Table of Contents

Elevate Web Builder 3 Modules Manual

Table Of Contents
Chapter 1 - Getting Started 1
1.1 Creating a Native Server Module 1
1.2 Handling Server Requests 3
1.3 Native Database Modules 6
Chapter 2 - Component Reference 7
2.1 TEWBBIlobStream Component 7
2.2 TEWBDatabase Component 13
2.3 TEWBDatabaseAdapter Component 44
2.4 TEWBDataSet Component 56
2.5 TEWBDataSetAdapter Component 86
2.6 TEWBHTTPContentPart Component 102
2.7 TEWBHTTPContentPartHeaders Component 114
2.8 TEWBHTTPContentParts Component 122
2.9 TEWBHTTPCookie Component 129
2.10 TEWBHTTPCookies Component 141
2.11 TEWBHTTPFormValues Component 151
2.12 TEWBHTTPHeaders Component 159
2.13 TEWBHTTPParameters Component 168
2.14 TEWBHTTPPathComponents Component 178
2.15 TEWBModule Component 186
2.16 TEWBMultiPartServerRequestContent Component 189
2.17 TEWBServerRequest Component 197
2.18 TEWBServerRequestContent Component 230
2.19 TEWBServerRequestQueue Component 235
2.20 TEWBServerSession Component 244
2.21 TEWBWebServerRequest Component 275
Chapter 3 - Type Reference 317
3.1 TEWBDatabaseErrorEvent Type 317
3.2 TEWBDatabaseEvent Type 318
3.3 TEWBDataSetErrorEvent Type 319
3.4 TEWBDataSetEvent Type 320
3.5 TEWBExecuteDataSetColumnCommandEvent Type 321

Preface

Table of Contents

Preface

3.6 TEWBExecuteDataSetCommandEvent Type
3.7 TEWBGetDataSetAdapterEvent Type

3.8 TEWBGetDataSetColumnCommandParamsEvent Type
3.9 TEWBGetDataSetCommandParamsEvent Type
3.10 TEWBGetDataSetsEvent Type

3.11 TEWBHashType Type

3.12 TEWBModuleExecuteEvent Type

3.13 TEWBServerRequestErrorEvent Type

3.14 TEWBServerRequestEvent Type

3.15 TEWBServerRequestProgressEvent Type

3.16 TEWBServerRequestType Type

3.17 TEWBServerSessionAuthenticateEvent Type
3.18 TEWBServerSessionEvent Type

3.19 TEWBServerSessionProgressEvent Type

3.20 TEWBSortOption Type

3.21 TEWBSortOptions Type

3.22 TEWBWebServerRequestMethod Type

3.23 TEWBWebServerRequestMethods Type

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

Chapter 1
Getting Started

1.1 Creating a Native Server Module

1. In the RAD Studio IDE, select the File/New/Other menu option from the main menu.

File Edit Search View Refactor

New
Open...

&l 5

Open Project...

Reopen

Save

Save As..,

Save Project As...
Save All

Close

Close All

s Bl © &1 &2 [

Use Unit...

b 5

Print...

Exit

Ctri+F11

Open From Version Control...

Ctrl+5

Shift+Ctrl+5

Alt+F11

»

Project Run Component Tools

o LL Mol MA

VCL Forms Application - Delphi

VCL Metropolis Ul Application - Delphi
FireMonkey Desltop Application - Delphi
FireMonkey Mobile Application - Delphi
FireMonkey Metropolis Ul Application - Delphi

Package - Delphi

VCL Form - Delphi
Unit - Delphi

Other...

Customize...

B e

Getting Started

2. The New Items dialog will then appear. Select the Elevate Web Builder option folder from the list on the left-

hand side of the dialog. Click on the Elevate Web Builder Module and then click on the OK button.

Page 1

Getting Started

& New ltemns

w77 Delphi Projects |Q Search

177 ActiveX
177 DataSnap Server =
7] Delphi Files E -
-1~ | Blevate Web Builder Flevate Web
{7 IntraWeb Builder Module
{77 Mobile Projects
77 WebBroker
77 WebServices

-{=7] Other Files

{77 Profiling

-{77] Unit Test

-{77] Web Documents

3. The Browse for Folder dialog will then appear. Select the desired target folder for the new module project and
click on the OK button.

