
Elevate Web Builder 2 Modules Manual

Table Of Contents

Chapter 1 - Getting Started 1

1.1 Creating a Module 1

1.2 Database Modules 3

1.3 Handling Requests 4

Chapter 2 - Component Reference 13

2.1 TEWBDatabaseAdapter Component 13

2.2 TEWBDataSetAdapter Component 30

2.3 TEWBJSONReader Component 45

2.4 TEWBJSONWriter Component 73

2.5 TEWBMIMEPart Component 104

2.6 TEWBMIMEParts Component 112

2.7 TEWBModule Component 116

2.8 TEWBServerRequest Component 123

Chapter 3 - Type Reference 169

3.1 TEWBAuthenticationEvent Type 169

3.2 TEWBFilterDataSetRowsEvent Type 170

3.3 TEWBGetDataSetAdapterEvent Type 171

3.4 TEWBGetDataSetsEvent Type 172

3.5 TEWBHashType Type 173

3.6 TEWBInitializeDataSetAdapterEvent Type 174

3.7 TEWBJSONDateTimeFormat Type 175

3.8 TEWBModuleExecuteEvent Type 176

3.9 TEWBRequestMethod Type 177

Table of Contents

Preface

This page intentionally left blank

Table of Contents

Preface

Chapter 1
Getting Started

1.1 Creating a Module

To create a new module, please complete the following steps:

1. In the RAD Studio IDE, select the File/New/Other menu option from the main menu.

2. The New Items dialog will then appear. Select the Elevate Web Builder option folder from the list on
the left-hand side of the dialog. Click on the Elevate Web Builder Module and then click on the OK
button.

3. The Browse for Folder dialog will then appear. Select the desired target folder for the new module

Getting Started

Page 1

project and click on the OK button.

4. The new module project will be created in the desired target folder and opened as the active project in
the RAD Studio IDE.

Please see the Handling Requests topic for more information on adding the appropriate code for
handling incoming requests to the module.

Getting Started

Page 2

1.2 Database Modules

Database modules are exactly like any other module, but are coded to handle database operations using
the TEWBDatabaseAdapter and TEWBDataSetAdapter components. Specifically, any incoming request can
be passed directly to the TEWBDatabaseAdapter HandleRequest method and the database adapter
component will completely handle the database request, calling the applicable TEWBDatabaseAdapter
and TEWBDataSetAdapter methods and events as necessary to complete the request and send back a
response.

Please see the Configuring the Web Server section in the Elevate Web Builder manual that is included
with the Elevate Web Builder IDE for more information on configuring the database modules resource
name used with database module requests.

Database Module Example

The Elevate Web Builder 2 Modules installation includes an example database module project that shows
how to load a dataset from an ElevateDB database. This project also demonstrates the usage of the
TEWBDatabaseAdapter and TEWBDataSetAdapter components for generating/consuming JSON from
TDataSet-descendant component instances in Embarcadero RAD Studio and Delphi. It is installed into the
\examples\databasemodule subdirectory under the main installation directory of the Elevate Web Builder
2 Modules installation.

In addition, a database module client example project called databaseclient.wbp is automatically installed
with the example applications that come with Elevate Web Builder 2. It provides the front-end for
accessing the dataset that is handled by the database module example project. A pre-compiled copy
(databasemodule.dll) of the databasemodule example project will be also be located in the
\bin\databasemodule\win32 subdirectory under the main installation directory of Elevate Web Builder 2,
and this pre-compiled database module will be added to the IDE during the example installation so that it
can be used with the database module client example project.

Getting Started

Page 3

1.3 Handling Requests

Note
 Before reading the following material, please be sure that you understand how HTTP requests
work by reading the Using Server Requests and Using the Web Server sections of the Elevate
Web Builder manual that is included with the Elevate Web Builder IDE. These sections contain
important information such as how server requests work and how HTTP headers are formatted.

Incoming Requests

When an HTTP request is received by the Elevate Web Builder Web Server, the URL of the request is
checked to see if the request is for static content or a database request. If the URL for the request is not
that of static content or a database request, then the URL is checked to see if it is an Elevate Web Builder
module request. A module request is any request that uses one of the following URL structures:

Normal Module

http://<Domain Name>/<Modules Resource Name>/<Module Name> or
https://<Domain Name>/<Modules Resource Name>/<Module Name>

Database Module

http://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>
 or
https://<Domain Name>/<Database Modules Resource Name>/<Database Module Name>

Note
 The <Module Resource Name> and <Database Module Resource Name> components of the URL
are the default resource names for modules and database modules defined in the Elevate Web
Builder Web Server, but can be changed in the web server configuration. If you've changed the
default modules resource name of 'modules', then please replace any subsequent references to the
default 'modules' resource name in the following examples with the resource name that you're
using instead. The same holds true for the default database modules resource name of
'databasemodules'.

If the URL matches either of the above patterns, the web server will automatically instantiate a
TEWBModule component to represent the module specified in the URL for use with the request. The web
server will then pass the request information to the module instance by firing its OnExecute event handler.
The request is passed to the OnExecute event handler as an instance of the TEWBServerRequest object.
This TEWBServerRequest object instance is used both to retrieve information about the request and to
send content as a response to the request.

Getting Started

Page 4

For database module requests, you can use the OnExecute event handler to pass the incoming request
directly to the TEWBDatabaseAdapter HandleRequest method and the database adapter component will
completely handle the database request, calling the applicable TEWBDatabaseAdapter and
TEWBDataSetAdapter methods and events as necessary to complete the request and send back a
response.

Warning
 Each module instance is executed in a separate thread, so you must make sure that all code
included in an OnExecute event handler is completely thread-safe. Also, all modules in the web
server run in-process, so a fatal error such as a memory overwrite due to improper threading code
in a module could cause the server to fail.

Determining if a Request Is Secure

You can determine if a request is secure (using HTTPS) by examining the RequestSecure property of the
incoming request.

Note
 The web server does not currently support secure requests.

Determining the Request Type

Module requests can be HTTP HEAD, GET, POST, PUT, and DELETE requests. You can determine the
request type by examining the RequestMethod property of the incoming request. HEAD requests are
normally associated with static resources such as files, but they can be sent to modules when the content
type of the resource being handled by the module is unknown to the client application. PUT and DELETE
requests are normally associated with REST APIs, which are possible to handle using modules.

Determining the Browser Type

You can determine the type of browser that is submitting the request by examining the following
properties of the incoming request:

RequestIE
RequestFireFox
RequestChrome
RequestOpera
RequestSafari

Note
 These properties are set by the web server examining the RequestHeaders that are passed to the
web server as part of the request, and therefore can be easily forged by any client that is trying to
impersonate a particular browser. However, for the majority of clients, these properties will
accurately reflect the browser being used on the client.

Reading URL Parameters

Getting Started

Page 5

Parameters are specified in a URL in the following manner:

<BaseURL>?<Params>

<Params> = <Param> [? <Param>]

<Param> = <Key>=<Value>

For example, the following URL will result in a request to the module called "Compute" with parameters
for X and Y axis values:

http://www.domain.com/modules/compute?x=100&y=200

The URL and any parameters included in the URL are specified in the request's RequestURL and
RequestURLParams properties, respectively. The RequestURLParams property, however, is in its raw form.
An easier way to examine the URL parameters would be to use the RequestParams property. The
RequestParams property is a TStrings instance of key-value pairs that represent all URL parameters. To use
the above example, the following values would be present in the RequestParams property for the
specified URL:

x=100
y=200

Reading Request Cookies

Cookies are simple textual data that is persisted in the client across connections to the web server. Any
cookies that apply to the request URL will automatically be sent by the client and will be available in the
TServerRequest RequestCookies property. The RequestCookies property is a TStrings instance of key-value
pairs that represent all applicable cookies. See the Sending a Response section below for information on
how to set cookies in responses.

Authenticating a Request

The Elevate Web Builder Web Server supports two different forms of automated authentication:

Custom HTTP headers

URL Parameters

Custom HTTP Authentication Headers

The custom HTTP authentication headers must be sent to the web server as follows:

X-EWBUser: <UserName>
X-EWBPassword: <Password>

Getting Started

Page 6

URL Authentication Parameters

The URL authentication parameters must be sent to the web server as follows:

user=<UserName>&password=<Password>

Note
 By default, all database requests sent by an Elevate Web Builder application use custom HTTP
authentication headers. However, database requests can also be configured to use URL parameters
for authentication.

