repeat, or for) and return to the top of the looping
statement.

The following example illustrates the use of the continue statement:

Language Reference

Page 245

var
 MyBoolean: Boolean;
begin
 MyBoolean:=True;
 while MyBoolean do
 begin
 ShowMessage('Still looping...forever');
 continue;
 if MyBoolean then
 MyBoolean:=False;
 end;
end;

Exit Statement

exit;

The exit statement is used to unconditionally stop executing any and all remaining statements in a
function or procedure, and leave the function or procedure.

With Statement

with <Class Instance> do
 <Code Block>;

The with statement is used to introduce a class instance into the scope of the block of statements
specified after the do clause. This is useful when one needs to reference several different properties or
methods of the class instance and would like to avoid repeatedly typing the same class instance reference.

The following example illustrates the use of the with statement:

var
 MyInstance: TMyClass;
begin
 MyInstance:=TMyClass.Create;
 with MyInstance do
 begin
 MyIntegerProperty:=100;
 MyStringProperty:='Hello world';
 end;
 MyInstance.Free;
end;

Code Blocks

One or more statements in succession is referred to as a code block. If more than one statement is
included in a code block, then the code block must be expressed with the begin and end keywords:

Language Reference

Page 246

begin
 <Statement>;
 [<Statement>];
end;

For example, the following for loop can be expressed without the begin and end keywords because its
code block only consists of a single statement:

var
 MyInteger: Integer;
 MyString: String='Hello world';
 MyOtherString: String='';
begin
 for MyInteger:=1 to Length(MyString) do
 MyOtherString := MyOtherString + MyString[MyInteger];
end;

Code blocks can be nested as many levels deep as necessary.

Statement Termination

One of the most confusing aspects of the Object Pascal language used by Elevate Web Builder is how to
decide when to terminate a statement. Normally, all statements must be terminated with the statement
terminator character (;) when the statements are used by themselves. For example, the following
assignment statement is terminated in a normal fashion because it is used by itself in a code block:

var
 MyString: String;
begin
 MyString := 'This is a test';
end;

However, when a statement is embedded within another container statement, such as an if statement, the
statement terminator may not be needed. For example, the same assignment statement used above
would look like this when used in an if statement:

var
 MyString: String;
begin
 if MyParameter then
 MyString := 'This is a test'
 else
 MyString := 'This is not a test';
end;

The first assignment statement does not require a statement terminator because it is considered part of
the if statement, whereas the second assignment statement has a statement terminator because it is used
in the else clause of the if statement.

Language Reference

Page 247

The exception to this rule occurs when a statement is used within a code block. Statements always require
a statement terminator when used in a code block.

Language Reference

Page 248

8.6 Units

The Elevate Web Builder language uses the source unit as the basis for all code in an application. As
discussed in the General Architecture topic, every application has the following basic structure:

Every source unit in an application has the following structure:

Every source unit must begin with the keyword unit followed by the name of the unit (without file
extension) and the statement terminator (;). In addition, every source unit must end with the end keyword

Language Reference

Page 249

followed by a period (.).

The interface and implementation section keywords are also required. The initialization and finalization
code blocks are both optional, and one can be specified without the other.

Project Source File

The project source (.wbp) of an application uses a format similar to a normal unit, but with some key
changes:

The key changes are:

The project source file begins with the project keyword instead of the unit keyword.

The project source file has a contains clause. The contains clause is just like a uses clause but also
determines which units are considered project units, as opposed to simply units referenced by the
project. The IDE uses this information to determine which units should be shown as part of the
project in the Project Manager.

The project source file only contains a single uses clause.

The project source file does not contain interface, implementation, initialization, and finalization
sections. You can add constant, type, class, function/procedure, and variable declarations between
the uses clause and the main code block, but this is strictly optional.

The project source file contains a single code block (begin..end) that is the first code to be executed
when the application starts.

Interface and Implementation Sections

The interface and implementation sections are very similar in structure. The main differences are in the
scope (visibility) of each section (private or public) and whether the section can only contain declarations
and not implementation code:

Language Reference

Page 250

All declarations and code in the implementation section are private to the source unit and cannot
be referenced by other souce units. All declarations in the interface section are public to both the
current source unit and other source units. For example, if you were to declare the TMyClass class in
the implementation section of UnitA, then even if UnitB included a UnitA reference in its uses clause
(interface or implementation, it doesn't matter), the TMyClass class declaration would still not be
"visible" to UnitB. Please see the Scope topic for more information.

The interface section can only contain declarations, whereas the implementation section can also
include implementation code for functions, procedures, and methods of classes (functions and
procedures declared in classes).

Both the interface and implementation sections have the following elements in common:

Note
 None of the various section elements are required. In fact, one can have a valid source unit that
includes nothing but the unit name, the interface and implementation clauses, and the end
keyword. It would be of little use, but it would still be valid.

Uses Clause

The uses clause is a comma-separated list of source unit names (*.wbs, but specified without the file
extension). This clause tells the compiler which source units are being referenced by the code in the
interface or implementation sections.

Language Reference

Page 251

Const Clause

The const clause is used to declare constants. Please see the Constant Declarations topic for more
information on declaring constants. You can declare as many constants as you wish within the same const
clause.

Type Clause

The type clause is used to declare types. Please see the Type Declarations topic for more information on
declaring types. You can declare as many types and classes as you wish within the same type clause.

Var Clause

The var clause is used to declare global variables. Please see the Variable Declarations topic for more
information on declaring variables. You can declare as many variables as you wish within the same var
clause.

Function and Procedure Declarations

You can include function and procedure declarations anywhere in an interface or implementation section.
However, normally one would only include a function or procedure declaration in the interface section.
Since a function or procedure is actually implemented in the implementation section, there is no purpose
to declaring the function or procedure there twice. Please see the Function and Procedure Declarations
topic for more information on declaring functions and procedures.

Initialization and Finalization Sections

The initialization and finalization sections are used to add code blocks for initializing variables in a unit at
application startup and for freeing any resources acquired during execution at application shutdown. For
example, in the Elevate Web Builder component library, an instance of the TApplication component is
automatically created and freed in the initialization and finalization code blocks of the WebForms unit:

initialization
 Application:=TApplication.Create(nil);
finalization
 Application.Free;
 Application:=nil;
end.

The order in which the initialization and finalization code blocks are executed is determined by the order
of the unit references in the uses clause of the project source file, as well as the order of the unit
references in the uses clauses of the interface and implementation sections of each referenced unit.

The initialization order is as follows:

The units in the project source file's uses clause are initialized in the order in which they are
specified.

Language Reference

Page 252

The units in each referenced unit's uses clause are initialized in the order in which they are specified.
The units in the uses clause in the interface section of the source unit are initialized first, followed by
the units in the uses clause in the implementation section of the source unit.

After all referenced units have been initialized, the initialization code block for the current unit is
executed.

The finalization order is the reverse of the above:

The units in the project source file's uses clause are finalized in the reverse order in which they are
specified.

The finalization code block for the current unit is executed.

The units in each referenced unit's uses clause are finalized in the reverse order in which they are
specified. The units in the uses clause in the implementation section of the source unit are finalized
first, followed by the units in the uses clause in the interface section of the source unit.

Language Reference

Page 253

8.7 Constant Declarations

Constant declarations must be in the following format:

<Constant Declaration>;
[<Constant Declaration>;]

<Constant Declaration> =

 <Constant Name> = <Expression>

The <Constant Name> element must follow the rules for identifiers covered in the Introduction topic, and
each constant declaration must be terminated with a semicolon statement terminator (;).

The <Expression> element can be any valid expression that does not contain any variable, function, or
procedure references. In other words, the expression can only contain other constant references, or literal
expressions. Examples of literal expressions can also be found in the Introduction topic.

Language Reference

Page 254

8.8 Type Declarations

Type declarations must be in the following format:

<Type Declaration> | <Function/Procedure Type Declaration> | <Method Type
 Declaration> | <Class Declaration>;
[<Type Declaration> | <Function/Procedure Type Declaration> | <Method Type
 Declaration> | <Class Declaration>;]

<Type Declaration> =

 <Synonym Type Name> = [type] <Type Name>;

<Function/Procedure Type Declaration> =

 <Function/Procedure Type Name> = function|procedure ([<Parameters>])[:
 <Type Name>];

<Method Type Declaration> =

 <Method Type Name> = function|procedure ([<Parameters>])[: <Type Name>] of
 object;

<Class Declaration> =

 <Class Name> = class [(<Ancestor Class Name>)]
 [<Private Class Members>]
 [<Protected Class Members>]
 [<Public Class Members>]
 end;

The <Synonym Type Name>, <Type Name>, <Method Type Name>, <Class Name>, and <Ancestor Class
Name> elements must follow the rules for identifiers covered in the Introduction topic, and each type or
class declaration must be terminated with a semicolon statement terminator (;).

A synonym type declaration is useful for situations where one wants to use a specific name for a generic
type such as an Integer, String, or Boolean. For example, in the Elevate Web Builder component library,
the following type declaration can be found in the WebUI source unit:

TColor = type Integer;

The optional type keyword found before the Integer type name above is used to specify that the declared
type (TColor) should be considered unique for design-time type distinction purposes, and essentially
creates a new Integer type called TColor. The Elevate Web Builder IDE design-time environment uses this
information to determine which property editors to show for certain types.

Language Reference

Page 255

Note
 The synonym type retains type compatibility with the type name that it is associated with. For
example, with the above declaration the compiler will still allow you to use an Integer in any
expression where a TColor type is required.

A function/procedure type declaration is used to declare a function/procedure reference type.
Function/procedure references point to a function/procedure implementation, and are used to treat
functions/procedures as data. The Elevate Web Builder compiler automatically figures out when a
function/procedure reference is being assigned to a variable declared with such a reference type, and
when a variable that is declared with such a reference type is being used to call the function/procedure
reference contained in the variable. You can only assign references to functions/procedures that have the
same signature as the target variable's function/procedure reference type. For example, this assignment is
not valid:

type

TFuncRef = function (Value: Integer): Integer; // Returns Integer

implementation

function DoSomething(Value: Integer): Boolean; // Returns Boolean
begin
 Result:=(Value=100);
end;

procedure DoSomethingElse;
var
 FuncRef: TFuncRef;
begin
 FuncRef:=DoSomething; // This will cause a compiler error !!!!
 ShowMessage(IntToStr(FuncRef(100)));
end;

A method type declaration is used to declare a method reference type. A method reference type is like a
function/procedure reference type, except that it also includes the class instance to be used when calling
the method contained within a variable declared with a method reference type. For more information on
method reference type declarations, please see the Events topic.

A class declaration can include an ancestor class name, if applicable. If one is declaraing a class that
inherits from the base TObject class, then the ancestor class name does not need to be specified. For more
information on class declarations, please see the Classes topic.

Language Reference

Page 256

8.9 Variable Declarations

Variable declarations must be in the following format:

<Variable Declaration>;
[<Variable Declaration>;]

<Variable Declaration> =

 <Variable Name> [,<Variable Name>]: <Type Name> = <Default Expression>

The <Variable Name> and <Type Name> elements must follow the rules for identifiers covered in the
Introduction topic, and each variable declaration must be terminated with a semicolon statement
terminator (;).

The <Default Expression> element can be any valid expression that does not contain any variable,
function, or procedure references. In other words, the expression can only contain other constant
references, or literal expressions. Examples of literal expressions can also be found in the Introduction
topic. The <Default Expression> element is used to initialize the variable to a specific value. This is useful
in ensuring that a variable is not in an uninitialized state when it is referenced in code.

Warning
 If you don't set a default expression for a variable declaration and do not assign a value to the
variable, then the value of the variable is undetermined. You should always make sure that such
global variable declarations are initialized properly through a default expression or assignment.
This does not, however, apply to variables declared within a class. Please see the Variables topic for
more information on declaring variables in a class.

Language Reference

Page 257

8.10 Function and Procedure Declarations

Function and procedure declarations must be in the following format:

<Function Declaration> | <Procedure Declaration>;
[<Function Declaration> | <Procedure Declaration>;]

<Function Declaration> =

 function <Function Name> [<Parameters>]: <Type Name>

<Procedure Declaration> =

 procedure <Procedure Name> [<Parameters>]

<Parameters> =

 (<Parameter Declaration>[; <Parameter Declaration>])

<Parameter Declaration> =

 [const] <Parameter Name> [,<Parameter Name>]: <Type Name>

The <Function Name>, <Procedure Name>, <Parameter Name>, and <Type Name> elements must
follow the rules for identifiers covered in the Introduction topic, and each function or procedure
declaration must be terminated with a semicolon statement terminator (;).

The only difference between a function and procedure is that a function returns a result value, whereas a
procedure does not. This means that a function can be used in an expression like a variable or constant,
but a procedure can only be used like a statement.

Please see the Function and Procedure Implementations topic for more information on implementing
functions and procedures.

Language Reference

Page 258

8.11 Function and Procedure Implementations

Functions and procedures constitute the actual functionality of an Elevate Web Builder unit. The
implementation of functions and procedures is done in the implementation section of a unit:

The implementation of a function or procedure consists of a variable declaration block, if necessary,
followed by a code block:

procedure MyProcedure;
var
 MyVariable: String;
 MyOtherVariable: Integer;
begin
 // Code block
end;

Note
 The implementation of a function/procedure repeats the same declaration of the function or
procedure name followed by the parameters (if present) and return type (for functions). If the
implementation does not use the exact same declaration, then the compiler will issue an error.

The variable declarations follow the same declaration rules as the var clause in a unit. Please see the
Variable Declarations topic for more information.

A code block in Elevate Web Builder consists of a begin keyword followed by a series of statements and
an end keyword. The code block that is used in a function or procedure implementation is always
terminated with a statement terminator (;). However, code blocks can be nested within other statements,
such as conditional if statements. In such cases, please refer to the documentation on the statement to
determine if a statement terminator is necessary after the end keyword at the end of a code block.

Returning Results From a Function

Language Reference

Page 259

In Elevate Web Builder, procedures do not return a result, whereas functions do. Every function has an
implicit Result variable that can be assigned a value that is returned as the result of the function:

function MyFunction(const MyParameter: String): String;
begin
 Result := 'The parameter value is ' + MyParameter;
end;

The type of the Result variable is determined by the type declaration for the function's return value.

Language Reference

Page 260

8.12 Enumerations

An enumeration is a collection of symbols used to represent a specific set of values. An enumeration must
be declared as a specific type and, because they are typed, enumerations offer the additional benefit of
preventing improper symbolic values that aren't part of the enumeration from being used anywhere that
the enumeration type is required.

An enumeration is declared as follows:

<EnumerationName> = (<Member Name>[,<Member Name>]);

For example, the following enumeration type declaration is from the WebUI unit in the Elevate Web
Builder component library and specifies the various cursor types that can be used in a UI element:

TCursor = (crAuto,crCrossHair,crDefault,crHelp,crMove,crPointer,
 crProgress,crSizeNESW,crSizeNS,crSizeNWSE,crSizeWE,
 crText,crWait);

Note
 Internally, enumerations are handled as integers by the compiler, and you can cast enumerations
as integers and integers as enumerations.

Language Reference

Page 261

8.13 Arrays

An array is a collection of values, all of the same type. The values in an array are referred to as the array's
elements. Arrays in Elevate Web Builder are dynamic, meaning that their length is not specified during
their declaration and can be increased or decreased at run-time, as necessary.

Array Declarations

Arrays are declared by prefacing the type name of the array with the keywords array of:

array of <Type Name>

For example, to declare a Boolean array variable, one would use the following declaration:

var
 MyBooleanArray: array of Boolean;

Please see the Variable Declarations topic for more information on declaring variables.

Getting and Setting the Length of an Array

To get the length of an array, use the Length function. Likewise, use the SetLength function to set the
length of an array:

var
 MyArray: array of Integer;
begin
 SetLength(MyArray,10);
 ShowMessage(Length(MyArray)); // Displays the value 10
end;

Referencing an Array Element

Each element in an array can be accessed via its 0-based ordinal position. Square brackets directly after
the array variable or parameter name are used to reference an element in an array. For example, to access
the 3rd element in an array, one would use the following construct:

MyArray[2]

Language Reference

Page 262

Warning
 If you try to access an element that does not exist because it is beyond the length of the array, you
will cause a run-time error. Also, you must declare an array variable with a default value (see
below), or use the SetLength function to set the length of an array, before attempting to reference
any of the array elements. Failure to do so will result in a run-time error.

Array Constants

Just like any other variable, array variables can be initialized to a default value by specifiying an array
constant as the default value in the variable declaration. This is done by enclosing a comma-delimited list
of array elements in square brackets ([]):

[<Element> ,<Element>...]

In the following example the MyBooleanArray variable will be initialized to an array of Boolean elements
that has a length of 3 and consists of elements that are True, False, and True, respectively:

var
 MyBooleanArray: array of Boolean = [True, False, True];

In addition to variable defaults, array constants can be used to pass array values to the parameters of
functions or procedures. For example, if we want to call a procedure declared as follows:

function ListStrings(Value: array of String): String;
var
 I: Integer;
begin
 Result := '';
 for I := 0 to Length(Value) - 1 do
 begin
 if (I > 0) then
 Result := Result + ', ';
 Result := Result + Value[I];
 end;
end;

We could do so by simply passing a constant array to it, as follows:

ShowMessage(ListStrings(['These','are','some','words']);

Language Reference

Page 263

Note
 The values specified for the elements in an array constant must be type-compatible with the
declared type of the array.

Language Reference

Page 264

8.14 Classes

The Object Pascal language used by Elevate Web Builder is an object-oriented language that allows one
to define classes that represent objects with their own data (variables and properties) and behaviors
(functions and procedures).

Note
 Functions and procedures that are declared in a class are referred to as "methods". For the rest of
this topic the term "methods" will be used to represent the functions and procedures declared in a
class.

Classes are useful because they offer:

Encapsulation: Both data and behaviors are combined into one logical construct, and data that is
internal to the class can be hidden so that only the class itself can access it. Also, properties can be
defined that offer a specific interface to the data contained in a class, thus avoiding exposing
internal data directly or requiring that all access to the data be done through methods.

Inheritance: Classes can descend from other classes and inherit the functionality of the ancestor
class in the process, thus forming what is termed a "class hierarchy". There is no limit to the depth
of such a hierarchy. In addition, the functionality of ancestor class(es) can be overridden in
descendant classes in order to supplement or completely replace the base functionality.

Elevate Web Builder only supports single inheritance. This means that each class can only descend from

Language Reference

Page 265

one class, and there is only one single path between an ancestor class and a descendant class.

Class Declarations

Before a class can be used, it must be declared in the type section of a unit. A class declaration consists of
the following:

<Class Name> = class [(<Ancestor Class Name>)]
 [<Private Class Members>]
 [<Protected Class Members>]
 [<Public Class Members>]
 [<Published Class Members>]
 end;

Note
 To keep with the traditional coding style of Object Pascal, all <Class Name> specifications in
Elevate Web Builder should normally begin with a "T" prefix (stands for "Type").

If you do not specify an <Ancestor Class Name>, then the class will inherit from the system-defined
TObject class (see below).

The private, protected, public, and published designations specify the scope of the class members. The
scope of the class members determine their visibility to descendant class declarations, as well as any code
that uses an instance of the class. In addition, the published scope determines which properties are visible
at design-time in the IDE and which properties are streamable using the persistence functionality in the
component library. Please see the Scope topic for more information on the various class member scope
designations.

TObject

As expected, any class hierarchy must start with a base class. In Elevate Web Builder, that class is the
TObject class. The declaration for the base TObject class is as follows:

external system TObject = class
 public
 constructor Create; virtual;
 destructor Destroy; virtual;
 class procedure Free;
 class function ClassType: TClass;
 class function ClassName: String;
 class function ClassParent: TClass;
 end;

The Create method is the class constructor and the Destroy method is the class destructor. The
constructor method is called when a class instance is created, and the destructor method is called when a
class instance is freed. Please see the Methods topic for more information on constructors and
destructors.

Language Reference

Page 266

The ClassType method is a class method that returns the class type as a result. This method is useful in
situations where you need to interrogate the class type of either a class or a class instance.

The ClassName method is a class method that returns the class name as a result. The Elevate Web Builder
component library uses this method a lot in order to link control classes to specific interfaces.

The ClassParent method is a class method that returns the parent class type as a result. This information
can be used to determine the ancestry of a class.

Note
 The above Class* methods are class methods, which means that they are static methods that can
operate on both classes and class instances. Please see the Methods topic for more information on
class methods.

Class Members

The class members in a class declaration are the various variables, properties, methods, and events that
define the data and behaviors of the class. Class members can be declared in any order within a specific
scope in a class declaration.

Please use the following links to get more information on each type of class member:

Variables
Methods
Properties
Events

Language Reference

Page 267

8.15 Variables (In Classes)

Variables are declared in a class just like they are declared in a unit or function/procedure. Please see the
Variable Declarations topic for more information.

Note
 As a code convention, variable declarations in classes are normally prefaced with an "F" to
distinguish them from other variables and properties. The "F" stands for "Field", but this manual will
refer to them as variables and not "fields".

If you don't set a default expression for a variable declaration in a class declaration, then the variable will
be automatically initialized to the appropriate value for the type when an instance of the class is created:

Type Initial Value

String ''

Char #0

Integer
Double

0

Enumerated Type Lowest Member Value

Boolean False

DateTime 0

Object
Array
Method

nil

Class Variables

Class variables are special types of variables that are sometimes referred to as "static" variables. They can
be referenced from class instances and also directly from class references where no instance of the class
exist, and are useful for storing data that doesn't change between instances of a class. Class variables can
only be modified by class methods or class properties. Please see the Methods and Properties topics for
more information on class methods and properties.

Class variables are declared by prefacing a variable declaration with the class keyword. For example, the
following class declaration includes a class variable that keeps track of how many instances of the class
have been created:

TMyClass = class
 private
 class FCreateCount: Integer;
 public
 constructor Create; override;
 class property CreateCount: Integer read FCreateCount;
 end;

Language Reference

Page 268

implementation

constructor TMyClass.Create;
begin
 inherited Create;
 Inc(FCreateCount);
end;

The CreateCount class property above, and subsequently the FCreateCount class variable, could be
accessed in two different ways. The first way is by referring to the CreateCount class property for an
instance of the TMyClass class:

procedure ShowCreateCount;
var
 TempInstance: TMyClass;
begin
 TempInstance:=TMyClass.Create;
 try
 window.alert(IntToStr(TempInstance.CreateCount)); // window class is
 in WebDOM unit
 finally
 TempInstance.Free;
 end;
end;

The second way is by using a direct class reference:

procedure ShowCreateCount;
begin
 window.alert(IntToStr(TMyClass.CreateCount));
end;

The second way is easiest when you don't have an instance of the class available.

One of the most significant benefits of class variables is that only one instance of each class variable ever
exists, thus saving memory. They are also very useful for implementing singleton instances of classes and
implementing namespaces for code that otherwise would use normal functions and procedures declared
outside of a class.

Language Reference

Page 269

8.16 Methods

Methods are simply functions and procedures that are declared as part of a class declaration. They are
declared in the same way as functions and procedures that are declared in a unit. Please see the Function
and Procedure Declarations topic for more information on the proper syntax. However, methods offer
three additional keywords: virtual, abstract, and override.

Virtual Methods

The virtual keyword allows you to specify whether or not a method can be overridden by descendant
classes. Virtual methods form the basis of inheritance in an object-oriented language because they allow
the developer to supplement or replace existing functionality in an ancestor class with functionality that is
more specific to the current class. For example, consider the following example class declarations and
implementations:

interface

 TVehicle = class
 protected
 function GetNumWheels: Integer; virtual;
 public
 property NumWheels: Integer read GetNumWheels;
 end;

 TTruck = class(TVehicle)
 protected
 function GetNumWheels: Integer; override;
 end;

implementation

function TVehicle.GetNumWheels: Integer;
begin
 Result := 4;
end;

function TTruck.GetNumWheels: Integer;
begin
 Result := 10;
end;

As you can see, the default value returned from the GetNumWheels method is 4. But, because the
GetNumWheels method is virtual, descendant classes like the TTruck class can override the method to
provide a different result that is accurate for the type of vehicle being represented by the class.

Note
 A virtual method does not have to be present in the immediate ancestor class in order for it to be
overridden. You can override any virtual method that exists in any ancestor class, no matter how
far removed it is from the class being declared. Also, once a method is declared as virtual, it is
always virtual and capable of being overridden by a descendant class.

Language Reference

Page 270

In addition, you can use the abstract keyword to specify that the virtual method isn't actually
implemented in the current class, but rather must be implemented by descendant classes. Using the
above example, the base TVehicle class could be declared and implemented as follows instead:

interface

 TVehicle = class
 protected
 function GetNumWheels: Integer; virtual; abstract;
 public
 property NumWheels: Integer read GetNumWheels;
 end;

 TTruck = class(TVehicle)
 protected
 function GetNumWheels: Integer; override;
 end;

implementation

function TTruck.GetNumWheels: Integer;
begin
 Result := 10;
end;

Note
 Any classes that contain abstract methods cannot be created directly. Any attempt to do so will
cause a compiler error.

If you want to augment, or add to, the functionality present in the virtual method of an ancestor class,
then you can use the inherited keyword in the implementation of the descendant class method to do so.
For example, in this class hierarchy the TCar class defines a GetAvailableColors method that returns a
comma-delimited list of the default colors that a car is available in for the car manufacturer. The
descendant TPython class that represents a sports car overrides the GetAvailableColors method to specify
additional colors that the sports car is available in:

interface

 TCar = class
 protected
 function GetAvailableColors: String; virtual;
 public
 property AvailableColors: String read GetAvailableColors;
 end;

 TPython = class(TCar)
 protected
 function GetAvailableColors: String; override;
 end;

implementation

function TCar.GetAvailableColors: String;

Language Reference

Page 271

begin
 Result := 'Red, Black, White';
end;

function TPython.GetAvailableColors: String;
begin
 Result := inherited GetAvailableColors + ', Silver';
end;

Overloaded Methods

Overloaded methods are methods that have more than one declaration in a class and each declaration
has the same name but different parameters. This is very useful for situations where a method may need
to be called using different parameters. For example, consider the following class declaration:

TCustomers = class
 public
 procedure Delete(ID: Integer);
 procedure Delete(const Name: String);
 end;

In this example, the TCustomers class has overloaded the Delete method so that it can be called with
either an integer customer ID or a string customer name.

Although default parameters are usually easier, overloaded methods can also be used to implement
optional parameters. For example, the following class allows its Add method to be called with an ID, a
name, or both:

TCustomers = class
 public
 procedure Add(ID: Integer);
 procedure Add(ID: Integer; const Name: String);
 procedure Add(const Name: String);
 end;

Note
 Other variants of Object Pascal require that you use the overload keyword to indicate that a
method is overloaded. Elevate Web Builder does not use the overloaded keyword because it is
unnecessary. The compiler knows if two methods have the same declaration, and will issue an error
if they do. The compiler also knows how to find the proper method declaration, or whether one
exists at all, by how the method is called. Finally, if an overloaded method has one or more
declared versions that aren't actually called, the compiler knows this and will not emit the method
during compilation.

Class Methods

Class methods are special types of methods that are sometimes referred to as "static" methods. They are

Language Reference

Page 272

callable from class instances and also directly from class references where no instance of the class exists,
and are useful for implementing functions and procedures that should be encapsulated within the context
of a class, but don't need to access class instance variables, properties, or methods. Class methods can,
however, access any class variables or class properties that are also declared in the same class. Please see
the Variables and Properties topics for more information on class variables and properties.

Class methods are declared by prefacing a method declaration with the class keyword. For example, the
following class declaration includes a class variable that keeps track of how many instances of the class
have been created along with a class method that returns the creation count:

TMyClass = class
 private
 class FCreateCount: Integer;
 public
 constructor Create; override;
 class function GetCreateCount: Integer;
 end;

implementation

constructor TMyClass.Create;
begin
 inherited Create;
 Inc(FCreateCount);
end;

The GetCreateCount class method above could be accessed in two different ways. The first way is by
referring to the GetCreateCount class method for an instance of the TMyClass class:

procedure ShowCreateCount;
var
 TempInstance: TMyClass;
begin
 TempInstance:=TMyClass.Create;
 try
 window.alert(IntToStr(TempInstance.GetCreateCount)); // window class
 is in WebDOM unit
 finally
 TempInstance.Free;
 end;
end;

The second way is by using a direct class reference:

procedure ShowCreateCount;
begin
 window.alert(IntToStr(TMyClass.GetCreateCount));
end;

The second way is easiest when you don't have an instance of the class available.

Class methods are very useful for implementing factory classes that create instances, implementing

Language Reference

Page 273

singleton instances of classes, and implementing namespaces for code that otherwise would use normal
functions and procedures declared outside of a class.

Constructors and Destructors

Constructors and destructors are special methods that handle the process of creating a class instance and
destroying it. Because Elevate Web Builder compiles into JavaScript, these methods aren't explicilty
allocating and deallocating memory. However, they are still crucial to ensuring that resources are properly
allocated and initialized during the creation of class instances, and that resources are properly disposed of
during the destruction of class instances. The base TObject class declaration contains both a constructor
called Create and a destructor called Destroy.

Note
 Constructors and destructors are completely optional. If a class declaration doesn't contain a
constructor and/or destructor, then the ancestor class's constructor and/or destructor is used
instead. If the ancestor class doesn't contain a constructor and/or destructor, then it's ancestor class
is used and so on, until the base TObject class is reached by the compiler.

Constructors

Constructors are declared by prefacing a method declaration with the keyword constructor. Constructors
must be declared as a procedure called Create with no result type declaration due to the fact the result is
implicitly an instance of the class in which the declaration exists. Trying to declare a constructor with a
different name or with a result type will cause a compiler error. If the declared constructor does not accept
any parameters, then it must also be declared as an override of the base TObject Create constructor.
Constructors can be overloaded, so it is possible to declare different constructors with different
parameters. Finally, all constructors must be declared in the public scope of the class declaration and
cannot be declared in any other scope.

Warning
 Do not call constructors on instances of classes. Constructors are class, or static, methods, and
should only be called on a class type itself in order to create an instance of the class.

The following is an example of a class that declares both an override of the base TObject Create
constructor, as well as creates its own overloaded constructor:

interface

 TCustomer = class
 private
 FID: Integer;
 FName: String;
 public
 property ID: Integer read FID write FID;
 property Name: String read FName write FName;
 end;

 TCustomers = class
 private

Language Reference

Page 274

 FCustomers: TObjectList; // TObjectList class is declared
 // in the WebCore unit
 procedure CreateDemoCustomers(Value: Integer);
 function GetNumCustomers: Integer;
 function GetCustomer(ID: Integer): TCustomer;
 function GetCustomer(const Name: String): TCustomer;
 public
 constructor Create; override;
 constructor Create(NumDemoCustomers: Integer);
 property NumCustomers: Integer read GetNumCustomers;
 property Customer[ID: Integer]: TCustomer read GetCustomer; default;
 property Customer[const Name: String]: TCustomer read GetCustomer;
 default;
 end;

implementation

constructor TCustomers.Create;
begin
 inherited Create;
 FCustomers:=TObjectList.Create;
end;

constructor TCustomers.Create(NumDemoCustomers: Integer);
begin
 Create;
 CreateCustomers(NumDemoCustomers);
end;

procedure TCustomers.CreateDemoCustomers(Value: Integer);
var
 I: Integer;
 TempCustomer: TCustomer;
begin
 for I:=0 to Value-1 do
 begin
 TempCustomer:=TCustomer.Create;
 with TempCustomer do
 begin
 ID:=I;
 Name:='Demo Customer #'+IntToStr(I);
 end;
 FCustomers.Add(TempCustomer);
 end;
end;

function TCustomers.GetNumCustomers: Integer;
begin
 Result:=FCustomers.Count;
end;

function TCustomers.GetCustomer(ID: Integer): TCustomer;
var
 I: Integer;
begin
 Result:=nil;
 for I:=0 to FCustomers.Count-1 do
 begin
 if (TCustomer(FCustomers[I]).ID=ID) then
 begin
 Result:=TCustomer(FCustomers[I]);
 Break;
 end;
 end;

Language Reference

Page 275

end;

function TCustomers.GetCustomer(const Name: String): TCustomer;
var
 I: Integer;
begin
 Result:=nil;
 for I:=0 to FCustomers.Count-1 do
 begin
 if SameStr(TCustomer(FCustomers[I]).Name,Name) then
 begin
 Result:=TCustomer(FCustomers[I]);
 Break;
 end;
 end;
end;

Note
 The above class declaration includes default array properties. Please see the Properties topic for
more information on default array properties.

Destructors

A destructor is declared by prefacing a method declaration with the keyword destructor. There can be
only one destructor per class and it must be declared as a procedure called Destroy that overrides the
base TObject Destroy destructor and has no parameters. Trying to declare a destructor with a different
name or with parameters will cause a compiler error. Finally, the destructor must be declared in the public
scope of the class declaration and cannot be declared in any other scope.

The above example for constructors is an example of a class with an overridden Destroy destructor.

Free Method

Do not call the Destroy method above directly, use the TObject Free method instead. The Free method
performs an extra crucial step that the Destroy method does not: the Free method checks to see if the
calling instance variable is already nil, and only calls the Destroy method if the instance variable is not nil.

Note
 The only exception to the above rule is when calling the inherited Destroy method from within an
ancestor class's Destroy method. That is a perfectly valid way to call the Destroy method directly.

Self

Use the special Self keyword in order to reference the current class instance from within a method. This is
useful for situations where local variable or parameter names may conflict with a specific variable, method,
or property name of the class in which the method resides, and so those identifiers need to be prefixed
with the Self keyword.

Language Reference

Page 276

8.17 Properties

Properties are one of the fundamental ways that Object Pascal provides encapsulation in classes. You can
have properties directly reference variables or you can also use methods to control the reading and/or
writing of variables. This helps to further hide the implementation details of a class and provide an easy-
to-use class interface.

A property is declared as follows:

property <Property Name>: <Type Name> read <Variable Name>|<Method Name>
 [write <Variable Name>|<Method Name>]
 [default <Default Expression>]
 [description <Description>]
 [;default];

All properties must specify a variable or method name in the read clause, but the write clause is optional.
If the write clause is not specified, then the property is implicitly read-only and cannot be assigned a
value.

The following example shows a simple class with two read/write property declarations that directly
reference variables:

interface

 TCustomer = class
 private
 FID: Integer;
 FName: String;
 public
 property ID: Integer read FID write FID;
 property Name: String read FName write FName;
 end;

The following example shows the same class, but modified to track modifications to any of the variables:

interface

 TCustomer = class
 private
 FID: Integer;
 FName: String;
 FModified: Boolean;
 procedure SetID(Value: Integer);
 procedure SetName(const Value: String);
 public
 property ID: Integer read FID write SetID;
 property Name: String read FName write SetName;
 property Modified: Boolean read FModified;
 end;

implementation

Language Reference

Page 277

procedure TCustomer.SetID(Value: Integer);
begin
 if (Value <> FID) then
 begin
 FID:=Value;
 FModified:=True;
 end;
end;

procedure TCustomer.SetName(const Value: String);
begin
 if (not SameStr(Value,FID)) then
 begin
 FName:=Value;
 FModified:=True;
 end;
end;

The default clause specifies the default value for a property, and is optional. This default value is used to
determine if the property should be streamed or not. If a default value is not provided for a property, and
the property is published, then it will always be streamed when an instance of the owner class is streamed.

The description clause specifies the description for a property, and is also optional. This description
appears in the Elevate Web Builder IDE's Object Inspector when the property is declared in the published
scope, or is promoted to the published scope in an ancestor class.

The terminating default clause is different from the default value clause above. It is used to specify default
array properties and default event properties. See below for more information on default array properties.
A default event property is used by the Elevate Web Builer IDE to determine which event handler should
be created when a developer double-clicks on a control in the form designer.

Array Properties

There is one special type of property that is a fairly powerful construct, and that is the array property. An
array property is declared as follows:

property <Property Name>[[const] <Parameter Name>: <Type Name>]: <Type Name>
 read <Array Variable Name>|<Method Name>
 [write <Array Variable Name>|<Method Name>]; [default;]

An array property acts like an array but does not necessarily use an array variable for the read and/or write
clauses of the property. Such a property can use methods instead of array variables, with the read clause
requiring a method that accepts an identical single parameter that matches the array property parameter
declaration and a write clause requiring a method that accepts the same parameter name and type and an
additional parameter that can have any name that you wish, but whose type must match the type of the
property.

Note
 If you specify an array variable in the read or write clause, then the array property parameter must
be an Integer type to reflect the ordinal index into the array.

Language Reference

Page 278

For example, the following read-only property declares an array property that uses a method to return a
specific class instance from an internal list:

TCustomers = class
 private
 FCustomers: TObjectList;
 function GetCustomer(ID: Integer): TCustomer;
 public
 property Customer[ID: Integer]: TCustomer read GetCustomer;
 end;

You would reference the Customer array property as follows:

var
 TempCustomers: TCustomers;
begin
 TempCustomers:=TCustomers.Create(10);
 try
 window.alert(TempCustomers.Customer[2].Name);
 finally
 TempCustomers.Free;
 end;
end;

Array properties make it very easy to hide the internal implementation of lists.

Default Array Properties

The above array property example illustrates a common problem with array properties used with classes
that encapsulate lists: they tend to bloat the code by requiring the name of the array property to be
specified. This is where default array properties are very useful. A default array property has the same
declaration as a normal array property, but includes the default keyword after the declaration. To
continue with the above example, let's change it to a default array property:

TCustomers = class
 private
 FCustomers: TObjectList;
 function GetCustomer(ID: Integer): TCustomer;
 public
 property Customer[ID: Integer]: TCustomer read GetCustomer; default;
 end;

You would reference the Customer default array property as follows:

var
 TempCustomers: TCustomers;
begin
 TempCustomers:=TCustomers.Create(10);
 try

Language Reference

Page 279

 window.alert(TempCustomers[2].Name);
 finally
 TempCustomers.Free;
 end;
end;

Notice that since the Customer property is marked as the default array property, you no longer need to
specify its name, only the instance variable name of the containing Customers class.

Overloaded Array Properties

One final interesting feature of array properties is that they can be overloaded so that you can have
multiple such properties with the same name, but with different declarations. This is especially useful
when you want to allow access to a list via different search types. For example, here is the above example
with the Customer default array property overloaded with an additional declaration that uses a name
parameter for retrieving a customer instead of an ID:

TCustomers = class
 private
 FCustomers: TObjectList;
 function GetCustomer(ID: Integer): TCustomer;
 function GetCustomer(const Name: String): TCustomer;
 public
 property Customer[ID: Integer]: TCustomer read GetCustomer; default;
 property Customer[const Name: String]: TCustomer read GetCustomer;
 default;
 end;

You could then reference the Customer default array property in both ways:

var
 TempCustomers: TCustomers;
begin
 TempCustomers:=TCustomers.Create(10);
 try
 window.alert(TempCustomers[2].Name);
 window.alert(IntToStr(TempCustomers['Demo Customer #2'].ID));
 finally
 TempCustomers.Free;
 end;
end;

Class Properties

Class properties are special types of properties that are sometimes referred to as "static" properties. They
can be referenced from class instances and also directly from class references where no instance of the
class exists, and are useful for implementing properties that should be encapsulated within the context of
a class, but don't need to access class instance variables, properties, or methods. Class properties can,
however, access any class variables or class methods that are also declared in the same class. Please see
the Variables and Methods topics for more information on class variables and methods.

Language Reference

Page 280

Class properties are declared by prefacing a property declaration with the class keyword. For example, the
following class declaration includes a class variable that keeps track of how many instances of the class
have been created along with a class property that returns the creation count:

TMyClass = class
 private
 class FCreateCount: Integer;
 public
 constructor Create; override;
 class property CreateCount: Integer read FCreateCount;
 end;

implementation

constructor TMyClass.Create;
begin
 inherited Create;
 Inc(FCreateCount);
end;

The CreateCount class property above could be accessed in two different ways. The first way is by
referring to the CreateCount class property for an instance of the TMyClass class:

procedure ShowCreateCount;
var
 TempInstance: TMyClass;
begin
 TempInstance:=TMyClass.Create;
 try
 window.alert(IntToStr(TempInstance.CreateCount)); // window class is
 in WebDOM unit
 finally
 TempInstance.Free;
 end;
end;

The second way is by using a direct class reference:

procedure ShowCreateCount;
begin
 window.alert(IntToStr(TMyClass.CreateCount));
end;

The second way is easiest when you don't have an instance of the class available.

Language Reference

Page 281

8.18 Events

Events are declared just like properties in classes, but read/write a method reference instead of a string,
integer, etc. value. A method reference is similar to a class instance reference, but instead of referring to a
class instance it refers to a method. Method references are useful because they can be called just like a
normal method, but can also be assigned to variables and passed as parameters to other methods,
procedures, or functions. This allows you to assign specific behaviors to the event properties of a class,
swap such behaviors in and out with other behaviors, or assign no behavior at all.

Before an event can be declared, the event's method reference type must be declared. A method
reference type is declared as follows:

<Type Name> = function/procedure ([<Parameters>])[: Type Name>] of object;

The procedure or function declaration is identical to a normal procedure or function prototype, except
that a procedure or function name is not specified.

For example, consider the following method reference type and class/event declarations:

interface

 TStartEvent = procedure (StartingVehicle: TVehicle) of object;

 TVehicle = class
 private
 FOnStart: TStartEvent;
 public
 property OnStart: TStartEvent read FOnStart write FOnStart;
 procedure Start;
 end;

implementation

procedure TVehicle.Start;
begin
 if Assigned(FOnStart) then
 FOnStart(Self);
end;

Defining Event Handlers

Once an event is declared as a property in a class, it is still not very useful until the event is assigned an
actual method reference. This type of method reference is referred to as an event handler. For example,
the following code creates an instance of the TVehicle class and assigns an OnStart event handler:

interface

 TGarage = class
 private

Language Reference

Page 282

 FVehicle: TVehicle;
 protected
 procedure DoVehicleStart(StartingVehicle: TVehicle);
 public
 constructor Create; override;
 destructor Destroy; override;
 end;

implementation

constructor TGarage.Create;
begin
 inherited Create;
 FVehicle:=TVehicle.Create;
 FVehicle.OnStart:=DoVehicleStart;
 FVehicle.Start;
end;

destructor TGarage.Destroy;
begin
 FVehicle.Free;
 inherited Destroy;
end;

procedure TGarage.DoVehicleStart(StartingVehicle: TVehicle);
begin
 window.alert('Vehicle has been started');
end;

Note
 Event handlers are always called from the context of the class that contains the event handler. So,
in the above example when the DoVehicleStart event handler is called, it will be called from the
context of a TGarage class instance.

Method reference assignments and parameters must be type-compatible with the declared type of the
target variable or parameter. To illustrate this concept, suppose that the above DoVehicleStart event
handler was declared as follows:

TGarage = class
 private
 FVehicle: TVehicle;
 protected
 procedure DoVehicleStart;
 public
 constructor Create; override;
 destructor Destroy; override;
 end;

This would result in a compiler error on the source line where the event handler is assigned:

constructor TGarage.Create;
begin
 inherited Create;

Language Reference

Page 283

 FVehicle:=TVehicle.Create;
 FVehicle.OnStart:=DoVehicleStart; // Compiler error here !!!
 FVehicle.Start;
end;

The reason for the compiler error is simple: the TStartEvent type of the OnStart event is declared with a
TVehicle parameter, and the DoVehicleStart method is not declared with any parameters.

Clearing Event Handlers

Just as you can attach a behavior to the event property of a class in the form of an event handler, you can
also remove that behavior by assigning nil to the event property:

constructor TGarage.Create;
begin
 inherited Create;
 FVehicle:=TVehicle.Create;
 FVehicle.OnStart:=DoVehicleStart;
 FVehicle.Start;
 FVehicle.OnStart:=nil; // Clear event handler
end;

Warning
 Because the method reference variables that are used with event properties can be nil, you should
always check for this before trying to call such method reference variables. The best way to do so is
by using the Assigned function, as illustrated in the TVehicle.Start method implementation:

procedure TVehicle.Start;
begin
 if Assigned(FOnStart) then
 FOnStart(Self);
end;

Default Events

Components and controls that will be used in the component library can have a default event property. A
default event property is the event handler that will be created if the user double-clicks on a component
or control in the Form Designer. For example, the following TVehicle class has been slightly modified from
the above example. It is now a descendant of the TComponent class so that it can be installed into the
component library, and now defines the OnStart event as the default event in the published section of the
class:

interface

 TStartEvent = procedure (StartingVehicle: TVehicle) of object;

 TVehicle = class(TComponent)

Language Reference

Page 284

 private
 FOnStart: TStartEvent;
 public
 procedure Start;
 published
 property OnStart: TStartEvent read FOnStart write FOnStart; default;
 end;

implementation

procedure TVehicle.Start;
begin
 if Assigned(FOnStart) then
 FOnStart(Self);
end;

A default event is only used in the form designer if the event property is published. Please see the Scope
topic for more information on published properties.

Language Reference

Page 285

8.19 Scope

The scope (visibility) of a constant, type/class, or function/procedure declaration is determined by where it
appears in a unit, class, or function/procedure.

Unit Scope

The scope of declarations in a unit are determined by whether they are declared in the interface or
implementation section of a unit:

Any declaration in the interface section of a unit is visible to all other declarations or
function/procedure implementations in either the interface or implementation sections of the same
unit, as well as being visible to the same sections in any units that reference the unit. The interface
section of a unit is essentially "public" to everything.

Any declaration in the implementation section of a unit is visible to all other declarations in the
same implementation section only.

The visibility of type and class declarations is determined in top-to-bottom fashion within an interface or
implementation section of a unit. For example, if the TClassA class descends from the TClassB class, but
TClassB is declared before TClassA in the same unit section, the compiler will issue an error . This is
because the compiler cannot "see" the TClassA declaration at the point of the TClassB declaration:

interface

type

 TClassB = class(TClassA) // Compiler error here, TClassA class
 // doesn't exist yet
 end;

 TClassA = class
 private
 FMemberVariable: String;
 public
 property MemberProperty: String read FMemberVariable;
 end;

Language Reference

Page 286

Function/Procedure Implementation Scope

The implementations of functions and procedures only have one level of scope, and that is the scope of
any parameters or local variables, as well as the special Result variable for functions. Parameters and local
variables can only be referenced within the function/procedure in which they are declared.

Class methods (functions or procedures declared as part of a class) add an additional level of scope that is
evaluated after any local variables or parameters. Class methods can access any member variables,
properties, or methods that are declared anywhere within the same class in which the referencing method
is declared. Class methods can also access any public or protected member variables, properties, or
methods that are declared within any ancestor classes of the class in which the referencing method is
declared.

Note
 In order to specifically reference the current instance of a class from within a class method, use the
special Self keyword.

See below for more information about the various levels of scope (private, protected, public, published)
within a class declaration:

interface

type

 TClassA = class
 private
 FMemberVariable: String;
 protected
 procedure DoSomethingMethod;
 public
 property MemberProperty: String read FMemberVariable;
 end;

 TClassB = class(TClassA)
 public
 procedure DoSomethingElseMethod;
 end;

implementation

{ TClassA Implementation }

Language Reference

Page 287

procedure TClassA.DoSomethingMethod;
begin
 FMemberVariable := 'Test'; // Can access this variable because it is also
 // declared within the TClassA declaration
end;

{ TClassB Implementation }

procedure TClassB.DoSomethingElseMethod;
begin
 DoSomethingMethod; // Can access this protected method because it is
 // declared within the ancestor TClassA declaration
end;

There is one exception to the normal scoping rules of a function/procedure, and that is the with
statement. The with statement can introduce an object instance as a new level of scope that overrides the
normal scope of any local variables, parameters, or class variables/properties/methods.

Class Scope

A class declaration can have up to four different levels of scope for any member variables, properties, or
methods:

Scope Description

Private Any member variables, properties, or methods declared in
this scope are only visible to the properties or methods of the
same class declaration.

Protected Any member variables, properties, or methods declared in
this scope are only visible to the properties or methods of the
same class declaration, or any descendant class declarations.

Public Any member variables, properties, or methods declared in
this scope are visible everywhere, subject to the scoping rules
of the referencing declaration or code block.

Published Same as Public, but in addition, all properties declared in this
scope are streamable and will appear in the Elevate Web
Builder IDE's Object Inspector.

Naming Conflicts and Scope

In certain cases, the scoping rules are used by the compiler to resolve naming conflicts. For example, if the
implementation of a method uses a local variable that uses the same name as a member variable of the
class in which the method is declared, the local variable scope will take precedence:

interface

type

 TMyClass = class
 private
 MyVariable: String;

Language Reference

Page 288

 procedure MyMethod;
 end;

implementation

procedure TMyClass.MyMethod;
var
 MyVariable: String; // This declaration overrides the scope of the class
begin
 MyVariable := 'Test'; // This will be assigned to the local
 // MyVariable variable
 Self.MyVariable := 'Test'; // This will be assigned to the MyVariable
 member
 // variable of the TMyClass class
end;

Certain naming conflicts are impossible because the compiler will not permit them. For example, you
cannot give a local variable the same name as a parameter in the same function/procedure declaration,
nor can you name a local variable the special "Result" variable name used for returning results from
functions.

Language Reference

Page 289

8.20 Casting Types

Casting is the process of converting a target value of one type to another type in order to use the value in
a different type context. This is accomplished by enclosing the target value with the target type name and
parentheses:

<Type Name>(<Target Value>)

There are type compatibility rules that determine whether a particular cast operation is valid, and invalid
cast attempts will result in a compiler error. The following table details the various types and their valid
target cast types:

Source Type Valid Target Types

Integer Integer
Boolean
Double
DateTime
Enumeration

Double Double

String String
Char

Char Char
String

DateTime DateTime
Integer

Boolean Boolean
Integer

Enumeration Enumeration
Integer

Class Instance
Class Type

Any same class type or ancestor class type

Casting is particularly useful for functions or procedures that accept a parameter of a base class type, but
need to act on the various descendant class types in specific ways. For example, the following code shows
how one would use the is operator to determine if the parameter is of the TComponent type and, if so,
displays its name:

procedure DisplayName(Value: TObject);
begin
 if (Value is TComponent) then
 window.alert(TComponent(Value).Name);
end;

Language Reference

Page 290

Language Reference

Page 291

8.21 Exception Handling

Exceptions are special classes in Elevate Web Builder that represent an error that has been raised by code
in the application, or by the web browser itself. All exceptions descend from the base Exception class
defined in the WebCore unit. At design-time, exceptions are handled by the execution engine in the IDE.
At run-time, the Exception class is mapped to the base Error class present in the standard JavaScript run-
time.

Warning
 While you can create new exception classes that descend from the base Exception class for design-
time usage, you cannot do so for run-time usage. Some of the modern web browser
implementations of JavaScript do not properly deal with exception class descendants in terms of
reporting the proper error message and source line number of the error.

Raising Exceptions

You can raise an exception at any time by using the raise statement. The raise statement requires an
Exception class (or descendant) instance as its only argument:

raise <Exception Class Instance>;

Once an exception is raised, execution stops immediately and the process of unwinding the call stack and
triggering exception handlers begins.

The following example shows how to raise an exception that indicates that a parameter was not assigned
a valid positive value:

function AddValues(A,B: Integer): Integer;
begin
 if (A < 0) then
 raise Exception.Create('First parameter '+IntToStr(A)+' cannot be
 negative');
 if (B < 0) then
 raise Exception.Create('Second parameter '+IntToStr(A)+' cannot be
 negative');
 Result:=(A+B);
end;

Handling Exceptions

Once an exception has been raised, either by the design-time or run-time execution environment, or the
application code, execution immediately stops and the call stack is unwound, with any exception-handling
blocks executed as necessary during this process.

Exceptions can be handled by using a try..except code block. The syntax of a try..except code block is:

Language Reference

Page 292

try
 <Statements>
except
 <Exception-handling statements>
end;

A try..except code block catches any exceptions that occur with the try and except keywords, preventing
them from escaping the current function or procedure and unwinding the call stack.

You can access the current exception from inside the except portion of the try..except code block by using
the on statement, which uses the following syntax:

on <ExceptionInstanceVariable>: <ExceptionClass> do
 <Statements>

on <ExceptionClass> do
 <Statements>

There are two different variations of the on statement:

The first variation specifies a local variable name followed by a colon and an exception class name.
This is the most useful type of on statement because it allows you to capture the existing exception
in a local variable. This is important when you want to examine the error Message or log it for later
examination. The exception class name is used to filter which exception classes are handled by the
on statement. However, you should always use the Exception class here due to the fact that the base
Exception class is the only recommended exception class to use (see above).

The second variation specifies an exception class name only. This variation is not particularly useful
due to the fact that the base Exception class is the only recommended exception class to use (see
above).

The following is an example of using the on statement to log an error message to the Messages panel in
the IDE using the LogOutput method:

begin
 try
 // Statements that raise exception
 except
 on E: Exception do
 LogOutput(E.Message);
 end;
end;

Please see the Debugging topic for more information on the LogOutput method.

Re-Raising Exceptions

You can re-raise an existing exception by using the raise statement without any arguments. Having the

Language Reference

Page 293

ability to re-raise exceptions is useful in situations where you want to do something with an exception,
such as log its associated message, before allowing the call stack to proceed unwinding.

Note
 Re-raising exceptions can only be done from within the except portion of a try..except code block,
and an attempt to do so outside of this context will cause a compiler error.

The following example expands upon the above example by also re-raising the exception after logging
the error message:

begin
 try
 // Statements that raise exception
 except
 on E: Exception do
 LogOutput(E.Message);
 raise;
 end;
end;

Ensuring Code Execution After Exceptions

It is often necessary to ensure that certain statements execute, regardless of whether an exception is
raised or not. This is accomplished by using a try..finally code block. The syntax of a try..finally code block
is:

try
 <Statements>
finally
 <Statements>
end;

Any statements specified within the finally portion of the try..finally code block will always be executed,
which is useful for situations where class instances, or other types of resources, have been allocated and
need to be disposed of.

The following example shows the method of a class that toggles an internal Boolean variable in the class,
and must ensure that the variable is toggled again before the method exits:

procedure TMyClass.Execute;
begin
 FExecuting:=True;
 try
 // Executing
 finally
 FExecuting:=False;
 end;
end;

Language Reference

Page 294

Note
 A try..finally code block also applies to the exit statement. If an exit statement is specified inside of
a try..finally code block, the finally portion of the code block will be executed before the function or
procedure actually exits.

Visual Application Exceptions

If an exception is not handled at run-time with a try..except code block in a visual application, the
exception will result in an Elevate Web Builder message dialog appearing with the error message and
source line number. If you do not want this to occur, you can define a TApplication OnError event handler
for the global Application instance that is automatically created for visual applications. Returning True
from this event handler will indicate to the web browser that the error was handled and will prevent the
browser from displaying an error dialog.

Language Reference

Page 295

8.22 External Interfaces

Sometimes it is necessary to make calls from an application to external code such as 3rd party JavaScript
code or the built-in classes available as part of the web browser's DOM (Document Object Model) class
hierarchy. The DOM is the core framework in a modern web browser that allows any JavaScript code to
create and manipulate elements in an HTML or XML document, as well as parts of the web browser itself.
Elevate Web Builder includes a fairly complete external interface to the DOM in the WebDOM unit that is
part of the runtime code included with the product.

The Elevate Web Builder compiler requires that an external interface be declared for any external DOM
classes or JavaScript code before such classes or code can be used in an application. External interfaces
are only interfaces and do not include any type of implementation. Using external interfaces will ensure
that the benefits of compile-time type checking are applied to external code as well as the Object Pascal
code in the application, thus allowing for more reliable applications.

Please see the Modifying Project Options and Using the Project Manager topics for more information on
including external JavaScript source files with an application.

External Declarations

You must include the WebDOM unit in the uses clause of the interface section of the unit in which any
external class declarations are included. The WebDOM unit is necessary for obtaining certain base class
declarations.

Any constant, variable, type, class, procedure, or function can be declared as external. For example, the
DOM in the web browser includes a global variable called "window" that is an instance of the Window
DOM class. Elevate Web Builder represents both in the WebDOM unit as follows:

interface

 external TWindow emit Window = class
 public
 { Properties }
 property closed: Boolean read;
 property defaultStatus: String read write;
 property document: TDocument read;
 property event: TEvent read; // IE-only
 property frames: TWindowList read;
 property history: THistory read;
 property innerHeight: Integer read; // Supported by IE9 or higher
 property innerWidth: Integer read; // Supported by IE9 or higher
 property localStorage: TStorage read;
 property location: TLocation read;
 property name: String read write;
 property navigator: TNavigator read;
 property opener: TWindow read;
 property orientation: Integer read; // Mobile platforms only
 property outerHeight: Integer read; // Not supported by IE
 property outerWidth: Integer read; // Not supported by IE
 property pageXOffset: Integer read; // Not supported by IE
 property pageYOffset: Integer read; // Not supported by IE
 property parent: TWindow read;
 property screen: TScreen read;
 property screenLeft: Integer read; // IE-only

Language Reference

Page 296

 property screenTop: Integer read; // IE-only
 property screenX: Integer read; // Not supported by IE
 property screenY: Integer read; // Not supported by IE
 property sessionStorage: TStorage read;
 property status: String read write;
 property top: TWindow read;
 property window: TWindow read;
 { Events }
 property onblur: TEventHandler read write;
 property onerror: TErrorEventHandler read write;
 property onfocus: TEventHandler read write;
 property onload: TEventHandler read write;
 property onresize: TEventHandler read write;
 property onunload: TEventHandler read write;
 { Methods }
 procedure addEventListener(const type: String; listener:
 TEventHandler;
 useCapture: Boolean);
 procedure alert(const message: String);
 procedure blur;
 procedure cancelAnimationFrame(animationId: Integer);
 procedure clearInterval(intervalId: Integer);
 procedure clearTimeout(timeoutId: Integer);
 procedure close;
 function confirm(const question: String): Boolean;
 procedure detachEvent(const type: String; handler: TEventHandler);
 procedure focus;
 function getComputedStyle(elt: TDOMElement; const pseudoElt:
 String): TCSS2Properties;
 procedure moveBy(dx, dy: Integer);
 procedure moveTo(x, y: Integer);
 function open(const url: String; const name: String=''; const
 features: String='';
 replace: Boolean=False): TWindow;
 procedure print;
 function prompt(const message: String; default: String): String;
 procedure removeEventListener(const type: String; listener:
 TEventHandler;
 useCapture: Boolean);
 function requestAnimationFrame(callback: TAnimationHandler): Integer;

 procedure resizeBy(dw, dh: Integer);
 procedure resizeTo(w, h: Integer);
 procedure scrollBy(dx, dy: Integer);
 procedure scrollTo(x, y: Integer);
 function setInterval(code: TIntervalHandler; intervalId: Integer):
 Integer;
 function setTimeout(code: TIntervalHandler; intervalId: Integer):
 Integer;
 end;

var
 external window: TWindow;

Language Reference

Page 297

Warning
 Because JavaScript is case-sensitive, all external declarations are case-sensitive and must match
the required case of the external Javascript declarations for the same entities. This only applies to
the external declarations. All Object Pascal code that calls the external code can still use any case
desired, and the compiler will automatically make sure that the proper case is used in the emitted
code for the application.

The rules and exceptions for external declarations are:

External class declarations cannot contain private or protected members, only public members.

External class instances do not necessarily follow the same instantiation rules regarding member
variables. Non-external classes are guaranteed to have all of their member variables initialized to
appropriate values, but this is not necessarily true for external classes.

External classes can still be created with the Create method and freed with the Free method, but
internally the compiler will emit slightly different code than it does for non-external classes.

External classes can only inherit from other external classes, and non-external classes can only
inherit from non-external classes.

The read and write clauses for properties in external class declarations do not refer to any member
variables or methods.

You can use the emit clause to control the class name/namespace used when the compiler emits
references to the class when creating new instances. This is useful when instantiating JavaScript
objects that are nested within namespaces. For example, Google Maps integration requires the
following emit clause:

external TGoogleMapOptions emit google.maps.MapOptions = class

Language Reference

Page 298

8.23 Debugging

There are currently two ways to debug Elevate Web Builder applications at runtime in a web browser: by
using a runtime function to log debug messages to the Messages panel in the IDE, and by using the built-
in debugging facilities in the web browser of your choosing. You can use the debug message option with
the embedded web browser in the IDE, but not the debugging facilities.

LogOutput Procedure

For simple debugging needs, make sure that the internal web server is the selected web server in the IDE
and that the internal web server is running (see Running a Project). Then, include the WebHTTP unit in the
uses clause of the unit that you wish to debug. Finally, call the LogOutput procedure where necessary,
passing any debug messages to the procedure as a single String parameter:

procedure LogOutput(const Msg: String;
 const LogURL: String=DEFAULT_LOG_URL);

By default, the LogOutput procedure will send all debug output to the internal web server by using the
following URL:

http://localhost/log

Any messages passed to the LogOutput method will automatically appear in the Messages panel in the
IDE.

Note
 This also applies to applications that are run in an external browser session. As long as the
application is accessed via a localhost URL and is being loaded from the internal web server
running in the IDE, all debug output will get routed to the Messages panel in the IDE.

If you are running the application in an external browser session on a completely different machine or
device, then be sure to include the second parameter to the LogOutput procedure. This parameter should
include the IP address/host name of the machine running the Elevate Web Builder IDE. For example, if you
were running the application in a Chrome browser on an Android tablet, and the Elevate Web Builder IDE
was running on the same LAN at IP address 192.168.0.2, then you would use the following value for the
second LogOutput parameter:

http://192.168.0.2/log

Web Browser Debuggers

For more complex debugging needs, make sure that the Compress Output option is not checked on the

Language Reference

Page 299

Compilation page of the project options for your project, compile the project, and then run the
application in an external web browser session with the web browser's debugger enabled. With Internet
Explorer, FireFox, and Chrome, you can access the debugger by using the F12 key to open the developer
tools panel while in the browser. The one major downside to this type of debugging is that you must
debug the emitted JavaScript code, and not the Object Pascal code. Fortunately, though, the two are very
similar in content and layout, and so the emitted JavaScript code is usually fairly easy to debug.

Note
 In general, it should not be necessary to debug your code using the web browser debugging
facilities. If you find yourself doing so often, please let us know and we'll use this information to
help better plan our future implementation of a built-in debugger.

Language Reference

Page 300

8.24 Asynchronous Calls

Elevate Web Builder supports asynchronous procedure/function calls using the special async keyword.
Asynchronous calls allow the developer to queue a procedure/function call in the browser so that it is run
as part of the message queue processing for the main UI thread in the browser. Asynchronous calls are
available only at runtime, and will cause a component library compilation error if used in any design-time
code.

How Asynchronous Calls Are Executed

Because asynchronous calls are added to the message queue for the main UI thread in the browser, they
are executed in a first-in, first-out (FIFO) manner. This means that there may be a delay between when the
asynchronous call is made and when the call is actually executed. Also, asynchronous calls are emitted by
the compiler as Javascript closures. Closures are functions that are dynamically created and capture the
entire run-time scope of their parent execution context. Whenever a closure is actually executed, it will do
so using the same scope that was present when the closure was created. Closures are ideal for
asynchronous calls, because they need to capture the state of all variables and parameters so that they are
available when the call is actually executed.

Executing an Asynchronous Call

To make an asynchronous procedure/function call, simply preface the call with the async keyword. For
example,

procedure TForm1.Button1Click(Sender: TObject);
begin
 async CreatePanel(0);
end;

will queue up a call to the CreatePanel procedure so that it will run in the next round of message
processing in the browser. Because the compiler will emit a closure for this call, the value of any local
variables or parameters will be properly captured, even if the parent method that is calling the
function/procedure has finished executing.

Mixing Synchronous/Asynchronous Calls

Because the main UI thread in the browser is used for executing all code, any synchronous code will
execute before any asynchronous calls that are queued in the message queue. This is important to
understand because it determines how you should combine synchronous and asynchronous calls to
achieve the desired outcome.

For example, suppose that you want to create a large number of panels in a container, and want to show a
progress dialog while the panels are created. To do this, you would normally do something like this:

procedure TForm1.CreatePanels;
var
 I: Integer;

Language Reference

Page 301

begin
 for I:=1 to 100 do
 TPanel.Create(Self);
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowProgress('Creating panels...');
 CreatePanels;
 HideProgress;
end;

However, if you were to execute the above code in the browser, you will see that the panels are created,
but the progress dialog will never show. This is because the UI updates for the ShowProgress call will not
be executed until any other currently-executing code has completed. In this case, this is the CreatePanels
and HideProgress calls, so the ShowProgress UI updates will get merged with the HideProgress UI
updates, and the progress dialog will never get shown (or will be shown/hidden so fast that you won't see
it).

The key to fixing this problem is to allow the UI to update incrementally while we create the panels, and
we'll use asynchronous calls to do so:

procedure TForm1.CreatePanel(I: Integer);
begin
 TPanel.Create(Self);
 Inc(I);
 if (I < 100) then
 async CreatePanel(I)
 else
 async HideProgress;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowProgress('Creating panels...');
 async CreatePanel(0);
end;

We don't want to use an asynchronous call to ShowProgress because we want it to be executed
immediately so that it is the first UI update to occur. However, we do want to queue each CreatePanel call
and the HideProgress call because doing so will force them to execute in-order after any UI updates from
the ShowProgress call, as well as allow the UI to update during each panel creation.

Language Reference

Page 302

Chapter 9
Function and Procedure Reference

9.1 Abs

Unit: Internal

function Abs(Value: Double): Double

function Abs(Value: Integer): Integer

The Abs function returns the absolute value of the input parameter. The return value is the same type as
the input parameter.

Examples

X := Abs(-10); // X is 10
X := Abs(100); // X is 100

Function and Procedure Reference

Page 303

9.2 ArcCos

Unit: Internal

function ArcCos(Value: Double): Double

function ArcCos(Value: Integer): Double

The ArcCos function returns the arccosine, or inverse cosine, of the input parameter, which must be
between -1 and 1. The return value is a Double value between 0 and Pi radians.

Examples

X := ArcCos(0.23290); // X is 1.335737700525506

Function and Procedure Reference

Page 304

9.3 ArcSin

Unit: Internal

function ArcSin(Value: Double): Double

function ArcSin(Value: Integer): Double

The ArcSin function returns the arcsine of the input parameter, which must be between -1 and 1. The
return value is a Double value between -Pi/2 and Pi/2 radians.

Examples

X := ArcSin(0.23290); // X is 0.23505862626939056

Function and Procedure Reference

Page 305

9.4 ArcTan

Unit: Internal

function ArcTan(Value: Double): Double

function ArcTan(Value: Integer): Double

The ArcTan function returns the arc tangent of the input parameter. The return value is a Double value
between -Pi/2 and Pi/2 radians.

Examples

X := ArcTan(0.23290); // X is 0.22882093498523032

Function and Procedure Reference

Page 306

9.5 ArcTan2

Unit: Internal

function ArcTan2(Y, X: Double): Double

function ArcTan2(Y, X: Integer): Double

The ArcTan2 function returns a value between -Pi and Pi radians that specifies the counter-clockwise
angle between the positive X axis and the point represented by the X and Y input parameters.

Examples

X := ArcTan2(100,3000); // X is 0.033320995878247196

Function and Procedure Reference

Page 307

9.6 Assigned

Unit: Internal

function Assigned(Value: TObject): Boolean

function Assigned(Value: function of object): Boolean

function Assigned(Value: procedure of object): Boolean

function Assigned(const Value: String): Boolean

function Assigned(const Value: array of <Type>): Boolean

Examples

The Assigned function returns whether the input parameter is nil or has been assigned a value. The input
parameter must be an object instance, method reference (function or procedure of object), string, or array
variable. The return value is a Boolean value.

Examples

var
 MyObject: TObject;
begin
 X := Assigned(MyObject); // X is False
 MyObject := TObject.Create;
 X := Assigned(MyObject); // X is True
end;

var
 MyString: String;
begin
 X := Assigned(MyString); // X is False
 MyString := 'This is a test';
 X := Assigned(MyString); // X is True
end;

Function and Procedure Reference

Page 308

9.7 BoolToStr

Unit: WebCore

function BoolToStr(Value: Boolean): String

The BoolToStr function returns 'True' if the input parameter is true, and 'False' if the input parameter is
False. The return value is a String value.

Examples

X := BoolToStr(True); // X is 'True'

Function and Procedure Reference

Page 309

9.8 Ceil

Unit: Internal

function Ceil(Value: Double): Integer

function Ceil(Value: Integer): Integer

The Ceil function returns the closest integer that is greater than or equal to the value of the input
parameter. The return value is an Integer.

Examples

X := Ceil(-10.4); // X is -10
X := Ceil(15.98); // X is 16

Function and Procedure Reference

Page 310

9.9 Chr

Unit: Internal

function Chr(Value: Integer): Char

The Chr function returns the character representation of the Unicode code point input parameter. The
return value is a Char.

Examples

X := Chr(220); // X is 'Ü'

Function and Procedure Reference

Page 311

9.10 CompareStr

Unit: Internal

function CompareStr(const A, B: String): Integer

The CompareStr function compares the A input parameter string with the B input parameter string with
case-sensitivity. The comparison is locale-insensitive. The return value is an Integer value of -1 if A is less
than B, 0 if A is equal to B, and 1 if A is greater than B.

Examples

X := CompareStr('Absolute', 'Baseball'); // X is -1

Function and Procedure Reference

Page 312

9.11 CompareText

Unit: Internal

function CompareText(const A, B: String): Integer

The CompareText function compares the A input parameter string with the B input parameter string
without case-sensitivity. The comparison is locale-insensitive. The return value is an Integer value of -1 if A
is less than B, 0 if A is equal to B, and 1 if A is greater than B.

Examples

X := CompareText('Absolute', 'ABSOLUTE'); // X is 0

Function and Procedure Reference

Page 313

9.12 Copy

Unit: Internal

function Copy(const Value: String; Index: Integer;
 Count: Integer): String

function Copy(const Value: String; Index: Integer): String

function Copy(const Value: String): String

function Copy(const Value: array of <Type>; Index: Integer;
 Count: Integer): array of <Type>

function Copy(const Value: array of <Type>; Index: Integer): array of <Type>

function Copy(const Value: array of <Type>): array of <Type>

The Copy function returns a portion of the Value string or array input parameter. The optional Index input
parameter specifies where to start the copy, and the optional Count input parameter specifies the length
to copy. If the Count input parameter is not specified, then the copy will proceed until the end of the
Value input parameter. If neither the Index or Count input parameters are specified, then an exact copy of
the Value input parameter will be returned.

Note
 Please remember that indexes into String values are 1-based, whereas indexes into arrays are 0-
based. For more information on these types, please see the Types topic.

Examples

X := Copy('abcdef', 4, 3); // X is 'def'
X := Copy('abcdef', 2); // X is 'bcdef'
X := Copy([10,20,30,40], 0, 3); // X is [10,20,30]

Function and Procedure Reference

Page 314

9.13 Cos

Unit: Internal

function Cos(Value: Double): Double

function Cos(Value: Integer): Double

The Cos function returns the cosine of the input parameter, which is an angle specified in radians. To
convert an angle from degrees to radians, use the Radians function. The return value is a Double value
between -1 and 1.

Examples

X := Cos(0.23290); // X is 0.9730011668494914

Function and Procedure Reference

Page 315

9.14 CreateActiveXObject

Unit: Internal

function CreateActiveXObject: <External Object Instance>

The CreateActiveXObject function creates an external ActiveX object instance (Internet Explorer only) and
returns it as the result.

Note
 You must always cast the result of this function to the desired external class in order to be able to
use the resulting instance in your code.

Examples

var
 TempDocument: TDocument;
begin
 // Must always cast the result to the desired class
 TempDocument:=TDocument(CreateActiveXObject('Microsoft.XMLDOM'));
 TempDocument.LoadXML(Value);
end;

Function and Procedure Reference

Page 316

9.15 CreateObject

Unit: Internal

function CreateObject(const ObjectLiteral: String): <External Object
 Instance>

The CreateObject function creates an external object instance from a JavaScript object literal and returns
it as the result. This function can be especially useful with JS APIs that require that you create object
instances using object literals.

Note
 You must always cast the result of this function to the desired external class in order to be able to
reference any properties or methods of the new external class instance from within Elevate Web
Builder code.

Warning
 This function internaly uses the JavaScript eval function in order to create the object. Be very
careful about passing object literal strings that have been derived from an external source to this
function.

Examples

type
 external TMyExternalObject emit MyJSAPI.MyExternalObject = class
 public
 property Name: String read write;
 end;

var
 TempObject: TMyExternalObject;
begin
 TempObject:=TMyExternalObject(CreateObject('{ name: ''My External Object''
 }'));
end;

Function and Procedure Reference

Page 317

9.16 Date

Unit: Internal

function Date: DateTime

The Date function returns the current date. The return value is a DateTime value.

Examples

X := DateToStr(Date); // X is '2/13/2012'

Function and Procedure Reference

Page 318

9.17 DateTimeToStr

Unit: WebCore

function DateTimeToStr(Value: DateTime; UTC: Boolean=False): String

The DateTimeToStr function returns a formatted local or UTC date and time string for the DateTime input
parameter. The format of the string is determined by the TFormatSettings ShortDateFormat and
ShortTimeFormat properties. The return value is a String value.

Examples

A := StrToDateTime('2/13/2012 12:10 PM');
X := DateTimeToStr(A); // X is '2/13/2012 12:10 PM'

Function and Procedure Reference

Page 319

9.18 DateTimeToISOStr

Unit: Internal

function DateTimeToISOStr(Value: DateTime): String

The DateTimeToISOStr function returns an ISO-8601-formatted date-time string value for the date-time
input parameter. The return value is a String value.

Examples

X := DateTimeToISOStr(StrToDateTime('8/15/2015 12:40 PM')); // X is
 '2015-08-15T16:40:00.000Z'

Function and Procedure Reference

Page 320

9.19 DateToStr

Unit: WebCore

function DateToStr(Value: DateTime; UTC: Boolean=False): String;

The DateToStr function returns a formatted local or UTC date string for the DateTime input parameter.
The format of the string is determined by the TFormatSettings ShortDateFormat property. The return
value is a String value.

Examples

A := StrToDateTime('2/13/2012');
X := DateToStr(A); // X is '2/13/2012'

Function and Procedure Reference

Page 321

9.20 DayOf

Unit: Internal

function DayOf(Value: DateTime; UTC: Boolean=False): Integer

The DayOf function returns the day number of the input parameter in local or UTC time. The return value
is an Integer value.

Examples

X := DayOf(Date); // X is 13 (assuming a date of 02/13/2012)

Function and Procedure Reference

Page 322

9.21 Dec

Unit: Internal

procedure Dec(var Value: Integer)

procedure Dec(var Value: Integer; By: Integer)

The Dec procedure decrements the Integer input parameter by 1, or by the By input parameter, if
specified.

Examples

X := 10;
Dec(X);
Y := IntToStr(X) // Y is '9'

Function and Procedure Reference

Page 323

9.22 Degrees

Unit: Internal

function Degrees(Value: Double): Double

function Degrees(Value: Integer): Double

The Degrees function converts the input parameter, which is an angle specified in radians, to degrees. The
return value is a Double value.

Examples

X := Degrees(92.398); // X is 5294.01543544978

Function and Procedure Reference

Page 324

9.23 Delete

Unit: Internal

procedure Delete(const Value: array of <Type>; Index: Integer;
 Count: Integer)

procedure Delete(const Value: array of <Type>; Index: Integer)

The Delete procedure deletes a portion of the Value array input parameter. The optional Index input
parameter specifies where to start the deletion, and the optional Count input parameter specifies the
number of array elements to delete. If the Count input parameter is not specified, then the deletion will
proceed until the end of the Value input parameter.

Note
 This procedure cannot be used with strings in Elevate Web Builder. Strings are immutable in
JavaScript, and therefore cannot be modified in-place using procedures such as this. For more
information on these types, please see the Types topic.

Examples

X := [10,20,30,40];
Delete(X, 2, 2); // X is [10,20] after the Delete call

Function and Procedure Reference

Page 325

9.24 DoubleToStr

Unit: Internal

function DoubleToStr(Value: Double; Decimals: Integer=-1): String

The DoubleToStr function returns a formatted string for the Double input parameter. The decimal
separator used in the formatted string is always a period (.). The return value is a String value. You can use
the optional Decimals parameter to specify that the return value is formatted to a specific number of
decimal places.

Examples

A := StrToDouble('1200.548');
X := DoubleToStr(A); // X is '1200.548'

A := StrToDouble('1200.548');
X := DoubleToStr(A, 1); // X is '1200.5'

Function and Procedure Reference

Page 326

9.25 EncodeDate

Unit: Internal

function EncodeDate(Year: Integer; Month: Integer; Day: Integer;
 UTC: Boolean=False): Integer

The EncodeDate function returns the local or UTC date from the year, month, and day input parameters.
The return value is a DateTime value.

Examples

X := DateToStr(EncodeDate(2012,2,13)); // X is '2/13/2012'

Function and Procedure Reference

Page 327

9.26 EncodeDateTime

Unit: Internal

function EncodeDateTime(Year: Integer; Month: Integer; Day: Integer;
 Hour: Integer; Minute: Integer; Second: Integer;
 MSecond: Integer; UTC: Boolean=False): Integer

The EncodeDateTime function returns the local or UTC date and time from the year, month, day, hour,
minute, second, and millisecond input parameters. The return value is a DateTime value.

Examples

X := DateTimeToStr(EncodeDateTime(2012,2,13,12,10,0,0)); // X is '2/13/2012
 // 12:10 PM'

Function and Procedure Reference

Page 328

9.27 EncodeTime

Unit: Internal

function EncodeTime(Hour: Integer; Minute: Integer; Second: Integer; MSecond:
 Integer;
 UTC: Boolean=False): Integer

The EncodeTime function returns the local or UTC time from the hour, minute, second, and millisecond
input parameters. The return value is a DateTime value.

Examples

X := TimeToStr(EncodeTime(12,10,0,0)); // X is '12:10 PM'

Function and Procedure Reference

Page 329

9.28 Exp

Unit: Internal

function Exp(Value: Double): Double

function Exp(Value: Integer): Double

The Exp function returns e raised to the power specified by the input parameter, where e is the base of
the natural logarithm. The return value is a Double value.

Examples

X := Exp(0.523); // X is 1.6870813093472114

Function and Procedure Reference

Page 330

9.29 FloatToStr

Unit: WebCore

function FloatToStr(Value: Double; Decimals: Integer=-1): String

The FloatToStr function returns a formatted string for the Double input parameter. The decimal separator
used in the formatted string is determined by the TFormatSettings DecimalSeparator property. The
optional Decimals input parameter determines the number of decimal places used in the formatted string.
The return value is a String value.

Examples

A := StrToFloat('1200.548');
X := FloatToStr(A); // X is '1200.548'

A := StrToFloat('1200.548');
X := FloatToStr(A,2); // X is '1200.55'

Function and Procedure Reference

Page 331

9.30 Floor

Unit: Internal

function Floor(Value: Double): Integer

function Floor(Value: Integer): Integer

The Floor function returns the closest integer that is less than or equal to the value of the input
parameter. The return value is an Integer.

Examples

X := Floor(-10.4); // X is -11
X := Floor(15.98); // X is 15

Function and Procedure Reference

Page 332

9.31 HideProgress

Unit: WebForms

procedure HideProgress

The HideProgress procedure decrements the global progress reference count, and if the reference count
is 0, hides the active progress dialog. The ShowProgress procedure shows a progress dialog and
increments the progress reference count.

Examples

HideProgress;

Function and Procedure Reference

Page 333

9.32 HourOf

Unit: Internal

function HourOf(Value: DateTime; UTC: Boolean=False): Integer

The HourOf function returns the hour number of the input parameter in local or UTC time. The return
value is an Integer value between 0 (midnight) and 23 (11:00 PM).

Examples

X := HourOf(Time); // X is 12 (assuming a time of 12:10 PM)

Function and Procedure Reference

Page 334

9.33 Inc

Unit: Internal

procedure Inc(var Value: Integer)

procedure Inc(var Value: Integer; By: Integer)

The Inc procedure increments the Integer input parameter by 1, or by the By input parameter, if specified.

Examples

X := 1;
Inc(X);
Y := IntToStr(X) // Y is '2'

Function and Procedure Reference

Page 335

9.34 Insert

Unit: Internal

procedure Insert(Value: <Type>; const Array: array of <Type>;
 Index: Integer)

procedure Insert(const Value: array of <Type>; const Array: array of <Type>;
 Index: Integer)

The Insert procedure inserts a new value (or array of values) into the Array input parameter. The Index
input parameter specifies where the insertion will take place. The Value input parameter must be type-
compatible with the Array input parameter that it is being inserted into.

Note
 This procedure cannot be used with strings in Elevate Web Builder. Strings are immutable in
JavaScript, and therefore cannot be modified in-place using procedures such as this. For more
information on these types, please see the Types topic.

Examples

X := [10,20,30,40];
Insert(35, X, 3); // X is [10,20,30,35,40] after the Insert call

X := [10,20,30,40];
Y := [21,22,23,24,25];
Insert(Y, X, 2); // X is [10,20,21,22,23,24,25,30,40] after the Insert call

Function and Procedure Reference

Page 336

9.35 IntToHex

Unit: Internal

function IntToHex(Value: Integer; Digits: Integer): String

The IntToHex function returns a formatted hexadecimal string for the Integer input parameter. The Digits
input parameter indicates the minimum length of the String return value.

Examples

X := IntToHex(1052); // X is '041C'

Function and Procedure Reference

Page 337

9.36 IntToStr

Unit: Internal

function IntToStr(Value: Integer): String

The IntegerToStr function returns a formatted string for the Integer input parameter. The return value is a
String value.

Examples

X := IntToStr(-102); // X is '-102'

Function and Procedure Reference

Page 338

9.37 ISOStrToDateTime

Unit: Internal

function ISOStrToDateTime(const Value: String): DateTime

The ISOStrToDateTime function returns a date-time value for the ISO-8601-formatted date-time string
input parameter. The return value is a DateTime value.

Examples

X := DateTimeToStr(ISOStrToDateTime('2015-08-15T16:40:31.601Z')); // X is
 '8/15/2015 12:40 PM'

Function and Procedure Reference

Page 339

9.38 Join

Unit: Internal

function Join(const Array: array of String; const Separator: String): String

function Join(const Array: array of String): String

The Join function builds a new string from the elements in the Array string array input parameter. The
Separator input parameter is optional. If the Separator input parameter is specified, then the return value
is a String value that contains all string elements from the array separated by the Separator input
parameter. If the Separator input parameter is not specified, then the return value is a String value that
contains all string elements from the array.

Examples

X := Join(['Hello,','my','name','is','Jim'], ' '); // X is 'Hello, my name
 is Jim'

Function and Procedure Reference

Page 340

9.39 Length

Unit: Internal

function Length(const Value: String): Integer

function Length(const Value: array of <Type>): Integer

The Length function returns the length of the String or array input parameter. The return value is an
Integer value.

Examples

X := Length('How long is this string'); // X is 23

Function and Procedure Reference

Page 341

9.40 Ln

Unit: Internal

function Ln(Value: Double): Double

function Ln(Value: Integer): Double

The Ln function returns the natural logarithm of the input parameter, which must be greater than 0. The
return value is a Double value.

Examples

X := Ln(0.523); // X is -0.6481738149172141

Function and Procedure Reference

Page 342

9.41 LocaleCompareStr

Unit: Internal

function LocaleCompareStr(const A, B: String): Integer

The LocaleCompareStr function compares the A input parameter string with the B input parameter string
with case-sensitivity. The comparison uses the browser's current locale setting to compare the two strings.
The return value is an Integer value of -1 if A is less than B, 0 if A is equal to B, and 1 if A is greater than B.

Examples

X := LocaleCompareStr('Absolute', 'Baseball'); // X is -1

Function and Procedure Reference

Page 343

9.42 LocaleCompareText

Unit: Internal

function LocaleCompareText(const A, B: String): Integer

The LocaleCompareText function compares the A input parameter string with the B input parameter
string without case-sensitivity. The comparison uses the browser's current locale setting to compare the
two strings. The return value is an Integer value of -1 if A is less than B, 0 if A is equal to B, and 1 if A is
greater than B.

Examples

X := LocaleCompareText('Absolute', 'ABSOLUTE'); // X is 0

Function and Procedure Reference

Page 344

9.43 LocaleLowerCase

Unit: Internal

function LocaleLowerCase(const Value: String): String

The LocaleLowerCase function returns the Value input parameter with all characters converted to their
lower-case representation. The browser's current locale setting is used to perform this conversion. The
return value is a String value.

Examples

X := LocaleLowerCase('Hello World'); // X is 'hello world'

Function and Procedure Reference

Page 345

9.44 LocaleSameStr

Unit: Internal

function LocaleSameStr(const A, B: String): Boolean

The LocaleSameStr function compares the A input parameter string with the B input parameter string
with case-sensitivity. The comparison uses the browser's current locale setting to compare the two strings.
The return value is a Boolean value of True if A is equal to B, and False if A is not equal to B.

Examples

X := LocaleSameStr('Absolute', 'Baseball'); // X is False

Function and Procedure Reference

Page 346

9.45 LocaleSameText

Unit: Internal

function LocaleSameText(const A, B: String): Boolean

The LocaleSameText function compares the A input parameter string with the B input parameter string
without case-sensitivity. The comparison uses the browser's current locale setting to compare the two
strings. The return value is a Boolean value of True if A is equal to B, and False if A is not equal to B.

Examples

X := LocaleSameStr('Absolute', 'ABSOLUTE'); // X is True

Function and Procedure Reference

Page 347

9.46 LocaleUpperCase

Unit: Internal

function LocaleUpperCase(const Value: String): String

The LocaleUpperCase function returns the Value input parameter with all characters converted to their
upper-case representation. The browser's current locale setting is used to perform this conversion. The
return value is a String value.

Examples

X := LocaleUpperCase('Hello World'); // X is 'HELLO WORLD'

Function and Procedure Reference

Page 348

9.47 LowerCase

Unit: Internal

function LowerCase(const Value: String): String

The LowerCase function returns the Value input parameter with all characters converted to their lower-
case representation. The browser's current locale setting is not used to perform this conversion. The return
value is a String value.