Browse For Folder

Select Directory

v [This PC A
> _J§ 3D Objects
» [Desktop
i% Documents
» -‘ Downloads
J‘i Music
» [&] Pictures
- & Videos
* 056
* w BD-RE Drive (E) W

Folder: | Documents
| MakeNewFolder | [ok || Cancel |

4. The new module project will be created in the desired target folder and opened as the active project in the RAD
Studio IDE.

Please see the Handling Server Requests topic for more information on adding the appropriate code for handling
incoming requests to the native server module.

Page 2

Getting Started

1.2 Handling Server Requests

Note

Before reading the following material, please be sure that you understand how the Elevate Web Builder Web
Server and web server requests work by reading the Using the Web Server section of the Elevate Web
Builder manual that is included with the Elevate Web Builder product installation.

Incoming Server Requests

When an incoming request is routed to a particular native server module and the library code is executed, an
execution environment is obtained. These execution environments are cached for each server module in order to
minimize module startup times.

The native server module memory is initialized once when the library is loaded and finalized when the library is
unloaded. If any global initialization is required for a database engine or other support code, it should be placed in
the initialization section of a source unit in the Delphi native server module project. Similarly, any global teardown
code should be place in the finalization section of a source unit in the Delphi native server module project.

A global TEWBModule component instance is created for every incoming request to the web server. The incoming
web server TEWBWebServerRequest instance is then routed to the TEWBModule instance's OnExecute event
handler, if one is defined.

Warning

Each module instance is executed in a separate thread, so you must make sure that all code included in an
OnExecute event handler is completely thread-safe. Also, all native server modules are loaded into the web
server process, so a fatal error such as a memory overwrite due to improper threading code in a native server
module could cause the web server to fail.

Determining if a Request Is Secure

You can determine if a request is secure (using HTTPS) by examining the RequestSecure property of the incoming
request.

Determining the Request Type
You can determine the request type by examining the RequestMethod property of the incoming request. HEAD

requests are normally associated with static resources such as files, but they can be sent to modules when the
content type of the resource being handled by the module is unknown to the client application.

Reading URL Parameters

The URL and any parameters included in the URL are specified in the request's RequestURL and RequestURLParams
properties, respectively. The RequestURLParams property, however, is in its raw form. An easier way to examine the
URL parameters would be to use the RequestParameters property. The RequestParameters property is a list of key-
value pairs that represent all URL parameters.

Reading Request Cookies

Cookies are simple textual data that is persisted in the client across connections to the web server. Any cookies that
apply to the request URL will automatically be sent by the client and will be available in the TEWBWebServerRequest
RequestCookies property. The RequestCookies property is a list of key-value pairs that represent all cookies

Page 3

Getting Started

included with the request. See the Sending a Response section below for information on how to set cookies in
responses.

Reading Request Content

Certain types of requests like HTTP POST requests are normally accompanied by content that is submitted as part of
the request. The RequestContentType, RequestContentLength, RequestContent, and RequestContentStream
properties of the request contain the content type, content length, and actual content.

HTML Form Submittals

When an HTML form is submitted to the URL for the module, the form data may be sent over using one of two
formats. Depending upon value of the RequestContentType property, the web server will automatically perform
some pre-processing of the incoming conent in the following ways:

e application/x-www-form-urlencoded

This is the default encoding for form submittals, and common for form submittals that do not include file
uploads. The web server will pre-parse all textual form variables and make them accessible via the
RequestFormValues property as a list of key-value pairs

e multipart/form-data

If a form submittal includes one or more file uploads, then the browser will use a special multi-part content
encoding. The web server will still pre-parse all textual form variables and will also include any file content in
the RequestContentParts property, with each file in its own TEWBHTTPContentPart instance. Each
TEWBHTTPContentPart instance includes properties that can be used to determine how to deal with each
content part:

Property Description

ContentTransferEncoding This property identifies the encoding of the file content
contained in the Content and ContentStream properties. This is
essential in knowing how to deal with the content.