If the Elevate Web Builder application, or any client application, sends authentication information using
either method described above, then the Elevate Web Builder Web Server will automatically populate the
incoming TServerRequest RequestUser and RequestPassword properties with the authentication
information provided by the client application.

In order to handle verifying the provided authentication information, you can call the AuthenticateUser
method. This method call will trigger the OnAuthenticateUser event, and if the event handler sets the
Result parameter to True, then the module will populate the UserName and Password properties with the
authentication information.

Reading Request Content

POST requests are normally accompanied by content that is submitted as part of the request. The
RequestContentType, RequestContentLength, and RequestContent properties of the request contain the
content type, content length, and actual content.

HTML Form Submittals

When an HTML form is submitted to the URL for the module, the form data may be sent over using one of
two formats. Depending upon value of the RequestContentType property, the web server will
automatically perform some pre-processing of the incoming conent in the following ways:

application/x-www-form-urlencoded

This is the default encoding for form submittals, and common for form submittals that do not
include file uploads. The web server will pre-parse all textual form variables and they are accessible
via the RequestContentParams property as key-value pairs

Getting Started

Page 7

multipart/form-data

If a form submittal includes one or more file uploads, then the browser will use a special MIME
encoding. The web server will pre-parse all textual form variables as with the default encoding, but
will also include any file content in the RequestMIMEParts property, with each file in its own
TEWBMIMEPart instance. Each TEWBMimePart instance includes both Headers and Content. The
Headers property contains MIME headers, which are formatted in the same fashion as HTTP
headers. These headers can be used to determine how to deal with the Content property, and the
most useful are:

Header Description

Content-Transfer-Encoding This header identifies the encoding of the file content
contained in the Content property. This is essential in
knowing how to deal with the content.

Content-Disposition This header identifies the actual name of the file. This is
useful if the file content must be saved under its source
name and then later retrieved using its file name.

Sending a Response

The web server doesn't automatically send a response to an HTTP request once the OnExecute event
handler terminates, so it is important that you send a response from within the OnExecute event handler.
You can use one of several methods to send a response to the client's request:

Getting Started

Page 8

Method Description

SendContent Sends Unicode content as a UTF-8 string along with an
optional HTTP status code and message.

SendContentHeader Sends an HTTP status code and message in response to a
HEAD request.

SendContentStream Sends content as a binary stream along with an optional HTTP
status code and message.

SendCustomContent Sends Unicode or ANSI content with a specific disposition.
The disposition is used to give the client an indication of how
the content should be saved, such as the file name for a file.

Note
 There are two SendCustomContent methods, one for
Unicode strings and one for ANSI strings.

SendCustomContentHeader Sends a content type and disposition in response to a HEAD
request. The disposition is used to give the client an
indication of how the content should be saved, such as the
file name for a file.

SendCustomContentStream Sends content as a binary stream with a specific disposition.
The disposition is used to give the client an indication of how
the content should be saved, such as the file name for a file.

SendRedirect Sends the new location (URL) for a resource (if its location has
been changed) along with a optional Unicode content as a
UTF-8 string, HTTP status code, and message.

SendError Sends a Unicode error message along with an HTTP status
(error) code.

Warning
 Once one of the above methods is called, you should clean up any allocated resources and exit the
OnExecute event handler. Not only is it important that you call one of the Send methods, it is also
equally important that you do not call one of the above methods more than once, or more than
one method per request.

In an Elevate Web Builder module, there are defined constants that represent the common HTTP status
codes, and you will find these constants in the ewbhttpcommon unit, which is distributed as a .dcu (Delphi
compiled unit) with the Elevate Web Builder Modules installlation.

The constants are defined as follows:

 HTTP_NONE = 0;
 HTTP_CONTINUE = 100;
 HTTP_OK = 200;
 HTTP_MOVED_PERMANENTLY = 301;
 HTTP_FOUND = 302;

Getting Started

Page 9

 HTTP_SEE_OTHER = 303;
 HTTP_NOT_MODIFIED = 304;
 HTTP_MOVED_TEMPORARILY = 307;
 HTTP_BAD_REQUEST = 400;
 HTTP_NOT_FOUND = 404;
 HTTP_NO_LENGTH = 411;
 HTTP_INTERNAL_ERROR = 500;
 HTTP_NOT_IMPLEMENTED = 501;
 HTTP_SERVICE_UNAVAILABLE = 503;

Setting Cookies

As indicated above, any cookies that are stored on the client and are applicable to the request URL can be
found in the RequestCookies property. You can add or modify such cookies by assigning key-value pairs
to the TServerRequest ResponseCookies or ResponseSessionCookies properties. The key is the name of
the cookie, and the value is the value to assign to that cookie. To "delete" a cookie, simply set its value to
nothing.

Note
 You must set any cookies before calling any of the TServerRequest Send* methods detailed above,
or the cookies will not be set properly on the client.

There are three cookie attributes that are also important. Cookie attributes are specified after the value of
a cookie and are always prefixed by a semicolon.

Attribute Description

expires Specifies the date/time that the cookie expires as a GMT
string. To convert a TDateTime into a GMT string, use the
TServerRequest DateTimeToGMTStr method. If you do not
specify an expiration attribute, then the web server will
automatically set the expires attribute as 1460 days from the
current date/time for all cookies specified in the
ResponseCookies property. The web server will not set the
expires attribute for any cookies specified in the
ResponseSessionCookies property, which means that they will
automatically not persist past the current client session. This is
useful for session IDs and other types of information that you
do not want to be present in a new or different client session.

domain Specifies the domain that the cookie applies to. If you do not
specify a domain attribute, then the web server will
automatically set the domain attribute to that of the
configured domain for the web server. Please see the Elevate
Web Builder manual for more information on configuring the
web server domain.

path Specifies the path attribute that the cookie applies to. If you
do not specify a path attribute, then the web server will
automatically set the path attribute to a single forward slash,
meaning that the cookie applies to all paths within the
cookie's domain.

Getting Started

Page 10

Getting Started

Page 11

This page intentionally left blank

Component Reference

Page 12

Chapter 2
Component Reference

2.1 TEWBDatabaseAdapter Component

Unit: ewbdatasetadapter

Inherits From TComponent

The TEWBDatabaseAdapter component is used in conjunction with various TEWBDataSetAdapter
components to create and load JSON dataset columns and rows to/from generic TDataSet descendant
components, as well as commit transaction operations to one or more datasets. It is used with database
modules that need to deal with data from a data source that isn't supported by Elevate Web Builder Web
Server's automatic database handling or need to perform special processing/authentication for database
requests.

Properties Methods Events

InTransaction AuthenticateUser OnAuthenticateUser

Password BuildDataSets OnCommit

UserName Commit OnGetDataSetAdapter

Create OnGetDataSets

GetDataSetAdapter OnRollback

GetDataSets OnStartTransaction

HandleRequest

Component Reference

Page 13

TEWBDatabaseAdapter.InTransaction Property

property InTransaction: Boolean

Specifies whether the database adapter is currently processing a transaction request. This is useful when
you wish to use different datasets, or dataset adapters, with transactions than with requests for columns,
rows, or BLOB values. You can read this property in an OnGetDataSetAdapter event handler in order to
perform this type of conditional processing.

Component Reference

Page 14

TEWBDatabaseAdapter.Password Property

property Password: String

Specifies the authenticated password included with a server request, if any was included. Authentication
information can be passed to a web server module from an Elevate Web Builder application via HTTP
headers or via HTTP URL parameters.

Note
 This property will be blank until the HandleRequest method is called, and the server request has
been successfully authenticated.

Component Reference

Page 15

TEWBDatabaseAdapter.UserName Property

property UserName: String

Specifies the authenticated user name included with a server request, if any was included. Authentication
information can be passed to a web server module from an Elevate Web Builder application via HTTP
headers or via HTTP URL parameters.

Note
 This property will be blank until the HandleRequest method is called, and the server request has
been successfully authenticated.