Examples

X := LowerCase('Hello World'); // X is 'hello world'

Function and Procedure Reference

Page 349

9.48 Max

Unit: Internal

function Max(A,B: Integer): Integer

function Max(A,B: Double): Double

The Max function returns the greater of the two input parameters. If A is greater than B, then A is
returned. If B is greater than A, then B is returned. The return value is the same type as the input
parameters.

Examples

X := Max(100,2); // X is 100

Function and Procedure Reference

Page 350

9.49 MessageDlg

Unit: WebForms

procedure MessageDlg(const Msg: String;
 const DlgCaption: String;
 DlgType: TMsgDlgType;
 const Buttons: TMsgDlgBtns;
 MsgDlgResult: TMsgDlgResultEvent=nil;
 CloseButton: Boolean=False;
 OverlayColor: TColor=clBlack;
 OverlayOpacity: Double=20;
 AnimationStyle: TAnimationStyle=asNone;
 AnimationDuration: Integer=0)

procedure MessageDlg(const Msg: String;
 const DlgCaption: String;
 DlgType: TMsgDlgType;
 const Buttons: TMsgDlgBtns;
 DefaultButton: TMsgDlgBtn;
 MsgDlgResult: TMsgDlgResultEvent=nil;
 CloseButton: Boolean=False;
 OverlayColor: TColor=clBlack;
 OverlayOpacity: Double=20;
 AnimationStyle: TAnimationStyle=asNone;
 AnimationDuration: Integer=0)

The MessageDlg procedure shows a modal message dialog.

The Msg parameter indicates the message to show.

The DlgCaption parameter indicates the caption of the dialog.

The DlgType parameter indicates the type of dialog to show.

The Buttons parameter indicates the array of button types to use on the dialog.

The DefaultButton parameter indicates which button should have focus when the dialog is first shown.

The MsgDlgResult parameter is a method reference that represents the event handler that will be called
when the message dialog is closed.

The CloseButton parameter indicates whether the message dialog should contain a close button.

The OverlayColor parameter indicates the color to use for the shadow overlay effect that is used over the
application desktop to indicate that a modal form is in effect.

The OverlayOpacity parameter indicates the percentage of opacity to use for the shadow overlay effect
that is used over the application desktop to indicate that a modal form is in effect.

The AnimationStyle and AnimationDuration parameters indicate the type/duration of animation to use
when showing the message dialog.

Function and Procedure Reference

Page 351

Examples

MessageDlg('Are you sure that you want to delete this record?',
 'Please Confirm',mtConfirmation,[mbYes,mbNo],mbNo,CheckDelete,
 True);

Function and Procedure Reference

Page 352

9.50 Min

Unit: Internal

function Min(A,B: Integer): Integer

function Min(A,B: Double): Double

The Min function returns the lesser of the two input parameters. If A is less than B, then A is returned. If B
is less than A, then B is returned. The return value is the same type as the input parameters.

Examples

X := Min(100,2); // X is 2

Function and Procedure Reference

Page 353

9.51 MinuteOf

Unit: Internal

function MinuteOf(Value: DateTime; UTC: Boolean=False): Integer

The MinuteOf function returns the minute number of the input parameter in local or UTC time. The return
value is an Integer value between 0 and 59.

Examples

X := MinuteOf(Time); // X is 10 (assuming a time of 12:10 PM)

Function and Procedure Reference

Page 354

9.52 MonthOf

Unit: Internal

function MonthOf(Value: DateTime; UTC: Boolean=False): Integer

The MonthOf function returns the month number of the input parameter in local or UTC time. The return
value is an Integer value.

Examples

X := MonthOf(Date); // X is 2 (assuming a date of 02/13/2012)

Function and Procedure Reference

Page 355

9.53 MSecondOf

Unit: Internal

function MSecondOf(Value: DateTime; UTC: Boolean=False): Integer

The MSecondOf function returns the millisecond number of the input parameter in local or UTC time. The
return value is an Integer value between 0 and 59.

Examples

X := MSecondOf(Time); // X is 247 (assuming a time of 12:10:20.247 PM)

Function and Procedure Reference

Page 356

9.54 Now

Unit: Internal

function Now: DateTime

The Now function returns the current date and time. The return value is a DateTime value.

Examples

X := DateTimeToStr(Now); // X is '2/13/2012 12:10 PM'

Function and Procedure Reference

Page 357

9.55 Ord

Unit: Internal

function Ord(Value: Char): Integer

function Ord(Value: Boolean): Integer

The Ord function returns the Unicode code point for a Char input parameter, 0 for a False Boolean input
parameter, and 1 for a True Boolean input parameter. The return value is an Integer.

Examples

X := Ord('Ü'); // X is 220

X := Ord(True); // X is 1

Function and Procedure Reference

Page 358

9.56 Pad

Unit: WebCore

function Pad(const Value: String; PadLen: Integer;
 PadChar: Char=' '): String

The Pad function returns the Value input parameter padded to the length specified by the PadLen input
parameter. The optional PadChar input parameter specifies the character to be used for padding the
Value input parameter, and defaults to a space (' ') character. The return value is a String value.

Note
 The padding is inserted on the left side of the string.

Examples

X := Pad('100', 10); // X is ' 100'

Function and Procedure Reference

Page 359

9.57 Pi

Unit: Internal

function Pi: Double

The Pi function returns the mathematical constant pi, or the ratio of the circumference of a circle to its
diameter. The return value is a Double value that is approximately 3.141592653589793.

Examples

X := Pi; // X is 3.141592653589793

Function and Procedure Reference

Page 360

9.58 ParseXML

Unit: WebCore

function ParseXML(const Value: String): TDocument

The ParseXML function parses the XML string input parameter and returns a TDocument class instance.

Note
 Please refer to the WebDOM unit source code for the declaration of the TNode, TDocument, and
TNodeList classes and their various properties.

Examples

var
 TempXML: String;
 TempDocument: TDocument;
 TempNodes: TNodeList;
begin
 TempXML := '<a><c><username>testuser</username></c>';
 TempDocument := ParseXML(TempXML);
 TempNodes:=TempDocument.getElementsByTagName('username');
 ShowMessage(IntToStr(TempNodes.length)); // Number of nodes
 ShowMessage(TempNodes[0].firstChild.nodeValue); // Get text node
 TempXML := SerializeXML(TempDocument);
 ShowMessage(TempXML);
end;

Function and Procedure Reference

Page 361

9.59 Pos

Unit: Internal

function Pos(const SearchValue: String; const Value: String;
 Index: Integer=1): Integer

The Pos function returns the position of the SearchValue input parameter in the Value input parameter.
The optional Index parameter specifies the starting index of the search and, if not specified, the search will
start at the first character of the Value input parameter. The return value is an Integer value of 0 if the
SearchValue input parameter was not found, or the index of the SearchValue if it was found.

Examples

X := Pos(' ', 'Whereisthe spaceinthisstring'); // X is 11

Function and Procedure Reference

Page 362

9.60 Power

Unit: Internal

function Power(X, Y: Double): Double

function Power(X, Y: Integer): Double

The Power function returns the X input parameter raised to the power specified by the Y input parameter.
The return value is a Double value.

Examples

X := Power(0.523, 4); // X is 0.07481811384100001

Function and Procedure Reference

Page 363

9.61 Radians

Unit: Internal

function Radians(Value: Double): Double

function Radians(Value: Integer): Double

The Radians function converts the input parameter, which is an angle specified in degrees, to radians. The
return value is a Double value.

Examples

X := Radians(5294.01543544978); // X is 92.398

Function and Procedure Reference

Page 364

9.62 Random

Unit: Internal

function Random(AFrom: Integer=0; ATo=<MaxInt>): Integer

The Random function returns a pseudorandom number greater than or equal to the AFrom parameter, if
provided, and less than or equal to the ATo parameter, if provided. The default AFrom paramter value is 0,
and the default ATo parameter value is the maximum integer value. At runtime, the maximum integer
value is 9007199254740991, and at design-time the maximum integer value is 9223372036854775807.
The return value is an Integer value.

Examples

X := Random; // X is 7534176611 (pseudorandom value)
X := Random(0,1000); // X is 269 (pseudorandom value)

Function and Procedure Reference

Page 365

9.63 Round

Unit: Internal

function Round(Value: Double): Integer

function Round(Value: Integer): Integer

The Round function returns the closest integer to the value of the input parameter using the "round half
up" method. The return value is an Integer.

Examples

X := Round(-10.4); // X is -10
X := Round(15.5); // X is 16

Function and Procedure Reference

Page 366

9.64 QuotedStr

Unit: WebCore

function QuotedStr(const Value: String;
 QuoteChar: Char=SINGLE_QUOTE): String

The QuotedStr function adds the specified quote character to the start and end of the input parameter. In
addition, any characters in the input parameter that match the specified quote character are escaped so
that they are properly interpreted as embedded quote characters. The return value is the transformed
input parameter.

Examples

Y := 'Absolute';
X := QuotedStr(Y); // X is 'Absolute'

Y := 'It''s';
X := QuotedStr(Y); // X is 'Its''s'

Function and Procedure Reference

Page 367

9.65 SameStr

Unit: Internal

function SameStr(const A, B: String): Boolean

The SameStr function compares the A input parameter string with the B input parameter string with case-
sensitivity. The comparison is locale-insensitive. The return value is a Boolean value of True if A is equal to
B, and False if A is not equal to B.

Examples

X := SameStr('Absolute', 'Baseball'); // X is False

Function and Procedure Reference

Page 368

9.66 SameText

Unit: Internal

function SameText(const A, B: String): Boolean

The SameText function compares the A input parameter string with the B input parameter string without
case-sensitivity. The comparison is locale-insensitive. The return value is a Boolean value of True if A is
equal to B, and False if A is not equal to B.

Examples

X := SameStr('Absolute', 'ABSOLUTE'); // X is True

Function and Procedure Reference

Page 369

9.67 SecondOf

Unit: Internal

function SecondOf(Value: DateTime; UTC: Boolean=False): Integer

The SecondOf function returns the second number of the input parameter in local or UTC time. The return
value is an Integer value between 0 and 59.

Examples

X := SecondOf(Time); // X is 20 (assuming a time of 12:10:20 PM)

Function and Procedure Reference

Page 370

9.68 SerializeXML

Unit: WebCore

function SerializeXML(Document: TDocument): String

The SerializeXML function converts the XML nodes present in the TDocument instance parameter into a
string. The return value is a String value.

Note
 Please refer to the WebDOM unit source code for the declaration of the TNode, TDocument, and
TNodeList classes and their various properties.

Examples

var
 TempXML: String;
 TempDocument: TDocument;
 TempNodes: TNodeList;
begin
 TempXML := '<a><c><username>testuser</username></c>';
 TempDocument := ParseXML(TempXML);
 TempNodes:=TempDocument.getElementsByTagName('username');
 ShowMessage(IntToStr(TempNodes.length)); // Number of nodes
 ShowMessage(TempNodes[0].firstChild.nodeValue); // Get text node
 TempXML := SerializeXML(TempDocument);
 ShowMessage(TempXML);
end;

Function and Procedure Reference

Page 371

9.69 SetLength

Unit: Internal

procedure SetLength(var Value: array of <Type>)

The SetLength procedure sets the length of the Value array input parameter. If extending the length of an
array, all new elements are automatically set to nil for string, object, or method arrays, NaN (not a
number) for numeric (Integer or Double) arrays, and False for boolean arrays.

Warning
 Arrays that are declared but not assigned a value are nil (Assigned function returns False) and not
initialized. The SetLength procedure is one way of initializing them, even if they are initialized to a
length of 0.

Examples

var
 X: array of String;
 I: Integer;
begin
 SetLength(X, 10); // X now has a length of 10, but each element is still
 nil
 for I := 0 to Length(X)-1 do
 X[I] := ''; // Initialize each array element with an empty string
end;

Function and Procedure Reference

Page 372

9.70 ShowMessage

Unit: WebForms

procedure ShowMessage(const Msg: String;
 const DlgCaption: String='';
 AnimationStyle: TAnimationStyle=asNone;
 AnimationDuration: Integer=0)

The ShowMessage procedure shows a simple modal message dialog. The Msg parameter indicates the
message to show. The DlgCaption parameter is optional and indicates the caption of the dialog. The
AnimationStyle and AnimationDuration parameters are optional, and indicate the type/duration of
animation to use when showing the message dialog.

Examples

ShowMessage('An error has occurred !','Error');

ShowMessage('Hello world !','Hi !',asQuadEaseOut,500);

Function and Procedure Reference

Page 373

9.71 ShowProgress

Unit: WebForms

procedure ShowProgress(const Msg: String;
 AnimationStyle: TAnimationStyle=asNone;
 AnimationDuration: Integer=0)

The ShowProgress procedure shows a modal progress dialog and increments the global progress
reference count. The HideProgress procedure decrements the reference count and hides any active
progress dialog. The AnimationStyle and AnimationDuration parameters are optional, and indicate the
type/duration of animation to use when showing the progress dialog.

Examples

ShowProgress('Loading customers...');

Function and Procedure Reference

Page 374

9.72 Sin

Unit: Internal

function Sin(Value: Double): Double

function Sin(Value: Integer): Double

The Sin function returns the sine of the input parameter, which is an angle specified in radians. To convert
an angle from degrees to radians, use the Radians function. The return value is a Double value between -1
and 1.

Examples

X := Sin(0.23290); // X is 0.2308001934780994

Function and Procedure Reference

Page 375

9.73 Split

Unit: Internal

function Split(const Value: String; const Separator: String): array of String

function Split(const Value: String; const Separator: String;
 MaxLength: Integer): array of String

The Split function builds a new string array by splitting the Value input parameter using the Separator
input parameter. The optional MaxLength input parameter specifies the maximum length of the string
array. The return value is an array of String values that does not include the specified Separator string.

Examples

X := Split('Hello, my name is Jim', ' '); // X is ['Hello,','my','name','is',
 'Jim']

Function and Procedure Reference

Page 376

9.74 Sqrt

Unit: Internal

function Sqrt(Value: Double): Double

function Sqrt(Value: Integer): Double

The Sqrt function returns the square root of the input parameter. The return value is a Double value.

Examples

X := Sqrt(154); // X is 12.409673645990857

Function and Procedure Reference

Page 377

9.75 StrReplace

Unit: WebCore

function StrReplace(const Value: String; const SearchValue: String;
 const ReplaceValue: String;
 ReplaceAll: Boolean=False;
 CaseInsensitive: Boolean=False): String

The StrReplace function searches for the SearchValue input parameter in the Value input parameter and
replaces it with the ReplaceValue input parameter. If the optional ReplaceAll input parameter is True, then
all occurrences of the SearchValue input parameter are replaced with the ReplaceValue input parameter. If
the optional CaseInsensitive input parameter is True, then the search for the SearchValue input parameter
will be case-insensitive. The return value is the modified String value.

Examples

X := StrReplace('abcdefghijk', 'd', ' ', True, True); // X is 'abc efghijk'

Function and Procedure Reference

Page 378

9.76 StrToBool

Unit: WebCore

function StrToBool(const Value: String): Boolean

The StrToBool function returns True if the input parameter is 'True' (case-insensitive), and False if the
input parameter is 'False' (case-insensitive also). The return value is a Boolean value.

Examples

X := StrToBool('True'); // X is True

Function and Procedure Reference

Page 379

9.77 StrToDate

Unit: WebCore

function StrToDate(const Value: String; UTC: Boolean=False): DateTime

The StrToDate function converts the formatted local or UTC date string input parameter into its native
value. The required format of the string is determined by the TFormatSettings ShortDateFormat property.
The return value is a DateTime value.

Examples

A := StrToDate('2/13/2012');
X := DateToStr(A); // X is '2/13/2012'

Function and Procedure Reference

Page 380

9.78 StrToDateTime

Unit: WebCore

function StrToDateTime(const Value: String; UTC: Boolean=False): DateTime

The StrToDateTime function converts the formatted local or UTC date and time string input parameter
into its native value. The required format of the string is determined by the TFormatSettings
ShortDateFormat and ShortTimeFormat properties. The return value is a DateTime value.

Examples

A := StrToDateTime('2/13/2012 12:10 PM');
X := DateTimeToStr(A); // X is '2/13/2012 12:10 PM'

Function and Procedure Reference

Page 381

9.79 StrToDouble

Unit: Internal

function StrToDouble(const Value: String): Double

The StrToDouble function converts the formatted string input parameter into its native value. The
decimal separator used in the formatted string is always required to be a period (.). The return value is a
Double value.

Examples

A := StrToDouble('1200.548'); // X is 1200.548

Function and Procedure Reference

Page 382

9.80 StrToFloat

Unit: Internal

function StrToFloat(const Value: String): Double

The StrToFloat function converts the formatted string input parameter into its native value. The decimal
separator used in the formatted string is always a period (.). The return value is a Double value.

Examples

A := StrToFloat('1200.548');
X := FloatToStr(A); // X is '1200.548'

Function and Procedure Reference

Page 383

9.81 StrToInt

Unit: Internal

function StrToInt(const Value: String): Int

The StrToInt function converts the formatted string input parameter into its native value. The return value
is an Integer value.

Examples

X := StrToInt('-102'); // X is -102

Function and Procedure Reference

Page 384

9.82 StrToTime

Unit: WebCore

function StrToTime(const Value: String; UTC: Boolean=False): DateTime

The StrToTime function converts the formatted local or UTC time string input parameter into its native
value. The required format of the string is determined by the TFormatSettings ShortTimeFormat
properties. The return value is a DateTime value.

Examples

A := StrToTime('12:10 PM');
X := TimeToStr(A); // X is '12:10 PM'

Function and Procedure Reference

Page 385

9.83 Tan

Unit: Internal

function Tan(Value: Double): Double

function Tan(Value: Integer): Double

The Tan function returns the tangent of the input parameter, which is an angle specified in radians. To
convert an angle from degrees to radians, use the Radians function. The return value is a Double value.

Examples

X := Tan(0.23290); // X is 0.23720443648121617

Function and Procedure Reference

Page 386

9.84 Time

Unit: Internal

function Time: DateTime

The Time function returns the current time. The return value is a DateTime value.

Examples

X := TimeToStr(Time); // X is '12:10 PM'

Function and Procedure Reference

Page 387

9.85 TimeToStr

Unit: WebCore

function TimeToStr(Value: DateTime; UTC: Boolean=False): String

The TimeToStr function returns a formatted local or UTC time string for the DateTime input parameter.
The format of the string is determined by the TFormatSettings ShortTimeFormat properties. The return
value is a String value.

Examples

A := StrToTime('12:10 PM');
X := TimeToStr(A); // X is '12:10 PM'

Function and Procedure Reference

Page 388

9.86 TimeZoneOffset

Unit: Internal

function TimeZoneOffset(Value: DateTime): Integer

The TimeZoneOffset function returns the time zone offset for the input parameter. The return value is an
Integer value that represents the time zone offset expressed in minutes.

Examples

X := TimeZoneOffset(Now); // X is 240 (4 hours) for US EST during
 // daylight savings time (summer)

Function and Procedure Reference

Page 389

9.87 Trim

Unit: WebCore

function Trim(const Value: String): String

function Trim(const Value: String; TrimChar: Char): String

The Trim function returns the Value input parameter with both leading and trailing "space" characters
removed. The first version of this function trims all leading and trailing characters that are less than or
equal to the space (#32) character from the string. The second version of this function allows the
developer to specify the character that should be trimmed from the Value parameter. The return value is a
String value.

Examples

X := Trim(' Hello World '); // X is 'Hello World'

Function and Procedure Reference

Page 390

9.88 Trunc

Unit: WebCore

function Trunc(Value: Double): Integer

function Trunc(Value: Integer): Integer

The Trunc function returns the closest (towards 0) integer from the value of the input parameter. The
return value is an Integer.

Examples

X := Trunc(-10.4); // X is -10
X := Trunc(15.98); // X is 15

Function and Procedure Reference

Page 391

9.89 UpperCase

Unit: Internal

function UpperCase(const Value: String): String

The UpperCase function returns the Value input parameter with all characters converted to their upper-
case representation. The browser's current locale setting is not used to perform this conversion. The return
value is a String value.

Examples

X := UpperCase('Hello World'); // X is 'HELLO WORLD'

Function and Procedure Reference

Page 392

9.90 WeekDayOf

Unit: Internal

function WeekDayOf(Value: DateTime; UTC: Boolean=False): Integer

The WeekDayOf function returns the week day number of the input parameter in local or UTC time. This
function is ISO 8601-compliant, meaning that the week days of Monday through Sunday are represented
by the values 1 through 7, respectively. The return value is an Integer value.

Examples

X := WeekDayOf(Date); // X is 1 (Monday, assuming a date of 02/13/2012)

Function and Procedure Reference

Page 393

9.91 YearOf

Unit: Internal

function YearOf(Value: DateTime; UTC: Boolean=False): Integer

The YearOf function returns the year number of the input parameter in local or UTC time. The return value
is an Integer value.

Examples

X := YearOf(Date); // X is 2012 (assuming a date of 02/13/2012)

Function and Procedure Reference

Page 394

Chapter 10
Component Reference

10.1 TAbstractList Component

Unit: WebCore

Inherits From TPersistent

This class represents an abstract list and is used as the ancestor class for the TObjectList and TStrings
classes. It provides the functionality for tracking changes to the list as well as dealing with batch updates
to the list.

Properties Methods Events

BeginUpdate OnChanged

EndUpdate

Component Reference

Page 395

TAbstractList.BeginUpdate Method

procedure BeginUpdate

Use this method to begin a batch update to the list. Batch updates are useful in situations where many
changes need to be made to the list, and triggering the OnChanged event on every change would result
in performance issues. This method is reference-counted and every time it is called, an internal counter is
incremented. Every time the EndUpdate method is called, the counter is decremented. Once the counter
reaches zero, the OnChanged event will be triggered.

Component Reference

Page 396

TAbstractList.EndUpdate Method

procedure EndUpdate

Use this method to end a batch update to the list. Batch updates are useful in situations where many
changes need to be made to the list, and triggering the OnChanged event on every change would result
in performance issues. This method is reference-counted and every time it is called, an internal counter is
decremented. Every time the BeginUpdate method is called, the counter is incremented. Once the counter
reaches zero, the OnChanged event will be triggered.

Component Reference

Page 397

TAbstractList.OnChanged Event

property OnChanged: TNotifyEvent

This event is triggered whenever the list is modified in any way. If a batch update is in effect via the
BeginUpdate and EndUpdate methods, then this event is only triggered once the EndUpdate call is made.
If multiple calls to BeginUpdate and EndUpdate are nested, then this event is only triggered once the last
matching EndUpdate call is made.

Component Reference

Page 398

10.2 TAddress Component

Unit: WebComps

Inherits From TObject

The TAddress class encapsulates the address bar (location) functionality in the web browser.

Note
 The component library includes a global instance variable of this class called Address in the
WebComps unit that should be used instead of creating new instances of the class.

Warning
 The methods of this class, as well as assignments to the various properties, can cause the browser
to navigate to a new resource location, and this will cause the current application to be unloaded.
The sole exception are any assignments to the Anchor property. Changes to the Anchor property
will not cause the current application to be unloaded.

Properties Methods Events

Anchor Assign OnAnchorChange

Host Create

HostName Reload

Params Replace

Path

Port

Protocol

URL

Component Reference

Page 399

TAddress.Anchor Property

property Anchor: String

Specifies the anchor (#) portion for the address. If the specified anchor is different than the anchor in the
current address, then the browser will trigger the event handler assigned to the OnAnchorChange event
property of the global Address instance. The assigned event handler can then take specific action based
upon the change.

Component Reference

Page 400

TAddress.Host Property

property Host: String

Specifies the host (host name and port) portion for the address. If the specified host is different than the
host in the current address, then the browser will unload the current application and load the resource
specified by the new composed address.

Component Reference

Page 401

TAddress.HostName Property

property HostName: String

Specifies the host name (www.mysite.com) portion for the address. If the specified host name is different
than the host name in the current address, then the browser will unload the current application and load
the resource specified by the new composed address.

Component Reference

Page 402

TAddress.Params Property

property Params: String

Specifies the query parameters (?param1=100¶m2=200) portion for the address. If the specified
query parameters are different than the query parameters in the current address, then the browser will
unload the current application and load the resource specified by the new composed address.

Component Reference

Page 403

TAddress.Path Property

property Path: String

Specifies the path portion for the address. If the specified path is different than the path in the current
address, then the browser will unload the current application and load the resource specified by the new
composed address.

Component Reference

Page 404

TAddress.Port Property

property Port: String

Specifies the port (:80, :8080, etc.) portion for the address. If the specified port is different than the port in
the current address, then the browser will unload the current application and load the resource specified
by the new composed address.

Component Reference

Page 405

TAddress.Protocol Property

property Protocol: String

Specifies the protocol (normally http: or https:) portion for the address. If the specified protocol is
different than the protocol in the current address, then the browser will unload the current application
and load the resource specified by the new composed address.

Component Reference

Page 406

TAddress.URL Property

property URL: String

Specifies the complete address. If the specified address is different than the current address, then the
browser will unload the current application and load the resource specified by the new address.

Component Reference

Page 407

TAddress.Assign Method

procedure Assign(const AURL: String)

Use this method to load the resource specified by the AURL parameter. Using this method will result in a
new history entry for the resource in the browser's navigation history.

Component Reference

Page 408

TAddress.Create Method

constructor Create

Use this method to create a new instance of the TAddress class.

Component Reference

Page 409

TAddress.Reload Method

procedure Reload(Force: Boolean=False)

Use this method to reload the resource for the current address. By default, the browser will attempt to
reload the resource from its cache. Setting the Force parameter to True will cause the browser to ignore its
cached and reload the resource from its source (web server, file system, etc.).

Component Reference

Page 410

TAddress.Replace Method

procedure Replace(const AURL: String)

Use this method to load the resource specified by the AURL parameter. Using this method will result in
the history entry for the current address being replaced in the browser's navigation history with the
address of the resource.

Component Reference

Page 411

TAddress.OnAnchorChange Event

property OnAnchorChange: TNotifyEvent

This event is triggered whenever the anchor (#) portion of the current address changes. This is useful for
navigating in your application using the browser's address bar and forward/back buttons.

Component Reference

Page 412

10.3 TAlertLabel Component

Unit: WebLabels

Inherits From TAlertLabelControl

The TAlertLabel component represents a label control that can be used to display alerts that, by default,
appear at the top of the client area of their container, with customizations such as the orientation of the
caption and whether or not to show a close button.

Properties Methods Events

AllowClose OnAnimationComplete

AutoHeight OnAnimationsComplete

Background OnClick

Border OnClose

Caption OnCloseQuery

Corners OnDblClick

Cursor OnHide

DataColumn OnMouseDown

DataSet OnMouseEnter

Font OnMouseLeave

Format OnMouseMove

Hint OnMouseUp

Opacity OnMove

Orientation OnShow

Padding OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 413

TAlertLabel.AllowClose Property

property AllowClose: Boolean

Specifies whether the close button should be shown.

Component Reference

Page 414

TAlertLabel.AutoHeight Property

property AutoHeight: Boolean

Specifies whether the height of the alert label should be automatically set based upon the Caption, Font,
and Format properties.

Component Reference

Page 415

TAlertLabel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 416

TAlertLabel.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 417

TAlertLabel.Caption Property

property Caption: TCaption

Specifies the text to be shown in the alert label control. The text can contain line feeds. The default value is
''.

Component Reference

Page 418

TAlertLabel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 419

TAlertLabel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 420

TAlertLabel.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 421

TAlertLabel.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 422

TAlertLabel.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 423

TAlertLabel.Format Property

property Format: TFormat

Specifies the content formatting to use for the control's Caption.

Component Reference

Page 424

TAlertLabel.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 425

TAlertLabel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 426

TAlertLabel.Orientation Property

property Orientation: TAlertOrientation

Specifies the orientation of the alert label caption.

Component Reference

Page 427

TAlertLabel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 428

TAlertLabel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 429

TAlertLabel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 430

TAlertLabel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 431

TAlertLabel.OnClose Event

property OnClose: TNotifyEvent

This event is triggered when the label is closed by the user via the close button, or when the Close
method is called.

Component Reference

Page 432

TAlertLabel.OnCloseQuery Event

property OnCloseQuery: TCloseQueryEvent

This event is triggered when the label is closed by the user via the close button, or when the Close
method is called. Return True to allow the close to continue, or False to prevent the label from closing.

Component Reference

Page 433

TAlertLabel.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 434

TAlertLabel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 435

TAlertLabel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 436

TAlertLabel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 437

TAlertLabel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 438

TAlertLabel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 439

TAlertLabel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 440

TAlertLabel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 441

TAlertLabel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 442

TAlertLabel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 443

TAlertLabel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 444

TAlertLabel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 445

TAlertLabel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 446

TAlertLabel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 447

10.4 TAlertLabelControl Component

Unit: WebLabels

Inherits From TBindableColumnControl

The TAlertLabelControl control is the base class for alert label controls, and contains all of the label
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized alert label controls.

Properties Methods Events

Close

Component Reference

Page 448

TAlertLabelControl.Close Method

procedure Close

Use this method to close the label. When this method is called, the OnCloseQuery event is triggered,
followed by the OnClose event. If the OnCloseQuery event handler returns True, then the label will be
hidden before the OnClose event is triggered.

Component Reference

Page 449

10.5 TAnimatedIcon Component

Unit: WebIcons

Inherits From TIconControl

The TAnimatedIcon component represents an animated icon control. An animated icon control displays a
special type of icon, referenced by the Icon property, that contains a series of animation frames as a single
background image. These animation frames can be oriented horizontally or vertically, and the Direction
property allows you to specify the direction.

Properties Methods Events

Cursor StartAnimating OnAnimationComplete

Direction StopAnimating OnAnimationsComplete

Hint OnClick

Icon OnDblClick

Opacity OnHide

OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 450

TAnimatedIcon.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 451

TAnimatedIcon.Direction Property

property Direction: TAnimatedIconDirection

Specifies the direction in which the animation frames in the icon are oriented.

Component Reference

Page 452

TAnimatedIcon.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 453

TAnimatedIcon.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Component Reference

Page 454

TAnimatedIcon.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 455

TAnimatedIcon.StartAnimating Method

procedure StartAnimating

Use this method to begin animating the icon specified in the Icon property.

Component Reference

Page 456

TAnimatedIcon.StopAnimating Method

procedure StopAnimating

Use this method to stop animating the icon specified in the Icon property.

Component Reference

Page 457

TAnimatedIcon.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 458

TAnimatedIcon.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 459

TAnimatedIcon.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 460

TAnimatedIcon.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 461

TAnimatedIcon.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 462

TAnimatedIcon.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 463

TAnimatedIcon.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 464

TAnimatedIcon.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 465

TAnimatedIcon.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 466

TAnimatedIcon.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 467

TAnimatedIcon.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 468

TAnimatedIcon.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 469

TAnimatedIcon.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 470

TAnimatedIcon.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 471

TAnimatedIcon.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 472

TAnimatedIcon.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 473

TAnimatedIcon.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 474

10.6 TAnimation Component

Unit: WebUI

Inherits From TElementAttribute

The TAnimation class represents the properties of an animation. The animation properties include the
style of the animation and the duration, in milliseconds, of the animation.

Properties Methods Events

Duration Cancel

Running SetToDefault

Style Start

Component Reference

Page 475

TAnimation.Duration Property

property Duration: Integer

Specifies how long, in milliseconds, the animation should take to execute.

Component Reference

Page 476

TAnimation.Running Property

property Running: Boolean

Specifies if the animation is currently running.

Component Reference

Page 477

TAnimation.Style Property

property Style: TAnimationStyle

Specifies the style of the animation, which controls how the animation transforms a given UI
element/control property. Currently, the supported styles include all of the standard easing
transformations (including linear).

Component Reference

Page 478

TAnimation.Cancel Method

procedure Cancel

Use this method to cancel an animation.

Warning
 Do not directly call this method. It is used internally by the interface manager.

Component Reference

Page 479

TAnimation.SetToDefault Method

procedure SetToDefault

Use this method to reset the animation's properties to their default values.

Component Reference

Page 480

TAnimation.Start Method

procedure Start(EndValue: Integer)

Use this method to start an animation.

Warning
 Do not directly call this method. It is used internally by the interface manager.

Component Reference

Page 481

10.7 TAnimations Component

Unit: WebUI

Inherits From TElementAttribute

The TAnimations class represents the properties that can be animationed for a UI element or control.
These properties currently include the Left, Top, Width, Height, Opacity, and Visible properties.

Note
 When an animation is specified for a property, then that animation is applied whenever the
property changes.

Properties Methods Events

Height SetToDefault

Left

Opacity

Top

Visible

Width

Component Reference

Page 482

TAnimations.Height Property

property Height: TAnimation

Specifies the animation properties for the Height property.

Component Reference

Page 483

TAnimations.Left Property

property Left: TAnimation

Specifies the animation properties for the Left property.

Component Reference

Page 484

TAnimations.Opacity Property

property Opacity: TAnimation

Specifies the animation properties for the Opacity property.

Component Reference

Page 485

TAnimations.Top Property

property Top: TAnimation

Specifies the animation properties for the Top property.

Component Reference

Page 486

TAnimations.Visible Property

property Visible: TAnimation

Specifies the animation properties for the Visible property.

Component Reference

Page 487

TAnimations.Width Property

property Width: TAnimation

Specifies the animation properties for the Width property.

Component Reference

Page 488

TAnimations.SetToDefault Method

procedure SetToDefault

Use this method to reset all animation properties to their default values.

Component Reference

Page 489

10.8 TApplication Component

Unit: WebForms

Inherits From TComponent

The TApplication component represents a visual application and provides properties and methods for
dealing with the application surface, forms, and global error handling. An instance of the TApplication
component called Application is automatically created by the component library at application startup,
so further instances of the TApplication component should not be created.

Properties Methods Events

AutoFocus CreateDatabase OnError

IdleTimeout CreateForm OnIdle

InertiaScrollDuration Run

InertiaScrollStyle

InertiaScrollThreshhold

IsAndroid

IsIOS

IsWindowsPhone

LoadProgress

MainForm

Surface

Title

TouchScrollThreshhold

Viewport

Component Reference

Page 490

TApplication.AutoFocus Property

property AutoFocus: Boolean

Specifies whether an application should automatically set focus to focusable controls when showing
forms, as well as restoring focus to the last-focused control when hiding forms. This property is set to
True, by default, with desktop browsers, and to False, by default, with mobile browsers on Android and
iOS.

Component Reference

Page 491

TApplication.IdleTimeout Property

property IdleTimeout: Integer

Specifies the time, in seconds, that the application should wait on user input (keypresses, mouse clicks, or
touches) before triggering the OnIdle event. This is useful for functionality such as making sure that any
authentication information cached for the current user is discarded after a certain period of inactivity, thus
forcing the user to login again when interaction with the application is resumed. The default value is 300
seconds, or 5 minutes.

Note
 Mouse movement alone is not enough to reset the idle timeout. The user must specifically press a
key or mouse button, or touch the surface of the screen.

Component Reference

Page 492

TApplication.InertiaScrollDuration Property

property InertiaScrollDuration: Integer

Specifies the total amount of time, in milliseconds, that inertia scrolling will take place after the user has
lifted their finger from the touch surface. The default value is 1950 milliseconds.

Component Reference

Page 493

TApplication.InertiaScrollStyle Property

property InertiaScrollStyle: TAnimationStyle

Specifies the type of animation to use for performing inertia scrolling after the user has lifted their finger
from the touch surface. The animation type determines how the scroll velocity is adjusted over the entire
InertiaScrollDuration. The default value is asQuadEaseOut.

Component Reference

Page 494

TApplication.InertiaScrollThreshhold Property

property InertiaScrollThreshhold: Integer

Specifies the finger movement velocity, in pixels per second, required on the touch surface before a touch
movement will result in inertia scrolling after the user has lifted their finger from the touch surface. The
default value is 10 pixels per second.

Component Reference

Page 495

TApplication.IsAndroid Property

property IsAndroid: Boolean

Indicates whether the platform running the application is the Android platform.

Component Reference

Page 496

TApplication.IsIOS Property

property IsIOS: Boolean

Indicates whether the platform running the application is the IOS platform.

Component Reference

Page 497

TApplication.IsWindowsPhone Property

property IsWindowsPhone: Boolean

Indicates whether the platform running the application is the Windows Phone platform.

Component Reference

Page 498

TApplication.LoadProgress Property

property LoadProgress: Boolean

Specifies whether load progress should be shown during the initialization and loading of an application.
This is useful for applications that have many auto-create forms that may take some time to create at
application startup.

Component Reference

Page 499

TApplication.MainForm Property

property MainForm: TFormControl

Indicates the main form for the application, which is the first auto-created form for the project. This
property can be modified at design-time via the Forms page of the Project Options dialog. This property
cannot be modified at run-time.

Component Reference

Page 500

TApplication.Surface Property

property Surface: TSurface

Contains a reference to the application's surface, which acts as the parent control to all forms and controls
in a visual application.

Component Reference

Page 501

TApplication.Title Property

property Title: String

Indicates the title of the application, which is the descriptive name that appears in the web browser for the
application's tab or page. This property can be modified at design-time via the Application page of the
Project Options dialog, and can also be modified at run-time to specify a different title.

Component Reference

Page 502

TApplication.TouchScrollThreshhold Property

property TouchScrollThreshhold: Integer

Specifies the amount of finger movement, in pixels, required on the touch surface before a touch
movement is considered a scroll movement. The default value is 4 pixels.

Component Reference

Page 503

TApplication.Viewport Property

property Viewport: TViewport

Contains a reference to the application's viewport, which provides information about the dimensions of
the browser window or container and allows the developer to specify how the applicaton surface should
be scrolled within the bounds of the browser window.

Component Reference

Page 504

TApplication.CreateDatabase Method

procedure CreateDatabase(ADatabaseClass: TDatabaseClass)

This method is called during application startup to create any databases marked for auto-creation, and
should not be called manually. The list of auto-created forms and databases can be modified at design-
time via the Forms and Databases page of the Project Options dialog.

Component Reference

Page 505

TApplication.CreateForm Method

procedure CreateForm(AFormClass: TFormControlClass)

This method is called during application startup to create any forms marked for auto-creation, and should
not be called manually. The list of auto-created forms and databases can be modified at design-time via
the Forms and Databases page of the Project Options dialog.

Component Reference

Page 506

TApplication.Run Method

procedure Run(const AMainFormName: String='')

This method is automatically called by the framework during application startup, and should not be called
manually.

Component Reference

Page 507

TApplication.OnError Event

property OnError: TErrorEvent

This event is triggered when an exception occurs in a visual application and is not handled by any local
try..exception blocks in the code.

Component Reference

Page 508

TApplication.OnIdle Event

property OnIdle: TNotifyEvent

This event is triggered when the application's IdleTimeout property has been exceeded.

Note
 This event is only fired once per period of inactivity, and is not fired again until
mouse/touch/keyboard activity or a modification to the IdleTimeout property causes it to be reset.

Component Reference

Page 509

10.9 TAudio Component

Unit: WebMedia

Inherits From TMediaControl

The TAudio control encapsulates the HTML5 audio support available in web browsers. With the TAudio
control, you can handle most aspects of audio loading and playback.

Note
 This control is a visual control because it can, optionally, display a UI for controlling playback,
volume, etc.

Properties Methods Events

AutoPlay OnAbort

CurrentTime OnAnimationComplete

Cursor OnAnimationsComplete

DataColumn OnCanPlay

DataSet OnCanPlayThrough

DefaultPlaybackRate OnClick

Duration OnDblClick

Ended OnDurationChange

Hint OnEmptied

Loop OnEnded

Muted OnError

NetworkState OnHide

Opacity OnLoadedData

Paused OnLoadedMetadata

PlaybackRate OnLoadStart

Preload OnMouseDown

ReadyState OnMouseEnter

Seeking OnMouseLeave

ShowControls OnMouseMove

SourceURL OnMouseUp

Volume OnMove

Component Reference

Page 510

OnPause

OnPlay

OnPlaying

OnProgress

OnRateChange

OnSeeked

OnSeeking

OnShow

OnSize

OnStalled

OnSuspend

OnTimeUpdate

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

OnVolumeChange

OnWaiting

Component Reference

Page 511

TAudio.AutoPlay Property

property AutoPlay: Boolean

Specifies that the audio should begin playing as soon as enough data has been loaded to allow playback.
The default value is False.

Component Reference

Page 512

TAudio.CurrentTime Property

property CurrentTime: Double

Indicates the current playback time, in seconds. Setting this property to a new value will cause the audio
to skip to the specified time.

Component Reference

Page 513

TAudio.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 514

TAudio.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 515

TAudio.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 516

TAudio.DefaultPlaybackRate Property

property DefaultPlaybackRate: Double

Specifies the default playback rate, with 1 being normal playback, less than 1 being slower playback, and
greater than 1 being faster playback. The default value is 1.

Note
 The volume will normally be automatically muted when playing audio faster or slower than the
normal playback rate.

Component Reference

Page 517

TAudio.Duration Property

property Duration: Double

Indicates the length of the audio in seconds. Add an event handler for the OnDurationChange event to
detect when the duration has been determined for the current audio being loaded/played. If the duration
has not been determined, this property will return 0.

Component Reference

Page 518

TAudio.Ended Property

property Ended: Boolean

Indicates that the end of the audio has been reached.

Component Reference

Page 519

TAudio.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 520

TAudio.Loop Property

property Loop: Boolean

Specifies that the audio playback should automatically restart at the beginning once the end has been
reached. The default value is False.

Component Reference

Page 521

TAudio.Muted Property

property Muted: Boolean

Specifies that the playback volume should be muted. The default valuse is False.

Component Reference

Page 522

TAudio.NetworkState Property

property NetworkState: TMediaNetworkState

Indicates the network state of the audio loading/playback.

Component Reference

Page 523

TAudio.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 524

TAudio.Paused Property

property Paused: Boolean

Indicates that audio playback is paused, either by the user pausing the audio via the user interface when
the ShowControls property is True, or by the application calling the Pause method. The default value is
False.

Component Reference

Page 525

TAudio.PlaybackRate Property

property PlaybackRate: Double

Specifies the playback rate, with 1 being normal playback, less than 1 being slower playback, and greater
than 1 being faster playback. The default value is 1.

Note
 The volume will normally be automatically muted when playing audio faster or slower than the
normal playback rate.

Component Reference

Page 526

TAudio.Preload Property

property Preload: TMediaPreload

Specifies how much of the current audio data should be loaded before playback begins.

Component Reference

Page 527

TAudio.ReadyState Property

property ReadyState: TMediaReadyState

Indicates whether the audio is ready for playback, and if so, a general description of what audio data has
been loaded.

Component Reference

Page 528

TAudio.Seeking Property

property Seeking: Boolean

Indicates that audio is switching to a new playback location, either by the user changing the playback
location in the audio via the user interface when the ShowControls property is True, or by the application
setting the CurrentTime property.

Component Reference

Page 529

TAudio.ShowControls Property

property ShowControls: Boolean

Specifies whether the control should show the native user interface for the audio being played.

Component Reference

Page 530

TAudio.SourceURL Property

property SourceURL: String

Specifies the URL of the audio to be loaded into the control. Whenever this property is changed, the
existing audio is cleared and the new audio will start downloading from the web server. Please review the
events available for this control in order to get more information on detecting and handling the
loading/playback of the audio.

Component Reference

Page 531

TAudio.Volume Property

property Volume: Integer

Specifies the playback volume of the audio. The volume can be set between 0 and 100.

Component Reference

Page 532

TAudio.OnAbort Event

property OnAbort: TNotifyEvent

This event is triggered whenever the media control has stopped loading data for the current media. This is
normally caused by the user requesting such an action via the user interface when the ShowControls
property is True.

Component Reference

Page 533

TAudio.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 534

TAudio.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 535

TAudio.OnCanPlay Event

property OnCanPlay: TNotifyEvent

This event is triggered whenever the media control has loaded enough data to begin playback. However,
additional data loading may be required as playback continues.

Component Reference

Page 536

TAudio.OnCanPlayThrough Event

property OnCanPlayThrough: TNotifyEvent

This event is triggered whenever the media control has loaded enough data to begin playback and
(probably) play the media until the end without needing to load any additional data.

Component Reference

Page 537

TAudio.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 538

TAudio.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 539

TAudio.OnDurationChange Event

property OnDurationChange: TNotifyEvent

This event is triggered whenever the duration of the media changes, which normally occurs when loading
new media into the control by modifying the SourceURL property.

Component Reference

Page 540

TAudio.OnEmptied Event

property OnEmptied: TNotifyEvent

This event is triggered whenever an error or abort has caused the NetworkState property to revert to the
mnsEmpty state.

Component Reference

Page 541

TAudio.OnEnded Event

property OnEnded: TNotifyEvent

This event is triggered whenever playback has stopped because the end of the media has been reached.

Component Reference

Page 542

TAudio.OnError Event

property OnError: TNotifyEvent

This event is triggered whenever an error has prevented the media from being loaded properly.

Component Reference

Page 543

TAudio.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 544

TAudio.OnLoadedData Event

property OnLoadedData: TNotifyEvent

This event is triggered whenever the media control has loaded enough data for the current playback
location.

Component Reference

Page 545

TAudio.OnLoadedMetadata Event

property OnLoadedMetadata: TNotifyEvent

This event is triggered whenever the media control has loaded the metadata, including the duration and
dimensions, for the current media.

Component Reference

Page 546

TAudio.OnLoadStart Event

property OnLoadStart: TNotifyEvent

This event is triggered whenever the media control starts loading data for the current media.

Component Reference

Page 547

TAudio.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 548

TAudio.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 549

TAudio.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 550

TAudio.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 551

TAudio.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 552

TAudio.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 553

TAudio.OnPause Event

property OnPause: TNotifyEvent

This event is triggered whenever the media playback is paused.

Component Reference

Page 554

TAudio.OnPlay Event

property OnPlay: TNotifyEvent

This event is triggered whenever the media playback is started/resumed.

Component Reference

Page 555

TAudio.OnPlaying Event

property OnPlaying: TNotifyEvent

This event is triggered whenever media playback has actually started.

Note
 This event is slightly different from the OnPlay event, which only indicates that the user or
application requested playback to start/resume. This event may be triggered multiple times during
playback, especially if playback needs to stop in order to allow more media data to be loaded,
which can be the case with slower network connections.

Component Reference

Page 556

TAudio.OnProgress Event

property OnProgress: TNotifyEvent

This event is triggered whenever the current media is being loaded.

Note
 This event is typically fired several times per second in most web browsers, so be very careful
about how time-consuming any event handlers are for this event.

Component Reference

Page 557

TAudio.OnRateChange Event

property OnRateChange: TNotifyEvent

This event is triggered whenever the playback rate of the media control has changed for the current
media. This is caused by the user requesting such an action via the user interface when the ShowControls
property is True, or when the application modifies the PlaybackRate property.

Component Reference

Page 558

TAudio.OnSeeked Event

property OnSeeked: TNotifyEvent

This event is triggered whenever the Seeking property reverts to False.

Component Reference

Page 559

TAudio.OnSeeking Event

property OnSeeking: TNotifyEvent

This event is triggered whenever the playback location of the media control has changed for the current
media. This is caused by the user requesting such an action via the user interface when the ShowControls
property is True, or when the application modifies the CurrentTime property.

Component Reference

Page 560

TAudio.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 561

TAudio.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 562

TAudio.OnStalled Event

property OnStalled: TNotifyEvent

This event is triggered whenever the media control is trying to load data for the current media, but no
data is arriving over the network.

Component Reference

Page 563

TAudio.OnSuspend Event

property OnSuspend: TNotifyEvent

This event is triggered whenever the media control has loaded enough data to enable playback, and has
stopped loading more data.

Component Reference

Page 564

TAudio.OnTimeUpdate Event

property OnTimeUpdate: TNotifyEvent

This event is triggered whenever the CurrentTime property changes.

Note
 This event can be fired as many as 60 times per second in some web browsers, so be very careful
about how time-consuming any event handlers are for this event.

Component Reference

Page 565

TAudio.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 566

TAudio.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 567

TAudio.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 568

TAudio.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 569

TAudio.OnVolumeChange Event

property OnVolumeChange: TNotifyEvent

This event is triggered whenever the audio volume of the media control has changed for the current
media. This is caused by the user requesting such an action via the user interface when the ShowControls
property is True, or when the application modifies the Volume property.

Component Reference

Page 570

TAudio.OnWaiting Event

property OnWaiting: TNotifyEvent

This event is triggered whenever the media control cannot start/resume playback because more data
needs to be loaded for the current media.

Component Reference

Page 571

10.10 TAudioElement Component

Unit: WebUI

Inherits From TMediaElement

The TAudioElement class is the element class for audio UI elements, and contains all of the audio playback
functionality in the form of public methods and properties/events that control classes can use to create
audio controls.

Note
 This element does not provide support for audio playback at design-time, and the applicable
playback methods and properties are all stubs.

Properties Methods Events

Component Reference

Page 572

10.11 TAutoSize Component

Unit: WebUI

Inherits From TElementAttribute

The TAutoSize class represents the auto-sizing attributes to use for the content of a UI element or control.
The height, width, or both can be set as auto-sized. The content of a UI element or control that is used to
determine the height and/or width can be text or HTML content, as well as the space consumed by child
UI elements or controls.

Note
 Not all controls support auto-sizing.

Properties Methods Events

Height SetToDefault

Width

Component Reference

Page 573

TAutoSize.Height Property

property Height: Boolean

Specifies that the height of the UI element or control should be automatically set based upon the height
of its content and/or the height of any child UI elements or controls.

Component Reference

Page 574

TAutoSize.Width Property

property Width: Boolean

Specifies that the width of the UI element or control should be automatically set based upon the width of
its content and/or the width of any child UI elements or controls.

Component Reference

Page 575

TAutoSize.SetToDefault Method

procedure SetToDefault

Use this method to reset all auto-size properties to their default values.

Component Reference

Page 576

10.12 TBackground Component

Unit: WebUI

Inherits From TElementAttribute

The TBackground class represents the background of a UI element or control. Backgrounds can be solid
colors (including transparent) or gradients, and can have tiled and non-tiled background images.

Properties Methods Events

Clip SetToDefault

Fill

Image

Origin

Component Reference

Page 577

TBackground.Clip Property

property Clip: TBackgroundOrientationType

Specifies how the background should be clipped within the UI element or control.

Component Reference

Page 578

TBackground.Fill Property

property Fill: TFill

Specifies the background fill.

Component Reference

Page 579

TBackground.Image Property

property Image: TBackgroundImage

Specifies the background image.

Component Reference

Page 580

TBackground.Origin Property

property Origin: TBackgroundOrientationType

Specifies the origin of the background within the UI element or control.

Component Reference

Page 581

TBackground.SetToDefault Method

procedure SetToDefault

Use this method to reset the background's properties to their default values.

Component Reference

Page 582

10.13 TBackgroundImage Component

Unit: WebUI

Inherits From TElementAttribute

The TBackgroundImage class represents the background image of a UI element or control. The
background image is specified using the Name property and/or the Data (for base64-encoded, data-URI
inline images).

Note
 Any background images specified at design-time are automatically embedded in form and control
interface files, are emitted as part of the application during compilation, and are automatically
loaded during application initialization.

Properties Methods Events

Data BeginAnimation

Height CancelAnimation

Left SetToDefault

Name

PositionType

RepeatStyle

SizeType

Top

Width

Component Reference

Page 583

TBackgroundImage.Data Property

property Data: String

Specifies the image as a base64-encoded, data-URI inline image. The image data should not include any
data-URI prefixes. The interface manager automatically adds the proper prefixes when applying the
background to the applicable UI element or control.

Note
 If the Name property and the Data property are both assigned non-blank values, then the Name
property is effectively ignored. Also, if the Name property is assigned a new value, the Data
property will automatically be cleared.

Component Reference

Page 584

TBackgroundImage.Height Property

property Height: Integer

Specifies the height of the background image. If the actual image height of the background image is
different than this value, then the background image height is stretched/contracted accordingly.

Note
 This property is only valid when the SizeType is stSpecified.

Component Reference

Page 585

TBackgroundImage.Left Property

property Left: Integer

Specifies the left position of the background image.

Note
 This property is only valid when the PositionType is ptSpecified.

Component Reference

Page 586

TBackgroundImage.Name Property

property Name: String

Specifies the local image name, at design-time, or the URL of an image resource, at run-time.

Note
 If the Name property and the Data property are both assigned non-blank values, then the Name
property is effectively ignored. Also, if the Name property is assigned a new value, the Data
property will automatically be cleared.

Component Reference

Page 587

TBackgroundImage.PositionType Property

property PositionType: TBackgroundImagePositionType

Specifies how the background image should be positioned within the UI element or control.

Note
 The bounding rectangle used for determining the positioning is based upon the TBackground
Origin and Clip properties.

Component Reference

Page 588

TBackgroundImage.RepeatStyle Property

property RepeatStyle: TBackgroundImageRepeatStyle

Specifies how the background image should be tiled within the UI element or control.

Note
 The bounding rectangle used for determining the positioning is based upon the TBackground
Origin and Clip properties.

Component Reference

Page 589

TBackgroundImage.SizeType Property

property SizeType: TBackgroundImageSizeType

Specifies how the background image should be sized within the UI element or control.

Note
 The bounding rectangle used for determining the positioning is based upon the TBackground
Origin and Clip properties.

Component Reference

Page 590

TBackgroundImage.Top Property

property Top: Integer

Specifies the top position of the background image.

Note
 This property is only valid when the PositionType is ptSpecified.

Component Reference

Page 591

TBackgroundImage.Width Property

property Width: Integer

Specifies the width of the background image. If the actual image width of the background image is
different than this value, then the background image width is stretched/contracted accordingly.

Note
 This property is only valid when the SizeType is stSpecified.

Component Reference

Page 592

TBackgroundImage.BeginAnimation Method

procedure BeginAnimation(ADirection:
 TBackgroundImageAnimateDirection)

Use this method to begin animating the collection of animation frames in a background image.

Component Reference

Page 593

TBackgroundImage.CancelAnimation Method

procedure CancelAnimation

Use this method to stop animating the collection of animation frames in a background image.

Component Reference

Page 594

TBackgroundImage.SetToDefault Method

procedure SetToDefault

Use this method to reset the background image's properties to their default values.

Component Reference

Page 595

10.14 TBalloonLabel Component

Unit: WebLabels

Inherits From TBalloonLabelControl

The TBalloonLabel component represents a label control that looks like a word balloon, with
customizations such as the orientation of the balloon tail and the ability to specify an icon along with the
text.

Properties Methods Events

AutoHideTime OnAnimationComplete

Background OnAnimationsComplete

Caption OnClick

Corners OnDblClick

Cursor OnHide

DataColumn OnMouseDown

DataSet OnMouseEnter

Font OnMouseLeave

Format OnMouseMove

Hint OnMouseUp

Icon OnMove

Opacity OnShow

Orientation OnSize

Padding OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 596

TBalloonLabel.AutoHideTime Property

property AutoHideTime: Integer

Specifies the number of milliseconds that the balloon label control should be shown before automatically
hiding itself. The default value is 0 milliseconds, which prevents the control from automatically hiding
itself.

Component Reference

Page 597

TBalloonLabel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 598

TBalloonLabel.Caption Property

property Caption: TCaption

Specifies the text to be shown in the balloon label control. The text can contain line feeds. The default
value is ''.

Component Reference

Page 599

TBalloonLabel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 600

TBalloonLabel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 601

TBalloonLabel.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 602

TBalloonLabel.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 603

TBalloonLabel.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 604

TBalloonLabel.Format Property

property Format: TFormat

Specifies the content formatting to use for the control's Caption.

Component Reference

Page 605

TBalloonLabel.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 606

TBalloonLabel.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Component Reference

Page 607

TBalloonLabel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 608

TBalloonLabel.Orientation Property

property Orientation: TBalloonOrientation

Specifies the orientation of the tail for the balloon label.

Component Reference

Page 609

TBalloonLabel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 610

TBalloonLabel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 611

TBalloonLabel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 612

TBalloonLabel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 613

TBalloonLabel.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 614

TBalloonLabel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 615

TBalloonLabel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 616

TBalloonLabel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 617

TBalloonLabel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 618

TBalloonLabel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 619

TBalloonLabel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 620

TBalloonLabel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 621

TBalloonLabel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 622

TBalloonLabel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 623

TBalloonLabel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 624

TBalloonLabel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 625

TBalloonLabel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 626

TBalloonLabel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 627

10.15 TBalloonLabelControl Component

Unit: WebLabels

Inherits From TBindableColumnControl

The TBalloonLabelControl control is the base class for balloon label controls, and contains all of the label
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized balloon label controls.

Properties Methods Events

Component Reference

Page 628

10.16 TBasicPanel Component

Unit: WebCtnrs

Inherits From TBasicPanelControl

The TBasicPanel component represents a basic panel control that cannot be scrolled.

Properties Methods Events

ActivateOnClick OnAnimationComplete

AutoSize OnAnimationsComplete

Background OnClick

Border OnDblClick

Corners OnHide

Cursor OnKeyDown

Hint OnKeyPress

InsetShadow OnKeyUp

Opacity OnMouseDown

OutsetShadow OnMouseEnter

Padding OnMouseLeave

TabOrder OnMouseMove

TabStop OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 629

TBasicPanel.ActivateOnClick Property

property ActivateOnClick: Boolean

Specifies whether the control should automatically be brought to the front when it, or any child controls,
are clicked.

Component Reference

Page 630

TBasicPanel.AutoSize Property

property AutoSize: TAutoSize

Specifies how (if at all) the control should automatically be sized based upon the child controls placed in
the panel.

Component Reference

Page 631

TBasicPanel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 632

TBasicPanel.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 633

TBasicPanel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 634

TBasicPanel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 635

TBasicPanel.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 636

TBasicPanel.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 637

TBasicPanel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 638

TBasicPanel.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 639

TBasicPanel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 640

TBasicPanel.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 641

TBasicPanel.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 642

TBasicPanel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 643

TBasicPanel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 644

TBasicPanel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 645

TBasicPanel.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 646

TBasicPanel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 647

TBasicPanel.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 648

TBasicPanel.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 649

TBasicPanel.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 650

TBasicPanel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 651

TBasicPanel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 652

TBasicPanel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 653

TBasicPanel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 654

TBasicPanel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 655

TBasicPanel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 656

TBasicPanel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 657

TBasicPanel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 658

TBasicPanel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 659

TBasicPanel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 660

TBasicPanel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 661

TBasicPanel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 662

10.17 TBasicPanelControl Component

Unit: WebCtnrs

Inherits From TControl

The TBasicPanelControl control is the base class for basic panel controls, and contains all of the panel
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized panel controls.

Properties Methods Events

Component Reference

Page 663

10.18 TBindableColumnControl Component

Unit: WebCtrls

Inherits From TBindableControl

The TBindableColumnControl control is the base class for controls that bind to dataset columns, and
contains all of the dataset column binding functionality in the form of public methods and protected
properties/events that descendant classes can use to create customized controls that bind to dataset
columns.

Properties Methods Events

Component Reference

Page 664

10.19 TBindableControl Component

Unit: WebCtrls

Inherits From TControl

The TBindableControl control is the base class for controls that bind to datasets. It contains all of the
dataset binding functionality in the form of public methods and protected properties/events that
descendant classes can use to create customized controls that bind to datasets.

Properties Methods Events

Component Reference

Page 665

10.20 TBlobValue Component

Unit: WebCore

Inherits From TStringValue

This class represents the value for a BLOB (Binary Large Object) column in a row in a TDataSet component.

Note
 BLOB columns use string values to represent URLs from where the actual binary resources can be
retrieved.

Properties Methods Events

Component Reference

Page 666

10.21 TBodyElement Component

Unit: WebUI

Inherits From TElement

The TBodyElement class is the element class used as the root element by the interface manager at run-
time. It wraps the browser document's body element, and a visual application's Surface uses this element
as its base element.

Properties Methods Events

Component Reference

Page 667

10.22 TBooleanValue Component

Unit: WebCore

Inherits From TDataValue

This class represents the value for a Boolean column in a row in a TDataSet component.

Properties Methods Events

Component Reference

Page 668

10.23 TBorder Component

Unit: WebUI

Inherits From TElementAttribute

The TBorder class represents the border for a UI element or control.

Properties Methods Events

Bottom SetToDefault

Left

Right

Top

Component Reference

Page 669

TBorder.Bottom Property

property Bottom: TBorderSide

Specifies the bottom border side.

Component Reference

Page 670

TBorder.Left Property

property Left: TBorderSide

Specifies the left border side.

Component Reference

Page 671

TBorder.Right Property

property Right: TBorderSide

Specifies the right border side.

Component Reference

Page 672

TBorder.Top Property

property Top: TBorderSide

Specifies the top border side.

Component Reference

Page 673

TBorder.SetToDefault Method

procedure SetToDefault

Use this method to reset the border's properties to their default values.

Component Reference

Page 674

10.24 TBorderSide Component

Unit: WebUI

Inherits From TElementAttribute

The TBorderSide class represents one side of the TBorder for a UI element or control.

Properties Methods Events

Color SetToDefault

Offset

Style

Visible

Width

Component Reference

Page 675

TBorderSide.Color Property

property Color: TColor

Specifies the color of the border side.

Component Reference

Page 676

TBorderSide.Offset Property

property Offset: Integer

Indicates the actual offset, in pixels, of the border. At run-time in a browser, a UI element or control's
border side Width property is only taken into account when the border side is visible.

Component Reference

Page 677

TBorderSide.Style Property

property Style: TBorderStyle

Specifies the style of the border side.

Component Reference

Page 678

TBorderSide.Visible Property

property Visible: Boolean

Specifies whether the border side is visible.

Component Reference

Page 679

TBorderSide.Width Property

property Width: Integer

Specifies the width, in pixels, of the border side.

Component Reference

Page 680

TBorderSide.SetToDefault Method

procedure SetToDefault

Use this method to reset the border side's properties to their default values.

Component Reference

Page 681

10.25 TBoundingAttribute Component

Unit: WebUI

Inherits From TElementAttribute

The TBoundingAttribute class represents a series of left, top, right, and bottom bounding values, in pixels,
for a UI element or control. It is the base class for the TMargins and TPadding classes.

Properties Methods Events

Bottom SetToDefault

Left

Right

Top

Component Reference

Page 682

TBoundingAttribute.Bottom Property

property Bottom: Integer

Specifies the bottom bounding value.

Component Reference

Page 683

TBoundingAttribute.Left Property

property Left: Integer

Specifies the left bounding value.

Component Reference

Page 684

TBoundingAttribute.Right Property

property Right: Integer

Specifies the right bounding value.

Component Reference

Page 685

TBoundingAttribute.Top Property

property Top: Integer

Specifies the top bounding value.

Component Reference

Page 686

TBoundingAttribute.SetToDefault Method

procedure SetToDefault

Use this method to reset the bounding attribute properties to their default values.

Component Reference

Page 687

10.26 TBrowser Component

Unit: WebBrwsr

Inherits From TWebControl

The TBrowser component represents an HTML document container control, and can be used as the output
destination for HTML Forms via the THTMLForm Output property.

Properties Methods Events

Background Print OnAnimationComplete

Border OnAnimationsComplete

Corners OnHide

Cursor OnLoad

DataColumn OnMove

DataSet OnShow

Document OnSize

DocumentText OnUnload

Hint

InsetShadow

Loaded

Opacity

OutsetShadow

Padding

Scrolling

URL

Component Reference

Page 688

TBrowser.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 689

TBrowser.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 690

TBrowser.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 691

TBrowser.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 692

TBrowser.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 693

TBrowser.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 694

TBrowser.Document Property

property Document: THTMLDocument

Returns the DOM (Document Object Model) document instance of the currently-loaded HTML document.
If the URL property has been specified, then this property will return the document instance once the
OnLoad event has been triggered and the Loaded property is True.

Note
 Accessing the DOM document instance allows you to manipulate the children of the DOM
document instance in code instead of having to use HTML strings, which is the case when using the
DocumentText property. However, this access is subject to same-origin security constraints, and will
be denied if the contents of the TBrowser instance were loaded from a different origin.

Component Reference

Page 695

TBrowser.DocumentText Property

property DocumentText: String

Returns the currently-loaded HTML document in the control as a string. If the URL property has been
specified, then this property will return the document contents once the OnLoad event has been triggered
and the Loaded property is True.

Note
 You can also assign a valid HTML string to this property, in which case the URL property is
automatically cleared.

Component Reference

Page 696

TBrowser.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 697

TBrowser.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 698

TBrowser.Loaded Property

property Loaded: Boolean

Indicates whether the HTML document specified by the URL property has been loaded.

An event handler can be attached to the OnLoad event to execute code when the document is loaded.

Component Reference

Page 699

TBrowser.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 700

TBrowser.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 701

TBrowser.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 702

TBrowser.Scrolling Property

property Scrolling: Boolean

Specifies whether scrolling should be enabled for the control.

Note
 This property is required because certain browsers require a special way of specifying whether
scrollbars should be shown for embedded browser controls.

Component Reference

Page 703

TBrowser.URL Property

property URL: String

Specifies the URL for the HTML document. Whenever the URL property changes, the OnUnload event is
triggered immediately. The OnLoad event is triggered once the document has been loaded.

Component Reference

Page 704

TBrowser.Print Method

procedure Print

Use this method to print the currently-loaded HTML document in the control. If no HTML document is
loaded, then this method does nothing.

Component Reference

Page 705

TBrowser.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 706

TBrowser.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 707

TBrowser.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 708

TBrowser.OnLoad Event

property OnLoad: TNotifyEvent

This event is triggered when the HTML document specified by the URL property has been completely
loaded.

Component Reference

Page 709

TBrowser.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 710

TBrowser.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 711

TBrowser.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 712

TBrowser.OnUnload Event

property OnUnload: TNotifyEvent

This event is triggered when the currently-loaded HTML document specified by the URL or DocumentText
property has been unloaded.

Component Reference

Page 713

10.27 TButton Component

Unit: WebBtns

Inherits From TButtonControl

The TButton component represents a button control. A button control allows the user to initiate a specific
action by using a mouse click or by pushing the spacebar or enter key.

Properties Methods Events

AutoWidth OnAnimationComplete

Caption OnAnimationsComplete

Corners OnClick

Cursor OnEnter

Enabled OnExit

Font OnHide

Hint OnKeyDown

Icon OnKeyPress

TabOrder OnKeyUp

TabStop OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 714

TButton.AutoWidth Property

property AutoWidth: Boolean

Specifies whether the width of the button should be automatically set based upon the Caption, Icon, and
Font properties.

Component Reference

Page 715

TButton.Caption Property

property Caption: String

Specifies the textual caption to display on the button control. The default value is ''.

Component Reference

Page 716

TButton.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 717

TButton.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 718

TButton.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 719

TButton.Font Property

property Font: TFont

Specifies the font to use for the caption on the button control.

Component Reference

Page 720

TButton.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 721

TButton.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Component Reference

Page 722

TButton.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 723

TButton.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 724

TButton.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 725

TButton.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 726

TButton.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 727

TButton.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 728

TButton.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 729

TButton.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 730

TButton.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 731

TButton.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 732

TButton.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 733

TButton.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 734

TButton.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 735

TButton.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 736

TButton.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 737

TButton.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 738

TButton.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 739

TButton.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 740

TButton.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 741

TButton.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 742

TButton.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 743

TButton.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 744

TButton.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 745

10.28 TButtonComboBox Component

Unit: WebEdits

Inherits From TButtonComboControl

The TButtonComboBox component represents a button combo box control. A button combo box is a
combo control that allows the user to select an input value from a drop-down list of values by using a
mouse click or by pushing the spacebar or enter key.

Note
 This type of control does not allow for direct editing of the input value, and is ideal for touch
environments where you may not want a soft keyboard to appear when such a control gains focus.

Component Reference

Page 746

Properties Methods Events

Alignment OnAnimationComplete

AutoDropDown OnAnimationsComplete

AutoItemHeight OnChange

Cursor OnClick

DataColumn OnDropDownHide

DataSet OnDropDownShow

Direction OnEnter

DropDownItemCount OnExit

DropDownPosition OnHide

Enabled OnKeyDown

Font OnKeyPress

Hint OnKeyUp

ItemHeight OnMouseDown

ItemIndex OnMouseEnter

Items OnMouseLeave

KeyPressInterval OnMouseMove

ReadOnly OnMouseUp

Sorted OnMove

TabOrder OnShow

TabStop OnSize

Text OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 747

TButtonComboBox.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the input value for the control.

Component Reference

Page 748

TButtonComboBox.AutoDropDown Property

property AutoDropDown: Boolean

Specifies that the drop-down list of Items should automatically be shown when the user starts typing. The
default value is False.

Component Reference

Page 749

TButtonComboBox.AutoItemHeight Property

property AutoItemHeight: Boolean

Specifies that the displayed height of the drop-down items will automatically be set based upon the Font
property settings. The default value is True.

Component Reference

Page 750

TButtonComboBox.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 751

TButtonComboBox.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 752

TButtonComboBox.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 753

TButtonComboBox.Direction Property

property Direction: TContentDirection

Specifies the direction in which the caption is displayed.

Component Reference

Page 754

TButtonComboBox.DropDownItemCount Property

property DropDownItemCount: Integer

Specifies the number of visible items to display in the drop-down list of Items.

Component Reference

Page 755

TButtonComboBox.DropDownPosition Property

property DropDownPosition: TDropDownPosition

Specifies where the drop-down list will be positioned.

Component Reference

Page 756

TButtonComboBox.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 757

TButtonComboBox.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 758

TButtonComboBox.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 759

TButtonComboBox.ItemHeight Property

property ItemHeight: Integer

Specifies the height, in pixels, of the items displayed in the drop-down list.

Component Reference

Page 760

TButtonComboBox.ItemIndex Property

property ItemIndex: Integer

Specifies the index of the selected item in the drop-down list of Items, or -1 if there is no selected item.

Component Reference

Page 761

TButtonComboBox.Items Property

property Items: TStrings

Specifies the items to use for the drop-down list.

Component Reference

Page 762

TButtonComboBox.KeyPressInterval Property

property KeyPressInterval: Integer

Specifies the interval, in milliseconds, that is used by the control to combine user keystrokes into a search
value that is then used for performing a near search on the Items property. Effectively, this means that the
user has KeyPressInterval milliseconds in which to hit a key in order for the keystroke to be included as
part of a near search. The default value is 300 milliseconds.

For example, if the user hits the 'S', 'M', and 'I' keys within the KeyPressInterval property value, but hits the
'T' key outside of the KeyPressInterval property, then the control will perform a near search using the
value 'SMI', followed by a near search using the value 'T'.

Component Reference

Page 763

TButtonComboBox.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 764

TButtonComboBox.Sorted Property

property Sorted: Boolean

Specifies whether the drop-down items will automatically be sorted. The default value is False.

Component Reference

Page 765

TButtonComboBox.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 766

TButtonComboBox.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 767

TButtonComboBox.Text Property

property Text: String

Specifies the control's input value as a string.

Component Reference

Page 768

TButtonComboBox.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 769

TButtonComboBox.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 770

TButtonComboBox.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 771

TButtonComboBox.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 772

TButtonComboBox.OnDropDownHide Event

property OnDropDownHide: TNotifyEvent

This event is triggered when the associated drop-down control is hidden.

Component Reference

Page 773

TButtonComboBox.OnDropDownShow Event

property OnDropDownShow: TNotifyEvent

This event is triggered when the associated drop-down control is shown.

Component Reference

Page 774

TButtonComboBox.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 775

TButtonComboBox.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 776

TButtonComboBox.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 777

TButtonComboBox.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 778

TButtonComboBox.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 779

TButtonComboBox.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 780

TButtonComboBox.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 781

TButtonComboBox.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 782

TButtonComboBox.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 783

TButtonComboBox.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 784

TButtonComboBox.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 785

TButtonComboBox.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 786

TButtonComboBox.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 787

TButtonComboBox.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 788

TButtonComboBox.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 789

TButtonComboBox.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 790

TButtonComboBox.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 791

TButtonComboBox.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 792

10.29 TButtonComboControl Component

Unit: WebEdits

Inherits From TDropDownButtonControl

The TButtonComboControl control is the base class for button combo controls, and contains all of the
button combo functionality in the form of public methods and protected properties/events that
descendant classes can use to create customized button combo controls.

Properties Methods Events

Component Reference

Page 793

10.30 TButtonControl Component

Unit: WebBtns

Inherits From TControl

The TButtonControl control is the base class for button controls, and contains all of the core button
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized button controls.

Properties Methods Events

Component Reference

Page 794

10.31 TButtonInputControl Component

Unit: WebEdits

Inherits From TInputControl

The TButtonInputControl control is the base class for button-style input controls, and contains all of the
core input functionality in the form of public methods and protected properties/events that descendant
classes can use to create customized button-style input controls.

Properties Methods Events

Component Reference

Page 795

10.32 TCalendar Component

Unit: WebCals

Inherits From TCalendarControl

The TCalendar component represents a calendar control for selecting a date. The user can change the
active period by pressing the page up/page down keys, and can change the calendar View property by
pressing the numeric keypad plus and minus keys.

Properties Methods Events

Background OnAnimationComplete

Border OnAnimationsComplete

Corners OnChange

Cursor OnClick

DataColumn OnDblClick

DataSet OnHide

DefaultView OnKeyDown

Enabled OnKeyPress

Font OnKeyUp

Hint OnMouseDown

LocalizeText OnMouseEnter

ReadOnly OnMouseLeave

TabOrder OnMouseMove

TabStop OnMouseUp

Text OnMouseWheel

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 796

TCalendar.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 797

TCalendar.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 798

TCalendar.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 799

TCalendar.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 800

TCalendar.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 801

TCalendar.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 802

TCalendar.DefaultView Property

property DefaultView: TCalendarView

Specifies the default view for the calendar control. The default view determines both the initial view shown
in the calendar after it is created, as well as the minimum view that the user is permitted to navigate to.
The default value is cvMonth.

Component Reference

Page 803

TCalendar.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 804

TCalendar.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 805

TCalendar.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 806

TCalendar.LocalizeText Property

property LocalizeText: Boolean

Specifies whether date assignments (as strings) to the control's Text property are treated as local dates or
UTC dates. The default value is True.

Note
 This property only affects the value of the SelectedDate property and does not affect how date
values are saved to and from a dataset column via the DataSet and DataColumn properties.

Component Reference

Page 807

TCalendar.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 808

TCalendar.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 809

TCalendar.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 810

TCalendar.Text Property

property Text: String

Specifies the control's input value as a string.

Component Reference

Page 811

TCalendar.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 812

TCalendar.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 813

TCalendar.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 814

TCalendar.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 815

TCalendar.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 816

TCalendar.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 817

TCalendar.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 818

TCalendar.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 819

TCalendar.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 820

TCalendar.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 821

TCalendar.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 822

TCalendar.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 823

TCalendar.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 824

TCalendar.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 825

TCalendar.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 826

TCalendar.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 827

TCalendar.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 828

TCalendar.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 829

TCalendar.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 830

TCalendar.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 831

TCalendar.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 832

TCalendar.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 833

10.33 TCalendarControl Component

Unit: WebCals

Inherits From TInputControl

The TCalendarControl control is the base class for calendar controls, and contains all of the core calendar
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized calendar controls.

Properties Methods Events

SelectedDate NextPeriod

View PriorPeriod

Component Reference

Page 834

TCalendarControl.SelectedDate Property

property SelectedDate: DateTime

Specifies the selected date displayed in the calendar.

Component Reference

Page 835

TCalendarControl.View Property

property View: TCalendarView

Specifies the active calendar view.

Component Reference

Page 836

TCalendarControl.NextPeriod Method

procedure NextPeriod

Use this method to navigate to the next period in the calendar control. The next period displayed is
determined by the active view.

Component Reference

Page 837

TCalendarControl.PriorPeriod Method

procedure PriorPeriod

Use this method to navigate to the prior period in the calendar control. The prior period displayed is
determined by the active view.

Component Reference

Page 838

10.34 TCanvasElement Component

Unit: WebUI

Inherits From TElement

The TCanvasElement class is the element class for HTML5 canvas elements, and contains all of the canvas
functionality in the form of public methods and properties/events that control classes can use to create
painting/drawing controls.

Note
 This element does not provide support for canvas drawing at design-time, and the applicable
drawing methods and properties are all stubs.

Component Reference

Page 839

Properties Methods Events

Alpha Arc

CompositeOperation ArcTo

FillColor BeginPath

FillGradient BezierCurveTo

FillPattern ClearRect

FillStyle Clip

LineCapStyle ClosePath

LineJoinStyle ConvertToDataURL

LineWidth DrawImage

MiterLimit Fill

ShadowBlur FillRect

ShadowColor FillText

ShadowOffsetX IsPointInPath

ShadowOffsetY LineTo

StrokeColor MeasureText

StrokeGradient MoveTo

StrokePattern QuadraticCurveTo

StrokeStyle Rect

TextAlign Rotate

TextBaseLine Save

Scale

SetTransform

Stroke

StrokeRect

StrokeText

Transform

Translate

Component Reference

Page 840

TCanvasElement.Alpha Property

property Alpha: Double

Specifies the global alpha value (transparency) of the canvas. This value is multiplied by the alpha value
(transparency) of all drawn pixels. The default is 1.0, meaning that the transparency of the drawn pixels is
not modified, and the value must be between 0.0 and 1.0.

Component Reference

Page 841

TCanvasElement.CompositeOperation Property

property CompositeOperation: TCompositeOperation

Specifies how newly-drawn pixels (source) are combined with the existing pixels on the canvas
(destination) during drawing operations. The default value is coSourceOver.

Component Reference

Page 842

TCanvasElement.FillColor Property

property FillColor: TColor

Specifies the color to use with fill operations when the FillStyle property is set to dsColor.

Component Reference

Page 843

TCanvasElement.FillGradient Property

property FillGradient: TCanvasGradient

Specifies the gradient to use with fill operations when the FillStyle property is set to dsGradient.

Component Reference

Page 844

TCanvasElement.FillPattern Property

property FillPattern: TCanvasPattern

Specifies the pattern to use with fill operations when the FillStyle property is set to dsPattern.

Component Reference

Page 845

TCanvasElement.FillStyle Property

property FillStyle: TDrawStyle

Specifies how fill operations will draw on the canvas.

Component Reference

Page 846

TCanvasElement.LineCapStyle Property

property LineCapStyle: TLineCapStyle

Specifies how lines should be terminated when drawing wide lines on the canvas. The default value is
csButt.

Component Reference

Page 847

TCanvasElement.LineJoinStyle Property

property LineJoinStyle: TLineJoinStyle

Specifies how wide lines should be drawn when they intersect on the canvas. The default value is jsMiter.
The MiterLimit property is used to limit the length of a miter join.

Component Reference

Page 848

TCanvasElement.LineWidth Property

property LineWidth: Double

Specifies the line width to use for line drawing (stroking) operations on the canvas.

Component Reference

Page 849

TCanvasElement.MiterLimit Property

property MiterLimit: Double

Specifies the upper limit on miter joins when the LineJoinStyle is set to jsMiter. The default value is 10
(pixels).

Component Reference

Page 850

TCanvasElement.ShadowBlur Property

property ShadowBlur: Double

Specifies how much blur shadows should have. The default value is 0, which produces shadows with a
crisp edge.

Component Reference

Page 851

TCanvasElement.ShadowColor Property

property ShadowColor: TColor

Specifies the color of the shadows. The default value is clBlack.

Component Reference

Page 852

TCanvasElement.ShadowOffsetX Property

property ShadowOffsetX: Double

Specifies the horizontal offset of shadows. The default value is 0.

Component Reference

Page 853

TCanvasElement.ShadowOffsetY Property

property ShadowOffsetY: Double

Specifies the vertical offset of shadows. The default value is 0.

Component Reference

Page 854

TCanvasElement.StrokeColor Property

property StrokeColor: TColor

Specifies the color to use with stroke (line-drawing) operations when the StrokeStyle property is set to
dsColor.

Component Reference

Page 855

TCanvasElement.StrokeGradient Property

property StrokeGradient: TCanvasGradient

Specifies the gradient to use with stroke (line-drawing) operations when the StrokeStyle property is set to
dsGradient.

Component Reference

Page 856

TCanvasElement.StrokePattern Property

property StrokePattern: TCanvasPattern

Specifies the pattern to use with stroke (line-drawing) operations when the StrokeStyle property is set to
dsPattern.

Component Reference

Page 857

TCanvasElement.StrokeStyle Property

property StrokeStyle: TDrawStyle

Specifies how stroke (line-drawing) operations will draw on the canvas.

Component Reference

Page 858

TCanvasElement.TextAlign Property

property TextAlign: TTextAlignment

Specifies how text is aligned when it is drawn on the canvas. The default value is taLeftJustify.

Component Reference

Page 859

TCanvasElement.TextBaseLine Property

property TextBaseLine: TTextBaseLine

Specifies the vertical alignment of text when it is drawn on the canvas. The default value is blAlphabetic.

Component Reference

Page 860

TCanvasElement.Arc Method

procedure Arc(X,Y: Double; Radius: Double; StartAngle, EndAngle:
 Double; CounterClockwise: Boolean=False)

Use this method to add an arc to the current subpath of the canvas. The first three parameters specify the
center and radius of a circle. The next two parameters are angles (in radians) that specify the start and end
points of an arc along the circle. The last parameter specifies whether the arc is traversed counterclockwise
or clockwise along the circle's circumference.

Component Reference

Page 861

TCanvasElement.ArcTo Method

procedure ArcTo(X1,Y1,X2,Y2: Double; Radius: Double)

Use this method to add a straight line and an arc to the current subpath of the canvas. The first two
parameters specify a starting point and the second two parameters specify an ending point. The arc that is
added to the subpath is a portion of a circle with the specified radius. The arc begins and ends at the two
specified points, with a line first added to the subpath to connect the current canvas position to the
starting point. After drawing the arc, the canvas position is set to the ending point.

Component Reference

Page 862

TCanvasElement.BeginPath Method

procedure BeginPath

Use this method to discard any existing defined subpath for the canvas and begin a new subpath. After
this method is called, there is no current point for the canvas.

Note
 This method is implicitly called when the canvas is first created.

Component Reference

Page 863

TCanvasElement.BezierCurveTo Method

procedure BezierCurveTo(CPX1,CPY1,CPX2,CPY2: Double; X,Y:
 Double)

Use this method to add a cubic Bezier curve to the current subpath of the canvas. The first four
parameters define the shape of the curve. The starting point of the curve is the current point of the canvas
and the end point is defined by the last two parameters. After this method is called, the current point on
the canvas is the specified end point.

Component Reference

Page 864

TCanvasElement.ClearRect Method

procedure ClearRect(X,Y: Double; Width,Height: Double)

Use this method to clear the specified rectangle. Clearing the rectangle is equivalent to filling it with a
transparent black (clBlack) color.

Note
 This method does not affect the current path or current point of the canvas.

Component Reference

Page 865

TCanvasElement.Clip Method

procedure Clip

Use this method to compute the intersection of the inside of the current path with the current clipping
region and use the smaller region as the new clipping region.

Note
 Clipping regions cannot be enlarged, so if you only need a temporary clipping region, you should
call the Save method to save the current clipping region, create the smaller clipping region, and
then restore the previous clipping region by calling the Restore method.

Component Reference

Page 866

TCanvasElement.ClosePath Method

procedure ClosePath

Use this method to close the current subpath of the canvas, if it is open. The subpath is closed by adding
a line connecting the current point to the first point of the subpath. A new subpath is then started at the
ending point of this last subpath.

Note
 The Fill and Clip methods always treat the subpath as closed, so the only time you should need to
call this method is when you want to Stroke a closed subpath.

Component Reference

Page 867

TCanvasElement.ConvertToDataURL Method

function ConvertToDataURL(const ImageType: String; ImageQuality:
 Integer=100): String

Use this method to convert the contents of the canvas to an image represented as a Base64-encoded data
URL string. Use the ImageType parameter to specify the image format via its MIME type, and the
ImageQuality parameter to indicate the image quality for formats that support the specification of the
image quality, such as the JPEG format.

Note
 Currently, most web browsers only support 'image/png' or 'image/jpeg' as the ImageType
parameter. Please consult the web browser documentation on whether additional formats are
supported in a specific browser.

Component Reference

Page 868

TCanvasElement.DrawImage Method

procedure DrawImage(Image: TElement; X,Y: Double)

procedure DrawImage(Image: TElement; X,Y: Double; Width,Height:
 Double)

procedure DrawImage(Image: TElement; SourceX,SourceY: Double;
 SourceWidth,SourceHeight: Double; DestX,DestY: Double;
 DestWidth,DestHeight: Double)

Use this method to draw an image, or a portion of an image, at a specified point or, optionally, into a
specified rectangle.

The first version of this method simply draws the image at a specified point, retaining the image's original
height and width.

The second version of this method draws the image at a specified point, but also scales the image so that
it matches the specified height and width.

The last version of this method draws copies the specified rectangle from the image to the specified
rectangle on the canvas.

Note
 If the specified TElement instance is a TImageElement instance, then it must be completely loaded
before passing it to this method. If the image element has not been completely loaded, then an
exception will be raised. You can use the Loaded property to determine if an image element has
been completely loaded yet.

Component Reference

Page 869

TCanvasElement.Fill Method

procedure Fill

Use this method to fill the current path of the canvas with the color, gradient, or pattern specified by the
FillStyle, FillColor, FillGradient, and FillPattern properties.

Note
 If the current subpath is not closed, then this method will treat it as closed. However, it won't
actually close the subpath.

Component Reference

Page 870

TCanvasElement.FillRect Method

procedure FillRect(X,Y: Double; Width,Height: Double)

Use this method to fill the specified rectangle with the color, gradient, or pattern specified by the FillStyle,
FillColor, FillGradient, and FillPattern properties.

Note
 This method does not affect the current path or current point of the canvas.

Component Reference

Page 871

TCanvasElement.FillText Method

procedure FillText(const Text: String; X,Y: Double; MaxWidth:
 Double=-1)

Use this method to draw the specified text at the specified point with the font specified by the Font
property, and the color, gradient, or pattern specified by the FillStyle, FillColor, FillGradient, and FillPattern
properties.