ContentFileName This property identifies the name of the file as provided by the
client.

Sending a Response

The web server doesn't automatically send a response to an HTTP request once the OnExecute event handler
terminates, so it is important that you send a response from within the OnExecute event handler. You can use one of
several methods to send a response to the client's request:

Method Description

Page 4

Getting Started

SendContentHeader Sends a response for a HEAD request.

SendCustomContentHeader Sends a custom content response for a HEAD request.

SendContent Sends a UTF-8-encoded text response with a Content-Type header
of "text/html; charset=utf-8" along with an optional status code and
message.

SendCustomContent Sends a UTF-8-encoded text response with a custom content type,

encoding, and disposition.

SendRedirect Sends a redirect response to a new URL along with an optional
UTF-8-encoded text response with a Content-Type header of
"text/html; charset=utf-8". By default, the redirect HTTP status code
is 302, but you can specify a different status code.

SendError Sends a status code and message along with an optional UTF-8-
encoded text response with a Content-Type header of "text/plain;
charset=utf-8".

SendContentStream Sends a UTF-8-encoded text stream response with a Content-Type
header of "text/html; charset=utf-8" along with an optional status
code and message.

SendCustomContentStream Sends a binary stream response with a custom content type,
encoding, and disposition.

Warning

If none of the above methods are called by the native server module and execution of the module
terminates, the web server will not automatically send a response. This can cause the client application to
hang and, eventually, time out waiting on a response that will never arrive.

Setting Cookies

As indicated above, any cookies that are stored on the client and are applicable to the request URL can be found in
the RequestCookies property. You can add or modify these cookies using the TEWBWebServerRequest
ResponseCookies or ResponseSessionCookies properties.

Note
You must set any cookies before calling any of the TEWBWebServerRequest Send* methods detailed above,
or the cookies will not be set properly on the client.

Page 5

Getting Started

1.3 Native Database Modules

Native database modules are just like any other native server module, but are coded to handle database access API
requests using the TEWBDatabaseAdapter and TEWBDataSetAdapter components. Specifically, any incoming
request can be passed directly to the TEWBDatabaseAdapter HandleRequest method and the database adapter
component will completely handle the database request, calling the applicable TEWBDatabaseAdapter and
TEWBDataSetAdapter methods and events as necessary to complete the request and send back a response.

Note

If you use a native server module for servicing database access requests, you will need to make sure to
change the active TServerSession instance's DatabasesResource property so that it refers to the native server
module instead of the standard database access APl resource path. The active TServerSession instance is
available via the TDatabase ActiveServerSession property.

Please see the Web Server Database Access topic in the Using the Web Server section in the Elevate Web Builder
manual for more information on the database access API.

Database Module Example

The Elevate Web Builder Modules installation includes an example project that shows how to use a database
module to accept row inserts from a contact form application that uses the standard TDatabase and TDataSet
components for client browser applications. This project is installed into the \examples\contactform subdirectory
under the main installation directory of the Elevate Web Builder Modules installation. Please see the comments in
the project source for more information on how the module handles incoming database access requests.

Page 6

Component Reference

Chapter 2
Component Reference

2.1 TEWBBIlobStream Component

Unit: ewbdataset
Inherits From TStream

Use the TEWBBIlobStream object to access or modify the contents of a BLOB or CLOB column in a dataset using a
stream interface. A BLOB column is represented by the TBlobField object, and a CLOB column is represented by a
TMemoField object. TBlobField and TMemoField objects use streams to implement many of their data access
properties and methods via the standard CreateBlobStream method that is implemented by the Elevate Web Builder
TEWBDataSet component.

To use a TEWBBIobStream object, create an instance of TEWBBIlobStream class, use the methods of the
TEWBBIlobStream object to read or write the data, and then free the object. Do not use the same instance of a
TEWBBIlobStream object to access data from more than one row. Instead, create a new TEWBBIlobStream object
every time you need to read or write to a BLOB or CLOB column for a row.