Component Reference

Page 16

TEWBDatabaseAdapter.AuthenticateUser Method

function AuthenticateUser(Request: TEWBServerRequest): Boolean

Use this method to trigger the OnAuthenticateUser event and authenticate the user name/password
information provided with the Request parameter. Authentication information can be passed to a web
server module from an Elevate Web Builder application via HTTP headers or via HTTP URL parameters, and
this method will automatically handle the retrieving the authentication information from the request and
passing it to the OnAuthenticateUser event handler.

Note
 This method will only be automatically called when the HandleRequest method is called. In any
other situation, you will need to manually call this method to authenticate a request.

Component Reference

Page 17

TEWBDatabaseAdapter.BuildDataSets Method

function BuildDataSets: String

Use this method to build a JSON string containing all of the datasets for the database.

Note
 This method will be automatically called when the HandleRequest method is called, so you
normally will not need to call this method directly.

Component Reference

Page 18

TEWBDatabaseAdapter.Commit Method

procedure Commit(const Operations: String)

procedure Commit(const Operations: AnsiString)

Use this method to commit a transaction received from an Elevate Web Builder client application into a
database.

This method will automatically call the GetDataSetAdapter method as necessary to get access to the
dataset adapters required to perform the insert, update, and delete row operations in the transaction. If a
dataset adapter cannot be accessed for a particular dataset, then an exception will be raised and the
transaction commit will fail.

Please see the JSON Reference section in the Elevate Web Builder manual that is included with the
Elevate Web Builder IDE for more information on the structure of the JSON used with database
transactions.

Note
 This method will only be automatically called when the HandleRequest method is called. In any
other situation, you will need to manually call this method to commit transactions.

Component Reference

Page 19

TEWBDatabaseAdapter.Create Method

constructor Create(AOwner: TComponent)

Call the constructor to create an instance of the TEWBDatabaseAdapter component.

Component Reference

Page 20

TEWBDatabaseAdapter.GetDataSetAdapter Method

function GetDataSetAdapter(const DataSetName: String):
 TEWBDataSetAdapter

Use this method to trigger the OnGetDataSetAdapter event and retrieve the dataset adapter instance for
the specified dataset name.

Note
 This method will only be automatically called when the HandleRequest method is called. In any
other situation, you will need to manually call this method to retrieve a dataset adapter for a
dataset.

Component Reference

Page 21

TEWBDatabaseAdapter.GetDataSets Method

procedure GetDataSets(DataSets: TStrings)

Use this method to trigger the OnGetDataSets event and retrieve the available dataset names for the
module.

Note
 This method will only be automatically called when the HandleRequest method is called. In any
other situation, you will need to manually call this method to retrieve a list of available dataset
names.

Component Reference

Page 22

TEWBDatabaseAdapter.HandleRequest Method

procedure HandleRequest(Request: TEWBServerRequest)

Use this method to automatically handle a database request from an Elevate Web Builder client
application. Database requests use a standard request format in Elevate Web Builder. Unless you're using
a different request format, you can use this method without having to worry about the details of the
database request URLs, parameters, and authentication.

This method will automatically call the AuthenticateUser method first before attempting to perform any
other functionality. If the AuthenticateUser method returns True, then the database adapter will continue
processing the database request, triggering the GetDataSets, GetDataSetAdapter, and Commit methods as
necessary.

Please see the JSON Reference section in the Elevate Web Builder manual that is included with the
Elevate Web Builder IDE for more information on the structure of the JSON used with databases.

Component Reference

Page 23

TEWBDatabaseAdapter.OnAuthenticateUser Event

property OnAuthenticateUser: TEWBAuthenticationEvent

This event is triggered before the database adapter handles any dataset request and provides an
opportunity for the developer to authenticate the request based upon the authentication information
provided with the request.

Component Reference

Page 24

TEWBDatabaseAdapter.OnCommit Event

property OnCommit: TNotifyEvent

This event is triggered when the database adapter needs to commit a transaction. The developer can
define an event handler for this event in order to handle committing a transaction using the database-
specific component for handling transactions.

Component Reference

Page 25

TEWBDatabaseAdapter.OnGetDataSetAdapter Event

property OnGetDataSetAdapter: TEWBGetDataSetAdapterEvent

This event is triggered when the GetDataSetAdapter method is called.

Warning
 If the Adapter variable parameter is not assigned a value, then an exception can occur during
transaction commit operations that reference the specified dataset name.

Component Reference

Page 26

TEWBDatabaseAdapter.OnGetDataSets Event

property OnGetDataSets: TEWBGetDataSetsEvent

This event is triggered when a list request is handled by the database adapter. Usage of this event is
completely optional, but the event is useful for allowing client applications to enumerate the available
datasets.

Component Reference

Page 27

TEWBDatabaseAdapter.OnRollback Event

property OnRollback: TNotifyEvent

This event is triggered when the database adapter needs to roll back a transaction. The developer can
define an event handler for this event in order to handle rolling back a transaction using the database-
specific component for handling transactions.

Component Reference

Page 28

TEWBDatabaseAdapter.OnStartTransaction Event

property OnStartTransaction: TNotifyEvent

This event is triggered when the database adapter needs to start a transaction. The developer can define
an event handler for this event in order to handle starting a transaction using the database-specific
component for handling transactions.

Component Reference

Page 29

2.2 TEWBDataSetAdapter Component

Unit: ewbdatasetadapter

Inherits From TComponent

The TEWBDataSetAdapter component is used in conjunction with the TEWBDatabaseAdapter component
to create and load JSON dataset columns and rows to/from generic TDataSet descendant components, as
well as commit transaction operations to one or more datasets. It is used with database modules that
need to deal with data from a data source that isn't supported by the Elevate Web Builder Web Server's
automatic database handling or need to perform special processing/authentication for database requests.

Properties Methods Events

DataSet BuildColumns OnFilterRows

KeyCaseInsensitive BuildLoad OnInitialize

KeyFields BuildRows

LocalizeDateTimeColumns Create

NumKeyFields FilterRows

GetLoadContentType

Initialize

Component Reference

Page 30

TEWBDataSetAdapter.DataSet Property

property DataSet: TDataSet

Specifies the TDataSet-descendant component to use for the dataset adapter.

Note
 The dataset must be capable of uniquely identifying rows using a primary key or some other
method in order to work properly when inserting, updating, or deleting rows during transactions.

Component Reference

Page 31

TEWBDataSetAdapter.KeyCaseInsensitive Property

property KeyCaseInsensitive: Boolean

Specifies whether the key fields for the dataset are case-insensitive.

Note
 This property can be set directly at any time, but it will automatically be cleared if the Initialize
method is called.

Component Reference

Page 32

TEWBDataSetAdapter.KeyFields Property

property KeyFields: String

Specifies the key fields for the dataset, with each key field separated by a semicolon (;).

Note
 This property can be set directly at any time, but it will automatically be cleared if the Initialize
method is called.

Component Reference

Page 33

TEWBDataSetAdapter.LocalizeDateTimeColumns Property

property LocalizeDateTimeColumns: Boolean

Specifies whether the adapter will localize date/time column values in the dataset when converting them
to/from strings. The default value is False.

Component Reference

Page 34

TEWBDataSetAdapter.NumKeyFields Property

property NumKeyFields: Integer

Specifies the number of key fields for the dataset.

Note
 This property can be set directly at any time, but it will automatically be cleared if the Initialize
method is called.

Component Reference

Page 35

TEWBDataSetAdapter.BuildColumns Method

function BuildColumns: String

Use this method to build a JSON string containing all of the column definitions for the dataset specified in
the DataSet property.

Please see the JSON Reference section in the Elevate Web Builder manual that is included with the
Elevate Web Builder IDE for more information on the structure of the JSON used with dataset columns.

Note
 This method will be automatically called when the HandleRequest method is called, so you
normally will not need to call this method directly.

Component Reference

Page 36

TEWBDataSetAdapter.BuildLoad Method

function BuildLoad(const Column: String; const RowKey: String):
 AnsiString

Use this method to build an ANSI string containing the value for the specified BLOB field in the dataset
specified in the DataSet property. The RowKey parameter is a semicolon-delimited (;) list of key values that
uniquely identify the row that contains the desired BLOB field data.

Note
 This method will be automatically called when the HandleRequest method is called, so you
normally will not need to call this method directly.

Component Reference

Page 37

TEWBDataSetAdapter.BuildRows Method

function BuildRows(Params: TStrings=nil; const User: String='';
 const Password: String=''): String

Use this method to build a JSON string containing all of the rows for the dataset specified in the DataSet
property.