The optional MaxWidth parameter specifies a maximum width for the text. If the width of the text exceeds
this value, then the text is drawn using a condensed font so that it fits within the specified width.

Component Reference

Page 872

TCanvasElement.IsPointInPath Method

function IsPointInPath(X,Y: Double): Boolean

Use this method to determine if the specified point falls within or on the edge of the current path of the
canvas.

Component Reference

Page 873

TCanvasElement.LineTo Method

procedure LineTo(X,Y: Double)

Use this method to add a straight line to the current subpath of the canvas, with the current point used as
the starting point of the line. After this method is called, the current point of the canvas is set to the
specified ending point.

Component Reference

Page 874

TCanvasElement.MeasureText Method

function MeasureText(const Text: String): Double

Use this method to measure the width of the specified text as it would be drawn using the Font property.

Component Reference

Page 875

TCanvasElement.MoveTo Method

procedure MoveTo(X,Y: Double)

Use this method to set the current point of the canvas to the specified point and begin a new subpath at
the same point.

Note
 If the previous subpath only consisted of one point, then it is discarded when this method is called.

Component Reference

Page 876

TCanvasElement.QuadraticCurveTo Method

procedure QuadraticCurveTo(CPX,CPY: Double; X,Y: Double)

Use this method to add a quadratic Bezier curve segment to the current subpath of the canvas. The curve
starts at the current point of the canvas and ends at the point specified by the last two parameters. The
first two parameters specify the shape of the curve between these two points. After this method is called,
the current point on the canvas is the specified end point.

Component Reference

Page 877

TCanvasElement.Rect Method

procedure Rect(X,Y: Double; Width, Height: Double)

Use this method to add a rectangle to the current path of the canvas. The added rectangle has its own
subpath that is not connected to any other subpaths in the current path. After this method is called, the
current point on the canvas is set to the point specified by the first two parameters.

Component Reference

Page 878

TCanvasElement.Rotate Method

procedure Rotate(Angle: Double)

Use this method to change the transformation matrix of the canvas so that any subsequent drawing
appears rotated by the specified angle (in radians).

Component Reference

Page 879

TCanvasElement.Save Method

procedure Save

Use this method to push the current canvas properties on to the stack of saved states for the canvas. You
can use the Restore method to pop the last saved state from the stack.

Component Reference

Page 880

TCanvasElement.Scale Method

procedure Scale(SX,SY: Double)

Use this method to change the transformation matrix so that the scale of the canvas is modified according
to the specified x and y axis values (independent of one another).

Note
 Specify negative values to "flip" the coordinates of the canvas for a given axis.

Component Reference

Page 881

TCanvasElement.SetTransform Method

procedure SetTransform(M11,M12,M21,M22: Double; DX,DY: Double)

Use this method to directly set the current transformation matrix for the canvas.

Component Reference

Page 882

TCanvasElement.Stroke Method

procedure Stroke

Use this method to stroke the current path of the canvas with the color, gradient, or pattern specified by
the StrokeStyle, StrokeColor, StrokeGradient, or StrokePattern properties. The LineCapStyle, LineJoinStyle,
MiterLimit and LineWidth properties control how the lines that make up the current path are drawn.

Component Reference

Page 883

TCanvasElement.StrokeRect Method

procedure StrokeRect(X,Y: Double; Width,Height: Double)

Use this method to stroke the specified rectangle with the color, gradient, or pattern specified by the
StrokeStyle, StrokeColor, StrokeGradient, or StrokePattern properties. The LineCapStyle, LineJoinStyle,
MiterLimit and LineWidth properties control how the lines that make up the rectangle are drawn.

Note
 This method does not affect the current path or current point of the canvas.

Component Reference

Page 884

TCanvasElement.StrokeText Method

procedure StrokeText(const Text: String; X,Y: Double; MaxWidth:
 Double=-1)

Use this method draw the outline of the specified text at the specified point with the font specified by the
Font property, and the color, gradient, or pattern specified by the StrokeStyle, StrokeColor,
StrokeGradient, or StrokePattern properties. The LineCapStyle, LineJoinStyle, MiterLimit and LineWidth
properties control how the lines that make up the outline of the font characters are drawn.

The optional MaxWidth parameter specifies a maximum width for the text. If the width of the text exceeds
this value, then the text is drawn using a condensed font so that it fits within the specified width.

Component Reference

Page 885

TCanvasElement.Transform Method

procedure Transform(M11,M12,M21,M22: Double; DX,DY: Double)

Use this method to directly modify the existing transformation matrix for the canvas.

Component Reference

Page 886

TCanvasElement.Translate Method

procedure Translate(DX,DY: Double)

Use this method to add horizontal and vertical offsets to the existing transformation matrix for the canvas.

Component Reference

Page 887

10.35 TCanvasGradient Component

Unit: WebUI

Inherits From TObject

The TCanvasGradient class represents a linear or radial gradient. It is used by the TCanvasElement class for
filling and stroking operations on a canvas.

Properties Methods Events

EndRadius AddColorStop

EndX Create

EndY RemoveColorStops

GradientType

StartRadius

StartX

StartY

Component Reference

Page 888

TCanvasGradient.EndRadius Property

property EndRadius: Double

Specifies the ending radius for the gradient.

Note
 This property only applies to radial gradients (GradientType of gtRadial);

Component Reference

Page 889

TCanvasGradient.EndX Property

property EndX: Double

Specifies the ending x axis point for the gradient.

Component Reference

Page 890

TCanvasGradient.EndY Property

property EndY: Double

Specifies the ending y axis point for the gradient.

Component Reference

Page 891

TCanvasGradient.GradientType Property

property GradientType: TGradientType

Specifies the type of gradient, linear or radial, that is required for the fill or stroke operations on the
canvas. The default gradient type is gtLinear.

Component Reference

Page 892

TCanvasGradient.StartRadius Property

property StartRadius: Double

Specifies the starting radius for the gradient.

Note
 This property only applies to radial gradients (GradientType of gtRadial);

Component Reference

Page 893

TCanvasGradient.StartX Property

property StartX: Double

Specifies the starting x axis point for the gradient.

Component Reference

Page 894

TCanvasGradient.StartY Property

property StartY: Double

Specifies the starting y axis point for the gradient.

Component Reference

Page 895

TCanvasGradient.AddColorStop Method

procedure AddColorStop(Position: Double; Color: TColor)

Use this method to add a color stop to the gradient. Color stops are specified as a position between 0.0
and 1.0 along with a color that will start at that position. After specifying two or more color stops, the
gradient will smoothly interpolate colors between the various stops.

Note
 If you only specify a single color stop, then the gradient will display that color as a solid color with
no interpolation.

Component Reference

Page 896

TCanvasGradient.Create Method

constructor Create(ACanvas: TCanvasElement)

Use this method to create a new instance of the TCanvasGradient class. The ACanvasElement parameter
indicates the canvas element that will contain the instance.

Component Reference

Page 897

TCanvasGradient.RemoveColorStops Method

procedure RemoveColorStops

Use this method to remove all color stops for the gradient.

Component Reference

Page 898

10.36 TCanvasPattern Component

Unit: WebUI

Inherits From TObject

The TCanvasPattern class represents a pattern comprised of a single image or an image that is tiled
horizontally, vertically, or both. It is used by the TCanvasElement class for filling and stroking operations
on a canvas.

Properties Methods Events

Image Create

RepeatStyle

Component Reference

Page 899

TCanvasPattern.Image Property

property Image: TElement

Specifies the image to use as the pattern for the fill or stroke operations on a canvas.

Component Reference

Page 900

TCanvasPattern.RepeatStyle Property

property RepeatStyle: TPatternRepeatStyle

Specifies how the image specified by the Image property should be tiled when the pattern is used for
filling and stroking operations.

Component Reference

Page 901

TCanvasPattern.Create Method

constructor Create(ACanvas: TCanvasElement)

Use this method to create a new instance of the TCanvasPattern class. The ACanvasElement parameter
indicates the canvas element that will contain the instance.

Component Reference

Page 902

10.37 TCanvasPoint Component

Unit: WebUI

Inherits From TObject

The TCanvasPoint class represents the X/Y floating-point coordinates of a canvas point. It is useful when
used with the TCanvasElement class for calculating coordinates for drawing and fill operations on a
canvas.

Properties Methods Events

X Assign

Y Clear

Create

Equals

Offset

Component Reference

Page 903

TCanvasPoint.X Property

property X: Double

Specifies the horizontal position of the point.

Component Reference

Page 904

TCanvasPoint.Y Property

property Y: Double

Specifies the vertical position of the point.

Component Reference

Page 905

TCanvasPoint.Assign Method

procedure Assign(APoint: TCanvasPoint)

procedure Assign(AX,AY: Double)

Use this method to assign a source point to the point instance.

Component Reference

Page 906

TCanvasPoint.Clear Method

procedure Clear

Use this method to set both of the point coordinates to 0.

Component Reference

Page 907

TCanvasPoint.Create Method

constructor Create(AX,AY: Double)

Use this method to create a new instance of the TCanvasPoint class using the provided X and Y
coordinates.

Component Reference

Page 908

TCanvasPoint.Equals Method

function Equals(APoint: TCanvasPoint): Boolean

Use this method to test if two points have the same coordinates.

Component Reference

Page 909

TCanvasPoint.Offset Method

procedure Offset(AX,AY: Double)

Use this method to offset the point. Offsetting a point increments or decrements its X and Y properties
using the AX and AY parameters, respectively.

Component Reference

Page 910

10.38 TCanvasRect Component

Unit: WebUI

Inherits From TObject

The TCanvasRect class represents a canvas rectangle using floating-point coordinates. It is useful when
used with the TCanvasElement class for calculating rectangle coordinates for drawing and fill operations
on a canvas.

Properties Methods Events

Bottom Anchor

Empty Assign

Height Clear

Left Create

Right Equals

Top Fit

Width Inflate

Interpolate

Normalize

Offset

Scale

Union

Component Reference

Page 911

TCanvasRect.Bottom Property

property Bottom: Double

Specifies the bottom Y coordinate of the rectangle.

Component Reference

Page 912

TCanvasRect.Empty Property

property Empty: Boolean

Indicates whether the rectangle is empty. A rectangle is considered empty if its width or height is 0.

Component Reference

Page 913

TCanvasRect.Height Property

property Height: Double

Indicates the height of the rectangle (read-only).

Component Reference

Page 914

TCanvasRect.Left Property

property Left: Double

Specifies the left X coordinate of the rectangle.

Component Reference

Page 915

TCanvasRect.Right Property

property Right: Double

Specifies the right X coordinate of the rectangle.

Component Reference

Page 916

TCanvasRect.Top Property

property Top: Double

Specifies the top Y coordinate of the rectangle.

Component Reference

Page 917

TCanvasRect.Width Property

property Width: Double

Indicates the width of the rectangle (read-only).

Component Reference

Page 918

TCanvasRect.Anchor Method

procedure Anchor

Use this method to anchor the rectangle. Anchoring a rectangle changes its Left and Top properties to 0,
and adjusts the Right and Bottom properties accordingly so that the rectangle retains its same Width and
Height.

Component Reference

Page 919

TCanvasRect.Assign Method

procedure Assign(ARect: TCanvasRect)

procedure Assign(ALeft,ATop,ARight,ABottom: Double)

Use this method to assign a source rectangle, or source rectangle coordinates, to the rectangle instance.

Component Reference

Page 920

TCanvasRect.Clear Method

procedure Clear

Use this method to set all of the rectangle coordinates to 0.

Component Reference

Page 921

TCanvasRect.Create Method

constructor Create(ALeft,ATop,ARight,ABottom: Double=0)

Use this method to create a new instance of the TCanvasRect class. The optional ALeft, ATop, ARight, and
ABottom parameters will initialize the instance with the provided coordinates.

Component Reference

Page 922

TCanvasRect.Equals Method

function Equals(ARect: TCanvasRect): Boolean

Use this method to test if two rectangles have the same coordinates.

Note
 If the compared coordinates are not whole numbers and contain fractions, then the comparison
results may not be entirely as expected due to the possibility of unequal fractional portions for each
coordinate.

Component Reference

Page 923

TCanvasRect.Fit Method

procedure Fit(AWidth,AHeight: Double)

Use this method to proportionally adjust the width and height of the rectangle so that it fits within the
specified AWidth and AHeight parameters.

Component Reference

Page 924

TCanvasRect.Inflate Method

procedure Inflate(ALeft,ATop,ARight,ABottom: Double)

Use this method to inflate the rectangle. Inflating a rectangle increments or decrements its Left, Top,
Right, and Bottom properties using the specified parameters.

Component Reference

Page 925

TCanvasRect.Interpolate Method

procedure Interpolate(ARect: TCanvasRect; AAmount: Double)

Use this method to calculate a new rectangle using the difference between the coordinates of the
rectangle and a source rectangle multiplied by a specified distance amount. This calculation is useful for
moving a rectangle along a given linear path between a source rectangle and a destination rectangle.

Component Reference

Page 926

TCanvasRect.Normalize Method

procedure Normalize

Use this method to normalize the rectangle. Normalizing a rectangle changes (if necessary) its Left, Top,
Right, and Bottom properties so that the Left property is less than or equal to the Right property and the
Top property is less than or equal to the Bottom property.

Component Reference

Page 927

TCanvasRect.Offset Method

procedure Offset(ALeft: Double; ATop: Double)

Use this method to offset the rectangle. Offsetting a rectangle increments or decrements its Left and Top
properties using the ALeft and ATop parameters, respectively.

Component Reference

Page 928

TCanvasRect.Scale Method

procedure Scale(ARatio: Double)

Use this method to proportionally scale the coordinates of the rectangle using the specified ARatio
parameter.

Component Reference

Page 929

TCanvasRect.Union Method

procedure Union(ARect: TCanvasRect)

Use this method to union the coordinates of the rectangle with another rectangle. A union operation is a
max operation on each pair of coordinates, taking the smallest of the two rectangles' Left and Top
properties, and the largest of the two rectangles' Right and Bottom properties.

Component Reference

Page 930

10.39 TCaptionBarControl Component

Unit: WebCtnrs

Inherits From TControl

The TCaptionBarControl control is the base class for caption bar controls, and contains all of the core
panel functionality in the form of public methods and protected properties/events that descendant classes
can use to create customized caption bar controls.

Properties Methods Events

Component Reference

Page 931

10.40 TCheckBox Component

Unit: WebBtns

Inherits From TStateButtonControl

The TCheckBox component represents a checkbox control. A checkbox control is a state control that
allows the user to toggle a selection state on and off by using a mouse click, or by pushing the spacebar
or enter key.

Properties Methods Events

AutoWidth OnAnimationComplete

Caption OnAnimationsComplete

Cursor OnChange

DataColumn OnClick

DataSet OnEnter

Enabled OnExit

Font OnHide

Hint OnKeyDown

ReadOnly OnKeyPress

SelectionState OnKeyUp

TabOrder OnMouseDown

TabStop OnMouseEnter

ValueSelected OnMouseLeave

ValueUnselected OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 932

TCheckBox.AutoWidth Property

property AutoWidth: Boolean

Specifies whether the width of the check box should be automatically set based upon the Caption and
Font properties.

Component Reference

Page 933

TCheckBox.Caption Property

property Caption: String

Specifies the caption for the control.

Note
 The caption area of a control is also clickable with the mouse or touch interface.

Component Reference

Page 934

TCheckBox.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 935

TCheckBox.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 936

TCheckBox.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 937

TCheckBox.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 938

TCheckBox.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 939

TCheckBox.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 940

TCheckBox.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 941

TCheckBox.SelectionState Property

property SelectionState: TSelectionState

Specifies the selection state of the control.

Note
 The ssIndeterminate selection state can only be set programmatically. When the user toggles the
selection for the control, it will alternate between the ssSelected and ssUnselected selection states.

Component Reference

Page 942

TCheckBox.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 943

TCheckBox.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 944

TCheckBox.ValueSelected Property

property ValueSelected: String

Specifies the textual value to use for the selected state when reading and writing data to and from the
data column that the control is bound to. The default value is 'True'.

Component Reference

Page 945

TCheckBox.ValueUnselected Property

property ValueUnselected: String

Specifies the textual value to use for the unselected state when reading and writing data to and from the
data column that the control is bound to. The default value is 'False'.

Component Reference

Page 946

TCheckBox.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 947

TCheckBox.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 948

TCheckBox.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 949

TCheckBox.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 950

TCheckBox.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 951

TCheckBox.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 952

TCheckBox.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 953

TCheckBox.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 954

TCheckBox.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 955

TCheckBox.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 956

TCheckBox.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 957

TCheckBox.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 958

TCheckBox.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 959

TCheckBox.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 960

TCheckBox.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 961

TCheckBox.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 962

TCheckBox.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 963

TCheckBox.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 964

TCheckBox.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 965

TCheckBox.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 966

TCheckBox.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 967

TCheckBox.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 968

10.41 TCollection Component

Unit: WebCore

Inherits From TPersistent

The TCollection class represents a list of TCollectionItem descendant class instances, and is used to create
lists of instances that can be automatically persisted at design-time and run-time. For example, the Elevate
Web Builder component library uses the TCollection class as the ancestor for the TDataColumns class so
that TDataSet instance columns can be persisted with forms.

Note
 Collections always own all items in the collection and will automatically dispose of all items in the
collection when the collection is destroyed.

Properties Methods Events

Count Add OnChanged

ItemClass BeginUpdate

Items Clear

Create

Delete

EndUpdate

FindItemByID

GetNames

IndexOf

Insert

Move

Component Reference

Page 969

TCollection.Count Property

property Count: Integer

Indicates the number of items in the collection.

Component Reference

Page 970

TCollection.ItemClass Property

property ItemClass: TCollectionItemClass

Indicates the TCollectionItemClass class type that the collection will use when creating new items for the
collection.

Component Reference

Page 971

TCollection.Items Property

property Items[AIndex: Integer]: TCollectionItem

property Items[const AName: String]: TCollectionItem

Accesses items in the collection by their Index property or by their Name.

Component Reference

Page 972

TCollection.Add Method

function Add: TCollectionItem

Use this method to add a new item to the collection. The return value is the new collection item instance,
and its class type is determined by the ItemClass property.

Component Reference

Page 973

TCollection.BeginUpdate Method

procedure BeginUpdate

Use this method to begin a batch update to the collection. Batch updates are useful in situations where
many changes need to be made to the collection, and triggering the OnChanged event on every change
would result in performance issues. This method is reference-counted and every time it is called, an
internal counter is incremented. Every time the EndUpdate method is called, the counter is decremented.
Once the counter reaches zero, the OnChanged event will be triggered.

Component Reference

Page 974

TCollection.Clear Method

procedure Clear

Use this method to remove all items from the collection, freeing the item instances in the process.

Component Reference

Page 975

TCollection.Create Method

constructor Create(AItemClass: TCollectionItemClass)

Use this method to create a new instance of the TCollection class. The AItemClass parameter indicates the
class type that the collection should use when creating new item instances.

Component Reference

Page 976

TCollection.Delete Method

procedure Delete(AIndex: Integer)

Use this method to delete an item from the collection by its Index property, freeing the item instance in
the process.

Component Reference

Page 977

TCollection.EndUpdate Method

procedure EndUpdate

Use this method to end a batch update to the collection. Batch updates are useful in situations where
many changes need to be made to the collection, and triggering the OnChanged event on every change
would result in performance issues. This method is reference-counted and every time it is called, an
internal counter is decremented. Every time the BeginUpdate method is called, the counter is
incremented. Once the counter reaches zero, the OnChanged event will be triggered.

Component Reference

Page 978

TCollection.FindItemByID Method

function FindItemByID(AID: Integer): TCollectionItem

Use this method to search for an item in the collection by its ID property. An item's ID is an integer
identifier that uniquely identifies each item instance.

Component Reference

Page 979

TCollection.GetNames Method

function GetNames: array of String

Use this method to get a list of the names of the items in the collection.

Component Reference

Page 980

TCollection.IndexOf Method

function IndexOf(AItem: TCollectionItem): Integer

function IndexOf(const AName: String): Integer

Use this method to search for an item in the collection by its Index property.

Component Reference

Page 981

TCollection.Insert Method

function Insert(AIndex: Integer): TCollectionItem

Use this method to insert a new item into the collection at a specific index. The return value is the new
collection item instance, and its class type is determined by the ItemClass property.

Component Reference

Page 982

TCollection.Move Method

procedure Move(Source: Integer; Dest: Integer)

Use this method to move an item from one index position to another index position. The item's Index will
be updated accordingly.

Component Reference

Page 983

TCollection.OnChanged Event

property OnChanged: TNotifyEvent

This event is triggered when a collection item is added or deleted, or if any collection item's name is
changed.

Component Reference

Page 984

10.42 TCollectionItem Component

Unit: WebCore

Inherits From TPersistent

The TCollectionItem class represents an item in a TCollection class instance.

Properties Methods Events

Collection Create

ID

Index

Name

Tag

Component Reference

Page 985

TCollectionItem.Collection Property

property Collection: TCollection

Indicates the collection instance that the item belongs to.

Component Reference

Page 986

TCollectionItem.ID Property

property ID: Integer

Indicates the unique ID of the item. The ID is automatically assigned by the Collection when the item is
created.

Component Reference

Page 987

TCollectionItem.Index Property

property Index: Integer

Indicates the index of the item in the Collection. You can modify this property in order to change the
index of the item in the collection.

Component Reference

Page 988

TCollectionItem.Name Property

property Name: TCollectionItemName

Specifies the name of the item. A name is not required to be unique, by default, but TCollection
descendant classes may enforce uniqueness of item names.

Component Reference

Page 989

TCollectionItem.Tag Property

property Tag: Integer

Component Reference

Page 990

TCollectionItem.Create Method

constructor Create(ACollection: TCollection)

Use this method to create a new instance of the TCollectionItem class. The ACollection parameter
indicates the collection instance that will contain the item instance.

Component Reference

Page 991

10.43 TComponent Component

Unit: WebCore

Inherits From TPersistent

The TComponent class represents a component and is the base class of all components in Elevate Web
Builder (visual and non-visual). This class includes functionality for ownership of other components and
event registration/notification, which simplifies component destruction by allowing the TComponent class
to automatically destroy all owned components.

Properties Methods Events

Component Create

ComponentCount FindComponent

Data Register

Destroying UnRegister

Name

Owner

Tag

Component Reference

Page 992

TComponent.Component Property

property Component[Index: Integer]: TComponent

Allows indexed access to all components owned by the component. If a component is created with a
specific owner, then the component instance that is created is automatically added to the owner
component's Component property. When an owner component is destroyed, all owned components are
also automatically destroyed at the same time.

Component Reference

Page 993

TComponent.ComponentCount Property

property ComponentCount: Integer

Indicates the number of components owned by the component.

Component Reference

Page 994

TComponent.Data Property

property Data: TObject

Can be used to associate any TObject or descendant class instance with the component.

Component Reference

Page 995

TComponent.Destroying Property

property Destroying: Boolean

Indicates that the component is in the process of being destroyed, meaning that its Destroy destructor has
begun executing.

Component Reference

Page 996

TComponent.Name Property

property Name: TComponentName

Specifies the name of the component. Components that are placed on a form must have a name that is
unique within the context of the containing form.

Component Reference

Page 997

TComponent.Owner Property

property Owner: TComponent

Indicates the owner of the component, or nil if the component does not have an owner.

Component Reference

Page 998

TComponent.Tag Property

property Tag: Integer

Can be used to associate any integer value with the component.

Component Reference

Page 999

TComponent.Create Method

constructor Create(AOwner: TComponent)

Use this method to create a new instance of the TComponent class. The AOwner parameter indicates the
component that will own the instance, or nil if the component has no owner. The owner of the component
will automatically free the component instance when the owner is freed.

Component Reference

Page 1000

TComponent.FindComponent Method

function FindComponent(const Value: String; Recurse:
 Boolean=False): TComponent

Use this method to find an owned component by its name. The optional Recurse parameter indicates
whether the search should be recursive and include components owned by the owned components, etc.

Component Reference

Page 1001

TComponent.Register Method

procedure Register(Component: TComponent)

Registers a component with another component so that the calling component receives component
notification messages.

For example, a component can register itself with another component so that it can be notified when the
component is destroyed. This is useful in situations where a component instance needs to know when
another component instance is destroyed so that it can remove any references to the component instance
being destroyed.

Component Reference

Page 1002

TComponent.UnRegister Method

procedure UnRegister(Component: TComponent)

Unregisters a component from another component so that the calling component no longer receives any
notification messages.

Component Reference

Page 1003

10.44 TConstraint Component

Unit: WebUI

Inherits From TElementAttribute

The TConstraint class represents a set of width and height constraints for a UI element or control.

Properties Methods Events

Height SetToDefault

Width

Component Reference

Page 1004

TConstraint.Height Property

property Height: Integer

Specifies the height constraint. A value of zero (the default) indicates that no height constraint is in effect.

Component Reference

Page 1005

TConstraint.Width Property

property Width: Integer

Specifies the width constraint. A value of zero (the default) indicates that no width constraint is in effect.

Component Reference

Page 1006

TConstraint.SetToDefault Method

procedure SetToDefault

Use this method to reset the constraint's properties to their default values.

Component Reference

Page 1007

10.45 TConstraints Component

Unit: WebUI

Inherits From TElementAttribute

The TConstraints class represents the minimum/maximum width and height constraints for a UI element
or control. Width and height constraints ensure that any attempts to resize the UI element or control is
subject to the defined constraints.

Properties Methods Events

Max SetToDefault

Min

Component Reference

Page 1008

TConstraints.Max Property

property Max: TConstraint

Specifies the maximum width and height constraints.

Component Reference

Page 1009

TConstraints.Min Property

property Min: TConstraint

Specifies the minimum width and height constraints.

Component Reference

Page 1010

TConstraints.SetToDefault Method

procedure SetToDefault

Use this method to reset the constraints' properties to their default values.

Component Reference

Page 1011

10.46 TContentLayout Component

Unit: WebCtrls

Inherits From TPersistent

The TContentLayout class represents the layout of content in UI elements, and is used to apply layouts
similar to that of background images to a content element in controls like the TImage control.

Properties Methods Events

Height

Left

Position

Size

Top

Width

Component Reference

Page 1012

TContentLayout.Height Property

property Height: Integer

Specifies the height of the element. If the actual height of the element is different than this value, then the
element height is stretched/contracted accordingly.

Note
 This property is only valid when the Size is csSpecified.

Component Reference

Page 1013

TContentLayout.Left Property

property Left: Integer

Specifies the left position of the element.

Note
 This property is only valid when the Position is cpSpecified.

Component Reference

Page 1014

TContentLayout.Position Property

property Position: TContentPosition

Specifies how the element should be positioned within the UI element or control.

Component Reference

Page 1015

TContentLayout.Size Property

property Size: TContentSize

Specifies how the element should be sized within the UI element or control.

Component Reference

Page 1016

TContentLayout.Top Property

property Top: Integer

Specifies the top position of the element.

Note
 This property is only valid when the Position is cpSpecified.

Component Reference

Page 1017

TContentLayout.Width Property

property Width: Integer

Specifies the width of the element. If the actual width of the element is different than this value, then the
element width is stretched/contracted accordingly.

Note
 This property is only valid when the Size is csSpecified.

Component Reference

Page 1018

10.47 TControl Component

Unit: WebCtrls

Inherits From TInterfaceController

The TControl component is the base class for all visual controls and provides layout and dimensional
functionality, as well as functionality for handling child controls, mouse, keyboard, and touch events,
focus, and visibility.

Component Reference

Page 1019

Properties Methods Events

ActiveControl BeginUpdate

AlwaysOnTop BringToFront

Animations CanFocus

ClientHeight DefineLayout

ClientID EndUpdate

ClientWidth Float

Constraints ForceUpdate

ControlCount GetControlNames

Controls Hide

DisplayOrder IndexOfControl

Focused MakeVisible

Height Minimize

InUpdate RemoveFocus

Layout Restore

LayoutOrder ScrollBy

Left SendToBack

Margins SetFocus

Minimized Show

Parent SlideTo

ScrollHeight Tab

ScrollLeft

ScrollTop

ScrollWidth

SurfaceLeft

SurfaceTop

Top

Visible

VisibleControlCount

VisibleControls

Width

Component Reference

Page 1020

TControl.ActiveControl Property

property ActiveControl: TControl

Indicates which child control, if any, has focus in the current control.

Component Reference

Page 1021

TControl.AlwaysOnTop Property

property AlwaysOnTop: Boolean

Specifies that the control should always be visually placed on top of any other control within the same
container control.

Component Reference

Page 1022

TControl.Animations Property

property Animations: TAnimations

Specifies the animations for the control.

Component Reference

Page 1023

TControl.ClientHeight Property

property ClientHeight: Integer

Indicates the height of the client rectangle for the control.

Component Reference

Page 1024

TControl.ClientID Property

property ClientID: String

Specifies the unique DOM ID to assign to the control's client element. This is useful for situations where
you need to identify the element from external Javascript code. By default, Elevate Web Builder never
assigns DOM IDs to elements because it doesn't need or use them to identify UI elements.

Component Reference

Page 1025

TControl.ClientWidth Property

property ClientWidth: Integer

Indicates the width of the client rectangle for the control.

Component Reference

Page 1026

TControl.Constraints Property

property Constraints: TConstraints

Indicates the dimensional constraints for the control.

Component Reference

Page 1027

TControl.ControlCount Property

property ControlCount: Integer

Indicates the total number of child controls for the control.

Component Reference

Page 1028

TControl.Controls Property

property Controls[AIndex: Integer]: TControl

Accesses a child control by its index position in the child controls, which are ordered by their LayoutOrder
property.

Component Reference

Page 1029

TControl.DisplayOrder Property

property DisplayOrder: Integer

Specifies the display order, or visual stacking order, of the control within its parent container control.

Component Reference

Page 1030

TControl.Focused Property

property Focused: Boolean

Indicates whether the control currently has focus.

Component Reference

Page 1031

TControl.Height Property

property Height: Integer

Indicates the current height of the control, and can be used to specify the defined height for the control.
The defined height is the last value that was directly assigned to the Height property. Layout property
changes may affect the value returned by the Height property.

Component Reference

Page 1032

TControl.InUpdate Property

property InUpdate: Boolean

Indicates whether the control, or any of its parent controls, is currently in a batch update. A control is in a
batch update if the BeginUpdate method is called on the control or any of its parent controls. When a
control is in a batch update, it doesn't apply any changes to any of its properties until the EndUpdate
method is called on the control or any of its parent controls, and the InUpdate property returns False.

Note
 Updates are reference-counted so calls to the BeginUpdate method increment the reference count,
and calls to the EndUpdate method decrement the reference count.

Component Reference

Page 1033

TControl.Layout Property

property Layout: TLayout

Specifies the layout for the control.

Component Reference

Page 1034

TControl.LayoutOrder Property

property LayoutOrder: Integer

Specifies the layout order of the control. The layout order determines the order in which the child controls
of a container control are positioned and sized using the layout management functionality for controls.

Component Reference

Page 1035

TControl.Left Property

property Left: Integer

Indicates the current left position of the control, and can be used to specify the defined left position for
the control. The defined left position is the last value that was directly assigned to the Left property.
Layout property changes may affect the value returned by the Left property.

Component Reference

Page 1036

TControl.Margins Property

property Margins: TMargins

Specifies the margins to be used for the control when the control is being positioned/sized using the
layout management functionality.

Component Reference

Page 1037

TControl.Minimized Property

property Minimized: Boolean

Indicates whether the control is minimized. A control can be minimized using the Minimize method, and
restored using the Restore method.

Component Reference

Page 1038

TControl.Parent Property

property Parent: TControl

Specifies the parent control that contains the control, or nil if the control has no parent.

Component Reference

Page 1039

TControl.ScrollHeight Property

property ScrollHeight: Integer

Indicates the total height of the control's content and/or its child controls. If a control's content height is
greater than its Height property, then you can use the ScrollTop property to programmatically scroll the
control vertically, or to find out the current vertical scroll position.

Component Reference

Page 1040

TControl.ScrollLeft Property

property ScrollLeft: Integer

Specifies the horizontal scroll position for the control. If a control's ScrollWidth property is greater than its
Width property, then you can use this property to programmatically scroll the control horizontally, or to
find out the current horizontal scroll position.

Component Reference

Page 1041

TControl.ScrollTop Property

property ScrollTop: Integer

Specifies the vertical scroll position for the control. If a control's ScrollHeight property is greater than its
Height property, then you can use this property to programmatically scroll the control vertically, or to find
out the current vertical scroll position.

Component Reference

Page 1042

TControl.ScrollWidth Property

property ScrollWidth: Integer

Indicates the total width of the control's content and/or its child controls. If a control's content width is
greater than its Width property, then you can use the ScrollLeft property to programmatically scroll the
control horizontally, or to find out the current horizontal scroll position.

Component Reference

Page 1043

TControl.SurfaceLeft Property

property SurfaceLeft: Integer

Indicates the current left position of the control, relative to the application surface.

The application surface is represented by the Surface property of the global Application variable in the
WebForms unit.

Component Reference

Page 1044

TControl.SurfaceTop Property

property SurfaceTop: Integer

Indicates the current top position of the control, relative to the application surface.

The application surface is represented by the Surface property of the global Application variable in the
WebForms unit.

Component Reference

Page 1045

TControl.Top Property

property Top: Integer

Indicates the current top position of the control, and can be used to specify the defined top position for
the control. The defined top position is the last value that was directly assigned to the Top property.
Layout property changes may affect the value returned by the Top property.

Component Reference

Page 1046

TControl.Visible Property

property Visible: Boolean

Indicates whether the control is visible or not. Setting this property to False causes the Hide method to be
called, whereas setting this property to True causes the Show method to be called. The default value is
True.

Component Reference

Page 1047

TControl.VisibleControlCount Property

property VisibleControlCount: Integer

Indicates the total number of visible child controls for the control. A visible child control is one whose
Visible property is True.

Component Reference

Page 1048

TControl.VisibleControls Property

property VisibleControls[AIndex: Integer]: TControl

Accesses a visible child control by its index position in the child controls, which are ordered by their
LayoutOrder property.

Component Reference

Page 1049

TControl.Width Property

property Width: Integer

Indicates the current width of the control, and can be used to specify the defined width for the control.
The defined width is the last value that was directly assigned to the Width property. Layout property
changes may affect the value returned by the Width property.

Component Reference

Page 1050

TControl.BeginUpdate Method

procedure BeginUpdate

Use this method to begin a batch update on a control. A control is in a batch update if the BeginUpdate
method is called on the control, or any of its parent controls. When a control is in a batch update, it
doesn't apply any changes to any of its properties until the EndUpdate method is called on the control or
any of its parent controls, and the InUpdate property returns False.

Note
 Updates are reference-counted so calls to the BeginUpdate method increment the reference count,
and calls to the EndUpdate method decrement the reference count.

Component Reference

Page 1051

TControl.BringToFront Method

procedure BringToFront

Use this method to bring the control to the front of the visual stacking order. A control in the front will
have a DisplayOrder property equal to one less than the number of child controls in the parent container
control.

Component Reference

Page 1052

TControl.CanFocus Method

function CanFocus: Boolean

Use this method to determine if the current control can acquire input focus. Invisible and disabled
controls always return False when this method is called.

Component Reference

Page 1053

TControl.DefineLayout Method

procedure DefineLayout

Use this method to assign the current bounds of the control to the Left, Top, Width, and Height properties
of the control.

This method is useful in situations where a control has been positioned or sized according to its Layout
properties, but you wish to have the bounds persist even after modifying the layout properties so that
they no longer position or size the control in the same way.

Component Reference

Page 1054

TControl.EndUpdate Method

procedure EndUpdate

Use this method to end a batch update on a control. A control is in a batch update if the BeginUpdate
method is called on the control or any of its parent controls. When a control is in a batch update, it
doesn't apply any changes to any of its properties until the EndUpdate method is called on the control or
any of its parent controls, and the InUpdate property returns False.

Note
 Updates are reference-counted so calls to the BeginUpdate method increment the reference count,
and calls to the EndUpdate method decrement the reference count.

Component Reference

Page 1055

TControl.Float Method

procedure Float

Use this method to parent the control to the application surface and reset any layout properties set for the
control. This method is useful as the first step when dragging controls around the application surface.

The application surface is represented by the Surface property of the global Application variable in the
WebForms unit.

Component Reference

Page 1056

TControl.ForceUpdate Method

procedure ForceUpdate

Use this method to force the control to perform a layout update when in the middle of a
BeginUpdate/EndUpdate block. Normally, a control will not update its layout bounds when an update
block is in effect. A forced layout update will ensure that the control's layout bounds are updated to
reflect any layout changes applied to the control within the update block.

Component Reference

Page 1057

TControl.GetControlNames Method

function GetControlNames(AControlClass: TControlClass): array of
 String

Use method to get a list of the names of the child controls for the control.

Component Reference

Page 1058

TControl.Hide Method

procedure Hide

Use this method to hide the control. After calling this method, the Visible property will be set to False.

Component Reference

Page 1059

TControl.IndexOfControl Method

function IndexOfControl(AControl: TControl; AControlClass:
 TControlClass=nil): Integer

Use this method to determine the index of a child control within the Controls property. You can,
optionally, also pass a TControlClass type to limit the search to a particular TControl class type.

Component Reference

Page 1060

TControl.MakeVisible Method

procedure MakeVisible(X,Y: Boolean=True)

Use this method to ensure that the control is visible within the client rectangle of its parent control.

Component Reference

Page 1061

TControl.Minimize Method

procedure Minimize

Use this method to minimize the control. The minimization of a control is a control-specific operation, so
the results of calling this method will depend upon the control class of the control being minimized.

Component Reference

Page 1062

TControl.RemoveFocus Method

procedure RemoveFocus

Use this method to remove focus from the control. If the control is not focused, then this method does
nothing.

Component Reference

Page 1063

TControl.Restore Method

procedure Restore

Use this method to restore a minimized control back to its original dimensions.

Component Reference

Page 1064

TControl.ScrollBy Method

procedure ScrollBy(X,Y: Integer)

If a control's content width and/or height is greater than its Width and Height properties, then you can
use this method to scroll the contents of the control horizontally, vertically, or both. The X and Y values
represent the number of pixels by which to scroll the contents, and may be negative values for scrolling
backward.

Component Reference

Page 1065

TControl.SendToBack Method

procedure SendToBack

Use this method to send the control to the back of the visual stacking order. A control in the back will
have a DisplayOrder property equal to 0.

Component Reference

Page 1066

TControl.SetFocus Method

procedure SetFocus

Use this method to set focus to the control. Use the Focused property to determine if the control was
actually able to obtain the focus.

The ability of a control to obtain the input focus is dependent upon:

Whether the control is focusable

Whether the control is visible

Whether its parent container control is visible

Component Reference

Page 1067

TControl.Show Method

procedure Show

Use this method to show the control. After calling this method, the Visible property will be set to True.

Component Reference

Page 1068

TControl.SlideTo Method

procedure SlideTo(X,Y: Integer; AnimationStyle: TAnimationStyle;
 AnimationDuration: Integer; Fade: Boolean=False)

Use this method to slide the control to a specific location using a specific animation style/duration and,
optionally, with a corresponding fade (hides the control).

Note
 This method updates the properties of the Left, Top, and, optionally, the Visible animation
primitives for the control's Animations property.

Component Reference

Page 1069

TControl.Tab Method

procedure Tab(Backward: Boolean=False)

Use this method to navigate to the next or prior control after/before the currently-focused control, based
upon the tabbing order for the container control.

The Backward parameter determines if the navigation occurs forwards or backwards in the tabbing order.

Component Reference

Page 1070

10.48 TCookies Component

Unit: WebComps

Inherits From TObject

The TCookies class encapsulates the cookie functionality in the web browser.

Note
 The component library includes a global instance variable of this class called Cookies in the
WebComps unit that should be used instead of creating new instances of the class.

Warning
 Do not attempt to store more than 4k of data in a single cookie (name and value combined). If you
need to store more data than that, then you should use the Local Storage functionality instead.

Properties Methods Events

Count Clear

Enabled Create

Items Exists

Refresh

Set

Component Reference

Page 1071

TCookies.Count Property

property Count: Integer

Indicates the number of cookies defined.

Component Reference

Page 1072

TCookies.Enabled Property

property Enabled: Boolean

Indicates whether cookies are enabled or not in the web browser. If this property is False, then the cookie
functionality is disabled and the TCookies object will not function properly.

Component Reference

Page 1073

TCookies.Items Property

property Items[Index: Integer]: String

property Items[const AName: String]: String

Accesses all defined cookies by index or by name.

Component Reference

Page 1074

TCookies.Clear Method

procedure Clear(const AName: String; const Path: String='';
 const Domain: String=''; Secure: Boolean=False)

Use this method to clear an existing cookie. The Name parameter is the cookie name, the Path parameter
is the relative path under the domain that the cookie applies to, the Domain parameter is the web site
domain that the cookie applies to, and the Secure parameter indicates whether the cookie applies to a
secure domain/path (https://) or a normal domain/path (http://).

Note
 Use the Exists method to determine if a cookie exists before trying to clear the cookie.

Component Reference

Page 1075

TCookies.Create Method

constructor Create

Use this method to create a new instance of the TCookies class.

Component Reference

Page 1076

TCookies.Exists Method

function Exists(const AName: String): Boolean

Use this method to determine if the specified cookie exists.

Component Reference

Page 1077

TCookies.Refresh Method

procedure Refresh

Use this method to reload the cookies from the web browser. This is useful for situations where an
embedded HTML document in a TBrowser control has modified the cookies and these modifications need
to be reflected in the global TCookies instance.

Note
 Cookies are cached in a TCookies instance and do not immediately reflect changes to the web
browser cookies done via third party JavaScript code or embedded documents. This is why this
method is necessary.

Component Reference

Page 1078

TCookies.Set Method

procedure Set(const AName: String; const Value: String; MaxAge:
 Integer=-1; const Path: String=''; const Domain: String='';
 Secure: Boolean=False)

Use this method to set a cookie value. The Name parameter is the cookie name, the MaxAge parameter
specifies the length of time, in seconds, that the browser should cache the cookie, the Path parameter is
the relative path under the domain that the cookie applies to, the Domain parameter is the web site
domain that the cookie applies to, and the Secure parameter indicates whether the cookie applies to a
secure domain/path (https://) or a normal domain/path (http://).

Note
 Using -1 (or any value less than 0) as the MaxAge parameter causes the cookie to be a session-
only cookie that is automatically deleted by the web browser when it is closed/shut down.

Component Reference

Page 1079

10.49 TCorner Component

Unit: WebUI

Inherits From TElementAttribute

The TCorners class represents the horizontal and vertical radius of a border corner for a UI element or
control.

Properties Methods Events

HorzRadius SetToDefault

VertRadius

Component Reference

Page 1080

TCorner.HorzRadius Property

property HorzRadius: Integer

Specifies the horizontal radius.

Component Reference

Page 1081

TCorner.VertRadius Property

property VertRadius: Integer

Specifies the vertical radius.

Component Reference

Page 1082

TCorner.SetToDefault Method

procedure SetToDefault

Use this method to reset the corner's properties to their default values.

Component Reference

Page 1083

10.50 TCorners Component

Unit: WebUI

Inherits From TElementAttribute

The TCorner class represents the horizontal and vertical radii of the border corners for a UI element or
control.

Properties Methods Events

BottomLeft SetToDefault

BottomRight

TopLeft

TopRight

Component Reference

Page 1084

TCorners.BottomLeft Property

property BottomLeft: TCorner

Specifies the bottom-left corner radius.

Component Reference

Page 1085

TCorners.BottomRight Property

property BottomRight: TCorner

Specifies the bottom-right corner radius.

Component Reference

Page 1086

TCorners.TopLeft Property

property TopLeft: TCorner

Specifies the top-left corner radius.

Component Reference

Page 1087

TCorners.TopRight Property

property TopRight: TCorner

Specifies the top-right corner radius.

Component Reference

Page 1088

TCorners.SetToDefault Method

procedure SetToDefault

Use this method to reset the corners' properties to their default values.

Component Reference

Page 1089

10.51 TDatabase Component

Unit: WebData

Inherits From TComponent

The TDatabase component represents a database container for all datasets in an application and provides
properties and methods for loading/saving datasets and using transactions to modify the datasets. An
instance of the TDatabase component called Database is automatically created by the component library
at application startup, so further instances of the TDatabase component should not be created.

Properties Methods Events

AuthenticationMethod CancelPendingRequests AfterCommit

AutoTransactions Commit AfterRollback

BaseURL GetTransactions BeforeCommit

DatabaseName LoadColumns BeforeRollback

DataSetCount LoadRows OnCommitError

DataSets LoadTransactions OnCreate

InTransaction RetryPendingRequests OnDestroy

NumPendingRequests Rollback OnRollbackError

Params StartTransaction

Password

Timeout

TransactionLevel

UserName

Component Reference

Page 1090

TDatabase.AuthenticationMethod Property

property AuthenticationMethod: TAuthenticationMethod

Specifies the authentication method to use when sending authentication information to the web server
along with dataset requests.

Component Reference

Page 1091

TDatabase.AutoTransactions Property

property AutoTransactions: Boolean

Specifies whether transactions will be automatically started and committed or rolled back as rows are
inserted, updated, and deleted in the datasets owned by the database. The default value is True.

Note
 Automatic transactions are implicitly nested. If you insert a row in one table, and then edit a row in
another table, the TransactionLevel property will be 1.

Component Reference

Page 1092

TDatabase.BaseURL Property

property BaseURL: String

Specifies the base URL used for all dataset requests. The default value is "datasets".

Component Reference

Page 1093

TDatabase.DatabaseName Property

property DatabaseName: String

Specifies the name of the database to use with a URL when building a web server request for loading the
columns or rows of a dataset from the web server application, or when building a web server request for
committing a transaction to the web server application.

Component Reference

Page 1094

TDatabase.DataSetCount Property

property DataSetCount: Integer

Indicates the number of datasets that have been created in the application.

Component Reference

Page 1095

TDatabase.DataSets Property

property DataSets[Index: Integer]: TDataSet

property DataSets[const Name: String]: TDataSet

Accesses all datasets in the application by index or by name.

Component Reference

Page 1096

TDatabase.InTransaction Property

property InTransaction: Boolean

Indicates whether a transaction is active or not.

Component Reference

Page 1097

TDatabase.NumPendingRequests Property

property NumPendingRequests: Integer

Indicates the number of pending database load/commit web server requests. If any errors were
encountered during a dataset load or database transaction commit operation, then the web server request
used with the operation will remain as a pending request. You can use the RetryPendingRequests to retry
all pending requests, or the CancelPendingRequests to cancel all pending requests.

Component Reference

Page 1098

TDatabase.Params Property

property Params: TStrings

Specifies any custom database-specific name/value parameters to use with any dataset requests. These
parameters are sent along with the built-in parameters used by the database and datasets, and are useful
for specifying additional parameters for the web server application to use.

Component Reference

Page 1099

TDatabase.Password Property

property Password: String

Specifies the password to use for any LoadColumns, LoadRows, or Commit calls. This property is used in
conjunction with the UserName property to provide authentication information to the web server
application.

Component Reference

Page 1100

TDatabase.Timeout Property

property Timeout: Integer

Specifies how long any database request should wait, in milliseconds, for a successful connection to the
server before returning an error. The default value is 0, which means to wait a browser-defined number of
milliseconds.

Component Reference

Page 1101

TDatabase.TransactionLevel Property

property TransactionLevel: Integer

Indicates the current transaction level. A value of -1 means that no transaction is active, while a value of 0
or higher indicates that a transaction is active up to N levels of nesting.

Component Reference

Page 1102

TDatabase.UserName Property

property UserName: String

Specifies the user name to use for any LoadColumns, LoadRows, or Commit calls. This property is used in
conjunction with the Password property to provide authentication information to the web server
application.

Component Reference

Page 1103

TDatabase.CancelPendingRequests Method

procedure CancelPendingRequests

Use this method to cancel any pending dataset load or transaction commit requests. You can determine if
there are any pending requests by examining the NumPendingRequests property.

Component Reference

Page 1104

TDatabase.Commit Method

procedure Commit

Use this method to commit the active transaction.

Component Reference

Page 1105

TDatabase.GetTransactions Method

function GetTransactions: String

Use this method to retrieve all active transaction operations, including any nested transactions, for the
database as a JSON string that can be stored using a TPersistentStorage instance.

Component Reference

Page 1106

TDatabase.LoadColumns Method

procedure LoadColumns(DataSet: TDataSet)

Use this method to load the columns for the specified dataset from the web server. This method will
replace all existing columns in the specified dataset with the columns defined in the JSON returned from
the request.

Component Reference

Page 1107

TDatabase.LoadRows Method

procedure LoadRows(DataSet: TDataSet; Append: Boolean=False)

Use this method to load the rows for the specified dataset from the web server. Specify True for the
Append parameter to have the rows appended to the dataset. The default behavior is to replace all rows
in the dataset with the rows returned by the web server during the execution of this method.

Component Reference

Page 1108

TDatabase.LoadTransactions Method

procedure LoadTransactions(const Value: String)

Use this method to load transactions operations, including nested transactions, for the database from a
JSON string.

Warning
 All datasets that were present when the transactions operations were retrieved as a JSON string
must be present when using this method to re-load the transaction operations. If a dataset that was
updated in a transaction is no longer present, then this method will raise an exception.

Component Reference

Page 1109

TDatabase.RetryPendingRequests Method

procedure RetryPendingRequests

Use this method to retry any pending dataset load or transaction commit requests. You can determine if
there are any pending requests by examining the NumPendingRequests property.

Component Reference

Page 1110

TDatabase.Rollback Method

procedure Rollback

Use this method to roll back the active transaction.

Component Reference

Page 1111

TDatabase.StartTransaction Method

procedure StartTransaction

Use this method to start a new transaction.

Component Reference

Page 1112

TDatabase.AfterCommit Event

property AfterCommit: TNotifyEvent

This event is triggered after the Commit method completes.

Component Reference

Page 1113

TDatabase.AfterRollback Event

property AfterRollback: TNotifyEvent

This event is triggered after the Rollback method completes.

Component Reference

Page 1114

TDatabase.BeforeCommit Event

property BeforeCommit: TDatabaseEvent

This event is triggered before the Commit method starts. Return False from the event handler to prevent
the commit from occurring.

Component Reference

Page 1115

TDatabase.BeforeRollback Event

property BeforeRollback: TDatabaseEvent

This event is triggered before the Rollback method starts. Return False from the event handler to prevent
the rollback from occurring.

Component Reference

Page 1116

TDatabase.OnCommitError Event

property OnCommitError: TDatabaseErrorEvent

This event is triggered whenever an error occurs during the execution of the Commit method.

Note
 If an event handler is not assigned to this event, then the error will be raised as an exception.

Component Reference

Page 1117

TDatabase.OnCreate Event

property OnCreate: TNotifyEvent

This event is triggered after the database is created and initialized.

Note
 Any design-time components placed on the database will already be instantiated and initialized
before this event is triggered.

Component Reference

Page 1118

TDatabase.OnDestroy Event

property OnDestroy: TNotifyEvent

This event is triggered before the database is destroyed. Use this event to dispose of any instances or
resources that may have been allocated in the OnCreate event handler.

Component Reference

Page 1119

TDatabase.OnRollbackError Event

property OnRollbackError: TDatabaseErrorEvent

This event is triggered whenever an error occurs during the execution of the Rollback method.

Note
 If an event handler is not assigned to this event, then the error will be raised as an exception.

Component Reference

Page 1120

10.52 TDataColumn Component

Unit: WebData

Inherits From TCollectionItem

The TDataColumn class represents a column in a TDataSet component and contains functionality for
getting and setting column values, tracking modifications, and sorting.

Properties Methods Events

AsBoolean Clear OnGetText

AsDate OnSetText

AsDateTime

AsFloat

AsInteger

AsString

AsTime

Calculated

DataType

Length

Modified

Null

OldValue

ReadOnly

Scale

SortDirection

SortIndex

Text

Component Reference

Page 1121

TDataColumn.AsBoolean Property

property AsBoolean: Boolean

Gets or sets the column value in the active row as a boolean value. If the column value cannot be
expressed as a boolean value, then an exception will be raised.

Component Reference

Page 1122

TDataColumn.AsDate Property

property AsDate: DateTime

Gets or sets the column value in the active row as a date value. If the column value cannot be expressed as
a date value, then an exception will be raised.

Component Reference

Page 1123

TDataColumn.AsDateTime Property

property AsDateTime: DateTime

Gets or sets the column value in the active row as a date/time value. If the column value cannot be
expressed as a date/time value, then an exception will be raised.

Component Reference

Page 1124

TDataColumn.AsFloat Property

property AsFloat: Double

Gets or sets the column value in the active row as a floating-point value. If the column value cannot be
expressed as a floating-point value, then an exception will be raised.

Component Reference

Page 1125

TDataColumn.AsInteger Property

property AsInteger: Integer

Gets or sets the column value in the active row as an integer value. If the column value cannot be
expressed as an integer value, then an exception will be raised.

Component Reference

Page 1126

TDataColumn.AsString Property

property AsString: String

Gets or sets the column value in the active row as a string value. If the column value cannot be expressed
as a string value, then an exception will be raised.

Component Reference

Page 1127

TDataColumn.AsTime Property

property AsTime: DateTime

Gets or sets the column value in the active row as a time value. If the column value cannot be expressed as
a time value, then an exception will be raised.

Component Reference

Page 1128

TDataColumn.Calculated Property

property Calculated: Boolean

Specifies that the column is calculated via the TDataSet OnCalculateRow event handler, if one exists.

Note
 Any attempt to programmatically modify a calculated column outside of an OnCalculateRow event
handler will result in an error.

Component Reference

Page 1129

TDataColumn.DataType Property

property DataType: TDataType

Gets or sets the data type of the column.

Note
 Attempting to change the data type of a column for a dataset that has been opened will result in
an exception.

Component Reference

Page 1130

TDataColumn.Length Property

property Length: Integer

Gets or sets the length of the column. The length should only be set for string and BLOB column types
and all other column types should have a length of -1.

Note
 Attempting to change the length of a column for a dataset that has been opened will result in an
exception.

Component Reference

Page 1131

TDataColumn.Modified Property

property Modified: Boolean

Indicates if the column has been modified in the active row as part of an insert or update operation.

Component Reference

Page 1132

TDataColumn.Null Property

property Null: Boolean

Indicates if the column in the active row is NULL.

Component Reference

Page 1133

TDataColumn.OldValue Property

property OldValue: TDataValue

Provides a reference to the prior version of the column value when updating a row in a dataset.

Component Reference

Page 1134

TDataColumn.ReadOnly Property

property ReadOnly: Boolean

Specifies that the column is read-only.

Note
 Any attempt to programmatically modify a read-only column will result in an error.

Component Reference

Page 1135

TDataColumn.Scale Property

property Scale: Integer

Gets or sets the scale of the column. The scale should only be set for floating-point column types and all
other column types should have a scale of -1.

Note
 Attempting to change the scale of a column for a dataset that has been opened will result in an
exception.

Component Reference

Page 1136

TDataColumn.SortDirection Property

property SortDirection: TSortDirection

Specifies whether the column participates in the active sort for the dataset and, if so, which direction the
column should be sorted in.

Component Reference

Page 1137

TDataColumn.SortIndex Property

property SortIndex: Integer

If the SortDirection property is not equal to sdNone, then this property indicates the position of the
column in the active sort for the dataset.

Component Reference

Page 1138

TDataColumn.Text Property

property Text: String

Gets or sets the column display text in the active row as a string value. Reading this property triggers the
OnGetText event for the column and assigning a value to this property triggers the OnSetText event for
the column.

Component Reference

Page 1139

TDataColumn.Clear Method

procedure Clear

Use this method to clear the column value in the active row and set the Null property to True. This will
also cause the Modified property to be set to True.

Component Reference

Page 1140

TDataColumn.OnGetText Event

property OnGetText: TDataColumnTextEvent

This event is triggered when the TDataColumn Text property is read, giving the application a chance to
format the resultant text as required. Visual controls that are bound to a column use the Text property to
display the data for the column.

Component Reference

Page 1141

TDataColumn.OnSetText Event

property OnSetText: TDataColumnTextEvent

This event is triggered when the TDataColumn Text property is assigned a value, giving the application a
chance to format or parse the text as required before it is actually stored in the column. Visual controls
that are bound to a column use the Text property to assign the data for the column as it is modified by
the end user.

Component Reference

Page 1142

10.53 TDataColumns Component

Unit: WebData

Inherits From TCollection

The TDataColumns class represents the list of columns in a TDataSet component and contains
functionality for managing the columns.

Properties Methods Events

Column

Component Reference

Page 1143

TDataColumns.Column Property

property Column[Index: Integer]: TDataColumn

property Column[const Name: String]: TDataColumn

Accesses all columns in the dataset by index or by name.

Component Reference

Page 1144

10.54 TDataRow Component

Unit: WebData

Inherits From TDataValues

The TDataRow class represents a row in a TDataSet component. You can access the column values for the
current row in a dataset via the TDataSet Columns property.

Properties Methods Events

Component Reference

Page 1145

10.55 TDataSet Component

Unit: WebData

Inherits From TComponent

The TDataSet component represents a dataset and includes functionality for opening, loading, navigating,
searching, sorting, updating, and closing datasets. Every dataset that is created is automatically added to
the TDatabase DataSets property.

Component Reference

Page 1146

Properties Methods Events

AutoEdit BeginControlUpdate AfterCancel

BOF Cancel AfterClose

ColumnCount CheckBrowseMode AfterDelete

Columns Close AfterInsert

DataSetName Delete AfterLoad

Editing DisableControls AfterLoadColumns

EOF Empty AfterOpen

LocalizeDateTimeColumns EnableControls AfterSave

Modified EndControlUpdate AfterScroll

OwnerDatabase Find AfterUpdate

Params First BeforeCancel

RowCount FreeBookmark BeforeClose

RowID GetColumns BeforeDelete

RowNo GetRows BeforeInsert

SortCaseInsensitive GotoBookmark BeforeLoad

Sorted InitFind BeforeLoadColumns

SortLocaleInsensitive Insert BeforeOpen

State Last BeforeSave

LoadColumns BeforeScroll

LoadRows BeforeUpdate

MoveBy OnCalculateRow

MoveTo OnInitRow

Next OnLoadColumnsError

Open OnLoadError

Prior OnRowChanged

Save OnSortChanged

SaveBookmark OnStateChange

Sort

Update

Component Reference

Page 1147

TDataSet.AutoEdit Property

property AutoEdit: Boolean

Specifies whether the dataset can be automatically edited by the user using data-bound visual controls.

Component Reference

Page 1148

TDataSet.BOF Property

property BOF: Boolean

Indicates whether the row pointer is on the first row in the set of rows in the dataset. This property is only
set to True if the First method is called, if the row pointer attempts to navigate beyond the first row using
the Prior method, or if the dataset is empty.

Component Reference

Page 1149

TDataSet.ColumnCount Property

property ColumnCount: Integer

Indicates the number of columns in the dataset.

Component Reference

Page 1150

TDataSet.Columns Property

property Columns: TDataColumns

Provides access to the columns in the dataset.

Component Reference

Page 1151

TDataSet.DataSetName Property

property DataSetName: String

Specifies the name of the dataset to use with a URL when building a web server request for loading the
columns or rows of the dataset from the web server application.

Component Reference

Page 1152

TDataSet.Editing Property

property Editing: Boolean

Indicates whether the dataset is currently inserting or updating the active row via the Insert or Update
methods, or if the dataset is currently searching for a row via the Find method.

Component Reference

Page 1153

TDataSet.EOF Property

property EOF: Boolean

Indicates whether the row pointer is on the last row in the set of rows in the dataset. This property is only
set to True if the Last method is called, the row pointer attempts to navigate beyond the last row using
the Next method, or if the dataset is empty.

Component Reference

Page 1154

TDataSet.LocalizeDateTimeColumns Property

property LocalizeDateTimeColumns: Boolean

Specifies whether the dataset will localize date/time column values when converting them to/from strings.
The default value is False.

Component Reference

Page 1155

TDataSet.Modified Property

property Modified: Boolean

Indicates whether the active row in the dataset has been modified since the Insert, Update, or Find
methods have been called.

Component Reference

Page 1156

TDataSet.OwnerDatabase Property

property OwnerDatabase: TDatabase

Indicates the TDatabase instance that owns the dataset.

Component Reference

Page 1157

TDataSet.Params Property

property Params: TStrings

Specifies any custom dataset-specific name/value parameters to use with any dataset requests for this
dataset. These parameters are sent along with the built-in parameters used by the database and datasets,
and are useful for specifying additional parameters for the web server application to use.

Component Reference

Page 1158

TDataSet.RowCount Property

property RowCount: Integer

Indicates the number of rows in the dataset.

Component Reference

Page 1159

TDataSet.RowID Property

property RowID: Integer

Gets or sets the row ID for the active row in the dataset. If this property is set, then the dataset will
automatically navigate to the row that contains the specified row ID, if a row exists with a matching row
ID. Each row in a dataset contains an ID that uniquely identifies the row in the dataset.

Component Reference

Page 1160

TDataSet.RowNo Property

property RowNo: Integer

Gets or sets the row number for the active row in the dataset. If this property is set, then the dataset will
automatically navigate to the specified row number, if the row number is greater than 0 and less than or
equal to the RowCount property.

Note
 The row number for a row is a logical construct, which means that it can change as the dataset is
sorted, or as rows are inserted or deleted in the dataset.

Component Reference

Page 1161

TDataSet.SortCaseInsensitive Property

property SortCaseInsensitive: Boolean

Specifies whether or not an active sort on the dataset, as indicated by the Sorted property, should be
case-sensitive.

Note
 Changing this property will trigger a sort on the dataset if the Sorted property is True.

Component Reference

Page 1162

TDataSet.Sorted Property

property Sorted: Boolean

Indicates whether any of the Columns in the dataset have their SortDirection property set to sdAscending
or sdDescending.

Note
 This property does not indicate whether the dataset has actually been sorted yet via the Sort
method. The sorting is designed this way in order to allow multiple columns to be designated as
sort columns without triggering an automatic sort operation each time.

Component Reference

Page 1163

TDataSet.SortLocaleInsensitive Property

property SortLocaleInsensitive: Boolean

Specifies whether or not an active sort on the dataset, as indicated by the Sorted property, should be
locale-sensitive.

Note
 Changing this property will trigger a sort on the dataset if the Sorted property is True.

Component Reference

Page 1164

TDataSet.State Property

property State: TDataSetState

Indicates the state of the dataset.

Component Reference

Page 1165

TDataSet.BeginControlUpdate Method

procedure BeginControlUpdate

Use this method to disable any notifications to data-bound controls and the triggering of dataset events
until the EndControlUpdate method is called. Both of these methods are referenced-counted, so nested
calls to the BeginControlUpdate method result in the reference count being incremented, while nested
calls to the EndControlUpdate method result in the reference count being decremented. Once the
reference count reaches 0, notifications to data-bound controls and the triggering of dataset events will
resume.

Note
 This method is primarily useful to component developers. The difference between this method and
the DisableControls method is that this method also disables the triggering of all dataset events.

Component Reference

Page 1166

TDataSet.Cancel Method

procedure Cancel

Use this method to cancel any active insert, update, or find operation, changing the State to dsBrowse.

Component Reference

Page 1167

TDataSet.CheckBrowseMode Method

function CheckBrowseMode: Boolean

Checks to see if the dataset State is set to dsBrowse, and if not, performs the following actions:

If the dataset is in the process of inserting or updating the active row and has modified the row,
then the Save method will be called. If the row has not been modified, then the Cancel method will
be called instead.

If the dataset is in the process of finding a row, then the Cancel method will be called.

Component Reference

Page 1168

TDataSet.Close Method

procedure Close

Use this method to close an open dataset.

Note
 Datasets must be closed in order to modify the Columns in the dataset.

Component Reference

Page 1169

TDataSet.Delete Method

procedure Delete

Use this method to delete the active row in the dataset. Before the deletion occurs, the BeforeDelete event
is triggered, allowing the deletion to be aborted, if necessary. After the deletion occurs, the AfterDelete
event is triggered.

Note
 If a transaction is active, as indicated by the TDatabase InTransaction property, then the Delete
method also logs the current delete operation for inclusion in the current transaction. Please see
the Transactions topic for more information.

Component Reference

Page 1170

TDataSet.DisableControls Method

procedure DisableControls

Use this method to disable any notifications to data-bound controls until the EnableControls method is
called, which is useful when performing lengthy operations on datasets that also have controls bound to
them. Both of these methods are referenced-counted, so nested calls to the DisableControls method
result in the reference count being incremented, while nested calls to the EnableControls method result in
the reference count being decremented. Once the reference count reaches 0, notifications to data-bound
controls will resume and the controls will actively reflect any changes to the active row in the dataset.

Component Reference

Page 1171

TDataSet.Empty Method

procedure Empty

Use this method to remove all rows from the dataset.

Warning
 This method does not log the removal of the rows, even if a transaction is currently active for the
global TDatabase instance.

Component Reference

Page 1172

TDataSet.EnableControls Method

procedure EnableControls

Use this method to enable any notifications to data-bound controls that were disabled using the
DisableControls method. Both of these methods are referenced-counted, so nested calls to the
DisableControls method result in the reference count being incremented, while nested calls to the
EnableControls method result in the reference count being decremented. Once the reference count
reaches 0, notifications to data-bound controls will resume and the controls will actively reflect any
changes to the active row in the dataset.

Component Reference

Page 1173

TDataSet.EndControlUpdate Method

procedure EndControlUpdate

Use this method to enable any notifications to data-bound controls and the triggering of dataset events
that were disabled using the BeginControlUpdate method. Both of these methods are referenced-
counted, so nested calls to the BeginControlUpdate method result in the reference count being
incremented, while nested calls to the EndControlUpdate method result in the reference count being
decremented. Once the reference count reaches 0, notifications to data-bound controls and the triggering
of dataset events will resume.

Note
 This method is primarily useful to component developers. The difference between this method and
the EnableControls method is that this method also enables the triggering of all dataset events.

Component Reference

Page 1174

TDataSet.Find Method

function Find(NearestMatch: Boolean=False; CaseInsensitive:
 Boolean=False; LocaleInsensitive: Boolean=False): Boolean

Use this method to complete a find operation and perform the actual search of the dataset for a row that
matches the column values assigned to the various columns after the InitFind method was called. This
method will return True if a row is found with the specified column values, or False if not. Specify True for
the NearestMatch parameter to cause the search to return the closest match to the desired row, if the
desired row cannot be found. Specify True for the CaseInsensitive parameter to cause the search to be
executed in a case-insensitive manner for any string columns.

Note
 The NearestMatch parameter can only be set to True if there is an active sort on the dataset, as
specified by the Sorted property, and the column values that were modified after the InitFind
method was called match the columns in the active sort. Also, the CaseInsensitive parameter must
also match the SortCaseInsensitive property if there is an active sort on the dataset.

Component Reference

Page 1175

TDataSet.First Method

procedure First

Use this method to move to the first row in the dataset, taking into account any active sort on the dataset.

Component Reference

Page 1176

TDataSet.FreeBookmark Method

procedure FreeBookmark

Use this method to free the bookmark last saved via the SaveBookmark method. Bookmark operations are
stack-based, so every call to the SaveBookmark method must be followed by a call to the GotoBookmark
or FreeBookmark method in order to ensure proper operation.

Component Reference

Page 1177

TDataSet.GetColumns Method

function GetColumns: String

Use this method to retrieve the defined Columns for the dataset as a JSON string that can either be stored
using a TPersistentStorage instance, or sent to the back-end web server using a TServerRequest instance.

Component Reference

Page 1178

TDataSet.GetRows Method

function GetRows: String

Use this method to retrieve the rows in the dataset as a JSON string that can either be stored using a
TPersistentStorage instance, or sent to the back-end web server using a TServerRequest instance.

Component Reference

Page 1179

TDataSet.GotoBookmark Method

function GotoBookmark: Boolean

Use this method to move the row pointer to the bookmark last saved via the SaveBookmark method, and
then free the bookmark. Bookmark operations are stack-based, so every call to the SaveBookmark method
must be followed by a call to the GotoBookmark or FreeBookmark method in order to ensure proper
operation.

Component Reference

Page 1180

TDataSet.InitFind Method

procedure InitFind

Use this method to begin searching for a row in the dataset. After modifying the columns that you wish to
search on, use the Find method to complete the search for the row.

Component Reference

Page 1181

TDataSet.Insert Method

procedure Insert(Append: Boolean=False)

Use this method to begin inserting a new row in the dataset. If the Append parameter is True, then the
new row will be appended to the end of the dataset, and if the Append parameter is False, then the new
row will be inserted at the active row position in the dataset. Before the insert occurs, the BeforeInsert
event is triggered, allowing the insertion to be aborted, if necessary. The OnInitRow event is then
triggered to allow the new row to be initialized without flagging the row as being modified. After the
insertion occurs, the AfterInsert event is triggered.

Use the Save method to complete the insertion of the new row.

Component Reference

Page 1182

TDataSet.Last Method

procedure Last

Use this method to move to the last row in the dataset, taking into account any active sort on the dataset.

Component Reference

Page 1183

TDataSet.LoadColumns Method

procedure LoadColumns(const ColumnData: String)

Use this method to load the columns for a dataset from a JSON string. Please see the JSON Reference
topic for more information on how the JSON string should be formatted.

Note
 The dataset must be closed or an exception will be raised when this method is called.

Component Reference

Page 1184

TDataSet.LoadRows Method

procedure LoadRows(const RowData: String; Append: Boolean=False)

Use this method to load the rows for a dataset from a JSON string. Please see the JSON Reference topic
for more information on how the JSON string should be formatted.

Note
 The dataset must be open or an exception will be raised when this method is called.

Component Reference

Page 1185

TDataSet.MoveBy Method

function MoveBy(Value: Integer): Integer

Use this method to move N number of rows forward or backward relative to the active row in the dataset,
taking into account any active sort on the dataset. If the number of rows passed as the parameter to this
method is negative, then the row pointer is moved backward in the dataset. If the number of rows is
positive, then the row pointer is moved forward in the dataset.

If the row pointer cannot be moved the specified number of rows without proceeding past the first or last
rows in the dataset, then the row pointer will be positioned at the first or last row in the dataset, setting
the BOF and/or EOF properties as required.

Component Reference

Page 1186

TDataSet.MoveTo Method

procedure MoveTo(Value: Integer)

Use this method to move to a specific position in the dataset, taking into account any active sort on the
dataset. If the position specified is less than 1 or greater than the number of rows in the dataset, then the
row pointer will be positioned at the first or last row in the dataset, setting the BOF and/or EOF properties
as required.

Component Reference

Page 1187

TDataSet.Next Method

procedure Next

Use this method to move the row pointer to the next row in the dataset, taking into account any active
sort on the dataset. If the row pointer is already pointing to the last row in the dataset, then the EOF
property will be set to True.

Component Reference

Page 1188

TDataSet.Open Method

procedure Open

Use this method to open a closed dataset.

Note
 Datasets must be open in order to load rows into the dataset via the LoadRows method.

Component Reference

Page 1189

TDataSet.Prior Method

procedure Prior

Use this method to move the row pointer to the prior row in the dataset, taking into account any active
sort on the dataset. If the row pointer is already pointing to the first row in the dataset, then the BOF
property will be set to True.

Component Reference

Page 1190

TDataSet.Save Method

procedure Save

Use this method to complete an Insert or Update operation. Before the save occurs, the BeforeSave event
is triggered, allowing the save to be aborted, if necessary. After the save occurs, the AfterSave event is
triggered.

Note
 If a transaction is active, as indicated by the TDatabase InTransaction property, then the Save
method also logs the current insert or update operation for inclusion in the current transaction.
Please see the Transactions topic for more information.

Component Reference

Page 1191

TDataSet.SaveBookmark Method

procedure SaveBookmark

Use this method to save the row pointer as a bookmark. Bookmark operations are stack-based, so every
call to the SaveBookmark method must be followed by a call to the GotoBookmark or FreeBookmark
method in order to ensure proper operation.

Component Reference

Page 1192

TDataSet.Sort Method

procedure Sort

Use this method to sort the dataset when the Sorted property is True and sort columns have been
specified for the dataset. The TDataColumn SortDirection property setting controls which columns are
sorted, and how.

If no columns have a SortDirection property other than sdNone, then this method does nothing.

The SortCaseInsensitive and SortLocaleInsensitive properties control how the sort is performed.

Note
 The Sort method only needs to be called once after the sort directions are initially assigned for the
columns. After that point, any row operations will automatically maintain the active sort.

Component Reference

Page 1193

TDataSet.Update Method

procedure Update

Use this method to begin updating the active row in the dataset. Before the update occurs, the
BeforeUpdate event is triggered, allowing the update to be aborted, if necessary. After the update occurs,
the AfterUpdate event is triggered.

Use the Save method to complete the update of the active row.

Component Reference

Page 1194

TDataSet.AfterCancel Event

property AfterCancel: TNotifyEvent

This event is triggered after the Cancel method completes.

Component Reference

Page 1195

TDataSet.AfterClose Event

property AfterClose: TNotifyEvent

This event is triggered after the Close method completes.

Component Reference

Page 1196

TDataSet.AfterDelete Event

property AfterDelete: TNotifyEvent

This event is triggered after the Delete method completes.

Component Reference

Page 1197

TDataSet.AfterInsert Event

property AfterInsert: TNotifyEvent

This event is triggered after the Insert method completes.

Component Reference

Page 1198

TDataSet.AfterLoad Event

property AfterLoad: TNotifyEvent

This event is triggered after the LoadRows method complete.

Component Reference

Page 1199

TDataSet.AfterLoadColumns Event

property AfterLoadColumns: TNotifyEvent

This event is triggered after the LoadColumns method completes.

Component Reference

Page 1200

TDataSet.AfterOpen Event

property AfterOpen: TNotifyEvent

This event is triggered after the Open method completes.

Component Reference

Page 1201

TDataSet.AfterSave Event

property AfterSave: TNotifyEvent

This event is triggered after the Save method completes.

Component Reference

Page 1202

TDataSet.AfterScroll Event

property AfterScroll: TNotifyEvent

This event is triggered after any navigation operation completes for a dataset. The following TDataSet
methods cause the AfterScroll event to be triggered:

 First
 Prior
 Next
 Last
 MoveBy
 MoveTo
 Find
 Sort
 GotoBookmark

Component Reference

Page 1203

TDataSet.AfterUpdate Event

property AfterUpdate: TNotifyEvent

This event is triggered after the Update method completes.

Component Reference

Page 1204

TDataSet.BeforeCancel Event

property BeforeCancel: TDataSetEvent

This event is triggered before the Cancel method starts. Return False from the event handler to prevent
the cancel from occurring.

Component Reference

Page 1205

TDataSet.BeforeClose Event

property BeforeClose: TDataSetEvent

This event is triggered before the Close method starts. Return False from the event handler to prevent the
close from occurring.

Component Reference

Page 1206

TDataSet.BeforeDelete Event

property BeforeDelete: TDataSetEvent

This event is triggered before the Delete method starts. Return False from the event handler to prevent
the deletion from occurring.

Component Reference

Page 1207

TDataSet.BeforeInsert Event

property BeforeInsert: TDataSetEvent

This event is triggered before the Insert method starts. Return False from the event handler to prevent the
insertion from occurring.

Component Reference

Page 1208

TDataSet.BeforeLoad Event

property BeforeLoad: TDataSetEvent

This event is triggered before the LoadRows method starts. Return False from the event handler to prevent
the rows load operation from occurring.

Component Reference

Page 1209

TDataSet.BeforeLoadColumns Event

property BeforeLoadColumns: TDataSetEvent

This event is triggered before the LoadColumns method starts. Return False from the event handler to
prevent the columns load operation from occurring.

Component Reference

Page 1210

TDataSet.BeforeOpen Event

property BeforeOpen: TDataSetEvent

This event is triggered before the Open method starts. Return False from the event handler to prevent the
open from occurring.

Component Reference

Page 1211

TDataSet.BeforeSave Event

property BeforeSave: TDataSetEvent

This event is triggered before the Save method starts. Return False from the event handler to prevent the
save from occurring.

Component Reference

Page 1212

TDataSet.BeforeScroll Event

property BeforeScroll: TDataSetEvent

This event is triggered before any navigation operation starts for a dataset. The following TDataSet
methods cause the BeforeScroll event to be triggered:

 First
 Prior
 Next
 Last
 MoveBy
 MoveTo
 Find
 Sort
 GotoBookmark

Return False from the event handler to prevent the navigation from occurring.

Component Reference

Page 1213

TDataSet.BeforeUpdate Event

property BeforeUpdate: TDataSetEvent

This event is triggered before the Update method starts. Return False from the event handler to prevent
the update from occurring.

Component Reference

Page 1214

TDataSet.OnCalculateRow Event

property OnCalculateRow: TDataRowEvent

This event is triggered whenever a column in a row of dataset is updated. You can use this event to re-
compute any calculated columns defined in the dataset.

Note
 You cannot modify non-calculated columns in an event handler attached to this event.

Component Reference

Page 1215

TDataSet.OnInitRow Event

property OnInitRow: TNotifyEvent

This event is triggered when the Insert method is called and provides an opportunity to initialize a new
row with default values. Any columns modified in this event handler have their Modified property reset
after the event handler for this event is done executing.

Component Reference

Page 1216

TDataSet.OnLoadColumnsError Event

property OnLoadColumnsError: TDataSetErrorEvent

This event is triggered whenever an error occurs during the execution of the LoadColumns method.

Note
 If an event handler is not assigned to this event, then the error will be raised as an exception.

Component Reference

Page 1217

TDataSet.OnLoadError Event

property OnLoadError: TDataSetErrorEvent

This event is triggered whenever an error occurs during the execution of the LoadRows method.

Note
 If an event handler is not assigned to this event, then the error will be raised as an exception.

Component Reference

Page 1218

TDataSet.OnRowChanged Event

property OnRowChanged: TDataRowEvent

This event is triggered whenever the active row, or any column in the active row, is changed.

Component Reference

Page 1219

TDataSet.OnSortChanged Event

property OnSortChanged: TDataRowEvent

This event is triggered whenever the active sort is changed.

Component Reference

Page 1220

TDataSet.OnStateChange Event

property OnStateChange: TNotifyEvent

This event is triggered whenever the State property changes.

Component Reference

Page 1221

10.56 TDataSetController Component

Unit: WebData

Inherits From TComponent

The TDataSetController component provides a way for a developer to respond to changes in a TDataSet
instance that is located on the same form/database or another form/database in a similar fashion to data-
bound controls. It also allows the developer to initiate the editing of a TDataSet instance via the Edit
method. The TDataSet instance to attach to is specified via the DataSet property.

Properties Methods Events

DataSet Edit OnDataChanged

OnSortChanged

OnStateChange

Component Reference

Page 1222

TDataSetController.DataSet Property

property DataSet: TDataSet

Specifies the dataset that the controller should attach to.

Component Reference

Page 1223

TDataSetController.Edit Method

function Edit: Boolean

Use this method to cause the attached DataSet to begin editing the current row. If the dataset is empty,
then a new row will be added.

Component Reference

Page 1224

TDataSetController.OnDataChanged Event

property OnDataChanged: TDataRowEvent

This event is triggered whenever the DataSet is changed via scrolling and navigation, inserts, updates, or
deletes.

Component Reference

Page 1225

TDataSetController.OnSortChanged Event

property OnSortChanged: TDataRowEvent

This event is triggered whenever the DataSet's active sort changes.

Component Reference

Page 1226

TDataSetController.OnStateChange Event

property OnStateChange: TNotifyEvent

This event is triggered whenever the DataSet's State changes.

Component Reference

Page 1227

10.57 TDataSetToolBar Component

Unit: WebTlbrs

Inherits From TToolBarControl

The TDataSetToolBar class represents a dataset toolbar control. When a dataset toolbar control is bound
to a TDataSet instance, it can be used to navigate and update the dataset and its buttons will
automatically be enabled/disabled to reflect the current dataset state.

Properties Methods Events

Background OnAnimationComplete

Border OnAnimationsComplete

Buttons OnButtonClick

Corners OnHide

Cursor OnMove

DataSet OnShow

Hint OnSize

InsetShadow

Opacity

Component Reference

Page 1228

TDataSetToolBar.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 1229

TDataSetToolBar.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 1230

TDataSetToolBar.Buttons Property

property Buttons: TDataSetToolBarButtons

Contains the pre-defined buttons for the toolbar.

Component Reference

Page 1231

TDataSetToolBar.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 1232

TDataSetToolBar.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1233

TDataSetToolBar.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 1234

TDataSetToolBar.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 1235

TDataSetToolBar.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 1236

TDataSetToolBar.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 1237

TDataSetToolBar.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 1238

TDataSetToolBar.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 1239

TDataSetToolBar.OnButtonClick Event

property OnButtonClick: TClickEvent

This event is triggered whenever one of the toolbar buttons is clicked.

Component Reference

Page 1240

TDataSetToolBar.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1241

TDataSetToolBar.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1242

TDataSetToolBar.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1243

TDataSetToolBar.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1244

10.58 TDataSetToolBarButton Component

Unit: WebTlbrs

Inherits From TToolBarButton

The TDataSetToolBarButton class represents a dataset toolbar button control contained within a
TDataSetToolBar instance.

Properties Methods Events

Component Reference

Page 1245

10.59 TDataSetToolBarButtons Component

Unit: WebTlbrs

Inherits From TComponent

The TDataSetToolBarButtons class represents a collection of dataset toolbar button controls for the
various operations required for a TDataSet instance bound to the container TDataSetToolBar instance.
These buttons can be used to navigate and update the dataset and they will automatically be
enabled/disabled to reflect the current dataset state.

Properties Methods Events

AppendButton

CancelButton

DeleteButton

FindButton

FirstButton

LastButton

NextButton

PriorButton

SaveButton

UpdateButton

Component Reference

Page 1246

TDataSetToolBarButtons.AppendButton Property

property AppendButton: TToolBarButton

Specifies the properties of the Append button.

Component Reference

Page 1247

TDataSetToolBarButtons.CancelButton Property

property CancelButton: TToolBarButton

Specifies the properties of the Cancel button.

Component Reference

Page 1248

TDataSetToolBarButtons.DeleteButton Property

property DeleteButton: TToolBarButton

Specifies the properties of the Delete button.

Component Reference

Page 1249

TDataSetToolBarButtons.FindButton Property

property FindButton: TToolBarButton

Specifies the properties of the Find button.

Note
 By default, the Find button doesn't actually perform any action when clicked. You need to assign
an event handler to the TDataSetToolBar OnButtonClick event in order to perform an action when
the button is clicked.

Component Reference

Page 1250

TDataSetToolBarButtons.FirstButton Property

property FirstButton: TToolBarButton

Specifies the properties of the First button.

Component Reference

Page 1251

TDataSetToolBarButtons.LastButton Property

property LastButton: TToolBarButton

Specifies the properties of the Last button.

Component Reference

Page 1252

TDataSetToolBarButtons.NextButton Property

property NextButton: TToolBarButton

Specifies the properties of the Next button.

Component Reference

Page 1253

TDataSetToolBarButtons.PriorButton Property

property PriorButton: TToolBarButton

Specifies the properties of the Prior button.

Component Reference

Page 1254

TDataSetToolBarButtons.SaveButton Property

property SaveButton: TToolBarButton

Specifies the properties of the Save button.

Component Reference

Page 1255

TDataSetToolBarButtons.UpdateButton Property

property UpdateButton: TToolBarButton

Specifies the properties of the Update button.

Component Reference

Page 1256

10.60 TDataValue Component

Unit: WebCore

Inherits From TObject

The TDataValue class represents the value for a column in a row in a TDataSet component. The
TDataValue class is an abstract class and is implemented fully in the TStringValue, TBooleanValue,
TIntegerValue, TFloatValue, TDateValue, TTimeValue, TDateTimeValue, and TBlobValue classes.

Properties Methods Events

AsBoolean Assign

AsDate Clear

AsDateTime Compare

AsFloat Create

AsInteger GetJSON

AsString

AsTime

Modified

Null

Component Reference

Page 1257

TDataValue.AsBoolean Property

property AsBoolean: Boolean

Gets or sets the column value as a boolean value. If the column value cannot be expressed as a boolean
value, then an exception will be raised.

Component Reference

Page 1258

TDataValue.AsDate Property

property AsDate: DateTime

Gets or sets the column value as a date value. If the column value cannot be expressed as a date value,
then an exception will be raised.

Component Reference

Page 1259

TDataValue.AsDateTime Property

property AsDateTime: DateTime

Gets or sets the column value as a date/time value. If the column value cannot be expressed as a
date/time value, then an exception will be raised.

Component Reference

Page 1260

TDataValue.AsFloat Property

property AsFloat: Double

Gets or sets the column value as a floating-point value. If the column value cannot be expressed as a
floating-point value, then an exception will be raised.

Component Reference

Page 1261

TDataValue.AsInteger Property

property AsInteger: Integer

Gets or sets the column value as an integer value. If the column value cannot be expressed as an integer
value, then an exception will be raised.

Component Reference

Page 1262

TDataValue.AsString Property

property AsString: String

Gets or sets the column value as a string value. If the column value cannot be expressed as a string value,
then an exception will be raised.

Component Reference

Page 1263

TDataValue.AsTime Property

property AsTime: DateTime

Gets or sets the column value as a time value. If the column value cannot be expressed as a time value,
then an exception will be raised.

Component Reference

Page 1264

TDataValue.Modified Property

property Modified: Boolean

Indicates whether the column value has been modified. This property will only be True if the TDataSet
component that owns the row in which the column value resides is in an insert or update State.

Note
 This property also applies to setting a column value to NULL by calling the Clear method.

Component Reference

Page 1265

TDataValue.Null Property

property Null: Boolean

Indicates that the column value does not contain an actual value and is, instead, NULL.

Component Reference

Page 1266

TDataValue.Assign Method

procedure Assign(Value: TDataValue)

Use this method to assign the contents of the column value passed as a parameter to the column value.
When assigning a column value, the following attributes of the column value are copied:

Null property

Modified property

The column value itself (if Null property is False)

Component Reference

Page 1267

TDataValue.Clear Method

procedure Clear

Use this method to clear the column value and set the Null property to True. This will also cause the
Modified property to be set to True.