Note
For proper results when updating a BLOB or CLOB column using a TEWBBIlobStream object, you must create

the TEWBBlobStream object after calling the Append/Insert or Edit method for the dataset containing the
BLOB or CLOB column. Also, you must free the TEWBBlobStream object before calling the Post method to
post the changes to the dataset. Finally, be sure to use the proper open mode when creating a
TEWBBIlobStream object for updating (either bmReadWrite or bmWrite).

Properties Methods Events
Create
Read
Seek
Truncate

Write

Page 7

Component Reference

TEWBBlobStream.Create Method

constructor Create(Field: TBlobField; Mode: TBlobStreamMode)

Call the Create constructor to create an instance of the TEWBBlobStream class.

Page 8

Component Reference

TEWBBlobStream.Read Method

function Read(var Buffer; Count: Integer): Integer

Read transfers up to Count bytes from the BLOB or CLOB column into Buffer, starting in the current position, and
then advances the current position by the number of bytes actually transferred. Read returns the number of bytes
actually transferred (which may be less than the number requested in Count). Buffer must have at least Count bytes
allocated to hold the data that was read from the column.

All the other reading methods of a TEWBBIlobStream object (ReadBuffer, ReadComponent) call Read to do their
actual reading.

Note
Do not call Read when the TEWBBIlobStream object was created in bmWrite mode. Also, please remember
that if you are using a stream on a CLOB column, then the number of Unicode characters in the CLOB column

will not be equal to the number of bytes in the stream.

Page 9

Component Reference

TEWBBIlobStream.Seek Method

function Seek(Offset: Integer; Origin: Word): Integer

function Seek(const Offset: Int64; Origin: TSeekOrigin): Int64

Use Seek to move the current position within the BLOB or CLOB column by the indicated offset. Seek allows an
application to read from or write to a particular location within the BLOB or CLOB column.

The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the following values:

Origin Description

soFromBeginning Offset is from the beginning of the BLOB or CLOB column. Seek
moves to the position Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the BLOB or CLOB column.
Seek moves to Position + Offset.

soFromEnd Offset is from the end of the BLOB or CLOB column. Offset must be
<= 0 to indicate a number of bytes before the end of the BLOB or
CLOB.

Seek returns the new value of the Position property, the new current position in the BLOB or CLOB column.

Note
Please remember that if you are using a stream on a CLOB column, then the number of characters in the

CLOB column will not be equal to the number of bytes in the stream.

Page 10

Component Reference

TEWBBlobStream.Truncate Method

procedure Truncate

Use Truncate to limit the size of the BLOB or CLOB column. Calling Truncate when the current position is 0 will clear
the contents of the BLOB or CLOB column.

Page 11

Component Reference

TEWBBIlobStream.Write Method

function Write(const Buffer; Count: Integer): Integer

Use Write to write Count bytes to the BLOB or CLOB column, starting at the current position.

All the other data-writing methods of a TEWBBIlobStream object (WriteBuffer, WriteComponent) call Write to do
their actual writing.

Page 12

2.2 TEWBDatabase Component

Unit: ewbdataset

Inherits From TComponent

Component Reference

The TEWBDatabase component represents a database container for datasets in an application and provides

properties and methods for loading/saving datasets and using transactions to modify the datasets. An instance of
the TEWBDatabase component called DefaultEWBDatabase is automatically created at application startup as the
default, global TEWBDatabase instance.

Properties
ActiveServerSession
AutoTransactions
BaseURL
DatabaseName
DataSetCount
DataSets
InTransaction
NumPendingRequests
Params
ServerSession
Timeout

TransactionLevel

Methods
CancelPendingRequests
Commit

Create
GetDataSetByName
LoadColumns
LoadParameters
LoadRows
RetryPendingRequests
Rollback

StartTransaction

Events
AfterCommit
AfterRollback
BeforeCommit
BeforeRollback
OnCommitError
OnCreate
OnDestroy
OnRollbackError

Page 13

Component Reference

TEWBDatabase.ActiveServerSession Property

property ActiveServerSession: TEWBServerSession

Indicates the TEWBServerSession instance being used by the database for authentication. If no session has been
manually assigned to the ServerSession property, then this property will reference the global DefaultEWBSession

instance that is automatically created at application startup.
The database uses the active server session's UserName, Password, and BaseURL properties along with the

Authenticate method to authenticate against the web server before executing any database APl requests. The
database then uses the BaseURL and DatabasesResource properties for constructing database API requests.