The Params parameter is used to include any additional dataset filtering parameters with any BLOB load
URLs that are included with the JSON row data built by this method. This ensures that any BLOB loads are
executed using the same filtering parameters that were used to build the rows.

The User and Password parameters are used to include user and password authentication parameters with
any BLOB load URLs that are included with the JSON row data built by this method. This ensures that any
BLOB loads are authenticated using the same authentication information that was used to build the rows.

Please see the JSON Reference section in the Elevate Web Builder manual that is included with the
Elevate Web Builder IDE for more information on the structure of the JSON used with dataset rows.

Note
 This method will be automatically called when the HandleRequest method is called, so you
normally will not need to call this method directly.

Component Reference

Page 38

TEWBDataSetAdapter.Create Method

constructor Create(AOwner: TComponent)

Call the constructor to create an instance of the TEWBDataSetAdapter component.

Component Reference

Page 39

TEWBDataSetAdapter.FilterRows Method

procedure FilterRows(Request: TEWBServerRequest)

Use this method to filter a dataset based upon the parameters available in the Request parameter.

Note
 This method will be automatically called when the HandleRequest method is called, so you
normally will not need to call this method directly.

Component Reference

Page 40

TEWBDataSetAdapter.GetLoadContentType Method

function GetLoadContentType(const Column: String; const RowKey:
 String): String

Use this method to retrieve the MIME type for the specified BLOB field in the dataset specified in the
DataSet property. The RowKey parameter is a semicolon-delimited (;) list of key values that uniquely
identify the row that contains the desired BLOB field.

This method is a convenient way of associating MIME types with BLOB fields in a dataset. When this
method is called, the TEWBDataSetAdapter will look for a field in the dataset with the name of:

<BLOB Field Name>_ContentType

and return its value as the result. If a field does not exist with that name, then the result will be a blank
string.

Note
 This method will be automatically called when the HandleRequest method is called, so you
normally will not need to call this method directly.

Component Reference

Page 41

TEWBDataSetAdapter.Initialize Method

procedure Initialize

Use this method to initialize a dataset's key field information. When this method is called, the
NumKeyFields, KeyFields, and KeyCaseInsensitive properties are cleared and the OnInitialize event is
triggered.

Component Reference

Page 42

TEWBDataSetAdapter.OnFilterRows Event

property OnFilterRows: TEWBFilterDataSetRowsEvent

This event is triggered when the FilterRows method is called and provides an opportunity for the
developer to filter the rows in the dataset according to parameters passed in via the dataset request.

Component Reference

Page 43

TEWBDataSetAdapter.OnInitialize Event

property OnInitialize: TEWBInitializeDataSetAdapterEvent

This event is triggered when the Initialize method is called, and gives the developer an opportunity to
initialize the NumKeyFields, KeyFields, and KeyCaseInsensitive properties of the dataset adapter.

Component Reference

Page 44

2.3 TEWBJSONReader Component

Unit: ewbhttpcommon

Inherits From TObject

The TEWBJSONReader class is used to load class instance properties from JSON strings, and can be used
as a general-purpose JSON reader in your applications.

When a TEWBJSONReader instance is created, the constructor allows you to specify the date-time format
to use when reading date-time properties/values.

Properties Methods Events

Level BeginArray

RootObject BeginObject

Create

EndArray

EndObject

EndOfArray

EndOfObject

GetPropertyName

Initialize

IsArray

IsNull

IsObject

MoreArrayElements

MoreProperties

ReadBoolean

ReadDateTime

ReadFloat

ReadInteger

ReadString

SkipArrayElement

SkipProperty

SkipPropertyName

SkipPropertySeparator

SkipPropertyValue

Component Reference

Page 45

Component Reference

Page 46

TEWBJSONReader.Level Property

property Level: Integer

Indicates the current nesting level for any JSON objects and/or arrays. Whenever the TEWBJSONReader
class begins to read an object or array using the BeginObject or BeginArray methods, the nesting level is
incremented. Whenever the EndObject or EndArray methods are called, the nesting level is decremented.

Component Reference

Page 47

TEWBJSONReader.RootObject Property

property RootObject: TComponent

Specifies an optional root object to use with the reader. The root object can be used by the developer to
track which container object instance is being loaded. The default value is nil.

Component Reference

Page 48

TEWBJSONReader.BeginArray Method

procedure BeginArray

Use this method to begin reading an array. If the current token in the incoming JSON string is not a left
bracket ([), an exception will be raised.

Component Reference

Page 49

TEWBJSONReader.BeginObject Method

procedure BeginObject

Use this method to begin reading an object. If the current token in the incoming JSON string is not a left
brace ({), an exception will be raised.

Component Reference

Page 50

TEWBJSONReader.Create Method

constructor Create(ADateTimeFormat:
 TEWBJSONDateTimeFormat=dtfRaw)

Use this method to create a new instance of the TJSONReader class. The optional ADateTimeFormat
parameter indicates whether date and time values should be handled as an ISO 8601 date and time string
value, or as a raw Unix date and time integer value (the number of milliseconds since midnight, January 1,
1970).

Component Reference

Page 51

TEWBJSONReader.EndArray Method

procedure EndArray

Use this method to end reading an array. If the current token in the incoming JSON string is not a right
bracket (]), an exception will be raised.

Component Reference

Page 52

TEWBJSONReader.EndObject Method

procedure EndObject

Use this method to end reading an object. If the current token in the incoming JSON string is not a right
brace (}), an exception will be raised.

Component Reference

Page 53

TEWBJSONReader.EndOfArray Method

function EndOfArray: Boolean

Use this method to determine if the current token in the incoming JSON string is a right bracket (]).

Component Reference

Page 54

TEWBJSONReader.EndOfObject Method

function EndOfObject: Boolean

Use this method to determine if the current token in the incoming JSON string is a right brace (}).

Component Reference

Page 55

TEWBJSONReader.GetPropertyName Method

function GetPropertyName: String

Use this method to read a property name, without any enclosing double-quote (") characters (if
applicable).

Component Reference

Page 56

TEWBJSONReader.Initialize Method

procedure Initialize(const Value: String)

Use this method to initialize the reader with a JSON string to read.

Component Reference

Page 57

TEWBJSONReader.IsArray Method

function IsArray: Boolean

Use this method to determine if the current token in the incoming JSON string is a left bracket ([).

Component Reference

Page 58

TEWBJSONReader.IsNull Method

function IsNull: Boolean

Use this method to determine if the current token in the incoming JSON string is a null literal.

Component Reference

Page 59

TEWBJSONReader.IsObject Method

function IsObject: Boolean

Use this method to determine if the current token in the incoming JSON string is a left brace ({).

Component Reference

Page 60

TEWBJSONReader.MoreArrayElements Method

function MoreArrayElements: Boolean

Use this method to determine if the current token in the incoming JSON string is a comma (,).

Component Reference

Page 61

TEWBJSONReader.MoreProperties Method

function MoreProperties: Boolean

Use this method to determine if the current token in the incoming JSON string is a comma (,).

Component Reference

Page 62

TEWBJSONReader.ReadBoolean Method

function ReadBoolean: Boolean

Use this method to read a boolean value. If the current token in the incoming JSON string is not a valid
JSON boolean literal (true, false), an exception will be raised.

Component Reference

Page 63

TEWBJSONReader.ReadDateTime Method

function ReadDateTime: TDateTime

Use this method to read a date-time value. How a date-time value is read is controlled by the
TEWBJSONDateTimeFormat parameter in the TEWBJSONReader class constructor.

Component Reference

Page 64

TEWBJSONReader.ReadFloat Method

function ReadFloat: Double

Use this method to read a float value. If the current token in the incoming JSON string is not a valid JSON
float or integer literal, an exception will be raised.

Component Reference

Page 65

TEWBJSONReader.ReadInteger Method

function ReadInteger: Integer

Use this method to read an integer value. If the current token in the incoming JSON string is not a valid
JSON integer literal, an exception will be raised.

Component Reference

Page 66

TEWBJSONReader.ReadString Method

function ReadString: String

Use this method to read a string value, without any enclosing double-quote (") characters. If the current
token in the incoming JSON string is not a valid JSON string literal, an exception will be raised.