Component Reference

Page 1268

TDataValue.Compare Method

function Compare(Value: TDataValue; CaseInsensitive:
 Boolean=False; LocaleInsensitive: Boolean=False): Integer

Use this method to compare a column value against another column value:

If the column value parameter is greater than the column value, then -1 will be returned.

If the column value parameter is less than the column value, then 1 will be returned.

If the column value parameter is equal to the column value, then 0 will be returned.
The CaseInsensitive parameter only applies to string column values, and determines if the column values
are compared in a case-sensitive or case-insensitive manner.

Component Reference

Page 1269

TDataValue.Create Method

constructor Create(AValues: TDataValues=nil; AIndex: Integer=-1)

Use this method to create a new instance of the TDataValue class. The AValues parameter indicates the
data values that will contain the instance and the optional AIndex parameter is used to indicate the
position of the value for retrieving schema information used with the data value.

Component Reference

Page 1270

TDataValue.GetJSON Method

function GetJSON: String

Use this method to retrieve a JSON string that represents the column name and value.

Component Reference

Page 1271

10.61 TDataValues Component

Unit: WebCore

Inherits From TObject

The TDataValues class represents a set of data values, and is used as the base class for the TDataRow class
used with datasets.

Properties Methods Events

Count Assign

ID Compare

Modified Create

Values GetJSON

Initialize

Component Reference

Page 1272

TDataValues.Count Property

property Count: Integer

Indicates the number of values in the set of data values.

Component Reference

Page 1273

TDataValues.ID Property

property ID: Integer

Indicates the unique ID of the data value set.

Component Reference

Page 1274

TDataValues.Modified Property

property Modified: Boolean

Indicates whether any of the data values have been modified.

Component Reference

Page 1275

TDataValues.Values Property

property Values[Index: Integer]: TDataValue

Accesses all data values in the set by index.

Component Reference

Page 1276

TDataValues.Assign Method

procedure Assign(NewValues: TDataValues)

Use this method to assign the values of all data values in the source set to the current set of data values.

Warning
 It is assumed that both sets of data values contain the same number of data values.

Component Reference

Page 1277

TDataValues.Compare Method

function Compare(Value: TDataValues; CaseInsensitive:
 Boolean=False; LocaleInsensitive: Boolean=False): Integer

Use this method to compares the values of all data values in the source set to the current set of data
values.

Warning
 It is assumed that both sets of data values contain the same number of data values.

Component Reference

Page 1278

TDataValues.Create Method

constructor Create(AID: Integer; ACount: Integer)

Use this method to create a new instance of the TDataValues class. The AID parameter indicates the user-
defined ID for the instance ACount parameter indicates the number of data values that should be created.

Component Reference

Page 1279

TDataValues.GetJSON Method

function GetJSON(ModifiedOnly: Boolean=False; IncludeID:
 Boolean=False; const IDName: String=''): String

Use this method to retrieve a JSON string that represents the set of data values as a JSON object
containing the data values as properties.

Component Reference

Page 1280

TDataValues.Initialize Method

procedure Initialize

Use this method to clear all data values so that they are NULL and marked as not modified.

Component Reference

Page 1281

10.62 TDateEditComboBox Component

Unit: WebEdits

Inherits From TEditComboControl

The TDateEditComboBox component represents a date edit combo box control. A date edit combo box is
a combo box control that allows the user to directly enter a date value or select a date value from a drop-
down calendar.

Component Reference

Page 1282

Properties Methods Events

Alignment OnAnimationComplete

AutoComplete OnAnimationsComplete

CalendarDefaultView OnButtonClick

CalendarHeight OnChange

CalendarWidth OnClick

Cursor OnDblClick

DataColumn OnDropDownHide

DataSet OnDropDownShow

Direction OnEnter

DropDownPosition OnExit

Enabled OnHide

Font OnKeyDown

Hint OnKeyPress

LocalizeText OnKeyUp

MaxLength OnMouseDown

ReadOnly OnMouseEnter

SelectedDate OnMouseLeave

TabOrder OnMouseMove

TabStop OnMouseUp

Text OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 1283

TDateEditComboBox.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the input value for the control.

Component Reference

Page 1284

TDateEditComboBox.AutoComplete Property

property AutoComplete: TAutoCompleteType

Specifies how to handle auto-completion for the control. Auto-completion allows the browser to display a
list of suggestions for input values, based upon earlier input values entered by the user.

Component Reference

Page 1285

TDateEditComboBox.CalendarDefaultView Property

property CalendarDefaultView: TCalendarView

Specifies the default view for the drop-down calendar. The default view determines both the initial view
shown in the calendar after it is created, as well as the minimum view that the user is permitted to
navigate to. The default value is cvMonth.

Component Reference

Page 1286

TDateEditComboBox.CalendarHeight Property

property CalendarHeight: Integer

Specifies the height of the drop-down calendar.

Component Reference

Page 1287

TDateEditComboBox.CalendarWidth Property

property CalendarWidth: Integer

Specifies the width of the drop-down calendar.

Component Reference

Page 1288

TDateEditComboBox.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1289

TDateEditComboBox.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 1290

TDateEditComboBox.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 1291

TDateEditComboBox.Direction Property

property Direction: TContentDirection

Specifies the direction in which the text is displayed/edited.

Component Reference

Page 1292

TDateEditComboBox.DropDownPosition Property

property DropDownPosition: TDropDownPosition

Specifies where the drop-down calendar will be positioned.

Component Reference

Page 1293

TDateEditComboBox.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 1294

TDateEditComboBox.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 1295

TDateEditComboBox.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 1296

TDateEditComboBox.LocalizeText Property

property LocalizeText: Boolean

Specifies whether date assignments (as strings) to the control's Text property are treated as local dates or
UTC dates. The default value is True.

Note
 This property only affects the value of the SelectedDate property and does not affect how date
values are saved to and from a dataset column via the DataSet and DataColumn properties.

Component Reference

Page 1297

TDateEditComboBox.MaxLength Property

property MaxLength: Integer

Specifies the maximum allowable length, in characters, of the Text property for the control. A value of 0
specifies an unlimited allowable length.

Component Reference

Page 1298

TDateEditComboBox.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 1299

TDateEditComboBox.SelectedDate Property

property SelectedDate: DateTime

Specifies the selected date for the control.

Component Reference

Page 1300

TDateEditComboBox.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 1301

TDateEditComboBox.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 1302

TDateEditComboBox.Text Property

property Text: String

Specifies the control's input value as a string.

Component Reference

Page 1303

TDateEditComboBox.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 1304

TDateEditComboBox.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 1305

TDateEditComboBox.OnButtonClick Event

property OnButtonClick: TClickEvent

This event is triggered whenever the associated combo button is clicked.

Component Reference

Page 1306

TDateEditComboBox.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 1307

TDateEditComboBox.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 1308

TDateEditComboBox.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1309

TDateEditComboBox.OnDropDownHide Event

property OnDropDownHide: TNotifyEvent

This event is triggered when the associated drop-down control is hidden.

Component Reference

Page 1310

TDateEditComboBox.OnDropDownShow Event

property OnDropDownShow: TNotifyEvent

This event is triggered when the associated drop-down control is shown.

Component Reference

Page 1311

TDateEditComboBox.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 1312

TDateEditComboBox.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 1313

TDateEditComboBox.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1314

TDateEditComboBox.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 1315

TDateEditComboBox.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 1316

TDateEditComboBox.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 1317

TDateEditComboBox.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 1318

TDateEditComboBox.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 1319

TDateEditComboBox.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 1320

TDateEditComboBox.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 1321

TDateEditComboBox.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 1322

TDateEditComboBox.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1323

TDateEditComboBox.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1324

TDateEditComboBox.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1325

TDateEditComboBox.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 1326

TDateEditComboBox.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 1327

TDateEditComboBox.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 1328

TDateEditComboBox.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 1329

10.63 TDateTimeValue Component

Unit: WebCore

Inherits From TDataValue

This class represents the value for a DateTime column in a row in a TDataSet component.

Properties Methods Events

Component Reference

Page 1330

10.64 TDateValue Component

Unit: WebCore

Inherits From TDateTimeValue

This class represents the value for a Date column in a TDataSet component.

Properties Methods Events

Component Reference

Page 1331

10.65 TDialog Component

Unit: WebForms

Inherits From TDialogControl

The TDialog component represents a dialog form control with a border and a caption bar with a close
button. TDialogButton components can be used with a TDialog instance to provide standard dialog
keystroke and button click functionality.

Properties Methods Events

ActivateOnClick OnAnimationComplete

CaptionBar OnAnimationsComplete

Client OnCaptionBarDblClick

CloseOnEscape OnClick

Corners OnClose

Cursor OnCloseQuery

Opacity OnDblClick

OutsetShadow OnHide

Sizable OnKeyDown

OnKeyPress

OnKeyUp

OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMouseWheel

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 1332

TDialog.ActivateOnClick Property

property ActivateOnClick: Boolean

Specifies whether the dialog should automatically be brought to the front when it, or any child controls,
are clicked.

Note
 This property only has an effect when the dialog is parented to another control. By default, dialogs
always are brought to the front when clicked.

Component Reference

Page 1333

TDialog.CaptionBar Property

property CaptionBar: TDialogCaptionBar

Specifies the properties of the caption bar for the control.

Component Reference

Page 1334

TDialog.Client Property

property Client: TDialogClient

Specifies the properties of the client area for the control.

Component Reference

Page 1335

TDialog.CloseOnEscape Property

property CloseOnEscape: Boolean

Specifies whether the dialog is automatically closed when the user hits the Escape key. The default value is
True.

Note
 If there is a TDialogButton instance on the dialog with its ModalCancel property set to True, then
the button will be clicked when the escape key is pressed and this property will ignored.

Component Reference

Page 1336

TDialog.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 1337

TDialog.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1338

TDialog.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 1339

TDialog.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 1340

TDialog.Sizable Property

property Sizable: Boolean

Specifies whether the dialog should be sizable. When a dialog is sizable, the user will be able to click on
the bottom-right border of the dialog to begin sizing the dialog interactively, and moving the mouse
while holding down the left mouse button will allow the user to size the dialog according to their needs.

Component Reference

Page 1341

TDialog.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 1342

TDialog.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 1343

TDialog.OnCaptionBarDblClick Event

property OnCaptionBarDblClick: TNotifyEvent

This event is triggered when the caption bar is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1344

TDialog.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 1345

TDialog.OnClose Event

property OnClose: TNotifyEvent

This event is triggered when the dialog is closed by the user via the caption bar close button, or when the
Close method is called.

Component Reference

Page 1346

TDialog.OnCloseQuery Event

property OnCloseQuery: TCloseQueryEvent

This event is triggered when the dialog is closed by the user via the caption bar close button, or when the
Close method is called.

Return True to allow the close to continue, or False to prevent the dialog from closing.

Component Reference

Page 1347

TDialog.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1348

TDialog.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1349

TDialog.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 1350

TDialog.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 1351

TDialog.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 1352

TDialog.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 1353

TDialog.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 1354

TDialog.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 1355

TDialog.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 1356

TDialog.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 1357

TDialog.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 1358

TDialog.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1359

TDialog.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1360

TDialog.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1361

TDialog.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 1362

TDialog.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 1363

TDialog.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 1364

TDialog.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 1365

10.66 TDialogButton Component

Unit: WebBtns

Inherits From TButton

The TDialogButton component represents a dialog button control. A dialog button control allows the user
to initiate a specific action by using a mouse click or by pushing the spacebar or enter key. In addition, the
ModalResult property can be used when a dialog button control is placed on a modal form. If the
ModalResult property is set, then clicking the dialog button control will automatically cause the form to
close and return the same modal result in the ModalResult property for the form.

Properties Methods Events

ModalCancel

ModalDefault

ModalResult

Component Reference

Page 1366

TDialogButton.ModalCancel Property

property ModalCancel: Boolean

Specifies that this button is the cancel button for the parent dialog. If the escape key is pressed while the
dialog is active, then the ModalResult property for the dialog will be set to the same value as the
ModalResult property of the button.

Component Reference

Page 1367

TDialogButton.ModalDefault Property

property ModalDefault: Boolean

Specifies that this button is the default button for the parent dialog. If the enter key is pressed while the
dialog is active, then the ModalResult property for the dialog will be set to the same value as the
ModalResult property of the button.

Component Reference

Page 1368

TDialogButton.ModalResult Property

property ModalResult: TModalResult

Specifies the result to assign to a form's ModalResult property when the button is clicked.

Component Reference

Page 1369

10.67 TDialogCaptionBar Component

Unit: WebForms

Inherits From TCaptionBarControl

The TDialogCaptionBar component represents the caption bar for a TDialog form control, and includes a
caption and a close button.

Properties Methods Events

Alignment

AllowClose

AllowMove

Background

Caption

Cursor

Font

Icon

Padding

Component Reference

Page 1370

TDialogCaptionBar.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the caption in the caption bar.

Component Reference

Page 1371

TDialogCaptionBar.AllowClose Property

property AllowClose: Boolean

Specifies whether the close button should be shown in the caption bar.

Component Reference

Page 1372

TDialogCaptionBar.AllowMove Property

property AllowMove: Boolean

Specifies whether the user can press and hold a mouse or touch on the caption bar and drag the
container dialog to a new position.

Component Reference

Page 1373

TDialogCaptionBar.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 1374

TDialogCaptionBar.Caption Property

property Caption: String

Specifies the caption to display in the caption bar.

Component Reference

Page 1375

TDialogCaptionBar.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1376

TDialogCaptionBar.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 1377

TDialogCaptionBar.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the caption bar.

Component Reference

Page 1378

TDialogCaptionBar.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 1379

10.68 TDialogClient Component

Unit: WebForms

Inherits From TComponent

The TDialogClient component represents the client area for a TDialog form control.

Properties Methods Events

Background

InsetShadow

Padding

Component Reference

Page 1380

TDialogClient.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 1381

TDialogClient.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 1382

TDialogClient.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 1383

10.69 TDialogControl Component

Unit: WebForms

Inherits From TFormControl

The TDialogControl control is the base class for dialogs, and contains all of the core dialog functionality in
the form of public methods and protected properties/events that descendant classes can use to create
customized dialogs.

Properties Methods Events

Component Reference

Page 1384

10.70 TDialogEditComboBox Component

Unit: WebEdits

Inherits From TEditComboControl

The TDialogEditComboBox component represents a dialog edit combo box control. A dialog edit combo
box is a combo box control that allows the user to directly enter an input value or trigger the display of a
custom selection dialog by intercepting the combo button clicks.

Properties Methods Events

Alignment OnAnimationComplete

AutoComplete OnAnimationsComplete

Cursor OnButtonClick

DataColumn OnChange

DataSet OnClick

Direction OnDblClick

Enabled OnEnter

Font OnExit

Hint OnHide

MaxLength OnKeyDown

ReadOnly OnKeyPress

SpellCheck OnKeyUp

TabOrder OnMouseDown

TabStop OnMouseEnter

Text OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 1385

TDialogEditComboBox.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the input value for the control.

Component Reference

Page 1386

TDialogEditComboBox.AutoComplete Property

property AutoComplete: TAutoCompleteType

Specifies how to handle auto-completion for the control. Auto-completion allows the browser to display a
list of suggestions for input values, based upon earlier input values entered by the user.

Component Reference

Page 1387

TDialogEditComboBox.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1388

TDialogEditComboBox.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 1389

TDialogEditComboBox.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 1390

TDialogEditComboBox.Direction Property

property Direction: TContentDirection

Specifies the direction in which the text is displayed/edited.

Component Reference

Page 1391

TDialogEditComboBox.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 1392

TDialogEditComboBox.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 1393

TDialogEditComboBox.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 1394

TDialogEditComboBox.MaxLength Property

property MaxLength: Integer

Specifies the maximum allowable length, in characters, of the Text property for the control. A value of 0
specifies an unlimited allowable length.

Component Reference

Page 1395

TDialogEditComboBox.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 1396

TDialogEditComboBox.SpellCheck Property

property SpellCheck: Boolean

Specifies whether spell-checking will be enabled for the control.

Component Reference

Page 1397

TDialogEditComboBox.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 1398

TDialogEditComboBox.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 1399

TDialogEditComboBox.Text Property

property Text: String

Specifies the control's input value as a string.

Component Reference

Page 1400

TDialogEditComboBox.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 1401

TDialogEditComboBox.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 1402

TDialogEditComboBox.OnButtonClick Event

property OnButtonClick: TClickEvent

This event is triggered whenever the associated combo button is clicked.

Component Reference

Page 1403

TDialogEditComboBox.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 1404

TDialogEditComboBox.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 1405

TDialogEditComboBox.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1406

TDialogEditComboBox.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 1407

TDialogEditComboBox.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 1408

TDialogEditComboBox.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1409

TDialogEditComboBox.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 1410

TDialogEditComboBox.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 1411

TDialogEditComboBox.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 1412

TDialogEditComboBox.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 1413

TDialogEditComboBox.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 1414

TDialogEditComboBox.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 1415

TDialogEditComboBox.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 1416

TDialogEditComboBox.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 1417

TDialogEditComboBox.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1418

TDialogEditComboBox.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1419

TDialogEditComboBox.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1420

TDialogEditComboBox.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 1421

TDialogEditComboBox.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 1422

TDialogEditComboBox.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 1423

TDialogEditComboBox.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 1424

10.71 TDivElement Component

Unit: WebUI

Inherits From TElement

The TDivElement class is the default element class for UI elements, and contains all of the element
functionality in the form of public methods and properties/events that control classes can use to create
any type of control.

Note
 The TDivElement is just a typecast of the TElement class, and is only used for associating an
element class type with a specific type of run-time HTML tag (<div>).

Properties Methods Events

Component Reference

Page 1425

10.72 TDropDownButtonControl Component

Unit: WebEdits

Inherits From TButtonInputControl

The TDropDownButtonControl control is the base class for drop-down button controls, and contains all of
the core drop-down functionality in the form of public methods and protected properties/events that
descendant classes can use to create customized drop-down button controls.

Properties Methods Events

HideDropDown

ShowDropDown

Component Reference

Page 1426

TDropDownButtonControl.HideDropDown Method

procedure HideDropDown

Use this method to hide the drop-down control associated with the control (if visible).

Component Reference

Page 1427

TDropDownButtonControl.ShowDropDown Method

procedure ShowDropDown

Use this method to show the drop-down control associated with the control (if not already visible).

Component Reference

Page 1428

10.73 TDropDownEditControl Component

Unit: WebEdits

Inherits From TEditControl

The TDropDownEditControl control is the base class for drop-down edit controls, and contains all of the
core drop-down functionality in the form of public methods and protected properties/events that
descendant classes can use to create customized drop-down edit controls.

Properties Methods Events

HideDropDown

ShowDropDown

Component Reference

Page 1429

TDropDownEditControl.HideDropDown Method

procedure HideDropDown

Use this method to hide the drop-down control associated with the control (if visible).

Component Reference

Page 1430

TDropDownEditControl.ShowDropDown Method

procedure ShowDropDown

Use this method to show the drop-down control associated with the control (if not already visible).

Component Reference

Page 1431

10.74 TEdit Component

Unit: WebEdits

Inherits From TEditControl

The TEdit component represents an edit control. An edit control allows the user to directly enter an input
value using the keyboard.

Properties Methods Events

Alignment OnAnimationComplete

AutoComplete OnAnimationsComplete

Cursor OnChange

DataColumn OnClick

DataSet OnDblClick

Direction OnEnter

Enabled OnExit

Font OnHide

Hint OnKeyDown

InputType OnKeyPress

MaxLength OnKeyUp

ReadOnly OnMouseDown

SpellCheck OnMouseEnter

TabOrder OnMouseLeave

TabStop OnMouseMove

Text OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 1432

TEdit.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the input value for the control.

Component Reference

Page 1433

TEdit.AutoComplete Property

property AutoComplete: TAutoCompleteType

Specifies how to handle auto-completion for the control. Auto-completion allows the browser to display a
list of suggestions for input values, based upon earlier input values entered by the user.

Component Reference

Page 1434

TEdit.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1435

TEdit.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 1436

TEdit.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 1437

TEdit.Direction Property

property Direction: TContentDirection

Specifies the direction in which the text is displayed/edited.

Component Reference

Page 1438

TEdit.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 1439

TEdit.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 1440

TEdit.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 1441

TEdit.InputType Property

property InputType: TTextInputType

Specifies the type of text being input into the element by the user. This information is used by the browser
to determine how to display and edit the text. For example, in touch environments, this property is used
to determine which soft keyboard to display to the user.

Component Reference

Page 1442

TEdit.MaxLength Property

property MaxLength: Integer

Specifies the maximum allowable length, in characters, of the Text property for the control. A value of 0
specifies an unlimited allowable length.

Component Reference

Page 1443

TEdit.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 1444

TEdit.SpellCheck Property

property SpellCheck: Boolean

Specifies whether spell-checking will be enabled for the control.

Component Reference

Page 1445

TEdit.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 1446

TEdit.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 1447

TEdit.Text Property

property Text: String

Specifies the control's input value as a string.

Component Reference

Page 1448

TEdit.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 1449

TEdit.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 1450

TEdit.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 1451

TEdit.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 1452

TEdit.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1453

TEdit.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 1454

TEdit.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 1455

TEdit.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1456

TEdit.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 1457

TEdit.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 1458

TEdit.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 1459

TEdit.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 1460

TEdit.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 1461

TEdit.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 1462

TEdit.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 1463

TEdit.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 1464

TEdit.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1465

TEdit.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1466

TEdit.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1467

TEdit.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 1468

TEdit.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 1469

TEdit.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 1470

TEdit.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 1471

10.75 TEditComboBox Component

Unit: WebEdits

Inherits From TEditComboControl

The TEditComboBox component represents an edit combo box control. An edit combo box is a combo
control that allows the user to directly enter an input value or select an input value from a drop-down list
of values.

Note
 If you do not want to allow for direct editing of the input value, please consider using a
TButtonComboBox component instead.

Component Reference

Page 1472

Properties Methods Events

Alignment OnButtonClick

AutoComplete OnChange

AutoDropDown OnClick

AutoItemHeight OnDblClick

Cursor OnDropDownHide

DataColumn OnDropDownShow

DataSet OnEnter

Direction OnExit

DropDownItemCount OnHide

DropDownPosition OnKeyDown

Enabled OnKeyPress

Font OnKeyUp

Hint OnMouseDown

ItemHeight OnMouseEnter

ItemIndex OnMouseLeave

Items OnMouseMove

KeyPressInterval OnMouseUp

MaxLength OnMove

ReadOnly OnShow

Sorted OnSize

SpellCheck OnTouchCancel

TabOrder OnTouchEnd

TabStop OnTouchMove

Text OnTouchStart

Component Reference

Page 1473

TEditComboBox.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the input value for the control.

Component Reference

Page 1474

TEditComboBox.AutoComplete Property

property AutoComplete: TAutoCompleteType

Specifies how to handle auto-completion for the control. Auto-completion allows the browser to display a
list of suggestions for input values, based upon earlier input values entered by the user.

Component Reference

Page 1475

TEditComboBox.AutoDropDown Property

property AutoDropDown: Boolean

Specifies that the drop-down list of Items should automatically be shown when the user starts typing. The
default value is False.

Component Reference

Page 1476

TEditComboBox.AutoItemHeight Property

property AutoItemHeight: Boolean

Specifies that the displayed height of the drop-down items will automatically be set based upon the Font
property settings. The default value is True.

Component Reference

Page 1477

TEditComboBox.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1478

TEditComboBox.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 1479

TEditComboBox.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 1480

TEditComboBox.Direction Property

property Direction: TContentDirection

Specifies the direction in which the text is displayed/edited.

Component Reference

Page 1481

TEditComboBox.DropDownItemCount Property

property DropDownItemCount: Integer

Specifies the number of visible items to display in the drop-down list of Items.

Component Reference

Page 1482

TEditComboBox.DropDownPosition Property

property DropDownPosition: TDropDownPosition

Specifies where the drop-down list will be positioned.

Component Reference

Page 1483

TEditComboBox.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 1484

TEditComboBox.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 1485

TEditComboBox.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 1486

TEditComboBox.ItemHeight Property

property ItemHeight: Integer

Specifies the height, in pixels, of the items displayed in the drop-down list.

Component Reference

Page 1487

TEditComboBox.ItemIndex Property

property ItemIndex: Integer

Specifies the index of the selected item in the drop-down list of Items, or -1 if there is no selected item.

Component Reference

Page 1488

TEditComboBox.Items Property

property Items: TStrings

Specifies the items to use for the drop-down list.

Component Reference

Page 1489

TEditComboBox.KeyPressInterval Property

property KeyPressInterval: Integer

Specifies the interval, in milliseconds, that is used by the control to combine user keystrokes into a search
value that is then used for performing a near search on the Items property. Effectively, this means that the
user has KeyPressInterval milliseconds in which to hit a key in order for the keystroke to be included as
part of a near search. The default value is 300 milliseconds.

For example, if the user hits the 'S', 'M', and 'I' keys within the KeyPressInterval property value, but hits the
'T' key outside of the KeyPressInterval property, then the control will perform a near search using the
value 'SMI', followed by a near search using the value 'T'.

Component Reference

Page 1490

TEditComboBox.MaxLength Property

property MaxLength: Integer

Specifies the maximum allowable length, in characters, of the Text property for the control. A value of 0
specifies an unlimited allowable length.

Component Reference

Page 1491

TEditComboBox.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 1492

TEditComboBox.Sorted Property

property Sorted: Boolean

Specifies whether the drop-down items will automatically be sorted. The default value is False.

Component Reference

Page 1493

TEditComboBox.SpellCheck Property

property SpellCheck: Boolean

Specifies whether spell-checking will be enabled for the control.

Component Reference

Page 1494

TEditComboBox.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 1495

TEditComboBox.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 1496

TEditComboBox.Text Property

property Text: String

Specifies the control's input value as a string.

Component Reference

Page 1497

TEditComboBox.OnButtonClick Event

property OnButtonClick: TClickEvent

This event is triggered whenever the associated combo button is clicked.

Component Reference

Page 1498

TEditComboBox.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 1499

TEditComboBox.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 1500

TEditComboBox.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1501

TEditComboBox.OnDropDownHide Event

property OnDropDownHide: TNotifyEvent

This event is triggered when the associated drop-down control is hidden.

Component Reference

Page 1502

TEditComboBox.OnDropDownShow Event

property OnDropDownShow: TNotifyEvent

This event is triggered when the associated drop-down control is shown.

Component Reference

Page 1503

TEditComboBox.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 1504

TEditComboBox.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 1505

TEditComboBox.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1506

TEditComboBox.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 1507

TEditComboBox.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 1508

TEditComboBox.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 1509

TEditComboBox.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 1510

TEditComboBox.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 1511

TEditComboBox.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 1512

TEditComboBox.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 1513

TEditComboBox.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 1514

TEditComboBox.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1515

TEditComboBox.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1516

TEditComboBox.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1517

TEditComboBox.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 1518

TEditComboBox.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 1519

TEditComboBox.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 1520

TEditComboBox.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 1521

10.76 TEditComboControl Component

Unit: WebEdits

Inherits From TDropDownEditControl

The TEditComboControl control is the base class for edit combo controls, and contains all of the core
combo functionality in the form of public methods and protected properties/events that descendant
classes can use to create customized edit combo controls.

Properties Methods Events

Component Reference

Page 1522

10.77 TEditControl Component

Unit: WebEdits

Inherits From TInputControl

The TEditControl control is the base class for text edit controls, and contains all of the core text edit
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized text edit controls.

Properties Methods Events

SelectionEnd SelectAll

SelectionStart SelectNone

Component Reference

Page 1523

TEditControl.SelectionEnd Property

property SelectionEnd: Integer

Specifies the ending position (0-based) of the selected characters in the text. For example, if the control
contains the text "Hello World", setting the SelectionStart property to 6 and the SelectionEnd property to
11 will result in the text "World" being selected.

Component Reference

Page 1524

TEditControl.SelectionStart Property

property SelectionStart: Integer

Specifies the starting position (0-based) of the selected characters in the text. For example, if the control
contains the text "Hello World", setting the SelectionStart property to 6 and the SelectionEnd property to
11 will result in the text "World" being selected.

Component Reference

Page 1525

TEditControl.SelectAll Method

procedure SelectAll

Use this method to select all of the text content in the edit control.

Component Reference

Page 1526

TEditControl.SelectNone Method

procedure SelectNone

Use this method to unselect any previously-selected text content in the edit control.

Component Reference

Page 1527

10.78 TElement Component

Unit: WebUI

Inherits From TPersistent

The TElement class is the base element class for all UI elements, and contains all of the element
functionality in the form of public methods and properties/events that control classes can use to create
any type of control.

Properties Methods Events

AltKey Assign

AlwaysOnTop BeginRotation

Animations BeginUpdate

ApplyProperties BringToFront

AutoSize CancelRotation

Background CanTab

Border Create

Button DefineLayout

ClientHeight EndUpdate

ClientWidth FindByName

ComposedValue FindByPos

Constraints FindFirstTab

Content FindLastTab

Controller FindNextTab

ControllerElement FindPriorTab

Corners ForceUpdate

CtrlKey GetTabCount

Cursor Hide

DefinedHeight IsControllerClass

DefinedLeft IsParentOf

DefinedTop Minimize

DefinedWidth RemoveFocus

Delegate Restore

DisplayIndex ScrollBy

DOMElement SendToBack

Component Reference

Page 1528

Elements SetFocus

Enabled Show

EventX

EventY

FocusEnabled

Font

FontSizeAnimation

ForceDefaultCursor

Format

HasElements

Height

Hint

HTMLContentEnabled

ID

InsetShadow

InUpdate

IsVisible

KeyChar

KeyCode

Layout

LayoutIndex

Left

Margins

Minimized

Name

Opacity

OutsetShadow

OverflowX

OverflowY

Padding

Parent

PreserveFocus

ScrollEnabled

ScrollHeight

Component Reference

Page 1529

ScrollLeft

ScrollTop

ScrollWidth

ShiftKey

TabEnabled

TabIndex

TagName

Top

TotalHeight

TotalWidth

Visible

WheelDelta

Width

Component Reference

Page 1530

TElement.AltKey Property

property AltKey: Boolean

Indicates whether the Alt key was pressed during the last triggered event for this element.

Component Reference

Page 1531

TElement.AlwaysOnTop Property

property AlwaysOnTop: Boolean

Specifies that the element should always be visually placed on top of any other element within the same
container element.

Component Reference

Page 1532

TElement.Animations Property

property Animations: TAnimations

Specifies the animations for the element.

Component Reference

Page 1533

TElement.ApplyProperties Property

property ApplyProperties: TElementProperties

Specifies which properies of the element to apply to a UI element when applying the state of a control
interface to a control.

Component Reference

Page 1534

TElement.AutoSize Property

property AutoSize: TAutoSize

Specifies how (if at all) the element should automatically be sized based upon the Content and Format
properties.

Component Reference

Page 1535

TElement.Background Property

property Background: TBackground

Specifies the background of the element.

Component Reference

Page 1536

TElement.Border Property

property Border: TBorder

Specifies the border of the element.

Component Reference

Page 1537

TElement.Button Property

property Button: Integer

Indicates the code of the mouse button for the last triggered mouse event for this element.

Component Reference

Page 1538

TElement.ClientHeight Property

property ClientHeight: Integer

Indicates the height of the client rectangle for the element.

Component Reference

Page 1539

TElement.ClientWidth Property

property ClientWidth: Integer

Indicates the width of the client rectangle for the element.

Component Reference

Page 1540

TElement.ComposedValue Property

property ComposedValue: String

Indicates the current composed value after the last triggered composition event for this element.

Component Reference

Page 1541

TElement.Constraints Property

property Constraints: TConstraints

Indicates the dimensional constraints for the element.

Component Reference

Page 1542

TElement.Content Property

property Content: String

Specifies the content of the element. The Font and Format properties control how the content is
displayed.

Note
 At this time, Elevate Web Builder only supports the use of plain text as content, but this will expand
to include HTML content in a future release.

Component Reference

Page 1543

TElement.Controller Property

property Controller: TInterfaceController

Specifies the controller instance for the element. A controller instance is assigned to any element that
serves as the base element for a TInterfaceController class descendant.

Note
 With the Elevate Web Builder component library, the TInterfaceController class is never
instantiated directly. It is used only as a bridge component between the TElement class and the
TControl class.

Component Reference

Page 1544

TElement.ControllerElement Property

property ControllerElement: TElement

Indicates the element, relative to the current element instance, that has its Controller property assigned. If
the current element instance has its Controller property assigned, then this property will be equal to the
current element instance.

Component Reference

Page 1545

TElement.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical corner radii for the element.

Component Reference

Page 1546

TElement.CtrlKey Property

property CtrlKey: Boolean

Indicates whether the Control key was pressed during the last triggered event for this element.

Component Reference

Page 1547

TElement.Cursor Property

property Cursor: TCursor

Specifies the type of cursor to show for the element.

Note
 The ForceDefaultCursor property is useful for situations where the type of cursor is set to crAuto
and the browser would normally show the cursor as a text caret for text selection, which is the case
with any elements containing text as content.

Component Reference

Page 1548

TElement.DefinedHeight Property

property DefinedHeight: Integer

Indicates the defined height for the element. The defined height is the last value that was directly
assigned to the Height. Layout property changes may affect the value returned by the Height property, so
this property is useful when you don't want the calculated height of an element.

Component Reference

Page 1549

TElement.DefinedLeft Property

property DefinedLeft: Integer

Indicates the defined left position for the element. The defined left position is the last value that was
directly assigned to the Left. Layout property changes may affect the value returned by the Left property,
so this property is useful when you don't want the calculated left position of an element.

Component Reference

Page 1550

TElement.DefinedTop Property

property DefinedTop: Integer

Indicates the defined top position for the element. The defined top position is the last value that was
directly assigned to the Top. Layout property changes may affect the value returned by the Top property,
so this property is useful when you don't want the calculated top position of an element.

Component Reference

Page 1551

TElement.DefinedWidth Property

property DefinedWidth: Integer

Indicates the defined width for the element. The defined width is the last value that was directly assigned
to the Width. Layout property changes may affect the value returned by the Height property, so this
property is useful when you don't want the calculated width of an element.

Component Reference

Page 1552

TElement.Delegate Property

property Delegate: TElement

Specifies that any focus/tabbing for the element should be delegated to the specified element. The
specified element should be a child element of the current element instance. Delegation is useful for
situations where a child element is the element that should be focused when the current element instance
is focused.

Component Reference

Page 1553

TElement.DisplayIndex Property

property DisplayIndex: Integer

Specifies the display index, or visual stacking index, of the element within its parent container element.

Component Reference

Page 1554

TElement.DOMElement Property

property DOMElement: THTMLElement

Contains a reference to the underlying DOM element associated with the element.

Component Reference

Page 1555

TElement.Elements Property

property Elements: TElements

Contains references to all child elements that have the current element instance assigned as its Parent
property. Element parentage automatically implies element ownership in Elevate Web Builder, so any child
elements of the current element instance will automatically be disposed of when the current element
instance is destroyed.

Warning
 This property will be nil if no child elements have been assigned to the element.

Component Reference

Page 1556

TElement.Enabled Property

property Enabled: Boolean

Specifies whether the element is enabled or disabled.

Component Reference

Page 1557

TElement.EventX Property

property EventX: Integer

Indicates the horizontal position of the mouse button/touch for the last triggered mouse/touch event for
this element.

Component Reference

Page 1558

TElement.EventY Property

property EventY: Integer

Indicates the vertical position of the mouse button/touch for the last triggered mouse/touch event for this
element.

Component Reference

Page 1559

TElement.FocusEnabled Property

property FocusEnabled: Boolean

Specifies whether the element should be focusable.

Component Reference

Page 1560

TElement.Font Property

property Font: TFont

Specifies font to use for the element content.

Component Reference

Page 1561

TElement.FontSizeAnimation Property

property FontSizeAnimation: TAnimation

Specifies the animation properties for the element font's Size property.

Component Reference

Page 1562

TElement.ForceDefaultCursor Property

property ForceDefaultCursor: Boolean

Specifies that the cursor should be dynamically changed to crDefault if the Cursor property is set to
crAuto and the browser would normally show the cursor as a text caret for text selection, which is the case
with any elements containing text as content.

Component Reference

Page 1563

TElement.Format Property

property Format: TFormat

Specifies the content formatting to use for the element's content.

Component Reference

Page 1564

TElement.HasElements Property

property HasElements: Boolean

Indicates whether the Elements is nil, and if not, whether the there are any child elements in the list of
elements.

Component Reference

Page 1565

TElement.Height Property

property Height: Integer

Indicates the current height of the element, and can be used to specify the defined height for the
element. The defined height is the last value that was directly assigned to the Height property. Layout
property changes may affect the value returned by the Height property.

Component Reference

Page 1566

TElement.Hint Property

property Hint: String

Specifies a popup hint to display during a mouse-over in a desktop browser or a touch in a mobile
browser.

Component Reference

Page 1567

TElement.HTMLContentEnabled Property

property HTMLContentEnabled: Boolean

Specifies whether the element can contain HTML content. If this property is False, then any text assigned
to the Content property will treated as plain text. If this property is True, then any text assigned to the
Content property will be treated as HTML.

Note
 Enabling this property modifies how the UI layout functionality treats the content with respect to
measurement and display.

Component Reference

Page 1568

TElement.ID Property

property ID: String

Specifies a unique DOM ID for the element.

Component Reference

Page 1569

TElement.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the element. The inset shadow appears within the bounds of the client
rectangle for the element.

Component Reference

Page 1570

TElement.InUpdate Property

property InUpdate: Boolean

Indicates whether the element, or any of its parent elements, is currently in a batch update. An element is
in a batch update if the BeginUpdate method is called on the element or any of its parent elements. When
an element is in a batch update, it doesn't apply any changes to any of its properties until the EndUpdate
method is called on the element or any of its parent elements, and the InUpdate property returns False.

Note
 Updates are reference-counted so calls to the BeginUpdate method increment the reference count,
and calls to the EndUpdate method decrement the reference count.

Component Reference

Page 1571

TElement.IsVisible Property

property IsVisible: Boolean

Indicates whether the element, and all of its parent elements, are visible. This is in contrast to the Visible
property, which only indicates whether the current element is visible.

Component Reference

Page 1572

TElement.KeyChar Property

property KeyChar: Char

Indicates the character that represents the keystroke for the last triggered keypress event for this element.

Component Reference

Page 1573

TElement.KeyCode Property

property KeyCode: Integer

Indicates the code of the keystroke for the last triggered key event for this element.

Component Reference

Page 1574

TElement.Layout Property

property Layout: TLayout

Specifies the layout for the element.

Component Reference

Page 1575

TElement.LayoutIndex Property

property LayoutIndex: Integer

Specifies the layout index of the element. The layout index determines the order in which the child
elements of a container element are positioned and sized using the layout management functionality for
UI elements.

Component Reference

Page 1576

TElement.Left Property

property Left: Integer

Indicates the current left position of the element, and can be used to specify the defined left position for
the element. The defined left position is the last value that was directly assigned to the Left property.
Layout property changes may affect the value returned by the Left property.

Component Reference

Page 1577

TElement.Margins Property

property Margins: TMargins

Specifies the margins to be used for the element when the element is being positioned/sized using the
layout management functionality.

Component Reference

Page 1578

TElement.Minimized Property

property Minimized: Boolean

Indicates whether the element is currently minimized.

Component Reference

Page 1579

TElement.Name Property

property Name: String

Specifies the name of the element. Element names must be unique within a an interface state and within
the base and child elements of a visual control.

Component Reference

Page 1580

TElement.Opacity Property

property Opacity: Integer

Specifies the opacity of the element, from 0 (transparent) to 100 (opaque).

Component Reference

Page 1581

TElement.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the element. The outset shadow appears behind the bounds of the
element.

Component Reference

Page 1582

TElement.OverflowX Property

property OverflowX: TOverflowType

Specifies whether or not to show a native horizontal browser scrollbar for the element if the width of its
contents and/or child elements exceeds the width of the client rectangle for the element.

Note
 This property should be left at its default value of otHidden for most elements. Elevate Web
Builder only uses this element property for specifying the scrollbars of the application viewport.

Component Reference

Page 1583

TElement.OverflowY Property

property OverflowY: TOverflowType

Specifies whether or not to show a native vertical browser scrollbar for the element if the height of its
contents and/or child elements exceeds the height of the client rectangle for the element.

Note
 This property should be left at its default value of otHidden for most elements. Elevate Web
Builder only uses this element property for specifying the scrollbars of the application viewport.

Component Reference

Page 1584

TElement.Padding Property

property Padding: TPadding

Specifies any padding for the element. The padding of an element shrinks the width and height of the
client rectangle for the element.

Component Reference

Page 1585

TElement.Parent Property

property Parent: TElement

Specifies the parent element for the element. The only element whose Parent property is always nil is the
interface manager's root element.

Component Reference

Page 1586

TElement.PreserveFocus Property

property PreserveFocus: Boolean

Specifies whether the element should preserve focus on an existing focused element if an attempt is made
to focus the element and the FocusEnabled property is False. This property is used by non-focusable
elements such as scrollbar control elements to make sure that clicking on the elements does not cause
any currently-focused elements to lose focus.

Component Reference

Page 1587

TElement.ScrollEnabled Property

property ScrollEnabled: Boolean

Specifies whether the element wants mouse wheel and touch scroll events routed to it. Whenever a mouse
wheel or touch scroll event occurs, the event manager will automatically route such events to the first
container element that has its ScrollEnabled property set to True.

Component Reference

Page 1588

TElement.ScrollHeight Property

property ScrollHeight: Integer

Indicates the total height of the element's content and/or its child elements. If an element's content
height is greater than its Height property, then you can use the ScrollTop property to programmatically
scroll the element vertically, or to find out the current vertical scroll position.

Component Reference

Page 1589

TElement.ScrollLeft Property

property ScrollLeft: Integer

Specifies the horizontal scroll position for the element. If an element's ScrollWidth property is greater than
its Width property, then you can use this property to programmatically scroll the element horizontally, or
to find out the current horizontal scroll position.

Component Reference

Page 1590

TElement.ScrollTop Property

property ScrollTop: Integer

Specifies the vertical scroll position for the element. If an element's ScrollHeight property is greater than
its Height property, then you can use this property to programmatically scroll the element vertically, or to
determine the current vertical scroll position.

Component Reference

Page 1591

TElement.ScrollWidth Property

property ScrollWidth: Integer

Indicates the total width of the element's content and/or its child elements. If an element's content width
is greater than its Width property, then you can use the ScrollLeft property to programmatically scroll the
element horizontally, or to determine the current horizontal scroll position.

Component Reference

Page 1592

TElement.ShiftKey Property

property ShiftKey: Boolean

Indicates whether the Shift key was pressed during the last triggered event for this element.

Component Reference

Page 1593

TElement.TabEnabled Property

property TabEnabled: Boolean

Specifies whether the element will take part in any tabbing order within its parent container element.

Component Reference

Page 1594

TElement.TabIndex Property

property TabIndex: Integer

Specifies the tab index of the element within its parent container element.

Component Reference

Page 1595

TElement.TagName Property

property TagName: String

Indicates the HTML tag name associated with the element at runtime. HTML tag names are used at
runtime to create elements using a mapping between the tag name and a given TElement class type.

Component Reference

Page 1596

TElement.Top Property

property Top: Integer

Indicates the current top position of the element, and can be used to specify the defined top position for
the element. The defined top position is the last value that was directly assigned to the Top property.
Layout property changes may affect the value returned by the Top property.

Component Reference

Page 1597

TElement.TotalHeight Property

property TotalHeight: Integer

Indicates the total height of the element, including its top and bottom margins.

Component Reference

Page 1598

TElement.TotalWidth Property

property TotalWidth: Integer

Indicates the total width of the element, including its left and right margins.

Component Reference

Page 1599

TElement.Visible Property

property Visible: Boolean

Specifies whether the element is visible or not.

Component Reference

Page 1600

TElement.WheelDelta Property

property WheelDelta: Integer

Indicates the mouse wheel delta for the last triggered mouse wheel event for this element.

Component Reference

Page 1601

TElement.Width Property

property Width: Integer

Indicates the current width of the element, and can be used to specify the defined width for the element.
The defined width is the last value that was directly assigned to the Width property. Layout property
changes may affect the value returned by the Width property.

Component Reference

Page 1602

TElement.Assign Method

procedure Assign(AElement: TElement)

Use this method to assign all of the properties of a source element to the element.

Note
 This method will also recursively assign all child elements from the source element to the element,
so please be careful when using this method.

Component Reference

Page 1603

TElement.BeginRotation Method

procedure BeginRotation(AStyle: TAnimationStyle; AInterval:
 Integer)

Use this method to begin rotating the contents of the element using the animation properties specified by
the AStyle and AInterval parameters. The rotation animation will continue until the CancelRotation
method is called.

Note
 The Elevate Web Builder component library uses this functionality for animating the rotation of
font icons in progress dialogs.

Component Reference

Page 1604

TElement.BeginUpdate Method

procedure BeginUpdate

Use this method to begin a batch update on an element. An element is in a batch update if the
BeginUpdate method is called on the element, or any of its parent elements. When an element is in a
batch update, it doesn't apply any changes to any of its properties until the EndUpdate method is called
on the element or any of its parent elements, and the InUpdate property returns False.

Note
 Updates are reference-counted so calls to the BeginUpdate method increment the reference count,
and calls to the EndUpdate method decrement the reference count.

Component Reference

Page 1605

TElement.BringToFront Method

procedure BringToFront

Use this method to bring the element to the front of the visual stacking order. An element in the front will
have a DisplayIndex property equal to one less than the number of child elements in the parent container
element.

Component Reference

Page 1606

TElement.CancelRotation Method

procedure CancelRotation

Use this method to cancel the rotation animation started using the BeginRotation method.

Note
 The Elevate Web Builder component library uses this functionality for animating the rotation of
font icons in progress dialogs.

Component Reference

Page 1607

TElement.CanTab Method

function CanTab(AClass: TInterfaceControllerClass=nil): Boolean

Use this method to determine if an element, with or without a particular associated Controller instance, is
visible, enabled, and can be focused, or contains a child element that can be focused.

Component Reference

Page 1608

TElement.Create Method

constructor Create(const AName: String; AParent: TElement=nil;
 const ATagName: String='')

Use this method to create a new instance of the TElement class. The AName parameter indicates the name
of the element, the optional AParent parameter indicates the parent of the element, and the optional
ATagName parameter indicates the HTML tag name to associate with the element. The HTML tag name is
used to create the underlying browser DOM element that will be managed by the element at runtime.

Component Reference

Page 1609

TElement.DefineLayout Method

procedure DefineLayout

Use this method to assign the current bounds of the element to the Left, Top, Width, and Height
properties of the element.

This method is useful in situations where an element has been positioned or sized according to its Layout
properties, but you wish to have the bounds persist even after modifying the layout properties so that
they no longer position or size the element in the same way.

Component Reference

Page 1610

TElement.EndUpdate Method

procedure EndUpdate

Use this method to end a batch update on an element. An element is in a batch update if the
BeginUpdate method is called on the element or any of its parent elements. When an element is in a
batch update, it doesn't apply any changes to any of its properties until the EndUpdate method is called
on the element or any of its parent elements, and the InUpdate property returns False.

Note
 Updates are reference-counted so calls to the BeginUpdate method increment the reference count,
and calls to the EndUpdate method decrement the reference count.

Component Reference

Page 1611

TElement.FindByName Method

function FindByName(const AName: String): TElement

Use this method to find an element with a specified name. The search for the element includes the current
element instance.

Note
 This is a recursive method, and will search through grandchildren, great-grandchildren, etc. for an
element with the specified name.

Component Reference

Page 1612

TElement.FindByPos Method

function FindByPos(X,Y: Integer): TElement

Component Reference

Page 1613

TElement.FindFirstTab Method

function FindFirstTab(AClass: TInterfaceControllerClass=nil):
 TElement

Use this method to find the first child element in TabIndex order, with or without a particular associated
Controller instance, whose CanTab method returns True.

Component Reference

Page 1614

TElement.FindLastTab Method

function FindLastTab(AClass: TInterfaceControllerClass=nil):
 TElement

Use this method to find the last child element in TabIndex order, with or without a particular associated
Controller instance, whose CanTab method returns True.

Component Reference

Page 1615

TElement.FindNextTab Method

function FindNextTab(AElement: TElement; AWrap: Boolean=False;
 AClass: TInterfaceControllerClass=nil): TElement

Use this method to find the next child element in TabIndex order, with or without a particular associated
Controller instance, whose CanTab method returns True.

Component Reference

Page 1616

TElement.FindPriorTab Method

function FindPriorTab(AElement: TElement; AWrap: Boolean=False;
 AClass: TInterfaceControllerClass=nil): TElement

Use this method to find the prior child element in TabIndex order, with or without a particular associated
Controller instance, whose CanTab method returns True.

Component Reference

Page 1617

TElement.ForceUpdate Method

procedure ForceUpdate

Use this method to force the element to perform a layout update when in the middle of a
BeginUpdate/EndUpdate block. Normally, an element will not update its layout bounds when an update
block is in effect. A forced layout update will ensure that the element's layout bounds are updated to
reflect any layout changes applied to the element within the update block.

Component Reference

Page 1618

TElement.GetTabCount Method

function GetTabCount(AClass: TInterfaceControllerClass=nil):
 Integer

Use this method to get the total number of child elements, with or without a particular associated
Controller instance, whose CanTab method returns True.

Note
 This is a recursive method, and will return the total number of all child elements, even
grandchildren, great-grandchildren, etc.

Component Reference

Page 1619

TElement.Hide Method

procedure Hide

Use this method to set the Visible property to False and hide the element.

Component Reference

Page 1620

TElement.IsControllerClass Method

function IsControllerClass(AClass: TInterfaceControllerClass;
 ANameRequired: Boolean=False): Boolean

Use this method to determine if the element's associated Controller is the specified controller class type.

Component Reference

Page 1621

TElement.IsParentOf Method

function IsParentOf(AElement: TElement): Boolean

Use this method to determine if the element is the parent of the specified element.

Note
 This is a recursive method, and will search all child elements, even grandchildren, great-
grandchildren, etc. to determine if any of the child elements are the parent of the specified
element.

Component Reference

Page 1622

TElement.Minimize Method

function Minimize: Boolean

Use this method to minimize the element. Minimizing an element saves the current width and height of
the element so that it can be restored later using the Restore method, and sets the Minimized to True.

This method will return True if the element was not already minimized and False if it was already
minimized.

Component Reference

Page 1623

TElement.RemoveFocus Method

procedure RemoveFocus

Use this method to remove focus from the element. If the element is not focused, then this method does
nothing.

Component Reference

Page 1624

TElement.Restore Method

function Restore: Boolean

Use this method to restore a minimized element. A minimized element is an element whose Minimized
property is True.

This method will return True if the element was minimized and False if it was not minimized.

Component Reference

Page 1625

TElement.ScrollBy Method

procedure ScrollBy(X,Y: Integer)

If an element's content width and/or height is greater than its Width and Height properties, then you can
use this method to scroll the contents of the element horizontally, vertically, or both. The X and Y values
represent the number of pixels to scroll the contents by, and may be negative values for scrolling
backward.

Component Reference

Page 1626

TElement.SendToBack Method

procedure SendToBack

Use this method to send the element to the back of the visual stacking order. An element in the back will
have a DisplayIndex property equal to 0.

Component Reference

Page 1627

TElement.SetFocus Method

procedure SetFocus

Use this method to set focus to the element. If the element's FocusEnabled property is set to True, then
the element will be focused. If the element's PreserveFocus property is set to False, then focus will be
removed from whatever element is currently focused.

Component Reference

Page 1628

TElement.Show Method

procedure Show

Use this method to set the Visible to True and show the element.

Component Reference

Page 1629

10.79 TElementAttribute Component

Unit: WebUI

Inherits From TPersistent

The TElementAttribute class represents an attribute for a UI element or control. It is the base class for all
attribute classes like the TBackground, TFont, and TLayout classes and contains the base functionality for
loading and change management for element attributes.

Properties Methods Events

Assign

Create

GetStyle

Component Reference

Page 1630

TElementAttribute.Assign Method

procedure Assign(AAttribute: TElementAttribute)

Use this method to assign the properties of a source element attribute to the element attribute.

Component Reference

Page 1631

TElementAttribute.Create Method

constructor Create(AElement: TElement; AParent:
 TElementAttribute)

Use this method to create a new instance of the TElementAttribute class. The AElement parameter
indicates the element instance that will manage the attribute, and the AParent parameter indicates the
parent attribute, if any, that the attribute is contained within. The parent attribute is used to aggregate
change management at the outermost attribute so as to avoid excessively triggering change notifications
in the element.

Component Reference

Page 1632

TElementAttribute.GetStyle Method

function GetStyle: String

Use this method at run-time to get a string containing the CSS style data for the element attribute.

Note
 This method is not available at design-time for element attributes.

Component Reference

Page 1633

10.80 TElementProperties Component

Unit: WebUI

Inherits From TPersistent

The TElementProperties class specifies which properties of an element are applied when a control
interface state is applied to the elements of a control instance.

Properties Methods Events

AlwaysOnTop

AutoSize

Background

Border

Constraints

Content

Corners

Cursor

DisplayIndex

Font

FontColor

FontSize

FontStyle

Format

Height

InsetShadow

Layout

LayoutIndex

Left

Margins

Opacity

OutsetShadow

Padding

Top

Visible

Width

Component Reference

Page 1634

Component Reference

Page 1635

TElementProperties.AlwaysOnTop Property

property AlwaysOnTop: Boolean

Specifies that the AlwaysOnTop property should be applied.

Component Reference

Page 1636

TElementProperties.AutoSize Property

property AutoSize: Boolean

Specifies that the AutoSize property should be applied.

Component Reference

Page 1637

TElementProperties.Background Property

property Background: Boolean

Specifies that the Background property should be applied.

Component Reference

Page 1638

TElementProperties.Border Property

property Border: Boolean

Specifies that the Border property should be applied.

Component Reference

Page 1639

TElementProperties.Constraints Property

property Constraints: Boolean

Specifies that the Constraints property should be applied.

Component Reference

Page 1640

TElementProperties.Content Property

property Content: Boolean

Specifies that the Content property should be applied.

Component Reference

Page 1641

TElementProperties.Corners Property

property Corners: Boolean

Specifies that the Corners property should be applied.

Component Reference

Page 1642

TElementProperties.Cursor Property

property Cursor: Boolean

Specifies that the Cursor property should be applied.

Component Reference

Page 1643

TElementProperties.DisplayIndex Property

property DisplayIndex: Boolean

Specifies that the DisplayIndex property should be applied.

Component Reference

Page 1644

TElementProperties.Font Property

property Font: Boolean

Specifies that the Font property should be applied.

Component Reference

Page 1645

TElementProperties.FontColor Property

property FontColor: Boolean

Specifies that the Font.Color property should be applied.

Component Reference

Page 1646

TElementProperties.FontSize Property

property FontSize: Boolean

Specifies that the Font.Size property should be applied.

Component Reference

Page 1647

TElementProperties.FontStyle Property

property FontStyle: Boolean

Specifies that the Font.Style property should be applied.

Component Reference

Page 1648

TElementProperties.Format Property

property Format: Boolean

Specifies that the Format property should be applied.

Component Reference

Page 1649

TElementProperties.Height Property

property Height: Boolean

Specifies that the Height property should be applied.

Component Reference

Page 1650

TElementProperties.InsetShadow Property

property InsetShadow: Boolean

Specifies that the InsetShadow property should be applied.

Component Reference

Page 1651

TElementProperties.Layout Property

property Layout: Boolean

Specifies that the Layout property should be applied.

Component Reference

Page 1652

TElementProperties.LayoutIndex Property

property LayoutIndex: Boolean

Specifies that the LayoutIndex property should be applied.

Component Reference

Page 1653

TElementProperties.Left Property

property Left: Boolean

Specifies that the Left property should be applied.

Component Reference

Page 1654

TElementProperties.Margins Property

property Margins: Boolean

Specifies that the Margins property should be applied.

Component Reference

Page 1655

TElementProperties.Opacity Property

property Opacity: Boolean

Specifies that the Opacity property should be applied.

Component Reference

Page 1656

TElementProperties.OutsetShadow Property

property OutsetShadow: Boolean

Specifies that the OutsetShadow property should be applied.

Component Reference

Page 1657

TElementProperties.Padding Property

property Padding: Boolean

Specifies that the Padding property should be applied.

Component Reference

Page 1658

TElementProperties.Top Property

property Top: Boolean

Specifies that the Top property should be applied.

Component Reference

Page 1659

TElementProperties.Visible Property

property Visible: Boolean

Specifies that the Visible property should be applied.

Component Reference

Page 1660

TElementProperties.Width Property

property Width: Boolean

Specifies that the Width property should be applied.

Component Reference

Page 1661

10.81 TElements Component

Unit: WebUI

Inherits From TPersistent

The TElements class is a container for the child elements of an element.

Properties Methods Events

Count Assign

DisplayElement Create

Element

TabCount

TabElement

Component Reference

Page 1662

TElements.Count Property

property Count: Integer

Indicates the number of child elements.

Component Reference

Page 1663

TElements.DisplayElement Property

property DisplayElement[Index: Integer]: TElement

Accesses child elements by their DisplayIndex property.

Component Reference

Page 1664

TElements.Element Property

property Element[Index: Integer]: TElement

Accesses child elements by their LayoutIndex property.

Component Reference

Page 1665

TElements.TabCount Property

property TabCount: Integer

Indicates the number of focusable and tabable child elements.

Component Reference

Page 1666

TElements.TabElement Property

property TabElement[Index: Integer]: TElement

Accesses child elements by their TabIndex property.

Component Reference

Page 1667

TElements.Assign Method

procedure Assign(AElements: TElements)

Use this method to assign a source list of child elements to the elements list.

Note
 This method will also recursively assign all child elements of each source child element, so please
be careful when using this method.

Component Reference

Page 1668

TElements.Create Method

constructor Create(AElement: TElement)

Use this method to create a new instance of the TElements class. The AElement parameter indicates the
parent element instance that will manage the elements.

Component Reference

Page 1669

10.82 TFileComboBox Component

Unit: WebEdits

Inherits From TEditComboControl

The TFileComboBox component represents a file combo box control. A file combo box is a combo box
control that allows the user to select a file from the browser's file selection dialog.

Properties Methods Events

AcceptTypes OnAnimationComplete

Cursor OnAnimationsComplete

Enabled OnButtonClick

Font OnChange

Hint OnClick

ReadOnly OnDblClick

TabOrder OnEnter

TabStop OnExit

Text OnHide

OnKeyDown

OnKeyPress

OnKeyUp

OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 1670

TFileComboBox.AcceptTypes Property

property AcceptTypes: TStrings

Specifies a list of MIME types or file extensions for filtering the list of files that are shown to the user when
the file combo box control's drop-down button is clicked.

Component Reference

Page 1671

TFileComboBox.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1672

TFileComboBox.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 1673

TFileComboBox.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 1674

TFileComboBox.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 1675

TFileComboBox.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 1676

TFileComboBox.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 1677

TFileComboBox.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 1678

TFileComboBox.Text Property

property Text: String

Specifies the control's input value as a string.

Component Reference

Page 1679

TFileComboBox.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 1680

TFileComboBox.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 1681

TFileComboBox.OnButtonClick Event

property OnButtonClick: TClickEvent

This event is triggered whenever the associated combo button is clicked.

Component Reference

Page 1682

TFileComboBox.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 1683

TFileComboBox.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 1684

TFileComboBox.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1685

TFileComboBox.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 1686

TFileComboBox.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 1687

TFileComboBox.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1688

TFileComboBox.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 1689

TFileComboBox.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 1690

TFileComboBox.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 1691

TFileComboBox.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 1692

TFileComboBox.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 1693

TFileComboBox.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 1694

TFileComboBox.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 1695

TFileComboBox.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 1696

TFileComboBox.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1697

TFileComboBox.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1698

TFileComboBox.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1699

TFileComboBox.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 1700

TFileComboBox.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 1701

TFileComboBox.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 1702

TFileComboBox.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 1703

10.83 TFileInputElement Component

Unit: WebUI

Inherits From TInputElement

The TFileInputElement class is the element class for file input elements, and contains all of the file input
functionality in the form of public methods and properties/events that control classes can use to create
file upload controls.

Note
 This element does not provide support for file uploads at design-time, and the applicable methods
and properties are all stubs.

Properties Methods Events

AcceptTypes Click

Component Reference

Page 1704

TFileInputElement.AcceptTypes Property

property AcceptTypes: String

Specifies a comma-delimited list of MIME types or file extensions for filtering the list of files that are
shown to the user when the file input element is clicked.

Component Reference

Page 1705

TFileInputElement.Click Method

procedure Click

Use this method to programmatically simulate a click on the element.

Note
 Due to security restrictions, an application can only successfully call this method if the calling code
was initiated by a user interfaction, such as a mouse click or touch.

Component Reference

Page 1706

10.84 TFill Component

Unit: WebUI

Inherits From TElementAttribute

The TFill class represents the background fill of a UI element or control. Background fills can be solid
colors (including transparent) or gradients.

Properties Methods Events

Color SetToDefault

FillType

Gradient

Component Reference

Page 1707

TFill.Color Property

property Color: TColor

Specifies the color of the background fill.

Component Reference

Page 1708

TFill.FillType Property

property FillType: TFillType

Specifies the type of background fill.

Component Reference

Page 1709

TFill.Gradient Property

property Gradient: TGradient

Specifies a gradient background fill.

Component Reference

Page 1710

TFill.SetToDefault Method

procedure SetToDefault

Use this method to reset the background fill's properties to their default values.

Component Reference

Page 1711

10.85 TFloatValue Component

Unit: WebCore

Inherits From TDataValue

This class represents the value for a Float column in a TDataSet component.

Properties Methods Events

Component Reference

Page 1712

10.86 TFont Component

Unit: WebUI

Inherits From TElementAttribute

The TFont class represents the font to use for the content of a UI element or control.

Properties Methods Events

Color SetToDefault

GenericFamily

LineHeight

Name

Size

Style

Component Reference

Page 1713

TFont.Color Property

property Color: TColor

Specifies the color of the font. The default value is clBlack.

Component Reference

Page 1714

TFont.GenericFamily Property

property GenericFamily: TGenericFontFamily

Specifies the generic font family for the font.

Note
 This property is automatically populated at design-time when the Name property is changed.

Component Reference

Page 1715

TFont.LineHeight Property

property LineHeight: Integer

Indicates the calculated line height, in pixels, based upon the Size property.

Component Reference

Page 1716

TFont.Name Property

property Name: String

Specifies the name of the font. The default value is 'Arial'.

Component Reference

Page 1717

TFont.Size Property

property Size: Integer

Specifies the size, in pixels, of the font. The default value is 16.

Component Reference

Page 1718

TFont.Style Property

property Style: TFontStyle

Specifies the style of the font.

Component Reference

Page 1719

TFont.SetToDefault Method

procedure SetToDefault

Use this method to reset the font's properties to their default values.

Component Reference

Page 1720

10.87 TFontIcon Component

Unit: WebCtrls

Inherits From TComponent

The TFontIcon component represents the font icon for a TIcon control. It includes properties that control
the attributes of the font icon, such as the size and color of the icon.

Properties Methods Events

AutoSize

Color

Size

Component Reference

Page 1721

TFontIcon.AutoSize Property

property AutoSize: Boolean

Specifies that the font icon should automatically be sized based upon the TIconProperties Height
property.

Component Reference

Page 1722

TFontIcon.Color Property

property Color: TColor

Specifies the color of the font icon. This property defaults to the pre-defined font icon color of the icon
specified by the IconName property, and may change when the IconName property is changed.

Component Reference

Page 1723

TFontIcon.Size Property

property Size: Integer

Specifies the size, in pixels, of the font icon. This property defaults to the pre-defined font icon color of the
icon specified by the IconName property, and may change when the IconName property is changed.

Component Reference

Page 1724

10.88 TFontStyle Component

Unit: WebUI

Inherits From TElementAttribute

The TFontStyle class represents the style attributes of the font to use for the content of a UI element or
control.

Properties Methods Events

Bold SetToDefault

Italic

Strikeout

Underline

Component Reference

Page 1725

TFontStyle.Bold Property

property Bold: Boolean

Specifies that the font should be bold. The default value is False.

Component Reference

Page 1726

TFontStyle.Italic Property

property Italic: Boolean

Specifies that the font should be italicized. The default value is False.

Component Reference

Page 1727

TFontStyle.Strikeout Property

property Strikeout: Boolean

Specifies that the font should have a line drawn through it. The default value is False.

Component Reference

Page 1728

TFontStyle.Underline Property

property Underline: Boolean

Specifies that the font should be underlined. The default value is False.

Component Reference

Page 1729

TFontStyle.SetToDefault Method

procedure SetToDefault

Use this method to reset the font style's properties to their default values.

Component Reference

Page 1730

10.89 TForm Component

Unit: WebForms

Inherits From TFormControl

The TForm component represents the basic form control used in Elevate Web Builder. Please see the
Creating and Showing Forms for more information on using forms.

Properties Methods Events

ActivateOnClick OnAnimationComplete

Background OnAnimationsComplete

Border OnClick

Corners OnClose

Cursor OnCloseQuery

InsetShadow OnDblClick

Opacity OnHide

OutsetShadow OnKeyDown

Padding OnKeyPress

ScrollBars OnKeyUp

ScrollSupport OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMouseWheel

OnMove

OnScroll

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchScroll

OnTouchStart

Component Reference

Page 1731

TForm.ActivateOnClick Property

property ActivateOnClick: Boolean

Specifies whether the form should automatically be brought to the front when it, or any child controls, are
clicked.

Note
 This property only has an effect when the form is parented to another control. By default, forms
always are brought to the front when clicked.

Component Reference

Page 1732

TForm.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 1733

TForm.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 1734

TForm.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 1735

TForm.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1736

TForm.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 1737

TForm.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 1738

TForm.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 1739

TForm.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 1740

TForm.ScrollBars Property

property ScrollBars: TScrollBars

Specifies which scrollbars to show, if any.

Note
 Even if this property is set to sbHorizontal, sbVertical, or sbBoth, a scrollbar will only be shown if
the size of the contents and/or the child controls of the control exceed the client rectangle for the
control.

Component Reference

Page 1741

TForm.ScrollSupport Property

property ScrollSupport: TScrollSupport

Specifies the directions in which the control can be scrolled, if any.

Note
 This property only applies to scrolling via touch and mouse wheel movements, and does not apply
to programmatic scrolling or scrolling via the scroll bars themselves.

Component Reference

Page 1742

TForm.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 1743

TForm.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 1744

TForm.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 1745

TForm.OnClose Event

property OnClose: TNotifyEvent

This event is triggered when the form's Close method is called.

Component Reference

Page 1746

TForm.OnCloseQuery Event

property OnCloseQuery: TCloseQueryEvent

This event is triggered when the form's Close method is called.

Return True to allow the close to continue, or False to prevent the form from closing.

Component Reference

Page 1747

TForm.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1748

TForm.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1749

TForm.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 1750

TForm.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 1751

TForm.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 1752

TForm.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 1753

TForm.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 1754

TForm.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 1755

TForm.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 1756

TForm.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 1757

TForm.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 1758

TForm.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1759

TForm.OnScroll Event

property OnScroll: TNotifyEvent

This event is triggered whenever a scrollable control is scrolled horizontally or vertically.

Component Reference

Page 1760

TForm.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1761

TForm.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1762

TForm.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 1763

TForm.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 1764

TForm.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 1765

TForm.OnTouchScroll Event

property OnTouchScroll: TTouchScrollEvent

This event is triggered whenever a touch moves in any direction over a touch-scroll-enabled control.

Component Reference

Page 1766

TForm.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 1767

10.90 TFormat Component

Unit: WebUI

Inherits From TElementAttribute

The TFormat class represents the formatting attributes to use for the content of a UI element or control.

Properties Methods Events

Alignment SetToDefault

Direction

Wrap

Component Reference

Page 1768

TFormat.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the content.

Component Reference

Page 1769

TFormat.Direction Property

property Direction: TContentDirection

Specifies the direction in which the content is displayed.

Component Reference

Page 1770

TFormat.Wrap Property

property Wrap: Boolean

Specifies whether the content should be word-wrapped.

Component Reference

Page 1771

TFormat.SetToDefault Method

procedure SetToDefault

Use this method to reset the format's properties to their default values.

Component Reference

Page 1772

10.91 TFormatSettings Component

Unit: WebCore

Inherits From TObject

The TFormatSettings class represents the formatting settings for numeric, date, and time literals. An
instance of the TFormatSettings class called FormatSettings is automatically created by the component
library at application startup, so further instances of the TFormatSettings class should not be created.

Properties Methods Events

DateSeparator Create

DecimalSeparator

LongDayNames

LongMonthNames

ShortDateFormat

ShortDateFormatComp

ShortDayNames

ShortMonthNames

ShortTimeFormat

ShortTimeFormatComp

StartOfWeek

TimeAMString

TimePMString

TimeSeparator

Translations

TwoDigitYearCenturyWindow

Component Reference

Page 1773

TFormatSettings.DateSeparator Property

property DateSeparator: Char

Specifies the character used to separate the various components of a date literal. The default value of this
property is the forward slash (/).

Warning
 When specifying a ShortDateFormat that uses a different date separator character, please make
sure that you modify the DateSeparator property before setting the new ShortDateFormat value.

Component Reference

Page 1774

TFormatSettings.DecimalSeparator Property

property DecimalSeparator: Char

Specifies the character used to separate the integer portion from the fractional portion in a numeric literal.
The default value of this property is the period (.).

Component Reference

Page 1775

TFormatSettings.LongDayNames Property

property LongDayNames[Day: Integer]: String

Specifies the full day names for all days of the week. The values are indexed by the day, with Monday
being the first at index 1 and Sunday being the last at index 7. The default values are Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, and Sunday.

Component Reference

Page 1776

TFormatSettings.LongMonthNames Property

property LongMonthNames[Month: Integer]: String

Specifies the full month names for all months of the year. The values are indexed by the month, with
January being the first at index 1 and December being the last at index 12. The default values are January,
February, March, April, May, June, July, August, September, October, November, and December.

Component Reference

Page 1777

TFormatSettings.ShortDateFormat Property

property ShortDateFormat: String

Specifies the format string used for date literals. The default value of this property is 'M/d/yyyy'.

The following date format specifiers are supported:

Format Specifier Description

M The month number with no leading zero

MM The month number with a leading zero if the month number
is less than 10

d The day number with no leading zero

dd The day number with a leading zero if the day number is less
than 10

yy The last two digits of the year number with a leading zero
(see the TwoDigitYearCenturyWindow property)

yyyy The full four digits of the year number

Note
 For date/time literals, the ShortDateFormat is used in conjunction with the ShortTimeFormat
property, with a space separating the two.

Warning
 When specifying a ShortDateFormat that uses a different date separator character, please make
sure that you modify the DateSeparator property before setting the new ShortDateFormat value.

Component Reference

Page 1778

TFormatSettings.ShortDateFormatComp Property

property ShortDateFormatComp[Index: Integer]: String

Accesses a specific component of the short date format by its index in the defined components of the
format.

Component Reference

Page 1779

TFormatSettings.ShortDayNames Property

property ShortDayNames[Day: Integer]: String

Specifies the abbreviated day names for all days of the week. The values are indexed by the day, with
Monday being the first at index 1 and Sunday being the last at index 7. The default values are Mon, Tue,
Wed, Thu, Fri, Sat, and Sun.

Component Reference

Page 1780

TFormatSettings.ShortMonthNames Property

property ShortMonthNames[Month: Integer]: String

Specifies the abbreviated month names for all months of the year. The values are indexed by the month,
with January being the first at index 1 and December being the last at index 12. The default values are Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec.

Component Reference

Page 1781

TFormatSettings.ShortTimeFormat Property

property ShortTimeFormat: String

Specifies the format string used for time literals. The default value of this property is 'hh:mm tt'.

The following date format specifiers are supported:

Format Specifier Description

h The hour number (12-hour clock) with no leading zero

hh The hour number (12-hour clock) with a leading zero if the
hour number is less than 10

H The hour number (24-hour clock) with no leading zero

HH The hour number (24-hour clock) with a leading zero if the
hour number is less than 10

m The minute number with no leading zero

mm The minute number with a leading zero if the minute number
is less than 10

s The second number with no leading zero

ss The second number with a leading zero if the second number
is less than 10

tt The AM/PM designation for a 12-hour clock literal

Note
 For date/time literals, the ShortDateFormat is used in conjunction with the ShortTimeFormat
property, with a space separating the two.

Warning
 When specifying a ShortTimeFormat that uses a different time separator character, please make
sure that you modify the TimeSeparator property before setting the new ShortTimeFormat value.

Component Reference

Page 1782

TFormatSettings.ShortTimeFormatComp Property

property ShortTimeFormatComp[Index: Integer]: String

Accesses a specific component of the short time format by its index in the defined components of the
format.

Component Reference

Page 1783

TFormatSettings.StartOfWeek Property

property StartOfWeek: Integer

Specifies the week day number designated as the start of the week for calendar display purposes. The
default value is 7, for Sunday, and the valid values are 1 (Monday) through 7 (Sunday).

Component Reference

Page 1784

TFormatSettings.TimeAMString Property

property TimeAMString: String

Specifies the literal used to represent the AM designation for a 12-hour clock time literal. The default
value of this property is 'AM'.

Component Reference

Page 1785

TFormatSettings.TimePMString Property

property TimePMString: String

Specifies the literal used to represent the PM designation for a 12-hour clock time literal. The default value
of this property is 'PM'.

Component Reference

Page 1786

TFormatSettings.TimeSeparator Property

property TimeSeparator: Char

Specifies the character used to separate the various components of a time literal. The default value of this
property is the colon (:).

Warning
 When specifying a ShortTimeFormat that uses a different time separator character, please make
sure that you modify the TimeSeparator property before setting the new ShortTimeFormat value.

Component Reference

Page 1787

TFormatSettings.Translations Property

property Translations: TStrings

Specifies the translations for all strings used in the Elevate Web Builder framework for visual controls and
error/warning/information messages as key-value pairs. In order to translate one or more strings, simply
reference the string ID using the Values property and assign it a new value. For example, the following will
translate the text used for the OK button on message dialogs to a new value:

FormatSettings.Translations.Values['DLG_BTN_OK']:='Okey-Dokey';

The following strings are pre-defined in the framework and can be translated to suit your needs:

String Default Value

TYPE_UNKNOWN Unknown

TYPE_STRING String

TYPE_BOOLEAN Boolean

TYPE_INTEGER Integer

TYPE_FLOAT Float

TYPE_DATE Date

TYPE_TIME Time

TYPE_DATETIME DateTime

TYPE_BLOB Blob

TYPE_SYMBOL Symbol

ERR_CMP_DESTROY "%s" component already destroyed

ERR_LOAD_PERSISTENT Persistent load error (%s)

ERR_LOAD_METHOD Method %s not found

ERR_SAVE_PERSISTENT Persistent save error (%s)

ERR_SET_RANGE Value "%s" out of range for set

ERR_BOOLEAN_LITERAL Invalid boolean literal "%s" specified

ERR_FORMAT Error in the format string %s (%s)

ERR_DATETIME_DATE date

ERR_DATETIME_TIME time

ERR_DATETIME_MONTH Invalid month %s specified

ERR_DATETIME_DAY Invalid day %s specified

Component Reference

Page 1788

ERR_DATETIME_TOOMANYCOMPS Too many %s components

ERR_DATETIME_MISSINGCOMP Missing %s component

ERR_DATETIME_INVALIDCOMP Invalid %s component

ERR_DATETIME_INVALIDFORMAT Invalid %s format

ERR_DATETIME_INVALID Invalid %s (%s)

ERR_PARSE_TERMSTR Unterminated string at %s

ERR_PARSE_MISSING Missing %s

ERR_PARSE_EXPECT Expected %s, instead found %s at %s

ERR_LIST_BOUNDS List index %s out of bounds

ERR_LIST_SORT You can only use the Find method when the string list is
sorted

ERR_OWNER Invalid owner class %s passed to constructor

ERR_LOADUI_ELEMENT Error loading interface element (%s)

ERR_LOADUI_STATE Error loading interface state (%s)

ERR_UI_ELEMENTCLASS Cannot find registered element class information for the %s
class

ERR_APP_ERRORLINE Line: %s

ERR_APP_ERRORTITLE Application Error

ERR_ZOOM_FACTOR Zoom factor %s invalid, factor must be between 1 and 100

ERR_SLIDE_COUNT At least %s slide images must be specifed before the slide
show can be started

ERR_DOM_EVENTADD Cannot add event handler to "%s" element for "%s" event

ERR_DOM_EVENTCLEAR Cannot remove "%s" event handler from "%s"

ERR_HTTP_REQUEST Error executing request "%s" (%s)

ERR_DATA_DUPCOL The "%s" column already exists

ERR_DATA_COLNAME Column names cannot be blank (%s)

ERR_DATA_COLLENGTH Invalid "%s" column length %s

ERR_DATA_COLSCALE Invalid "%s" column scale %s

ERR_DATA_CONVERT Error converting %s value to %s value

ERR_DATA_CONNECT Cannot connect to server

ERR_DATA_LOADCODE Status code %s

ERR_DATA_LOAD Dataset load response error: %s

ERR_DATA_COMMIT Database commit response error: %s

ERR_DATA_TRANSACTIVE A transaction is not active

ERR_DATA_PENDREQUEST There are no pending requests

Component Reference

Page 1789

ERR_DATA_COLUMNS At least one column must be defined for the "%s" dataset

ERR_DATA_OPEN The "%s" dataset must be open in order to complete this
operation

ERR_DATA_NOTOPEN The "%s" dataset cannot be open when completing this
operation

ERR_DATA_NOTEDITING The "%s" dataset must be in an editable mode before a
column can be assigned a value

ERR_DATA_TRANSCLOSE Cannot close the "%s" dataset while there are still active
transaction operations for the dataset

ERR_DATA_FINDMODE The "%s" dataset is not in Find mode

ERR_DATA_FINDNEAR You can only search for nearest matches in the "%s" dataset
when searching on columns that match the current sort order

ERR_DATA_COLNOTFOUND Column "%s" not found

ERR_DATA_TRANSDATASET Invalid dataset "%s" specified in the transaction operations

ERR_DATA_TRANSOPTYPE Invalid or unknown operation type %s specified in the
transaction operations

ERR_CALENDAR_COLINDEX Column index %s out of bounds

ERR_CALENDAR_ROWINDEX Row index %s out of bounds

ERR_GRID_COLINDEX Column index %s out of bounds

ERR_GRID_ROWINDEX Row index %s out of bounds

ERR_GRID_COLNOTFOUND Column "%s" not found

ERR_IMAGE_LOAD Image "%s" not loaded

ERR_CANVAS Your browser does not have HTML5 canvas support

ERR_STORAGE Your browser does not have HTML5 persistent storage
support

ERR_SCRIPT_LOAD Your browser does not support dynamic script loading

ERR_MEDIA Your browser does not have HTML5 media support

ERR_MAP The map API has not been loaded

ERR_MAP_GEOCODE Geocoding request error "%s"

ERR_MAP_LOCNOTFOUND Location "%s" not found

ERR_MAP_DUPLOC The "%s" location already exists

ERR_MAP_LOCNAME Location names cannot be blank (%s)

ERR_DLG_BUTTONS You must specify at least one button for the message dialog

ERR_FORM_SHOWMODAL You cannot call ShowModal for the embedded form %s

ERR_APP_SIZERCONTROL The sizer control itself cannot be assigned as the target
control

APP_LOAD_MESSAGE Loading %s...

Component Reference

Page 1790

ERR_DLG_BUTTONS You must specify at least one button for the message dialog

DLG_MSG Message

DLG_BTN_OK OK

DLG_BTN_CANCEL Cancel

DLG_BTN_ABORT Abort

DLG_BTN_RETRY Retry

DLG_BTN_IGNORE Ignore

DLG_BTN_YES Yes

DLG_BTN_NO No

DLG_BTN_ALL All

DLG_BTN_NOTOALL No to All

DLG_BTN_YESTOALL Yes to All

DLG_BTN_CLOSE Close

Note
 Be sure to include the %s string placeholders in the same order and quantity to ensure that data
that is formatted into the string by the framework still produces a string that makes sense.

Component Reference

Page 1791

TFormatSettings.TwoDigitYearCenturyWindow Property

property TwoDigitYearCenturyWindow: Integer

Specifies what century is added to two-digit years when date literals are converted to DateTime values.
This property is subtracted from the current year to determine the pivot year. Two digit years that are
prior to the pivot year are interpreted as falling in the next century. The default value is 50.

Component Reference

Page 1792

TFormatSettings.Create Method

constructor Create

Use this method to create a new instance of the TFormatSettings class.

Component Reference

Page 1793

10.92 TFormControl Component

Unit: WebForms

Inherits From TScrollableControl

The TFormControl control is the base class for forms, and contains all of the core form functionality in the
form of public methods and protected properties/events that descendant classes can use to create
customized forms.

Properties Methods Events

ModalResult Close OnCreate

ShowModal OnDestroy

Component Reference

Page 1794

TFormControl.ModalResult Property

property ModalResult: TModalResult

Specifies the result for a modal form. Assigning a value other than mrNone to this property for a modal
form will cause the form to attempt to close. This property has no effect upon forms that were not shown
modally.

Component Reference

Page 1795

TFormControl.Close Method

procedure Close

Use this method to close the form. When this method is called, the OnCloseQuery event is triggered,
followed by the OnClose event. If the OnCloseQuery event handler returns True, then the form will be
hidden before the OnClose event is triggered.

Component Reference

Page 1796

TFormControl.ShowModal Method

procedure ShowModal

Use this method to show a form in a modal fashion. When a form is shown modally, a modal overlay is
placed over all other forms and the entire application surface, and keyboard and mouse input is only
allowed for the modal form.

Component Reference

Page 1797

TFormControl.OnCreate Event

property OnCreate: TNotifyEvent

This event is triggered after the form is created and initialized.

Note
 Any design-time components placed on the form will already be instantiated and initialized before
this event is triggered.

Component Reference

Page 1798

TFormControl.OnDestroy Event

property OnDestroy: TNotifyEvent

This event is triggered before the form is destroyed. Use this event to dispose of any instances or
resources that may have been allocated in the OnCreate event handler.

Component Reference

Page 1799

10.93 TFormElement Component

Unit: WebUI

Inherits From TElement

The TFormElement class is the element class for HTML form elements, and contains all of the HTML form
functionality in the form of public methods and properties/events that control classes can use to create
HTML form controls.

Note
 This element does not provide support for HTML forms at design-time, and the applicable
methods and properties are all stubs.

Properties Methods Events

Action Reset

Encoding Submit

Method

Target

Component Reference

Page 1800

TFormElement.Action Property

property Action: String

Specifies the URL to use for the form submittal when the Submit method is called. The default value is ''.

Component Reference

Page 1801

TFormElement.Encoding Property

property Encoding: THTMLFormEncoding

Specifies the MIME encoding type of the form data that is sent when the Submit method is called.

Component Reference

Page 1802

TFormElement.Method Property

property Method: THTMLFormMethod

Specifies the HTTP method used for the form submittal when the Submit method is called.

Component Reference

Page 1803

TFormElement.Target Property

property Target: String

Specifies the name of a TFrameElement that should accept all output from the form submittal request to
the web server when the Submit method is called. The default value is ''.

Component Reference

Page 1804

TFormElement.Reset Method

procedure Reset

Use this method to clear all form input elements contained within the form element.

Component Reference

Page 1805

TFormElement.Submit Method

procedure Submit

Use this method to submit all form input elements contained within the form element to the web server
using the URL specified by the Action property, the MIME type encoding specified by the Encoding
property, and the HTTP method specifed by the Method property.

Component Reference

Page 1806

10.94 TFrameElement Component

Unit: WebUI

Inherits From TWebElement

The TFrameElement class is the element class for embedded iframe elements, and contains all of the
iframe functionality in the form of public methods and properties/events that control classes can use to
create iframe controls.

Note
 This element does not provide support for iframes at design-time, and the applicable methods and
properties are all stubs.

Properties Methods Events

Document Print

DocumentText

Scrolling

TargetName

Window

Component Reference

Page 1807

TFrameElement.Document Property

property Document: THTMLDocument

Returns the DOM (Document Object Model) document instance of the currently-loaded HTML document.
If the URL property has been specified, then this property will return the document instance once the
OnLoad event has been triggered and the Loaded property is True.

Note
 Accessing the DOM document instance allows you to manipulate the children of the DOM
document instance in code instead of having to use HTML strings, which is the case when using the
DocumentText property. However, this access is subject to same-origin security constraints, and will
be denied if the contents of the frame element were loaded from a different origin.

Component Reference

Page 1808

TFrameElement.DocumentText Property

property DocumentText: String

Returns the currently-loaded HTML document in the element as a string. If the URL property has been
specified, then this property will return the document contents once the OnLoad event has been triggered
and the Loaded property is True.

Note
 You can also assign a valid HTML string to this property, in which case the URL property is
automatically cleared.

Component Reference

Page 1809

TFrameElement.Scrolling Property

property Scrolling: Boolean

Specifies whether scrolling should be enabled for the element.

Note
 This property is required because certain browsers require a special way of specifying whether
scrollbars should be shown for an embedded iframe element.

Component Reference

Page 1810

TFrameElement.TargetName Property

property TargetName: String

Specifies the name of the embedded iframe element, which is required in order to allow output of actions
like HTML form submittals to be redirected to a specific iframe element.

Component Reference

Page 1811

TFrameElement.Window Property

property Window: TWindow

Returns the DOM (Document Object Model) window instance of the frame element.

Note
 Accessing the DOM window instance allows you to make calls into the global execution
environment of the frame element. However, this access is subject to same-origin security
constraints, and will be denied if the contents of the frame element were loaded from a different
origin.