Page 14

Component Reference

TEWBDatabase.AutoTransactions Property

property AutoTransactions: Boolean

Specifies whether transactions will be automatically started and committed or rolled back as rows are inserted,
updated, and deleted in the datasets owned by the database. The default value is True.

Page 15

Component Reference

TEWBDatabase.BaseURL Property

property BaseURL: String

Indicates the base URL used for all database API requests. This URL is a combination of:
® The ActiveServerSession BaseURL property
e The ActiveServerSession DatabasesResource property

e The DatabaseName property
This property is used by datasets to build the proper URLs for loading rows and BLOB data from the web server.

Page 16

Component Reference

TEWBDatabase.DatabaseName Property

property DatabaseName: String

Specifies the name of the database to use when interacting with the database API.

Page 17

Component Reference

TEWBDatabase.DataSetCount Property

property DataSetCount: Integer

Indicates the number of datasets associated with this database.

Page 18

Component Reference

TEWBDatabase.DataSets Property

property DataSets[Index: Integer]: TEWBDataSet

Accesses all datasets associated with this database by index.

Page 19

Component Reference

TEWBDatabase.InTransaction Property

property InTransaction: Boolean

Indicates whether a transaction is active or not.

Page 20

Component Reference

TEWBDatabase.NumPendingRequests Property

property NumPendingRequests: Integer

Indicates the number of pending database load/commit web server requests. If any errors were encountered during
a dataset columns/parameters/rows load or database transaction commit operation, then the web server request
used with the operation will remain as a pending request. You can use the RetryPendingRequests to retry all
pending requests, or the CancelPendingRequests to cancel all pending requests.

Page 21

Component Reference

TEWBDatabase.Params Property

property Params: TStrings

Specifies any custom database-specific parameters to use with any dataset commands for the datasets in the
database. These parameters are included with any relevant database API requests and are useful for specifying
additional parameters for the web server to use when executing dataset commands.

Page 22

Component Reference

TEWBDatabase.ServerSession Property

property ServerSession: TEWBServerSession

Specifies the TEWBServerSession instance to use with the database. The default value is nil.
The ActiveServerSession property refers to the server session that is actually being used by the database for

authentication and database API requests. If the ServerSession property is nil, then the ActiveServerSession property
will reference the global DefaultEWBSession instance that is automatically created at application startup.

Page 23

Component Reference

TEWBDatabase.Timeout Property

property Timeout: Integer

Specifies how long any database request should wait, in seconds, for a successful connection to the server before
returning an error. The default value is 0, which means to wait a browser-defined number of seconds.

Page 24

Component Reference

TEWBDatabase.TransactionLevel Property

property TransactionLevel: Integer

Indicates the current transaction level. A value of -1 means that no transaction is active, while a value of 0 or higher
indicates that a transaction is active up to N levels of nesting.

Page 25

Component Reference

TEWBDatabase.CancelPendingRequests Method

procedure CancelPendingRequests

Use this method to cancel any pending dataset columns/parameters/rows load or transaction commit requests. You
can determine if there are any pending requests by examining the NumPendingRequests property.

Page 26

Component Reference

TEWBDatabase.Commit Method

procedure Commit

Use this method to commit the active transaction.

Page 27

Component Reference

TEWBDatabase.Create Method

constructor Create(AOwner: TComponent)

Use this method to create a new instance of the TEWBDatabase class.

Page 28

Component Reference

TEWBDatabase.GetDataSetByName Method

function GetDataSetByName(const Name: String): TEWBDataSet

Use this method to retrieve a dataset associated with this database by its name.