Component Reference

Page 67

TEWBJSONReader.SkipArrayElement Method

procedure SkipArrayElement

Use this method to skip over a JSON array element.

Component Reference

Page 68

TEWBJSONReader.SkipProperty Method

procedure SkipProperty

Use this method to skip over a JSON object property.

Component Reference

Page 69

TEWBJSONReader.SkipPropertyName Method

procedure SkipPropertyName

Use this method to skip over a JSON object property name.

Component Reference

Page 70

TEWBJSONReader.SkipPropertySeparator Method

procedure SkipPropertySeparator

Use this method to skip over a JSON object property separator (:).

Component Reference

Page 71

TEWBJSONReader.SkipPropertyValue Method

procedure SkipPropertyValue

Use this method to skip over a JSON object property value.

Component Reference

Page 72

2.4 TEWBJSONWriter Component

Unit: ewbhttpcommon

Inherits From TObject

The TEWBJSONWriter class is used to save class instance properties to JSON strings, and can be used as a
general-purpose JSON writer in your applications.

When a TEWBJSONWriter instance is created, the constructor allows you to specify:

The date-time format to use when writing date-time properties.

The number of spaces to use per indentation level, if the output is not compressed.

Whether to include line feeds in the JSON output, if the output is not compressed.

Whether to compress all whitespace in the JSON output. Compressing the whitespace removes any
unnecessary whitespace in order to keep the size of the JSON output to a minimum.

Component Reference

Page 73

Properties Methods Events

Output BeginArray

BeginNewLine

BeginObject

BooleanProperty

BooleanValue

CancelNewLine

Create

DateTimeProperty

DateTimeValue

DecIndent

EndArray

EndObject

FloatProperty

FloatValue

IncIndent

Initialize

IntegerProperty

IntegerValue

Literal

NewLine

NullProperty

NullValue

ObjectProperty

PropertyName

Separator

StringProperty

StringValue

Whitespace

Component Reference

Page 74

TEWBJSONWriter.Output Property

property Output: String

Indicates the current JSON output.

Component Reference

Page 75

TEWBJSONWriter.BeginArray Method

procedure BeginArray(HasElements: Boolean)

Use this method to begin writing a new array.

Component Reference

Page 76

TEWBJSONWriter.BeginNewLine Method

procedure BeginNewLine

Use this method to set a flag requesting that the next property should be written on a new line.

Note
 New lines are not used if the JSON output is being compressed.

Component Reference

Page 77

TEWBJSONWriter.BeginObject Method

procedure BeginObject

Use this method to begin writing a new object.

Component Reference

Page 78

TEWBJSONWriter.BooleanProperty Method

procedure BooleanProperty(const Name: String; Value: Boolean)

procedure BooleanProperty(const Name: String; Value: Boolean;
 DefaultValue: Boolean)

Use this method to write a boolean property.

Component Reference

Page 79

TEWBJSONWriter.BooleanValue Method

procedure BooleanValue(Value: Boolean)

Use this method to write a boolean value.

Component Reference

Page 80

TEWBJSONWriter.CancelNewLine Method

procedure CancelNewLine

Use this method to cancel a new line started via the NewLine method. This is useful if a new line is started
for a property, but the property cannot be written for some reason.

Component Reference

Page 81

TEWBJSONWriter.Create Method

constructor Create(ADateTimeFormat:
 TEWBJSONDateTimeFormat=dtfRaw; AIndentSpaces: Integer=3;
 AIncludeLineFeeds: Boolean=True; ACompressWhitespace:
 Boolean=False)

Use this method to create a new instance of the TEWBJSONWriter class. The optional ADateTimeFormat
parameter indicates whether date and time values should be output as an ISO 8601 date and time string
value, or as a raw Unix date and time integer value (the number of milliseconds since midnight, January 1,
1970). The optional AIndentSpaces parameter indicates how many spaces to use for indentation in the
output, the optional AIncludeLineFeeds parameter indicates whether to include line feeds (CRLF) in the
output, and the optional ACompressWhitespace parameter indicates whether any whitespace should be
compressed (removed) from the output.

Component Reference

Page 82

TEWBJSONWriter.DateTimeProperty Method

procedure DateTimeProperty(const Name: String; Value: TDateTime)

procedure DateTimeProperty(const Name: String; Value: TDateTime;
 DefaultValue: TDateTime)

Use this method to write a date-time property. How a date-time property is written is controlled by the
first TDateTimeFormat parameter in the TEWBJSONWriter class constructor.

Component Reference

Page 83

TEWBJSONWriter.DateTimeValue Method

procedure DateTimeValue(Value: TDateTime)

Use this method to write a date-time value. How a date-time value is written is controlled by the first
TDateTimeFormat parameter in the TEWBJSONWriter class constructor.

Component Reference

Page 84

TEWBJSONWriter.DecIndent Method

procedure DecIndent

Decrement the indentation level for the output.

Note
 Indentation levels are not used if the JSON output is being compressed.

Component Reference

Page 85

TEWBJSONWriter.EndArray Method

procedure EndArray(HasElements: Boolean)

Use this method to end writing an array.

Component Reference

Page 86

TEWBJSONWriter.EndObject Method

procedure EndObject

Use this method to end writing an object.

Component Reference

Page 87

TEWBJSONWriter.FloatProperty Method

procedure FloatProperty(const Name: String; Value: Double)

procedure FloatProperty(const Name: String; Value: Double;
 DefaultValue: Double)

Use this method to write a float property.

Component Reference

Page 88

TEWBJSONWriter.FloatValue Method

procedure FloatValue(Value: Double)

Use this method to write a float value.

Component Reference

Page 89

TEWBJSONWriter.IncIndent Method

procedure IncIndent

Increment the indentation level for the JSON output.

Note
 Indentation levels are not used if the JSON output is being compressed.

Component Reference

Page 90

TEWBJSONWriter.Initialize Method

procedure Initialize

Use this method to initialize the writer so that the Output property is blank.

Component Reference

Page 91

TEWBJSONWriter.IntegerProperty Method

procedure IntegerProperty(const Name: String; Value: Int64)

procedure IntegerProperty(const Name: String; Value: Int64;
 DefaultValue: Int64)

Use this method to write an integer property.

Component Reference

Page 92

TEWBJSONWriter.IntegerValue Method

procedure IntegerValue(Value: Int64)

Use this method to write an integer value.

Component Reference

Page 93

TEWBJSONWriter.Literal Method

procedure Literal(const Value: String)

Use this method to write a literal.

Component Reference

Page 94

TEWBJSONWriter.NewLine Method

procedure NewLine

Use this method to write a new line (CRLF).

Note
 New lines are not written if the JSON output is being compressed, or if the writer was created with
the new line option turned off.

Component Reference

Page 95

TEWBJSONWriter.NullProperty Method

procedure NullProperty(const Name: String)

Use this method to write a null property.

Component Reference

Page 96

TEWBJSONWriter.NullValue Method

procedure NullValue

Use this method to write a null value.

Component Reference

Page 97

TEWBJSONWriter.ObjectProperty Method

procedure ObjectProperty(const Name: String)

Use this method to write an object property's name using the PropertyName method.

Component Reference

Page 98

TEWBJSONWriter.PropertyName Method

procedure PropertyName(const Name: String)

Use this method to write a property name.

Component Reference

Page 99

TEWBJSONWriter.Separator Method

procedure Separator

Use this method to write a separator (,).

Component Reference

Page 100

TEWBJSONWriter.StringProperty Method

procedure StringProperty(const Name: String; const Value:
 String)

procedure StringProperty(const Name: String; const Value: String;
 const DefaultValue: String)

Use this method to write a string property.

Component Reference

Page 101

TEWBJSONWriter.StringValue Method

procedure StringValue(const Value: String)

Use this method to write a string value.

Component Reference

Page 102

TEWBJSONWriter.Whitespace Method

procedure Whitespace

Use this method to write a space ().

Note
 Whitespace is not written if the JSON output is being compressed.

Component Reference

Page 103

2.5 TEWBMIMEPart Component

Unit: ewbhttpcommon

Inherits From TObject

The TEWBMimePart object is used to represent a single MIME part in multi-part MIME-encoded content
included with a web server request. Multi-part MIME content is normally used with HTML form submittals
that include file uploads.