Component Reference

Page 1812

TFrameElement.Print Method

procedure Print

Use this method to print the currently-loaded HTML document in the element. If no HTML document is
loaded, then this method does nothing.

Component Reference

Page 1813

10.95 TGradient Component

Unit: WebUI

Inherits From TElementAttribute

The TGradient class represents a background gradient for a UI element or control. Background gradients
can be linear or radial, and are comprised of 2 or more color stops.

Properties Methods Events

Angle SetToDefault

AutoCenter

CenterX

CenterY

ColorStops

GradientType

Component Reference

Page 1814

TGradient.Angle Property

property Angle: Integer

Specifies the angle of the linear gradient in degrees. The angle is the direction in which the linear gradient
will transition from the first color stop to the last color stop, with both 0 degrees and 360 degrees being
the top of the background area of a UI element or control. The gradient is a linear gradient when the
GradientType property is set to gtLinear.

Component Reference

Page 1815

TGradient.AutoCenter Property

property AutoCenter: Boolean

Specifies whether the radial gradient should be auto-centered in the exact middle of the background area
of a UI element or control. The gradient is a radial gradient when the GradientType property is set to
gtRadial.

Component Reference

Page 1816

TGradient.CenterX Property

property CenterX: Integer

Specifies the horizontal position of the center of the radial gradient, relative to the background area of a
UI element or control. The gradient is a radial gradient when the GradientType property is set to gtRadial.

Component Reference

Page 1817

TGradient.CenterY Property

property CenterY: Integer

Specifies the vertical position of the center of the radial gradient, relative to the background area of a UI
element or control. The gradient is a radial gradient when the GradientType property is set to gtRadial.

Component Reference

Page 1818

TGradient.ColorStops Property

property ColorStops: TGradientColorStops

Specifies the color stops for the gradient. Each color stop is represented by a color and a position (0-100),
with each color transitioning to the next at the specified positions. Each position is relative to the existing
width and height of the background area for a UI element or control, and adjusts proportionally as the
background area is resized.

Note
 A gradient always requires at least 2 color stops at positions 0 and 100.

Component Reference

Page 1819

TGradient.GradientType Property

property GradientType: TGradientType

Specifies the type of gradient, linear or radial.

Component Reference

Page 1820

TGradient.SetToDefault Method

procedure SetToDefault

Use this method to reset the gradient's properties to their default values.

Component Reference

Page 1821

10.96 TGradientColorStop Component

Unit: WebUI

Inherits From TElementAttribute

The TGradientColorStop class represents a background gradient color stop for a UI element or control.

Properties Methods Events

Color SetToDefault

Position

Component Reference

Page 1822

TGradientColorStop.Color Property

property Color: TColor

Specifies the color for the gradient color stop.

Component Reference

Page 1823

TGradientColorStop.Position Property

property Position: Integer

Specifies the relative position for the gradient color stop.

Component Reference

Page 1824

TGradientColorStop.SetToDefault Method

procedure SetToDefault

Use this method to reset the gradient color stop's properties to their default values.

Component Reference

Page 1825

10.97 TGradientColorStops Component

Unit: WebUI

Inherits From TElementAttribute

The TGradientColorStops class represents the background gradient color stops for a UI element or control.

Properties Methods Events

ColorStop Add

Count Remove

RemoveAll

SetToDefault

Component Reference

Page 1826

TGradientColorStops.ColorStop Property

property ColorStop[Index: Integer]: TGradientColorStop

Accesses a gradient color stop by its index position (0 to Count property).

Component Reference

Page 1827

TGradientColorStops.Count Property

property Count: Integer

Indicates the number of defined gradient color stops.

Component Reference

Page 1828

TGradientColorStops.Add Method

function Add: TGradientColorStop

Use this method to add a new gradient color stop. The color stop will be initialized with a Color value of
clBlack and a Position value of 0.

Component Reference

Page 1829

TGradientColorStops.Remove Method

procedure Remove(Index: Integer)

Use this method to remove an existing gradient color stop by its index position in the color stops.

Component Reference

Page 1830

TGradientColorStops.RemoveAll Method

procedure RemoveAll

Use this method to remove all existing gradient color stops.

Component Reference

Page 1831

TGradientColorStops.SetToDefault Method

procedure SetToDefault

Use this method to reset the gradient color stops' properties to their default values.

Component Reference

Page 1832

10.98 TGrid Component

Unit: WebGrids

Inherits From TGridControl

The TGrid component represents a grid control. A grid can be un-bound and used to display and update a
matrix of cells as strings, or can be bound to TDataSet component instances in order to display and
update the rows in the dataset.

Each grid instance has its own defined set of columns and, if the grid is bound to a dataset, each column
can be bound to a specific dataset column. Grid columns can also be used to sort a dataset by a specific
set of columns via their SortDirection property.

Component Reference

Page 1833

Properties Methods Events

AllowAppends OnAnimationComplete

AllowDeletes OnAnimationsComplete

AllowInserts OnClick

Background OnColumnChanged

Border OnDblClick

ColumnHeaders OnHide

ColumnHeadersHeight OnKeyDown

Corners OnKeyPress

Cursor OnKeyUp

DataSet OnMouseDown

Enabled OnMouseEnter

Hint OnMouseLeave

MultiSelect OnMouseMove

ReadOnly OnMouseUp

RowHeight OnMouseWheel

RowSelect OnMove

ScrollBars OnRowChanged

ScrollSupport OnScroll

ShowLines OnShow

TabOrder OnSize

TabStop OnTouchCancel

WantTabs OnTouchEnd

OnTouchMove

OnTouchScroll

OnTouchStart

Component Reference

Page 1834

TGrid.AllowAppends Property

property AllowAppends: Boolean

Specifies whether the grid should allow new rows to be appended by the user moving the active row
index past the last row in the grid. The default value is True.

Component Reference

Page 1835

TGrid.AllowDeletes Property

property AllowDeletes: Boolean

Specifies whether the grid should allow rows to be deleted by the user using the Ctrl-Delete key
combination in the grid. The default value is True.

Component Reference

Page 1836

TGrid.AllowInserts Property

property AllowInserts: Boolean

Specifies whether the grid should allow new rows to be inserted by the user using the Insert or Shift-Insert
key combination in the grid. The default value is True.

Component Reference

Page 1837

TGrid.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 1838

TGrid.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 1839

TGrid.ColumnHeaders Property

property ColumnHeaders: Boolean

Specifies whether column headers should be shown for the columns in the grid.

Component Reference

Page 1840

TGrid.ColumnHeadersHeight Property

property ColumnHeadersHeight: Integer

Specifies the height of the column headers in the grid.

Component Reference

Page 1841

TGrid.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 1842

TGrid.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 1843

TGrid.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the grid to. The default value is nil.

Note
 In order to actually show data from the dataset, the grid Columns must also have their
DataColumn property set to valid dataset column names.

Component Reference

Page 1844

TGrid.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 1845

TGrid.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 1846

TGrid.MultiSelect Property

property MultiSelect: Boolean

Specifies whether multiple rows can be selected in the grid. The SelectedCount property can be examined
to find out how many rows are selected and the Selected property can be examined to find out which
rows are selected.

Note
 You can only use the multi-select functionality when the RowSelect property is True. Setting the
RowSelect property to False will automatically set the MultiSelect property to False also.

Component Reference

Page 1847

TGrid.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the grid's rows and columns can be modified by the user. The default value is False.

Note
 The grid rows and columns can always be programmatically modified.

Component Reference

Page 1848

TGrid.RowHeight Property

property RowHeight: Integer

Indicates the height, in pixels, of each visible row in the grid.

Component Reference

Page 1849

TGrid.RowSelect Property

property RowSelect: Boolean

Specifies that the active selection should always encompass the entire current row. The default value is
False.

Component Reference

Page 1850

TGrid.ScrollBars Property

property ScrollBars: TScrollBars

Specifies which scrollbars to show, if any.

Note
 Even if this property is set to sbHorizontal, sbVertical, or sbBoth, a scrollbar will only be shown if
the size of the contents of the control exceed the client rectangle for the control.

Component Reference

Page 1851

TGrid.ScrollSupport Property

property ScrollSupport: TScrollSupport

Specifies the directions in which the control can be scrolled, if any.

Note
 This property only applies to scrolling via touch and mouse wheel movements, and does not apply
to programmatic scrolling or scrolling via the scroll bars themselves.

Component Reference

Page 1852

TGrid.ShowLines Property

property ShowLines: Boolean

Specifies that horizontal and vertical lines should be used to separate the various grid columns and rows.

Component Reference

Page 1853

TGrid.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 1854

TGrid.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 1855

TGrid.WantTabs Property

property WantTabs: Boolean

Specifies that the tab key can be used to navigate from cell to cell in the grid. The default value is True.

Note
 The RowSelect property must be False for this property setting to take effect. If the RowSelect
property is True, then the tab key will cause the input focus to move to the next control within the
parent container control for the grid.

Component Reference

Page 1856

TGrid.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 1857

TGrid.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 1858

TGrid.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 1859

TGrid.OnColumnChanged Event

property OnColumnChanged: TNotifyEvent

This event is triggered whenever the ColumnIndex property changes.

Component Reference

Page 1860

TGrid.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 1861

TGrid.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1862

TGrid.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 1863

TGrid.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 1864

TGrid.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 1865

TGrid.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 1866

TGrid.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 1867

TGrid.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 1868

TGrid.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 1869

TGrid.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 1870

TGrid.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 1871

TGrid.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 1872

TGrid.OnRowChanged Event

property OnRowChanged: TNotifyEvent

This event is triggered whenever the RowIndex property changes.

Component Reference

Page 1873

TGrid.OnScroll Event

property OnScroll: TNotifyEvent

This event is triggered whenever a scrollable control is scrolled horizontally or vertically.

Component Reference

Page 1874

TGrid.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1875

TGrid.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1876

TGrid.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 1877

TGrid.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 1878

TGrid.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 1879

TGrid.OnTouchScroll Event

property OnTouchScroll: TTouchScrollEvent

This event is triggered whenever a touch moves in any direction over a touch-scroll-enabled control.

Component Reference

Page 1880

TGrid.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 1881

10.99 TGridCell Component

Unit: WebGrids

Inherits From TControl

The TGridCell component represents a visible grid cell. A grid cell is used to display the values for a given
grid column in a grid control. The Background and Font properties can be modified in a TGridColumn
OnCellUpdate event handler to affect how data is displayed in the grid.

Properties Methods Events

Background

Data

Font

Index

Component Reference

Page 1882

TGridCell.Background Property

property Background: TBackground

Specifies the background of the cell.

Component Reference

Page 1883

TGridCell.Data Property

property Data: String

Indicates the current contents of the cell.

Component Reference

Page 1884

TGridCell.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the cell.

Component Reference

Page 1885

TGridCell.Index Property

property Index: Integer

Indicates the index of the cell in the grid column.

Component Reference

Page 1886

10.100 TGridColumn Component

Unit: WebGrids

Inherits From TBindableColumnControl

The TGridColumn component represents a grid column. A grid column can be un-bound and used to
display and update a vertical list of cells as strings, or can be bound to one of the TDataSet Columns in
order to display and update the column values for rows in the dataset.

Grid columns can be used to sort a dataset by a specific set of columns via their SortDirection property.

The ControlType property controls what type of control, if any, will be used to edit the contents of the
cells for the grid column.

Component Reference

Page 1887

Properties Methods Events

Alignment ToggleSortDirection OnButtonClick

AllowSize OnCellUpdate

AutoDropDown OnCompare

CalendarDefaultView OnDropDownHide

CalendarHeight OnDropDownShow

CalendarWidth OnHeaderClick

ControlType OnHide

DataColumn OnShow

Direction OnSize

DropDownItemCount

DropDownPosition

DropDownVisible

Enabled

Font

Header

ImageLayout

Index

Items

ItemsSorted

MaxLength

ParentGrid

ReadOnly

SingleClickToggle

SortDirection

SortIndex

SpellCheck

StretchToFit

ValueSelected

ValueUnselected

Wrap

Component Reference

Page 1888

TGridColumn.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the cell text for the grid column.

Component Reference

Page 1889

TGridColumn.AllowSize Property

property AllowSize: Boolean

Specifies whether the grid column can be sized by moving the mouse over the right border of the grid
column header. The default value is True.

Component Reference

Page 1890

TGridColumn.AutoDropDown Property

property AutoDropDown: Boolean

Specifies that the drop-down list should automatically be shown when the user starts typing in the grid
column's edit control. This property is only applicable when the ControlType property is set to
ctEditComboBox.

Component Reference

Page 1891

TGridColumn.CalendarDefaultView Property

property CalendarDefaultView: TCalendarView

Specifies the default view for the drop-down calendar control when the ControlType property is set to
ctDateEditCombobBox. The default view determines both the initial view shown in the calendar after it is
created, as well as the minimum view that the user is permitted to navigate to. The default value is
cvMonth.

Component Reference

Page 1892

TGridColumn.CalendarHeight Property

property CalendarHeight: Integer

Specifies the height of the drop-down calendar control when the ControlType property is set to
ctDateEditCombobBox.

Component Reference

Page 1893

TGridColumn.CalendarWidth Property

property CalendarWidth: Integer

Specifies the width of the drop-down calendar control when the ControlType property is set to
ctDateEditCombobBox.

Component Reference

Page 1894

TGridColumn.ControlType Property

property ControlType: TGridColumnControlType

Specifies the control type to use for any in-place editing for the column. The default value is ctNone,
which means that the column cannot be edited.

If the ControlType is set to ctLink, then the cell or bound dataset values should be in the format of:

<URL> [; <Optional Title>]

If the ControlType is set to ctImage, then the cell or bound dataset values should be in the format of:

<URL> [; <Optional Hint>]

Note
 If the <URL> specified in the cell or bound dataset value for an image column
(ControlType=ctImage) contains a data-URL value (for example, data:image/png;base64,....), then
you cannot specify an optional hint for the image.

Component Reference

Page 1895

TGridColumn.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 1896

TGridColumn.Direction Property

property Direction: TContentDirection

Specifies the direction in which the grid column's content is displayed/edited.

Component Reference

Page 1897

TGridColumn.DropDownItemCount Property

property DropDownItemCount: Integer

Specifies the number of visible items to display in the drop-down list of the grid column's edit control
when the ControlType property is set to ctEditComboBox.

Component Reference

Page 1898

TGridColumn.DropDownPosition Property

property DropDownPosition: TDropDownPosition

Specifies the position of the drop-down list/calendar of the grid column's edit control when the
ControlType property is set to ctEditComboBox or ctDateEditCombobBox.

Component Reference

Page 1899

TGridColumn.DropDownVisible Property

property DropDownVisible: Boolean

Indicates whether the drop-down list of the grid column's edit control is visible when the ControlType
property is set to ctEditComboBox or ctDialogEditComboBox.

Component Reference

Page 1900

TGridColumn.Enabled Property

property Enabled: Boolean

Specifies whether the column is enabled or disabled. When a grid column is disabled, it cannot obtain
input focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 1901

TGridColumn.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 1902

TGridColumn.Header Property

property Header: TGridHeader

Specifies the header properties for the grid column. The grid column header is only visible when the TGrid
ColumnHeaders property is set to True.

Component Reference

Page 1903

TGridColumn.ImageLayout Property

property ImageLayout: TContentLayout

Specifies the layout properties of the image content contained within the column when the ControlType
property is set to ctImage.

Component Reference

Page 1904

TGridColumn.Index Property

property Index: Integer

Indicates the index of the column in the list of grid columns.

Component Reference

Page 1905

TGridColumn.Items Property

property Items: TStrings

Specifies the list of items to use in the drop-down list of the grid column's edit control when the
ControlType property is set to ctEditComboBox.

Component Reference

Page 1906

TGridColumn.ItemsSorted Property

property ItemsSorted: Boolean

Specifies whether the list of items to display in the drop-down list of the grid column's edit control are
sorted when the ControlType property is set to ctEditComboBox.

Component Reference

Page 1907

TGridColumn.MaxLength Property

property MaxLength: Integer

Specifies the maximum allowable length for any text in the grid column's edit control when the
ControlType property is set to ctEdit, ctEditComboBox, ctDialogEditComboBox, or ctMultiLineEdit.

Component Reference

Page 1908

TGridColumn.ParentGrid Property

property ParentGrid: TGridControl

Indicates the parent grid control that contains the column, or nil if the column has not been assigned to a
grid control.

Component Reference

Page 1909

TGridColumn.ReadOnly Property

property ReadOnly: Boolean

Specifies whether or not the grid column can be modified.

Component Reference

Page 1910

TGridColumn.SingleClickToggle Property

property SingleClickToggle: Boolean

Specifies that whether a click (True) or double-click (False) is required in order to toggle the selected state
of the grid column's control. The default value is False. This property is used when the ControlType
property is set to ctCheckBox.

Component Reference

Page 1911

TGridColumn.SortDirection Property

property SortDirection: TSortDirection

Specifies the sort for the column. If the grid is data-bound (DataSet property is not nil) and the column
has been assigned a valid column name in the DataColumn, then assigning sdAscending or sdDescending
to this property will cause the dataset to add the column specified in the DataColumn property to the
active sort for the dataset. Assigning sdNone to this property will cause the dataset to remove the column
specified in the DataColumn property from the active sort for the dataset.

If the grid is un-bound, then assigning sdAscending or sdDescending to this property will cause the grid
to add the column to the active sort. Assigning sdNone to this property will cause the grid to remove the
column from the active sort.

The default value is sdNone.

If the ColumnHeaders property is True when this property is changed, then the column header will reflect
the sort status of the column.

Note
 The TDataSet Sort method is automatically called by the grid when the grid is data-bound and this
property is changed. If the grid is un-bound, then the TGrid SortRows method is automatically
called when this property is changed.

Component Reference

Page 1912

TGridColumn.SortIndex Property

property SortIndex: Integer

If the SortDirection property is not equal to sdNone, then this property indicates the position of the
column in the active sort for an un-bound grid.

Component Reference

Page 1913

TGridColumn.SpellCheck Property

property SpellCheck: Boolean

Specifies whether spell-checking is enabled for the grid column's edit control when the ControlType
property is set to ctEdit, ctEditComboBox, ctDialogEditComboBox, or ctMultiLineEdit.

Component Reference

Page 1914

TGridColumn.StretchToFit Property

property StretchToFit: Boolean

Specifies whether the column should automatically stretch to fit against the right edge of the client
rectangle for the grid.

Component Reference

Page 1915

TGridColumn.ValueSelected Property

property ValueSelected: String

Specifies the textual value to use for the selected state when reading and writing data to and from the
DataColumn that the control is bound to. This property is used when the ControlType property is set to
ctCheckBox. The default value is 'True'.

Component Reference

Page 1916

TGridColumn.ValueUnselected Property

property ValueUnselected: String

Specifies the textual value to use for the unselected state when reading and writing data to and from the
DataColumn that the control is bound to. This property is used when the ControlType property is set to
ctCheckBox. The default value is 'False'.

Component Reference

Page 1917

TGridColumn.Wrap Property

property Wrap: Boolean

Specifies whether the text in the column should wrap if it exceeds the width of the column. The default
value is False.

Component Reference

Page 1918

TGridColumn.ToggleSortDirection Method

procedure ToggleSortDirection(AClear: Boolean=False)

Use this method to toggle the column's SortDirection property.

Component Reference

Page 1919

TGridColumn.OnButtonClick Event

property OnButtonClick: TClickEvent

This event is triggered whenever the associated combo button is clicked for any grid column whose
ControlType is ctEditComboBox, ctDateEditComboBox, or ctDialogEditComboBox.

Component Reference

Page 1920

TGridColumn.OnCellUpdate Event

property OnCellUpdate: TGridColumnCellEvent

This event is triggered whenever a cell in the grid column is updated, and can be used to override the
default display of the grid cell parameter by modifying its background and/or font.

Component Reference

Page 1921

TGridColumn.OnCompare Event

property OnCompare: TGridColumnCompareEvent

This event is triggered whenever the grid column is sorted in an un-bound grid, and can be used to
override the default sorting of the string column values.

Component Reference

Page 1922

TGridColumn.OnDropDownHide Event

property OnDropDownHide: TNotifyEvent

This event is triggered when the associated drop-down control is hidden.

Component Reference

Page 1923

TGridColumn.OnDropDownShow Event

property OnDropDownShow: TNotifyEvent

This event is triggered when the associated drop-down control is shown.

Component Reference

Page 1924

TGridColumn.OnHeaderClick Event

property OnHeaderClick: TGridHeaderClickEvent

This event is triggered when the grid column's header is clicked. Return False from any event handler
attached to this event in order to prevent the default action when the header is clicked.

Component Reference

Page 1925

TGridColumn.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 1926

TGridColumn.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 1927

TGridColumn.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 1928

10.101 TGridControl Component

Unit: WebGrids

Inherits From TBindableControl

The TGridControl control is the base class for grids, and contains all of the core grid functionality in the
form of public methods and protected properties/events that descendant classes can use to create
customized grids.

Properties Methods Events

AlwaysShowControls AddColumnsFromDataSet

ColumnControlActive AppendRow

ColumnControlVisible DeleteRow

ColumnCount FirstColumn

ColumnIndex FirstRow

Columns GetGridColumn

RowCount GetRows

RowIndex HideColumnControl

RowOffset InsertRow

Rows LastColumn

RowVisible LastRow

Selected LoadRows

SelectedCount MakeColumnVisible

SortCaseInsensitive MakeRowVisible

Sorted NewColumn

SortLocaleInsensitive NextColumn

VisibleColumnCount NextPage

VisibleColumns NextRow

PriorColumn

PriorPage

PriorRow

RemoveColumn

ScrollNext

ScrollNextPage

ScrollPrior

Component Reference

Page 1929

ScrollPriorPage

ScrollTo

SelectAll

SelectRange

SetToColumn

SetToRow

ShowColumnControl

SortRows

ToggleSelected

Component Reference

Page 1930

TGridControl.AlwaysShowControls Property

property AlwaysShowControls: Boolean

Specifies whether the grid should always show any column controls for the grid columns. A grid column
has a control associated with it when the TGridColumn ControlType property is not equal to ctNone.

Note
 Not all column controls offer text editing capabilities. Some are used strictly for displaying the data
in the grid column, while others like the checkbox control offer editing via double-click interactions.

Component Reference

Page 1931

TGridControl.ColumnControlActive Property

property ColumnControlActive: Boolean

Indicates whether any grid column control is currently active. The control for a grid column is controlled
via the TGridColumn ControlType property, and the grid column controls can be made visible by calling
the ShowColumnControl method. This property can only be true if the ColumnControlVisible property is
True.

Note
 Even if the ColumnControlVisible property is True, it is possible that there won't be any active
column controls because row selection is turned on for the grid control or the column doesn't use a
control for display or editing. Use this property to determine if any grid column controls are
actually active.

Component Reference

Page 1932

TGridControl.ColumnControlVisible Property

property ColumnControlVisible: Boolean

Indicates whether any grid column controls should be visible. The control for a grid column is controlled
via the TGridColumn ControlType property, and the grid column controls can be made visible by calling
the ShowColumnControl method.

Note
 Even if the ColumnControlVisible property is True, it is possible that there won't be any active
column controls because row selection is turned on for the grid control or the column doesn't use a
control for display or editing. You can use the ColumnControlActive property to determine if any
grid column controls are actually active.

Component Reference

Page 1933

TGridControl.ColumnCount Property

property ColumnCount: Integer

Indicates the number of columns in the grid control.

Component Reference

Page 1934

TGridControl.ColumnIndex Property

property ColumnIndex: Integer

Specifies the current column index for the grid control. If there is no current column, this property will be -
1.

Component Reference

Page 1935

TGridControl.Columns Property

property Columns[AIndex: Integer]: TGridColumn

property Columns[const AName: String]: TGridColumn

Contains the defined columns for the grid control.

Component Reference

Page 1936

TGridControl.RowCount Property

property RowCount: Integer

Indicates the number of rows in the grid control. If the grid control has been bound to a TDataSet
instance, then this property will be equal to the RowCount property of the dataset.

Component Reference

Page 1937

TGridControl.RowIndex Property

property RowIndex: Integer

Specifies the current row index for the grid control. If there is no current row, this property will be -1.

Component Reference

Page 1938

TGridControl.RowOffset Property

property RowOffset: Integer

Specifies the current row offset for the grid control. The row offset is the the index of the row that is the
first visible row. If there are now rows present in the grid control, this property will be 0.

Component Reference

Page 1939

TGridControl.Rows Property

property Rows: TGridRows

Contains the rows for the grid when the grid control is un-bound.

Component Reference

Page 1940

TGridControl.RowVisible Property

property RowVisible: Boolean

Indicates whether the current row, specified by the RowIndex property, is visible.

Component Reference

Page 1941

TGridControl.Selected Property

property Selected[ARowIndex: Integer]: Boolean

Accesses the selection state of each row in the grid by its index.

Component Reference

Page 1942

TGridControl.SelectedCount Property

property SelectedCount: Integer

Indicates the number of selected rows in the grid.

Component Reference

Page 1943

TGridControl.SortCaseInsensitive Property

property SortCaseInsensitive: Boolean

Specifies whether or not an active sort on an un-bound grid, as indicated by the Sorted property, should
be case-sensitive.

Note
 Changing this property will trigger a sort on an un-bound grid if the Sorted property is True.

Component Reference

Page 1944

TGridControl.Sorted Property

property Sorted: Boolean

Indicates whether any of the Columns in the grid control have their SortDirection property set to
sdAscending or sdDescending.

Note
 This property does not indicate whether an un-bound grid control has actually been sorted yet via
the Sort method. The sorting is designed this way in order to allow multiple columns to be
designated as sort columns without triggering an automatic sort operation each time.

Component Reference

Page 1945

TGridControl.SortLocaleInsensitive Property

property SortLocaleInsensitive: Boolean

Specifies whether or not an active sort on an un-bound grid, as indicated by the Sorted property, should
be locale-sensitive.

Note
 Changing this property will trigger a sort on an un-bound grid if the Sorted property is True.

Component Reference

Page 1946

TGridControl.VisibleColumnCount Property

property VisibleColumnCount: Integer

Indicates the number of visible columns in the grid control.

Component Reference

Page 1947

TGridControl.VisibleColumns Property

property VisibleColumns[AIndex: Integer]: TGridColumn

Accesses the visible columns in the grid control by their index into the list of visible columns.

Component Reference

Page 1948

TGridControl.AddColumnsFromDataSet Method

procedure AddColumnsFromDataSet

Use this method to quickly create grid columns for all defined columns in the dataset referenced in the
DataSet property.

Note
 This method does not clear out any existing grid columns before creating the new columns.

Component Reference

Page 1949

TGridControl.AppendRow Method

procedure AppendRow

Use this method to append a row to the end of any existing rows in the grid control.

Component Reference

Page 1950

TGridControl.DeleteRow Method

procedure DeleteRow

Use this method to delete the current row, represented by the RowIndex property, from the grid control.

Component Reference

Page 1951

TGridControl.FirstColumn Method

function FirstColumn: Boolean

Use this method to change the current grid column to the first visible column in the grid, if one exists, and
update the ColumnIndex property accordingly.

Component Reference

Page 1952

TGridControl.FirstRow Method

procedure FirstRow(ShiftKey, CtrlKey: Boolean=False)

Use this method to change the current grid row to the first row in the grid, if one exists, and update the
RowIndex property accordingly.

Note
 The ShiftKey and CtrlKey parameters control how multiple row selection occurs in relation to the
row navigation. When the ShiftKey parameter is True, then the range of selected rows is extended
to include all rows between the current row index and the row at the new index. When the CtrlKey
parameter is True, then the set of selected rows is extended to include the new row at the new
index.

Component Reference

Page 1953

TGridControl.GetGridColumn Method

function GetGridColumn(Value: TDataColumn): TGridColumn

Use this method to lookup a grid column by which TDataSet column it is bound to.

Component Reference

Page 1954

TGridControl.GetRows Method

function GetRows: String

Use this method to retrieve the rows of an un-bound grid as a JSON string. The JSON is formatted as
follows:

{ "rows": [
{ "GridColumn1": "Test 1", "GridColumn2": "100", "GridColumn3": "" },
{ "GridColumn1": "Test 2", "GridColumn2": "200", "GridColumn3": "" },
{ "GridColumn1": "Test 3", "GridColumn2": "300", "GridColumn3": "" }
] }

Component Reference

Page 1955

TGridControl.HideColumnControl Method

procedure HideColumnControl

Use this method to hide any column controls for the columns in the grid. The control for a grid column is
controlled via the TGridColumn ControlType property.

Component Reference

Page 1956

TGridControl.InsertRow Method

procedure InsertRow

Use this method to insert a row at the existing RowIndex position in any existing rows in the grid control.

Component Reference

Page 1957

TGridControl.LastColumn Method

function LastColumn: Boolean

Use this method to change the current grid column to the last visible column in the grid, if one exists, and
update the ColumnIndex property accordingly.

Component Reference

Page 1958

TGridControl.LastRow Method

procedure LastRow(ShiftKey, CtrlKey: Boolean=False)

Use this method to change the current grid row to the last row in the grid, if one exists, and update the
RowIndex property accordingly.

Note
 The ShiftKey and CtrlKey parameters control how multiple row selection occurs in relation to the
row navigation. When the ShiftKey parameter is True, then the range of selected rows is extended
to include all rows between the current row index and the row at the new index. When the CtrlKey
parameter is True, then the set of selected rows is extended to include the new row at the new
index.

Component Reference

Page 1959

TGridControl.LoadRows Method

procedure LoadRows(const RowData: String; Append: Boolean=False)

Use this method to load the rows of an un-bound grid from a JSON string. The JSON should be formatted
as follows:

{ "rows": [
{ "GridColumn1": "Test 1", "GridColumn2": "100", "GridColumn3": "" },
{ "GridColumn1": "Test 2", "GridColumn2": "200", "GridColumn3": "" },
{ "GridColumn1": "Test 3", "GridColumn2": "300", "GridColumn3": "" }
] }

Component Reference

Page 1960

TGridControl.MakeColumnVisible Method

procedure MakeColumnVisible(AColumn: TGridColumn)

Use this method to ensure that the specified grid column is visible within the grid control.

Component Reference

Page 1961

TGridControl.MakeRowVisible Method

procedure MakeRowVisible

Use this method to ensure that the specified grid row is visible within the grid control.

Component Reference

Page 1962

TGridControl.NewColumn Method

function NewColumn: TGridColumn

Use this method to create a new column for the grid control and return it as the result. The new grid
column will be appended to the existing list of columns defined in the Columns property.

Component Reference

Page 1963

TGridControl.NextColumn Method

function NextColumn(AWrap: Boolean=False): Boolean

Use this method to change the current grid column to the next visible column in the grid, if one exists,
and update the ColumnIndex property accordingly. The AWrap parameter determines whether to move
the current grid row to the next available row, if one exists, if there are no more visible columns in the
grid.

Component Reference

Page 1964

TGridControl.NextPage Method

procedure NextPage(ShiftKey, CtrlKey: Boolean=False)

Use this method to change the current grid row to the start of the next page of rows in the grid, if one
exists, and update the RowIndex property accordingly.

Note
 The ShiftKey and CtrlKey parameters control how multiple row selection occurs in relation to the
row navigation. When the ShiftKey parameter is True, then the range of selected rows is extended
to include all rows between the current row index and the row at the new index. When the CtrlKey
parameter is True, then the set of selected rows is extended to include the new row at the new
index.

Component Reference

Page 1965

TGridControl.NextRow Method

procedure NextRow(ShiftKey, CtrlKey: Boolean=False; CanAppend:
 Boolean=False)

Use this method to change the current grid row to the next row in the grid, if one exists, and update the
RowIndex property accordingly. The CanAppend parameter determines whether the grid should
automatically call the AppendRow method if the current row index is equal to the last row index for the
grid.

Note
 The ShiftKey and CtrlKey parameters control how multiple row selection occurs in relation to the
row navigation. When the ShiftKey parameter is True, then the range of selected rows is extended
to include all rows between the current row index and the row at the new index. When the CtrlKey
parameter is True, then the set of selected rows is extended to include the new row at the new
index.

Component Reference

Page 1966

TGridControl.PriorColumn Method

function PriorColumn(AWrap: Boolean=False): Boolean

Use this method to change the current grid column to the prior visible column in the grid, if one exists,
and update the ColumnIndex property accordingly. The AWrap parameter determines whether to move
the current grid row to the prior available row, if one exists, if there are no more visible columns in the
grid.

Component Reference

Page 1967

TGridControl.PriorPage Method

procedure PriorPage(ShiftKey, CtrlKey: Boolean=False)

Use this method to change the current grid row to the end of the next page of rows in the grid, if one
exists, and update the RowIndex property accordingly.

Note
 The ShiftKey and CtrlKey parameters control how multiple row selection occurs in relation to the
row navigation. When the ShiftKey parameter is True, then the range of selected rows is extended
to include all rows between the current row index and the row at the new index. When the CtrlKey
parameter is True, then the set of selected rows is extended to include the new row at the new
index.

Component Reference

Page 1968

TGridControl.PriorRow Method

procedure PriorRow(ShiftKey, CtrlKey: Boolean=False)

Use this method to change the current grid row to the prior row in the grid, if one exists, and update the
RowIndex property accordingly.

Note
 The ShiftKey and CtrlKey parameters control how multiple row selection occurs in relation to the
row navigation. When the ShiftKey parameter is True, then the range of selected rows is extended
to include all rows between the current row index and the row at the new index. When the CtrlKey
parameter is True, then the set of selected rows is extended to include the new row at the new
index.

Component Reference

Page 1969

TGridControl.RemoveColumn Method

procedure RemoveColumn(AColumn: TGridColumn)

Use this method to remove the specified column from the grid control.

Component Reference

Page 1970

TGridControl.ScrollNext Method

procedure ScrollNext

Use this method to scroll the grid down by the height of one row.

Component Reference

Page 1971

TGridControl.ScrollNextPage Method

procedure ScrollNextPage

Use this method to scroll the grid down by the height of all visible rows in the grid.

Component Reference

Page 1972

TGridControl.ScrollPrior Method

procedure ScrollPrior

Use this method to scroll the grid up by the height of one row.

Component Reference

Page 1973

TGridControl.ScrollPriorPage Method

procedure ScrollPriorPage

Use this method to scroll the grid up by the height of all visible rows in the grid.

Component Reference

Page 1974

TGridControl.ScrollTo Method

procedure ScrollTo(ARowIndex: Integer)

Use this method to scroll the grid to the specified row in the grid control.

Component Reference

Page 1975

TGridControl.SelectAll Method

procedure SelectAll

Use this method to select all of the rows in the grid control.

Component Reference

Page 1976

TGridControl.SelectRange Method

procedure SelectRange(AFromRowIndex, AToRowIndex: Integer;
 AClear: Boolean=False)

Use this method to select the specified range of the rows in the grid control. The AClear parameter
determines whether the existing set of selected rows should be cleared before the new range of rows is
selected.

Component Reference

Page 1977

TGridControl.SetToColumn Method

procedure SetToColumn(AIndex: Integer)

Use this method to change the current grid column to the visible column at the specified index in the grid,
if one exists, and update the ColumnIndex property accordingly.

Component Reference

Page 1978

TGridControl.SetToRow Method

procedure SetToRow(AIndex: Integer; ShiftKey, CtrlKey:
 Boolean=False)

Use this method to change the current grid row to the row at the specified index in the grid, if one exists,
and update the RowIndex property accordingly.

Note
 The ShiftKey and CtrlKey parameters control how multiple row selection occurs in relation to the
row navigation. When the ShiftKey parameter is True, then the range of selected rows is extended
to include all rows between the current row index and the row at the new index. When the CtrlKey
parameter is True, then the set of selected rows is extended to include the new row at the new
index.

Component Reference

Page 1979

TGridControl.ShowColumnControl Method

procedure ShowColumnControl

Use this method to show any column controls for the columns in the grid. The control for a grid column is
controlled via the TGridColumn ControlType property. This method will change the ColumnControlVisible
property to True.

Note
 Even if the ColumnControlVisible property is True, it is possible that there won't be any active
column controls because row selection is turned on for the grid control or the column doesn't use a
control for display or editing. You can use the ColumnControlActive property to determine if any
grid column controls are actually active.

Component Reference

Page 1980

TGridControl.SortRows Method

procedure SortRows

Use this method to sort an un-bound grid when the Sorted property is True and sort columns have been
specified for the grid. The TGridColumn SortDirection property setting controls which columns are sorted,
and how.

If no columns have a SortDirection property other than sdNone, then this method does nothing.

The SortCaseInsensitive and SortLocaleInsensitive properties control how the sort is performed.

Note
 The SortRows method only needs to be called once after the sort directions are initially assigned
for the grid columns. After that point, any row operations will automatically maintain the active
sort.

Component Reference

Page 1981

TGridControl.ToggleSelected Method

procedure ToggleSelected(ARowIndex: Integer)

Use this method to toggle the selection state of the row at the specified index.

Component Reference

Page 1982

10.102 TGridHeader Component

Unit: WebGrids

Inherits From TControl

The TGridHeader component represents a grid column header. Grid column headers are only visible when
the TGrid ColumnHeaders property is True.

Properties Methods Events

Alignment

AllowClick

Caption

Font

Hint

Wrap

Component Reference

Page 1983

TGridHeader.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the caption for the grid column header.

Component Reference

Page 1984

TGridHeader.AllowClick Property

property AllowClick: Boolean

Specifies whether the grid column header is clickable. If the header is clickable, then each click will call the
ToggleSortDirection method to change the sort direction to the next valid state.

Component Reference

Page 1985

TGridHeader.Caption Property

property Caption: String

Specifies the caption for the grid column header.

Component Reference

Page 1986

TGridHeader.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 1987

TGridHeader.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 1988

TGridHeader.Wrap Property

property Wrap: Boolean

Specifies whether the caption should wrap if it exceeds the width of the column header. The default value
is False.

Component Reference

Page 1989

10.103 TGridRow Component

Unit: WebGrids

Inherits From TObject

The TGridRow component represents a grid row in an un-bound grid control, and is accessible via the
TGridControl Rows property.

Properties Methods Events

Count Create

ID GetJSON

Value

Component Reference

Page 1990

TGridRow.Count Property

property Count: Integer

Indicates the number of column values in the grid row.

Component Reference

Page 1991

TGridRow.ID Property

property ID: Integer

Specifies an ID that unique identifies the grid row.

Component Reference

Page 1992

TGridRow.Value Property

property Value[AIndex: Integer]: String

Accesses a specific column value by its column index in the grid row.

Component Reference

Page 1993

TGridRow.Create Method

constructor Create(ARows: TGridRows; AID: Integer)

Use this method to create a new instance of the TGridRow class. The ARows parameter indicates the
parent grid rows instance that will manage the row, and the AID parameter indicates the unique ID used
to identify the grid row.

Component Reference

Page 1994

TGridRow.GetJSON Method

function GetJSON: String

Use this method to retrieve the column values of the row as a JSON string. The JSON is formatted as
follows:

{ "GridColumn1": "Test 1", "GridColumn2": "100", "GridColumn3": "" }

Component Reference

Page 1995

10.104 TGridRows Component

Unit: WebGrids

Inherits From TObject

The TGridRows component represents the grid rows in an un-bound grid control, and are accessible via
the TGridControl Rows property.

Properties Methods Events

Count BeginUpdate

Row Create

EndUpdate

Component Reference

Page 1996

TGridRows.Count Property

property Count: Integer

Indicates the number of rows in an un-bound grid control.

Component Reference

Page 1997

TGridRows.Row Property

property Row[AIndex: Integer]: TGridRow

Accesses a grid row by by the specified index.

Component Reference

Page 1998

TGridRows.BeginUpdate Method

procedure BeginUpdate

Use this method to begin a batch update to the un-bound grid rows. Batch updates are useful in
situations where many changes need to be made to the rows, and triggering grid updates on every
change would result in performance issues. This method is reference-counted and every time it is called,
an internal counter is incremented. Every time the EndUpdate method is called, the counter is
decremented. Once the counter reaches zero, the grid will be notified that it needs to update its contents.

Component Reference

Page 1999

TGridRows.Create Method

constructor Create(AGrid: TGridControl)

Use this method to create a new instance of the TGridRows class. The AGrid parameter indicates the
parent grid control instance that will manage the rows.

Component Reference

Page 2000

TGridRows.EndUpdate Method

procedure EndUpdate

Use this method to end a batch update to the un-bound grid rows. Batch updates are useful in situations
where many changes need to be made to the rows, and triggering grid updates on every change would
result in performance issues. This method is reference-counted and every time it is called, an internal
counter is decremented. Every time the BeginUpdate method is called, the counter is incremented. Once
the counter reaches zero, the grid will be notified that it needs to update its contents.

Component Reference

Page 2001

10.105 TGroupPanel Component

Unit: WebCtnrs

Inherits From TGroupPanelControl

The TGroupPanel component represents a group panel control for organizing sets of controls like radio
buttons into a container with a caption.

Properties Methods Events

ActivateOnClick OnAnimationComplete

Background OnAnimationsComplete

Caption OnClick

Cursor OnDblClick

Font OnHide

Hint OnKeyDown

InsetShadow OnKeyPress

Opacity OnKeyUp

OutsetShadow OnMouseDown

Padding OnMouseEnter

TabOrder OnMouseLeave

TabStop OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2002

TGroupPanel.ActivateOnClick Property

property ActivateOnClick: Boolean

Specifies whether the control should automatically be brought to the front when it, or any child controls,
are clicked.

Component Reference

Page 2003

TGroupPanel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2004

TGroupPanel.Caption Property

property Caption: String

Specifies the caption for the group panel control.

Component Reference

Page 2005

TGroupPanel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2006

TGroupPanel.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2007

TGroupPanel.Hint Property

property Hint: String

Component Reference

Page 2008

TGroupPanel.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 2009

TGroupPanel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2010

TGroupPanel.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2011

TGroupPanel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2012

TGroupPanel.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2013

TGroupPanel.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2014

TGroupPanel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2015

TGroupPanel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2016

TGroupPanel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2017

TGroupPanel.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2018

TGroupPanel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2019

TGroupPanel.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 2020

TGroupPanel.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 2021

TGroupPanel.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 2022

TGroupPanel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2023

TGroupPanel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2024

TGroupPanel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2025

TGroupPanel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2026

TGroupPanel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2027

TGroupPanel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2028

TGroupPanel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2029

TGroupPanel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2030

TGroupPanel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2031

TGroupPanel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2032

TGroupPanel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2033

TGroupPanel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2034

10.106 TGroupPanelControl Component

Unit: WebCtnrs

Inherits From TControl

The TGroupPanelControl control is the base class for group panels, and contains all of the core group
panel functionality in the form of public methods and protected properties/events that descendant classes
can use to create customized group panels.

Properties Methods Events

Component Reference

Page 2035

10.107 THeaderPanel Component

Unit: WebCtnrs

Inherits From THeaderPanelControl

The THeaderPanel component represents a header panel control that acts as a container for other
controls.

Properties Methods Events

Background OnAnimationComplete

Border OnAnimationsComplete

Corners OnClick

Cursor OnDblClick

Hint OnHide

InsetShadow OnKeyDown

Opacity OnKeyPress

OutsetShadow OnKeyUp

Padding OnMouseDown

TabOrder OnMouseEnter

TabStop OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2036

THeaderPanel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2037

THeaderPanel.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2038

THeaderPanel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2039

THeaderPanel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2040

THeaderPanel.Hint Property

property Hint: String

Component Reference

Page 2041

THeaderPanel.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 2042

THeaderPanel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2043

THeaderPanel.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2044

THeaderPanel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2045

THeaderPanel.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2046

THeaderPanel.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2047

THeaderPanel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2048

THeaderPanel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2049

THeaderPanel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2050

THeaderPanel.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2051

THeaderPanel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2052

THeaderPanel.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 2053

THeaderPanel.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 2054

THeaderPanel.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 2055

THeaderPanel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2056

THeaderPanel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2057

THeaderPanel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2058

THeaderPanel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2059

THeaderPanel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2060

THeaderPanel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2061

THeaderPanel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2062

THeaderPanel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2063

THeaderPanel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2064

THeaderPanel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2065

THeaderPanel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2066

THeaderPanel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2067

10.108 THeaderPanelControl Component

Unit: WebCtnrs

Inherits From TControl

The THeaderPanelControl control is the base class for header panels, and contains all of the core header
panel functionality in the form of public methods and protected properties/events that descendant classes
can use to create customized header panels.

Properties Methods Events

Component Reference

Page 2068

10.109 THiddenInputElement Component

Unit: WebUI

Inherits From TInputElement

The THiddenInputElement class is the element class for hidden HTML form input elements. Hidden form
input elements are useful for programmatically adding HTML form values, and the Elevate Web Builder
Component library uses them for custom controls like the virtual TListBox control that have no
counterpart in standard HTML form input elements.

Note
 This element does not provide support for hidden HTML form inputs at design-time, and the
applicable methods and properties are all stubs.

Properties Methods Events

Component Reference

Page 2069

10.110 THTMLForm Component

Unit: WebBrwsr

Inherits From THTMLFormControl

The THTMLForm component represents an HTML form control. HTML forms are containers for any input
controls whose input values can be submitted as HTML form values to the web server.

Properties Methods Events

Background OnAnimationComplete

Border OnAnimationsComplete

Corners OnClick

Cursor OnDblClick

Encoding OnHide

InsetShadow OnMouseDown

Method OnMouseEnter

Opacity OnMouseLeave

Output OnMouseMove

Padding OnMouseUp

TabOrder OnMove

TabStop OnShow

URL OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2070

THTMLForm.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 2071

THTMLForm.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2072

THTMLForm.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2073

THTMLForm.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2074

THTMLForm.Encoding Property

property Encoding: THTMLFormEncoding

Specifies the MIME encoding type of the form data that is sent when the Submit method is called.

Component Reference

Page 2075

THTMLForm.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 2076

THTMLForm.Method Property

property Method: THTMLFormMethod

Specifies the HTTP method used for the form submittal when the Submit method is called.

Component Reference

Page 2077

THTMLForm.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2078

THTMLForm.Output Property

property Output: TBrowser

Specifies a TBrowser instance that should accept all output from the form submittal request to the web
server when the Submit method is called. The default value is nil.

Component Reference

Page 2079

THTMLForm.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2080

THTMLForm.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2081

THTMLForm.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2082

THTMLForm.URL Property

property URL: String

Specifies the URL to use for the form submittal when the Submit method is called. The default value is ''.

Component Reference

Page 2083

THTMLForm.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2084

THTMLForm.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2085

THTMLForm.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2086

THTMLForm.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2087

THTMLForm.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2088

THTMLForm.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2089

THTMLForm.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2090

THTMLForm.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2091

THTMLForm.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2092

THTMLForm.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2093

THTMLForm.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2094

THTMLForm.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2095

THTMLForm.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2096

THTMLForm.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2097

THTMLForm.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2098

THTMLForm.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2099

THTMLForm.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2100

10.111 THTMLFormControl Component

Unit: WebBrwsr

Inherits From TControl

The THTMLFormControl control is the base class for HTML forms, and contains all of the core HTML form
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized HTML forms.

Properties Methods Events

Reset

Submit

Component Reference

Page 2101

THTMLFormControl.Reset Method

procedure Reset

Use this method to reset the HTML form values associated with any input controls contained within the
HTML form control. Resetting the form values will set them all to an empty string ('').

Component Reference

Page 2102

THTMLFormControl.Submit Method

procedure Submit

Use this method to submit the HTML form values associated with any input controls contained within the
HTML form control.

Component Reference

Page 2103

10.112 THTMLLabel Component

Unit: WebLabels

Inherits From THTMLLabelControl

The THTMLLabel component represents an HTML label control. An HTML label control displays arbitrary
HTML content using a specific font and formatting, including alignment and wrapping.

Properties Methods Events

AutoSize OnAnimationComplete

Background OnAnimationsComplete

Border OnClick

Content OnHide

Corners OnMouseDown

Cursor OnMouseEnter

DataColumn OnMouseLeave

DataSet OnMouseMove

Font OnMouseUp

Format OnMove

Hint OnShow

Opacity OnSize

OutsetShadow OnTouchCancel

Padding OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2104

THTMLLabel.AutoSize Property

property AutoSize: TAutoSize

Specifies how (if at all) the control should automatically be sized based upon the Content and Format
properties.

Component Reference

Page 2105

THTMLLabel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2106

THTMLLabel.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2107

THTMLLabel.Content Property

property Content: TContent

Specifies the HTML content to display in the control. The default value is ''.

Component Reference

Page 2108

THTMLLabel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2109

THTMLLabel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2110

THTMLLabel.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 2111

THTMLLabel.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 2112

THTMLLabel.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2113

THTMLLabel.Format Property

property Format: TFormat

Specifies the content formatting to use for the control's Content.

Component Reference

Page 2114

THTMLLabel.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2115

THTMLLabel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2116

THTMLLabel.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2117

THTMLLabel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2118

THTMLLabel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2119

THTMLLabel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2120

THTMLLabel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2121

THTMLLabel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2122

THTMLLabel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2123

THTMLLabel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2124

THTMLLabel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2125

THTMLLabel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2126

THTMLLabel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2127

THTMLLabel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2128

THTMLLabel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2129

THTMLLabel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2130

THTMLLabel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2131

THTMLLabel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2132

THTMLLabel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2133

THTMLLabel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2134

10.113 THTMLLabelControl Component

Unit: WebLabels

Inherits From TBindableColumnControl

The THTMLLabelControl control is the base class for HTML label controls, and contains all of the core
HTML label functionality in the form of public methods and protected properties/events that descendant
classes can use to create customized HTML label controls.

Properties Methods Events

Component Reference

Page 2135

10.114 TIcon Component

Unit: WebIcons

Inherits From TIconControl

The TIcon component represents an icon control. An icon control displays an icon, referenced by the Icon
property, that contains a single background image or a single font icon. Icons are defined and stored in
the Elevate Web Builder icon library.

Properties Methods Events

Cursor OnAnimationComplete

Hint OnAnimationsComplete

Icon OnClick

Opacity OnDblClick

OnHide

OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2136

TIcon.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2137

TIcon.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2138

TIcon.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Component Reference

Page 2139

TIcon.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2140

TIcon.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2141

TIcon.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2142

TIcon.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2143

TIcon.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2144

TIcon.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2145

TIcon.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2146

TIcon.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2147

TIcon.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2148

TIcon.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2149

TIcon.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2150

TIcon.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2151

TIcon.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2152

TIcon.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2153

TIcon.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2154

TIcon.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2155

TIcon.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2156

TIcon.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2157

10.115 TIconAnimation Component

Unit: WebCtrls

Inherits From TComponent

The TIconAnimation class represents the animation attributes to use for animating a specific property of
icons. This class is used with various controls to specify the rotation animation properties of the icon used
with the control.

Properties Methods Events

Duration

Style

Component Reference

Page 2158

TIconAnimation.Duration Property

property Duration: Integer

Specifies how long, in milliseconds, the animation should take to execute.

Component Reference

Page 2159

TIconAnimation.Style Property

property Style: TAnimationStyle

Specifies the style of the animation, which controls how the animation transforms a given UI
element/control property. Currently, the supported styles include all of the standard easing
transformations (including linear).

Component Reference

Page 2160

10.116 TIconButton Component

Unit: WebBtns

Inherits From TRepeatControl

The TIconButton component represents an icon button control. An icon button control displays an icon,
referenced by the Icon property, as a button that can be pressed. Icons are stored in the Elevate Web
Builder icon library.

Properties Methods Events

Cursor OnAnimationComplete

Enabled OnAnimationsComplete

Hint OnClick

Icon OnHide

RepeatClick OnKeyDown

RepeatClickInterval OnKeyUp

OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2161

TIconButton.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2162

TIconButton.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it is displayed in a
disabled state. The default value is True.

Component Reference

Page 2163

TIconButton.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2164

TIconButton.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Component Reference

Page 2165

TIconButton.RepeatClick Property

property RepeatClick: Boolean

Specifies whether the OnClick event handler should be triggered every RepeatClickInterval milliseconds
while the button is pressed.

Component Reference

Page 2166

TIconButton.RepeatClickInterval Property

property RepeatClickInterval: Integer

Specifies the interval, in milliseconds, to trigger the OnClick event handler when the RepeatClick is True
and the button is pressed.

Component Reference

Page 2167

TIconButton.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2168

TIconButton.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2169

TIconButton.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2170

TIconButton.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2171

TIconButton.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

Component Reference

Page 2172

TIconButton.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

Component Reference

Page 2173

TIconButton.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2174

TIconButton.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2175

TIconButton.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2176

TIconButton.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2177

TIconButton.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2178

TIconButton.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2179

TIconButton.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2180

TIconButton.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2181

TIconButton.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2182

TIconButton.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2183

TIconButton.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2184

TIconButton.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2185

10.117 TIconControl Component

Unit: WebIcons

Inherits From TControl

The TIconControl control is the base class for icon controls, and contains all of the core icon control
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized icon controls.

Properties Methods Events

Component Reference

Page 2186

10.118 TIconLibrary Component

Unit: WebUI

Inherits From TComponent

The TIconLibrary class represents an icon library. An icon library is a list of embedded icon images stored
as background images in control interface states. Each icon has a unique name and can be applied to a UI
element so that the element displays the icon as its background image.

Properties Methods Events

ApplyIcon

GetIconNames

Component Reference

Page 2187

TIconLibrary.ApplyIcon Method

function ApplyIcon(AElement: TElement; const AIconName: String):
 Boolean

Use this method to apply an icon as the background image of an element. The AElement parameter
specifies the element on which to apply the icon, and the AIconName parameter specifies the name of the
icon to apply.

Component Reference

Page 2188

TIconLibrary.GetIconNames Method

function GetIconNames: array of String

Use this method to get a list of icon names available in the icon library as an array of strings.

Component Reference

Page 2189

10.119 TIconProperties Component

Unit: WebCtrls

Inherits From TComponent

The TIconProperties class represents the icon properties of icons that are embedded in various controls.

Properties Methods Events

Animating StartAnimation

Animation StopAnimation

FontIcon

Height

IconName

Width

Component Reference

Page 2190

TIconProperties.Animating Property

property Animating: Boolean

Indicates whether the icon's rotation animation is executing.

Component Reference

Page 2191

TIconProperties.Animation Property

property Animation: TIconAnimation

Specifies the rotation animation properties for the icon.

Component Reference

Page 2192

TIconProperties.FontIcon Property

property FontIcon: TFontIcon

Specifies the properties of the font icon (if a font icon is being used with the icon). These properties
default to the pre-defined font icon properties of the icon specified by the IconName property, and may
change when the IconName property is changed.

Component Reference

Page 2193

TIconProperties.Height Property

property Height: Integer

Specifies the height of the icon. This value defaults to the pre-defined height of the icon specified by the
IconName property, and may change when the IconName property is changed.

Component Reference

Page 2194

TIconProperties.IconName Property

property IconName: String

Specifies the name of the icon to use with the control.

Component Reference

Page 2195

TIconProperties.Width Property

property Width: Integer

Specifies the width of the icon. This value defaults to the pre-defined width of the icon specified by the
IconName property, and may change when the IconName property is changed.

Component Reference

Page 2196

TIconProperties.StartAnimation Method

procedure StartAnimation

Starts the rotation animation for the icon.

Component Reference

Page 2197

TIconProperties.StopAnimation Method

procedure StopAnimation

Stops the rotation animation for the icon.

Component Reference

Page 2198

10.120 TImage Component

Unit: WebBrwsr

Inherits From TWebControl

The TImage component represents an image control. An image control displays an image specified by the
resource URL property at run-time.

Note
 This control does not provide support for displaying images at design-time. If you wish to do so,
you should specify the background image for a control. Only background images can be
embedded in an Elevate Web Builder application.

Properties Methods Events

ActualHeight OnAnimationComplete

ActualWidth OnAnimationsComplete

Background OnClick

Border OnDblClick

ContentLayout OnError

Corners OnHide

Cursor OnLoad

DataColumn OnMouseDown

DataSet OnMouseEnter

Hint OnMouseLeave

InsetShadow OnMouseMove

Loaded OnMouseUp

Opacity OnMove

OutsetShadow OnShow

Padding OnSize

URL OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

OnUnload

Component Reference

Page 2199

Component Reference

Page 2200

TImage.ActualHeight Property

property ActualHeight: Integer

Indicates the actual height of the loaded image when the URL property is specified and the Loaded
property is True.

An event handler can be attached to the OnLoad event to execute code when the image is loaded.

Component Reference

Page 2201

TImage.ActualWidth Property

property ActualWidth: Integer

Indicates the actual width of the loaded image when the URL property is specified and the Loaded
property is True.

An event handler can be attached to the OnLoad event to execute code when the image is loaded.

Component Reference

Page 2202

TImage.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 2203

TImage.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2204

TImage.ContentLayout Property

property ContentLayout: TContentLayout

Specifies the layout properties of the image content contained within the control.

Component Reference

Page 2205

TImage.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2206

TImage.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2207

TImage.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 2208

TImage.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 2209

TImage.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2210

TImage.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 2211

TImage.Loaded Property

property Loaded: Boolean

Indicates whether the image specified by the URL property has been loaded.

An event handler can be attached to the OnLoad event to execute code when the image is loaded.

Component Reference

Page 2212

TImage.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2213

TImage.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2214

TImage.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2215

TImage.URL Property

property URL: String

Specifies the URL for the image. Whenever the URL property changes, the OnUnload event is triggered
immediately. The OnLoad event is triggered once the image has been loaded.

Component Reference

Page 2216

TImage.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2217

TImage.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2218

TImage.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2219

TImage.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2220

TImage.OnError Event

property OnError: TNotifyEvent

This event is triggered when the download of the image encounters an error.

Component Reference

Page 2221

TImage.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2222

TImage.OnLoad Event

property OnLoad: TNotifyEvent

This event is triggered when the image specified by the URL property has been completely loaded.

Component Reference

Page 2223

TImage.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2224

TImage.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2225

TImage.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2226

TImage.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2227

TImage.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2228

TImage.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2229

TImage.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2230

TImage.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2231

TImage.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2232

TImage.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2233

TImage.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2234

TImage.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2235

TImage.OnUnload Event

property OnUnload: TNotifyEvent

This event is triggered when the currently-loaded image specified by the URL property has been
unloaded.

Component Reference

Page 2236

10.121 TImageElement Component

Unit: WebUI

Inherits From TWebElement

The TImageElement class is the element class for image elements, and contains all of the image
functionality in the form of public methods and properties/events that control classes can use to create
image controls.

Note
 This element does not provide support for images at design-time, and the applicable methods and
properties are all stubs.

Properties Methods Events

ActualHeight

ActualWidth

Component Reference

Page 2237

TImageElement.ActualHeight Property

property ActualHeight: Integer

Indicates the actual height of the loaded image when the URL property is specified and the Loaded
property is True.

An event handler can be attached to the OnLoad event to execute code when the image is loaded.

Component Reference

Page 2238

TImageElement.ActualWidth Property

property ActualWidth: Integer

Indicates the actual width of the loaded image when the URL property is specified and the Loaded
property is True.

An event handler can be attached to the OnLoad event to execute code when the image is loaded.

Component Reference

Page 2239

10.122 TInputControl Component

Unit: WebCtrls

Inherits From TBindableColumnControl

The TInputControl control is the base class for input controls, and contains all of the core input
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized input controls.

Properties Methods Events

Error

InputID

Component Reference

Page 2240

TInputControl.Error Property

property Error: Boolean

Specifies whether the input control contains an invalid input value. Setting this property to True will cause
the interface state of the control to change to an "Error" state to alert the user that the input value is
invalid.

Component Reference

Page 2241

TInputControl.InputID Property

property InputID: String

Specifies the unique DOM ID to assign to the control's input element. This is useful for situations where
you need to identify the element from external Javascript code. By default, Elevate Web Builder never
assigns DOM IDs to elements because it doesn't need or use them to identify UI elements.

Note
 This is different from the TControl ClientID property, which is used for accessing the outer client
DOM element for a control. An input control typically has both a client element and an input
element.

Component Reference

Page 2242

10.123 TInputElement Component

Unit: WebUI

Inherits From TElement

The TInputElement class is the base element class for input elements, and contains all of the input
functionality in the form of public methods and properties/events that control classes can use to create
input controls.

Note
 This element does not provide support for input elements at design-time, and the applicable
methods and properties are all stubs.

Properties Methods Events

AutoComplete SelectAll

FieldName SelectNone

InputValue

MaxLength

Placeholder

ReadOnly

SelectionEnd

SelectionStart

SpellCheck

Component Reference

Page 2243

TInputElement.AutoComplete Property

property AutoComplete: TAutoCompleteType

Specifies how to handle auto-completion for the input element. Auto-completion allows the browser to
display a list of suggestions for input values, based upon earlier input values entered by the user.

Component Reference

Page 2244

TInputElement.FieldName Property

property FieldName: String

Specifies the HTML form value name for the input element. This name is used in conjunction with the
InputValue property to generate the HTML form values data used when submitting HTML forms to a web
server.

Component Reference

Page 2245

TInputElement.InputValue Property

property InputValue: String

Specifies the current value of the input element as a string.

Component Reference

Page 2246

TInputElement.MaxLength Property

property MaxLength: Integer

Specifies the maximum allowable length, in characters, of the InputValue property for the element. A value
of 0 specifies an unlimited allowable length.

Component Reference

Page 2247

TInputElement.Placeholder Property

property Placeholder: String

Specifies a hint to display in the input element before the InputValue property has been assigned a non-
blank value.

Component Reference

Page 2248

TInputElement.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the input element can be modified by the user. Input elements can always be
programmatically modified.

Component Reference

Page 2249

TInputElement.SelectionEnd Property

property SelectionEnd: Integer

Specifies the ending position (1-based) of the selected characters in the input value. For example, if the
element contains the input value "Hello World", setting the SelectionStart property to 7 and the
SelectionEnd property to 11 will result in the text "World" being selected.

Component Reference

Page 2250

TInputElement.SelectionStart Property

property SelectionStart: Integer

Specifies the starting position (1-based) of the selected characters in the input value. For example, if the
element contains the input value "Hello World", setting the SelectionStart property to 7 and the
SelectionEnd property to 11 will result in the text "World" being selected.

Component Reference

Page 2251

TInputElement.SpellCheck Property

property SpellCheck: Boolean

Specifies whether spell-checking will be enabled for the input element.

Component Reference

Page 2252

TInputElement.SelectAll Method

procedure SelectAll

Use this method to change the active selection for the input element so that all of the characters in the
InputValue property are selected.

Component Reference

Page 2253

TInputElement.SelectNone Method

procedure SelectNone

Use this method to change the active selection for the input element so that none of the characters in the
InputValue property are selected.

Component Reference

Page 2254

10.124 TInsetShadow Component

Unit: WebUI

Inherits From TShadow

The TInsetShadow class represents the inset shadow of a UI element or control. The inset shadow appears
within the bounds of the client rectangle for the element.

Properties Methods Events

Component Reference

Page 2255

10.125 TIntegerValue Component

Unit: WebCore

Inherits From TDataValue

This class represents the value for an Integer column in a row in a TDataSet component.

Properties Methods Events

Component Reference

Page 2256

10.126 TInterface Component

Unit: WebUI

Inherits From TPersistent

The TInterface class represents a control interface that has been loaded by the interface manager at run-
time.

Properties Methods Events

ControlClassName Create

States

Component Reference

Page 2257

TInterface.ControlClassName Property

property ControlClassName: String

Specifies the class name of the control that will use the control interface.

Component Reference

Page 2258

TInterface.States Property

property States: TInterfaceStates

Specifies the various states the make up the control interface.

Component Reference

Page 2259

TInterface.Create Method

constructor Create(const AControlClassName: String='')

Use this method to create a new instance of the TInterface class. The AControlClassName parameter
indicates the class name of the control that will use the control interface.

Component Reference

Page 2260

10.127 TInterfaceController Component

Unit: WebUI

Inherits From TComponent

The TInterfaceController class represents an element's controller. A controller instance is assigned to any
element that serves as the base element for a TInterfaceController class descendant.

Note
 With the Elevate Web Builder component library, the TInterfaceController class is never
instantiated directly. It is used only as a bridge component between the TElement class and the
TControl class.

Properties Methods Events

RefreshInterface

ResetInterface

Component Reference

Page 2261

TInterfaceController.RefreshInterface Method

procedure RefreshInterface

Use this method to refresh the control interface for the controller. Refreshing a control interface causes
the current interface state to be re-applied to the controller from a control interface.

Component Reference

Page 2262

TInterfaceController.ResetInterface Method

procedure ResetInterface

Use this method to reset the control interface for the controller. Resetting a control interface causes the
controller to be initialized using the current interface state from a control interface.

Component Reference

Page 2263

10.128 TInterfaceManager Component

Unit: WebUI

Inherits From TObject

The TInterfaceManager class represents the interface manager, which is responsible for managing the user
interface of an application at both design-time and run-time. A global instance of the TInterfaceManager
class is created automatically at application startup, and is called InterfaceManager.

Note
 Do not create any instances of this class manually, and always use the global instance in order to
avoid any conflicts or issues.

Properties Methods Events

ActiveElement ApplyInterface OnError

ApplicationTitle BeginAnimation OnIdle

IdleTimeout CancelAnimation OnViewportResize

Interfaces ContentHeight OnViewportScroll

IsAndroid ContentWidth

IsIOS ContinueAnimation

IsWindowsPhone Create

RootElement CreateElement

ViewportHeight CreateTimeout

ViewportResizeDelay CreateTimer

ViewportScrollLeft FreeTimeout

ViewportScrollTop FreeTimer

ViewportWidth GetInterfaceStateNames

GetResource

GetResourceCompressed

ViewportScroll

Component Reference

Page 2264

TInterfaceManager.ActiveElement Property

property ActiveElement: TElement

Indicates the active element in the user interface. The active UI element is the element that currently has
focus.

Component Reference

Page 2265

TInterfaceManager.ApplicationTitle Property

property ApplicationTitle: String

Indicates the title of the application, which is the descriptive name that appears in the web browser for the
application's tab or page.

Component Reference

Page 2266

TInterfaceManager.IdleTimeout Property

property IdleTimeout: Integer

Specifies the time, in seconds, that the application should wait on user input (keypresses, mouse clicks, or
touches) before triggering the OnIdle event. This is useful for functionality such as making sure that any
authentication information cached for the current user is discarded after a certain period of inactivity, thus
forcing the user to login again when interaction with the application is resumed.

Note
 Mouse movement alone is not enough to reset the idle timeout. The user must specifically press a
key or mouse button, or touch the surface of the screen.

Component Reference

Page 2267

TInterfaceManager.Interfaces Property

property Interfaces: TInterfaces

Indicates the control interfaces that are loaded by the interface manager at runtime. These control
interfaces can be modified by the application at runtime in order to affect the visual appearance of
controls.

Component Reference

Page 2268

TInterfaceManager.IsAndroid Property

property IsAndroid: Boolean

Indicates whether the platform running the application is the Android platform.

Component Reference

Page 2269

TInterfaceManager.IsIOS Property

property IsIOS: Boolean

Indicates whether the platform running the application is the IOS platform.

Component Reference

Page 2270

TInterfaceManager.IsWindowsPhone Property

property IsWindowsPhone: Boolean

Indicates whether the platform running the application is the Windows Phone platform.

Component Reference

Page 2271

TInterfaceManager.RootElement Property

property RootElement: TElement

Indicates the root element of the user interface. At design-time, the root element may be one of two
things, depending upon whether the form designer or control interface editor is active:

If the form designer is active, then the root element will be the base element associated with the
active TFormControl instance.

If the control interface editor is active, then the root element will be the base element for the
currently-selected control interface state.

At run-time, the root element is always the base element for the global Application Surface instance.

Component Reference

Page 2272

TInterfaceManager.ViewportHeight Property

property ViewportHeight: Integer

Indicates the height of the browser viewport.

Component Reference

Page 2273

TInterfaceManager.ViewportResizeDelay Property

property ViewportResizeDelay: Integer

Specifies how long, in milliseconds, the interface manager will wait after a browser viewport resize before
updating the user interface.

Component Reference

Page 2274

TInterfaceManager.ViewportScrollLeft Property

property ViewportScrollLeft: Integer

Indicates the amount, in pixels, that the browser viewport has been scrolled to the right.

Specify a new value to manually scroll the browser viewport to the left or right. A value of 0 means that
the viewport is scrolled all the way to its left-most position.

Component Reference

Page 2275

TInterfaceManager.ViewportScrollTop Property

property ViewportScrollTop: Integer

Indicates the amount, in pixels, that the browser viewport has been scrolled towards the bottom.

Specify a new value to manually scroll the browser viewport towards the top or bottom. A value of 0
means that the viewport is scrolled all the way to its top-most position.

Component Reference

Page 2276

TInterfaceManager.ViewportWidth Property

property ViewportWidth: Integer

Indicates the width of the browser viewport.

Component Reference

Page 2277

TInterfaceManager.ApplyInterface Method

function ApplyInterface(AElement: TElement; const AClassName:
 String; const AState: String; Initializing: Boolean=False):
 Boolean

Use this method to apply a control interface to a base UI element. The AElement parameter specifies the
base UI element instance, the AClassName parameter specifies the name of the control interface's class
name, the AState parameter specifies the control interface state to apply, and the optional Initializing
parameter specifies whether the control interface state should be applied (Initializing=False) or whether
the base element should be initialized using the control interface state.

Component Reference

Page 2278

TInterfaceManager.BeginAnimation Method

function BeginAnimation(AHandler: TInterfaceAnimationEvent):
 Integer

Use this method to add an animation and register an animation frame event handler to be called based
upon the monitor refresh rate, if supported, or at 30 times per second if the browser doesn't support the
first method.

Animations require that each animation frame event handler execution be scheduled using the
BeginAnimation or ContinueAnimation methods, with the BeginAnimation call required at the start of the
animation, and the ContinueAnimation call required for all subsequent animation frames until the
CancelAnimation method is called.

The return value is an integer that represents the animation, and can be used in further animation
operations using the ContinueAnimation and CancelAnimation methods.

Note
 This method is not available at design-time. Any calls to it will cause a design-time compilation
error when compiling the component library.

Component Reference

Page 2279

TInterfaceManager.CancelAnimation Method

procedure CancelAnimation(AID: Integer)

Use this method to stop an animation that was started using the BeginAnimation method, or continued
using the ContinueAnimation method.

Note
 This method is not available at design-time. Any calls to it will cause a design-time compilation
error when compiling the component library.

Component Reference

Page 2280

TInterfaceManager.ContentHeight Method

function ContentHeight(AFont: TFont; const AContent: String;
 AHTMLContent: Boolean=False; AAlignment:
 TContentAlignment=caLeft; ADirection:
 TContentDirection=cdLeftToRight; AWrap: Boolean=False;
 AWrapWidth: Integer=0): Integer

Use this method to measure the height of text content using the specified font and formatting
parameters.

Component Reference

Page 2281

TInterfaceManager.ContentWidth Method

function ContentWidth(AFont: TFont; const AContent: String;
 AHTMLContent: Boolean=False; AAlignment:
 TContentAlignment=caLeft; ADirection:
 TContentDirection=cdLeftToRight; AWrap: Boolean=False;
 AWrapWidth: Integer=0): Integer

Use this method to measure the width of text content using the specified font and formatting parameters.

Component Reference

Page 2282

TInterfaceManager.ContinueAnimation Method

function ContinueAnimation(AID: Integer; AHandler:
 TInterfaceAnimationEvent): Integer

Use this method to re-schedule an animation that was started using the BeginAnimation method or
already continued using this method.

Animations require that each animation frame event handler execution be scheduled using the
BeginAnimation or ContinueAnimation methods, with the BeginAnimation call required at the start of the
animation, and the ContinueAnimation call required for all subsequent animation frames until the
CancelAnimation method is called.

Warning
 This method should be called from within the animation event handler specified by the last
BeginAnimation or ContinueAnimation call.

Note
 This method is not available at design-time. Any calls to it will cause a design-time compilation
error when compiling the component library.

Component Reference

Page 2283

TInterfaceManager.Create Method

constructor Create

Use this method to create a new instance of the TInterfaceManager class.

Component Reference

Page 2284

TInterfaceManager.CreateElement Method

function CreateElement(const AName: String; AParent:
 TElement=nil; const AClassName: String=ELEMENT_CLASS_DIV;
 AContainer: Boolean=False; AEvents: Boolean=False; ADynamic:
 Boolean=False): TElement

Use this method to create a new UI element.

The AName parameter specifies the name of the element.

The optional AParent parameter specifies the parent element, if any.

The optional AClassName parameter specifies the element class name to use when creating the element.

The optional AContainer parameter specifes whether or not the element is a container. A container
element is one that is capable of being a container for other elements at design-time.

The optional AEvents parameter specifies whether the element wants design-time mouse events in order
to allow the developer to interact with the element at design-time.

The optional ADynamic parameter specifies whether the element is being instantiated dynamically at
design-time via interaction by the developer.

Component Reference

Page 2285

TInterfaceManager.CreateTimeout Method

function CreateTimeout(AHandler: TInterfaceTimeoutEvent;
 AInterval: Integer): Integer

Use this method to create a timeout event. The AHandler parameter specifies the event handler to call
when the AInterval milliseconds parameter has elapsed.

Component Reference

Page 2286

TInterfaceManager.CreateTimer Method

function CreateTimer(AHandler: TInterfaceTimerEvent; AInterval:
 Integer): Integer

Use this method to create a timer event. The AHandler parameter specifies the event handler to call every
time the AInterval milliseconds parameter has elapsed.

Component Reference

Page 2287

TInterfaceManager.FreeTimeout Method

procedure FreeTimeout(AID: Integer)

Use this method to free a timeout event.

Component Reference

Page 2288

TInterfaceManager.FreeTimer Method

procedure FreeTimer(AID: Integer)

Use this method to free a timer event.

Component Reference

Page 2289

TInterfaceManager.GetInterfaceStateNames Method

function GetInterfaceStateNames(const AClassName: String): array
 of String

Use this method to retrieve a list of defined state names as an array of strings. The AClassName is the
control interface class name for which you want the list of state names.

Note
 This method is used by the icon library in Elevate Web Builder to retrieve the list of icons defined in
the icon library.

Component Reference

Page 2290

TInterfaceManager.GetResource Method

function GetResource(const ResourceType: String; const
 ResourceName: String): String

Use this method to retrieve an embedded resource for an application at run-time.

Note
 This method is not available at design-time. Any calls to it will cause a design-time compilation
error when compiling the component library.

Component Reference

Page 2291

TInterfaceManager.GetResourceCompressed Method

function GetResourceCompressed(const ResourceType: String; const
 ResourceName: String): Boolean

Use this method to retrieve a compressed and embedded resource for an application at run-time.

Note
 This method is not available at design-time. Any calls to it will cause a design-time compilation
error when compiling the component library.

Component Reference

Page 2292

TInterfaceManager.ViewportScroll Method

procedure ViewportScroll(X,Y: Integer)

Use this method to manually scroll the browser viewport at run-time.

Note
 This method is not available at design-time. Any calls to it will cause a design-time compilation
error when compiling the component library.

Component Reference

Page 2293

TInterfaceManager.OnError Event

property OnError: TInterfaceErrorEvent

This event is triggered when any unhandled exception occurs in the application at runtime in the browser.

Note
 Do not set an event handler for this event. The global TApplication instance for visual applications
assigns an event handler for this event.

Component Reference

Page 2294

TInterfaceManager.OnIdle Event

property OnIdle: TInterfaceIdleEvent

This event is triggered when the application's IdleTimeout property has been exceeded.

Note
 Do not set an event handler for this event. The global TApplication instance for visual applications
assigns an event handler for this event.

Component Reference

Page 2295

TInterfaceManager.OnViewportResize Event

property OnViewportResize: TInterfaceViewportResizeEvent

This event is triggered whenever the browser viewport's width and/or height are changed.

Component Reference

Page 2296

TInterfaceManager.OnViewportScroll Event

property OnViewportScroll: TInterfaceViewportScrollEvent

This event is triggered whenever the browser viewport is scrolled horizontally or vertically.

Component Reference

Page 2297

10.129 TInterfaces Component

Unit: WebUI

Inherits From TObject

The TInterfaces class represents the control interfaces that have been loaded by the interface manager at
run-time.

Note
 You can modify the control interfaces after they have been loaded at runtime in order to customize
how various controls look.

Properties Methods Events

Count Create

Interfaces FindInterfaceByClassName

Load

RemoveAll

Component Reference

Page 2298

TInterfaces.Count Property

property Count: Integer

Indicates the total number of defined control interfaces.

Component Reference

Page 2299

TInterfaces.Interfaces Property

property Interfaces[Index: Integer]: TInterface

Accesses a control interface by its index position in the defined control interfaces.

Component Reference

Page 2300

TInterfaces.Create Method

constructor Create

Use this method to create a new instance of the TInterfaces class.

Component Reference

Page 2301

TInterfaces.FindInterfaceByClassName Method

function FindInterfaceByClassName(const AClassName: String):
 TInterface

Use this method to find a control interface by its control class name. If the control interface does not exist,
then nil will be returned.

Component Reference

Page 2302

TInterfaces.Load Method

procedure Load

Use this method to load all control interfaces bundled with the visual application from the HTML loader
file for the application. This method is automatically called during application startup and should not be
called manually.

Component Reference

Page 2303

TInterfaces.RemoveAll Method

procedure RemoveAll

Use this method to remove all loaded control interfaces. It is not advised to use this method because
doing so can cause a visual application to lose all interface attributes.

Component Reference

Page 2304

10.130 TInterfaceState Component

Unit: WebUI

Inherits From TPersistent

The TInterfaceState class represents a state defined for a control interface that has been loaded by the
interface manager at run-time.

Properties Methods Events

Name

RootElement

Component Reference

Page 2305

TInterfaceState.Name Property

property Name: String

Specifies the name of the control interface state.

Component Reference

Page 2306

TInterfaceState.RootElement Property

property RootElement: TElement

Indicates the root element for the control interface state.

Component Reference

Page 2307

10.131 TInterfaceStates Component

Unit: WebUI

Inherits From TPersistent

The TInterfaceStates class represents the states defined for a control interface that has been loaded by the
interface manager at run-time.

Properties Methods Events

Count Create

DefaultState FindState

State NewState

RemoveState

RenameState

Component Reference

Page 2308

TInterfaceStates.Count Property

property Count: Integer

Indicates the total number of defined control interface states.

Component Reference

Page 2309

TInterfaceStates.DefaultState Property

property DefaultState: TInterfaceState

Indicates the default control interface state, which corresponds to the first defined control interface state.

Component Reference

Page 2310

TInterfaceStates.State Property

property State[Index: Integer]: TInterfaceState

Accesses a control interface state by its index position in the defined control interface states.

Component Reference

Page 2311

TInterfaceStates.Create Method

constructor Create(AInterface: TInterface)

Use this method to create a new instance of the TInterfaceStates class. The AInterface parameter indicates
the parent interface instance that will manage the states.

Component Reference

Page 2312

TInterfaceStates.FindState Method

function FindState(const AName: String): TInterfaceState

Use this method to find a control interface state by its name. If the state does not exist, then nil will be
returned.

Component Reference

Page 2313

TInterfaceStates.NewState Method

function NewState(const AName: String; const FromName:
 String=''): TInterfaceState

Use this method to create a new control interface state. The AName parameter indicates the name of the
new state, and the optional FromName parameter indicates the name of an existing state that will be used
to initialize the new state. If the state indicated by the AName parameter already exists, then an exception
will be raised.

Component Reference

Page 2314

TInterfaceStates.RemoveState Method

function RemoveState(const AName: String): Boolean

Use this method to remove a control interface state. If the state does not exist, then False will be returned.

Component Reference

Page 2315

TInterfaceStates.RenameState Method

function RenameState(const AName: String; const NewName:
 String): Boolean

Use this method to rename a control interface state. If the state does not exist, then False will be returned.

Component Reference

Page 2316

10.132 TLabel Component

Unit: WebLabels

Inherits From TLabelControl

The TLabel component represents a label control. A label control displays text content using a specific font
and formatting, including alignment and wrapping.

Properties Methods Events

AllowCopy OnAnimationComplete

AutoSize OnAnimationsComplete

Background OnClick

Border OnDblClick

Caption OnHide

Corners OnMouseDown

Cursor OnMouseEnter

DataColumn OnMouseLeave

DataSet OnMouseMove

FocusControl OnMouseUp

Font OnMove

Format OnShow

Hint OnSize

Opacity OnTouchCancel

OutsetShadow OnTouchEnd

Padding OnTouchMove

OnTouchStart

Component Reference

Page 2317

TLabel.AllowCopy Property

property AllowCopy: Boolean

Specifies whether the label control will allow its contents to be copied by the user.

Note
 You must also set the Cursor property to crText if you want the user to be able to directly copy the
contents of the label using the mouse or touch.

Component Reference

Page 2318

TLabel.AutoSize Property

property AutoSize: TAutoSize

Specifies how (if at all) the control should automatically be sized based upon the Caption and Format
properties.

Component Reference

Page 2319

TLabel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2320

TLabel.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2321

TLabel.Caption Property

property Caption: String

Specifies the textual caption to display in the control. The default value is ''.

Component Reference

Page 2322

TLabel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2323

TLabel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2324

TLabel.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 2325

TLabel.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 2326

TLabel.FocusControl Property

property FocusControl: TInputControl

Specifies a control that will receive focus when the label is clicked.

Component Reference

Page 2327

TLabel.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2328

TLabel.Format Property

property Format: TFormat

Specifies the content formatting to use for the control's Caption.

Component Reference

Page 2329

TLabel.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2330

TLabel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2331

TLabel.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2332

TLabel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2333

TLabel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2334

TLabel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2335

TLabel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2336

TLabel.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2337

TLabel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2338

TLabel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2339

TLabel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2340

TLabel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2341

TLabel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2342

TLabel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2343

TLabel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2344

TLabel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2345

TLabel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2346

TLabel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2347

TLabel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2348

TLabel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2349

TLabel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2350

10.133 TLabelControl Component

Unit: WebLabels

Inherits From TBindableColumnControl

The TLabelControl control is the base class for label controls, and contains all of the core label
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized label controls.

Properties Methods Events

Component Reference

Page 2351

10.134 TLayout Component

Unit: WebUI

Inherits From TElementAttribute

The TLayout class represents the layout properties of a UI element or control. The layout properties
include positioning, stretching, and layout space consumption. Please see the Layout Management topic
for more information on how the layout properties are used.

Properties Methods Events

Consumption SetToDefault

Overflow

Position

Reset

Stretch

Component Reference

Page 2352

TLayout.Consumption Property

property Consumption: TLayoutConsumption

Specifies how the UI element or control consumes space in the current layout rectangle, if at all.

Component Reference

Page 2353

TLayout.Overflow Property

property Overflow: TLayoutOverflow

Specifies the direction in which the current UI element or control should reset the consumption of the
prior UI element or control when the current UI element or control will not fit within the bounds of the
current layout rectangle.

Component Reference

Page 2354

TLayout.Position Property

property Position: TLayoutPosition

Specifies how the UI element or control is positioned in the current layout rectangle, if at all.

Component Reference

Page 2355

TLayout.Reset Property

property Reset: Boolean

Specifies whether the UI element or control is resetting the space consumption direction in the current
layout rectangle.

Component Reference

Page 2356

TLayout.Stretch Property

property Stretch: TLayoutStretch

Specifies how the UI element or control is stretched in the current layout rectangle, if at all.

Component Reference

Page 2357

TLayout.SetToDefault Method

procedure SetToDefault

Use this method to reset the layout's properties to their default values.

Component Reference

Page 2358

10.135 TLink Component

Unit: WebBrwsr

Inherits From TLinkControl

The TLink component represents a link control. A link control displays link text using the Caption property
that results in navigation to the specified URL property when the control is clicked at run-time.

Note
 This control does not provide support for links at design-time.

Properties Methods Events

AutoSize OnAnimationComplete

Background OnAnimationsComplete

Border OnClick

Caption OnHide

Corners OnMouseDown

Cursor OnMouseEnter

DataColumn OnMouseLeave

DataSet OnMouseMove

Font OnMouseUp

Format OnMove

Hint OnShow

NewWindow OnSize

Opacity OnTouchCancel

OutsetShadow OnTouchEnd

Padding OnTouchMove

TabOrder OnTouchStart

TabStop

URL

Component Reference

Page 2359

TLink.AutoSize Property

property AutoSize: TAutoSize

Specifies how (if at all) the control should automatically be sized based upon the Caption and Format
properties.

Component Reference

Page 2360

TLink.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 2361

TLink.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2362

TLink.Caption Property

property Caption: TCaption

Specifies the textual caption to display in the control. The default value is ''.

Component Reference

Page 2363

TLink.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2364

TLink.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2365

TLink.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 2366

TLink.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 2367

TLink.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2368

TLink.Format Property

property Format: TFormat

Specifies the content formatting to use for the control's Caption.

Component Reference

Page 2369

TLink.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2370

TLink.NewWindow Property

property NewWindow: Boolean

Specifies that the resource represented by the URL property should be opened in a new browser window
or page when the link control is clicked.

Component Reference

Page 2371

TLink.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2372

TLink.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2373

TLink.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2374

TLink.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2375

TLink.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2376

TLink.URL Property

property URL: String

Specifies the URL for the resource that is the target of the link.

Component Reference

Page 2377

TLink.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2378

TLink.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2379

TLink.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2380

TLink.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2381

TLink.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2382

TLink.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2383

TLink.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2384

TLink.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2385

TLink.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2386

TLink.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2387

TLink.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2388

TLink.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2389

TLink.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2390

TLink.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2391

TLink.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2392

TLink.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2393

10.136 TLinkControl Component

Unit: WebBrwsr

Inherits From TBindableColumnControl

The TLinkControl control is the base class for link controls, and contains all of the core link functionality in
the form of public methods and protected properties/events that descendant classes can use to create
customized link controls.

Properties Methods Events

Component Reference

Page 2394

10.137 TLinkElement Component

Unit: WebUI

Inherits From TElement

The TLinkElement class is the element class for URL links, and contains all of the URL link functionality in
the form of public methods and properties/events that control classes can use to create link controls.

Note
 This element does not provide support for links at design-time, and the applicable methods and
properties are all stubs.