Page 29

Component Reference

TEWBDatabase.LoadColumns Method

procedure LoadColumns(DataSet: TEWBDataSet)

Use this method to load the columns for the specified dataset from the web server. This method will replace all
existing columns in the specified dataset with the current columns for the web server dataset.

Page 30

Component Reference

TEWBDatabase.LoadParameters Method

procedure LoadParameters(DataSet: TEWBDataSet)

Use this method to load the parameters for the specified dataset from the web server. This method will replace all
existing parameters in the specified dataset with the current parameters for the web server dataset.

Page 31

Component Reference

TEWBDatabase.LoadRows Method

procedure LoadRows(DataSet: TEWBDataSet; Append: Boolean=False)

Use this method to load the rows for the specified dataset from the web server. Specify True for the Append
parameter to have the rows appended to the dataset. The default behavior is to replace all rows in the dataset with
the rows returned by the web server.

Page 32

Component Reference

TEWBDatabase.RetryPendingRequests Method

procedure RetryPendingRequests

Use this method to retry any pending dataset columns/parameters/rows load or transaction commit requests. You
can determine if there are any pending requests by examining the NumPendingRequests property.

Page 33

Component Reference

TEWBDatabase.Rollback Method

procedure Rollback

Use this method to roll back the active transaction.

Page 34

Component Reference

TEWBDatabase.StartTransaction Method

procedure StartTransaction

Use this method to start a new transaction.

Page 35

Component Reference

TEWBDatabase.AfterCommit Event

property AfterCommit: TNotifyEvent

This event is triggered after the Commit method completes.

Page 36

Component Reference

TEWBDatabase.AfterRollback Event

property AfterRollback: TNotifyEvent

This event is triggered after the Rollback method completes.

Page 37

Component Reference

TEWBDatabase.BeforeCommit Event

property BeforeCommit: TEWBDatabaseEvent

This event is triggered before the Commit method starts. Return False from the event handler to prevent the
commit from occurring.

Page 38

Component Reference

TEWBDatabase.BeforeRollback Event

property BeforeRollback: TEWBDatabaseEvent

This event is triggered before the Rollback method starts. Return False from the event handler to prevent the
rollback from occurring.

Page 39

Component Reference

TEWBDatabase.OnCommitError Event

property OnCommitError: TEWBDatabaseErrorEvent

This event is triggered whenever an error occurs during the execution of the Commit method.

Page 40

Component Reference

TEWBDatabase.OnCreate Event

property OnCreate: TNotifyEvent

This event is triggered after the database is created and initialized.

Page 41

Component Reference

TEWBDatabase.OnDestroy Event

property OnDestroy: TNotifyEvent

This event is triggered before the database is destroyed. Use this event to dispose of any instances or resources that
may have been allocated in the OnCreate event handler.

Page 42

Component Reference

TEWBDatabase.OnRollbackError Event

property OnRollbackError: TEWBDatabaseErrorEvent

This event is triggered whenever an error occurs during the execution of the Rollback method.

Page 43

Component Reference

2.3 TEWBDatabaseAdapter Component

Unit: ewbdatasetadapter
Inherits From TComponent
The TEWBDatabaseAdapter component is used in conjunction with various TEWBDataSetAdapter components to
implement a custom database access APl in a native server module. A custom database access API will often deal

with data from a data source that isn't supported by the web server's built-in database access or needs to perform
special processing for database requests.

The TEWBDatabaseAdapter component implements the following functionality:

® Retrieving the list of datasets for the custom database access API.

e Retrieving TEWBDataSetAadapter instances in order to work with one or more datasets.

e Starting, committing, and rolling back transactions.
You can use the HandleRequest method to automatically handle the incoming TEWBWebServerRequest web server
request instance for the native server module. The request will be handled according to the database access API for

the web server. Please see the Web Server Database Access API topic under the Using the Web Server section in
the Elevate Web Builder manual for more information on how the API requests should be structured.