Properties Methods Events

Content Create

Disposition Save

Encoding

FileName

Headers

Component Reference

Page 104

TEWBMIMEPart.Content Property

property Content: AnsiString

Specifies the content of the MIME part encoded using the encoding specified in the Encodingproperty.

Component Reference

Page 105

TEWBMIMEPart.Disposition Property

property Disposition: String

Specifies the disposition for the MIME content specified in the Content property. For HTML form
submittals, this property will always be 'form-data'.

Component Reference

Page 106

TEWBMIMEPart.Encoding Property

property Encoding: String

Specifies the encoding for the MIME content specified in the Content property.

Component Reference

Page 107

TEWBMIMEPart.FileName Property

property FileName: String

Specifies the file name for the MIME content specified in the Content property.

Component Reference

Page 108

TEWBMIMEPart.Headers Property

property Headers: TStrings

Specifies the headers for the MIME part. Each header has the format:

<Header>: <Value>[;<HeaderAttribute>=<Value>]

Component Reference

Page 109

TEWBMIMEPart.Create Method

constructor Create(Owner: TEWBMIMEParts)

Use this method to create a new instance of the TEWBMIMEPart class. The Owner parameter indicates the
MIME parts instance that will own and manage the MIME part.

Component Reference

Page 110

TEWBMIMEPart.Save Method

procedure Save(Stream: TStream)

Use this method to save the content specified by the Content property to a stream.

Component Reference

Page 111

2.6 TEWBMIMEParts Component

Unit: ewbhttpcommon

Inherits From TObject

The TEWBMimeParts object is used to represent all MIME parts in multi-part MIME-encoded content
included with a web server request. Multi-part MIME content is normally used with HTML form submittals
that include file uploads.

Properties Methods Events

Count Create

Items

Component Reference

Page 112

TEWBMIMEParts.Count Property

property Count: Integer

Indicates the number of MIME parts present in the request.

Note
 This number does not include form values that aren't file attachments since they are automatically
moved to the TEWBServerRequest RequestContentParams property as key-value pairs in order to
make access to such values equivalent to requests that aren't MIME-encoded.

Component Reference

Page 113

TEWBMIMEParts.Items Property

property Items[Index: Integer]: TEWBMIMEPart

Provides access to the MIME parts present in the request by ordinal index.

Note
 Form values that aren't file attachments are not included here since they are automatically moved
to the TEWBServerRequest RequestContentParams property as key-value pairs in order to make
access to such values equivalent to requests that aren't MIME-encoded.

Component Reference

Page 114

TEWBMIMEParts.Create Method

constructor Create

Use this method to create a new instance of the TEWBMIMEParts class.

Component Reference

Page 115

2.7 TEWBModule Component

Unit: ewbhttpmodule

Inherits From TDataModule

The TEWBModule component represents an instance of a module in the web server. The web server
automatically creates a new instance of a module for every executing thread that references the module in
the URL for a new request and fires the OnExecute event when the new request is handled by the thread.
This means that all code in any OnExecute event handler must be completely thread-safe.

Warning
 All modules in the web server run in-process, so a fatal error such as a memory overwrite due to
improper threading code in a module could cause the server to fail.

Properties Methods Events

Password AuthenticateUser OnAuthenticateUser

UserName Create OnExecute

Component Reference

Page 116

TEWBModule.Password Property

property Password: String

Specifies the authenticated password included with a server request, if any was included. Authentication
information can be passed to a web server module from an Elevate Web Builder application via HTTP
headers or via HTTP URL parameters.

Note
 This property will be blank until the server request has been successfully authenticated.

Component Reference

Page 117

TEWBModule.UserName Property

property UserName: String

Specifies the authenticed user name included with a server request, if any was included. Authentication
information can be passed to a web server module from an Elevate Web Builder application via HTTP
headers or via HTTP URL parameters.

Note
 This property will be blank until the server request has been successfully authenticated.

Component Reference

Page 118

TEWBModule.AuthenticateUser Method

function AuthenticateUser(Request: TEWBServerRequest): Boolean

Use this method to trigger the OnAuthenticateUser event and authenticate the user name/password
information provided with the Request parameter. Authentication information can be passed to a web
server module from an Elevate Web Builder application via HTTP headers or via HTTP URL parameters, and
this method will automatically handle the retrieving the authentication information from the request and
passing it to the OnAuthenticateUser event handler.

Component Reference

Page 119

TEWBModule.Create Method

constructor Create(AOwner: TComponent)

Use this method to create a new instance of the TEWBModule class. The AOwner parameter indicates the
component instance that will own and manage the module instance.

Component Reference

Page 120

TEWBModule.OnAuthenticateUser Event

property OnAuthenticateUser: TEWBAuthenticationEvent

This event is triggered when the AuthenticateUser method is called and provides an opportunity for the
developer to authenticate the request based upon the authentication information provided with the
request.

Component Reference

Page 121

TEWBModule.OnExecute Event

property OnExecute: TEWBModuleExecuteEvent

This event fires when a new request is received by the web server.

Component Reference

Page 122

2.8 TEWBServerRequest Component

Unit: ewbhttpmodule

Inherits From TObject

The TEWBServerRequest object represents a web server request to a module and is passed as a parameter
to the TEWBModule OnExecute event. You can use the RequestMethod property to determine what type
of request is being made, the RequestURLParams property to determine the parameters passed with the
URL of the request, and the RequestContentType, RequestContentLength, RequestContent,
RequestContentParams, RequestMIMEParts properties to access content that is included with the request:

When the RequestContentType property equals 'application/x-www-form-urlencoded', then the
content is automatically parsed and moved into the RequestContentParams property.

When the RequestContentType property begins with 'multipart', then the content is automatically
parsed and moved into the RequestMIMEParts property.

Component Reference

Page 123

Properties Methods Events

RequestChrome ComputeHash

RequestClientAddress Create

RequestContent DateTimeToGMTStr

RequestContentLength DateTimeToMSecs

RequestContentParams GMTDateTimeToLocal

RequestContentType HeaderExists

RequestCookies LocalDateTimeToGMT

RequestFirefox MSecsToDateTime

RequestHeaders ParseHeader

RequestHost ParseHeaderAttribute

RequestIE SendContent

RequestMethod SendContentHeader

RequestMethodName SendContentStream

RequestMIMEParts SendCustomContent

RequestOpera SendCustomContentHeader

RequestParams SendCustomContentStream

RequestPassword SendError

RequestSafari SendRedirect

RequestSecure

RequestURL

RequestURLParams

RequestUser

RequestVersion

ResponseCookies

ResponseHeaders

ResponseSessionCookies

Component Reference

Page 124

TEWBServerRequest.RequestChrome Property

property RequestChrome: Boolean

Indicates whether the client browser is Google Chrome.

Component Reference

Page 125

TEWBServerRequest.RequestClientAddress Property

property RequestClientAddress: String

Indicates the client's IP address.

Component Reference

Page 126

TEWBServerRequest.RequestContent Property

property RequestContent: AnsiString

Specifies any content sent with the request that is not 'multipart' or 'application/x-www-form-urlencoded'
content, as indicated by the RequestContentType property.

Component Reference

Page 127

TEWBServerRequest.RequestContentLength Property

property RequestContentLength: Integer

Specifies the length (in bytes) of the content in the RequestContent property.

Note
 For 'multipart' or 'application/x-www-form-urlencoded' content, as indicated by the
RequestContentType property, this property may not accurately reflect the length of the
RequestContent property since that type of content is automatically moved to other properties by
the web server.

Component Reference

Page 128

TEWBServerRequest.RequestContentParams Property

property RequestContentParams: TStrings

For 'multipart' or 'application/x-www-form-urlencoded' content, as indicated by the RequestContentType
property, this property will contain any form values submitted from an HTML form. The values are
specified as key-value pairs in the form:

<Key>=<Value>

Note
 For file uploads, the form value will simply be the form value name along with the name of the file
being uploaded as the value. In order to access the actual uploaded file content, use the
RequestMIMEParts property.

Component Reference

Page 129

TEWBServerRequest.RequestContentType Property

property RequestContentType: String

Indicates the type and encoding of the content in the RequestContent property.