Properties Methods Events

NewWindow OpenURL

URL

Component Reference

Page 2395

TLinkElement.NewWindow Property

property NewWindow: Boolean

Specifies that the navigation that occurs in response to a click or selection should cause a new browser
window to open.

Component Reference

Page 2396

TLinkElement.URL Property

property URL: String

Specifies the URL of the link.

Component Reference

Page 2397

TLinkElement.OpenURL Method

procedure OpenURL

Use this method to programmatically open the link specified in the URL property. If the NewWindow
property is True, then the URL is opened in a new browser window or tab.

Component Reference

Page 2398

10.138 TListBox Component

Unit: WebLists

Inherits From TListControl

The TListBox component represents a listbox control for displaying a list of selectable items specified by
the Items property. Multiple items can be selected if the MultiSelect property is set to True.

Note
 This control is a virtual control, meaning that it can store and display very large numbers of items
efficiently by only using UI elements for the visible items in the control.

Component Reference

Page 2399

Properties Methods Events

AutoItemHeight OnAnimationComplete

Corners OnAnimationsComplete

Cursor OnChange

DataColumn OnClick

DataSet OnDblClick

Enabled OnEnter

Font OnExit

Hint OnHide

ItemHeight OnKeyDown

ItemIndex OnKeyPress

Items OnKeyUp

KeyPressInterval OnMouseDown

MultiSelect OnMouseEnter

ReadOnly OnMouseLeave

ScrollBar OnMouseMove

ScrollSupport OnMouseUp

Selected OnMouseWheel

SelectedCount OnMove

Sorted OnScroll

TabOrder OnShow

TabStop OnSize

Text OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchScroll

OnTouchStart

Component Reference

Page 2400

TListBox.AutoItemHeight Property

property AutoItemHeight: Boolean

Specifies that the displayed height of the items will automatically be set based upon the Font property
settings. The default value is True.

Component Reference

Page 2401

TListBox.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2402

TListBox.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2403

TListBox.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 2404

TListBox.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 2405

TListBox.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 2406

TListBox.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2407

TListBox.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2408

TListBox.ItemHeight Property

property ItemHeight: Integer

Specifies the height, in pixels, of the items displayed in the list control.

Component Reference

Page 2409

TListBox.ItemIndex Property

property ItemIndex: Integer

Indicates the index of the currently-focused item in the list control, or -1 if no item is currently focused.

Component Reference

Page 2410

TListBox.Items Property

property Items: TStrings

Specifies the items to display in the list control.

Component Reference

Page 2411

TListBox.KeyPressInterval Property

property KeyPressInterval: Integer

Specifies the interval, in milliseconds, that is used by the control to combine user keystrokes into a search
value that is then used for performing a near search on the Items property. Effectively, this means that the
user has KeyPressInterval milliseconds in which to hit a key in order for the keystroke to be included as
part of a near search. The default value is 300 milliseconds.

For example, if the user hits the 'S', 'M', and 'I' keys within the KeyPressInterval property value, but hits the
'T' key outside of the KeyPressInterval property, then the control will perform a near search using the
value 'SMI', followed by a near search using the value 'T'.

Component Reference

Page 2412

TListBox.MultiSelect Property

property MultiSelect: Boolean

Specifies whether multiple items may be selected. If this property is True, then the user can select multiple
items in the list control using an individual selection operation (Ctrl-Click), or using a range selection
operation (Shift-Click). In addition, the developer can directly modify the Selected property to select or
deselect any item(s) in the list control.

The default value is False.

Component Reference

Page 2413

TListBox.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the listbox's selected item(s) can be modified by the user. The default value is False.

Note
 The listbox's selected item(s) can always be programmatically modified.

Component Reference

Page 2414

TListBox.ScrollBar Property

property ScrollBar: Boolean

Specifies whether the vertical scrollbar should be shown for the listbox control.

Note
 Even if this property is set to True, a vertical scrollbar will only be shown if the vertical size of the
contents of the control exceed the client rectangle for the control.

Component Reference

Page 2415

TListBox.ScrollSupport Property

property ScrollSupport: Boolean

Specifies whether to allow vertical scrolling in the listbox control.

Note
 This property only applies to scrolling via touch and mouse wheel movements, and does not apply
to programmatic scrolling or scrolling via the vertical scroll bar itself.

Component Reference

Page 2416

TListBox.Selected Property

property Selected[AIndex: Integer]: Boolean

Specifies which items in the list control are currently selected. If the MultiSelect property is True, then this
property can be used to test which items are selected by their index, or to select one or more items. If the
MultiSelect property is False, then only one item at a time will be indicated as being selected in this
property, and you will not be able to modify the selection status of items.

Component Reference

Page 2417

TListBox.SelectedCount Property

property SelectedCount: Integer

Specifies the number of selected items in the list control. If the MultiSelect property is True, then this
property can be used to find out how many items are selected. If the MultiSelect property is False, then
this property will always be equal to 1 or 0 (if the list is empty).

Component Reference

Page 2418

TListBox.Sorted Property

property Sorted: Boolean

Specifies whether the list items will automatically be sorted. The default value is False.

Component Reference

Page 2419

TListBox.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2420

TListBox.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2421

TListBox.Text Property

property Text: String

Specifies the list control's selected items(s) as a string.

Component Reference

Page 2422

TListBox.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2423

TListBox.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2424

TListBox.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 2425

TListBox.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2426

TListBox.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2427

TListBox.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 2428

TListBox.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 2429

TListBox.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2430

TListBox.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 2431

TListBox.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 2432

TListBox.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 2433

TListBox.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2434

TListBox.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2435

TListBox.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2436

TListBox.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2437

TListBox.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2438

TListBox.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 2439

TListBox.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2440

TListBox.OnScroll Event

property OnScroll: TNotifyEvent

This event is triggered whenever a scrollable control is scrolled horizontally or vertically.

Component Reference

Page 2441

TListBox.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2442

TListBox.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2443

TListBox.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2444

TListBox.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2445

TListBox.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2446

TListBox.OnTouchScroll Event

property OnTouchScroll: TTouchScrollEvent

This event is triggered whenever a touch moves in any direction over a touch-scroll-enabled control.

Component Reference

Page 2447

TListBox.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2448

10.139 TListControl Component

Unit: WebLists

Inherits From TInputControl

The TListControl control is the base class for list controls, and contains all of the core list functionality in
the form of public methods and protected properties/events that descendant classes can use to create
customized list controls.

Properties Methods Events

SelectAll

SelectRange

ToggleSelected

Component Reference

Page 2449

TListControl.SelectAll Method

procedure SelectAll

Use this method to select all items in the list control.

Component Reference

Page 2450

TListControl.SelectRange Method

procedure SelectRange(AFromIndex, AToIndex: Integer; AClear:
 Boolean=False)

Use this method to select a range of items in the list control. The AClear parameter determines whether
the existing set of selected items should be cleared before the new range of items is selected.

Component Reference

Page 2451

TListControl.ToggleSelected Method

procedure ToggleSelected(AIndex: Integer)

Use this method to toggle the selection state of the item at the specified index.

Component Reference

Page 2452

10.140 TLocation Component

Unit: WebComps

Inherits From TObject

The TLocation class represents current location information for the global LocationServices instance of the
TLocationServices class and contains properties for all available location information.

Properties Methods Events

Accuracy

Altitude

AltitudeAccuracy

AltitudeAvailable

Heading

HeadingAvailable

Latitude

Longitude

Speed

SpeedAvailable

Timestamp

Component Reference

Page 2453

TLocation.Accuracy Property

property Accuracy: Double

Specifies the accuracy, in meters, of the Latitude and Longitude properties.

Component Reference

Page 2454

TLocation.Altitude Property

property Altitude: Double

Specifies the altitude, in meters, relative to sea level.

Note
 This property is only valid when the AltitudeAvailable property is True.

Component Reference

Page 2455

TLocation.AltitudeAccuracy Property

property AltitudeAccuracy: Double

Specifies the accuracy, in meters, of the Altitude property.

Note
 This property is only valid when the AltitudeAvailable property is True.

Component Reference

Page 2456

TLocation.AltitudeAvailable Property

property AltitudeAvailable: Boolean

Specifies whether altitude information was available as part of the returned location information.

Note
 The Altitude and AltitudeAccuracy properties are only valid when the AltitudeAvailable property is
True.

Component Reference

Page 2457

TLocation.Heading Property

property Heading: Double

Specifies the heading, in degrees, relative to true north. East is 90 degrees, south is 180 degrees, and west
is 270 degrees. If the Speed property is 0, then this property will be 0.

Note
 This property is only valid when the HeadingAvailable property is True.

Component Reference

Page 2458

TLocation.HeadingAvailable Property

property HeadingAvailable: Boolean

Specifies whether heading information was available as part of the returned location information.

Note
 The Heading property is only valid when the HeadingAvailable property is True.

Component Reference

Page 2459

TLocation.Latitude Property

property Latitude: Double

Specifies the latitude, in meters.

Component Reference

Page 2460

TLocation.Longitude Property

property Longitude: Double

Specifies the longitude, in meters.

Component Reference

Page 2461

TLocation.Speed Property

property Speed: Double

Specifies the velocity, in meters per second.

Note
 This property is only valid when the SpeedAvailable property is True.

Component Reference

Page 2462

TLocation.SpeedAvailable Property

property SpeedAvailable: Boolean

Specifies whether speed information was available as part of the returned location information.

Note
 The Speed property is only valid when the SpeedAvailable property is True.

Component Reference

Page 2463

TLocation.Timestamp Property

property Timestamp: DateTime

Specifies the timestamp of when the location information was obtained.

Component Reference

Page 2464

10.141 TLocationServices Component

Unit: WebComps

Inherits From TObject

The TLocationServices object encapsulates the HTML5 geolocation functionality, which allows the
application to determine the physical location of the machine or device running the host web browser
(with the user's permission). In addition to the latitude and longitude of the machine or device, additional
information such as the altitude, heading, and speed may be available, depending upon the type of
device being used to host the web browser.

Note
 The component library includes one global instance of this class called LocationServices in the
WebComps unit that should be used instead of creating a new instance of the class.

Warning
 The HTML5 geolocation functionality is only available in secure contexts (https) in many modern
browsers, do please keep this in mind when deciding whether to use such functionality in your
application.

Properties Methods Events

Error Create OnLocationError

HighAccuracy StartTrackingLocation OnLocationUpdate

Location StopTrackingLocation

MaxAge UpdateLocation

Timeout

Component Reference

Page 2465

TLocationServices.Error Property

property Error: TLocationError

Specifies the error condition when the current location cannot be obtained.

Note
 This property is only valid after the OnLocationError or OnLocationUpdate event handlers have
been executed.

Component Reference

Page 2466

TLocationServices.HighAccuracy Property

property HighAccuracy: Boolean

Specifies that the next attempt to obtain the current location information via the UpdateLocation or
StartTrackingLocation methods should request a high level of accuracy from the machine or device
hosting the web browser. If the machine or device is able to do so, it will use the most accurate method at
its disposal to provide the location information.

Component Reference

Page 2467

TLocationServices.Location Property

property Location: TLocation

Note
 This property is only valid after the OnLocationError or OnLocationUpdate event handlers have
been executed.

Component Reference

Page 2468

TLocationServices.MaxAge Property

property MaxAge: Integer

Specifies that the next attempt to obtain the current location information via the UpdateLocation or
StartTrackingLocation methods should request that any returned location information not have been
cached for longer than the specified number of milliseconds. If this property is set to 0 (the default value),
any returned location information will not be cached information. If this property is set to -1, any returned
location information will only be cached information, no matter how old the information is.

Component Reference

Page 2469

TLocationServices.Timeout Property

property Timeout: Integer

Specifies that the next attempt to obtain the current location information via the UpdateLocation or
StartTrackingLocation methods should request that any returned location information must be returned
within a certain number of milliseconds. If this property is set to 0 (the default value), then the location
information must be returned immediately or the OnLocationError event handler will be executed. If this
property is set to -1, then the OnLocationError event handler will never be executed due to a timeout, and
the OnLocationUpdate event handler will not be executed until the location information is available, no
matter how long it takes.

Component Reference

Page 2470

TLocationServices.Create Method

constructor Create

Use this method to create a new instance of the TLocationServices class.

Component Reference

Page 2471

TLocationServices.StartTrackingLocation Method

procedure StartTrackingLocation

Use this method to start tracking the location information for the machine or device using the
HighAccuracy, MaxAge, and Timeout properties to control how the location information is obtained.

After the tracking is started, the OnLocationUpdate event handler will be executed any time the location
information changes and the Location property will contain the location information. If the location
information cannot be obtained for any reason, then the OnLocationError event handler will be executed
and the Error property will contain the error condition.

Component Reference

Page 2472

TLocationServices.StopTrackingLocation Method

procedure StopTrackingLocation

Use this method to stop tracking the location information for the machine or device.

Component Reference

Page 2473

TLocationServices.UpdateLocation Method

procedure UpdateLocation

Use this method to obtain location information for the machine or device using the HighAccuracy,
MaxAge, and Timeout properties to control how the location information is obtained.

If the location information is successfully obtained, the OnLocationUpdate event handler will be executed
and the Location property will contain the location information. If the location information cannot be
obtained for any reason, then the OnLocationError event handler will be executed and the Error property
will contain the error condition.

Component Reference

Page 2474

TLocationServices.OnLocationError Event

property OnLocationError: TNotifyEvent

This event is triggered when an attempt to obtain the location information via the UpdateLocation or
StartTrackingLocation methods fails. Once this event is triggered, the Error property will contain the error
condition.

Component Reference

Page 2475

TLocationServices.OnLocationUpdate Event

property OnLocationUpdate: TNotifyEvent

This event is triggered when an attempt to obtain the location information via the UpdateLocation or
StartTrackingLocation methods is successful. Once this event is triggered, the Location property will
contain the location information.

Component Reference

Page 2476

10.142 TMap Component

Unit: WebMaps

Inherits From TMapControl

The TMap component represents a map control that loads and uses the Google Maps API for map display
and geocoding.

Properties Methods Events

APIKey OnAnimationComplete

APIKeyRequired OnAnimationsComplete

Background OnAPIError

Border OnAPILoad

Corners OnHide

Cursor OnMove

InsetShadow OnShow

Locations OnSize

Options

OutsetShadow

Padding

Component Reference

Page 2477

TMap.APIKey Property

property APIKey: String

Google has changed the requirements for using the Google Maps API:

Google Maps Standard Plan Updates

and the TMap control now includes two new properties to accomodate the new API key requirements:
APIKeyRequired and APIKey. If you were using the Google Maps API successfully with your application
prior to the new requirements, then your IP address will be grandfathered in and you can set the
APIKeyRequired property to False and leave the APIKey property blank.

Component Reference

Page 2478

TMap.APIKeyRequired Property

property APIKeyRequired: Boolean

Google has changed the requirements for using the Google Maps API:

Google Maps Standard Plan Updates

and the TMap control now includes two new properties to accomodate the new API key requirements:
APIKeyRequired and APIKey. If you were using the Google Maps API successfully with your application
prior to the new requirements, then your IP address will be grandfathered in and you can set the
APIKeyRequired property to False and leave the APIKey property blank.

Component Reference

Page 2479

TMap.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2480

TMap.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2481

TMap.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2482

TMap.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2483

TMap.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 2484

TMap.Locations Property

property Locations: TMapLocations

Provides access to the defined locations for the map.

Component Reference

Page 2485

TMap.Options Property

property Options: TMapOptions

Specifies the map options.

Component Reference

Page 2486

TMap.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2487

TMap.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2488

TMap.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2489

TMap.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2490

TMap.OnAPIError Event

property OnAPIError: TNotifyEvent

This event is triggered when the Google Maps API cannot be loaded due to an error condition.

Component Reference

Page 2491

TMap.OnAPILoad Event

property OnAPILoad: TNotifyEvent

This event is triggered when the Google Maps API has been completely loaded and is ready for use.

Note
 The Google Maps API is only loaded once and used with every TMap instance, but this event will
be triggered for each TMap instance even if the API has already been loaded.

Component Reference

Page 2492

TMap.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2493

TMap.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2494

TMap.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2495

TMap.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2496

10.143 TMapControl Component

Unit: WebMaps

Inherits From TControl

The TMapControl control is the base class for map controls that dynamically load and use the Google
Maps API. It contains all of the map control functionality in the form of public methods and protected
properties/events that descendant classes can use to create customized map controls.

Properties Methods Events

Component Reference

Page 2497

10.144 TMapLocation Component

Unit: WebMaps

Inherits From TCollectionItem

The TMapLocation class represents a named location in a TMap control and contains functionality for
getting and setting an address or latitude/longitude, as well as placing markers on the map or changing
the map so that the location is at the center.

Properties Methods Events

Address OnClick

Center

Icon

Latitude

Longitude

ShowMarker

Title

Component Reference

Page 2498

TMapLocation.Address Property

property Address: String

Specifies an address for the named location. When this property is changed, the Latitude and Longitude
properties are set to 0 and the address is geocoded by Google Maps. If the geocoding is successful, then:

If the Center property is set to True, the location will be centered on the map.

If the SetMarker property is set to True, the a marker will be placed on the location on the map, and
the Title will be displayed as a hint when the mouse hovers over the marker.

Component Reference

Page 2499

TMapLocation.Center Property

property Center: Boolean

Specifies whether the location should be set as the center of the map. The default value is False.

Note
 Only one named location on the map can have its Center property set to True, and the TMap
control will enforce this rule by setting the Center property to False for any other defined locations.

Component Reference

Page 2500

TMapLocation.Icon Property

property Icon: String

Specifies the URL for an icon to use in place of the standard location marker.

Component Reference

Page 2501

TMapLocation.Latitude Property

property Latitude: Double

Specifies the latitude for the named location. When this property is changed, the Address property is set
to ''. If both the Latitude and Longitude properties are assigned non-zero values, then the latitude and
longitude are assigned to the map, and:

If the Center property is set to True, the location will be centered on the map.

If the SetMarker property is set to True, the a marker will be placed on the location on the map, and
the Title will be displayed as a hint when the mouse hovers over the marker.

Component Reference

Page 2502

TMapLocation.Longitude Property

property Longitude: Double

Specifies the longitude for the named location. When this property is changed, the Address property is set
to ''. If both the Latitude and Longitude properties are assigned non-zero values, then the latitude and
longitude are assigned to the map, and:

If the Center property is set to True, the location will be centered on the map.

If the SetMarker property is set to True, the a marker will be placed on the location on the map, and
the Title will be displayed as a hint when the mouse hovers over the marker.

Component Reference

Page 2503

TMapLocation.ShowMarker Property

property ShowMarker: Boolean

Specifies whether a marker should be set for the named location on the map. The default value is False.

Component Reference

Page 2504

TMapLocation.Title Property

property Title: String

Specifies the title for the named location to show when the mouse hovers over the marker. This property
is only valid when the SetMarker property is set to True.

Component Reference

Page 2505

TMapLocation.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2506

10.145 TMapLocations Component

Unit: WebMaps

Inherits From TCollection

The TMapLocations class represents the list of named locations in a TMap control and contains
functionality for managing the locations.

Properties Methods Events

Location

Component Reference

Page 2507

TMapLocations.Location Property

property Location[Index: Integer]: TMapLocation

property Location[const Name: String]: TMapLocation

Accesses all locations defined for the map by index or by name.

Component Reference

Page 2508

10.146 TMapOption Component

Unit: WebMaps

Inherits From TPersistent

The TMapOption class is the base class for any complex TMap control mapping options.

Properties Methods Events

Create

Component Reference

Page 2509

TMapOption.Create Method

constructor Create(AMap: TMapControl; AParent: TMapOption)

Use this method to create a new instance of the TMapOption class. The AMap parameter indicates the
map control instance that will manage the option, and the AParent parameter indicates the parent option,
if any, that the option is contained within. The parent option is used to aggregate change management at
the outermost option so as to avoid excessively triggering change notifications in the map control.

Component Reference

Page 2510

10.147 TMapOptions Component

Unit: WebMaps

Inherits From TMapOption

The TMapOptions class represents a list of map options for a TMap control. These map options
correspond to the map options available for maps in the Google Maps API.

Properties Methods Events

DisableDblClickZoom

DisableDefaultUI

Draggable

Heading

KeyboardShortCuts

MapType

MapTypeControl

MapTypeControlOptions

MaxZoom

MinZoom

OverviewMapControl

OverviewMapControlOptions

PanControl

PanControlOptions

RotateControl

RotateControlOptions

ScaleControl

ScrollWheel

StreetViewControl

StreetViewControlOptions

Tilt

Zoom

ZoomControl

ZoomControlOptions

Component Reference

Page 2511

TMapOptions.DisableDblClickZoom Property

property DisableDblClickZoom: Boolean

Enables/disables zoom and center on double click. Enabled by default.

Component Reference

Page 2512

TMapOptions.DisableDefaultUI Property

property DisableDefaultUI: Boolean

Enables/disables all default UI. May be overridden individually.

Component Reference

Page 2513

TMapOptions.Draggable Property

property Draggable: Boolean

If False, prevents the map from being dragged. Dragging is enabled by default.

Component Reference

Page 2514

TMapOptions.Heading Property

property Heading: Double

The heading for aerial imagery in degrees measured clockwise from cardinal direction North. Headings
are snapped to the nearest available angle for which imagery is available.

Component Reference

Page 2515

TMapOptions.KeyboardShortCuts Property

property KeyboardShortCuts: Boolean

If false, prevents the map from being controlled by the keyboard. Keyboard shortcuts are enabled by
default.

Component Reference

Page 2516

TMapOptions.MapType Property

property MapType: TMapType

Specifies the initial map type. The default value is mtRoadmap.

Component Reference

Page 2517

TMapOptions.MapTypeControl Property

property MapTypeControl: Boolean

The initial enabled/disabled state of the map type control.

Component Reference

Page 2518

TMapOptions.MapTypeControlOptions Property

property MapTypeControlOptions: TMapTypeControlOptions

The initial display options for the map type control.

Component Reference

Page 2519

TMapOptions.MaxZoom Property

property MaxZoom: Integer

The maximum zoom level which will be displayed on the map.

Component Reference

Page 2520

TMapOptions.MinZoom Property

property MinZoom: Integer

The minimum zoom level which will be displayed on the map.

Component Reference

Page 2521

TMapOptions.OverviewMapControl Property

property OverviewMapControl: Boolean

The enabled/disabled state of the overview map control.

Component Reference

Page 2522

TMapOptions.OverviewMapControlOptions Property

property OverviewMapControlOptions: TOverviewMapControlOptions

The display options for the overview map control.

Component Reference

Page 2523

TMapOptions.PanControl Property

property PanControl: Boolean

The enabled/disabled state of the pan control.

Component Reference

Page 2524

TMapOptions.PanControlOptions Property

property PanControlOptions: TPanControlOptions

The display options for the pan control.

Component Reference

Page 2525

TMapOptions.RotateControl Property

property RotateControl: Boolean

The enabled/disabled state of the rotate control.

Component Reference

Page 2526

TMapOptions.RotateControlOptions Property

property RotateControlOptions: TRotateControlOptions

The display options for the rotate control.

Component Reference

Page 2527

TMapOptions.ScaleControl Property

property ScaleControl: Boolean

The initial enabled/disabled state of the scale control.

Component Reference

Page 2528

TMapOptions.ScrollWheel Property

property ScrollWheel: Boolean

If false, disables mouse scrollwheel zooming on the map. The mouse scrollwheel is enabled by default.

Component Reference

Page 2529

TMapOptions.StreetViewControl Property

property StreetViewControl: Boolean

The initial enabled/disabled state of the street view pegman control. This control is part of the default UI,
and should be set to false when displaying a map type on which the street view road overlay should not
appear (e.g. a non-Earth map type).

Component Reference

Page 2530

TMapOptions.StreetViewControlOptions Property

property StreetViewControlOptions: TStreetViewControlOptions

The initial display options for the street view pegman control.

Component Reference

Page 2531

TMapOptions.Tilt Property

property Tilt: TMapTilt

Controls the automatic switching behavior for the angle of incidence of the map. The only allowed values
are 0 and 45. The value 0 causes the map to always use a 0° overhead view regardless of the zoom level
and viewport. The value 45 causes the tilt angle to automatically switch to 45 whenever 45° imagery is
available for the current zoom level and viewport, and switch back to 0 whenever 45° imagery is not
available (this is the default behavior). 45° imagery is only available for the mtSatellite and mtHybrid map
types, within some locations, and at some zoom levels.

Component Reference

Page 2532

TMapOptions.Zoom Property

property Zoom: Integer

The initial map zoom level.

Component Reference

Page 2533

TMapOptions.ZoomControl Property

property ZoomControl: Boolean

The enabled/disabled state of the zoom control.

Component Reference

Page 2534

TMapOptions.ZoomControlOptions Property

property ZoomControlOptions: TZoomControlOptions

The display options for the zoom control.

Component Reference

Page 2535

10.148 TMapTypeControlMapTypes Component

Unit: WebMaps

Inherits From TMapOption

The TMapTypeControlMapTypes class represents the list of map types that should be available for user
selection using the map type control in a TMap control. These map types correspond to the map types
available for maps in the Google Maps API.

Properties Methods Events

Hybrid

Roadmap

Satellite

Terrain

Component Reference

Page 2536

TMapTypeControlMapTypes.Hybrid Property

property Hybrid: Boolean

Include hybrid as a selectable map type.

Component Reference

Page 2537

TMapTypeControlMapTypes.Roadmap Property

property Roadmap: Boolean

Include roadmap as a selectable map type.

Component Reference

Page 2538

TMapTypeControlMapTypes.Satellite Property

property Satellite: Boolean

Include satellite as a selectable map type.

Component Reference

Page 2539

TMapTypeControlMapTypes.Terrain Property

property Terrain: Boolean

Include terrain as a selectable map type.

Component Reference

Page 2540

10.149 TMapTypeControlOptions Component

Unit: WebMaps

Inherits From TMapOption

The TMapTypeControlOptions class controls how the map type control is configured in a TMap control.
These map type control options correspond to the map type control options available for maps in the
Google Maps API.

Properties Methods Events

MapTypes

Position

Style

Component Reference

Page 2541

TMapTypeControlOptions.MapTypes Property

property MapTypes: TMapTypeControlMapTypes

Specifies which map types to show in the map type control.

Component Reference

Page 2542

TMapTypeControlOptions.Position Property

property Position: TMapControlPosition

Specifies the position of the map type control.

Component Reference

Page 2543

TMapTypeControlOptions.Style Property

property Style: TMapTypeControlStyle

Specifies the style of the map type control.

Component Reference

Page 2544

10.150 TMargins Component

Unit: WebUI

Inherits From TBoundingAttribute

The TMargins class represents the margins of a UI element or control. The margins affect how a UI
element or control is positioned and sized within the current layout rectangle when using the layout
functionality in Elevate Web Builder. Please see the Layout Management topic for more information on
how margins are used with the layout functionality.

Properties Methods Events

Component Reference

Page 2545

10.151 TMediaControl Component

Unit: WebMedia

Inherits From TBindableColumnControl

The TMediaControl control is the base class for media controls, and contains all of the core media
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized media controls.

Properties Methods Events

CanPlayMedia

Pause

Play

Component Reference

Page 2546

TMediaControl.CanPlayMedia Method

function CanPlayMedia(const MIMEType: String): TCanPlayMedia

Call this method to determine if the media control can play a specific type of media.

The MIMEType parameter indicates the MIME type of the media that you wish to test for playback
capabilities.

Component Reference

Page 2547

TMediaControl.Pause Method

procedure Pause

Call this method to pause playback of the media.

Component Reference

Page 2548

TMediaControl.Play Method

procedure Play

Call this method to start or resume playback of the media.

Component Reference

Page 2549

10.152 TMediaElement Component

Unit: WebUI

Inherits From TElement

The TMediaElement class is the element class for media UI elements, and contains all of the base media
playback functionality that is used by the TAudioElement and TVideoElement.

Note
 This element does not provide support for media playback at design-time, and the applicable
playback methods and properties are all stubs. Also, this element is never instantiated directly. Only
the TAudioElement and TVideoElement UI elements are instantiated.

Properties Methods Events

AutoPlay CanPlayMedia

CurrentSource Pause

CurrentTime Play

DefaultPlaybackRate

Duration

Ended

Loop

Muted

NetworkState

Paused

PlaybackRate

Preload

ReadyState

Seeking

ShowControls

Source

Volume

Component Reference

Page 2550

TMediaElement.AutoPlay Property

property AutoPlay: Boolean

Specifies that the media should begin playing as soon as enough data has been loaded to allow playback.
The default value is False.

Component Reference

Page 2551

TMediaElement.CurrentSource Property

property CurrentSource: String

Indicates the URL of the current media being loaded and/or played.

Component Reference

Page 2552

TMediaElement.CurrentTime Property

property CurrentTime: Double

Indicates the current playback time, in seconds. Setting this property to a new value will cause the media
to skip to the specified time.

Component Reference

Page 2553

TMediaElement.DefaultPlaybackRate Property

property DefaultPlaybackRate: Double

Specifies the default playback rate, with 1 being normal playback, less than 1 being slower playback, and
greater than 1 being faster playback. The default value is 1.

Note
 The volume will normally be automatically muted when playing media faster or slower than the
normal playback rate.

Component Reference

Page 2554

TMediaElement.Duration Property

property Duration: Double

Indicates the length of the media in seconds. If the duration has not been determined, this property will
return 0.

Component Reference

Page 2555

TMediaElement.Ended Property

property Ended: Boolean

Indicates that the end of the media has been reached.

Component Reference

Page 2556

TMediaElement.Loop Property

property Loop: Boolean

Specifies that the media playback should automatically restart at the beginning once the end has been
reached. The default value is False.

Component Reference

Page 2557

TMediaElement.Muted Property

property Muted: Boolean

Specifies that the playback volume should be muted. The default valuse is False.

Component Reference

Page 2558

TMediaElement.NetworkState Property

property NetworkState: TMediaNetworkState

Indicates the network state of the media loading/playback.

Component Reference

Page 2559

TMediaElement.Paused Property

property Paused: Boolean

Indicates that media playback is paused, either by the user pausing the media via the user interface when
the ShowControls property is True, or by the application calling the Pause method. The default value is
False.

Component Reference

Page 2560

TMediaElement.PlaybackRate Property

property PlaybackRate: Double

Specifies the playback rate, with 1 being normal playback, less than 1 being slower playback, and greater
than 1 being faster playback. The default value is 1.

Note
 The volume will normally be automatically muted when playing media faster or slower than the
normal playback rate.

Component Reference

Page 2561

TMediaElement.Preload Property

property Preload: TMediaPreload

Specifies how much of the current media data should be loaded before playback begins.

Component Reference

Page 2562

TMediaElement.ReadyState Property

property ReadyState: TMediaReadyState

Indicates whether the media is ready for playback, and if so, a general description of what media data has
been loaded.

Component Reference

Page 2563

TMediaElement.Seeking Property

property Seeking: Boolean

Indicates that media is switching to a new playback location, either by the user changing the playback
location in the media via the user interface when the ShowControls property is True, or by the application
setting the CurrentTime property.

Component Reference

Page 2564

TMediaElement.ShowControls Property

property ShowControls: Boolean

Specifies whether the element should show the native user interface for the media being played. The
TAudioElement UI element instances will show an audio player interface, and the TVideoElement UI
element instances will show a video player interface.

Component Reference

Page 2565

TMediaElement.Source Property

property Source: String

Specifies the URL of the media to be loaded into the media element. Whenever this property is changed,
the existing media is cleared and the new media will start downloading from the web server. Please review
the events available for this element in order to get more information on detecting and handling the
loading/playback of the media.

Component Reference

Page 2566

TMediaElement.Volume Property

property Volume: Integer

Specifies the playback volume of the audio for the media. The volume can be set between 0 and 100.

Component Reference

Page 2567

TMediaElement.CanPlayMedia Method

function CanPlayMedia(const MIMEType: String): TCanPlayMedia

Call this method to determine if the media element can play a specific type of media. The MIMEType
parameter indicates the MIME type of the media that you wish to test for playback capabilities.

Component Reference

Page 2568

TMediaElement.Pause Method

procedure Pause

Call this method to pause playback of the media.

Component Reference

Page 2569

TMediaElement.Play Method

procedure Play

Call this method to start or resume playback of the media.

Component Reference

Page 2570

10.153 TMenu Component

Unit: WebMenus

Inherits From TMenuControl

The TMenu component represents a vertical menu control that can be used for side menus or popup
menus.

Properties Methods Events

Background NewItem OnAnimationComplete

Border NewSeparatorItem OnAnimationsComplete

Corners Popup OnEnter

Cursor OnExit

Hint OnHide

Opacity OnItemClick

OutsetShadow OnMove

TabOrder OnShow

TabStop OnSize

Component Reference

Page 2571

TMenu.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2572

TMenu.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2573

TMenu.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2574

TMenu.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2575

TMenu.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2576

TMenu.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2577

TMenu.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2578

TMenu.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2579

TMenu.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2580

TMenu.NewItem Method

function NewItem: TMenuItem

Use this method to create a new TMenuItem instance and append it to the current TMenu instance as the
last menu item.

Component Reference

Page 2581

TMenu.NewSeparatorItem Method

function NewSeparatorItem: TMenuSeparatorItem

Use this method to create a new TMenuSeparatorItem instance and append it to the current TMenu
instance as the last menu separator item.

Component Reference

Page 2582

TMenu.Popup Method

procedure Popup(X,Y: Integer)

Use this method to display the menu as a popup menu. When a menu is displayed as a popup, then it will
behave as a popup and automatically be hidden whenever the menu loses focus.

Component Reference

Page 2583

TMenu.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2584

TMenu.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2585

TMenu.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 2586

TMenu.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 2587

TMenu.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2588

TMenu.OnItemClick Event

property OnItemClick: TClickEvent

This event is triggered whenever a menu item is clicked.

Component Reference

Page 2589

TMenu.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2590

TMenu.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2591

TMenu.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2592

10.154 TMenuBar Component

Unit: WebMenus

Inherits From TMenuControl

The TMenu component represents a horizontal menu control that can be used for main menus.

Properties Methods Events

Background NewItem OnAnimationComplete

Border NewSeparatorItem OnAnimationsComplete

Corners OnEnter

Cursor OnExit

Hint OnHide

Opacity OnItemClick

OutsetShadow OnMove

TabOrder OnShow

TabStop OnSize

Component Reference

Page 2593

TMenuBar.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2594

TMenuBar.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2595

TMenuBar.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2596

TMenuBar.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2597

TMenuBar.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2598

TMenuBar.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2599

TMenuBar.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2600

TMenuBar.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2601

TMenuBar.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2602

TMenuBar.NewItem Method

function NewItem: TMenuBarItem

Use this method to create a new TMenuBarItem instance and append it to the current TMenuBar instance
as the last menu bar item.

Component Reference

Page 2603

TMenuBar.NewSeparatorItem Method

function NewSeparatorItem: TMenuBarSeparatorItem

Use this method to create a new TMenuBarSeparatorItem instance and append it to the current TMenuBar
instance as the last menu bar separator item.

Component Reference

Page 2604

TMenuBar.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2605

TMenuBar.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2606

TMenuBar.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains focus.

Component Reference

Page 2607

TMenuBar.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses focus.

Component Reference

Page 2608

TMenuBar.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2609

TMenuBar.OnItemClick Event

property OnItemClick: TClickEvent

This event is triggered whenever a menu bar item is clicked.

Component Reference

Page 2610

TMenuBar.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2611

TMenuBar.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2612

TMenuBar.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2613

10.155 TMenuBarItem Component

Unit: WebMenus

Inherits From TMenuItemControl

The TMenuBarItem component represents a textual menu item within a TMenuBar control.

Properties Methods Events

AutoWidth OnClick

Caption OnEnter

Cursor OnExit

Enabled OnHide

Font OnMouseDown

Hint OnMouseEnter

Icon OnMouseLeave

SubMenu OnMouseMove

OnMouseUp

OnShow

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2614

TMenuBarItem.AutoWidth Property

property AutoWidth: Boolean

Specifies whether the width of the menu bar item should be automatically set based upon the Caption,
Icon, and Font properties.

Component Reference

Page 2615

TMenuBarItem.Caption Property

property Caption: String

Specifies the textual caption to display in the control. The default value is ''.

Component Reference

Page 2616

TMenuBarItem.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2617

TMenuBarItem.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 2618

TMenuBarItem.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2619

TMenuBarItem.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2620

TMenuBarItem.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Component Reference

Page 2621

TMenuBarItem.SubMenu Property

property SubMenu: TMenu

Specifies the sub-menu for this menu bar item. Setting this property to an instance of the TMenu control
allows the menu bar item to popup the sub-menu when the menu bar item is clicked.

Component Reference

Page 2622

TMenuBarItem.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2623

TMenuBarItem.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains focus.

Component Reference

Page 2624

TMenuBarItem.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses focus.

Component Reference

Page 2625

TMenuBarItem.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2626

TMenuBarItem.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2627

TMenuBarItem.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2628

TMenuBarItem.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2629

TMenuBarItem.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2630

TMenuBarItem.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2631

TMenuBarItem.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2632

TMenuBarItem.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2633

TMenuBarItem.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2634

TMenuBarItem.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2635

TMenuBarItem.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2636

10.156 TMenuBarSeparatorItem Component

Unit: WebMenus

Inherits From TMenuItemControl

The TMenuBarSeparatorItem component represents a menu item separator within a TMenuBar control.

Properties Methods Events

OnHide

OnShow

Component Reference

Page 2637

TMenuBarSeparatorItem.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2638

TMenuBarSeparatorItem.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2639

10.157 TMenuControl Component

Unit: WebMenus

Inherits From TControl

The TMenuControl control is the base class for vertical menu controls, and contains all of the core vertical
menu functionality in the form of public methods and protected properties/events that descendant
classes can use to create customized menu controls.

Properties Methods Events

ItemCount FirstItem

ItemIndex LastItem

Items MakeItemVisible

VisibleItemCount NextItem

VisibleItems PriorItem

Component Reference

Page 2640

TMenuControl.ItemCount Property

property ItemCount: Integer

Indicates the number of menu items in the menu control.

Component Reference

Page 2641

TMenuControl.ItemIndex Property

property ItemIndex: Integer

Indicates the index of the currently-selected menu item in the menu control, or -1 if no menu item is
selected.

Component Reference

Page 2642

TMenuControl.Items Property

property Items[AIndex: Integer]: TMenuItemControl

Accesses the menu items in the menu control by index.

Component Reference

Page 2643

TMenuControl.VisibleItemCount Property

property VisibleItemCount: Integer

Indicates the number of visible menu items in the menu control.

Component Reference

Page 2644

TMenuControl.VisibleItems Property

property VisibleItems[AIndex: Integer]: TMenuItemControl

Accesses the visible menu items in the menu control by index.

Component Reference

Page 2645

TMenuControl.FirstItem Method

procedure FirstItem

Use this method to move focus to the first menu item in the menu control.

Component Reference

Page 2646

TMenuControl.LastItem Method

procedure LastItem

Use this method to move focus to the last menu item in the menu control.

Component Reference

Page 2647

TMenuControl.MakeItemVisible Method

procedure MakeItemVisible(AItem: TMenuItemControl)

Use this method to ensure that the specified menu item is visible.

Component Reference

Page 2648

TMenuControl.NextItem Method

procedure NextItem

Use this method to move focus to the next menu item, if one exists, in the menu control.

Component Reference

Page 2649

TMenuControl.PriorItem Method

procedure PriorItem

Use this method to move focus to the prior menu item, if one exists, in the menu control.

Component Reference

Page 2650

10.158 TMenuItem Component

Unit: WebMenus

Inherits From TMenuItemControl

The TMenuItem component represents a textual menu item within a TMenu control.

Properties Methods Events

AutoHeight OnClick

Caption OnEnter

Cursor OnExit

Enabled OnHide

Font OnMouseDown

Hint OnMouseEnter

Icon OnMouseLeave

SubMenu OnMouseMove

OnMouseUp

OnShow

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2651

TMenuItem.AutoHeight Property

property AutoHeight: Boolean

Specifies whether the height of the menu item should be automatically set based upon the Caption and
Font properties.

Component Reference

Page 2652

TMenuItem.Caption Property

property Caption: String

Specifies the textual caption to display in the control. The default value is ''.

Component Reference

Page 2653

TMenuItem.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2654

TMenuItem.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 2655

TMenuItem.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2656

TMenuItem.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2657

TMenuItem.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Component Reference

Page 2658

TMenuItem.SubMenu Property

property SubMenu: TMenu

Specifies the sub-menu for this menu item. Setting this property to an instance of the TMenu control
allows the menu item to popup the sub-menu when the menu item is clicked.

Component Reference

Page 2659

TMenuItem.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2660

TMenuItem.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 2661

TMenuItem.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 2662

TMenuItem.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2663

TMenuItem.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2664

TMenuItem.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2665

TMenuItem.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2666

TMenuItem.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2667

TMenuItem.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2668

TMenuItem.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2669

TMenuItem.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2670

TMenuItem.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2671

TMenuItem.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2672

TMenuItem.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2673

10.159 TMenuItemControl Component

Unit: WebMenus

Inherits From TControl

The TMenuItemControl control is the base class for menu control items, including normal textual menu
items and menu item separators, and contains all of the core vertical menu item functionality in the form
of public methods and protected properties/events that descendant classes can use to create customized
menu item controls.

Properties Methods Events

Index HideSubMenu

ParentMenu ShowSubMenu

Component Reference

Page 2674

TMenuItemControl.Index Property

property Index: Integer

Indicates the position of the menu item in the parent menu.

Component Reference

Page 2675

TMenuItemControl.ParentMenu Property

property ParentMenu: TMenuControl

Indicates the parent menu that contains the menu item.

Component Reference

Page 2676

TMenuItemControl.HideSubMenu Method

procedure HideSubMenu

Use this method to hide the sub-menu, if one is set for the menu item and is currently visible.

Component Reference

Page 2677

TMenuItemControl.ShowSubMenu Method

procedure ShowSubMenu

Use this method to show the sub-menu, if one is set for the menu item and is currently not visible.

Component Reference

Page 2678

10.160 TMenuSeparatorItem Component

Unit: WebMenus

Inherits From TMenuItemControl

The TMenuSeparatorItem component represents a menu item separator within a TMenu control.

Properties Methods Events

OnHide

OnShow

Component Reference

Page 2679

TMenuSeparatorItem.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2680

TMenuSeparatorItem.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2681

10.161 TMessageDialog Component

Unit: WebForms

Inherits From TDialogControl

The TMessageDialog component represents a message dialog control. Please see the Showing Message
Dialogs for more information on using message dialogs.

Properties Methods Events

AllowClose AddButton OnAnimationComplete

AllowMove OnAnimationsComplete

ButtonCount OnClick

Buttons OnClose

Caption OnCloseQuery

CloseOnEscape OnDblClick

Corners OnHide

Cursor OnKeyDown

DialogType OnKeyPress

Message OnKeyUp

Opacity OnMouseDown

OutsetShadow OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMouseWheel

OnMove

OnResult

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2682

TMessageDialog.AllowClose Property

property AllowClose: Boolean

Specifies whether the close button should be shown in the caption bar of the dialog.

Component Reference

Page 2683

TMessageDialog.AllowMove Property

property AllowMove: Boolean

Specifies whether the user can press and hold a mouse or touch on the caption bar and drag the
container dialog to a new position.

Component Reference

Page 2684

TMessageDialog.ButtonCount Property

property ButtonCount: Integer

Indicates the number of dialog buttons added to the dialog.

Component Reference

Page 2685

TMessageDialog.Buttons Property

property Buttons[Index: Integer]: TDialogButton

Accesses the dialog buttons that have been added to the dialog.

Component Reference

Page 2686

TMessageDialog.Caption Property

property Caption: String

Specifies the caption to display in the caption bar of the dialog.

Component Reference

Page 2687

TMessageDialog.CloseOnEscape Property

property CloseOnEscape: Boolean

Specifies whether the dialog is automatically closed when the user hits the Escape key. The default value is
True.

Note
 If there is a TDialogButton instance on the dialog with its ModalCancel property set to True, then
the button will be clicked when the escape key is pressed and this property will ignored.

Component Reference

Page 2688

TMessageDialog.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2689

TMessageDialog.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2690

TMessageDialog.DialogType Property

property DialogType: TMsgDlgType

Specifies the type of dialog. The dialog type determines which icon is displayed in the dialog.

Component Reference

Page 2691

TMessageDialog.Message Property

property Message: String

Specifies the message to display in the dialog.

Component Reference

Page 2692

TMessageDialog.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2693

TMessageDialog.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2694

TMessageDialog.AddButton Method

function AddButton(ButtonType: TMsgDlgBtn): TDialogButton

Use this method to add a new dialog button to the dialog. The button type determines the caption and
behavior of the dialog button.

Component Reference

Page 2695

TMessageDialog.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2696

TMessageDialog.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2697

TMessageDialog.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2698

TMessageDialog.OnClose Event

property OnClose: TNotifyEvent

This event is triggered when the dialog is closed by the user via the caption bar close button, or when the
Close method is called.

Component Reference

Page 2699

TMessageDialog.OnCloseQuery Event

property OnCloseQuery: TCloseQueryEvent

This event is triggered when the dialog is closed by the user via the caption bar close button, or when the
Close method is called.

Return True to allow the close to continue, or False to prevent the dialog from closing.

Component Reference

Page 2700

TMessageDialog.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2701

TMessageDialog.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2702

TMessageDialog.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 2703

TMessageDialog.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 2704

TMessageDialog.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 2705

TMessageDialog.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2706

TMessageDialog.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2707

TMessageDialog.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2708

TMessageDialog.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2709

TMessageDialog.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2710

TMessageDialog.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 2711

TMessageDialog.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2712

TMessageDialog.OnResult Event

property OnResult: TMsgDlgResultEvent

This event is triggered after a modal dialog has been closed and a modal result is available.

Component Reference

Page 2713

TMessageDialog.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2714

TMessageDialog.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2715

TMessageDialog.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2716

TMessageDialog.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2717

TMessageDialog.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2718

TMessageDialog.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2719

10.162 TModalOverlay Component

Unit: WebForms

Inherits From TControl

The TModalOverlay component represents the modal overlay area that is used to cover all existing
controls when a form is shown modally. This component provides access to the overlay so that its
appearance can be customized. Please see the Creating and Showing Forms topic for more information on
showing forms.

Properties Methods Events

Background

CloseOnClick

Component Reference

Page 2720

TModalOverlay.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2721

TModalOverlay.CloseOnClick Property

property CloseOnClick: Boolean

Specifies whether clicking on the modal overlay will automatically close all visible modal forms. The
default value is False.

Component Reference

Page 2722

10.163 TMultiLineEdit Component

Unit: WebEdits

Inherits From TMultiLineEditControl

The TMultiLineEdit component represents a multi-line edit control. A a multi-line edit control allows the
user to directly enter an input value using the keyboard, and the input value can contain multiple lines
and be word-wrapped.

Component Reference

Page 2723

Properties Methods Events

Alignment OnAnimationComplete

Cursor OnAnimationsComplete

DataColumn OnChange

DataSet OnClick

Direction OnDblClick

Enabled OnEnter

Font OnExit

Hint OnHide

Lines OnKeyDown

MaxLength OnKeyPress

ReadOnly OnKeyUp

ScrollBars OnMouseDown

ScrollSupport OnMouseEnter

SpellCheck OnMouseLeave

TabOrder OnMouseMove

TabStop OnMouseUp

Text OnMouseWheel

WordWrap OnMove

OnScroll

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchScroll

OnTouchStart

Component Reference

Page 2724

TMultiLineEdit.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the input value for the control.

Component Reference

Page 2725

TMultiLineEdit.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2726

TMultiLineEdit.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 2727

TMultiLineEdit.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 2728

TMultiLineEdit.Direction Property

property Direction: TContentDirection

Specifies the direction in which the text is displayed/edited.

Component Reference

Page 2729

TMultiLineEdit.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 2730

TMultiLineEdit.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2731

TMultiLineEdit.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2732

TMultiLineEdit.Lines Property

property Lines: TStrings

Specifies the lines to display and edit in the control.

Note
 Updating this property will automatically update the Text property, and vice-versa.

Component Reference

Page 2733

TMultiLineEdit.MaxLength Property

property MaxLength: Integer

Specifies the maximum allowable length, in characters, of the Text property for the control. A value of 0
specifies an unlimited allowable length.

Component Reference

Page 2734

TMultiLineEdit.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 2735

TMultiLineEdit.ScrollBars Property

property ScrollBars: TScrollBars

Specifies which scrollbars to show, if any.

Note
 Even if this property is set to sbHorizontal, sbVertical, or sbBoth, a scrollbar will only be shown if
the size of the contents of the control exceed the client rectangle for the control.

Component Reference

Page 2736

TMultiLineEdit.ScrollSupport Property

property ScrollSupport: TScrollSupport

Specifies the directions in which the control can be scrolled, if any.

Note
 This property only applies to scrolling via touch and mouse wheel movements, and does not apply
to programmatic scrolling or scrolling via the scroll bars themselves.

Component Reference

Page 2737

TMultiLineEdit.SpellCheck Property

property SpellCheck: Boolean

Specifies whether spell-checking will be enabled for the control.

Component Reference

Page 2738

TMultiLineEdit.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2739

TMultiLineEdit.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2740

TMultiLineEdit.Text Property

property Text: String

Specifies the control's input value as a string.

Note
 Updating this property will automatically update the Lines property, and vice-versa.

Component Reference

Page 2741

TMultiLineEdit.WordWrap Property

property WordWrap: Boolean

Specifies whether the content should be word-wrapped.

Component Reference

Page 2742

TMultiLineEdit.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2743

TMultiLineEdit.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2744

TMultiLineEdit.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 2745

TMultiLineEdit.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2746

TMultiLineEdit.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2747

TMultiLineEdit.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 2748

TMultiLineEdit.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 2749

TMultiLineEdit.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2750

TMultiLineEdit.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 2751

TMultiLineEdit.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 2752

TMultiLineEdit.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 2753

TMultiLineEdit.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2754

TMultiLineEdit.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2755

TMultiLineEdit.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2756

TMultiLineEdit.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2757

TMultiLineEdit.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2758

TMultiLineEdit.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 2759

TMultiLineEdit.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2760

TMultiLineEdit.OnScroll Event

property OnScroll: TNotifyEvent

This event is triggered whenever a scrollable control is scrolled horizontally or vertically.

Component Reference

Page 2761

TMultiLineEdit.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2762

TMultiLineEdit.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2763

TMultiLineEdit.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2764

TMultiLineEdit.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2765

TMultiLineEdit.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2766

TMultiLineEdit.OnTouchScroll Event

property OnTouchScroll: TTouchScrollEvent

This event is triggered whenever a touch moves in any direction over a touch-scroll-enabled control.

Component Reference

Page 2767

TMultiLineEdit.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2768

10.164 TMultiLineEditControl Component

Unit: WebEdits

Inherits From TEditControl

The TMultiLineEditControl control is the base class for multi-line edit controls, and contains all of the core
multi-line edit functionality in the form of public methods and protected properties/events that
descendant classes can use to create customized multi-line edit controls.

Properties Methods Events

Component Reference

Page 2769

10.165 TObjectElement Component

Unit: WebUI

Inherits From TWebElement

The TObjectElement class is the element class for browser objects (plugins), and contains all of the
browser object functionality in the form of public methods and properties/events that control classes can
use to create browser object controls.

Note
 This element does not provide support for objects at design-time, and the applicable methods and
properties are all stubs.

Properties Methods Events

MIMEType

Params

Component Reference

Page 2770

TObjectElement.MIMEType Property

property MIMEType: String

Specifies the MIME type of the object resource that will be loaded when the URL property is specified. This
information is used by the browser to determine which browser plugin to load in order to allow
interaction with the resource.

An event handler can be attached to the OnLoad event to execute code when the object is loaded.

Component Reference

Page 2771

TObjectElement.Params Property

property Params: TStrings

Specifies any parameters for the plugin that will be executed by the browser when the object resource
specified by the URL property is loaded. The parameters are specified as key/value pairs:

Parameter=Value

Note
 Please see the help for the applicable browser plugin in order to find out which parameters are
supported by the plugin.

Component Reference

Page 2772

10.166 TObjectList Component

Unit: WebCore

Inherits From TAbstractList

The TObjectList class is used to manage a list of class instances (objects). The constructor for the class
accepts a single Boolean parameter that indicates whether the class will retain ownership of all managed
objects and destroy them automatically when the TObjectList class instance is destroyed.

Properties Methods Events

Count Add

Objects AddObjects

OwnsObjects Clear

Sorted Create

Delete

Dequeue

Exchange

Find

First

IndexOf

Insert

Last

Move

Next

Pop

Prior

Push

Queue

Remove

Requeue

Sort

Component Reference

Page 2773

TObjectList.Count Property

property Count: Integer

Indicates the number of objects managed by the class.

Component Reference

Page 2774

TObjectList.Objects Property

property Objects[Index: Integer]: TObject

Allows indexed access to all objects managed by the class. If the class owns its managed objects, then all
managed objects are automatically destroyed when the class is destroyed.

Component Reference

Page 2775

TObjectList.OwnsObjects Property

property OwnsObjects: Boolean

Indicates whether the class owns its managed objects and will automatically destroy all managed objects
when the class is destroyed.

Component Reference

Page 2776

TObjectList.Sorted Property

property Sorted: Boolean

Specifies that the list of objects is sorted. When the list of objects is sorted, any operations that modify the
list automatically trigger a re-sort of the objects in the list.

Note
 This property is only useful for TObjectList descendant classes that override two protected object
comparison methods that are called in order to compare the names of objects, as well as the
objects themselves.

Component Reference

Page 2777

TObjectList.Add Method

function Add(AObject: TObject): Integer

Use this method to add an object to the list of managed objects. The object will be added to the end of
the list, and the index of the object in the list will be returned.

Component Reference

Page 2778

TObjectList.AddObjects Method

procedure AddObjects(AList: TObjectList)

Use this method to add all of the objects from a source list to the list of managed objects in this class.

Component Reference

Page 2779

TObjectList.Clear Method

procedure Clear

Use this method to clear all object instances from the list. If the list's OwnsObjects property is True, then
all instances will automatically be freed as well.

Component Reference

Page 2780

TObjectList.Create Method

constructor Create

constructor Create(AOwnsObjects: Boolean)

Use this method to create a new instance of the TObjectList class. This method is overloaded, and the
second version of the method contains an optional AOwnsObjects parameter that indicates whether the
object list instance will own its contained object instances and automatically free them when the object list
itself is freed.

Component Reference

Page 2781

TObjectList.Delete Method

procedure Delete(Index: Integer; FreeOwnedObject: Boolean=True)

Use this method to remove an object from the list of managed objects by its index. The FreeOwnedObject
parameter will cause the object instance to be destroyed if the list's OwnsObjects property is True.

Component Reference

Page 2782

TObjectList.Dequeue Method

function Dequeue: TObject

Use this method to obtain a reference to the first object (index 0) in the list of managed objects and
remove the object from the list.

Component Reference

Page 2783

TObjectList.Exchange Method

procedure Exchange(Source: Integer; Dest: Integer)

Use this method to exchange the positions of two managed objects in the list.

Component Reference

Page 2784

TObjectList.Find Method

function Find(const Value: String; NearestMatch: Boolean=False):
 Integer

Use this method to perform a binary search of the list of objects. The Sorted property must be True or
calling this method will result in an exception being raised.

Note
 This method is only useful for TObjectList descendant classes that override two protected object
comparison methods that are called in order to compare the names of objects, as well as the
objects themselves.

Component Reference

Page 2785

TObjectList.First Method

function First: TObject

Use this method to return the first object (index 0) in the list of managed objects.

Component Reference

Page 2786

TObjectList.IndexOf Method

function IndexOf(AObject: TObject): Integer

Use this method to return the index of a particular object in the list of managed objects.

Component Reference

Page 2787

TObjectList.Insert Method

procedure Insert(Index: Integer; AObject: TObject)

Use this method to insert an object at a specific index in the list of managed objects.

Component Reference

Page 2788

TObjectList.Last Method

function Last: TObject

Use this method to return the last object (index Count-1) in the list of managed objects.

Component Reference

Page 2789

TObjectList.Move Method

procedure Move(Source: Integer; Dest: Integer)

Use this method to move the object specified by the Source index to the position specified by the Dest
index.

Note
 It is important to remember that a move operation is equivalent to a delete of the object at the
Source index followed by an insert of the object at the Dest index. This means that you must
account for the fact that the Dest index may need to be decremented if the Source index is less
than the Dest index.

Component Reference

Page 2790

TObjectList.Next Method

function Next(AObject: TObject; Wrap: Boolean=False): TObject

Use this method to return the next object, relative to the object passed as the first parameter, in the list of
managed objects. The Wrap parameter determines if the method should wrap around to the start of the
list if the passed object is the last object in the list.

Component Reference

Page 2791

TObjectList.Pop Method

function Pop: TObject

Use this method to obtain a reference to the last object (index Count-1) in the list of managed objects and
remove the object from the list.

Component Reference

Page 2792

TObjectList.Prior Method

function Prior(AObject: TObject; Wrap: Boolean=False): TObject

Use this method to return the prior object, relative to the object passed as the first parameter, in the list of
managed objects. The Wrap parameter determines if the method should wrap around to the end of the
list if the passed object is the first object in the list.

Component Reference

Page 2793

TObjectList.Push Method

procedure Push(AObject: TObject)

Use this method to add an object to the end of the list of managed objects.

Component Reference

Page 2794

TObjectList.Queue Method

procedure Queue(AObject: TObject)

Use this method to add an object to the end of the list of managed objects.

Component Reference

Page 2795

TObjectList.Remove Method

function Remove(AObject: TObject; FreeOwnedObject:
 Boolean=True): Integer

Use this method to remove the specified object from the list of managed objects. The FreeOwnedObject
parameter will cause the object instance to be destroyed if the list's OwnsObjects property is True.

Component Reference

Page 2796

TObjectList.Requeue Method

procedure Requeue(AObject: TObject)

Use this method to insert an object at the beginning of the list of managed objects.

Component Reference

Page 2797

TObjectList.Sort Method

procedure Sort

Use this method to sort the managed objects.

Note
 This method is only useful for TObjectList descendant classes that override two protected object
comparison methods that are called in order to compare the names of objects, as well as the
objects themselves.

Component Reference

Page 2798

10.167 TOutsetShadow Component

Unit: WebUI

Inherits From TShadow

The TOutsetShadow class represents the outset shadow of a UI element or control. The outset shadow
appears behind the bounds of the element.

Properties Methods Events

Component Reference

Page 2799

10.168 TOverviewMapControlOptions Component

Unit: WebMaps

Inherits From TMapOption

The TOverviewMapControlOptions class controls how the overview map control is configured in a TMap
control. These overview map control options correspond to the overview map control options available for
maps in the Google Maps API.

Properties Methods Events

Opened

Component Reference

Page 2800

TOverviewMapControlOptions.Opened Property

property Opened: Boolean

Specifies whether the overview map control is opened.

Component Reference

Page 2801

10.169 TPadding Component

Unit: WebUI

Inherits From TBoundingAttribute

The TPadding class represents the padding within the client area of a UI element or control. The padding
affects the size of the client rectangle for a UI element or control: larger padding values decrease the size
of the client rectangle, while smaller padding values increase the size of the client rectangle.

Properties Methods Events

Component Reference

Page 2802

10.170 TPage Component

Unit: WebPages

Inherits From TControl

The TPage component represents a page within a TPagePanel control. A page is a nested container, and
can be dynamically added and removed from a page panel control. Each page instance contains a
reference to a tab control via its Tab property. The properties in the tab can be modified to affect the tab
caption and how the tab is sized and formatted.

Properties Methods Events

Background Close OnAnimationComplete

Border SetActive OnAnimationsComplete

Corners OnClick

Cursor OnClose

Index OnCloseQuery

InsetShadow OnDblClick

Padding OnHide

ParentPagePanel OnMouseDown

Tab OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2803

TPage.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 2804

TPage.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2805

TPage.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2806

TPage.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2807

TPage.Index Property

property Index: Integer

Specifies the index of the page in its parent page panel's pages.

Component Reference

Page 2808

TPage.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 2809

TPage.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2810

TPage.ParentPagePanel Property

property ParentPagePanel: TPagePanelControl

Indicates the parent page panel that contains the page.

Component Reference

Page 2811

TPage.Tab Property

property Tab: TTab

Specifies the properties of the tab for the page.

Component Reference

Page 2812

TPage.Close Method

procedure Close

Use this method to close the page. When this method is called, the OnCloseQuery event is triggered,
followed by the OnClose event. If the OnCloseQuery event handler returns True, then the page will be
hidden before the OnClose event handler is triggered. After the OnClose event handler is executed, the
page will be removed from its parent page panel and disposed of.

Component Reference

Page 2813

TPage.SetActive Method

procedure SetActive

Use this method to make the current page the active page in the parent page panel control.

Component Reference

Page 2814

TPage.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2815

TPage.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2816

TPage.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2817

TPage.OnClose Event

property OnClose: TNotifyEvent

This event is triggered when the page is closed by the user via the tab close button, or when the Close
method is called.

Component Reference

Page 2818

TPage.OnCloseQuery Event

property OnCloseQuery: TCloseQueryEvent

This event is triggered when the page is closed by the user via the tab close button, or when the Close
method is called.

Return True to allow the close to continue, or False to prevent the page from closing.

Component Reference

Page 2819

TPage.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2820

TPage.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2821

TPage.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2822

TPage.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2823

TPage.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2824

TPage.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2825

TPage.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2826

TPage.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2827

TPage.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2828

TPage.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2829

TPage.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2830

TPage.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2831

TPage.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2832

TPage.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2833

10.171 TPagePanel Component

Unit: WebPages

Inherits From TPagePanelControl

The TPagePanel component represents a page panel control. A page panel control contains 0 or more
instances of TPage controls that can be dynamically added and removed from the page panel control.
Each page instance contains a reference to a tab control via its Tab property. The properties in the tab can
be modified to affect the tab caption and how the tab is sized and formatted.

Properties Methods Events

Border OnAnimationComplete

Corners OnAnimationsComplete

Cursor OnHide

Gutter OnMove

Opacity OnPageChange

Padding OnPageChanged

PageNavigation OnShow

TabOrder OnSize

TabStop

TabsVisible

Component Reference

Page 2834

TPagePanel.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2835

TPagePanel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2836

TPagePanel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2837

TPagePanel.Gutter Property

property Gutter: Integer

Specifies the size, in pixels, of the blank space to show to the left of the tabs for the page panel control.

Component Reference

Page 2838

TPagePanel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2839

TPagePanel.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2840

TPagePanel.PageNavigation Property

property PageNavigation: Boolean

Specifies whether the pages of the page panel control can be navigated using an interactive navigation
bar when the TabsVisible property is False.

Component Reference

Page 2841

TPagePanel.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2842

TPagePanel.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2843

TPagePanel.TabsVisible Property

property TabsVisible: Boolean

Specifies whether the tabs for the pages should be shown. The default value is True.

Note
 When this property is False, the PageNavigation property can be used to show or hide an
interactive navigation bar.

Component Reference

Page 2844

TPagePanel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2845

TPagePanel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2846

TPagePanel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2847

TPagePanel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2848

TPagePanel.OnPageChange Event

property OnPageChange: TPageChangeEvent

This event is triggered whenever the ActivePage changes. To prevent the page change, return False from
any event handler attached to this event.

Component Reference

Page 2849

TPagePanel.OnPageChanged Event

property OnPageChanged: TPageChangeEvent

Component Reference

Page 2850

TPagePanel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2851

TPagePanel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2852

10.172 TPagePanelControl Component

Unit: WebPages

Inherits From TControl

The TPagePanelControl control is the base class for page panel controls, and contains all of the core page
panel functionality in the form of public methods and protected properties/events that descendant classes
can use to create customized page panel controls.

Properties Methods Events

ActivePage FirstPage

PageCount LastPage

Pages MakePageVisible

NavigateToPage

NewPage

NextPage

PriorPage

RemoveActivePage

ScrollNext

ScrollPrior

Component Reference

Page 2853

TPagePanelControl.ActivePage Property

property ActivePage: TPage

Specifies the active page in the page panel control.

Component Reference

Page 2854

TPagePanelControl.PageCount Property

property PageCount: Integer

Indicates the number of pages in the page panel control.

Component Reference

Page 2855

TPagePanelControl.Pages Property

property Pages[AIndex: Integer]: TPage

Accesses the pages in the page panel control by index.

Component Reference

Page 2856

TPagePanelControl.FirstPage Method

function FirstPage: TPage

Use this method to make the first page in the control the active page.

Component Reference

Page 2857

TPagePanelControl.LastPage Method

function LastPage: TPage

Use this method to make the last page in the control the active page.

Component Reference

Page 2858

TPagePanelControl.MakePageVisible Method

procedure MakePageVisible(APage: TPage)

Use this method to ensure that the specified page's tab is visible.

Component Reference

Page 2859

TPagePanelControl.NavigateToPage Method

function NavigateToPage(APage: TPage): TPage

Use this method to make the specified page the active page in the control.

Component Reference

Page 2860

TPagePanelControl.NewPage Method

function NewPage: TPage

Use this method to create a new page. The new page will be positioned after all other existing pages.

Component Reference

Page 2861

TPagePanelControl.NextPage Method

function NextPage: TPage

Use this method to make the next page, relative to the specified page, the active page in the control.

Component Reference

Page 2862

TPagePanelControl.PriorPage Method

function PriorPage: TPage

Use this method to make the prior page, relative to the specified page, the active page in the control.

Component Reference

Page 2863

TPagePanelControl.RemoveActivePage Method

procedure RemoveActivePage

Use this method to remove the active page, if one exists. If the ActivePage property is nil, then this
method does nothing.

Component Reference

Page 2864

TPagePanelControl.ScrollNext Method

procedure ScrollNext

Use this method to scroll the page tabs to the right by one tab.

Component Reference

Page 2865

TPagePanelControl.ScrollPrior Method

procedure ScrollPrior

Use this method to scroll the page tabs to the left by one tab.

Component Reference

Page 2866

10.173 TPaint Component

Unit: WebPaint

Inherits From TControl

The TPaint component represents a drawing/painting control. A paint control can be used for general
drawing, charting, animation, and more. It contains a reference to a TCanvasElement instance that can be
used to perform all drawing operations, and automatically resizes the canvas instance to match the
dimensions of the control.

Properties Methods Events

Canvas OnAnimationComplete

Cursor OnClick

Hint OnDblClick

Opacity OnHide

OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2867

TPaint.Canvas Property

property Canvas: TCanvasElement

This property provdes access to a TCanvasElement instance that can be used to perform all drawing
operations within the dimensions of the control.

Component Reference

Page 2868

TPaint.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2869

TPaint.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2870

TPaint.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2871

TPaint.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2872

TPaint.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2873

TPaint.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2874

TPaint.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2875

TPaint.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2876

TPaint.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2877

TPaint.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2878

TPaint.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2879

TPaint.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2880

TPaint.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2881

TPaint.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2882

TPaint.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2883

TPaint.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2884

TPaint.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2885

TPaint.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2886

TPaint.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2887

10.174 TPanControlOptions Component

Unit: WebMaps

Inherits From TMapOption

The TPanControlOptions class controls how the pan control is configured in a TMap control. These pan
control options correspond to the pan control options available for maps in the Google Maps API.

Properties Methods Events

Position

Component Reference

Page 2888

TPanControlOptions.Position Property

property Position: TMapControlPosition

Specifies the position of the pan control.

Component Reference

Page 2889

10.175 TPanel Component

Unit: WebCtnrs

Inherits From TPanelControl

The TPanel component represents a panel control with a border and a caption bar with minimize/restore
and close buttons.

Component Reference

Page 2890

Properties Methods Events

ActivateOnClick OnAnimationComplete

AutoSize OnAnimationsComplete

Background OnCaptionBarDblClick

Border OnClick

CaptionBar OnClose

Client OnCloseQuery

Corners OnDblClick

Cursor OnHide

Hint OnKeyDown

Opacity OnKeyPress

OutsetShadow OnKeyUp

ScrollBars OnMinimize

ScrollSupport OnMouseDown

TabOrder OnMouseEnter

TabStop OnMouseLeave

OnMouseMove

OnMouseUp

OnMouseWheel

OnMove

OnRestore

OnScroll

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchScroll

OnTouchStart

Component Reference

Page 2891

TPanel.ActivateOnClick Property

property ActivateOnClick: Boolean

Specifies whether the control should automatically be brought to the front when it, or any child controls,
are clicked.

Component Reference

Page 2892

TPanel.AutoSize Property

property AutoSize: TAutoSize

Specifies how (if at all) the control should automatically be sized based upon the child controls placed in
the panel.

Component Reference

Page 2893

TPanel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2894

TPanel.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 2895

TPanel.CaptionBar Property

property CaptionBar: TPanelCaptionBar

Specifies the properties of the caption bar for the control.

Component Reference

Page 2896

TPanel.Client Property

property Client: TPanelClient

Specifies the properties of the client area for the control.

Component Reference

Page 2897

TPanel.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 2898

TPanel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2899

TPanel.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2900

TPanel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 2901

TPanel.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 2902

TPanel.ScrollBars Property

property ScrollBars: TScrollBars

Specifies which scrollbars to show, if any.

Note
 Even if this property is set to sbHorizontal, sbVertical, or sbBoth, a scrollbar will only be shown if
the size of the contents and/or the child controls of the control exceed the client rectangle for the
control.

Component Reference

Page 2903

TPanel.ScrollSupport Property

property ScrollSupport: TScrollSupport

Specifies the directions in which the control can be scrolled, if any.

Note
 This property only applies to scrolling via touch and mouse wheel movements, and does not apply
to programmatic scrolling or scrolling via the scroll bars themselves.

Component Reference

Page 2904

TPanel.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2905

TPanel.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2906

TPanel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2907

TPanel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2908

TPanel.OnCaptionBarDblClick Event

property OnCaptionBarDblClick: TNotifyEvent

This event is triggered when the caption bar is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2909

TPanel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2910

TPanel.OnClose Event

property OnClose: TNotifyEvent

This event is triggered when the panel is closed by the user via the caption bar close button, or when the
Close method is called.

Component Reference

Page 2911

TPanel.OnCloseQuery Event

property OnCloseQuery: TCloseQueryEvent

This event is triggered when the panel is closed by the user via the caption bar close button, or when the
Close method is called. Return True to allow the close to continue, or False to prevent the panel from
closing.

Component Reference

Page 2912

TPanel.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2913

TPanel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 2914

TPanel.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 2915

TPanel.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 2916

TPanel.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 2917

TPanel.OnMinimize Event

property OnMinimize: TNotifyEvent

This event is triggered when the panel is minimized.

Component Reference

Page 2918

TPanel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 2919

TPanel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 2920

TPanel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 2921

TPanel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 2922

TPanel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 2923

TPanel.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 2924

TPanel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 2925

TPanel.OnRestore Event

property OnRestore: TNotifyEvent

This event is triggered when the panel is restored from a minimized state.

Component Reference

Page 2926

TPanel.OnScroll Event

property OnScroll: TNotifyEvent

This event is triggered whenever a scrollable control is scrolled horizontally or vertically.

Component Reference

Page 2927

TPanel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 2928

TPanel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 2929

TPanel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 2930

TPanel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 2931

TPanel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 2932

TPanel.OnTouchScroll Event

property OnTouchScroll: TTouchScrollEvent

This event is triggered whenever a touch moves in any direction over a touch-scroll-enabled control.

Component Reference

Page 2933

TPanel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 2934

10.176 TPanelCaptionBar Component

Unit: WebCtnrs

Inherits From TCaptionBarControl

The TPanelCaptionBar component represents the caption bar for a TPanel control, and includes a caption
and minimize/restore and close buttons.

Properties Methods Events

Alignment

AllowClose

AllowMinimize

AllowMove

Background

Caption

Cursor

Font

Icon

Padding

Component Reference

Page 2935

TPanelCaptionBar.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the caption in the caption bar.

Component Reference

Page 2936

TPanelCaptionBar.AllowClose Property

property AllowClose: Boolean

Specifies whether the close button should be shown in the caption bar.

Component Reference

Page 2937

TPanelCaptionBar.AllowMinimize Property

property AllowMinimize: Boolean

Specifies whether the minimize/restore button should be shown in the caption bar.

Component Reference

Page 2938

TPanelCaptionBar.AllowMove Property

property AllowMove: Boolean

Specifies whether the user can press and hold a mouse or touch on the caption bar and drag the
container panel to a new position.

Component Reference

Page 2939

TPanelCaptionBar.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 2940

TPanelCaptionBar.Caption Property

property Caption: String

Specifies the caption to display in the caption bar.

Component Reference

Page 2941

TPanelCaptionBar.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2942

TPanelCaptionBar.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2943

TPanelCaptionBar.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the caption bar.

Component Reference

Page 2944

TPanelCaptionBar.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2945

10.177 TPanelClient Component

Unit: WebCtnrs

Inherits From TComponent

The TPanelClient component represents the client area for a TPanel control.

Properties Methods Events

Background

InsetShadow

Padding

Component Reference

Page 2946

TPanelClient.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 2947

TPanelClient.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 2948

TPanelClient.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 2949

10.178 TPanelControl Component

Unit: WebCtnrs

Inherits From TScrollableControl

The TPanelControl control is the base class for panel controls, and contains all of the core panel
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized panel controls.

Properties Methods Events

Close

Component Reference

Page 2950

TPanelControl.Close Method

procedure Close

Use this method to close the panel. When this method is called, the OnCloseQuery event is triggered,
followed by the OnClose event. If the OnCloseQuery event handler returns True, then the panel will be
hidden before the OnClose event is triggered.

Component Reference

Page 2951

10.179 TParser Component

Unit: WebCore

Inherits From TObject

The TParser class is a parser class for parsing JSON strings, and is used for loading forms, control
interfaces, and datasets (columns, rows, and transaction operations). It can be used as a general-purpose
JSON parser in your applications.

Properties Methods Events

PropertyNameType CheckString

Token CheckSymbol

TokenLiteral CheckToken

TokenString ErrorIfNotSkipString

ErrorIfNotSkipSymbol

ErrorIfNotSkipToken

ErrorIfNotString

ErrorIfNotSymbol

ErrorIfNotToken

ExpectedError

GetBoolean

GetFloat

GetInteger

GetString

Initialize

NextToken

SkipArray

SkipObject

SkipProperty

SkipPropertyValue

SkipString

SkipSymbol

SkipToken

Component Reference

Page 2952

TParser.PropertyNameType Property

property PropertyNameType: Char

Specifies the Token type to use when parsing JSON object property names. The default value is tkString,
which means that the parser will expect property names to be specified in the same way as strings:
enclosed in double-quote (") characters.

Component Reference

Page 2953

TParser.Token Property

property Token: Char

Indicates the current token character or token type. The following special token types are used for non-
character tokens:

Token Type Description

tkTerm Indicates that the current token is the terminating character
(#0)

tkSymbol Indicates that the current token is a symbol

tkString Indicates that the current token is a string enclosed in
double-quote (") characters

tkInteger Indicates that the current token is an integer

tkFloat Indicates that the current token is a floating-point number

Component Reference

Page 2954

TParser.TokenLiteral Property

property TokenLiteral: String

Indicates the current token in its literal form. For strings, this means that the double quote (") characters
are included in the value returned by this property.

Component Reference

Page 2955

TParser.TokenString Property

property TokenString: String

Indicates the current token. For strings, this means that the double quote (") characters are not included
in the value returned by this property.

Component Reference

Page 2956

TParser.CheckString Method

function CheckString(const Value: String): Boolean

Use this method to determine if the current token is a string.

Component Reference

Page 2957

TParser.CheckSymbol Method

function CheckSymbol(const Value: String): Boolean

Use this method to determine if the current token is a symbol.

Component Reference

Page 2958

TParser.CheckToken Method

function CheckToken(Value: Char): Boolean

Use this method to determine if the current token is a particular character or type of token.

Component Reference

Page 2959

TParser.ErrorIfNotSkipString Method

procedure ErrorIfNotSkipString(const Value: String)

Use this method to determine if the current token is a string and, if so, to move to the next token. If the
current token is not a string, then an exception will be raised.

Component Reference

Page 2960

TParser.ErrorIfNotSkipSymbol Method

procedure ErrorIfNotSkipSymbol(const Value: String)

Use this method to determine if the current token is a symbol and, if so, to move to the next token. If the
current token is not a symbol, then an exception will be raised.

Component Reference

Page 2961

TParser.ErrorIfNotSkipToken Method

procedure ErrorIfNotSkipToken(Value: Char)

Use this method to determine if the current token is a particular character or type of token and, if so, to
move to the next token. If the current token is not the particular character or type of token, then an
exception will be raised.

Component Reference

Page 2962

TParser.ErrorIfNotString Method

procedure ErrorIfNotString(const Value: String)

Use this method to determine if the current token is a string. If the current token is not a string, then an
exception will be raised.

Component Reference

Page 2963

TParser.ErrorIfNotSymbol Method

procedure ErrorIfNotSymbol(const Value: String)

Use this method to determine if the current token is a symbol. If the current token is not a symbol, then an
exception will be raised.

Component Reference

Page 2964

TParser.ErrorIfNotToken Method

procedure ErrorIfNotToken(Value: Char)

Use this method to determine if the current token is a particular character or type of token. If the current
token is not the particular character or type of token, then an exception will be raised.

Component Reference

Page 2965

TParser.ExpectedError Method

procedure ExpectedError(const Value: String)

Use this method to raise an exception due to a parsing error, such as a case when a certain token literal
was expected and a different literal was found instead.

Component Reference

Page 2966

TParser.GetBoolean Method

function GetBoolean: Boolean

Use this method to retrieve the current token as a boolean value.

Note
 If the Token property is not equal to tkSymbol and the TokenString property is not a valid JSON
boolean literal (true, false), an exception will be raised.

Component Reference

Page 2967

TParser.GetFloat Method

function GetFloat: Double

Use this method to retrieve the current token as a float value.

Note
 If the Token property is not equal to tkFloat or tkInteger, an exception will be raised.

Component Reference

Page 2968

TParser.GetInteger Method

function GetInteger: Integer

Use this method to retrieve the current token as an integer value.

Note
 If the Token property is not equal to tkInteger, an exception will be raised.

Component Reference

Page 2969

TParser.GetString Method

function GetString: String

Use this method to retrieve the current token as a string value, without any enclosing double-quote (")
characters.

Note
 If the Token property is not equal to tkString, an exception will be raised.

Component Reference

Page 2970

TParser.Initialize Method

procedure Initialize(const TextToParse: String; FullNumbers:
 Boolean=True; APropertyNameType: Char=tkString)

Use this method to initialize the parser with a string containing the text that is to be parsed. This method
will automatically "seed" the parser by calling the NextToken method.

Component Reference

Page 2971

TParser.NextToken Method

procedure NextToken

Use this method to move to the next token.

Component Reference

Page 2972

TParser.SkipArray Method

function SkipArray: Boolean

Use this method to skip over a JSON array. If the current token is not the left bracket ([) character, then
this method will return False.

Component Reference

Page 2973

TParser.SkipObject Method

function SkipObject: Boolean

Use this method to skip over a JSON object. If the current token is not the left brace ({) character, then this
method will return False.

Component Reference

Page 2974

TParser.SkipProperty Method

procedure SkipProperty

Use this method to skip over an entire JSON property, including the property name and value. The
SkipPropertyValue method is used to skip over the value.

Component Reference

Page 2975

TParser.SkipPropertyValue Method

procedure SkipPropertyValue

Use this method to skip over a JSON property value. If the JSON property value is an object, then the
SkipObject method is used to skip over the value. If the JSON property value is an array, then the
SkipArray method is used to skip over the value. Otherwise, the NextToken method is used to skip over
the value.

Component Reference

Page 2976

TParser.SkipString Method

function SkipString(const Value: String): Boolean

Use this method to determine if the current token is a string and, if so, to move to the next token.

Component Reference

Page 2977

TParser.SkipSymbol Method

function SkipSymbol(const Value: String): Boolean

Use this method to determine if the current token is a symbol and, if so, to move to the next token.

Component Reference

Page 2978

TParser.SkipToken Method

function SkipToken(Value: Char): Boolean

Use this method to determine if the current token is a particular character or type of token and, if so, to
move to the next token.

Component Reference

Page 2979

10.180 TPasswordEdit Component

Unit: WebEdits

Inherits From TEditControl

The TPasswordEdit component represents a password edit control. An edit control allows the user to
directly enter an input value using the keyboard but, instead of showing the input value in the edit
control, the input characters are masked so that they cannot be seen.

Properties Methods Events

Alignment OnAnimationComplete

Cursor OnAnimationsComplete

DataColumn OnChange

DataSet OnClick

Direction OnDblClick

Enabled OnEnter

Font OnExit

Hint OnHide

MaxLength OnKeyDown

ReadOnly OnKeyPress

TabOrder OnKeyUp

TabStop OnMouseDown

Text OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 2980

TPasswordEdit.Alignment Property

property Alignment: TContentAlignment

Specifies the alignment of the input value for the control.

Component Reference

Page 2981

TPasswordEdit.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 2982

TPasswordEdit.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 2983

TPasswordEdit.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 2984

TPasswordEdit.Direction Property

property Direction: TContentDirection

Specifies the direction in which the text is displayed/edited.

Component Reference

Page 2985

TPasswordEdit.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 2986

TPasswordEdit.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 2987

TPasswordEdit.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 2988

TPasswordEdit.MaxLength Property

property MaxLength: Integer

Specifies the maximum allowable length, in characters, of the Text property for the control. A value of 0
specifies an unlimited allowable length.

Component Reference

Page 2989

TPasswordEdit.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 2990

TPasswordEdit.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 2991

TPasswordEdit.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 2992

TPasswordEdit.Text Property

property Text: String

Specifies the control's input value as a string.

Component Reference

Page 2993

TPasswordEdit.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 2994

TPasswordEdit.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 2995

TPasswordEdit.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 2996

TPasswordEdit.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 2997

TPasswordEdit.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 2998

TPasswordEdit.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 2999

TPasswordEdit.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 3000

TPasswordEdit.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3001

TPasswordEdit.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 3002

TPasswordEdit.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 3003

TPasswordEdit.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 3004

TPasswordEdit.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3005

TPasswordEdit.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3006

TPasswordEdit.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3007

TPasswordEdit.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3008

TPasswordEdit.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3009

TPasswordEdit.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3010

TPasswordEdit.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3011

TPasswordEdit.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3012

TPasswordEdit.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3013

TPasswordEdit.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3014

TPasswordEdit.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3015

TPasswordEdit.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3016

10.181 TPasswordInputElement Component

Unit: WebUI

Inherits From TInputElement

The TPasswordInputElement class is the base element class for password input elements, and contains all
of the password input functionality in the form of public methods and properties/events that control
classes can use to create password input controls.

Note
 This element does not provide support for password input elements at design-time, and the
applicable methods and properties are all stubs.

Properties Methods Events

Component Reference

Page 3017

10.182 TPersistent Component

Unit: WebCore

Inherits From TObject

The TPersistent class is the base class for classes that require the ability to save/load their published
properties to/from JSON strings. All of the functionality in the TPersistent class is protected and normally
only accessible to descendant classes. The TWriter class is used by TPersistent descendants for outputting
properties to a JSON string, and the TReader class for parsing properties from a JSON string.

All TComponent, TCollection, TCollectionItem, and TControl classes are TPersistent-descendant classes,
and all contain functionality for automatically loading their published properties. In addition, the
TFormControl class contains special functionality for loading the published properties for a form instance
and all of its contained components/controls. This functionality is used to load the published properties
for a form class when an instance of the class is created.

Properties Methods Events

Component Reference

Page 3018

10.183 TPersistentStorage Component

Unit: WebComps

Inherits From TObject

The TPersistentStorage object encapsulates the HTML5 local storage functionality, which allows the
application to store name-value pairs of strings using the host web browser's storage facilities. This type
of storage is preferable to cookies (TCookies) due to the fact that cookies are normally limited to around
4k of storage.

Note
 The component library includes two global instances of this class called LocalStorage and
SessionStorage in the WebComps unit that should be used instead of creating new instances of the
class. The LocalStorage instance represents the persistent local storage in the host web browser
that is available across browser instances/sessions, whereas the SessionStorage instance represents
the session-only storage in the host web browser that is cleared whenever the browser is closed.

Properties Methods Events

Count Clear OnChange

Items ClearAll

Keys Exists

Set

Component Reference

Page 3019

TPersistentStorage.Count Property

property Count: Integer

Indicates the number of items defined.

Component Reference

Page 3020

TPersistentStorage.Items Property

property Items[Index: Integer]: String

property Items[const AName: String]: String

Allows access to all defined items, either by index or by name.

Component Reference

Page 3021

TPersistentStorage.Keys Property

property Keys[Index: Integer]: String

Allows access to all defined item names by index.

Component Reference

Page 3022

TPersistentStorage.Clear Method

procedure Clear(const AName: String)

Use this method to clear the specified item.

Note
 Use the Exists method to determine if a item exists before trying to clear the item.

Component Reference

Page 3023

TPersistentStorage.ClearAll Method

procedure ClearAll

Use this method to clear all items.

Component Reference

Page 3024

TPersistentStorage.Exists Method

function Exists(const AName: String): Boolean

Use this method to determine if the specified item exists.

Component Reference

Page 3025

TPersistentStorage.Set Method

procedure Set(const AName: String; const Value: String)

Use this method to set an item value. The Name parameter is the item name and the Value parameter is
the item value.

Component Reference

Page 3026

TPersistentStorage.OnChange Event

property OnChange: TStorageChangeEvent

This event is triggered whenever the contents of the persistent local storage is changed by a different
session in the browser.

Note
 This event is only triggered for the persistent local storage and not the session-only local storage.

Component Reference

Page 3027

10.184 TPlugin Component

Unit: WebBrwsr

Inherits From TWebControl

The TPlugin component represents a web browser plugin container control that can interact with any type
of object resource that is supported by a registered plugin in the web browser, including MP3/MP4 audio
files, PDF document files, and MPEG video files.