Properties Methods Events

InTransaction CommitTransaction OnCommit
Create OnGetDataSetAdapter
GetDataSetAdapter OnGetDataSets
GetDataSets OnRollback
HandleRequest OnStartTransaction

Page 44

Component Reference

TEWBDatabaseAdapter.InTransaction Property

property InTransaction: Boolean

Specifies whether the database adapter is currently processing a transaction commit request. This is useful when
you wish to use different datasets, or dataset adapters, with transactions than with requests for column definitions,
rows, or BLOB columns. You can examine this property in an OnGetDataSetAdapter event handler in order to
perform this type of conditional processing.

Page 45

Component Reference

TEWBDatabaseAdapter.CommitTransaction Method

function CommitTransaction(const DatabaseName: String; const
Operations: String): String

Use this method to commit a transaction.

This method will automatically call the GetDataSetAdapter method as necessary to get access to the dataset
adapters required to perform the insert, update, and delete dataset command executions for the transaction. If a
dataset adapter cannot be accessed for a particular dataset, an exception will be raised and the transaction commit

will fail.

Please see the Web Server Database Access API topic under the Using the Web Server section in the Elevate
Web Builder manual for more information on the structure of the JSON used for transaction commits.

Note
This method will be automatically called when the TEWBDatabaseAdapter HandleRequest method is called

for automatic database access API request handling, so you normally will not need to call this method
directly.

Page 46

Component Reference

TEWBDatabaseAdapter.Create Method

constructor Create(AOwner: TComponent)

Call the constructor to create an instance of the TEWBDatabaseAdapter component.

Page 47

Component Reference

TEWBDatabaseAdapter.GetDataSetAdapter Method

function GetDataSetAdapter(const DataSetName: String):
TEWBDataSetAdapter

Use this method to trigger the OnGetDataSetAdapter event and retrieve the dataset adapter instance for the
specified dataset name.

Page 48

Component Reference

TEWBDatabaseAdapter.GetDataSets Method

procedure GetDataSets(DataSets: TStrings)

Use this method to trigger the OnGetDataSets event and retrieve a list of the available datasets.

Page 49

Component Reference

TEWBDatabaseAdapter.HandleRequest Method

procedure HandleRequest(Request: TEWBWebServerRequest; const
DatabaseName: String="")

Use this method to automatically handle the incoming TEWBWebServerRequest web server request instance for the
native server module.

This method will automatically call the GetDataSets, GetDataSetAdapter, and CommitTransaction methods as
necessary.

The request will be handled according to the database access API for the web server. Please see the Web Server

Database Access API topic under the Using the Web Server section in the Elevate Web Builder manual for more
information on how the API requests should be structured.

Page 50

Component Reference

TEWBDatabaseAdapter.OnCommit Event

property OnCommit: TNotifyEvent

This event is triggered when the database adapter needs to commit a transaction. The developer can define an
event handler for this event in order to handle committing a transaction using a database-specific component.

Page 51

Component Reference

TEWBDatabaseAdapter.OnGetDataSetAdapter Event

property OnGetDataSetAdapter: TEWBGetDataSetAdapterEvent

This event is triggered when the GetDataSetAdapter method is called.

Warning
If the Adapter variable parameter is not assigned a value, an exception will occur when database access API
operations try to use the dataset adapter.

Page 52

Component Reference

TEWBDatabaseAdapter.OnGetDataSets Event

property OnGetDataSets: TEWBGetDataSetsEvent

This event is triggered when a datasets list request is handled by the database adapter. Usage of this event is
completely optional, but the event is useful for allowing client applications to enumerate the available datasets.

Page 53

Component Reference

TEWBDatabaseAdapter.OnRollback Event

property OnRollback: TNotifyEvent

This event is triggered when the database adapter needs to roll back a transaction. The developer can define an
event handler for this event in order to handle rolling back a transaction using a database-specific component.

Page 54

Component Reference

TEWBDatabaseAdapter.OnStartTransaction Event

property OnStartTransaction: TNotifyEvent

This event is triggered when the database adapter needs to start a transaction. The developer can define an event
handler for this event in order to handle starting a transaction using a database-specific component.