Component Reference

Page 130

TEWBServerRequest.RequestCookies Property

property RequestCookies: TStrings

Specifies any cookies that are sent with the request by the client browser. The cookies are specified in key-
value pairs in the form:

<Key>=<Value>

Component Reference

Page 131

TEWBServerRequest.RequestFirefox Property

property RequestFirefox: Boolean

Indicates whether the client browser is Mozilla Firefox.

Component Reference

Page 132

TEWBServerRequest.RequestHeaders Property

property RequestHeaders: TStrings

Specifies all of the raw HTTP headers included for the request.

Component Reference

Page 133

TEWBServerRequest.RequestHost Property

property RequestHost: String

Indicates the value of the 'Host' header in the RequestHeaders property.

Component Reference

Page 134

TEWBServerRequest.RequestIE Property

property RequestIE: Boolean

Indicates whether the client browser is Microsoft Internet Explorer.

Component Reference

Page 135

TEWBServerRequest.RequestMethod Property

property RequestMethod: TEWBRequestMethod

Indicates the type of request.

Component Reference

Page 136

TEWBServerRequest.RequestMethodName Property

property RequestMethodName: String

Indicates the type of request in its raw form.

Component Reference

Page 137

TEWBServerRequest.RequestMIMEParts Property

property RequestMIMEParts: TEWBMIMEParts

For 'multipart' content, as indicated by the RequestContentType property, this property will contain any
MIME content that isnt't a textual form value.

Component Reference

Page 138

TEWBServerRequest.RequestOpera Property

property RequestOpera: Boolean

Indicates whether the client browser is the Opera web browser.

Component Reference

Page 139

TEWBServerRequest.RequestParams Property

property RequestParams: TStrings

Indicates the URL parameters for the request as key-value pairs in the form:

<Key>=<Value>

Component Reference

Page 140

TEWBServerRequest.RequestPassword Property

property RequestPassword: String

Indicates the value of the 'X-EWB-Password' header in the RequestHeaders property. This header is
normally sent by Elevate Web Builder applications for dataset requests, but can be used for other types of
requests as well.

Component Reference

Page 141

TEWBServerRequest.RequestSafari Property

property RequestSafari: Boolean

Indicates whether the client browser is Apple Safari.

Component Reference

Page 142

TEWBServerRequest.RequestSecure Property

property RequestSecure: Boolean

Indicates whether the request is secure (HTTPS) or not.

Note
 The web server does not currently support secure requests.

Component Reference

Page 143

TEWBServerRequest.RequestURL Property

property RequestURL: String

Indicates the URL of the request without any URL parameters. The URL parameters can be retrieved via the
RequestURLParams (raw) or RequestParams (key-value pairs) properties.

Component Reference

Page 144

TEWBServerRequest.RequestURLParams Property

property RequestURLParams: String

Indicates the URL parameters for the request in their raw form. Use the RequestParams property to access
the URL parameters as key-value pairs.

Component Reference

Page 145

TEWBServerRequest.RequestUser Property

property RequestUser: String

Indicates the value of the 'X-EWB-User' header in the RequestHeaders property. This header is normally
sent by Elevate Web Builder applications for dataset requests, but can be used for other types of requests
as well.

Component Reference

Page 146

TEWBServerRequest.RequestVersion Property

property RequestVersion: String

Indicates the HTTP version in use by the client browser, and is usually 'HTTP/1.1'.

Component Reference

Page 147

TEWBServerRequest.ResponseCookies Property

property ResponseCookies: TStrings

Use this property to specify any persistent cookies that you want to add/modify in the client browser.

Component Reference

Page 148

TEWBServerRequest.ResponseHeaders Property

property ResponseHeaders: TStrings

Use this property to specify any special response headers that you want to send to the client browser. By
default, the following methods automatically send the indicated response headers:

Method Headers Sent

SendContent 'Date'
'From'
'Server'
'Connection'
'Content-Type' (text/html; charset=utf-8)
'Content-Length'

SendCustomContent 'Date'
'From'
'Server'
'Connection'
'Content-Type' (specified in method)
'Content-Length'
'Content-Disposition' (specified in method)

SendRedirect 'Date'
'From'
'Server'
'Connection'
'Content-Type' (text/html; charset=utf-8)
'Content-Length'
'Location'

SendError 'Date'
'From'
'Server'
'Connection'
'Content-Type' (text/html; charset=utf-8)
'Content-Length'

In addition, any cookies specified in the ResponseCookies or ResponseSessionCookies are automatically
sent using a 'Set-Cookie' header.

Component Reference

Page 149

TEWBServerRequest.ResponseSessionCookies Property

property ResponseSessionCookies: TStrings

Use this property to specify any session-only cookies that you want to add/modify in the client browser.
Session-only cookies persist only until the client browser session terminates, and then are cleared by the
browser.

Component Reference

Page 150

TEWBServerRequest.ComputeHash Method

function ComputeHash(AHashType: TEWBHashType; const Value:
 AnsiString): String

Use this method to compute a hash for a given input string. The AHashType parameter specifies the type
of hash to compute. The output is a hex-encoded string (2 characters per byte) that represents the
computed hash.

Warning
 Do not use MD5 hashes for security purposes such as password hashes. Also, SHA-1 hashes are
currently secure, but may be exploitable in the near future, so the stronger SHA-256 and SHA-512
hashes are recommended for stored passwords.

Component Reference

Page 151

TEWBServerRequest.Create Method

constructor Create

Use this method to create a new instance of the TEWBServerRequest class.

Component Reference

Page 152

TEWBServerRequest.DateTimeToGMTStr Method

function DateTimeToGMTStr(Value: TDateTime): String

Converts a TDateTime value into a GMT date/time string that adheres to RFC1123 and has the format:

dow, day month year hours:mins:secs GMT

Component Reference

Page 153

TEWBServerRequest.DateTimeToMSecs Method

function DateTimeToMSecs(Value: TDateTime): Int64

Converts a TDateTime value into the number of milliseconds since midnight, January 1, 1970.

Note
 The result is the native date/time representation used by JavaScript and Elevate Web Builder client
applications.

Component Reference

Page 154

TEWBServerRequest.GMTDateTimeToLocal Method

function GMTDateTimeToLocal(Value: TDateTime): TDateTime

Converts a GMT (UTC) TDateTime value into its local equivalent, optionally accounting for Daylight
Savings Time.

Component Reference

Page 155

TEWBServerRequest.HeaderExists Method

function HeaderExists(Headers: TStrings; const Header: String):
 Boolean

Use this method to determine if a specific HTTP header exists in the passed list of headers.

HTTP headers use the following format:

<Header Name>: <Header Value> [; <Attribute=<Attribute Value>...]

Component Reference

Page 156

TEWBServerRequest.LocalDateTimeToGMT Method

function LocalDateTimeToGMT(Value: TDateTime): TDateTime

Converts a local TDateTime value into its GMT (UTC) equivalent, optionally accounting for Daylight
Savings Time.

Component Reference

Page 157

TEWBServerRequest.MSecsToDateTime Method

function MSecsToDateTime(Value: Int64): TDateTime

Converts the number of milliseconds since midnight, January 1, 1970 into a TDateTime value.

Note
 The input is the native date/time representation used by JavaScript and Elevate Web Builder client
applications.

Component Reference

Page 158

TEWBServerRequest.ParseHeader Method

function ParseHeader(Headers: TStrings; const Header: String):
 String

Use this method to parse a specific HTTP header value from the passed list of headers.

HTTP headers use the following format:

<Header Name>: <Header Value> [; <Attribute=<Attribute Value>...]

Component Reference

Page 159

TEWBServerRequest.ParseHeaderAttribute Method

function ParseHeaderAttribute(const Attribute: String; const
 Header: String): String

Use this method to parse a specific HTTP header attribute from the passed header value.

HTTP headers use the following format:

<Header Name>: <Header Value> [; <Attribute=<Attribute Value>...]

Component Reference

Page 160

TEWBServerRequest.SendContent Method

procedure SendContent(const Content: String; StatusCode:
 Integer=HTTP_OK; const StatusMessage: String='')

Sends a response to the client browser using the passed content, HTTP status code, and status message.
The Unicode content is automatically sent in UTF-8 format.

Please see the following link for a complete list of HTTP status/error codes:

Status Code and Reason Phrase

Note
 Only one response can be sent per request. Attempting to send more than one response will cause
errors in the client browser.