Properties Methods Events

Background OnAnimationComplete

Border OnAnimationsComplete

Corners OnHide

Cursor OnLoad

DataColumn OnMove

DataSet OnShow

Hint OnSize

InsetShadow OnUnload

Loaded

MimeType

Opacity

OutsetShadow

Padding

Params

URL

Component Reference

Page 3028

TPlugin.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 3029

TPlugin.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 3030

TPlugin.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 3031

TPlugin.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3032

TPlugin.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 3033

TPlugin.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 3034

TPlugin.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 3035

TPlugin.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 3036

TPlugin.Loaded Property

property Loaded: Boolean

Indicates whether the object resource specified by the URL property has been loaded.

An event handler can be attached to the OnLoad event to execute code when the object resource is
loaded.

Component Reference

Page 3037

TPlugin.MimeType Property

property MimeType: String

Specifies the MIME type of the object resource that will be loaded when the URL property is specified. This
information is used by the browser to determine which browser plugin to load in order to allow
interaction with the resource.

An event handler can be attached to the OnLoad event to execute code when the object is loaded.

Component Reference

Page 3038

TPlugin.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 3039

TPlugin.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 3040

TPlugin.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 3041

TPlugin.Params Property

property Params: TStrings

Specifies any parameters for the plugin that will be executed by the browser when the object resource
specified by the URL property is loaded. The parameters are specified as key/value pairs:

Parameter=Value

Note
 Please see the help for the applicable browser plugin in order to find out which parameters are
supported by the plugin.

Component Reference

Page 3042

TPlugin.URL Property

property URL: String

Specifies the URL for the object resource. Whenever the URL property changes, the OnUnload event is
triggered immediately. The OnLoad event is triggered once the object resource has been loaded.

Component Reference

Page 3043

TPlugin.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3044

TPlugin.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3045

TPlugin.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3046

TPlugin.OnLoad Event

property OnLoad: TNotifyEvent

This event is triggered when the file specified by the URL property has been completely loaded by a
browser plugin.

Component Reference

Page 3047

TPlugin.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3048

TPlugin.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3049

TPlugin.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3050

TPlugin.OnUnload Event

property OnUnload: TNotifyEvent

This event is triggered when the currently-loaded file specified by the URL property has been unloaded.

Component Reference

Page 3051

10.185 TPoint Component

Unit: WebUI

Inherits From TObject

The TPoint class represents the X/Y integer coordinates of a point. It is used with the TElement class and
descendant classes for calculating coordinates during event management for an element, or elements.

Properties Methods Events

X Assign

Y Clear

Create

Equals

Offset

Component Reference

Page 3052

TPoint.X Property

property X: Integer

Specifies the horizontal position of the point.

Component Reference

Page 3053

TPoint.Y Property

property Y: Integer

Specifies the vertical position of the point.

Component Reference

Page 3054

TPoint.Assign Method

procedure Assign(APoint: TPoint)

procedure Assign(AX,AY: Integer)

Use this method to assign a source point to the point instance.

Component Reference

Page 3055

TPoint.Clear Method

procedure Clear

Use this method to set both of the point coordinates to 0.

Component Reference

Page 3056

TPoint.Create Method

constructor Create(AX,AY: Integer)

Use this method to create a new instance of the TPoint class using the provided X and Y coordinates.

Component Reference

Page 3057

TPoint.Equals Method

function Equals(APoint: TPoint): Boolean

Use this method to test if two points have the same coordinates.

Component Reference

Page 3058

TPoint.Offset Method

procedure Offset(AX,AY: Integer)

Use this method to offset the point. Offsetting a point increments or decrements its X and Y properties
using the AX and AY parameters, respectively.

Component Reference

Page 3059

10.186 TProgressBar Component

Unit: WebProgs

Inherits From TControl

The TProgressBar component represents a progress bar control for showing visual progress between a
minimum and maximum set of values.

Properties Methods Events

Background OnAnimationComplete

Border OnAnimationsComplete

Corners OnClick

Cursor OnDblClick

Indicator OnHide

MaxValue OnMouseDown

MinValue OnMouseEnter

Padding OnMouseLeave

Position OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 3060

TProgressBar.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 3061

TProgressBar.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 3062

TProgressBar.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 3063

TProgressBar.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3064

TProgressBar.Indicator Property

property Indicator: TProgressBarIndicator

Accesses the properties of the progress bar indicator.

Component Reference

Page 3065

TProgressBar.MaxValue Property

property MaxValue: Integer

Specifies the maximum progress bar value. The default value is 100.

Component Reference

Page 3066

TProgressBar.MinValue Property

property MinValue: Integer

Specifies the minimum progress bar value. The default value is 0.

Component Reference

Page 3067

TProgressBar.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 3068

TProgressBar.Position Property

property Position: Integer

Specifies the current progress bar position between the MinValue and MaxValue properties.

Component Reference

Page 3069

TProgressBar.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3070

TProgressBar.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3071

TProgressBar.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3072

TProgressBar.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 3073

TProgressBar.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3074

TProgressBar.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3075

TProgressBar.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3076

TProgressBar.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3077

TProgressBar.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3078

TProgressBar.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3079

TProgressBar.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3080

TProgressBar.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3081

TProgressBar.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3082

TProgressBar.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3083

TProgressBar.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3084

TProgressBar.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3085

TProgressBar.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3086

10.187 TProgressBarIndicator Component

Unit: WebProgs

Inherits From TComponent

The TProgressBarIndicator component represents the indicator portion of a TProgressBar control.

Properties Methods Events

Background

Border

Corners

Component Reference

Page 3087

TProgressBarIndicator.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 3088

TProgressBarIndicator.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 3089

TProgressBarIndicator.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 3090

10.188 TProgressDialog Component

Unit: WebForms

Inherits From TDialogControl

The TProgressDialog component represents a progress dialog control. Please see the Showing Progress
Dialogs topic for more information on using progress dialogs.

Properties Methods Events

Corners OnAnimationComplete

Cursor OnAnimationsComplete

Message OnClick

Opacity OnClose

OutsetShadow OnDblClick

OnHide

OnKeyDown

OnKeyPress

OnKeyUp

OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMouseWheel

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 3091

TProgressDialog.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 3092

TProgressDialog.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3093

TProgressDialog.Message Property

property Message: String

Specifies the message to display in the dialog.

Component Reference

Page 3094

TProgressDialog.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 3095

TProgressDialog.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 3096

TProgressDialog.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3097

TProgressDialog.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3098

TProgressDialog.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3099

TProgressDialog.OnClose Event

property OnClose: TNotifyEvent

This event is triggered when the dialog's Close method is called.

Component Reference

Page 3100

TProgressDialog.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 3101

TProgressDialog.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3102

TProgressDialog.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 3103

TProgressDialog.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 3104

TProgressDialog.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 3105

TProgressDialog.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3106

TProgressDialog.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3107

TProgressDialog.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3108

TProgressDialog.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3109

TProgressDialog.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3110

TProgressDialog.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 3111

TProgressDialog.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3112

TProgressDialog.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3113

TProgressDialog.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3114

TProgressDialog.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3115

TProgressDialog.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3116

TProgressDialog.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3117

TProgressDialog.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3118

10.189 TRadioButton Component

Unit: WebBtns

Inherits From TStateButtonControl

The TRadioButton component represents a radio button control. A radio button control is a state control
that is used in groups to allow the user to select a specific control by using a mouse click, or by pushing
the spacebar or enter key. A set of radio button controls are considered in the same group when they
share the same parent container. You can change the position of the radio button controls within a
container by modifying their LayoutOrder property.

Properties Methods Events

AutoWidth OnAnimationComplete

Caption OnAnimationsComplete

Cursor OnChange

DataColumn OnClick

DataSet OnEnter

Enabled OnExit

Font OnHide

Hint OnKeyDown

ReadOnly OnKeyPress

SelectionState OnKeyUp

TabOrder OnMouseDown

TabStop OnMouseEnter

ValueSelected OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 3119

TRadioButton.AutoWidth Property

property AutoWidth: Boolean

Specifies whether the width of the radio button should be automatically set based upon the Caption and
Font properties.

Component Reference

Page 3120

TRadioButton.Caption Property

property Caption: String

Specifies the caption for the control.

Note
 The caption area of a control is also clickable with the mouse or touch interface.

Component Reference

Page 3121

TRadioButton.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3122

TRadioButton.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 3123

TRadioButton.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 3124

TRadioButton.Enabled Property

property Enabled: Boolean

Specifies whether the control is enabled or disabled. When a control is disabled, it cannot obtain input
focus and is displayed in a disabled state. The default value is True.

Component Reference

Page 3125

TRadioButton.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 3126

TRadioButton.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 3127

TRadioButton.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the control's input value can be modified by the user. The default value is False.

Note
 The input value can always be programmatically modified.

Component Reference

Page 3128

TRadioButton.SelectionState Property

property SelectionState: TSelectionState

Specifies the selection state of the control.

Note
 The ssIndeterminate selection state can only be set programmatically. When the user toggles the
selection for the control, it will alternate between the ssSelected and ssUnselected selection states.

Component Reference

Page 3129

TRadioButton.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 3130

TRadioButton.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 3131

TRadioButton.ValueSelected Property

property ValueSelected: String

Specifies the textual value to use for the selected state when reading and writing data to and from the
data column that the control is bound to. The default value is the string representation of the layout order
of the control within its parent container control.

Component Reference

Page 3132

TRadioButton.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3133

TRadioButton.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3134

TRadioButton.OnChange Event

property OnChange: TNotifyEvent

This event is triggered whenever the input value of the control is changed, either by the user or
programmatically.

Component Reference

Page 3135

TRadioButton.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3136

TRadioButton.OnEnter Event

property OnEnter: TNotifyEvent

This event is triggered when the control obtains input focus.

Component Reference

Page 3137

TRadioButton.OnExit Event

property OnExit: TNotifyEvent

This event is triggered when the control loses input focus.

Component Reference

Page 3138

TRadioButton.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3139

TRadioButton.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when the control has input focus and the user presses a key or key combination.

Component Reference

Page 3140

TRadioButton.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when the control has input focus and the user presses/releases a key or key
combination.

Component Reference

Page 3141

TRadioButton.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when the control has input focus and the user releases a key or key combination.

Component Reference

Page 3142

TRadioButton.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3143

TRadioButton.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3144

TRadioButton.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3145

TRadioButton.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3146

TRadioButton.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3147

TRadioButton.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3148

TRadioButton.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3149

TRadioButton.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3150

TRadioButton.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3151

TRadioButton.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3152

TRadioButton.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3153

TRadioButton.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3154

10.190 TReader Component

Unit: WebCore

Inherits From TObject

The TReader class is a class used by TPersistent-descendant classes to load their published properties
from JSON strings, and is used for loading forms and control interfaces. It can be used as a general-
purpose JSON reader in your applications.

When a TReader instance is created, the constructor allows you to specify the date-time format to use
when reading date-time properties.

Component Reference

Page 3155

Properties Methods Events

GlobalComponent BeginArray

Level BeginObject

RootComponent Create

EndArray

EndObject

EndOfArray

EndOfObject

GetPropertyName

Initialize

IsArray

IsBoolean

IsNull

IsObject

IsString

MoreArrayElements

MoreProperties

ReadBoolean

ReadDateTime

ReadFloat

ReadInteger

ReadString

SkipArrayElement

SkipProperty

SkipPropertyName

SkipPropertySeparator

SkipPropertyValue

Component Reference

Page 3156

TReader.GlobalComponent Property

property GlobalComponent: TComponent

Specifies an optional global component to use with the reader. This property is used with forms and
databases to determine how to apply any component reference fixups that need to occur after the form or
database is loaded. The default value is nil.

Note
 If this property is not specified, then the Owner property of the RootComponent will be used as
the instance to use for applying component reference fixups.

Component Reference

Page 3157

TReader.Level Property

property Level: Integer

Indicates the current nesting level for any JSON objects and/or arrays. Whenever the TReader class begins
to read an object or array using the BeginObject or BeginArray methods, the nesting level is incremented.
Whenever the EndObject or EndArray methods are called, the nesting level is decremented.

Component Reference

Page 3158

TReader.RootComponent Property

property RootComponent: TComponent

Specifies an optional root component to use with the reader. The root component is the component that
is supposed to be the owner of all TPersistent instances being read from the incoming JSON string. This
property is used with form controls to specify the owner of all component instances created during the
loading of the form. The default value is nil.

Component Reference

Page 3159

TReader.BeginArray Method

procedure BeginArray

Use this method to begin reading an array. If the current token in the incoming JSON string is not a left
bracket ([), an exception will be raised.

Component Reference

Page 3160

TReader.BeginObject Method

procedure BeginObject

Use this method to begin reading an object. If the current token in the incoming JSON string is not a left
brace ({), an exception will be raised.

Component Reference

Page 3161

TReader.Create Method

constructor Create(ADateTimeFormat: TDateTimeFormat=dtfRaw)

Use this method to create a new instance of the TReader class. The optional ADateTimeFormat parameter
indicates whether date and time values should be handled as an ISO 8601 date and time string value, or
as a raw Unix date and time integer value (the number of milliseconds since midnight, January 1, 1970).

Component Reference

Page 3162

TReader.EndArray Method

procedure EndArray

Use this method to end reading an array. If the current token in the incoming JSON string is not a right
bracket (]), an exception will be raised.

Component Reference

Page 3163

TReader.EndObject Method

procedure EndObject

Use this method to end reading an object. If the current token in the incoming JSON string is not a right
brace (}), an exception will be raised.

Component Reference

Page 3164

TReader.EndOfArray Method

function EndOfArray: Boolean

Use this method to determine if the current token in the incoming JSON string is a right bracket (]).

Component Reference

Page 3165

TReader.EndOfObject Method

function EndOfObject: Boolean

Use this method to determine if the current token in the incoming JSON string is a right brace (}).

Component Reference

Page 3166

TReader.GetPropertyName Method

function GetPropertyName: String

Use this method to read a property name, without any enclosing double-quote (") characters (if
applicable).

Component Reference

Page 3167

TReader.Initialize Method

procedure Initialize(const Value: String; ACompressedProperties:
 Boolean=False)

Use this method to initialize the reader with a JSON string to read.

Component Reference

Page 3168

TReader.IsArray Method

function IsArray: Boolean

Use this method to determine if the current token in the incoming JSON string is a left bracket ([).

Component Reference

Page 3169

TReader.IsBoolean Method

function IsBoolean: Boolean

Use this method to determine if the current token in the incoming JSON string is a boolean value (true or
false).

Component Reference

Page 3170

TReader.IsNull Method

function IsNull: Boolean

Use this method to determine if the current token in the incoming JSON string is a null literal.

Component Reference

Page 3171

TReader.IsObject Method

function IsObject: Boolean

Use this method to determine if the current token in the incoming JSON string is a left brace ({).

Component Reference

Page 3172

TReader.IsString Method

function IsString: Boolean

Use this method to determine if the current token in the incoming JSON string is a string value ("").

Component Reference

Page 3173

TReader.MoreArrayElements Method

function MoreArrayElements: Boolean

Use this method to determine if the current token in the incoming JSON string is a comma (,).

Component Reference

Page 3174

TReader.MoreProperties Method

function MoreProperties: Boolean

Use this method to determine if the current token in the incoming JSON string is a comma (,).

Component Reference

Page 3175

TReader.ReadBoolean Method

function ReadBoolean: Boolean

Use this method to read a boolean value. If the current token in the incoming JSON string is not a valid
JSON boolean literal (true, false), an exception will be raised.

Component Reference

Page 3176

TReader.ReadDateTime Method

function ReadDateTime: DateTime

Use this method to read a date-time value. How a date-time value is read is controlled by the
TDateTimeFormat parameter in the TReader class constructor.

Component Reference

Page 3177

TReader.ReadFloat Method

function ReadFloat: Double

Use this method to read a float value. If the current token in the incoming JSON string is not a valid JSON
float or integer literal, an exception will be raised.

Component Reference

Page 3178

TReader.ReadInteger Method

function ReadInteger: Integer

Use this method to read an integer value. If the current token in the incoming JSON string is not a valid
JSON integer literal, an exception will be raised.

Component Reference

Page 3179

TReader.ReadString Method

function ReadString: String

Use this method to read a string value, without any enclosing double-quote (") characters. If the current
token in the incoming JSON string is not a valid JSON string literal, an exception will be raised.

Component Reference

Page 3180

TReader.SkipArrayElement Method

procedure SkipArrayElement

Use this method to skip over a JSON array element. The TPersistent class uses this method to skip an array
element when the class instance does not know how to properly load the array element.

Component Reference

Page 3181

TReader.SkipProperty Method

procedure SkipProperty

Use this method to skip over a JSON object property. The TPersistent class uses this method to skip a
property when the class instance does not know how to properly load the property.

Component Reference

Page 3182

TReader.SkipPropertyName Method

procedure SkipPropertyName

Use this method to skip over a JSON object property name. The TPersistent class uses this method to skip
past the property name after reading the name and determining that the property exists in the class for
the instance being loaded.

Component Reference

Page 3183

TReader.SkipPropertySeparator Method

procedure SkipPropertySeparator

Use this method to skip over a JSON object property separator (:). The TPersistent class uses this method
to skip past the property name/separator after reading the property name and determining that the
property exists in the class for the instance being loaded.

Component Reference

Page 3184

TReader.SkipPropertyValue Method

procedure SkipPropertyValue

Use this method to skip over a JSON object property value. The TPersistent class uses this method to skip
past any property values that it cannot load for any reason.

Component Reference

Page 3185

10.191 TRect Component

Unit: WebUI

Inherits From TObject

The TRect class represents a rectangle using integer coordinates. It is used with the TElement class and
descendant classes for calculating rectangle coordinates for all of the element's dimensional functionality,
such as layout management.

Properties Methods Events

Bottom Anchor

Empty Assign

Height Clear

Left Contains

Right Create

Top Equals

Width Fit

Inflate

Interpolate

Normalize

Offset

Scale

Union

Component Reference

Page 3186

TRect.Bottom Property

property Bottom: Integer

Specifies the bottom Y coordinate of the rectangle.

Component Reference

Page 3187

TRect.Empty Property

property Empty: Boolean

Indicates whether the rectangle is empty. A rectangle is considered empty if its width or height is 0.

Component Reference

Page 3188

TRect.Height Property

property Height: Integer

Indicates the height of the rectangle (read-only).

Component Reference

Page 3189

TRect.Left Property

property Left: Integer

Specifies the left X coordinate of the rectangle.

Component Reference

Page 3190

TRect.Right Property

property Right: Integer

Specifies the right X coordinate of the rectangle.

Component Reference

Page 3191

TRect.Top Property

property Top: Integer

Specifies the top Y coordinate of the rectangle.

Component Reference

Page 3192

TRect.Width Property

property Width: Integer

Indicates the width of the rectangle (read-only).

Component Reference

Page 3193

TRect.Anchor Method

procedure Anchor

Use this method to anchor the rectangle. Anchoring a rectangle changes its Left and Top properties to 0,
and adjusts the Right and Bottom properties accordingly so that the rectangle retains its same Width and
Height.

Component Reference

Page 3194

TRect.Assign Method

procedure Assign(ARect: TRect)

procedure Assign(ALeft,ATop,ARight,ABottom: Integer)

Use this method to assign a source rectangle, or source rectangle coordinates, to the rectangle instance.

Component Reference

Page 3195

TRect.Clear Method

procedure Clear

Use this method to set all of the rectangle coordinates to 0.

Component Reference

Page 3196

TRect.Contains Method

function Contains(X,Y: Integer): Boolean

Component Reference

Page 3197

TRect.Create Method

constructor Create(ALeft,ATop,ARight,ABottom: Integer=0)

Use this method to create a new instance of the TRect class. The optional ALeft, ATop, ARight, and
ABottom parameters will initialize the instance with the provided coordinates.

Component Reference

Page 3198

TRect.Equals Method

function Equals(ARect: TRect): Boolean

Use this method to test if two rectangles have the same coordinates.

Component Reference

Page 3199

TRect.Fit Method

procedure Fit(AWidth,AHeight: Integer)

Use this method to proportionally adjust the width and height of the rectangle so that it fits within the
specified AWidth and AHeight parameters.

Component Reference

Page 3200

TRect.Inflate Method

procedure Inflate(ALeft,ATop,ARight,ABottom: Integer)

Use this method to inflate the rectangle. Inflating a rectangle increments or decrements its Left, Top,
Right, and Bottom properties using the specified parameters.

Component Reference

Page 3201

TRect.Interpolate Method

procedure Interpolate(ARect: TRect; AAmount: Double)

Use this method to calculate a new rectangle using the difference between the coordinates of the
rectangle and a source rectangle multiplied by a specified distance amount. This calculation is useful for
moving a rectangle along a given linear path between a source rectangle and a destination rectangle.

Component Reference

Page 3202

TRect.Normalize Method

procedure Normalize

Use this method to normalize the rectangle. Normalizing a rectangle changes (if necessary) its Left, Top,
Right, and Bottom properties so that the Left property is less than or equal to the Right property and the
Top property is less than or equal to the Bottom property.

Component Reference

Page 3203

TRect.Offset Method

procedure Offset(ALeft: Integer; ATop: Integer)

Use this method to offset the rectangle. Offsetting a rectangle increments or decrements its Left and Top
properties using the ALeft and ATop parameters, respectively.

Component Reference

Page 3204

TRect.Scale Method

procedure Scale(ARatio: Double)

Use this method to proportionally scale the coordinates of the rectangle using the specified ARatio
parameter.

Component Reference

Page 3205

TRect.Union Method

procedure Union(ARect: TRect)

Use this method to union the coordinates of the rectangle with another rectangle. A union operation is a
max operation on each pair of coordinates, taking the smallest of the two rectangles' Left and Top
properties, and the largest of the two rectangles' Right and Bottom properties.

Component Reference

Page 3206

10.192 TRepeatControl Component

Unit: WebCtrls

Inherits From TControl

The TRepeatControl control is the base class for controls that have a repeatable click behavior, and
contains all of the repeatable click functionality in the form of public methods and protected
properties/events that descendant classes can use to create customized controls.

Properties Methods Events

Component Reference

Page 3207

10.193 TRotateControlOptions Component

Unit: WebMaps

Inherits From TMapOption

The TRotateControlOptions class controls how the rotate control is configured in a TMap control. These
rotate control options correspond to the rotate control options available for maps in the Google Maps
API.

Properties Methods Events

Position

Component Reference

Page 3208

TRotateControlOptions.Position Property

property Position: TMapControlPosition

Specifies the position of the rotate control.

Component Reference

Page 3209

10.194 TScript Component

Unit: WebComps

Inherits From TComponent

The TScript component represents a dynamically-loaded script and is used to introduce external
JavaScript into the global execution context from a URL, as opposed to being linked via the emitted HTML
with the application.

Properties Methods Events

URL OnError

OnLoad

Component Reference

Page 3210

TScript.URL Property

property URL: String

Specifies the full URL for the script to be loaded dynamically. Whenever this property is changed, the
existing script is removed from the global execution context and the new script is downloaded from the
specified URL. Once the script has been downloaded and loaded, the OnLoad event will be triggered. If
there was an error downloading the script, then the OnError event will be triggered.

Component Reference

Page 3211

TScript.OnError Event

property OnError: TNotifyEvent

This event is triggered when the download of the script encounters an error.

Component Reference

Page 3212

TScript.OnLoad Event

property OnLoad: TNotifyEvent

This event is triggered when the download of the script is complete and the script is loaded into the
application's global execution context.

Component Reference

Page 3213

10.195 TScrollableControl Component

Unit: WebCtrls

Inherits From TControl

The TScrollableControl control is the base class for scrollable controls, and contains all of the scrolling
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized scrollable controls.

Properties Methods Events

Component Reference

Page 3214

10.196 TScrollPanel Component

Unit: WebCtnrs

Inherits From TScrollPanelControl

The TScrollPanel component represents a scrollable panel control. A scrollable panel control is useful
when you need only a portion of a form or other type of container control to be scrollable.

Properties Methods Events

ActivateOnClick OnAnimationComplete

Background OnAnimationsComplete

Client OnClick

Cursor OnDblClick

Hint OnHide

Opacity OnKeyDown

OutsetShadow OnKeyPress

ScrollBars OnKeyUp

ScrollSupport OnMouseDown

TabOrder OnMouseEnter

TabStop OnMouseLeave

OnMouseMove

OnMouseUp

OnMouseWheel

OnMove

OnScroll

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchScroll

OnTouchStart

Component Reference

Page 3215

TScrollPanel.ActivateOnClick Property

property ActivateOnClick: Boolean

Specifies whether the control should automatically be brought to the front when it, or any child controls,
are clicked.

Component Reference

Page 3216

TScrollPanel.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 3217

TScrollPanel.Client Property

property Client: TScrollPanelClient

Specifies the properties of the client area for the control.

Component Reference

Page 3218

TScrollPanel.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3219

TScrollPanel.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 3220

TScrollPanel.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 3221

TScrollPanel.OutsetShadow Property

property OutsetShadow: TOutsetShadow

Specifies the outset shadow for the control.

Component Reference

Page 3222

TScrollPanel.ScrollBars Property

property ScrollBars: TScrollBars

Specifies which scrollbars to show, if any.

Note
 Even if this property is set to sbHorizontal, sbVertical, or sbBoth, a scrollbar will only be shown if
the size of the contents and/or the child controls of the control exceed the client rectangle for the
control.

Component Reference

Page 3223

TScrollPanel.ScrollSupport Property

property ScrollSupport: TScrollSupport

Specifies the directions in which the control can be scrolled, if any.

Note
 This property only applies to scrolling via touch and mouse wheel movements, and does not apply
to programmatic scrolling or scrolling via the scroll bars themselves.

Component Reference

Page 3224

TScrollPanel.TabOrder Property

property TabOrder: Integer

Specifies the position of the control in the tabbing order for the control's Parent container control. The
default value is the last tab position in the container control, or -1 if the Parent property is nil.

Component Reference

Page 3225

TScrollPanel.TabStop Property

property TabStop: Boolean

Specifies whether the control will participate in the tabbing order within the control's Parent container
control. The default value is True.

Component Reference

Page 3226

TScrollPanel.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3227

TScrollPanel.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3228

TScrollPanel.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3229

TScrollPanel.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 3230

TScrollPanel.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3231

TScrollPanel.OnKeyDown Event

property OnKeyDown: TKeyDownEvent

This event is triggered when a child control has input focus and the user presses a key or key combination.

Component Reference

Page 3232

TScrollPanel.OnKeyPress Event

property OnKeyPress: TKeyPressEvent

This event is triggered when a child control has input focus and presses/releases a key or key
combination.

Component Reference

Page 3233

TScrollPanel.OnKeyUp Event

property OnKeyUp: TKeyUpEvent

This event is triggered when a child control has input focus and the user releases a key or key
combination.

Component Reference

Page 3234

TScrollPanel.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3235

TScrollPanel.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3236

TScrollPanel.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3237

TScrollPanel.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3238

TScrollPanel.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3239

TScrollPanel.OnMouseWheel Event

property OnMouseWheel: TMouseWheelEvent

This event is triggered whenever the mouse wheel is rotated forward or backward.

Component Reference

Page 3240

TScrollPanel.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3241

TScrollPanel.OnScroll Event

property OnScroll: TNotifyEvent

This event is triggered whenever a scrollable control is scrolled horizontally or vertically.

Component Reference

Page 3242

TScrollPanel.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3243

TScrollPanel.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3244

TScrollPanel.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3245

TScrollPanel.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3246

TScrollPanel.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3247

TScrollPanel.OnTouchScroll Event

property OnTouchScroll: TTouchScrollEvent

This event is triggered whenever a touch moves in any direction over a touch-scroll-enabled control.

Component Reference

Page 3248

TScrollPanel.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3249

10.197 TScrollPanelClient Component

Unit: WebCtnrs

Inherits From TComponent

The TScrollPanelClient component represents the client area for a TScrollPanel control.

Properties Methods Events

Background

InsetShadow

Padding

Component Reference

Page 3250

TScrollPanelClient.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 3251

TScrollPanelClient.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 3252

TScrollPanelClient.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 3253

10.198 TScrollPanelControl Component

Unit: WebCtnrs

Inherits From TScrollableControl

The TScrollPanelControl control is the base class for scroll panel controls, and contains all of the core scroll
panel functionality in the form of public methods and protected properties/events that descendant classes
can use to create customized scroll panel controls.

Properties Methods Events

Component Reference

Page 3254

10.199 TServerRequest Component

Unit: WebHTTP

Inherits From TComponent

The TServerRequest component represents a dynamic HTTP request to the web server from which the
application was loaded or, provided that the web server allows it, a different origin (protocol, host, and
port).

Properties Methods Events

CrossOriginCredentials Cancel OnComplete

Method Execute OnProgress

MethodName ParseXML OnStart

Params Reset

Password

RequestContent

RequestHeaders

RequestQueue

RequestURL

ResponseContent

ResponseContentType

ResponseHeaders

StatusCode

StatusText

Timeout

URL

UserName

Component Reference

Page 3255

TServerRequest.CrossOriginCredentials Property

property CrossOriginCredentials: Boolean

Specifies whether HTTP cookies and/or authentication headers are sent with any requests to an origin
(protocol, host, and port) that is different than the origin for the application. The default value is False.

Component Reference

Page 3256

TServerRequest.Method Property

property Method: TRequestMethod

Specifies the HTTP method to use for the web server request.

Component Reference

Page 3257

TServerRequest.MethodName Property

property MethodName: String

Indicates the descriptive name of the HTTP method specified by the Method property.

Component Reference

Page 3258

TServerRequest.Params Property

property Params: TStrings

Specifies the URL parameters for the web server request. The Params property is automatically set up to
use the equals (=) character for separating the name/value pairs, so you can use the Values property to set
them by name. If specifying the parameters directly as name=value strings in the string list, each
parameter should be specified as a separate string.

Component Reference

Page 3259

TServerRequest.Password Property

property Password: String

Specifies the password to use for authenticating the request with the web server, if required by the web
server for the URL specified for the request. Both the UserName and the Password property are required
in order to properly authenticate the request.

Component Reference

Page 3260

TServerRequest.RequestContent Property

property RequestContent: TStrings

Specifies any additional content that is being sent with the web server request.

Note
 If this property is specified, then please make sure to also specify a Content-Length request
header in the RequestHeaders property.

Component Reference

Page 3261

TServerRequest.RequestHeaders Property

property RequestHeaders: TStrings

Specifies any additional headers that are being sent with the web server request.

Note
 All necessary headers will be automatically populated by the web browser, so only use this
property for specifying headers that are necessary for the web server request, such as a Content-
Type or Content-Length header when sending content to the web server in the RequestContent
property.

Component Reference

Page 3262

TServerRequest.RequestQueue Property

property RequestQueue: TServerRequestQueue

If the current server request instance was created by a TServerRequestQueue component, then this
property will contain a reference to the instance of the queue component that created the request.

Component Reference

Page 3263

TServerRequest.RequestURL Property

property RequestURL: String

Indicates the complete URL that will be used with the server request, including any query parameters
specified via the Params property.

Component Reference

Page 3264

TServerRequest.ResponseContent Property

property ResponseContent: TStrings

Indicates any content that was returned from the web server in the response to the server request.

Note
 This property will only be populated once the OnComplete event has been triggered.

Component Reference

Page 3265

TServerRequest.ResponseContentType Property

property ResponseContentType: String

Indicates the value of the Content-Type HTTP header, if present, that was returned from the web server in
the response to the server request. If no Content-Type header was returned, then this property will return
an empty string ('').

Component Reference

Page 3266

TServerRequest.ResponseHeaders Property

property ResponseHeaders: TStrings

Indicates any headers that were returned from the web server in the response to the server request.

Note
 This property will only be populated once the OnComplete event has been triggered.

Component Reference

Page 3267

TServerRequest.StatusCode Property

property StatusCode: Integer

Indicates the status code returned by the web server in response to the server request.

Note
 This property will only be populated once the OnComplete event has been triggered.

Component Reference

Page 3268

TServerRequest.StatusText Property

property StatusText: String

Indicates the status message returned by the web server in response to the server request.

Note
 This property will only be populated once the OnComplete event has been triggered.

Component Reference

Page 3269

TServerRequest.Timeout Property

property Timeout: Integer

Specifies how long the server request should wait, in milliseconds, for a successful connection to the
server before returning an error. The default value is 0, which means to wait a browser-defined number of
milliseconds.

Component Reference

Page 3270

TServerRequest.URL Property

property URL: TServerRequestURL

Specifies the URL of the resource that the server request wishes to get data from, or send data to.

Warning
 It is highly recommended that you only use relative URLs only in this property. Most modern web
browsers will prevent server requests that don't access resources from the same origin (protocol,
host, port number) from executing, unless the web server specifically allows such a request. Such a
request is referred to as a cross-origin resource sharing request. For more information on how to
permit such requests with the Elevate Web Builder Web Server, please see the Configuring the Web
Server topic.

Component Reference

Page 3271

TServerRequest.UserName Property

property UserName: String

Specifies the user name to use for authenticating the request with the web server, if required by the web
server for the URL specified for the request. Both the UserName and the Password property are required
in order to properly authenticate the request.

Component Reference

Page 3272

TServerRequest.Cancel Method

procedure Cancel(KeepExecuting: Boolean=True)

Use this method to abort a pending web server request.

Component Reference

Page 3273

TServerRequest.Execute Method

procedure Execute

Use this method to execute a web server request after specifying the Method and URL properties, at a
minimum.

Component Reference

Page 3274

TServerRequest.ParseXML Method

function ParseXML: TDocument

Use this method to parse XML content returned as a response to the web server request. This method
returns a TDocument web browser DOM object instance that can be used to manipulate the various
nodes of the XML document as DOM elements.

Please see the WebDOM unit included with the Elevate Web Builder framework for the various interfaces
to the DOM objects such as TDocument available in the web browser.

Component Reference

Page 3275

TServerRequest.Reset Method

procedure Reset

Component Reference

Page 3276

TServerRequest.OnComplete Event

property OnComplete: TServerRequestEvent

This event is triggered when the server request is complete. Use the StatusCode property to determine the
status code returned by the web server and, subsequently, whether the request was successful or not.

Component Reference

Page 3277

TServerRequest.OnProgress Event

property OnProgress: TServerRequestProgressEvent

Component Reference

Page 3278

TServerRequest.OnStart Event

property OnStart: TServerRequestEvent

This event is triggered when the server request is started. A server request is started when the Execute
method is called.

Component Reference

Page 3279

10.200 TServerRequestQueue Component

Unit: WebHTTP

Inherits From TComponent

The TServerRequestQueue component represents a queue of dynamic HTTP requests to the web server
from which the application was loaded or, provided that the web server allows it, a different origin
(protocol, host, and port). Serialization allows server requests to be executed in a specific order. If
executed individually, such requests would normally be executed asynchronously by the web browser and
would not have a predictable completion order.

Properties Methods Events

NumPendingRequests AddRequest

CancelAllRequests

CancelRequest

ExecuteRequests

GetNewRequest

NextPendingRequest

Component Reference

Page 3280

TServerRequestQueue.NumPendingRequests Property

property NumPendingRequests: Integer

Indicates the number of requests currently awaiting execution.

Note
 The value returned by this property does not include the currently-executing request, if one exists.
If a currently-executing request fails for any reason, then the value returned by this property will
include the failed request when this property is referenced from an OnComplete event handler.

Component Reference

Page 3281

TServerRequestQueue.AddRequest Method

procedure AddRequest(Value: TServerRequest)

Use this method to add a new request to the end of the queue of web server requests. When using this
method, always use the GetNewRequest to obtain a new request that can be modified before calling this
method.

Component Reference

Page 3282

TServerRequestQueue.CancelAllRequests Method

procedure CancelAllRequests

Use this method to cancel all pending web server requests in the queue.

Component Reference

Page 3283

TServerRequestQueue.CancelRequest Method

procedure CancelRequest(KeepExecuting: Boolean=True)

Use this method to cancel the currently executing web server request in the queue. After the current
request is cancelled, the next request in the queue will be executed.

Component Reference

Page 3284

TServerRequestQueue.ExecuteRequests Method

procedure ExecuteRequests

Use this method to execute any pending web server requests in the queue.

Component Reference

Page 3285

TServerRequestQueue.GetNewRequest Method

function GetNewRequest: TServerRequest

Use this method to allocate a new web server request to use with the queue. After modifying the request
as required, call the AddRequest method to add the request to the queue.

Component Reference

Page 3286

TServerRequestQueue.NextPendingRequest Method

function NextPendingRequest: TServerRequest

Component Reference

Page 3287

10.201 TSet Component

Unit: WebCore

Inherits From TObject

The TSet class represents a set. It is used with the TElement class and descendant classes for determining
which aspects of the element has changed during a batch update, but it can be used for any general
purpose.

Properties Methods Events

Count Add

Max All

Assign

Copy

Create

Empty

Except

Exists

Initialize

Intersect

IsEmpty

Range

Remove

Union

Component Reference

Page 3288

TSet.Count Property

property Count: Integer

Specifies how many items are in the set.

Component Reference

Page 3289

TSet.Max Property

property Max: Integer

Specifies the maximum number of items that are, or have been, in the set. This property is useful when
you need to iterate over the set and test whether particular values are in the set.

Component Reference

Page 3290

TSet.Add Method

function Add(Value: Integer): Boolean

Use this method to add an item to the set.

Component Reference

Page 3291

TSet.All Method

procedure All(ACount: Integer)

Use this method to include all items from 0 to ACount-1.

Component Reference

Page 3292

TSet.Assign Method

procedure Assign(Value: TSet)

Use this method to assign the contents of a source set to the set.

Component Reference

Page 3293

TSet.Copy Method

function Copy: TSet

Use this method to make a new copy of the set and return it as the result.

Component Reference

Page 3294

TSet.Create Method

constructor Create(const AValues: TIntegerArray)

Use this method to create a new instance of the TSet class. The AValues parameter is an array of integer
values that will be used to initialize the set.

Component Reference

Page 3295

TSet.Empty Method

procedure Empty

Use this method to remove all items from the set.

Component Reference

Page 3296

TSet.Except Method

procedure Except(Value: TSet)

Use this method to remove all items from the set that exist in the set passed as the parameter.

Component Reference

Page 3297

TSet.Exists Method

function Exists(Value: Integer): Boolean

Use this method to determine if an item exists in the set.

Component Reference

Page 3298

TSet.Initialize Method

procedure Initialize(const AValues: TIntegerArray)

Use this method to initialize a set using an array of integer values representing the items that should be in
the set.

Component Reference

Page 3299

TSet.Intersect Method

procedure Intersect(Value: TSet)

Use this method to include all items from the set that also exist in the set passed as the parameter.

Component Reference

Page 3300

TSet.IsEmpty Method

function IsEmpty: Boolean

Use this method to determine if the set is empty.

Component Reference

Page 3301

TSet.Range Method

procedure Range(AStart, AEnd: Integer)

Use this method to include a range of items in the set. The AStart parameter indicates the starting item,
and the AEnd parameter indicates the ending item.

Component Reference

Page 3302

TSet.Remove Method

function Remove(Value: Integer): Boolean

Use this method to remove an item from the set.

Component Reference

Page 3303

TSet.Union Method

procedure Union(Value: TSet)

Use this method to add all items in the set passed as the parameter to the current set.

Component Reference

Page 3304

10.202 TShadow Component

Unit: WebUI

Inherits From TElementAttribute

The TShadow class represents the inset and outset shadows of a UI element or control. Shadows can be a
certain color and size, and their placement depends upon whether the shadow is an inset or outset
shadow.

Properties Methods Events

Blur SetToDefault

Color

HorzOffset

Spread

VertOffset

Visible

Component Reference

Page 3305

TShadow.Blur Property

property Blur: Integer

Specifies the amount of blur for the shadow. The amount of blur is equal to the radius, in pixels, of a
circular blur transformation that is applied to the solid shadow. This means that the center point of the
blur transformation will always be the edge of the solid shadow before the blur is applied.

Component Reference

Page 3306

TShadow.Color Property

property Color: TColor

Specifies the color of the solid shadow before any blur transformation is applied.

Component Reference

Page 3307

TShadow.HorzOffset Property

property HorzOffset: Integer

Specifies a horizontal offset, in pixels, to add to the position of the shadow.

Component Reference

Page 3308

TShadow.Spread Property

property Spread: Integer

Specifies the amount, in pixels, to increase the size of the solid shadow by before any blur transformation
is applied.

Component Reference

Page 3309

TShadow.VertOffset Property

property VertOffset: Integer

Specifies a vertical offset, in pixels, to add to the position of the shadow.

Component Reference

Page 3310

TShadow.Visible Property

property Visible: Boolean

Specifies whether the shadow is visible.

Component Reference

Page 3311

TShadow.SetToDefault Method

procedure SetToDefault

Use this method to reset the shadow's properties to their default values.

Component Reference

Page 3312

10.203 TSizeGrip Component

Unit: WebSizer

Inherits From TSizeGripControl

The TSizeGrip component represents a size grip control. A size grip control can be used to allow the user
to dynamically size the parent control of the size grip, which is always positioned in the bottom right-
hand corner of the parent control.

Properties Methods Events

Background OnClick

InsetShadow OnDblClick

Opacity OnHide

OnMouseDown

OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 3313

TSizeGrip.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 3314

TSizeGrip.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 3315

TSizeGrip.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 3316

TSizeGrip.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3317

TSizeGrip.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 3318

TSizeGrip.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3319

TSizeGrip.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3320

TSizeGrip.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3321

TSizeGrip.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3322

TSizeGrip.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3323

TSizeGrip.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3324

TSizeGrip.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3325

TSizeGrip.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3326

TSizeGrip.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3327

TSizeGrip.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3328

TSizeGrip.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3329

TSizeGrip.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3330

TSizeGrip.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3331

10.204 TSizeGripControl Component

Unit: WebSizer

Inherits From TControl

The TSizeGripControl control is the base class for size grip controls, and contains all of the size grip
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized size grip controls.

Properties Methods Events

Component Reference

Page 3332

10.205 TSizer Component

Unit: WebSizer

Inherits From TSizerControl

The TSizer component represents a sizer control. A sizer control can be used to allow the user to
dynamically size a specific control in a horizontal or vertical orientation.

Properties Methods Events

Border OnAnimationComplete

Control OnAnimationsComplete

Corners OnClick

InsetShadow OnDblClick

Opacity OnHide

Orientation OnMouseDown

Padding OnMouseEnter

OnMouseLeave

OnMouseMove

OnMouseUp

OnMove

OnShow

OnSize

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 3333

TSizer.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 3334

TSizer.Control Property

property Control: TControl

Specifies the control to be resized.

Component Reference

Page 3335

TSizer.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 3336

TSizer.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 3337

TSizer.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 3338

TSizer.Orientation Property

property Orientation: TSizerOrientation

Specifies the orientation of the sizer control, which determines how the sizer control modifies the
dimensions of the control specified in the Control property.

Component Reference

Page 3339

TSizer.Padding Property

property Padding: TPadding

Specifies the padding within the client area of the control.

Component Reference

Page 3340

TSizer.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3341

TSizer.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3342

TSizer.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3343

TSizer.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 3344

TSizer.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3345

TSizer.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3346

TSizer.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3347

TSizer.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3348

TSizer.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3349

TSizer.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3350

TSizer.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3351

TSizer.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3352

TSizer.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3353

TSizer.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3354

TSizer.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3355

TSizer.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3356

TSizer.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3357

10.206 TSizerControl Component

Unit: WebSizer

Inherits From TControl

The TSizerControl control is the base class for sizer controls, and contains all of the sizer functionality in
the form of public methods and protected properties/events that descendant classes can use to create
customized sizer controls.

Properties Methods Events

Component Reference

Page 3358

10.207 TSlideShow Component

Unit: WebSlide

Inherits From TSlideShowControl

The TSlideShow component represents a control that can display a slideshow of images with configurable
transition and animation effects.

Properties Methods Events

CacheSize OnAnimationComplete

Canvas OnAnimationsComplete

Cursor OnClick

DisplayTime OnDblClick

FadeTime OnHide

Hint OnLoadSlide

ImageURLs OnMouseDown

Loop OnMouseEnter

Opacity OnMouseLeave

Panning OnMouseMove

ZoomFactor OnMouseUp

OnMove

OnRenderSlide

OnShow

OnSize

OnStart

OnStop

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

Component Reference

Page 3359

TSlideShow.CacheSize Property

property CacheSize: Integer

Specifies the number of images to cache before the slideshow begins to play. The default value is 2, but
you may need to increase this property for low-bandwidth connections in order to avoid issues with
playback.

Component Reference

Page 3360

TSlideShow.Canvas Property

property Canvas: TCanvasElement

This property provdes access to a TCanvasElement instance that can be used to perform drawing
operations on the control from within an OnRenderSlide event handler.

Component Reference

Page 3361

TSlideShow.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3362

TSlideShow.DisplayTime Property

property DisplayTime: Integer

Specifies how long, in milliseconds, each slideshow image should be shown before any transition effects
are started for the next image. The default value is 8000.

Component Reference

Page 3363

TSlideShow.FadeTime Property

property FadeTime: Integer

Specifies how long, in milliseconds, the fade in/fade out effect occurs for each slideshow image transition.
The default value is 1000.

Component Reference

Page 3364

TSlideShow.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 3365

TSlideShow.ImageURLs Property

property ImageURLs: TStrings

Specifies the URLs for all images in the slideshow. You must specify at least CacheSize images or an error
will occur when trying to play the slideshow using the Start method.

Component Reference

Page 3366

TSlideShow.Loop Property

property Loop: Boolean

Specifies whether the slideshow should restart with the first image after reaching the last image in the
ImageURLs property. The default value is False.

Component Reference

Page 3367

TSlideShow.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 3368

TSlideShow.Panning Property

property Panning: Boolean

Specifies whether the images should be animated so that they pan (move) randomly within the slideshow
client area while being displayed. The default value is True.

Note
 This property controls one aspect of an effect known as the "Ken Burns Effect", whose name comes
from the effects that director Ken Burns made famous with documentaries such as "The Civil War".
The ZoomFactor property controls the other aspect, the zooming effect.

Component Reference

Page 3369

TSlideShow.ZoomFactor Property

property ZoomFactor: Integer

Specifies whether the images should be animated so that they zoom randomly in or out within the
slideshow client area while being displayed. The default value is 15, and valid values are 0 (no zooming) to
100 (very fast zooming).

Note
 This property controls one aspect of an effect known as the "Ken Burns Effect", whose name comes
from the effects that director Ken Burns made famous with documentaries such as "The Civil War".
The Panning property controls the other aspect, the panning effect.

Component Reference

Page 3370

TSlideShow.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3371

TSlideShow.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3372

TSlideShow.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3373

TSlideShow.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 3374

TSlideShow.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3375

TSlideShow.OnLoadSlide Event

property OnLoadSlide: TSlideEvent

This event is triggered whenever a new slide image is loaded. Slide images are only loaded once and then
cached until the Stop method is called.

Component Reference

Page 3376

TSlideShow.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3377

TSlideShow.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3378

TSlideShow.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3379

TSlideShow.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3380

TSlideShow.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3381

TSlideShow.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3382

TSlideShow.OnRenderSlide Event

property OnRenderSlide: TSlideEvent

This event is triggered whenever a new slide image is rendered. This event is useful for situations where
slide images need to be annotated. Because the TSlideShow control is a direct descendant of the TPaint
control, it has a Canvas property that can be used to allow for direct drawing from within any event
handlers attached to this event.

Note
 This event is triggered FramesPerSecond times per second, so it is very important that any code
called from within any event handlers for this event is not time-consuming.

Component Reference

Page 3383

TSlideShow.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3384

TSlideShow.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3385

TSlideShow.OnStart Event

property OnStart: TNotifyEvent

This event is triggered whenever the Start method is called, and the slide images being rendering.

Note
 This event will not be triggered until CacheSize images are loaded and ready to be displayed.

Component Reference

Page 3386

TSlideShow.OnStop Event

property OnStop: TNotifyEvent

This event is triggered whenever the Stop method is called.

Component Reference

Page 3387

TSlideShow.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3388

TSlideShow.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3389

TSlideShow.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3390

TSlideShow.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3391

10.208 TSlideShowControl Component

Unit: WebSlide

Inherits From TControl

The TSlideShowControl control is the base class for slideshow controls, and contains all of the slideshow
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized slideshow controls.

Properties Methods Events

Started Start

Stop

Component Reference

Page 3392

TSlideShowControl.Started Property

property Started: Boolean

Indicates whether the slideshow has been started using the Start method.

Component Reference

Page 3393

TSlideShowControl.Start Method

procedure Start

Use this method to start the slideshow. Once this method is called, the Started property will change to
True.

Component Reference

Page 3394

TSlideShowControl.Stop Method

procedure Stop

Use this method to stop the slideshow. Once this method is called, the Started property will change to
False.

Component Reference

Page 3395

10.209 TStateButtonControl Component

Unit: WebBtns

Inherits From TInputControl

The TStateButtonControl control is the base class for button controls that represent selection states, and
contains all of the selection state functionality in the form of public methods and protected
properties/events that descendant classes can use to create customized selection state button controls.

Properties Methods Events

Component Reference

Page 3396

10.210 TStreetViewControlOptions Component

Unit: WebMaps

Inherits From TMapOption

The TStreetViewControlOptions class controls how the street view control is configured in a TMap control.
These street view control options correspond to the street view control options available for maps in the
Google Maps API.

Properties Methods Events

Position

Component Reference

Page 3397

TStreetViewControlOptions.Position Property

property Position: TMapControlPosition

Specifies the position of the street view control.

Component Reference

Page 3398

10.211 TStringBuilder Component

Unit: WebCore

Inherits From TObject

The TStringBuilder class is used to manipulate individual characters in a string. Strings in JavaScript (the
emitted output from the Elevate Web Builder compiler) are immutable, meaning that you cannot insert,
modify, or delete characters in-place within the string. The TStringBuilder class allows for such operations
on a string.

Properties Methods Events

Chars Append

Length Create

GetString

Insert

Remove

ToString

Component Reference

Page 3399

TStringBuilder.Chars Property

property Chars[Index: Integer]: Char

Use this property to get access to the individual characters in the string as an array.

Component Reference

Page 3400

TStringBuilder.Length Property

property Length: Integer

Specifies the length of the string.

Component Reference

Page 3401

TStringBuilder.Append Method

procedure Append(const Value: String)

procedure Append(Value: Char)

Use this method to append a single character, or another string, to the string.

Component Reference

Page 3402

TStringBuilder.Create Method

constructor Create(const Value: String='')

Use this method to create a new instance of the TStringBuilder class. The optional Value parameter is used
to initialize the string builder instance with a specific string value.

Component Reference

Page 3403

TStringBuilder.GetString Method

function GetString(Index: Integer; Count: Integer): String

Use this method to retrieve a string containing the specified count of characters from the specified index
in the string. If the index plus the count of characters is greater than the total number of characters in the
string, then the length of the resultant string will be less than the count that is specified.

Component Reference

Page 3404

TStringBuilder.Insert Method

procedure Insert(Position: Integer; const Value: String)

procedure Insert(Position: Integer; Value: Char)

Use this method to insert a single character, or another string, into the string at a specific position.

Component Reference

Page 3405

TStringBuilder.Remove Method

procedure Remove(Position: Integer; Count: Integer)

Use this method to remove one or more characters from the string.

Component Reference

Page 3406

TStringBuilder.ToString Method

function ToString: String

Use this method to retrieve the actual string value after you are finished manipulating the string.

Component Reference

Page 3407

10.212 TStringList Component

Unit: WebCore

Inherits From TStrings

The TStringList class implements the ancestor TStrings abstract class by providing string storage and
sorting/searching functionality.

Properties Methods Events

SortCaseInsensitive Find

Sorted Sort

SortLocaleInsensitive

Component Reference

Page 3408

TStringList.SortCaseInsensitive Property

property SortCaseInsensitive: Boolean

Specifies that the list of strings should be sorted in a case-insensitive fashion. The SortCaseInsensitive and
SortLocaleInsensitive properties determine how the strings are compared during the sort:

Properties Function Used

SortCaseInsensitive=False
SortLocaleInsensitive=True

CompareStr

SortCaseInsensitive=True
SortLocaleInsensitive=True

CompareText

SortCaseInsensitive=False
SortLocaleInsensitive=False

LocaleCompareStr

SortCaseInsensitive=True
SortLocaleInsensitive=False

LocaleCompareText

Component Reference

Page 3409

TStringList.Sorted Property

property Sorted: Boolean

Specifies that the list of strings is sorted. When the list of strings is sorted, any operations that modify the
list automatically trigger a re-sort of the strings in the list.

Component Reference

Page 3410

TStringList.SortLocaleInsensitive Property

property SortLocaleInsensitive: Boolean

Specifies that the list of strings should be sorted in a locale-insensitive fashion. The SortCaseInsensitive
and SortLocaleInsensitive properties determine how the strings are compared during the sort:

Properties Function Used

SortCaseInsensitive=False
SortLocaleInsensitive=True

CompareStr

SortCaseInsensitive=True
SortLocaleInsensitive=True

CompareText

SortCaseInsensitive=False
SortLocaleInsensitive=False

LocaleCompareStr

SortCaseInsensitive=True
SortLocaleInsensitive=False

LocaleCompareText

Component Reference

Page 3411

TStringList.Find Method

function Find(const Value: String; NearestMatch: Boolean=False):
 Integer

Use this method to perform a binary search of the list of strings. The Sorted property must be True or
calling this method will result in an exception being raised. The SortCaseInsensitive and
SortLocaleInsensitive properties determine how the strings are compared during the search:

Properties Function Used

SortCaseInsensitive=False
SortLocaleInsensitive=True

CompareStr

SortCaseInsensitive=True
SortLocaleInsensitive=True

CompareText

SortCaseInsensitive=False
SortLocaleInsensitive=False

LocaleCompareStr

SortCaseInsensitive=True
SortLocaleInsensitive=False

LocaleCompareText

Component Reference

Page 3412

TStringList.Sort Method

procedure Sort

Use this method to sort the list of strings manually. Normally, the Sorted property would be used to keep
the list sorted at all times, but sometimes the developer needs a finer level of control over when the list is
sorted. The SortCaseInsensitive and SortLocaleInsensitive properties determine how the strings are
compared during the sort:

Properties Function Used

SortCaseInsensitive=False
SortLocaleInsensitive=True

CompareStr

SortCaseInsensitive=True
SortLocaleInsensitive=True

CompareText

SortCaseInsensitive=False
SortLocaleInsensitive=False

LocaleCompareStr

SortCaseInsensitive=True
SortLocaleInsensitive=False

LocaleCompareText

Component Reference

Page 3413

10.213 TStrings Component

Unit: WebCore

Inherits From TAbstractList

The TStrings class is an abstract class that is used to manage a list of strings. Because it is an abstract class,
the storage of the strings is not implemented in this class, but is rather left to descendant classes to
implement. For example, the TStringList descendant class actually contains an internal array that is used to
store the list of strings.

Properties Methods Events

Count Add

LineSeparator Assign

Names Clear

NameValueSeparator Delete

Strings IndexOf

Text IndexOfName

ValueFromIndex IndexOfValue

Values Insert

Remove

Component Reference

Page 3414

TStrings.Count Property

property Count: Integer

Indicates the total number of strings in the list.

Component Reference

Page 3415

TStrings.LineSeparator Property

property LineSeparator: String

Specifies the character, or characters, to use to separate multiple strings into the list of strings when
assigning a string value to the Text property. These characters are also used to format a string when
reading the Text property. The default value for this property is the carriage return (0x0D) character and
linefeed (0x0A) character.

Note
 In the JavaScript runtime environment, the linefeed character is sufficient to express a line break,
so controls like the TMultiLineEdit component use a LineSeparator of just a linefeed character for its
Lines property.

Component Reference

Page 3416

TStrings.Names Property

property Names[Index: Integer]: String

Allows access to the name portion of name/value pairs in the list of strings. The index specifies the
position of the name in the list that you wish to access or assign.

Component Reference

Page 3417

TStrings.NameValueSeparator Property

property NameValueSeparator: Char

Specifies the character, or characters, to use to separate name/value pairs in the list of strings. The Names,
ValueFromIndex, and Values properties can be used to work wtih the name/value pairs. The default value
for this property is the equals (=) character.

Component Reference

Page 3418

TStrings.Strings Property

property Strings[Index: Integer]: String

Allows indexed access to all strings in the list.

Component Reference

Page 3419

TStrings.Text Property

property Text: String

Specifies the list of strings as one formatted string. The LineSeparator property is used to format the
strings in the list into one string.

Component Reference

Page 3420

TStrings.ValueFromIndex Property

property ValueFromIndex[Index: Integer]: String

Allows access to the value portion of name/value pairs in the list of strings. The index specifies the
position of the value in the list that you wish to access or assign.

Component Reference

Page 3421

TStrings.Values Property

property Values[const Name: String]: String

Allows access to the value portion of name/value pairs in the list of strings. The name specifies the name
portion of the name/value pair in the list that you wish to access or assign a value for.

Component Reference

Page 3422

TStrings.Add Method

function Add(const Value: String): Integer

Use this method to add a string to the end of the list of strings. The string will be added to the end of the
list, and the index of the string in the list will be returned.

Component Reference

Page 3423

TStrings.Assign Method

procedure Assign(Value: TStrings)

Use this method to clear the list of strings and replace them with a copy of the list of strings passed as the
parameter.

Component Reference

Page 3424

TStrings.Clear Method

procedure Clear

Use this method to remove all strings from the list.

Component Reference

Page 3425

TStrings.Delete Method

procedure Delete(Index: Integer)

Use this method to remove a string from the list of strings using its index.

Component Reference

Page 3426

TStrings.IndexOf Method

function IndexOf(const Value: String; StartIndex: Integer=0;
 PartialMatch: Boolean=False): Integer

Use this method to return the index of a particular string in the list of strings. The StartIndex parameter
indicates the index into the list of strings at which to start the search, and the PartialMatch parameter
indicates whether only the length of the search string should be used when performing the comparisons.
The SameText function is used by this method to compare the strings.

Component Reference

Page 3427

TStrings.IndexOfName Method

function IndexOfName(const Name: String; StartIndex: Integer=0;
 PartialMatch: Boolean=False): Integer

Use this method to return the index of a particular name portion of the name/value pairs in the list of
strings. The SameText function is used by this method to compare the names.

Component Reference

Page 3428

TStrings.IndexOfValue Method

function IndexOfValue(const Value: String): Integer

Use this method to return the index of a particular value portion of the name/value pairs in the list of
strings. The SameText function is used by this method to compare the values.

Component Reference

Page 3429

TStrings.Insert Method

procedure Insert(Index: Integer; const Value: String)

Use this method to insert a string at a specific index in the list of strings.

Component Reference

Page 3430

TStrings.Remove Method

function Remove(const Value: String): Integer

Use this method to remove a string from the list of strings by its value. The IndexOf method is used by this
method to find the string.

Component Reference

Page 3431

10.214 TStringValue Component

Unit: WebCore

Inherits From TDataValue

This class represents the value for a String column in a row in a TDataSet component.

Properties Methods Events

Component Reference

Page 3432

10.215 TSurface Component

Unit: WebForms

Inherits From TScrollableControl

The TSurface component represents the application surface that is included with every visual application
and provides properties and methods for iterating through all forms in the application, specifying the
layout of the application surface, and showing message and progress dialogs.

Properties Methods Events

ActiveForm HideProgress OnSize

Background MessageDlg

Cursor ShowMessage

MaxDialogWidth ShowProgress

ModalOverlay

ScrollBars

ScrollSupport

Component Reference

Page 3433

TSurface.ActiveForm Property

property ActiveForm: TFormControl

Indicates the active TFormControl instance in the application.

Component Reference

Page 3434

TSurface.Background Property

property Background: TBackground

Specifies the background for the control.

Component Reference

Page 3435

TSurface.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3436

TSurface.MaxDialogWidth Property

property MaxDialogWidth: Integer

Specifies the maximum dialog width to use for system-generated message dialogs. The default value is
50% of the available width of the application viewport.

With mobile applications, it may be desirable to adjust this property to allow for full-screen message
dialogs that work better with narrow portrait orientations.

Component Reference

Page 3437

TSurface.ModalOverlay Property

property ModalOverlay: TModalOverlay

Provides access to the modal overlay instance for the application's surface.

Component Reference

Page 3438

TSurface.ScrollBars Property

property ScrollBars: TScrollBars

Specifies which scrollbars to show, if any.

Note
 Even if this property is set to sbHorizontal, sbVertical, or sbBoth, a scrollbar will only be shown if
the size of the contents and/or the child controls of the control exceed the client rectangle for the
control.

Component Reference

Page 3439

TSurface.ScrollSupport Property

property ScrollSupport: TScrollSupport

Specifies the directions in which the control can be scrolled, if any.

Note
 This property only applies to scrolling via touch and mouse wheel movements, and does not apply
to programmatic scrolling or scrolling via the scroll bars themselves.

Component Reference

Page 3440

TSurface.HideProgress Method

procedure HideProgress

Use this method to decrement the global progress reference count, and if the reference count is 0, hide
the active progress dialog. The ShowProgress method shows a progress dialog and increments the
progress reference count.

Component Reference

Page 3441

TSurface.MessageDlg Method

procedure MessageDlg(const Msg: String; const DlgCaption: String;
 DlgType: TMsgDlgType; const Buttons: TMsgDlgBtns;
 DefaultButton: TMsgDlgBtn; MsgDlgResult: TMsgDlgResultEvent=nil;
 DlgClose: Boolean=False; AnimationStyle: TAnimationStyle=asNone;
 AnimationDuration: Integer=0)

Use this method to display a modal message dialog. Please see the MessageDlg procedure for more
information on the parameters to this method.

Component Reference

Page 3442

TSurface.ShowMessage Method

procedure ShowMessage(const Msg: String; const DlgCaption:
 String=''; AnimationStyle: TAnimationStyle=asNone;
 AnimationDuration: Integer=0)

Use this method to show a simple modal message dialog. The Msg parameter indicates the message to
show.

Component Reference

Page 3443

TSurface.ShowProgress Method

procedure ShowProgress(const Msg: String; AnimationStyle:
 TAnimationStyle=asNone; AnimationDuration: Integer=0)

Use this method to show a modal progress dialog and increment the global progress reference count. The
HideProgress method decrements the reference count and hides any active progress dialog.

Component Reference

Page 3444

TSurface.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3445

10.216 TTab Component

Unit: WebPages

Inherits From TControl

The TTab component represents the tab for a TPage instance within a TPagePanel control. Each page
instance contains a reference to a tab control via its Tab property. The properties in the tab can be
modified to affect the tab caption and how the tab is sized and formatted.

Properties Methods Events

AllowClose

AutoWidth

Caption

Font

Hint

Component Reference

Page 3446

TTab.AllowClose Property

property AllowClose: Boolean

Specifies whether the close button should be shown in the tab.

Component Reference

Page 3447

TTab.AutoWidth Property

property AutoWidth: Boolean

Specifies whether the width of the tab should be automatically set based upon the Caption and Font
properties.

Component Reference

Page 3448

TTab.Caption Property

property Caption: String

Specifies the caption to display on the tab.

Component Reference

Page 3449

TTab.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 3450

TTab.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 3451

10.217 TTextAreaElement Component

Unit: WebUI

Inherits From TInputElement

The TTextAreaElement class is the base element class for text area elements, and contains all of the text
area functionality in the form of public methods and properties/events that control classes can use to
create text area controls.

Note
 This element does not provide support for text area elements at design-time, and the applicable
methods and properties are all stubs.

Properties Methods Events

Component Reference

Page 3452

10.218 TTextInputElement Component

Unit: WebUI

Inherits From TInputElement

The TTextInputElement class is the base element class for text input elements, and contains all of the text
input functionality in the form of public methods and properties/events that control classes can use to
create text input controls.

Note
 This element does not provide support for text input elements at design-time, and the applicable
methods and properties are all stubs.

Properties Methods Events

InputType

Component Reference

Page 3453

TTextInputElement.InputType Property

property InputType: TTextInputType

Specifies the type of text being input into the element by the user. This information is used by the browser
to determine how to display and edit the text. For example, in touch environments, this property is used
to determine which soft keyboard to display to the user.

Component Reference

Page 3454

10.219 TTimer Component

Unit: WebComps

Inherits From TComponent

The TTimer component represents a timer that triggers an OnTimer event whenever the interval, specified
in milliseconds, elapses. Timers are asynchronous, meaning that they can trigger the OnTimer event even
while the user is performing other tasks in the web browser.

Properties Methods Events

Enabled OnTimer

Interval

Component Reference

Page 3455

TTimer.Enabled Property

property Enabled: Boolean

Specifies whether the timer is enabled. Whenever the timer is enabled, the Interval for the timer starts
from zero. The default value is True.

Component Reference

Page 3456

TTimer.Interval Property

property Interval: Integer

Specifies the interval for the timer in milliseconds. Whenever the interval elapses, the OnTimer event is
triggered. The default value is 1000 milliseconds.

Component Reference

Page 3457

TTimer.OnTimer Event

property OnTimer: TNotifyEvent

This event is triggered whenever the Interval specified for the timer elapses.

Component Reference

Page 3458

10.220 TTimeValue Component

Unit: WebCore

Inherits From TDateTimeValue

This class represents the value for a Time column in a row in a TDataSet component.

Properties Methods Events

Component Reference

Page 3459

10.221 TToolBar Component

Unit: WebTlbrs

Inherits From TToolBarControl

The TToolBar class represents a toolbar control. A toolbar control contains 0 or more TToolBarButton
instances that serve as non-focusable buttons, and is ideal for menus.

Properties Methods Events

Background OnAnimationComplete

Border OnAnimationsComplete

Corners OnButtonClick

Cursor OnHide

Hint OnMove

InsetShadow OnShow

MultiSelect OnSize

Opacity

Component Reference

Page 3460

TToolBar.Background Property

property Background: TBackground

Specifies the background of the control.

Component Reference

Page 3461

TToolBar.Border Property

property Border: TBorder

Specifies the border for the control.

Component Reference

Page 3462

TToolBar.Corners Property

property Corners: TCorners

Specifies the horizontal and vertical radii for the corners of the control.

Component Reference

Page 3463

TToolBar.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3464

TToolBar.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 3465

TToolBar.InsetShadow Property

property InsetShadow: TInsetShadow

Specifies the inset shadow for the control.

Component Reference

Page 3466

TToolBar.MultiSelect Property

property MultiSelect: Boolean

Specifies whether multiple toolbar buttons can have their Selected property set to True at the same time.
The default value is True.

Note
 Toolbar buttons can only be selected if their AllowSelection property is set to True.

Component Reference

Page 3467

TToolBar.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 3468

TToolBar.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3469

TToolBar.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3470

TToolBar.OnButtonClick Event

property OnButtonClick: TClickEvent

This event is triggered whenever one of the toolbar buttons is clicked.

Component Reference

Page 3471

TToolBar.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3472

TToolBar.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3473

TToolBar.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3474

TToolBar.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3475

10.222 TToolBarButton Component

Unit: WebTlbrs

Inherits From TRepeatControl

The TToolBarButton class represents a button on a TToolBar control. Toolbar buttons consist of an icon
and an optional caption, and cannot obtain focus.

Properties Methods Events

AllowSelection OnClick

AutoWidth OnHide

Caption OnShow

Cursor

Enabled

Font

Hint

Icon

Index

ParentToolBar

RepeatClick

RepeatClickInterval

Selected

Component Reference

Page 3476

TToolBarButton.AllowSelection Property

property AllowSelection: Boolean

Specifies whether the toolbar button is selectable. If a toolbar button is selectable, then its Selected
property can be modified to toggle the button to and from a "pushed" state.

Note
 By default, multiple toolbar buttons within the same toolbar can have their Selected property set
to True at the same time. This behavior is controlled by the TToolBar MultiSelect property. If the
MultiSelect property is set to True (the default), then the toolbar buttons will behave like check
boxes. If the MultiSelect property is set to False, then the toolbar buttons will behave like radio
buttons.

Component Reference

Page 3477

TToolBarButton.AutoWidth Property

property AutoWidth: Boolean

Specifies whether the width of the button should be automatically set based upon the Caption, Icon, and
Font properties.

Component Reference

Page 3478

TToolBarButton.Caption Property

property Caption: String

Specifies the caption to display on the button.

Component Reference

Page 3479

TToolBarButton.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3480

TToolBarButton.Enabled Property

property Enabled: Boolean

Specifies whether the button is enabled or disabled. When a button is disabled, it cannot be clicked and is
displayed in a disabled state. The default value is True.

Component Reference

Page 3481

TToolBarButton.Font Property

property Font: TFont

Specifies the properties of the font used to display the content of the control.

Component Reference

Page 3482

TToolBarButton.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 3483

TToolBarButton.Icon Property

property Icon: TIconProperties

Specifies the properties of the icon used with the control.

Component Reference

Page 3484

TToolBarButton.Index Property

property Index: Integer

Specifies the index of the button in its parent toolbar's buttons.

Component Reference

Page 3485

TToolBarButton.ParentToolBar Property

property ParentToolBar: TToolBarControl

Indicates the parent toolbar that contains the button.

Component Reference

Page 3486

TToolBarButton.RepeatClick Property

property RepeatClick: Boolean

Specifies whether the OnClick event handler should be triggered every RepeatClickInterval milliseconds
while the button is pressed.

Component Reference

Page 3487

TToolBarButton.RepeatClickInterval Property

property RepeatClickInterval: Integer

Specifies the interval, in milliseconds, to trigger the OnClick event handler when the RepeatClick is True
and the button is pressed.

Component Reference

Page 3488

TToolBarButton.Selected Property

property Selected: Boolean

Specifies whether the toolbar button is selected. A toolbar button can only be selected if the
AllowSelection property is True. If a toolbar button is selectable, then the Selected property can be
modified to toggle the button to and from a "pushed" state.

Note
 By default, multiple toolbar buttons within the same toolbar can have their Selected property set
to True at the same time. This behavior is controlled by the TToolBar MultiSelect property. If the
MultiSelect property is set to True (the default), then the toolbar buttons will behave like check
boxes. If the MultiSelect property is set to False, then the toolbar buttons will behave like radio
buttons.

Component Reference

Page 3489

TToolBarButton.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3490

TToolBarButton.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3491

TToolBarButton.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3492

10.223 TToolBarControl Component

Unit: WebTlbrs

Inherits From TControl

The TToolBarControl control is the base class for toolbar controls, and contains all of the toolbar
functionality in the form of public methods and protected properties/events that descendant classes can
use to create customized toolbar controls.

Properties Methods Events

ButtonCount MakeButtonVisible

Buttons NewButton

VisibleButtonCount ScrollNext

VisibleButtons ScrollPrior

Component Reference

Page 3493

TToolBarControl.ButtonCount Property

property ButtonCount: Integer

Indicates the number of buttons in the toolbar control.

Component Reference

Page 3494

TToolBarControl.Buttons Property

property Buttons[AIndex: Integer]: TToolBarButton

Accesses the buttons in the toolbar control by index.

Component Reference

Page 3495

TToolBarControl.VisibleButtonCount Property

property VisibleButtonCount: Integer

Indicates the number of visible buttons in the toolbar control.

Component Reference

Page 3496

TToolBarControl.VisibleButtons Property

property VisibleButtons[AIndex: Integer]: TToolBarButton

Accesses the visible buttons in the toolbar control by index.

Component Reference

Page 3497

TToolBarControl.MakeButtonVisible Method

procedure MakeButtonVisible(AButton: TToolBarButton)

Use this method to ensure that the specified button is visible.

Component Reference

Page 3498

TToolBarControl.NewButton Method

function NewButton: TToolBarButton

Use this method to create a new button. The new button will be positioned after all other existing buttons.

Component Reference

Page 3499

TToolBarControl.ScrollNext Method

procedure ScrollNext

Use this method to scroll the buttons to the left so that the left-most button in the control is no longer
visible.

Component Reference

Page 3500

TToolBarControl.ScrollPrior Method

procedure ScrollPrior

Use this method to scroll the buttons to the right so that the button to the left of the left-most button in
the control is visible.

Component Reference

Page 3501

10.224 TVideo Component

Unit: WebMedia

Inherits From TMediaControl

The TVideo control encapsulates the HTML5 video support available in web browsers. With the TVideo
control, you can handle most aspects of video loading and playback.

Properties Methods Events

AutoPlay OnAbort

CurrentTime OnAnimationComplete

Cursor OnAnimationsComplete

DataColumn OnCanPlay

DataSet OnCanPlayThrough

DefaultPlaybackRate OnClick

Duration OnDblClick

Ended OnDurationChange

Hint OnEmptied

Loop OnEnded

Muted OnError

NetworkState OnHide

Opacity OnLoadedData

Paused OnLoadedMetadata

PlaybackRate OnLoadStart

PosterImageURL OnMouseDown

Preload OnMouseEnter

ReadyState OnMouseLeave

Seeking OnMouseMove

ShowControls OnMouseUp

SourceURL OnMove

VideoHeight OnPause

VideoWidth OnPlay

Volume OnPlaying

OnProgress

OnRateChange

Component Reference

Page 3502

OnSeeked

OnSeeking

OnShow

OnSize

OnStalled

OnSuspend

OnTimeUpdate

OnTouchCancel

OnTouchEnd

OnTouchMove

OnTouchStart

OnVolumeChange

OnWaiting

Component Reference

Page 3503

TVideo.AutoPlay Property

property AutoPlay: Boolean

Specifies that the video should begin playing as soon as enough data has been loaded to allow playback.
The default value is False.

Component Reference

Page 3504

TVideo.CurrentTime Property

property CurrentTime: Double

Indicates the current playback time, in seconds. Setting this property to a new value will cause the video
to skip to the specified time.

Component Reference

Page 3505

TVideo.Cursor Property

property Cursor: TCursor

Specifies the cursor to use when the mouse hovers over the control. The default value is crAuto.

Component Reference

Page 3506

TVideo.DataColumn Property

property DataColumn: String

Specifies the data column name to bind to in the dataset specified by the DataSet property. The default
value is ''.

Component Reference

Page 3507

TVideo.DataSet Property

property DataSet: TDataSet

Specifies the dataset to bind the control to. The default value is nil.

Component Reference

Page 3508

TVideo.DefaultPlaybackRate Property

property DefaultPlaybackRate: Double

Specifies the default playback rate, with 1 being normal playback, less than 1 being slower playback, and
greater than 1 being faster playback. The default value is 1.

Note
 The volume will normally be automatically muted when playing video faster or slower than the
normal playback rate.

Component Reference

Page 3509

TVideo.Duration Property

property Duration: Double

Indicates the length of the video in seconds. Add an event handler for the OnDurationChange event to
detect when the duration has been determined for the current video being loaded/played. If the duration
has not been determined, this property will return 0.

Component Reference

Page 3510

TVideo.Ended Property

property Ended: Boolean

Indicates that the end of the video has been reached.

Component Reference

Page 3511

TVideo.Hint Property

property Hint: String

Specifies the hint to display in the web browser when the mouse hovers over the control for a browser-
specific amount of time. The default value is ''.

Component Reference

Page 3512

TVideo.Loop Property

property Loop: Boolean

Specifies that the video playback should automatically restart at the beginning once the end has been
reached. The default value is False.

Component Reference

Page 3513

TVideo.Muted Property

property Muted: Boolean

Specifies that the playback volume should be muted. The default value is False.

Component Reference

Page 3514

TVideo.NetworkState Property

property NetworkState: TMediaNetworkState

Indicates the network state of the video loading/playback.

Component Reference

Page 3515

TVideo.Opacity Property

property Opacity: Integer

Specifies the opacity of the control, with the valid values being 0 (transparent) to 100 (completely
opaque). The default value is 100.

Component Reference

Page 3516

TVideo.Paused Property

property Paused: Boolean

Indicates that video playback is paused, either by the user pausing the video via the user interface when
the ShowControls property is True, or by the application calling the Pause method. The default value is
False.

Component Reference

Page 3517

TVideo.PlaybackRate Property

property PlaybackRate: Double

Specifies the playback rate, with 1 being normal playback, less than 1 being slower playback, and greater
than 1 being faster playback. The default value is 1.

Note
 The volume will normally be automatically muted when playing video faster or slower than the
normal playback rate.

Component Reference

Page 3518

TVideo.PosterImageURL Property

property PosterImageURL: String

Specifies the URL of an image to use as a background before video playback is started.

Component Reference

Page 3519

TVideo.Preload Property

property Preload: TMediaPreload

Specifies how much of the current video data should be loaded before playback begins.

Component Reference

Page 3520

TVideo.ReadyState Property

property ReadyState: TMediaReadyState

Indicates whether the video is ready for playback, and if so, a general description of what video data has
been loaded.

Component Reference

Page 3521

TVideo.Seeking Property

property Seeking: Boolean

Indicates that video is switching to a new playback location, either by the user changing the playback
location in the video via the user interface when the ShowControls property is True, or by the application
setting the CurrentTime property.

Component Reference

Page 3522

TVideo.ShowControls Property

property ShowControls: Boolean

Specifies whether the control should show the native user interface for the video being played.

Component Reference

Page 3523

TVideo.SourceURL Property

property SourceURL: String

Specifies the URL of the video to be loaded into the control. Whenever this property is changed, the
existing video is cleared and the new video will start downloading from the web server. Please review the
events available for this control in order to get more information on detecting and handling the
loading/playback of the video.

Component Reference

Page 3524

TVideo.VideoHeight Property

property VideoHeight: Integer

Indicates the actual height of the video being played.

Note
 This property will be zero until the metadata for the video has been loaded.

Component Reference

Page 3525

TVideo.VideoWidth Property

property VideoWidth: Integer

Indicates the actual width of the video being played.

Note
 This property will be zero until the metadata for the video has been loaded.

Component Reference

Page 3526

TVideo.Volume Property

property Volume: Integer

Specifies the playback volume of the audio for the video. The volume can be set between 0 and 100.

Component Reference

Page 3527

TVideo.OnAbort Event

property OnAbort: TNotifyEvent

This event is triggered whenever the media control has stopped loading data for the current media. This is
normally caused by the user requesting such an action via the user interface when the ShowControls
property is True.

Component Reference

Page 3528

TVideo.OnAnimationComplete Event

property OnAnimationComplete: TAnimationCompleteEvent

This event is triggered when an animation completes for the control.

Component Reference

Page 3529

TVideo.OnAnimationsComplete Event

property OnAnimationsComplete: TNotifyEvent

This event is triggered when all active animations complete for the control.

Component Reference

Page 3530

TVideo.OnCanPlay Event

property OnCanPlay: TNotifyEvent

This event is triggered whenever the media control has loaded enough data to begin playback. However,
additional data loading may be required as playback continues.

Component Reference

Page 3531

TVideo.OnCanPlayThrough Event

property OnCanPlayThrough: TNotifyEvent

This event is triggered whenever the media control has loaded enough data to begin playback and
(probably) play the media until the end without needing to load any additional data.

Component Reference

Page 3532

TVideo.OnClick Event

property OnClick: TNotifyEvent

This event is triggered when the control is clicked with the mouse pointer or is tapped using a touch
interface.

Component Reference

Page 3533

TVideo.OnDblClick Event

property OnDblClick: TNotifyEvent

This event is triggered when the control is double-clicked with the mouse pointer or is double-tapped
using a touch interface.

Component Reference

Page 3534

TVideo.OnDurationChange Event

property OnDurationChange: TNotifyEvent

This event is triggered whenever the duration of the media changes, which normally occurs when loading
new media into the control by modifying the SourceURL property.

Component Reference

Page 3535

TVideo.OnEmptied Event

property OnEmptied: TNotifyEvent

This event is triggered whenever an error or abort has caused the NetworkState property to revert to the
mnsEmpty state.

Component Reference

Page 3536

TVideo.OnEnded Event

property OnEnded: TNotifyEvent

This event is triggered whenever playback has stopped because the end of the media has been reached.

Component Reference

Page 3537

TVideo.OnError Event

property OnError: TNotifyEvent

This event is triggered whenever an error has prevented the media from being loaded properly.

Component Reference

Page 3538

TVideo.OnHide Event

property OnHide: TNotifyEvent

This event is triggered when the control is hidden using the Hide method.

Component Reference

Page 3539

TVideo.OnLoadedData Event

property OnLoadedData: TNotifyEvent

This event is triggered whenever the media control has loaded enough data for the current playback
location.

Component Reference

Page 3540

TVideo.OnLoadedMetadata Event

property OnLoadedMetadata: TNotifyEvent

This event is triggered whenever the media control has loaded the metadata, including the duration and
dimensions, for the current media.

Component Reference

Page 3541

TVideo.OnLoadStart Event

property OnLoadStart: TNotifyEvent

This event is triggered whenever the media control starts loading data for the current media.

Component Reference

Page 3542

TVideo.OnMouseDown Event

property OnMouseDown: TMouseDownEvent

This event is triggered when a mouse button is pressed while the mouse pointer hovers over the control.

Component Reference

Page 3543

TVideo.OnMouseEnter Event

property OnMouseEnter: TNotifyEvent

This event is triggered when the mouse pointer enters the bounds of the control.

Component Reference

Page 3544

TVideo.OnMouseLeave Event

property OnMouseLeave: TNotifyEvent

This event is triggered when the mouse pointer leaves the bounds of the control.

Component Reference

Page 3545

TVideo.OnMouseMove Event

property OnMouseMove: TMouseMoveEvent

This event is triggered as the mouse pointer is moved over the control.

Component Reference

Page 3546

TVideo.OnMouseUp Event

property OnMouseUp: TMouseUpEvent

This event is triggered when a mouse button is released while the mouse pointer hovers over the control.

Component Reference

Page 3547

TVideo.OnMove Event

property OnMove: TNotifyEvent

This event is triggered whenever the control's position is changed.

Component Reference

Page 3548

TVideo.OnPause Event

property OnPause: TNotifyEvent

This event is triggered whenever the media playback is paused.

Component Reference

Page 3549

TVideo.OnPlay Event

property OnPlay: TNotifyEvent

This event is triggered whenever the media playback is started/resumed.

Component Reference

Page 3550

TVideo.OnPlaying Event

property OnPlaying: TNotifyEvent

This event is triggered whenever media playback has actually started.

Note
 This event is slightly different from the OnPlay event, which only indicates that the user or
application requested playback to start/resume. This event may be triggered multiple times during
playback, especially if playback needs to stop in order to allow more media data to be loaded,
which can be the case with slower network connections.

Component Reference

Page 3551

TVideo.OnProgress Event

property OnProgress: TNotifyEvent

This event is triggered whenever the current media is being loaded.

Note
 This event is typically fired several times per second in most web browsers, so be very careful
about how time-consuming any event handlers are for this event.

Component Reference

Page 3552

TVideo.OnRateChange Event

property OnRateChange: TNotifyEvent

This event is triggered whenever the playback rate of the media control has changed for the current
media. This is caused by the user requesting such an action via the user interface when the ShowControls
property is True, or when the application modifies the PlaybackRate property.

Component Reference

Page 3553

TVideo.OnSeeked Event

property OnSeeked: TNotifyEvent

This event is triggered whenever the Seeking property reverts to False.

Component Reference

Page 3554

TVideo.OnSeeking Event

property OnSeeking: TNotifyEvent

This event is triggered whenever the playback location of the media control has changed for the current
media. This is caused by the user requesting such an action via the user interface when the ShowControls
property is True, or when the application modifies the CurrentTime property.

Component Reference

Page 3555

TVideo.OnShow Event

property OnShow: TNotifyEvent

This event is triggered when the control is shown using the Show method.

Component Reference

Page 3556

TVideo.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the control's width and/or height are changed.

Component Reference

Page 3557

TVideo.OnStalled Event

property OnStalled: TNotifyEvent

This event is triggered whenever the media control is trying to load data for the current media, but no
data is arriving over the network.

Component Reference

Page 3558

TVideo.OnSuspend Event

property OnSuspend: TNotifyEvent

This event is triggered whenever the media control has loaded enough data to enable playback, and has
stopped loading more data.

Component Reference

Page 3559

TVideo.OnTimeUpdate Event

property OnTimeUpdate: TNotifyEvent

This event is triggered whenever the CurrentTime property changes.

Note
 This event can be fired as many as 60 times per second in some web browsers, so be very careful
about how time-consuming any event handlers are for this event.

Component Reference

Page 3560

TVideo.OnTouchCancel Event

property OnTouchCancel: TTouchEvent

This event is triggered when the browser cancels touching via a touch interface. This can happen, for
example, when the touch has exceeded the browser viewport.

Component Reference

Page 3561

TVideo.OnTouchEnd Event

property OnTouchEnd: TTouchEvent

This event is triggered when the control stops being touched via a touch interface.

Component Reference

Page 3562

TVideo.OnTouchMove Event

property OnTouchMove: TTouchEvent

This event is triggered as a touch is moved over the control.

Component Reference

Page 3563

TVideo.OnTouchStart Event

property OnTouchStart: TTouchEvent

This event is triggered when the control is touched via a touch interface.

Component Reference

Page 3564

TVideo.OnVolumeChange Event

property OnVolumeChange: TNotifyEvent

This event is triggered whenever the audio volume of the media control has changed for the current
media. This is caused by the user requesting such an action via the user interface when the ShowControls
property is True, or when the application modifies the Volume property.

Component Reference

Page 3565

TVideo.OnWaiting Event

property OnWaiting: TNotifyEvent

This event is triggered whenever the media control cannot start/resume playback because more data
needs to be loaded for the current media.

Component Reference

Page 3566

10.225 TVideoElement Component

Unit: WebUI

Inherits From TMediaElement

The TVideoElement class is the element class for video UI elements, and contains all of the video playback
functionality in the form of public methods and properties/events that control classes can use to create
video controls.

Note
 This element does not provide support for video playback at design-time, and the applicable
playback methods and properties are all stubs.

Properties Methods Events

PosterURL

VideoHeight

VideoWidth

Component Reference

Page 3567

TVideoElement.PosterURL Property

property PosterURL: String

Specifies the URL of an image to use as a background before video playback is started.

Component Reference

Page 3568

TVideoElement.VideoHeight Property

property VideoHeight: Integer

Indicates the actual height of the video being played.

Note
 This property will be zero until the metadata for the video has been loaded.

Component Reference

Page 3569

TVideoElement.VideoWidth Property

property VideoWidth: Integer

Indicates the actual width of the video being played.