Page 55

Component Reference

2.4 TEWBDataSet Component

Unit: ewbdataset
Inherits From TDataSet

The TEWBDataSet component is a TDataSet-descendant component that represents a dataset and includes
functionality for opening, loading, navigating, searching, sorting, updating, and closing datasets. By default, every
dataset that is created is automatically added to the DataSets property for the default TEWBDatabase instance that
can be referenced using the global DefaultEWBDatabase variable. You can associate a dataset with a different
database by assigning the new database instance reference to the Database property.

Properties Methods Events
ActiveDatabase ClearSort AfterLoad
BaseRowsURL GetColumns AfterLoadColumns
BookmarkSize GetRows AfterLoadParameters
CopyOnAppend LoadColumns BeforeLoad

Database LoadParameters BeforeLoadColumns
DataSetName LoadRows BeforeLoadParameters
DescSortedFields Sort OnLoadColumnsError
IncludelnTransaction OnLoadError
LocalizeDateTimeColumns OnLoadParametersError
Params

ReadOnly

SortedFields

SortOptions

Page 56

Component Reference

TEWBDataSet.ActiveDatabase Property

property ActiveDatabase: TEWBDatabase

Indicates the TEWBDatabase instance that the dataset is associated with. By default, all TEWBDataSet components
are associated with the default TEWBDatabase instance that can be referenced using the global
DefaultEWBDatabase variable.

Page 57

Component Reference

TEWBDataSet.BaseRowsURL Property

property BaseRowsURL: String

Indicates the base URL that will be used for retrieving the rows for the dataset. This URL is a combination of:
® The Database BaseURL property
e The DataSetName property

® The hard-coded "data" resource
This property is used by bound controls to build the proper URLs for loading BLOB data from the web server.

Page 58

Component Reference

TEWBDataSet.BookmarkSize Property

property BookmarkSize: Integer

Page 59

Component Reference

TEWBDataSet.CopyOnAppend Property

property CopyOnAppend: Boolean

Specifies whether the current or last row's contents should be copied automatically to any newly inserted or
appended rows.

Page 60

Component Reference

TEWBDataSet.Database Property

property Database: TEWBDatabase

Specifies the TEWBDatabase instance that the dataset is associated with. By default, every dataset that is created is
automatically associated with the default TEWBDatabase instance that can be referenced using the global
DefaultEWBDatabase variable.

Page 61

Component Reference

TEWBDataSet.DataSetName Property

property DataSetName: String

Specifies the name of the dataset to use when interacting with the database API.

Page 62

Component Reference

TEWBDataSet.DescSortedFields Property

property DescSortedFields: String

Indicates which fields that are present in the SortedFields property are sorted in a descending, instead of ascending,
direction. Multiple fields are delimited with a semicolon (;).

A dataset can be sorted by calling the Sort method with the appropriate parameters.

Note
If the SortedFields property is blank, then there is no active sort on the dataset.

Page 63

Component Reference

TEWBDataSet.IncludelnTransaction Property

property IncludeInTransaction: Boolean

Specifies whether the dataset should be included in any transactions started using the TEWBDatabase
StartTransaction method, or indirectly by setting the TEWBDatabase AutoTransactions property to True.

Page 64

Component Reference

TEWBDataSet.LocalizeDateTimeColumns Property

property LocalizeDateTimeColumns: Boolean

Specifies whether the dataset will localize date-time (TDateTime) column values when assigning them to/from the
dataset. The default value is False.

Page 65

Component Reference

TEWBDataSet.Params Property

property Params: TStrings

Specifies any custom dataset-specific parameters to use with any dataset commands for this dataset. These
parameters are included with any relevant database API requests and are useful for specifying additional parameters
for the web server to use when executing dataset commands.

Page 66

Component Reference

TEWBDataSet.ReadOnly Property

property ReadOnly: Boolean

Specifies whether the dataset should be editable or not.

Page 67

Component Reference

TEWBDataSet.SortedFields Property

property SortedFields: String

Indicates which fields, if any, are part of the active sort. Multiple fields are delimited with a semicolon (). If this
property is blank, then there is no active sort on the dataset. Any fields that are sorted in a descending, instead of
ascending, order are indicated in the DescSortedFields property.

A dataset