Component Reference

Page 161

TEWBServerRequest.SendContentHeader Method

procedure SendContentHeader(StatusCode: Integer=HTTP_OK; const
 StatusMessage: String='')

Sends response headers to the client browser using the passed HTTP status code and status message. You
should use this method when responding to HEAD requests to a module, which can occur when the
content type of the resource being handled by the module is unknown to the client application.

Please see the following link for a complete list of HTTP status/error codes:

Status Code and Reason Phrase

Note
 Only one response can be sent per request. Attempting to send more than one response will cause
errors in the client browser.

Component Reference

Page 162

TEWBServerRequest.SendContentStream Method

procedure SendContentStream(const Content: TStream; StatusCode:
 Integer=HTTP_OK; const StatusMessage: String='')

Sends a response to the client browser using the passed content stream, HTTP status code, and status
message.

The content stream is sent to the client as-is (binary).

Please see the following link for a complete list of HTTP status/error codes:

Status Code and Reason Phrase

Note
 Only one response can be sent per request. Attempting to send more than one response will cause
errors in the client browser.

Component Reference

Page 163

TEWBServerRequest.SendCustomContent Method

procedure SendCustomContent(const Content: String; const
 ContentType: String; const ContentDisposition: String)

procedure SendCustomContent(const Content: AnsiString; const
 ContentType: String; const ContentDisposition: String)

Sends a response to the client browser using the passed content, type, and disposition.

For the AnsiString version of this method, the content stream is sent to the client as-is (binary) and the
content length is set based upon the length of the Content parameter.

For the Unicode string version of this method, the content length is set based upon the UTF-8 encoded
version of the Content parameter, so be sure to set the UTF-8 encoding (; charset=utf-8) as part of the
ContentType parameter with this version of the method.

Note
 Only one response can be sent per request. Attempting to send more than one response will cause
errors in the client browser.

Component Reference

Page 164

TEWBServerRequest.SendCustomContentHeader Method

procedure SendCustomContentHeader(const ContentType: String;
 const ContentDisposition: String)

Sends response headers to the client browser using the passed content type and disposition. You should
use this method when responding to HEAD requests to a module, which can occur when the content type
of the resource being handled by the module is unknown to the client application.

Note
 Only one response can be sent per request. Attempting to send more than one response will cause
errors in the client browser.

Component Reference

Page 165

TEWBServerRequest.SendCustomContentStream Method

procedure SendCustomContentStream(const Content: TStream; const
 ContentType: String; const ContentDisposition: String)

Sends a response to the client browser using the passed content stream, type, and disposition.

Note
 Only one response can be sent per request. Attempting to send more than one response will cause
errors in the client browser.

Component Reference

Page 166

TEWBServerRequest.SendError Method

procedure SendError(ErrorCode: Integer; const ErrorMessage:
 String)

Sends an error response to the client browser using the passed HTTP error code and message. The
Unicode message is sent as the content in UTF-8 format.

Please see the following link for a complete list of HTTP status/error codes:

Status Code and Reason Phrase

Note
 Only one response can be sent per request. Attempting to send more than one response will cause
errors in the client browser.

Component Reference

Page 167

TEWBServerRequest.SendRedirect Method

procedure SendRedirect(const NewLocationURL: String; const
 Content: String=''; StatusCode: Integer=HTTP_FOUND; const
 StatusMessage: String='Redirecting')

Sends a redirect response to the client browser using the passed new location, content, HTTP status code
and message. The Unicode content is automatically sent in UTF-8 format.

Please see the following link for a complete list of HTTP status/error codes:

Status Code and Reason Phrase

Note
 Only one response can be sent per request. Attempting to send more than one response will cause
errors in the client browser.

Component Reference

Page 168

Chapter 3
Type Reference

3.1 TEWBAuthenticationEvent Type

Unit: ewbdatasetadapter

TEWBAuthenticationEvent = procedure(const RequestUserName:
 String; const RequestPassword: String; var Authenticated:
 Boolean) of object

This type is used for the TEWBDatabaseAdapter OnAuthenticateUser event.

The RequestUserName and RequestPassword parameters specify the user information, and the
Authenticated variable parameter allows the developer to specify whether or not the authentication was
successful.

Note
 The default value of the Authenticated parameter is False, which means that you must authenticate
the user and set the Authenticated parameter to True in order for any dataset requests to execute
properly.

Type Reference

Page 169

3.2 TEWBFilterDataSetRowsEvent Type

Unit: ewbdatasetadapter

TEWBFilterDataSetRowsEvent = procedure(Adapter:
 TEWBDataSetAdapter; Request: TEWBServerRequest) of object;

This type is used for the TEWBDataSetAdapter OnFilterRows event.

The Adapter parameter specifies the TEWBDataSetAdapter instance whose rows are being filtered, while
the Request parameter specifies the TEWBServerRequest instance that is being handled by the dataset
adapter.

Type Reference

Page 170

3.3 TEWBGetDataSetAdapterEvent Type

Unit: ewbdatasetadapter

TEWBGetDataSetAdapterEvent = procedure(const DataSetName: String;
 var Adapter: TEWBDataSetAdapter) of object

This type is used for the TEWBDatabaseAdapter OnGetDataSetAdapter event.

The DataSetName parameter specifies the name of the dataset that requires an adapter, and the Adapter
variable parameter should be assigned the TEWBDataSetAdapter instance that will be used to
generate/consume the JSON for database requests.

Type Reference

Page 171

3.4 TEWBGetDataSetsEvent Type

Unit: ewbdatasetadapter

TEWBGetDataSetsEvent = procedure(DataSets: TStrings) of object

This type is used for the TEWBDatabaseAdapter OnGetDataSets event.

The DataSets parameter specifies a TStrings instance to use for populating the list of available datasets.

Type Reference

Page 172

3.5 TEWBHashType Type

Unit: ewbhttpmodule

TEWBHashType = (htMD5,htSHA1,htSHA256,htSHA512)

This type is used to represent the type of hash being computed with the TEWBServerRequest
ComputeHash method.

Element Description

htMD5 The hash will be computed as an MD5 hash.

htSHA1 The hash will be computed as an SHA-1 hash.

htSHA256 The hash will be computed as an SHA-256 hash.

htSHA512 The hash will be computed as an SHA-512 hash.

Type Reference

Page 173

3.6 TEWBInitializeDataSetAdapterEvent Type

Unit: ewbdatasetadapter

TEWBInitializeDataSetAdapterEvent = procedure(Adapter:
 TEWBDataSetAdapter) of object

This type is used for the TEWBDataSetAdapter OnInitialize event.

The Adapter parameter specifies the TEWBDataSetAdapter instance that is being initialized.

Type Reference

Page 174

3.7 TEWBJSONDateTimeFormat Type

Unit: ewbhttpcommon

TEWBJSONDateTimeFormat = (dtfRaw,dtfISO8601)

The TEWBJSONDateTimeFormat enumerated type is used with TEWBJSONReader and TEWBJSONWriter
classes to specify how TDateTime values are handled when reading/writing to/from JSON.

Element Description

dtfISO8601 Date-time values are handled as ISO-8601 date-time string
values.

dtfRaw Date-time values are handled as raw numeric Elevate Web
Builder DateTime values (the default).

Type Reference

Page 175

3.8 TEWBModuleExecuteEvent Type

Unit: ewbhttpmodule

TEWBModuleExecuteEvent = procedure (Request: TEWBServerRequest)
 of object

This type is used for the TEWBModule OnExecute event.

The Request parameter specifies the TEWBServerRequest instance that is being handled by the module.

Type Reference

Page 176

3.9 TEWBRequestMethod Type

Unit: ewbhttpmodule

TEWBRequestMethod = (rmUnknown,rmGet,rmPost,rmHead,rmPut,
 rmDelete)

This type is used to represent the type of request in the TEWBServerRequest RequestMethod property.

Element Description

rmDelete The request is an HTTP DELETE request (not supported by the
web server for modules at this time).

rmGet The request is an HTTP GET request.

rmHead The request is an HTTP HEAD request (not supported by the
web server for modules at this time).

rmPost The request is an HTTP POST request.

rmPut The request is an HTTP PUT request (not supported by the
web server for modules at this time).

rmUnknown The request is an unknown HTTP request (not used by the
web server for modules - an error will occur before the
module is called if the request type is unknown).

Type Reference

Page 177