Note
 This property will be zero until the metadata for the video has been loaded.

Component Reference

Page 3570

10.226 TViewport Component

Unit: WebForms

Inherits From TComponent

The TViewport component represents the browser viewport at run-time for a visual application and
provides properties for retrieving the browser viewport dimensions, as well as specifying whether browser
scrollbars should be displayed when the dimensions of the application surface overflows the viewport's
client area.

Properties Methods Events

Height ScrollBy OnScroll

OverflowX OnSize

OverflowY

ResizeDelay

ScrollLeft

ScrollTop

Width

Component Reference

Page 3571

TViewport.Height Property

property Height: Integer

Indicates the height of the browser viewport.

Component Reference

Page 3572

TViewport.OverflowX Property

property OverflowX: TOverflowType

Specifies whether or not to show a native horizontal browser scrollbar for the application if the width of its
surface exceeds the width of the client rectangle for the element.

Component Reference

Page 3573

TViewport.OverflowY Property

property OverflowY: TOverflowType

Specifies whether or not to show a native vertical browser scrollbar for the application if the height of its
surface exceeds the height of the client rectangle for the element.

Component Reference

Page 3574

TViewport.ResizeDelay Property

property ResizeDelay: Integer

Specifies how long, in milliseconds, the application will wait after a browser viewport resize before
updating the application's user interface.

Component Reference

Page 3575

TViewport.ScrollLeft Property

property ScrollLeft: Integer

If an application's Surface width and/or height is greater than the application viewport's Width and
Height properties, then this property indicates the amount, in pixels, that the browser viewport has been
scrolled to the right.

Specify a new value to manually scroll the browser viewport to the left or right. A value of 0 means that
the viewport is scrolled all the way to its left-most position.

Component Reference

Page 3576

TViewport.ScrollTop Property

property ScrollTop: Integer

If an application's Surface width and/or height is greater than the application viewport's Width and
Height properties, then this property indicates the amount, in pixels, that the browser viewport has been
scrolled towards the bottom.

Specify a new value to manually scroll the browser viewport towards the top or bottom. A value of 0
means that the viewport is scrolled all the way to its top-most position.

Component Reference

Page 3577

TViewport.Width Property

property Width: Integer

Indicates the width of the browser viewport.

Component Reference

Page 3578

TViewport.ScrollBy Method

procedure ScrollBy(X,Y: Integer)

If an application's Surface width and/or height is greater than the application viewport's Width and
Height properties, then you can use this method to scroll the viewport of the application horizontally,
vertically, or both. The X and Y values represent the number of pixels to scroll the viewport by, and may be
negative values for scrolling backward.

Component Reference

Page 3579

TViewport.OnScroll Event

property OnScroll: TNotifyEvent

This event is triggered whenever the browser viewport is scrolled horizontally or vertically.

Component Reference

Page 3580

TViewport.OnSize Event

property OnSize: TNotifyEvent

This event is triggered whenever the browser viewport's width and/or height are changed.

Component Reference

Page 3581

10.227 TWebControl Component

Unit: WebBrwsr

Inherits From TBindableColumnControl

The TWebControl control is the base class for web browser controls that dynamically load resources, and
contains all of the web browser control functionality in the form of public methods and protected
properties/events that descendant classes can use to create customized web browser controls.

Properties Methods Events

Refresh

Component Reference

Page 3582

TWebControl.Refresh Method

procedure Refresh

Use this method to refresh a resource without having to modify the URL. This is useful when the resource
changes on the server, but the URL does not.

Component Reference

Page 3583

10.228 TWebElement Component

Unit: WebUI

Inherits From TElement

The TWebElement class is the base element class for browser objects that can be dynamically-loaded as a
resource, and contains all of the browser object functionality in the form of public methods and
properties/events that control classes can use to create browser object controls.

Note
 This element does not provide support for browser objects at design-time, and the applicable
methods and properties are all stubs.

Properties Methods Events

Loaded Refresh OnError

URL OnLoad

OnUnload

Component Reference

Page 3584

TWebElement.Loaded Property

property Loaded: Boolean

Indicates whether the object resource specified by the URL property has been loaded.

An event handler can be attached to the OnLoad event to execute code when the object is loaded.

Component Reference

Page 3585

TWebElement.URL Property

property URL: String

Specifies the URL for the object resource. Whenever the URL property changes, the OnUnload event is
triggered immediately. The OnLoad event is triggered once the object resource has been loaded.

Component Reference

Page 3586

TWebElement.Refresh Method

procedure Refresh

Use this method to refresh a resource without having to modify the URL property. This is useful when the
resource changes on the server, but the URL does not.

Component Reference

Page 3587

TWebElement.OnError Event

property OnError: TWebElementEvent

This event is triggered an error occurs while loading the resource specified by the URL property.

Component Reference

Page 3588

TWebElement.OnLoad Event

property OnLoad: TWebElementEvent

This event is triggered when the resource specified by the URL property has been completely loaded.

Component Reference

Page 3589

TWebElement.OnUnload Event

property OnUnload: TWebElementEvent

This event is triggered when the currently-loaded resource specified by the URL property has been
unloaded.

Component Reference

Page 3590

10.229 TWriter Component

Unit: WebCore

Inherits From TObject

The TWriter class is a class used by TPersistent-descendant classes to save their published properties to
JSON strings. It can be used as a general-purpose JSON writer in your applications.

When a TWriter instance is created, the constructor allows you to specify:

The date-time format to use when writing date-time properties.

The number of spaces to use per indentation level, if the output is not compressed.

Whether to include line feeds in the JSON output, if the output is not compressed.

Whether to compress all whitespace in the JSON output. Compressing the whitespace removes any
unnecessary whitespace in order to keep the size of the JSON output to a minimum.

Component Reference

Page 3591

Properties Methods Events

Output BeginArray

BeginNewLine

BeginObject

BooleanProperty

BooleanValue

CancelNewLine

Create

DateTimeProperty

DateTimeValue

DecIndent

EndArray

EndObject

FloatProperty

FloatValue

IncIndent

Initialize

IntegerProperty

IntegerValue

Literal

NewLine

NullProperty

NullValue

ObjectProperty

PropertyName

Separator

StringProperty

StringValue

Whitespace

Component Reference

Page 3592

TWriter.Output Property

property Output: String

Indicates the current JSON output.

Component Reference

Page 3593

TWriter.BeginArray Method

procedure BeginArray(HasElements: Boolean)

Use this method to begin writing a new array.

Component Reference

Page 3594

TWriter.BeginNewLine Method

procedure BeginNewLine

Use this method to set a flag requesting that the next property should be written on a new line.

Note
 New lines are not used if the JSON output is being compressed.

Component Reference

Page 3595

TWriter.BeginObject Method

procedure BeginObject

Use this method to begin writing a new object.

Component Reference

Page 3596

TWriter.BooleanProperty Method

procedure BooleanProperty(const Name: String; Value: Boolean)

Use this method to write a boolean property.

Component Reference

Page 3597

TWriter.BooleanValue Method

procedure BooleanValue(Value: Boolean)

Use this method to write a boolean value.

Component Reference

Page 3598

TWriter.CancelNewLine Method

procedure CancelNewLine

Use this method to cancel a new line started via the NewLine method. This is useful if a new line is started
for a property, but the property cannot be written for some reason.

Component Reference

Page 3599

TWriter.Create Method

constructor Create(ADateTimeFormat: TDateTimeFormat=dtfRaw;
 AIndentSpaces: Integer=3; AIncludeLineFeeds: Boolean=True;
 ACompressWhitespace: Boolean=False)

Use this method to create a new instance of the TWriter class. The optional ADateTimeFormat parameter
indicates whether date and time values should be output as an ISO 8601 date and time string value, or as
a raw Unix date and time integer value (the number of milliseconds since midnight, January 1, 1970). The
optional AIndentSpaces parameter indicates how many spaces to use for indentation in the output, the
optional AIncludeLineFeeds parameter indicates whether to include line feeds (CRLF) in the output, and
the optional ACompressWhitespace parameter indicates whether any whitespace should be compressed
(removed) from the output.

Component Reference

Page 3600

TWriter.DateTimeProperty Method

procedure DateTimeProperty(const Name: String; Value: DateTime)

Use this method to write a date-time property. How a date-time property is written is controlled by the
first TDateTimeFormat parameter in the TWriter class constructor.

Component Reference

Page 3601

TWriter.DateTimeValue Method

procedure DateTimeValue(Value: DateTime)

Use this method to write a date-time value. How a date-time value is written is controlled by the first
TDateTimeFormat parameter in the TWriter class constructor.

Component Reference

Page 3602

TWriter.DecIndent Method

procedure DecIndent

Decrement the indentation level for the output.

Note
 Indentation levels are not used if the JSON output is being compressed.

Component Reference

Page 3603

TWriter.EndArray Method

procedure EndArray(HasElements: Boolean)

Use this method to end writing an array.

Component Reference

Page 3604

TWriter.EndObject Method

procedure EndObject

Use this method to end writing an object.

Component Reference

Page 3605

TWriter.FloatProperty Method

procedure FloatProperty(const Name: String; Value: Double)

Use this method to write a float property.

Component Reference

Page 3606

TWriter.FloatValue Method

procedure FloatValue(Value: Double)

Use this method to write a float value.

Component Reference

Page 3607

TWriter.IncIndent Method

procedure IncIndent

Increment the indentation level for the JSON output.

Note
 Indentation levels are not used if the JSON output is being compressed.

Component Reference

Page 3608

TWriter.Initialize Method

procedure Initialize

Use this method to initialize the writer so that the Output property is blank.

Component Reference

Page 3609

TWriter.IntegerProperty Method

procedure IntegerProperty(const Name: String; Value: Integer)

Use this method to write an integer property.

Component Reference

Page 3610

TWriter.IntegerValue Method

procedure IntegerValue(Value: Integer)

Use this method to write an integer value.

Component Reference

Page 3611

TWriter.Literal Method

procedure Literal(const Value: String)

Use this method to write a literal.

Component Reference

Page 3612

TWriter.NewLine Method

procedure NewLine

Use this method to write a new line (CRLF).

Note
 New lines are not written if the JSON output is being compressed, or if the writer was created with
the new line option turned off.

Component Reference

Page 3613

TWriter.NullProperty Method

procedure NullProperty(const Name: String)

Use this method to write a null property.

Component Reference

Page 3614

TWriter.NullValue Method

procedure NullValue

Use this method to write a null value.

Component Reference

Page 3615

TWriter.ObjectProperty Method

procedure ObjectProperty(const Name: String)

Use this method to write an object property's name using the PropertyName method.

Component Reference

Page 3616

TWriter.PropertyName Method

procedure PropertyName(const Name: String)

Use this method to write a property name.

Component Reference

Page 3617

TWriter.Separator Method

procedure Separator

Use this method to write a separator (,).

Component Reference

Page 3618

TWriter.StringProperty Method

procedure StringProperty(const Name: String; const Value:
 String)

Use this method to write a string property.

Component Reference

Page 3619

TWriter.StringValue Method

procedure StringValue(const Value: String)

Use this method to write a string value.

Component Reference

Page 3620

TWriter.Whitespace Method

procedure Whitespace

Use this method to write a space ().

Note
 Whitespace is not written if the JSON output is being compressed.

Component Reference

Page 3621

10.230 TZoomControlOptions Component

Unit: WebMaps

Inherits From TMapOption

The TZoomControlOptions class controls how the zoom control is configured in a TMap control. These
zoom control options correspond to the zoom control options available for maps in the Google Maps API.

Properties Methods Events

Position

Style

Component Reference

Page 3622

TZoomControlOptions.Position Property

property Position: TMapControlPosition

Specifies the position of the zoom control.

Component Reference

Page 3623

TZoomControlOptions.Style Property

property Style: TZoomControlStyle

Specifies the style of the zoom control.

Component Reference

Page 3624

Chapter 11
Type Reference

11.1 TAlertOrientation Type

Unit: WebLabels

TAlertOrientation = (aoLeft,aoRight)

The TAlertOrientation enumerated type is used with the TAlertLabel component to specify the orientation
of the label's caption.

Element Description

aoLeft The label's caption will be positioned at the left side of the
label.

aoRight The label's caption will be positioned at the right side of the
label.

Type Reference

Page 3625

11.2 TAnimatedIconDirection Type

Unit: WebIcons

TAnimatedIconDirection = (idVertical,idHorizontal)

The TAnimatedIconDirection enumerated type is used with the TAnimatedIcon component to specify the
direction in which the frames of the animated icon are laid out.

Element Description

idHorizontal Specifies that the frames are laid out in a horizontal direction.

idVertical Specifies that the frames are laid out in a vertical direction.

Type Reference

Page 3626

11.3 TAnimationCompleteEvent Type

Unit: WebCtrls

TAnimationCompleteEvent = procedure (Sender: TObject; Animation:
 TAnimation) of object

The TAnimationCompleteEvent type is a common event type that is used by controls to provide
notification that an animation has completed for the control.

The Sender parameter represents the class instance that triggered the event. The Animation parameter
represents the TAnimation instance that has completed.

Type Reference

Page 3627

11.4 TAnimationStyle Type

Unit: WebUI

TAnimationStyle = (asNone,asLinear,asQuadEaseOut,asQuadEaseIn,
 asQuadEaseInOut,asQuadEaseOutIn,asExpoEaseOut, asExpoEaseIn,
 asExpoEaseInOut,asExpoEaseOutIn, asCubicEaseOut,asCubicEaseIn,
 asCubicEaseInOut, asCubicEaseOutIn,asQuartEaseOut,asQuartEaseIn,
 asQuartEaseInOut,asQuartEaseOutIn,asQuintEaseOut, asQuintEaseIn,
 asQuintEaseInOut,asQuintEaseOutIn, asCircEaseOut,asCircEaseIn,
 asCircEaseInOut,asCircEaseOutIn, asSineEaseOut,asSineEaseIn,
 asSineEaseInOut,asSineEaseOutIn, asElasticEaseOut,
 asElasticEaseIn,asElasticEaseInOut, asElasticEaseOutIn,
 asBounceEaseOut,asBounceEaseIn, asBounceEaseInOut,
 asBounceEaseOutIn,asBackEaseOut, asBackEaseIn,asBackEaseInOut,
 asBackEaseOutIn)

The TAnimationStyle enumerated type is used to specify how an animation should transform a given
property of a UI element or control.

Element Description

asBackEaseIn Easing equation function for a back easing in: accelerating
from zero velocity.

asBackEaseInOut Easing equation function for a back easing in/out:
acceleration until halfway, then deceleration.

asBackEaseOut Easing equation function for a back easing out: decelerating
from zero velocity.

asBackEaseOutIn Easing equation function for a back easing out/in:
deceleration until halfway, then acceleration.

asBounceEaseIn Easing equation function for a bounce (exponentially
decaying parabolic bounce) easing in: accelerating from zero
velocity.

asBounceEaseInOut Easing equation function for a bounce (exponentially
decaying parabolic bounce) easing in/out: acceleration until
halfway, then deceleration.

asBounceEaseOut Easing equation function for a bounce (exponentially
decaying parabolic bounce) easing out: decelerating from
zero velocity.

asBounceEaseOutIn Easing equation function for a bounce (exponentially
decaying parabolic bounce) easing out/in: deceleration until
halfway, then acceleration.

asCircEaseIn Easing equation function for a circular easing in: accelerating
from zero velocity.

Type Reference

Page 3628

asCircEaseInOut Easing equation function for a circular easing in/out:
acceleration until halfway, then deceleration.

asCircEaseOut Easing equation function for an exponential easing out/in:
deceleration until halfway, then acceleration.

asCircEaseOutIn Easing equation function for a circular easing in/out:
acceleration until halfway, then deceleration.

asCubicEaseIn Easing equation function for a cubic easing in: accelerating
from zero velocity.

asCubicEaseInOut Easing equation function for a cubic easing in/out:
acceleration until halfway, then deceleration.

asCubicEaseOut Easing equation function for a cubic easing out: decelerating
from zero velocity.

asCubicEaseOutIn Easing equation function for a cubic easing out/in:
deceleration until halfway, then acceleration.

asElasticEaseIn Easing equation function for an elastic (exponentially
decaying sine wave) easing in: accelerating from zero velocity.

asElasticEaseInOut Easing equation function for an elastic (exponentially
decaying sine wave) easing in/out: acceleration until halfway,
then deceleration.

asElasticEaseOut Easing equation function for an elastic (exponentially
decaying sine wave) easing out: decelerating from zero
velocity.

asElasticEaseOutIn Easing equation function for an elastic (exponentially
decaying sine wave) easing out/in: deceleration until halfway,
then acceleration.

asExpoEaseIn Easing equation function for an exponential easing in:
accelerating from zero velocity.

asExpoEaseInOut Easing equation function for an exponential easing in/out:
acceleration until halfway, then deceleration.

asExpoEaseOut Easing equation function for an exponential easing out:
decelerating from zero velocity.

asExpoEaseOutIn Easing equation function for an exponential easing out/in:
deceleration until halfway, then acceleration.

asLinear Easing equation function for a simple linear tweening, with no
easing.

asNone No animation style.

asQuadEaseIn Easing equation function for a quadratic easing in:
accelerating from zero velocity.

asQuadEaseInOut Easing equation function for a quadratic easing in/out:
acceleration until halfway, then deceleration.

asQuadEaseOut Easing equation function for a quadratic easing out:
decelerating from zero velocity.

Type Reference

Page 3629

asQuadEaseOutIn Easing equation function for a quadratic easing out/in:
deceleration until halfway, then acceleration.

asQuartEaseIn Easing equation function for a quartic easing in: accelerating
from zero velocity.

asQuartEaseInOut Easing equation function for a quartic easing in/out:
acceleration until halfway, then deceleration.

asQuartEaseOut Easing equation function for a quartic easing out:
decelerating from zero velocity.

asQuartEaseOutIn Easing equation function for a quartic easing out/in:
deceleration until halfway, then acceleration.

asQuintEaseIn Easing equation function for a quintic easing in: accelerating
from zero velocity.

asQuintEaseInOut Easing equation function for a quintic easing in/out:
acceleration until halfway, then deceleration.

asQuintEaseOut Easing equation function for a quintic easing out:
decelerating from zero velocity.

asQuintEaseOutIn Easing equation function for a quintic easing in/out:
acceleration until halfway, then deceleration.

asSineEaseIn Easing equation function for a sinusoidal easing in:
accelerating from zero velocity.

asSineEaseInOut Easing equation function for a sinusoidal easing in/out:
acceleration until halfway, then deceleration.

asSineEaseOut Easing equation function for a sinusoidal easing out:
decelerating from zero velocity.

asSineEaseOutIn Easing equation function for a sinusoidal easing in/out:
deceleration until halfway, then acceleration.

Type Reference

Page 3630

11.5 TAuthenticationMethod Type

Unit: WebData

TAuthenticationMethod = (amHeaders,amParameters)

The TAuthenticationMethod enumerated type is used with the TDatabase component to specify how
authentication should work for all dataset requests.

Element Description

amHeaders Specifies that HTTP headers will be used to pass authentication
information to the web server for dataset requests. This is the default
authentication method.

The user name and password are added as custom headers to the web
server request as follows:

X-EWBUser: <User Name>
X-EWBPassword: <Password>

amParameters Specifies that URL parameters will be used to pass authentication
information to the web server for dataset requests.

The user name and password are added as parameters to the web server
request as follows:

<DataSet Resource URL>&user=<User Name>&password=<Password>

Warning
 Elevate Web Builder uses the AJAX functionality in browsers to
perform dataset requests, and this functionality is limited in its
ability to perform authentication via native browser methods.
Therefore, you should always use secure connections (https) to the
web server with any dataset requests. This is especially true if using
parameter-based authentication.

Type Reference

Page 3631

11.6 TAutoCompleteType Type

Unit: WebUI

TAutoCompleteType = (acDefault,acOn,acOff)

The TAutoCompleteType enumerated type is used with the descendant components of the TEditControl
class to specify how auto-completion should be handled for the control. Auto-completion allows the
browser to display a list of suggestions for input values, based upon earlier input values entered by the
user.

Element Description

acDefault Specifies that auto-completion is enabled or disabled
according to the default browser setting.

acOff Specifies that auto-completion should be disabled.

acOn Specifies that auto-completion should be enabled.

Type Reference

Page 3632

11.7 TBackgroundImageAnimateDirection Type

Unit: WebUI

TBackgroundImageAnimateDirection = (idVertical,idHorizontal)

The TBackgroundImageAnimateDirection enumerated type is used with the TBackgroundImage
BeginAnimation method to specify in which direction the background image should be animated.

Note
 The specified animation direction should match the actual orientation of the animation frames in
the background image. If it doesn't match, then the animation will not appear correctly.

Element Description

idHorizontal Specifies that the background image should be animated in a
horizontal direction.

idVertical Specifies that the background image should be animated in a
vertical direction.

Type Reference

Page 3633

11.8 TBackgroundImagePositionType Type

Unit: WebUI

TBackgroundImagePositionType = (ptSpecified,ptTopLeft,
 ptTopCenter,ptTopRight, ptCenterLeft,ptCenterCenter,
 ptCenterRight, ptBottomLeft,ptBottomCenter,ptBottomRight)

The TBackgroundImagePositionType enumerated type is used with the TBackgroundImage class to specify
how background images should be positioned for UI elements and controls.

Element Description

ptBottomCenter Specifies that the background image should be centered
horizontally at the bottom of the containing element or
control.

ptBottomLeft Specifies that the background image should be displayed at
the bottom-left of the containing element or control.

ptBottomRight Specifies that the background image should be displayed at
the bottom-right of the containing element or control.

ptCenterCenter Specifies that the background image should be centered
horizontally and vertically within the containing element or
control.

ptCenterLeft Specifies that the background image should be centered
vertically at the left of the containing element or control.

ptCenterRight Specifies that the background image should be centered
vertically at the right of the containing element or control.

ptSpecified Specifies that the background image should be positioned
according to the TBackgroundImage Left and Top properties.

ptTopCenter Specifies that the background image should be centered
horizontally at the top of the containing element or control.

ptTopLeft Specifies that the background image should be displayed at
the top-left of the containing element or control.

ptTopRight Specifies that the background image should be displayed at
the top-right of the containing element or control.

Type Reference

Page 3634

11.9 TBackgroundImageRepeatStyle Type

Unit: WebUI

TBackgroundImageRepeatStyle = (rsBoth,rsHorizontal,rsVertical,
 rsNone)

The TBackgroundImageRepeatStyle enumerated type is used with the TBackgroundImage class to specify
how background images should be tiled, if at all, for UI elements and controls.

Note
 The TBackgroundImage PositionType and SizeType properties, as well as the TBackground Origin
and Clip properties, will affect how the background image is tiled.

Element Description

rsBoth Specifies that the background image should be tiled in both a
horizontal and vertical direction.

rsHorizontal Specifies that the background image should be tiled in a
horizontal direction only.

rsNone Specifies that the background image should not be tiled.

rsVertical Specifies that the background image should be tiled in a
vertical direction only.

Type Reference

Page 3635

11.10 TBackgroundImageSizeType Type

Unit: WebUI

TBackgroundImageSizeType = (stNone,stSpecified,stContain,
 stCover)

The TBackgroundImageSizeType enumerated type is used with the TBackgroundImage class to specify
how background images should be sized for UI elements and controls.

Element Description

stContain Specifies that the background image should be proportionally
sized so that it fits within the bounds of the element or
control.

stCover Specifies that the background image should be proportionally
sized so that the image covers the bounds of the element or
control.

stNone Specifies that the background image should not be sized and
should remain its original size.

stSpecified Specifies that the background image should be sized
according to the TBackgroundImage Width and Height
properties.

Type Reference

Page 3636

11.11 TBackgroundOrientationType Type

Unit: WebUI

TBackgroundOrientationType = (otBounds,otBorder,otClient)

The TBackgroundOrientationType enumerated type is used with the TBackground class to specify how
backgrounds should be positioned and clipped for UI elements and controls.

Element Description

otBorder Specifies that the background should originate and/or be
clipped based upon the bounding rectangle of the UI
element or control, minus any border.

otBounds Specifies that the background should originate and/or be
clipped based upon the bounding rectangle of the UI
element or control.

otClient Specifies that the background should originate and/or be
clipped based upon the client rectangle of the border of the
UI element or control. The client rectangle is the bounding
rectangle minus any border or padding.

Type Reference

Page 3637

11.12 TBalloonOrientation Type

Unit: WebLabels

TBalloonOrientation = (boLeft,boCenter,boRight)

The TBalloonOrientation enumerated type is used with the TBalloonLabel component to specify the
orientation of the balloon tail.

Element Description

boCenter The balloon tail will be positioned centered at the bottom of
the label.

boLeft The balloon tail will be positioned at the bottom-left corner
of the label.

boRight The balloon tail will be positioned at the bottom-right corner
of the label.

Type Reference

Page 3638

11.13 TBooleanArray Type

Unit: WebCore

TBooleanArray = array of Boolean

The TBooleanArray type is used in classes such as the TSet class to represent an array of Boolean values.

Type Reference

Page 3639

11.14 TBorderStyle Type

Unit: WebUI

TBorderStyle = (bsSolid)

The TBorderStyle enumerated type is used with the TBorder class to specify the border style of one side of
a border for UI elements and controls.

Note
 This enumerated type currently has only one value. This is intentional, but will expand to include
more options in a later minor release of Elevate Web Builder.

Element Description

bsSolid Specifies that the border should be a solid line.

Type Reference

Page 3640

11.15 TCalendarView Type

Unit: WebCals

TCalendarView = (cvMonth,cvYear,cvDecade,cvCentury)

The TCalendarView enumerated type is used with the descendant components of the TCalendarControl
class to specify the active view for the calendar.

Element Description

cvCentury The calendar control will show a list of decades in the current
century.

cvDecade The calendar control will show a list of years in the current
decade.

cvMonth The calendar control will show a list of days in the current
month (the default).

cvYear The calendar control will show a list of months in the current
year.

Type Reference

Page 3641

11.16 TCanPlayMedia Type

Unit: WebUI

TCanPlayMedia = (cpmCannot,cpmMaybe,cpmProbably)

The TCanPlayMedia enumerated type is used with the TMediaControl CanPlayMedia method and
TMediaElement CanPlayMedia method to determine if a particular type of media can be played.

Element Description

cpmCannot The media can definitely not be played by the web browser.

cpmMaybe The media may be able to be played by the web browser, but
the browser is not certain.

cpmProbably The media should be able to be played by the web browser.

Type Reference

Page 3642

11.17 TCanvasPoints Type

Unit: WebUI

TCanvasPoints = array of TCanvasPoint

The TCanvasPoints type is used in canvas drawing operations to represent an array of TCanvasPoint
instances.

Type Reference

Page 3643

11.18 TCaption Type

Unit: WebLabels

TCaption = type String

The TCaption type is used to represent the caption of a control. This type is type-equivalent to a String
type, but is used to distinguish the caption when used with special design-time property editors in order
to allow for multi-line captions.

Type Reference

Page 3644

11.19 TCharArray Type

Unit: WebCore

TCharArray = array of Char

The TCharArray type is used in classes such as the TStringBuilder class to represent an array of Char
values.

Type Reference

Page 3645

11.20 TClass Type

Unit: WebCore

TClass = class of TObject;

The TClass type is used to represent a class type, and allows TClass variables to store references to TObject
classes and descendants.

Type Reference

Page 3646

11.21 TClickEvent Type

Unit: WebCtrls

TClickEvent = function (Sender: TObject): Boolean of object

The TClickEvent type is a common event type that is used by controls to provide notification that a sub-
control has been clicked. For example, the TEditComboBox OnButtonClick event is used to allow the
developer to intercept when the combo button is clicked in the control.

The Sender parameter represents the class instance that triggered the event.

To not allow the click, return False as the result to any event handler attached to this event. To allow the
click, return True.

Type Reference

Page 3647

11.22 TCloseQueryEvent Type

Unit: WebCtrls

TCloseQueryEvent = function (Sender: TObject): Boolean of object

The TCloseQueryEvent type is used by the OnCloseQuery event for the TPanel, TForm, and TDialog
components to intercept the closing of the control.

Return True as the result of the event to allow the close to continue, or False to prevent the control from
closing.

Type Reference

Page 3648

11.23 TCollectionItemClass Type

Unit: WebCore

TCollectionItemClass = class of TCollectionItem

The TCollectionItemClass type is used to represent a TCollectionItem class type, and allows
TCollectionItemClass variables to store references to TCollectionItem classes and descendants.

Type Reference

Page 3649

11.24 TCollectionItemName Type

Unit: WebCore

TCollectionItemName = type String

The TCollectionItemName type is used to represent the name of a TCollectionItem class instance. This type
is type-equivalent to a String type, but is used to distinguish the name of a collection item instance when
used with special design-time property editors.

Type Reference

Page 3650

11.25 TColor Type

Unit: WebUI

TColor = type Integer

The TColor type is an Integer type used to represent a 32-bit RGBA color. The components of the RGBA
value are as follows:

Component Description

Red The blue component is stored in the lower 8 bits of the 32-bit
RGBA value (0-7).

Green The green component is stored in the next 8 bits of the 32-bit
RGBA value (8-15).

Blue The red component is stored in the next 8 bits of the 32-bit
RGBA value (16-23).

Alpha The alpha (opacity) component is stored in the last 8 bits of
the 32-bit RGBA value (24-31).

Type Reference

Page 3651

11.26 TComponentClass Type

Unit: WebCore

TComponentClass = class of TComponent

The TComponentClass type is used to represent a TComponent class type, and allows TComponentClass
variables to store references to TComponent classes and descendants.

Type Reference

Page 3652

11.27 TComponentName Type

Unit: WebCore

TComponentName = type String

The TComponentName type is used to represent the name of a TComponent class instance. This type is
type-equivalent to a String type, but is used to distinguish the name of a component instance when used
with special design-time property editors.

Type Reference

Page 3653

11.28 TCompositeOperation Type

Unit: WebUI

TCompositeOperation = (coSourceOver,coSourceOnTop,coSourceIn,
 coSourceOut, coDestOnTop,coDestIn,coDestOut,coDestOver,
 coLighter,coXOR,coCopy)

The TCompositeOperation enumerated type is used to specify the how pixels are combined when drawing
occurs with a TCanvasElement instance.

Type Reference

Page 3654

Element Description

coCopy Draw the source pixel, ignoring the destination pixel.

coDestIn Multiply the destination pixel by the opacity of the source
pixel, but ignore the color of the source pixel.

coDestOnTop Draw the source pixel underneath the destination pixel. If the
source pixel is transparent, then the resulting pixel will also be
transparent.

coDestOut The destination pixel becomes transparent if the source pixel
is opaque, and is not changed if the source pixel is
transparent. The color of the source pixel is ignored.

coDestOver The source pixel will appear behind the destination pixel, and
shows based upon the transparency of the destination pixel.

coLighter The colors of the source and destination pixels are added
together and truncated by the maximum color value possible.

coSourceIn Draw the source pixel, but multiply it by the opacity of the
destination pixel. The color of the destination pixel is ignored,
but if the destination pixel is transparent, then the resulting
pixel will be also be transparent.

coSourceOnTop Draw the source pixel on top of the destination, but multiply
it by the opacity of the desination pixel. If the destination
pixel is transparent, then nothing is drawn.

coSourceOut The resulting pixel is the source pixel when the destination
pixel is transparent, and a transparent pixel when the
destination pixel is opaque. The color of the destination pixel
is ignored.

coSourceOver The source pixel is drawn on top of the destination pixel. If
the source pixel is partially-transparent, then the destination
pixel is included to draw the resulting pixel. This is the default
type of composite operation for canvas drawing.

coXOR If the source pixel is transparent, then the resulting pixel is the
destination pixel. If the destination pixel is transparent, then
the resulting pixel is the source pixel. If both the source and
destination pixels are transparent or opaque, then the
resulting pixel will be transparent.

Type Reference

Page 3655

11.29 TContent Type

Unit: WebLabels

TContent = type String

The TContent type is used to represent the content of a control. This type is type-equivalent to a String
type, but is used to distinguish the content when used with special design-time property editors in order
to allow for embedded HTML.

Type Reference

Page 3656

11.30 TContentAlignment Type

Unit: WebUI

TContentAlignment = (caLeft,caCenter,caRight)

The TContentAlignment enumerated type is used to specify the horizontal alignment of content in UI
elements and controls.

Element Description

caCenter Specifies that the content will be centered.

caLeft Specifies that the content will be left-justified.

caRight Specifies that the content will be right-justified.

Type Reference

Page 3657

11.31 TContentDirection Type

Unit: WebUI

TContentDirection = (cdLeftToRight,cdRightToLeft)

The TContentDirection enumerated type is used to specify the text direction of content in UI elements and
controls.

Element Description

cdLeftToRight Specifies that the content will be displayed/edited from left-
to-right.

cdRightToLeft Specifies that the content will be displayed/edited from right-
to-left.

Type Reference

Page 3658

11.32 TContentPosition Type

Unit: WebCtrls

TContentPosition = (cpSpecified,cpTopLeft,cpTopCenter,cpTopRight,
 cpCenterLeft,cpCenterCenter,cpCenterRight, cpBottomLeft,
 cpBottomCenter,cpBottomRight)

The TContentPosition enumerated type is used with the TContentLayout class to specify how content
elements should be positioned for UI elements and controls.

Element Description

cpBottomCenter Specifies that the content element should be centered
horizontally at the bottom of the containing element or
control.

cpBottomLeft Specifies that the content element should be displayed at the
bottom-left of the containing element or control.

cpBottomRight Specifies that the content element should be displayed at the
bottom-right of the containing element or control.

cpCenterCenter Specifies that the content element should be centered
horizontally and vertically within the containing element or
control.

cpCenterLeft Specifies that the content element should be centered
vertically at the left of the containing element or control.

cpCenterRight Specifies that the content element should be centered
vertically at the right of the containing element or control.

cpSpecified Specifies that the content element should be positioned
according to the TContentLayout Left and Top properties.

cpTopCenter Specifies that the content element should be centered
horizontally at the top of the containing element or control.

cpTopLeft Specifies that the content element should be displayed at the
top-left of the containing element or control.

cpTopRight Specifies that the content element should be displayed at the
top-right of the containing element or control.

Type Reference

Page 3659

11.33 TContentSize Type

Unit: WebCtrls

TContentSize = (csNone,csSpecified,csContain,csCover)

The TContentSize enumerated type is used with the TContentLayout class to specify how content elements
should be sized for UI elements and controls.

Element Description

csContain Specifies that the content element should be proportionally
sized so that it fits within the bounds of the element or
control.

csCover Specifies that the content element should be proportionally
sized so that the image covers the bounds of the element or
control.

csNone Specifies that the content element should not be sized and
should remain its original size.

csSpecified Specifies that the content element should be sized according
to the TContentLayout Width and Height properties.

Type Reference

Page 3660

11.34 TControlClass Type

Unit: WebCtrls

TControlClass = class of TControl

The TControlClass type is used to represent a TControl class type, and allows TControlClass variables to
store references to TControl classes and descendants.

Type Reference

Page 3661

11.35 TCursor Type

Unit: WebUI

TCursor = (crAuto,crCrossHair,crDefault,crHelp,crMove,crPointer,
 crProgress,crSizeNESW,crSizeNS,crSizeNWSE,crSizeWE, crText,
 crWait)

The TCursor enumerated type is used to specify the type of cursor that will be used for the mouse pointer
when it hovers over a UI element or control.

Type Reference

Page 3662

Element Description

crAuto Specifies that the mouse pointer will use a cursor that is
automatically determined by the web browser, based upon
the type of control and its state.

crCrossHair Specifies that the mouse pointer will use a cursor with a
cross-hair (+) pattern.

crDefault Specifies that the mouse pointer will use the default cursor for
the web browser, which is usually a normal pointer.

crHelp Specifies that the mouse pointer will use a help cursor, which
is normally a pointer with a question mark (?) next to it.

crMove Specifies that the mouse pointer will use a movement cursor,
which is normally four arrows pointing north, east, south, and
west.

crPointer Specifies that the mouse pointer will use a normal pointer
cursor.

crProgress Specifies that the mouse pointer will use a cursor that
represents execution in progress, which is normally a pointer
with an animated progress symbol next to it.

crSizeNESW Specifies that the mouse pointer will use a cursor that
contains arrows pointing northeast and southwest.

crSizeNS Specifies that the mouse pointer will use a cursor that
contains arrows pointing north and south.

crSizeNWSE Specifies that the mouse pointer will use a cursor that
contains arrows pointing northwest and southeast. This is
cursor is normally the same as the crSizeNESW cursor.

crSizeWE Specifies that the mouse pointer will use a cursor that
contains arrows pointing from west and east.

crText Specifies that the mouse pointer will use a cursor that
includes an edit caret (vertical bar).

crWait Specifies that the mouse pointer will use a cursor that
represents a wait state, which is normally an hourglass or
animated progress symbol.

Type Reference

Page 3663

11.36 TDatabaseClass Type

Unit: WebData

TDatabaseClass = class of TDatabase

The TDatabaseClass type is used to represent a TDatabase class type, and allows TDatabaseClass variables
to store references to TDatabase classes and descendants.

Type Reference

Page 3664

11.37 TDatabaseErrorEvent Type

Unit: WebData

TDatabaseErrorEvent = procedure (Sender: TObject; const
 ErrorMsg: String) of object

The TDatabaseErrorEvent type is used by the TDatabase OnCommitError and OnRollbackError events.

The Sender parameter is the TDatabase instance that triggered the event and the ErrorMsg parameter is
the complete error message.

Type Reference

Page 3665

11.38 TDatabaseEvent Type

Unit: WebData

TDatabaseEvent = function (Sender: TObject): Boolean of object

The TDatabaseEvent type is used by the TDatabase BeforeCommit and BeforeRollback events.

The Sender parameter is the TDatabase instance that triggered the event. Return True from the event to
allow the applicable database functionality to continue, or False to prevent the functionality from
occurring.

Type Reference

Page 3666

11.39 TDataColumnTextEvent Type

Unit: WebData

TDataColumnTextEvent = function (Sender: TObject; const Value:
 String): String of object

The TDataColumnTextEvent type is used by the TDataColumn OnGetText and OnSetText events.

The Sender parameter is the TDataColumn instance that triggered the event and the Value parameter is
the value of the column as a string (Get) or the display text being assigned to the column.

Type Reference

Page 3667

11.40 TDataRowEvent Type

Unit: WebData

TDataRowEvent = procedure (Sender: TObject; Column: TDataColumn)
 of object

The TDataRowEvent type is used by the TDataSet OnRowChanged event.

The Sender parameter is the TDataSet instance that triggered the event and the Column parameter is the
column that was changed, if applicable. If the Column parameter is nil, then the entire row has been
changed, as opposed to a single column.

Type Reference

Page 3668

11.41 TDataSetErrorEvent Type

Unit: WebData

TDataSetErrorEvent = procedure (Sender: TObject; const ErrorMsg:
 String) of object

The TDataSetErrorEvent type is used by the TDataSet OnLoadError event.

The Sender parameter is the TDataSet instance that triggered the event and the ErrorMsg parameter is the
complete error message.

Type Reference

Page 3669

11.42 TDataSetEvent Type

Unit: WebData

TDataSetEvent = function (Sender: TObject): Boolean of object

The TDataSetEvent type is used by the TDataSet BeforeOpen, BeforeClose, BeforeScroll, BeforeInsert,
BeforeUpdate, BeforeSave, BeforeCancel, BeforeDelete, and BeforeLoad events.

The Sender parameter is the TDataSet instance that triggered the event. Return True from the event to
allow the applicable dataset functionality to continue, or False to prevent the functionality from occurring.

Type Reference

Page 3670

11.43 TDataSetState Type

Unit: WebData

TDataSetState = (dsClosed,dsBrowse,dsInsert,dsUpdate,dsFind,
 dsReset)

The TDataSetState enumerated type is used to indicate the State of a TDataSet instance.

Element Description

dsBrowse Indicates that the dataset is open and in the browse (read)
state.

dsClosed Indicates that the dataset is closed.

dsFind Indicates that the dataset is open and in the find state. A
dataset is put into the find state by calling the Find method.

dsInsert Indicates that the dataset is open and in the insert state. A
dataset is put into the insert state by calling the Insert
method.

dsReset Indicates that the dataset is being reset. This is an internal
state used by the TDataSet component when it is loading or
sorting rows.

dsUpdate Indicates that the dataset is open and in the update state. A
dataset is put into the update state by calling the Update
method.

Type Reference

Page 3671

11.44 TDataType Type

Unit: WebCore

TDataType = (dtUnknown,dtString,dtBoolean,dtInteger,dtFloat,
 dtDate, dtTime,dtDateTime,dtBlob)

The TDataType enumerated type is used to specify the type of a TDataColumn instance in a TDataSet
instance.

Element Description

dtBlob Specifies that the column is a BLOB (Binary Large Object)
column.

dtBoolean Specifies that the column is a boolean (True/False) column.

dtDate Specifies that the column is a date column.

dtDateTime Specifies that the column is a date/time column.

dtFloat Specifies that the column is a floating-point precision numeric
column.

dtInteger Specifies that the column is an integer column.

dtString Specifies that the column is a character string column.

dtTime Specifies that the column is a time column.

dtUnknown Specifies that the column is of an unknown type (do not use).

Type Reference

Page 3672

11.45 TDateTimeFormat Type

Unit: WebCore

TDateTimeFormat = (dtfRaw,dtfISO8601)

The TDateTimeFormat enumerated type is used with TReader and TWriter classes to specify how
published DateTime properties are handled when reading/writing TPersistent-descendant classes to/from
JSON.

Element Description

dtfISO8601 Date-time values are handled as ISO-8601 date-time string
values.

dtfRaw Date-time values are handled as raw numeric DateTime
values (the default).

Type Reference

Page 3673

11.46 TDrawStyle Type

Unit: WebUI

TDrawStyle = (dsColor,dsGradient,dsPattern)

The TDrawStyle enumerated type is used to specify the drawing style for stroke and fill operations on a
TCanvasElement instance.

Element Description

dsColor Specifies that the drawing will use a solid color. This is the
default drawing style.

dsGradient Specifies that the drawing will use a gradient.

dsPattern Specifies that the drawing will use a pattern.

Type Reference

Page 3674

11.47 TDropDownPosition Type

Unit: WebEdits

TDropDownPosition = (dpRelative,dpSurfaceCenter)

The TDropDownPosition enumerated type is used with the TEditComboBox, TDateEditComboBox, adn
TButtonComboBox components to specify the position of the drop-down list or calendar.

Element Description

dpRelative Specifies that the drop-down control will be positioned
relative to the owner control. This is usually beneath the
owner control, but may also be above the control is there is
insufficient space in which to show the entire drop-down
control.

dpSurfaceCenter Specifies that the drop-down control will be positioned in the
center of the application surface. This is especially useful for
mobile applications where the browser viewport is limited in
size.

The application surface is represented by the Surface property
of the global Application variable in the WebForms unit.

Type Reference

Page 3675

11.48 TElementClass Type

Unit: WebUI

TElementClass = class of TElement

The TElementClass type is used to represent a TElement class type, and allows TElementClass variables to
store references to TElement classes and descendants.

Type Reference

Page 3676

11.49 TErrorEvent Type

Unit: WebForms

TErrorEvent = function (Sender: TObject; const Message: String;
 const URL: String; Line: Integer): Boolean of object

The TErrorEvent type is used with the TApplication OnError event to trap unhandled exceptions that have
bubbled up to the global Application object in a visual application.

Return True from the event to indicate to the web browser that the error was handled, or False to indicate
to the web browser that the error should be handled by the browser.

Type Reference

Page 3677

11.50 TFillType Type

Unit: WebUI

TFillType = (ftSolid,ftGradient)

The TFillType enumerated type is used with the TFill class to specify how backgrounds should be filled for
UI elements and controls.

Element Description

ftGradient Specifies that the background fill will be a gradient.

ftSolid Specifies that the background fill will be a solid color (or
transparent).

Type Reference

Page 3678

11.51 TFormControlClass Type

Unit: WebForms

TFormControlClass = class of TFormControl

The TFormControlClass type is used to represent a TFormControl class type, and allows TFormControlClass
variables to store references to TFormControl classes and descendants.

Type Reference

Page 3679

11.52 TGenericFontFamily Type

Unit: WebUI

TGenericFontFamily = (gfSansSerif,gfSerif,gfMonospace,gfCursive,
 gfFantasy)

The TGenericFontFamily enumerated type is used with the TFont class to specify the generic font family
for the fonts used in UI elements and controls. The generic font family is used as a fall-back if a specified
font name is not available on the operating system that is hosting the web browser.

Note
 At design-time, Elevate Web Builder will automatically set the generic font family when the font
name is changed for a TFont class instance, so in most cases you will never need to modify the
generic font family.

Element Description

gfCursive The cursive generic font family, which includes script fonts.

gfFantasy The fantasy generic font family, which includes decorative
fonts.

gfMonospace The monospace generic font family, which includes all fixed-
width fonts.

gfSansSerif The sans-serif generic font family, which includes all fonts
with plain stroke endings.

gfSerif The serif generic font family, which includes all fonts with
flared or decorative stroke endings.

Type Reference

Page 3680

11.53 TGradientType Type

Unit: WebUI

TGradientType = (gtLinear,gtRadial)

The TGradientType enumerated type is used with the TGradient class to specify the type of gradient
background to be used for UI elements and controls.

Note
 This setting is only valid if the UI element or control's background is set to use a gradient fill.

Element Description

gtLinear Specifies that the gradient will be linear. This is the default
gradient type.

gtRadial Specifies that the gradient will be radial.

Type Reference

Page 3681

11.54 TGridColumnCellEvent Type

Unit: WebGrids

TGridColumnCellEvent = procedure (Sender: TObject; ACell:
 TGridCell) of object

The TGridColumnCellEvent type is used by the TGridColumn OnCellUpdate event.

The Sender parameter is the TGridColumn instance that triggered the event and the ACell parameter is
the TGridCell instance being updated.

Type Reference

Page 3682

11.55 TGridColumnCompareEvent Type

Unit: WebGrids

TGridColumnCompareEvent = function (const L,R: String;
 CaseInsensitive: Boolean; LocaleInsensitive: Boolean): Integer
 of object

The TGridColumnCompareEvent type is used by the TGridColumn OnCompare event.

The Sender parameter is the TGridColumn instance that triggered the event, the L and R parameters are
the string column values to compare, and the CaseInsensitive and LocaleInsensitive parameters indicate
what type of comparison is being requested.

Type Reference

Page 3683

11.56 TGridColumnControlType Type

Unit: WebGrids

TGridColumnControlType = (ctNone,ctEdit,ctEditComboBox,
 ctDialogEditComboBox, ctCheckBox,ctLink,ctIcon,ctImage,
 ctDateEditComboBox, ctMultiLineEdit,ctHTML)

The TGridColumnControlType enumerated type is used with the TGridColumn class to specify the type of
control to be used when displaying or editing a grid column.

Element Description

ctCheckBox Specifies that the grid column will use a checkbox control for
editing its cells.

ctDateEditComboBox Specifies that the grid column will use a date combo box
control for editing its cells.

ctDialogEditComboBox Specifies that the grid column will use a dialog combo box
control for editing its cells.

ctEdit Specifies that the grid column will use a single-line edit
control for editing its cells.

ctEditComboBox Specifies that the grid column will use an edit combo box
control for editing its cells.

ctHTML Specifies that the grid column will display its cells as HTML.

ctIcon Specifies that the grid column will display its cells as icons.
The content of the cells specifies the name of the icon to
display.

ctImage Specifies that the grid column will display its cells as images.
The content of the cells specifies the URL of the image to
display.

ctLink Specifies that the grid column will display its cells as links.

ctMultiLineEdit Specifies that the grid column will use a multi-line edit
control for editing its cells.

ctNone Specifies that the grid column will not use any special
controls for editing/displaying. This is the default value, and
using this value will result in the grid column not being
editable.

Type Reference

Page 3684

11.57 TGridHeaderClickEvent Type

Unit: WebGrids

TGridHeaderClickEvent = function (Sender: TObject): Boolean of
 object

The TGridHeaderClickEvent type is used by the TGridColumn OnHeaderClick event.

The Sender parameter is the TGridColumn instance that triggered the event.

Type Reference

Page 3685

11.58 THTMLFormEncoding Type

Unit: WebUI

THTMLFormEncoding = (feMultiPartFormData,feURLEncoded,
 feTextPlain)

The THTMLFormEncoding enumerated type is used with the THTMLForm and TFormElement classes to
specify the type of encoding to use for any form values when the HTML form is submitted to the web
server.

Element Description

feMultiPartFormData Specifies that the form should encode the form values using
the multipart/form-data MIME type. This is the default type of
encoding used in Elevate Web Builder, and should always be
used when uploading files in addition to text values.

feTextPlain Specifies that the form should encode the form values using
the text/plain MIME type. The only encoding that will take
place is that spaces will be converted into "+" characters.

feURLEncoded Specifies that the form should encode the form values using
the application/x-www-form-urlencoded MIME type. This
encoding will cause spaces to be converted into "+"
characters and any special characters to be converted into
ASCII hex values prefixed with the "%" character.

Type Reference

Page 3686

11.59 THTMLFormMethod Type

Unit: WebUI

THTMLFormMethod = (fmGet,fmPost,fmHead,fmPut,fmDelete)

The THTMLFormMethod enumerated type is used to specify the HTTP method to use for the THTMLForm
component when the Submit method is called to submit the form values to the web server.

Element Description

fmDelete Specifies that the HTTP DELETE method will be used to
submit the HTML form values.

fmGet Specifies that the HTTP GET method will be used to submit
the HTML form values.

fmHead Specifies that the HTTP HEAD method will be used to submit
the HTML form values.

fmPost Specifies that the HTTP POST method will be used to submit
the HTML form values. This is the default method.

fmPut Specifies that the HTTP PUT method will be used to submit
the HTML form values.

Type Reference

Page 3687

11.60 TIntegerArray Type

Unit: WebCore

TIntegerArray = array of Integer

The TIntegerArray type is used in classes such as the TSet class to represent an array of Integer values.

Type Reference

Page 3688

11.61 TInterfaceAnimationEvent Type

Unit: WebUI

TInterfaceAnimationEvent = procedure (ACurrentTime: Double) of
 object

The TInterfaceAnimationEvent type is used by the TInterfaceManager BeginAnimation and
ContinueAnimation methods to specify an animation event handler to be used for animating the frames
of an animation.

The AStartTime parameter is the time, in milliseconds, when the animation frame was initiated. This value
can be used by the event handler to reliably calculate animation effects based upon elapsed time.

Type Reference

Page 3689

11.62 TInterfaceControllerClass Type

Unit: WebUI

TInterfaceControllerClass = class of TInterfaceController

The TInterfaceControllerClass type is used to represent a TInterfaceController class type, and allows
TInterfaceControllerClass variables to store references to TInterfaceController classes and descendants.

Type Reference

Page 3690

11.63 TInterfaceErrorEvent Type

Unit: WebUI

TInterfaceErrorEvent = function (const Message: String; const
 URL: String; Line: Integer): Boolean of object

The TInterfaceErrorEvent type is used by the TInterfaceManager class to specify a global error handler for
an application.

Note
 The global TApplication instance automatically created for visual applications assigns an event
handler for interface manager errors, so you should not normally need to deal with this event type.

Type Reference

Page 3691

11.64 TInterfaceIdleEvent Type

Unit: WebUI

TInterfaceIdleEvent = procedure of object

The TInterfaceIdleEvent type is used by the TInterfaceManager OnIdle event to handle user inactivity
timeouts.

Type Reference

Page 3692

11.65 TInterfaceTimeoutEvent Type

Unit: WebUI

TInterfaceTimeoutEvent = procedure of object

The TInterfaceTimeoutEvent type is used by the TInterfaceManager CreateTimeout method to create a
timeout. A timeout waits N milliseconds, and then executes the specified event handler.

Type Reference

Page 3693

11.66 TInterfaceTimerEvent Type

Unit: WebUI

TInterfaceTimerEvent = procedure of object

The TInterfaceTimerEvent type is used by the TInterfaceManager CreateTimer method to create a timer. A
timer executes the specified event handler every N milliseconds.

Type Reference

Page 3694

11.67 TInterfaceViewportResizeEvent Type

Unit: WebUI

TInterfaceViewportResizeEvent = procedure of object

The TInterfaceViewportResizeEvent type is used by the TInterfaceManager to indicate when the browser
viewport has been resized.

Type Reference

Page 3695

11.68 TInterfaceViewportScrollEvent Type

Unit: WebUI

TInterfaceViewportScrollEvent = procedure of object

The TInterfaceViewportScrollEvent type is used by the TInterfaceManager to indicate when the browser
viewport has been scrolled in any direction.

Type Reference

Page 3696

11.69 TKeyDownEvent Type

Unit: WebCtrls

TKeyDownEvent = function (Sender: TObject; Key: Integer;
 ShiftKey, CtrlKey, AltKey: Boolean): Boolean of object

The TKeyDownEvent type is a common event type that is used by controls to provide notification that a
key is being pressed.

The Sender parameter represents the class instance that triggered the event. The Key parameter
represents the ordinal key code of the key pressed, and the ShiftKey, CtrlKey, AltKey parameters represent
whether the Shift, Control, and/or Alt keys were also pressed.

The Key value may represent a virtual key code. Certain keys, such as the Insert, Delete, and navigation
keys, use virtual key codes since these keys do not correspond to an ordinal Unicode character value. The
following virtual key code constants are defined in the WebUI unit for your convenience:

VK_BACK = 8;
VK_TAB = 9;
VK_RETURN = 13;
VK_ESCAPE = 27;
VK_SPACE = 32;
VK_PRIOR = 33;
VK_NEXT = 34;
VK_END = 35;
VK_HOME = 36;
VK_LEFT = 37;
VK_UP = 38;
VK_RIGHT = 39;
VK_DOWN = 40;
VK_INSERT = 45;
VK_DELETE = 46;

To not allow the keystroke, return False as the result to any event handler attached to this event. To allow
the keystroke, return True.

Type Reference

Page 3697

11.70 TKeyPressEvent Type

Unit: WebCtrls

TKeyPressEvent = function (Sender: TObject; Key: Char; ShiftKey,
 CtrlKey, AltKey: Boolean): Boolean of object

The TKeyPressEvent type is a common event type that is used by controls to provide notification that a key
has been pressed.

The Sender parameter represents the class instance that triggered the event. The Key parameter
represents the character key code of the key pressed, and the ShiftKey, CtrlKey, AltKey parameters
represent whether the Shift, Control, and/or Alt keys were also pressed.

Warning
 Certain keys, such as the Insert, Delete, and navigation keys, use virtual key codes since these keys
do not correspond to a Unicode character value. Only use this event to handle keystrokes that
correspond to Unicode character values. Use the OnKeyDown event to handle keystrokes that use
virtual key codes.

To not allow the keystroke, return False as the result to any event handler attached to this event. To allow
the keystroke, return True.

Type Reference

Page 3698

11.71 TKeyUpEvent Type

Unit: WebCtrls

TKeyUpEvent = procedure (Sender: TObject; Key: Integer; ShiftKey,
 CtrlKey, AltKey: Boolean) of object

The TKeyUpEvent type is a common event type that is used by controls to provide notification that a key is
being released.

The Sender parameter represents the class instance that triggered the event. The Key parameter
represents the ordinal key code of the key pressed, and the ShiftKey, CtrlKey, AltKey parameters represent
whether the Shift, Control, and/or Alt keys were also pressed.

The Key value may represent a virtual key code. Certain keys, such as the Insert, Delete, and navigation
keys, use virtual key codes since these keys do not correspond to an ordinal Unicode character value. The
following virtual key code constants are defined in the WebUI unit for your convenience:

VK_BACK = 8;
VK_TAB = 9;
VK_RETURN = 13;
VK_ESCAPE = 27;
VK_SPACE = 32;
VK_PRIOR = 33;
VK_NEXT = 34;
VK_END = 35;
VK_HOME = 36;
VK_LEFT = 37;
VK_UP = 38;
VK_RIGHT = 39;
VK_DOWN = 40;
VK_INSERT = 45;
VK_DELETE = 46;

Type Reference

Page 3699

11.72 TLayoutConsumption Type

Unit: WebUI

TLayoutConsumption = (lcNone,lcTopLeft,lcTop,lcTopRight,lcLeft,
 lcRight, lcBottomLeft,lcBottom,lcBottomRight)

The TLayoutConsumption enumerated type is used with the TLayout class to specify how a UI element or
control consumes space in the layout rectangle.

Element Description

lcBottom Specifies that the element or control will consume space
towards the bottom of the layout rectangle.

lcBottomLeft Specifies that the element or control will consume space
towards the bottom-left corner of the layout rectangle.

lcBottomRight Specifies that the element or control will consume space
towards the bottom-right corner of the layout rectangle.

lcLeft Specifies that the element or control will consume space
towards the left side of the layout rectangle.

lcNone Specifies that the element or control will not consume any
space in the layout rectangle. This is the default value.

lcRight Specifies that the element or control will consume space
towards the right side of the layout rectangle.

lcTop Specifies that the element or control will consume space
towards the top of the layout rectangle.

lcTopLeft Specifies that the element or control will consume space
towards the top-left corner of the layout rectangle.

lcTopRight Specifies that the element or control will consume space
towards the top-right corner of the layout rectangle.

Type Reference

Page 3700

11.73 TLayoutOverflow Type

Unit: WebUI

TLayoutOverflow = (loNone,loTop,loLeft,loRight,loBottom)

The TLayoutOverflow enumerated type is used with the TLayout class to specify how a UI element or
control handles situations where it won't fit within the bounds of the current layout rectangle.

Element Description

loBottom Specifies that the prior element or control's consumption will
be temporarily reset so that space is consumed towards the
bottom of the current layout rectangle.

loLeft Specifies that the prior element or control's consumption will
be temporarily reset so that space is consumed towards the
left side of the current layout rectangle.

loNone Specifies that the prior element or control's consumption will
not be temporarily reset.

loRight Specifies that the prior element or control's consumption will
be temporarily reset so that space is consumed towards the
right side of the current layout rectangle.

loTop Specifies that the prior element or control's consumption will
be temporarily reset so that space is consumed towards the
top of the current layout rectangle.

Type Reference

Page 3701

11.74 TLayoutPosition Type

Unit: WebUI

TLayoutPosition = (lpNone,lpTopLeft,lpTop,lpTopCenter,lpTopRight,
 lpLeft,lpLeftCenter,lpCenter,lpRight,lpRightCenter,
 lpBottomLeft,lpBottom,lpBottomCenter,lpBottomRight)

The TLayoutPosition enumerated type is used with the TLayout class to specify how a UI element or
control is positioned in the layout rectangle.

Type Reference

Page 3702

Element Description

lpBottom Specifies that the element or control will be positioned at the
bottom of the layout rectangle.

lpBottomCenter Specifies that the element or control will be centered
horizontally at the bottom of the layout rectangle.

lpBottomLeft Specifies that the element or control will be positioned in the
bottom left corner of the layout rectangle.

lpBottomRight Specifies that the element or control will be positioned in the
bottom right corner of the layout rectangle.

lpCenter Specifies that the element or control will be centered
horizontally and vertically within the layout rectangle.

lpLeft Specifies that the element or control will be positioned on the
left side of the layout rectangle.

lpLeftCenter Specifies that the element or control will be centered
vertically on the left side of the layout rectangle.

lpNone Specifies that the element or control will not be positioned by
the control's layout management, and will instead be
positioned according to its assigned Left and Top property
values. This is the default value.

lpRight Specifies that the element or control will be positioned on the
right side of the layout rectangle.

lpRightCenter Specifies that the element or control will be centered
vertically on the right side of the layout rectangle.

lpTop Specifies that the element or control will be positioned at the
top of the layout rectangle.

lpTopCenter Specifies that the element or control will be centered
horizontally at the top of the layout rectangle.

lpTopLeft Specifies that the element or control will be positioned in the
top left corner of the layout rectangle.

lpTopRight Specifies that the element or control will be positioned in the
top right corner of the layout rectangle.

Type Reference

Page 3703

11.75 TLayoutStretch Type

Unit: WebUI

TLayoutStretch = (lsNone,lsTopLeft,lsTop,lsTopRight,lsLeft,
 lsRight, lsBottomLeft,lsBottom,lsBottomRight)

The TLayoutStretch enumerated type is used with the TLayout class to specify how a UI element or control
is stretched to fill parts of the layout rectangle.

Element Description

lsBottom Specifies that the element or control will stretch to the
bottom of the layout rectangle.

lsBottomLeft Specifies that the element or control will stretch to the
bottom-left corner of the layout rectangle.

lsBottomRight Specifies that the element or control will stretch to the
bottom-right corner of the layout rectangle.

lsLeft Specifies that the element or control will stretch to the left
side of the layout rectangle.

lsNone Specifies that the element or control will not be stretched.
This is the default value.

lsRight Specifies that the element or control will stretch to the right
side of the layout rectangle.

lsTop Specifies that the element or control will stretch to the top of
the layout rectangle.

lsTopLeft Specifies that the element or control will stretch to the top-
left corner of the layout rectangle.

lsTopRight Specifies that the element or control will stretch to the top-
right corner of the layout rectangle.

Type Reference

Page 3704

11.76 TLineCapStyle Type

Unit: WebUI

TLineCapStyle = (csButt,csRound,csSquare)

The TLineCapStyle enumerated type is used to specify the how lines are terminated on a TCanvasElement
instance.

Element Description

csButt Specifies that lines should have no cap. The end of the lines
will be straight and perpendicular to the direction of the lines,
and the lines are not extended beyond their endpoint.

csRound Specifies that lines should be capped with a semicircle whose
diameter is equal to the width of the line. This semicircle
extends beyond the end of the line by one half of the width
of the line.

csSquare Specifies that lines should be capped with a rectangle. This is
just like the csButt member, but the lines are extended by half
of their width past their endpoint.

Type Reference

Page 3705

11.77 TLineJoinStyle Type

Unit: WebUI

TLineJoinStyle = (jsMiter,jsBevel,jsRound)

The TLineJoinStyle enumerated type is used to specify how lines are drawn when they intersect on a
TCanvasElement instance.

Element Description

jsBevel Specifies that the outside edges of the intersecting lines are
joined with a filled triangle.

jsMiter Specifies that the outside edges of the intersecting lines are
extended until they meet.

jsRound Specifies that the outside edges of the intersecting lines are
joined with a filled arc whose diameter is equal to the width
of the line.

Type Reference

Page 3706

11.78 TLocationError Type

Unit: WebComps

TLocationError = (leNone,lePermissionDenied,leUnavailable,
 leTimeout)

The TLocationError enumerated type is used with the TLocationServices OnLocationError event to
determine the reason why the current location cannot be obtained from the machine or device using the
host web browser.

Element Description

leNone The location information hasn't been obtained yet, or was
obtained without issue.

lePermissionDenied The location information could not be obtained because the
user did not grant permission for the current application to
access the location information for the machine or device.

leTimeout The location information could not be obtained for the
machine or device within the number of milliseconds
specified in the TLocationServices Timeout property.

leUnavailable The location information could not be obtained because
location services are not available for the machine or device.

Note
 This error condition can occur when the current
application was loaded in a non-secure context (http),
while the host web browser only allows location
services to be accessed from a secure context (https).

Type Reference

Page 3707

11.79 TMapControlPosition Type

Unit: WebMaps

TMapControlPosition = (cpBottomCenter,cpBottomLeft,cpBottomRight,
 cpLeftBottom,cpLeftCenter,cpLeftTop, cpRightBottom,
 cpRightCenter,cpRightTop, cpTopCenter,cpTopLeft,cpTopRight)

The TMapControlPosition enumerated type is used with the TMap control to specify how various map
controls (map type, overview map, pan, rotate, street view, zoom) are positioned over the map.

Element Description

cpBottomCenter The control is positioned at the bottom of the map, in the
center.

cpBottomLeft The control is positioned at the bottom of the map, on the
left.

cpBottomRight The control is positioned at the bottom of the map, on the
right.

cpLeftBottom The control is positioned on the left side of the map, at the
bottom.

cpLeftCenter The control is positioned on the left side of the map, in the
center.

cpLeftTop The control is positioned on the left side of the map, at the
top.

cpRightBottom The control is positioned on the right side of the map, at the
bottom.

cpRightCenter The control is positioned on the right side of the map, in the
center.

cpRightTop The control is positioned on the right side of the map, at the
top.

cpTopCenter The control is positioned at the top of the map, in the center.

cpTopLeft The control is positioned at the top of the map, on the left.

cpTopRight The control is positioned at the top of the map, on the right.

Type Reference

Page 3708

11.80 TMapTilt Type

Unit: WebMaps

TMapTilt = (mt0Degrees,mt45Degrees)

The TMapTilt enumerated type is used with the TMapOptions class to specify the viewing angle of the
map.

Element Description

mt0Degrees Specifies a viewing angle of 0 degrees (the default).

mt45Degrees Specifies a viewing angle of 45 degrees.

Type Reference

Page 3709

11.81 TMapType Type

Unit: WebMaps

TMapType = (mtHybrid,mtRoadmap,mtSatellite,mtTerrain)

The TMapType enumerated type is used with the TMapOptions class to specify the type of map to show.

Element Description

mtHybrid This map type displays a transparent layer of major streets on
satellite images.

mtRoadmap This map type displays a normal street map.

mtSatellite This map type displays satellite images.

mtTerrain This map type displays maps with physical features such as
terrain and vegetation.

Type Reference

Page 3710

11.82 TMapTypeControlStyle Type

Unit: WebMaps

TMapTypeControlStyle = (tcDefault,tcDropDownMenu,
 tcHorizontalBar)

The TMapTypeControlStyle enumerated type is used with the TMapTypeControlOptions class to specify
the style of the map type control.

Element Description

tcDefault The map type control will be the default control style (a
horizontal menu bar).

tcDropDownMenu The map type control will be a drop-down menu.

tcHorizontalBar The map type control will be a horizontal menu bar.

Type Reference

Page 3711

11.83 TMediaNetworkState Type

Unit: WebUI

TMediaNetworkState = (mnsEmpty,mnsIdle,mnsLoading,mnsNoSource)

The TMediaNetworkState enumerated type is used with the TAudio, TVideo, and TMediaElement classes
to determine the current network state of a media UI element or control.

Element Description

mnsEmpty The media element or control has not started using the
network. This is the case right after a new media URL has
been specified for the media element or control.

mnsIdle The media element or control is not currently using the
network.

mnsLoading The media element or control is currently using the network
to load media data.

mnsNoSource The media element or control is not currently using the
network because the media URL specified as a source cannot
be played by the media element or control.

Type Reference

Page 3712

11.84 TMediaPreload Type

Unit: WebUI

TMediaPreload = (mplNone,mplMetaData,mplAuto)

The TMediaPreload enumerated type is used with the TAudio, TVideo, and TMediaElement classes to
specify how much media data can be pre-loaded by the media UI element or control.

Element Description

mplAuto All of the media data can be pre-loaded.

mplMetaData Only the media metadata can be pre-loaded.

mplNone None of the media data can be pre-loaded.

Type Reference

Page 3713

11.85 TMediaReadyState Type

Unit: WebUI

TMediaReadyState = (mrsNothing,mrsMetadata,mrsCurrentData,
 mrsFutureData,mrsEnoughData)

The TMediaReadyState enumerated type is used with the TAudio, TVideo, and TMediaElement classes to
determine the current playback-readiness of the media control.

Element Description

mrsCurrentData Media data has been loaded for the current playback
position, but nothing more. This state normally occurs at the
end of media playback.

mrsEnoughData Enough media data has been loaded that the media control
should be able to play until the end of the media without
pausing.

mrsFutureData Enough media data has been loaded to begin playing, but
the media control will most likely have to pause at some later
point to load more data.

mrsMetadata The media metadata has been loaded, so statistics such as the
duration of the media will be available, but no media data has
been loaded yet.

mrsNothing No media data has been loaded (including metadata).

Type Reference

Page 3714

11.86 TModalResult Type

Unit: WebCtrls

TModalResult = (mrNone,mrOk,mrCancel,mrAbort,mrRetry, mrIgnore,
 mrYes,mrNo,mrAll,mrNoToAll, mrYesToAll,mrClose)

The TModalResult enumerated type is used with modal forms and dialogs to indicate which action the
user selected to close the modal form or dialog.

Element Description

mrAbort Indicates that the Abort button was clicked or selected.

mrAll Indicates that the All button was clicked or selected.

mrCancel Indicates that the Cancel button was clicked or selected.

mrClose Indicates that the Close button was clicked or selected.

mrIgnore Indicates that the Ignore button was clicked or selected.

mrNo Indicates that the No button was clicked or selected.

mrNone Indicates that no button was clicked or selected.

mrNoToAll Indicates that the No to All button was clicked or selected.

mrOk Indicates that the Ok button was clicked or selected.

mrRetry Indicates that the Retry button was clicked or selected.

mrYes Indicates that the Yes button was clicked or selected.

mrYesToAll Indicates that the Yes to All button was clicked or selected.

Type Reference

Page 3715

11.87 TMouseDownEvent Type

Unit: WebCtrls

TMouseDownEvent = procedure (Sender: TObject; Button: Integer;
 ShiftKey, CtrlKey, AltKey: Boolean; X,Y: Integer) of object

The TMouseDownEvent type is a common event type that is used by controls to provide notification that a
mouse button is being pressed.

The Sender parameter represents the class instance that triggered the event. The Button parameter
represents the ordinal button code of the mouse button pressed, and the ShiftKey, CtrlKey, AltKey
parameters represent whether the Shift, Control, and/or Alt keys were also pressed. The X and Y
parameters indicate the horizontal and vertical position of the mouse pointer, in pixels, relative to the
bounds of the control that triggered the event.

The ordinal mouse button values are defined in the WebUI unit, and are as follows:

MB_NONE = 0;
MB_LEFT = 1;
MB_MIDDLE = 2;
MB_RIGHT = 3;

Type Reference

Page 3716

11.88 TMouseMoveEvent Type

Unit: WebCtrls

TMouseMoveEvent = procedure (Sender: TObject; ShiftKey, CtrlKey,
 AltKey: Boolean; X,Y: Integer) of object

The TMouseMoveEvent type is a common event type that is used by controls to provide notification that
the mouse pointer is being moved over the control.

The Sender parameter represents the class instance that triggered the event. The ShiftKey, CtrlKey, AltKey
parameters represent whether the Shift, Control, and/or Alt keys were also pressed. The X and Y
parameters indicate the horizontal and vertical position of the mouse pointer, in pixels, relative to the
bounds of the control that triggered the event.

The ordinal mouse button values are defined in the WebUI unit, and are as follows:

MB_NONE = 0;
MB_LEFT = 1;
MB_MIDDLE = 2;
MB_RIGHT = 3;

Type Reference

Page 3717

11.89 TMouseUpEvent Type

Unit: WebCtrls

TMouseUpEvent = procedure (Sender: TObject; Button: Integer;
 ShiftKey, CtrlKey, AltKey: Boolean; X,Y: Integer) of object

The TMouseUpEvent type is a common event type that is used by controls to provide notification that a
mouse button is being released.

The Sender parameter represents the class instance that triggered the event. The Button parameter
represents the ordinal button code of the mouse button pressed, and the ShiftKey, CtrlKey, AltKey
parameters represent whether the Shift, Control, and/or Alt keys were also pressed. The X and Y
parameters indicate the horizontal and vertical position of the mouse pointer, in pixels, relative to the
bounds of the control that triggered the event.

The ordinal mouse button values are defined in the WebUI unit, and are as follows:

MB_NONE = 0;
MB_LEFT = 1;
MB_MIDDLE = 2;
MB_RIGHT = 3;

Type Reference

Page 3718

11.90 TMouseWheelEvent Type

Unit: WebCtrls

TMouseWheelEvent = procedure (Sender: TObject; WheelDelta:
 Integer; ShiftKey, CtrlKey, AltKey: Boolean; X,Y: Integer) of
 object

The TMouseWheelEvent type is a common event type that is used by controls to provide notification that
the mouse wheel is being rotated.

The Sender parameter represents the class instance that triggered the event. The WheelDelta parameter
represents the amount, in pixels, that the mouse wheel rotation represents, and the ShiftKey, CtrlKey,
AltKey parameters represent whether the Shift, Control, and/or Alt keys were also pressed. The X and Y
parameters indicate the horizontal and vertical position of the mouse pointer, in pixels, relative to the
bounds of the control that triggered the event.

Note
 The WheelDelta parameter can be positive or negative, depending upon the configuration of the
mouse and the direction in which the mouse wheel was rotated.

Type Reference

Page 3719

11.91 TMsgDlgBtn Type

Unit: WebForms

TMsgDlgBtn = (mbNone,mbOk,mbCancel,mbAbort,mbRetry,mbIgnore,
 mbYes,mbNo,mbAll,mbNoToAll,mbYesToAll,mbClose)

The TMsgDlgBtn enumerated type is used to specify the message dialog buttons to display in the
MessageDlg procedure.

Element Description

mbAbort Specifies that the button is an Abort button.

mbAll Specifies that the button is an All button.

mbCancel Specifies that the button is a Cancel button.

mbClose Specifies that the button is a Close button.

mbIgnore Specifies that the button is an Ignore button.

mbNo Specifies that the button is a No button.

mbNone Not used.

mbNoToAll Specifies that the button is a No to All button.

mbOk Specifies that the button is an Ok button.

mbRetry Specifies that the button is a Retry button.

mbYes Specifies that the button is a Yes button.

mbYesToAll Specifies that the button is a Yes to All button.

Type Reference

Page 3720

11.92 TMsgDlgBtns Type

Unit: WebForms

TMsgDlgBtns = array of TMsgDlgBtn

The TMsgDlgBtns type is simply a type definition for an array of TMsgDlgBtn enumerated values, and is
used in the MessageDlg procedure.

Type Reference

Page 3721

11.93 TMsgDlgResultEvent Type

Unit: WebForms

TMsgDlgResultEvent = procedure (DlgResult: TModalResult) of
 object

The TMsgDlgResultEvent event type is used with the MessageDlg procedure to pass an event handler to
the procedure that is called when the modal message dialog is closed by the user.

The DlgResult parameter indicates the button that the user clicked or selected, if any, to close the
message dialog.

Type Reference

Page 3722

11.94 TMsgDlgType Type

Unit: WebForms

TMsgDlgType = (mtWarning,mtError,mtInformation,mtConfirmation,
 mtCustom)

The TMsgDlgType enumerated type is used with the MessageDlg procedure to specify what type of
message dialog should be displayed.

Element Description

mtConfirmation Specifies that the message dialog will be a confirmation
dialog, and an applicable icon will be displayed on the
message dialog to reflect this.

mtCustom Specifies that the message dialog will be a custom dialog,
and an applicable icon will be displayed on the message
dialog to reflect this.

mtError Specifies that the message dialog will be an error dialog, and
an applicable icon will be displayed on the message dialog to
reflect this.

mtInformation Specifies that the message dialog will be an informational
dialog, and an applicable icon will be displayed on the
message dialog to reflect this.

mtWarning Specifies that the message dialog will be a warning dialog,
and an applicable icon will be displayed on the message
dialog to reflect this.

Type Reference

Page 3723

11.95 TNotifyEvent Type

Unit: WebCore

TNotifyEvent = procedure (Sender: TObject) of object

The TNotifyEvent type is a common event type that is used in any situation where a simple notification
mechanism is required, such as the OnClick event. The Sender parameter is the class instance that
triggered the event.

Type Reference

Page 3724

11.96 TObjectsArray Type

Unit: WebCore

TObjectsArray = array of TObject

The TObjectsArray type is used in classes like the TObjectList class to represent an array of TObject
instances.

Type Reference

Page 3725

11.97 TOverflowType Type

Unit: WebUI

TOverflowType = (otHidden,otAuto,otScroll)

The TOverflowType type is used by the TViewport component to specify whether or not horizontal and/or
vertical scrollbars should be shown when the application surface size exceeds the browser viewport size.

Element Description

otAuto A scrollbar is shown if the application surface exceeds the
browser viewport size, otherwise no scrollbar is shown.

otHidden No scrollbar is shown, even if the application surface exceeds
the browser viewport size This is the default value.

otScroll A scrollbar is always shown, even if the application surface
does not exceed the browser viewport size.

Type Reference

Page 3726

11.98 TPageChangeEvent Type

Unit: WebPages

TPageChangeEvent = function (Sender: TObject; NewPage: TPage):
 Boolean of object

The TPageChangeEvent event type is used by the TPagePanel OnPageChange event to indicate when the
active page changes in the control.

Type Reference

Page 3727

11.99 TPatternRepeatStyle Type

Unit: WebUI

TPatternRepeatStyle = (psNone,psHorizontal,psVertical,psBoth)

The TPatternRepeatStyle enumerated type is used to specify how a pattern should be tiled on a
TCanvasElement instance.

Element Description

psBoth Specifies that the pattern will be tiled both horizontally and
vertically.

psHorizontal Specifies that the pattern will be tiled horizontally.

psNone Specifies that the pattern will not be tiled at all. This is the
default value.

psVertical Specifies that the pattern will be tiled vertically.

Type Reference

Page 3728

11.100 TRequestMethod Type

Unit: WebHTTP

TRequestMethod = (rmGet,rmPost,rmHead,rmPut,rmDelete,rmPatch)

The TRequestMethod enumerated type is used with the TServerRequest component to specify the HTTP
method for a web server request.

Element Description

rmDelete Specifies that the request is an HTTP DELETE request.

rmGet Specifies that the request is an HTTP GET request.

rmHead Specifies that the request is an HTTP HEAD request.

rmPatch Specifies that the request is an HTTP PATCH request.

Note
 This method is not supported by the Elevate Web
Builder Web Server and is only provided here for usage
with other web servers.

rmPost Specifies that the request is an HTTP POST request.

rmPut Specifies that the request is an HTTP PUT request.

Type Reference

Page 3729

11.101 TScrollBars Type

Unit: WebCtrls

TScrollBars = (sbNone,sbVertical,sbHorizontal,sbBoth)

The TScrollBars enumerated type is used with various scrollable controls to specify how scrollbars should
be displayed when their content overflows the client area of the control.

Element Description

sbBoth Specifies that both a horizontal and vertical scrollbar should
be displayed, if necessary.

sbHorizontal Specifies that a horizontal scrollbar should be displayed, if
necessary.

sbNone Specifies that no scrollbars should be displayed.

sbVertical Specifies that a vertical scrollbar should be displayed, if
necessary.

Type Reference

Page 3730

11.102 TScrollSupport Type

Unit: WebCtrls

TScrollSupport = (ssNone,ssVertical,ssHorizontal,ssBoth)

The TScrollSupport enumerated type is used with various scrollable controls to specify the directions in
which the controls can be scrolled when their content overflows the client area of the control.

Note
 This property only applies to scrolling via touch and mouse wheel movements, and does not apply
to programmatic scrolling or scrolling via the scroll bars themselves.

Element Description

ssBoth Specifies that scrolling is allowed in both the horizontal and
vertical directions.

ssHorizontal Specifies that scrolling is allowed in the horizontal direction
only.

ssNone Specifies that scrolling is not allowed in either the horizontal
or vertical direction.

ssVertical Specifies that scrolling is allowed in the vertical direction only.

Type Reference

Page 3731

11.103 TSelectionState Type

Unit: WebBtns

TSelectionState = (ssIndeterminate,ssUnselected,ssSelected)

The TSelectionState enumerated type is used with the TCheckBox and TRadioButton classes to specify the
selection state of the control.

Element Description

ssIndeterminate Specifies that no selection has been made. This is the default
value.

ssSelected Specifies that the control is selected.

ssUnselected Specifies that the control is not selected.

Type Reference

Page 3732

11.104 TServerRequestEvent Type

Unit: WebHTTP

TServerRequestEvent = procedure (Request: TServerRequest) of
 object

The TServerRequestEvent event type is used by the TServerRequest OnComplete event to indicate when a
server request is complete.

The Request parameter indicates the server request that triggered the event, and the StatusCode property
of the server request can be examined to determine if the request completed successfully.

Type Reference

Page 3733

11.105 TServerRequestProgressEvent Type

Unit: WebHTTP

TServerRequestProgressEvent = procedure (Current: Integer;
 Total: Integer) of object

Type Reference

Page 3734

11.106 TServerRequestURL Type

Unit: WebHTTP

TServerRequestURL = type String

The TServerRequestURL type is used to represent the URL of a TServerRequest class instance. This type is
type-equivalent to a String type, but is used to distinguish the URL of a server request instance when used
with special design-time property editors.

Type Reference

Page 3735

11.107 TSizerOrientation Type

Unit: WebSizer

TSizerOrientation = (soVertical,soHorizontal)

The TSizerOrientation enumerated type is used with the TSizer control to specify in which direction a sizer
control be oriented, which determines the direction in which the associated control will be resized as the
sizer control is moved.

Element Description

soHorizontal The sizer control will size a control in a horizontal direction.

soVertical The sizer control will size a control in a vertical direction.

Type Reference

Page 3736

11.108 TSlideEvent Type

Unit: WebSlide

TSlideEvent = procedure (Sender: TObject; SlideIndex: Integer;
 const SlideImageURL: String) of object

The TSlideEvent type is used by the OnLoadSlide and OnRenderSlide events for the TSlideShow control to
intercept the loading or rendering of slide images.

Type Reference

Page 3737

11.109 TSortDirection Type

Unit: WebData

TSortDirection = (sdNone,sdAscending,sdDescending)

The TSortDirection enumerated type is used with the TDataColumn class to specify how a column should
be sorted in a dataset.

Element Description

sdAscending Specifies that the column should be sorted in ascending
order.

sdDescending Specifies that the column should be sorted in descending
order.

sdNone Specifies that the column should not be part of the active
sort.

Type Reference

Page 3738

11.110 TStorageChangeEvent Type

Unit: WebComps

TStorageChangeEvent = procedure (Sender: TObject; const Key:
 String; const NewValue: String; const OldValue: String; const
 URL: String) of object

The TStorageChangeEvent event type is used by the TPersistentStorage OnChange event to indicate when
the persistent local storage (but not the session-only local storage) is changed by another session in the
host web browser.

The Key parameter indicates the key of the item that was updated. This parameter will be blank if the
contents of the persistent local storage were removed using the ClearAll method.

The NewValue parameter indicates the value of the item that was updated. This parameter will be blank if
the contents of the persistent local storage were removed using the ClearAll method, or if the item was
removed using the Clear method.

const Key: String;
const NewValue: String; const OldValue: String;
const URL: String

The Request parameter indicates the server request that triggered the event, and the StatusCode property
of the server request can be examined to determine if the request completed successfully.

Type Reference

Page 3739

11.111 TStringsArray Type

Unit: WebCore

TStringsArray = array of String

The TStringArray type is used in classes like the TStringList class to represent an array of String values.

Type Reference

Page 3740

11.112 TTextAlignment Type

Unit: WebUI

TTextAlignment = (taLeftJustify,taCenter,taRightJustify)

The TTextAlignment enumerated type is used to specify the horizontal alignment of text on a
TCanvasElement instance.

Element Description

taCenter Specifies that the text will be centered.

taLeftJustify Specifies that the text will be left-justified.

taRightJustify Specifies that the text will be right-justified.

Type Reference

Page 3741

11.113 TTextBaseLine Type

Unit: WebUI

TTextBaseLine = (blAlphabetic,blTop,blMiddle,blBottom,blHanging,
 blIdeographic)

The TTextBaseLine enumerated type is used to specify the vertical alignment of text on a TCanvasElement
instance.

Element Description

blAlphabetic Specifies that the baseline is the normal alphabetic baseline.
This is the default vertical alignment.

blBottom Specifies that the baseline is the bottom of the bounding box
that encompasses the text.

blHanging Specifies that the baseline is the hanging baseline.

blIdeographic Specifies that the baseline is the ideographic baseline.

blMiddle Specifies that the baseline is the middle of the em square.

blTop Specifies that the baseline is the top of the em square.

Type Reference

Page 3742

11.114 TTextInputType Type

Unit: WebUI

TTextInputType = (tiNone,tiEmail,tiNumber,tiURL)

The TTextInputType enumerated type is used with the TTextInputElement class to specify how the text
should be input. This information is used with touch interfaces to determine the type of soft keyboard to
display when inputting text into the element.

Element Description

tiEmail Specifies that the element will contain an email address.

tiNone Specifies that the element will contain regular text.

tiNumber Specifies that the element will contain a number.

tiURL Specifies that the element will contain a URL.

Type Reference

Page 3743

11.115 TTouchEvent Type

Unit: WebCtrls

TTouchEvent = procedure (Sender: TObject; ShiftKey, CtrlKey,
 AltKey: Boolean; X,Y: Integer) of object

The TTouchEvent type is a common event type that is used by controls to provide notification that a touch
event is occurring via a touch interface.

The Sender parameter represents the class instance that triggered the event. The ShiftKey, CtrlKey, AltKey
parameters represent whether the Shift, Control, and/or Alt keys were also pressed. The X and Y
parameters indicate the horizontal and vertical position of the touch, in pixels, relative to the bounds of
the control that triggered the event.

Type Reference

Page 3744

11.116 TTouchScrollEvent Type

Unit: WebCtrls

TTouchScrollEvent = procedure (Sender: TObject; X,Y: Integer) of
 object

The TTouchScrollEvent type is a common event type that is used by controls to provide notification that a
control is being scrolled using a touch movement in any direction.

The Sender parameter represents the class instance that triggered the event. The X parameter indicates
the horizontal movement, in pixels, while the Y parameter indicates the vertical movement, in pixels.

Type Reference

Page 3745

11.117 TWebElementEvent Type

Unit: WebUI

TWebElementEvent = procedure (AElement: TWebElement) of object

The TWebElementEvent type is used with the TWebElement OnLoad, OnUnload, and OnError events.

Type Reference

Page 3746

11.118 TZoomControlStyle Type

Unit: WebMaps

TZoomControlStyle = (zcDefault,zcLarge,zcSmall)

The TZoomControlStyle enumerated type is used with the TZoomControlOptions class to specify the size
of the zoom control.

Element Description

zcDefault The default size (large).

zcLarge A large zoom control.

zcSmall A small zoom control.

Type Reference

Page 3747

